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Abstract

When people speak, they have to choose a syntactic structure
for their utterances. Research shows that this choice is not
made independently for each utterance, and that it is influenced
by properties of recent utterances (Bock, 1986). But the learn-
ing mechanisms responsible for this influence, and its duration
are not completely clear. Pickering and Branigan (1998) sug-
gest that structural repetition is due to trailing-activation in the
language production system. However, this account lacks a
formal implementation. Chang, Dell, and Bock (2006) have
developed a computational model that tries to explain struc-
tural priming based on error-based learning. In this paper we
report a formal model that relies on an unsupervised learning
mechanism and use this to replicate behavioral data for both
structural priming and lexical influence on this priming. We
use this model to investigate the factors that lead to these prim-
ing effects and its rate of decay.

Introduction

A key goal of cognitive science is to understand the processes

underlying language production. This entails understanding

the mechanisms underlying lexical, structural and semantic

choice during sentence formulation. Research shows that the

choice of syntactic structure is not made independently for

each episode of language production. Rather, recent utter-

ances that the speaker has heard, or produced, influence this

choice – i.e. language production shows structural priming

(Bock, 1986; Branigan, Pickering, & Cleland, 2000).

Furthermore, Pickering and Branigan (1998) found that

structural priming increases when speakers use the same

verbs in prime and target utterances. Consider the following

Prime and Target pairs for a sentence-completion task:

Prime1 The teacher gave the girl the book.

Prime2 The teacher gave the book to the girl.

Prime3 The teacher showed the girl the book.

Prime4 The teacher showed the book to the girl.

Target The patient gave . . .

The prime sentences use either a direct-object (DO) or

prepositional-object (PO) syntactic structure. The target sen-

tence can also be completed using either a DO or a PO phrase.

Pickering and Branigan (1998) show that subjects are more

likely to repeat the structure of prime sentence if the prime

and target use the same verb – i.e. Prime1 and Prime2 elicit

more priming than Prime3 and Prime4. This phenomenon is

called the lexical-boost effect.

There are two existing accounts of structural priming.

The trailing-activation account attributes priming to unsuper-

vised, associative learning which leads to traces of activation

in the system. Pickering and Branigan (1998) proposed that

this trailing activation links structural options to individual

lexical items, causing lexical context to influence structural

priming (thereby explaining the lexical-boost effect).

The alternative error-based learning account is a super-

vised learning account. It proposes that listeners actively pre-

dict what they will hear and use the error between prediction

and actual outcome to adjust their structural-decision rules;

this error-based learning is hypothesized to underlie structural

priming (Chang et al., 2006). Such an account therefore em-

phasises that structural repetition is a byproduct of a larger

function of human cognition: language acquisition.

Both error-based and trailing-activation accounts are able

to explain data from structural priming. Since the latter

account is based on learning associations between lexical

and structural constructs, it is more compatible with the

data showing lexical boost. But the trailing-activation ac-

count lacks a formal implementation. Also, some recent

studies have found no lexical boost in long-term structural

priming (Kaschak & Borreggine, 2008; Hartsuiker, Bernolet,

Schoonbaert, Speybroeck, & Vanderelst, 2008) leading them

to conclude that listeners store structural information in long-

term memory after discarding its lexical context. These data

are consistent with Chang et al’s model, which assumes that

an independent syntax module abstracts structural informa-

tion from utterances through error-based learning.

In contrast, we present a nonlinear dynamical system that

explains such data in terms of trailing activation. This com-

putational model does not rely on a strategic learning process.

Instead, each episode of training leaves a memory trace based

on the units that it activates, recorded as a fixed amount of ad-

justment to the system. The structural choices made by the

system during subsequent episodes are dependent on these

memory traces. In addition to this, the architecture of the

system assumes a considerable degree of similarity in lexical

and structural information processing. As a consequence, it

allows these kinds of processes to closely inform each other.

We show that this system can successfully model short-

term effects of both structural priming and its lexical-

enhancement. We also use this system to model results from

Kaschak and Borreggine (2008), and Hartsuiker et al. (2008)

– two studies which fail to find lexical-enhancement on long-

term structural priming. We use these results to investigate

the time-course of structural priming and the mechanisms by

which lexical representations can influence this priming.

657



Methods

Network architecture

The model consists of three layers, each of which can be

thought of as independent cognitive module in the brain (see

1). Syntactic and lexical processing are performed by the

two layers of representation Layer1 and Layer2 in the fig-

ure. Each of these layers consists of a group of nodes rep-

resenting a basic construct of the layer: verbs for lexical

layer and grammatical constructions for the syntax layer. In

addition to this, the system has a layer consisting of bind-

ing nodes that bind representations in lexical and syntactic

layers. This layer can be thought of as a cognitive mod-

ule providing an activation-based short-term memory (STM)

for associations between the lexical and syntactic modules.

Such an activation-based memory is coherent with the notion

of cortico-cortical associations being maintained by persis-

tent activation of neurons in the prefrontal cortex (Funahashi,

Bruce, & Goldman-Rakic, 1989).

1 2 3 4 5 6 7 8

Layer 1

Layer 2

STM

HandLendShowGive

PO DO

K ’
1

K ’
2

1 2 3 4
K K K K

inhibitory
connection

connection
excitatory

Figure 1: The model consists of two winner-take-all layers, con-

nected via binding nodes. Activation flows across layers (dotted

lines) according to the logic discussed in Experimental Design.

Each node in layers 1 and 2 receives an external input, Kn.

During comprehension, this input is assumed to be from feed-

forward connections coming from either lower levels of pro-

cessing or afferent connections from the sensory system. Dur-

ing production, nodes in the lexical layer receive input from

the meaning system, while the syntax nodes receive no exter-

nal input, except the activation that flows from lexical layer

via the binding nodes (discussed later).

Dynamics

Each node sums its input and produces an output governed by

the Naka-Rushton transformation function (Naka & Rushton,

1966):

S(x) =

{

MxN

σN+xN f or x ≥ 0

0 f or x < 0
(1)

where x is the input to the function, M is the maximum acti-

vation, σ is semi-saturation constant (the point at which S(x)
reaches half its value), and N determines the slope of the func-

tion.

Each node is connected to all other nodes in the layer

through mutually-inhibitory connections. This ensures that

each layer has winner-take-all (WTA) dynamics: the nodes

of a particular layer compete with each other for achieving

maximum activation; the winning node then suppresses the

other nodes completely. The strength of mutual inhibition is

predefined and fixed. The dynamic equation for the rate of

change of activation of each node in Layer1 and Layer2 is:

dEi

dt
=

1

τ
(−Ei +S(Ki −3 ∑

j 6=i

E j)) (2)

where Ei is the activation of the node, Ki is the external input,

and τ is the time-constant for rate of change of activation of

each node (Wilson, 1999). Therefore, (Ki − 3∑ j E j) is the

net input to each node – the difference between external input

and sum of inputs from inhibitory connections. Each external

input tries to pull the activation of the node towards its own

value and each node tries to suppress all other nodes. Since

the system always starts from the rest-state (Ei = 0) at the

beginning of a prime trial, the winning-node at the end of this

trial is completely dependent on the external input.

The dynamical equation of the binding nodes is similar,

except there are only two binding nodes in each group and

they are mutually excitatory:

dEi

dt
=

1

τstm

(−Ei +S(3E j)) (3)

Once activated, a node of such a WTA or STM network

shows reluctance to move from that stable state – i.e. it shows

hysteresis (Wilson, 1999). This hysteresis serves as a short-

term memory in the network as the activation of the node

(during the target trial) is governed not only by its current

input, but also by its history of activation.

Learning. There are two mechanisms for recording

episodic memory traces in the system: (i) hysteresis in the

nodes – which serves as a short-term memory for lexical,

syntactic and binding nodes – and (ii) an incremental adjust-

ment to the inputs of the winning node. Whenever a node

wins a competition, its input connection, Kint , receives a fixed

amount of boost, ρ. This boost means that the system favours

the activation of a recently activated (or frequently activated)

node. Thus every time a node gets activated, it becomes eas-

ier to activate it the next time. This mechanism of incremen-

tal adjustment is Hebbian learning in its most primitive form:

when an input frequently contributes to the firing of a particu-

lar neuron, then synapses from the input to the neuron should

be strengthened. It should be noted that, as against an error-

based learning account, learning in this account is fixed and

unsupervised.

Forgetting. Any capacity-limited memory needs to un-

dergo gradual forgetting in order to avoid losing all stored in-

formation (Sandberg, Lansner, Petersson, & Ekeberg, 2000).

Activation-based memory has a natural mechanism of forget-

ting: adaptation in the firing rate of neurons, due to fatigue.

658



Following Wilson (1999), this adaptation is introduced by

gradually changing parameter σ in equation 1. Our model

consists of two kinds of connections – mutually inhibitory

(WTA), and mutually excitatory (STM). Each of these dy-

namical systems (given by Equations 2 and 3) is extended by

replacing σi with (σi +Ai), and adding the equation:

dAi

dt
=

1

τa

(−Ai +αEi) (4)

where Ai is the amount of adaptation (or adjustments to σi);

τa is the time constant for adaptation; and α is the saturation

constant for Ai – i.e., it governs what value will Ai increase

to, as a fraction of Ei. Effectively, this adaptation mecha-

nism moves the equilibrium point of the dynamical system

such that the firing rate decreases, and the stable point moves

towards a saddle state. Beyond a particular time, the equilib-

rium point meets the saddle point and vanishes, thus simulat-

ing complete forgetting.

The weight-based long-term memory also needs to exhibit

forgetting for the reasons stated above. This forgetting is im-

plemented as an exponential decay in the input, Kint , at the

end of each trial. We can control the rate of decay by varying

the time-constant of this exponential decay.

Experimental design

Two different sets of experiments were carried out on the

model. The first set tests the short-term effects of structural

repetition (Experiments 1 & 2). In these cases the target

immediately follows the prime. These experiments mirror

the behavioural experiments conducted by Bock (1986), and

Pickering and Branigan (1998). The second set of experi-

ments investigate the long-term effects of structural priming

and the influence of lexical repetition on structural priming

when prime and target are separated over several trials (Ex-

periments 3 & 4). These experiments mirror Kaschak and

Borreggine (2008) and Hartsuiker et al. (2008).

Short-term memory. The simulation is divided into two

trials: the priming trial and the target trial. At the begin-

ning of the priming trial the network was set to the rest state,

i.e., both nodes in the syntax layer were turned to the OFF

state. In equation 2 this corresponds to the initial conditions

Ei = 0. The external input to each node, Ki is chosen based

on the prime sentence. After this, the equilibrium state is cal-

culated by simulating the dynamical equations of both layers.

Once the network has settled, the bindings are stored in the

STM. This is done by simulating the dynamical equations of

the mutually excitatory networks and a constant external in-

put. This external input is positive (and above threshold) if

both the lexical and structural nodes connected to the binding

node are active (ON), and zero otherwise.

In order to simulate the target trial of a sentence comple-

tion task, the lexical layer is provided with an external input

(biased in favour of one node) during the target trial. This is

equivalent to providing an incomplete sentence with a verb

in the behavioural experiment. The syntactic nodes, on the

other hand, do not receive any external input. This is be-

cause we want to simulate syntactic choice and the decision

has to be based on the internal states of the system. The ini-

tial state of these nodes is set to the final state at the end of

training trial. Also each node in the syntactic layer receives

input from STM based on the following expression:
{

Kstm i f Estm ×Elex > 0

0 otherwise
(5)

where Kstm is a constant amount of input that a node in layer

1 gets from the STM, provided the condition on the right-

hand-side is met. The condition Estm×Elex > 0 ensures that a

syntactic node receives input from only those binding nodes

that are themselves active and are connected to active lexical

nodes. Thus, during the target trial, there is a causal flow of

activation from lexical to syntax layer via the binding nodes.

Long-term memory. The second set of tests conducted on

the model tested the persistence of structural priming and

long-term lexical enhancement of this priming. In order to

make direct comparisons with behavioural data, we tested the

model under same experimental conditions as Kaschak and

Borreggine (2008). Each of their experiments is divided into

two phases: a training phase, and a testing phase1 (Figure

2). Subjects are trained for a particular grammatical construc-

tion during the training phase by being coerced to produce it.

These are shown as the ‘prime’ trials in Figure 2. We sim-

ulated this by providing high input to the coerced nodes for

both lexical and syntactic constructions and simulating the

model till it reaches equilibrium. After 10 such priming tri-

als, subjects receive 6 prime-target pairs during the testing

phase. Target trials are simulated in exactly the same way as

for short-term memory experiments above. The model is al-

lowed to run freely and settle into a state of equilibrium. The

winning node in the syntax layers is taken as the output of the

production phase.

Figure 2: Experimental design for testing long-term priming and

lexical influence.

1The testing phase does not imply that the model has stopped
learning – it performs learning during both phases, but is tested on
target sentences only during testing phase.
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Results and Analysis

Experiment 1. The first experiment was a short-term mem-

ory experiment – i.e. target trials were presented immediately

after prime trials. The simulation was run for 50 different sub-

jects, independently. That is the dynamical system was simu-

lated beginning from the rest state for 50 times. Randomness

is provided in the system by having noise in the strength of

external inputs.

In order to quantify the amount of priming shown by the

system, the system was simulated under two different con-

ditions: (i) Priming condition: when the initial state of the

target trial was influenced by the final state of the prime trial,

and (ii) No-priming condition: when the initial state of the

target trial was reset to the rest state. A statistic was derived

by comparing (and normalising) the number of subjects who

show repetition under the two conditions:

Priming =
Nnp −Np

NSub
∗100 (6)

Nnp = Number of subjects that do not show repetition

in no-priming condition.

Np = Number of subjects that do not show repetition

in priming condition.

NSub = Total number of subjects.

In the absence of input from binding layer, Kstm = 0, the

system shows Priming of 16%, and Priming rep (which mea-

sures Priming when the verb was repeated between prime and

target) of 10% – i.e. no enhanced priming for subjects receiv-

ing lexical boost. When Kstm is set to a positive value (here,

5), the Priming rises to 30%, and Priming rep rises to 40.8%.

Thus, under the influence of input from the binding nodes,

the system starts showing lexical boost.

These results demonstrate that our system shows both

priming and lexical boost (Bock, 1986; Pickering & Brani-

gan, 1998). These results are not surprising since the system

was designed to do just that, but it confirms that the given ar-

chitecture is capable of showing these phenomena. The hys-

teresis in WTA layers ensures priming, and that in STM en-

sures lexical boost.

Experiment 2. This experiment introduced an adaptation

phase between the prime and target trials. During this phase,

no external input was given to the STM nodes, and a con-

stant (and equal) external stimulus was given to the WTA

nodes. The goal was to test the effect of forgetting (simu-

lated through adaptation-time) on structural priming and lex-

ical boost. Table 1 shows the results of varying the adaptation

time on Priming and on Priming rep.

Adapt time (ms) 0 1000 3000 4000 8000

Priming 46% 30% 28% 16% 6%

Priming rep 57% 35% 36.8% 18% 3.8%

Table 1: Effect of forgetting on structural priming and lexical boost.

(Fixed input from binding layer Kstm = 10)

We can observe from this table that the amount of prim-

ing decreases gradually as the adaptation time is increased,

while the lexical boost (Priming rep −Priming) shows a sud-

den decay around 4000ms. The reason for this behaviour

can be seen by plotting the activations of STM and WTA

nodes against adaptation time (Figure 3). The STM network

with mutually excitatory nodes shows a catastrophic decay

of memory after a certain time (Fig. 3(a)). On the other

hand, the activations of the two nodes in the WTA network

approach a constant difference asymptotically (Fig. 3(b)).
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Figure 3: Contrasting adaptation in WTA and STM networks

We can compare these results with the findings of Hart-

suiker et al. (2008). In their study, Hartsuiker et al. tried

to establish the duration of lexical enhancement on structural

priming. They varied the lag between prime and target ut-

terances by inserting filler utterances between the two. They

found that structural priming persists over large lags (up to

six filler items), while lexical enhancement of this priming

decays quickly. The results from the current simulation (Ta-

ble 1) mirror this effect. Furthermore, the model provides

a mechanistic explanation for these effects and suggests that

this difference in the temporal properties of priming and lexi-

cal boost is due to the difference in dynamics of hysteresis in

competitive (WTA), and associative (STM) layers.

Experiment 3. The third experiment turned on long-term

learning and tested the cumulative effect of several prime

utterances (presented during the training phase) on a target

utterance (Figure 2). Following Kaschak and Borreggine

(2008), this experiment checks whether the influence of struc-

tural factors on priming changes if we change the set of verbs

between training and testing phase (Different Verb condition)

as compared to when we use the same set of verbs (Same Verb

condition). If the pattern of priming changes during the Dif-
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ferent Verb condition, then priming is clearly verb-specific –

i.e. there is long-term lexical influence. Otherwise lexical in-

fluence is constrained to prime-target trials and does not have

a cumulative effect.

To quantify the pattern of priming, Kaschak and Borreg-

gine (2008) compared the amount of priming when subjects

saw an equal number of each structure during the training

phase (Equal condition) to when the subjects saw only one

kind of (biasing) structure during the training phase (Unequal

condition). The difference between the amount of priming

shown for Equal and Unequal conditions provides a measure

the cumulative priming from training to testing phase.

We simulated this experiment on eighty independent sub-

jects, with half of the subjects assigned to the same verb con-

dition and the other half to the different verb condition. The

results of the simulation are shown in Figure 4. Mirroring the

original study, the computational model shows a difference

between priming in the equal and unequal cases. But cru-

cially, this difference is similar under both same and different

verb conditions – the same result obtained by Kaschak and

Borreggine (2008) and one which they use to justify the lack

of influence of lexical factors on long-term structural priming.
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Figure 4: Results for Experiment 3. X-axis shows type of prime.

Experiment 4. Lastly, we turn our attention to the second

experiment in Kaschak and Borreggine (2008). This exper-

iment measures the amount of long-term structural priming

under the Balanced (verb in training phase associated equally

with both grammatical constructions) and Skewed (verb in

training phase associated with only one kind of construction)

conditions. The premise here is that if grammatical choice is

sensitive to lexical factors, then biasing a word-form towards

one (grammatical) construction during training should hinder

the selection of the other construction during testing, thus giv-

ing larger priming in Balanced condition as compared to the

Skewed condition.

In order to simulate this experiment, another input data set

was constructed where half of the subjects were put into the

Balanced condition and the other half into the Skewed condi-

tion. Again a set of eighty subjects were simulated with the

same parameters as above. The results of the simulations are

shown in Figure 5.
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Figure 5: Simulation results for Experiment 4

In this experiment too, we observe that the Balanced and

Skewed training conditions show similar amount of structural

priming. This mirrors the results of Kaschak and Borreggine

(2008). We observe that even though our model is based on

principles of trailing-activation, it can replicate lexical influ-

ence on long-term structural priming observed with human

subjects. This clearly shows that an error-based account is

not necessary for showing rapid decay in lexical boost when

prime and target are separated over several trials.

Discussion

We saw in the previous section that our computational model

successfully replicates the results from both Pickering and

Branigan (1998) and Kaschak and Borreggine (2008). The

architecture of the model is close to the one laid out in Pick-

ering and Branigan (1998), with connections between lemma

nodes and combinatorial nodes being replaced by binding

nodes between lexical and syntactic layers. These binding

nodes show hysteresis from priming episode to target episode

and serve as a short-term memory of lexical-syntactic asso-

ciations. The architecture also ensures that the model is ho-

mogeneous, with similar mechanisms responsible for learn-

ing and decision making, in lexical, syntactic and connecting

nodes.

While the model successfully replicates these behavioural

experiments, the more interesting question is why the model

shows no lexical influence on long-term structural priming.

Kaschak and Borreggine (2008) use this very lack of lexical

influence on long-term structural priming to support error-

based learning account, where the syntax-module abstracts

away structural information and stores it in long-term mem-

ory. In order to understand the influence of lexical memory on

structural priming, we varied the rate of forgetting in the bind-

ing nodes (the part of the network which stores associations

between lexical and structural representations) and noted the
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amount of long-term structural priming under the conditions

of Experiments 3 and 4 (Figure 6). The reader would recall

that long-term learning in the model is performed by adjust-

ment to inputs to nodes. Thus in order to vary the rate of for-

getting in binding nodes, we varied the rate of decay in these

input weights, plotted against the x-axis in Figure 6. The val-

ues on the left show priming for a small order or decay – i.e.

very slow rate of forgetting – and the values on the right show

priming under a fast rate of forgetting.

(a) Variation of priming with rate of forgetting in
binding nodes – Same and Diff Verb conditions

(b) Variation of priming with rate of forgetting in
binding nodes – Balanced and Skewed conditions

Figure 6: Simulation results for Experiment 3 and 4 under different

durations of lexical influence.

From fig 6(a) we can observe that long-term lexical in-

fluence does affect the Same-Verb conditions more; but

this affect is similar for the Equal and Unequal cases (the

blue/triangle and red/square curves). This means that the

test that Kaschak and Borreggine (2008) adopt for check-

ing lexical influence – namely, checking the difference of ef-

fect across Same-Verb and Different-Verb conditions – is not

useful, since the effect size (primingequal − primingunequal) is

same (close to zero) for both slow and fast forgetting.

The model also shows that long-term lexical influence does

not necessarily imply a difference in Balanced and Skewed

cases. This difference varies as a U-shaped function of in-

crease in lexical influence (Fig 6(b), black/circle curve), such

that the difference is close to zero for both long and short du-

ration of influence. Although the model does not require lex-

ical influence to decay slowly, these results show that a long-

term lexical influence does not necessarily manifest itself as

a difference in balanced and skewed conditions, or Same and

Different-Verb conditions. Thus, these results feed back into

behavioural studies and suggest further testing to establish the

exact duration of lexical influence on structural priming.

The computational model that we have presented in this

paper implements an unsupervised memory system. Each

episode of comprehension leaves a trace in the system – just

as in a trailing-activation account. This system does not try

to abstract away the rules of language production from each

episode, and is therefore in contrast with an error-based ac-

count like that of Chang et al. (2006). It assumes an adult

subject, who has already acquired a working knowledge of

language. The model hypothesises that such an adult subject

shows structural repetition because of memory traces of past

episodes of language comprehension. It justifies this account

by replicating the effects of priming and lexical enhancement

of this priming over different time intervals. Finally, it also

provides a mechanistic explanation for how priming might

decay, and why this decay might be independent of the decay

in lexical influence on this priming.
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