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ABSTRACT OF THE DISSERTATION

Semiclassical Theory of Fermions

By

Raphael Florentino Ribeiro

Doctor of Philosophy in Chemistry

University of California, Irvine, 2016

Kieron Burke, Chair

A blend of non-perturbative semiclassical techniques is employed to systematically construct

approximations to noninteracting many-fermion systems (coupled to some external potential

mimicking the Kohn-Sham potential of density functional theory). In particular, uniform

asymptotic approximations are obtained for the particle and kinetic energy density in terms

of the external potential acting on the fermions and the Fermi energy. Dominant corrections

to the classical limit of quantum mechanics are shown to be captured by the semiclassical

approximation everywhere in configuration space. As opposed to previous treatments, no

singular behavior arising from inappropriate choice of representation ever arises. Such con-

venient properties allow us to derive a number of universal limits for the particle density

and kinetic and potential energies in the semiclassical limit. Additionally, we study the

performance of the semiclassical approximations in a variety of one-dimensional potentials.

In the second part of this thesis, a Dyson-like equation is derived relating the Green’s function

of an isolated subsystem satisfying Dirichlet boundary conditions with that of an associated

infinite coupled system. We explain the relation to the Landauer model and quantum trans-

port. In particular an analytical form for the self-energy operator is obtained for a simple

model. The developed framework is illustrated with a semiclassical calculation.

xii



Chapter 1

Introduction and Outline

1.1 Fermionic Ground-State

It has been clear since the early part of the 1900’s that a complete understanding of the low-

energy microscopic phenomena of chemistry and physics can be obtained only by application

of the laws of quantum mechanics. However, it was also obvious then the impossibility of

obtaining exact descriptions of physical systems containing a macroscopic, e.g., O(1023),

number of atoms. In the words of Dirac: ”It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which can lead to an

explanation of the main features of complex atomic systems without too much computation”.

Despite much progress, and almost a century after such words were articulated, they remain

appropriate [30].

A large part of theoretical chemistry relies on approximate solutions to the quantum-mechanical

partial differential equations to describe molecular structure and dynamics [24, 48, 64]. As

is usual in the study of complex physical phenomena, suitable approximations may differ

depending on the relevant energy scale and property which is to be probed. In the first
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part of this thesis we will only be concerned with the lowest energy phenomena of finite

systems. In other words, our main interest will be in the description of the ground-state of

a finite sample of fermions coupled to an external potential. This is exactly analogous to

the problem of obtaining the infimum of the spectrum of a molecular system in the Born-

Oppenheimer approximation, where the nuclei are fixed and the electrons are coupled to

the former’s electrostatic fields [17]. Relativistic or spin-dependent effects play no role in

forthcoming considerations so they will be completely ignored.

A variety of methodologies exist for the investigation of the electronic states of matter. The

most popular can be classified into two groups: that of wave function (WF) [48, 96], and

density functional theory (DFT) methods [31, 35, 50]. These differ in the central variable

whence any other observable can (in principle) be obtained from. The main advantage of a

certain branch of wave function-based methods is that there exists a systematic method to

improve the accuracy of a given prediction by increasing the size of the approximate Hilbert

space. Its most unfavorable drawback concerns the computational cost usually required

to obtain results of chemical accuracy (that is, with an approximate error of 1 kcal/mol).

For instance, a well-reputed (though non-variational, and with poor accuracy for so-called

multireference systems [24]) wave function method is coupled cluster with single and double

excitations (CCSD). Its computational cost scales asymptotically as N6, where N is the

number of dimensions of the approximate Hilbert space. Such a cost is prohibitive for systems

with more than 20 electrons, and therefore limits the application of CCSD to electronic states

including only a small number of particles. Density-functional methods provide a much

cheaper alternative. However, while DFT has been rigorously proved to exist, its practical

implementation (in the form of Kohn-Sham DFT) requires approximation of the so-called

exchange-correlation functional. Useful approximations exist, but there are neither rigorous,

nor systematic ways to improve their quality and applicability. This implies that questions

loom over the reasons behind the general accuracy of approximate exchange-correlation

energy functionals as well as on how to systematically correct for their known flaws [21, 95].

2



The modus operandi of Kohn-Sham DFT (KS-DFT) is similar to that of mean-field theory.

In particular, in its pure state formulation, it is conjectured that the particle density ρ(x)

of an interacting many-electron system is equal to that of a noninteracting fermionic system

coupled to the conventionally denoted Kohn-Sham potential vs[ρ] [35]. The latter is supposed

to include all of the effects of the electron-electron repulsion as well as the electronic coupling

to the external potential (e.g., due to the fixed nuclei present in the system), i.e.,

vs[ρ](x) =

∫
d3x′

ρ(x′)

|x− x′|
+ vxc[ρ](x) + vext(x), x ∈ R3, (1.1)

where vxc[ρ] is the exchange-correlation potential carrying all of the effects of dynamical and

statical electronic correlation, and vext(x) is the external potential acting on the electron

density. It follows that the orbitals {φi(x)}i∈N, of the noninteracting (Kohn-Sham) system

satisfy

ρ(x) =
N∑
i=1

|φi(x)|2, (1.2)

[
− ~2

2m
∆ + vs[ρ](x)

]
φj(x) = εjφj(x), (1.3)

where εj corresponds to Kohn-Sham orbital energies, and εj < εi, ∀ j < i. The ground-state

was assumed to be non-degenerate for the purposes of this basic discussion, and the spectrum

of the Kohn-Sham system was similarly assumed discrete (the foundational theorems of DFT

make no such requirement) [35, 50, 65, 66].

There exists no general mathematical proof of existence of a Kohn-Sham system for an

arbitrary interacting electron density n0(x) [35]. However, the many successes of the KS-

DFT approach (with approximate exchange-correlation potentials) suggest that at least for

a sizable fraction of the electronic ground-states of interest to chemistry the Kohn-Sham

3



system exists. Thus, the main focus of the field of developmental ground-state DFT is

directed at the construction of exchange-correlation functionals Exc[ρ] [21, 86, 95]. These

give rise to the previously mentioned exchange-correlation KS potentials via application of

the functional derivative with respect to the particle density,

vxc[ρ] =
δExc[ρ]

δρ
. (1.4)

Unfortunately, as already mentioned, there is no universal guiding principle for the construc-

tion of approximations to Exc[ρ]. The most successful (first-principles) exchange-correlation

energy functionals were built by defining a class of functional forms with parameters that are

constrained so they satisfy universal exact conditions from the theory of many-body systems

[83, 88]. An important example of exact condition satisfied by adequate exchange-correlation

functionals is that they reduce in the limit where the system is infinite and homogeneous

to that of the homogeneous electron gas [21, 86, 95]. Notwithstanding the simplicity of the

discussed strategy, it has an obvious non-uniqueness problem, as there is an infinite number

of ways to satisfy a finite number of conditions. As a result, much remains to be learned

about optimal strategies for the design of exchange-correlation functionals [95].

Despite its drawbacks, DFT is the most popular approach to the study of molecular elec-

tronic structure theory. This is a fruit of its lower computational complexity and gen-

eral reasonable accuracy (assuming the choice of a well-established approximation to the

exchange-correlation energy functional). For example, if an exchange-correlation functional

of the form

Exc[ρ] =

∫
d3x G (ρ, |∇ρ|) , (1.5)

4



(where G is a map from some suitably defined space of particle densities to the real numbers

[35]) is employed, the asymptotic cost of a self-consistent Kohn-Sham computation scales

as N3, which is already inferior to that of the mean-field Hartree-Fock method (the cost of

the latter scales as N4 [24]). These factors have allowed electronic structure effects to be

included for example in a variety of liquid [72, 76] and solid-state [46] simulations of complex

phenomena in chemical biology [3, 16] and material sciences [78, 99]. Nonetheless, there is no

question that ground-state DFT would greatly benefit from systematic developments in the

subfields of orbital-free i) exchange-correlation, and ii) kinetic energy density functionals [21,

87, 95]. The latter item’s importance resides on the fact that the computational bottleneck

of most ab initio molecular simulations consists of obtaining self-consistent solutions of the

Kohn-Sham eqs. 1.3, the main purpose of which is to generate highly-accurate noninteracting

kinetic energies. Thus, a simple, accurate, orbital-free kinetic energy density functional would

be particularly useful to speed up large-scale ab initio simulations of chemical kinetics and

thermodynamics in abstruse environments.

It is however, even harder to build useful, i.e., reasonably accurate, orbital-free density

functional approximations to the noninteracting kinetic energy than it is for the exchange-

correlation energy [31, 105]. Therefore, in spite of their much lower cost (the cost incurred by

employing orbital-free density functionals tends to scale linearly with the number of particles

of a system [105]), because they provide dismal general accuracy, orbital-free approximations

to the kinetic energy density functional are not widely used.

Motivated by the central problems of ground-state Kohn-Sham DFT, in this thesis, we will

only be concerned with orbital-free descriptions of noninteracting fermions coupled to generic

external potentials. This already presents formidable challenges.
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1.2 Semiclassical Mechanics

In the first part of this thesis, semiclassical analysis of quantum mechanics will be the main

formalism employed in the construction of accurate, yet simple, descriptions of many-fermion

systems. Here we introduce some of its basic ideas.

Semiclassical mechanics has been historically associated to asymptotic expansions of quan-

tum mechanical properties in the limit where ~→ 0+ [11, 18, 23]. This is considered a formal

limit for two reasons: a) ~ is a natural constant, so what should be understood as going to

zero is a dimensionless quantity involving ~, and b) the semiclassical limit is generally sin-

gular, so it leads to divergent mathematical quantities, the interpretation of which is subtle

[11, 61, 110]. To illustrate point a), let V (x) denote a nonconstant, positive smooth function

on R3, and define p(x,E) =
√

2[E − V (x)], E ≥ V (x), ∀ x ∈ R3. Then, the spatial rate of

change of the local de Broglie wavelength λ(x,E) = ~/p(x,E) of a quantum particle with

energy E provides a particularly useful dimensionless parameter which can be used to mea-

sure the relative importance of quantum effects and the breakdown of primitive semiclassical

approximations [11, 23]:

δ(x,E) =

∣∣∣∣dλ(x,E)

dx

∣∣∣∣ =
~|∇V (x)|
p3(x,E)

. (1.6)

In particular, for a given V (x), semiclassical analysis shows that certain quantum effects

may be neglected when δ(x,E) → 0 (which is equivalent to ~ → 0+ except for x in a set

of measure zero which we describe below) [11, 23, 98]. For instance, if p(x) is arbitrarily

large, then local quantum oscillations will be of such short wave-length that the uncertainty

principle would only allow their resolution by experiments involving arbitrarily high energies.

A measurement of any local property would then yield an average expected to conform to that

of a classical description. Note that the interchangeability of the ~→ 0+ and δ(x,E)→ 0+

limits breaks down entirely in a small neighborhood containing zeros of p(x,E) (generally
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called turning points). This simple consideration begins to reveal certain intricacies of the

semiclassical limit, which we discuss in some detail in Chapters 2-4.

In the semiclassical limit, the properties of a system, such as expectation values of observables

or probability amplitudes, may be written as a series in powers of ~ where the zeroth order

term is given by the classical limit of the quantum system of interest (here and everywhere

else in this thesis assumed to be a pure state). For instance, if Ô is a linear self-adjoint

operator on a Hilbert space H, it corresponds to an observable quantity, the expectation

value of which on a system with density operator ρ̂ is given by

O = Tr
(
ρ̂Ô
)
. (1.7)

In the semiclassical limit O generally admits the following formal asymptotic expansion,

O ∼ Ocl +
∞∑
n=1

On~n+α +O
(
e−A/~

)
, α ∈ Q, A ∈ R+, (1.8)

where Ocl denotes the classical limit of the observable in question and the remaining terms

are corrections due to quantum effects.

While the singular nature of the semiclassical limit imply expansions such as that given by

Eq. 1.8 rarely converge, a variety of experiences with both elementary and complex systems

indicates that if only the first few terms of an expansion are retained, it generally provides

highly-accurate estimates of many quantum mechanical properties, even in regimes which

may be considered to be far from classical [9, 11, 18, 23, 34, 49]. A dramatic example is the
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simple harmonic oscillator, for which the Schrodinger equation propagator

K(q, q′, t) = (q, e−iĤt/~q′), t ∈ R+, q, q′ ∈ R, (1.9)

is given exactly by semiclassical techniques [38]. This leads to well-known result that primi-

tive (WKB) semiclassical quantization also provides exact energy eigenvalues for this system.

While this is an exceptional case, it serves to demonstrate that semiclassical theories can be

much more accurate than expected on first thought.

As we shall demonstrate later explicitly for the case of fermions on a line, the appropriate

semiclassical approximations to the particle and kinetic energy densities of a fermionic sys-

tem do not admit global continuous power series expansion of the form shown in Eq. 1.8.

This happens generally for quantities which vary in space according to classical phase-space

structures which have singularities in isolated points.

Before concluding this section we make a connection to the study of many-electron sys-

tems. Notably, the first density functional method, discovered by Thomas and Fermi in the

early days of quantum mechanics [37, 101], can be interpreted as the classical limit of a

noninteracting fermionic system [18].

1.3 Molecular Transport

In the last part of this thesis we provide a reformulation of a problem related to the field

of molecular electronics [97]. The paradigmatic experiment of this interdisciplinary branch

of chemistry and physics can be roughly summarized as follows: a molecule with low-lying

electronic states, such as 1,4-benzene-dithiol, is coupled (e.g., by adsorption) to metallic
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electrodes (also called leads) with different electrochemical potentials (e.g., gold wires con-

nected to a battery) and electric current is measured between the latter as a function of

initial electrochemical potential difference (also referred to as bias). This was the setup of a

famous experiment by Reed and Tour [89], though there exists plenty of variations, see e.g.,

[47]. At low temperatures, distinct phenomena is generally observed, e.g., the absence of

any appreciable current below a certain voltage threshold and the occurrence of steps in the

current-voltage I(V ) profile indicating the opening of new channels for molecular electronic

conduction [54, 89]. Aside from the various technological advances which might be realized

in the future based on this simple idea [75, 97], this class of experiments provide a beautiful

view of the molecular electronic spectrum [80, 89].

A theoretical description of the phenomena of molecular transport is complicated by the

fact that electric current conduction is intrinsically a complex non-equilibrium process [27].

A complete microscopic description of all components and couplings involved in the single-

molecule transport experiment contains much more information than what is generally ex-

perimentally probed (e.g., the dynamics of the battery which provides the initial bias). Thus,

it is common to assume the effects of external degrees of freedom (e.g., those of the bat-

tery which is connected to electrodes) can be accounted for by imposing suitable boundary

conditions [26, 27]. The simplest approximations also neglect any process involving energy-

momentum relaxation and dephasing. This is acceptable in a variety of cases where the

mean free path and coherence length of the system is much larger than that of a typical path

traveled by a conduction electron. An additional assumption of a certain class of models is

that the molecular junction reaches a steady-state. This allows the application of methods

of time-independent scattering theory to the study of quantum transport [26, 27]. It also

defines the Landauer model [60], the framework investigated by this thesis.

In the Landauer theory a transmission map T : R+ → [0, 1] contains all of the information

required to determine the average electric current I in a molecular circuit under an applied

9



bias V [26, 27, 60]. In fact, the I(V ) curve in the Landauer model is obtained from a simple

equation

I(V ) =
2e2

h

∫ ∞
−∞

dE [fL(E)− fR(E)]T (E), (1.10)

where e denotes the elementary unit of electric charge, h is Planck’s constant and fL/R(E)

gives the probability that a conducting electron prepared at the left or right leads has energy

in the interval [E,E + dE] ⊂ R. Generally, the free electron gas is assumed to provide a

reasonable description of the electrodes (since these are generally metals), so fL/R(E) is the

Fermi-Dirac distribution for noninteracting electrons at the temperature of the experiment

[26, 27]. The map T (E) determines with what probability electrons will be transmitted to

the opposite electrode [26, 27]. It follows that the conducting electrons are described in

each lead by a scattering wave function obtained as a linear combination of an incoming

plane-wave and an outgoing scattered wave.

A steady-state description includes only the average effects of molecular time-dependent re-

laxation in the presence of electric current. Thus, the Landauer model can only be employed

in cases where electronic correlation is neglected or modeled by a single-particle effective po-

tential. Additionally, the distortion of the molecular environment by the presence of the leads

and the passage of a steady current is modeled (in the stationary regime) by a self-energy

operator Σ̂. This satisfies the following operator equation

Ĝ(z)
[
Ĥ0 + Σ̂(z)− z1̂

]
= 1̂, (1.11)

where z ∈ C − {spectrum [Ĥ0 + Σ̂(z)]}, Ĥ0 is the Hamiltonian operator for the isolated

molecule, and Ĝ(z) is the Green’s function for the time-independent Schrodinger equation
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with Hamiltonian Ĥ = Ĥ0 + ĤL + ĤR + V̂ , where V̂ includes all of the couplings between

degrees of freedom of the molecule and the metallic leads and ĤL/R corresponds to the

isolated Hamiltonian for the left and right electrodes. A final assumption is that there is no

coupling between the left and right leads, so (x|V̂ |x′) = 0 if x and x′ correspond to positions

in different electrodes [26, 27].

The physical interpretation of Σ̂(E) can be obtained by considering its spectrum: the real

part of its eigenvalues provides the shift to molecular electronic energies provoked by the

coupling with the electrodes, while their imaginary part determines dissipative effects. They

induce a finite lifetime on the coupled states of the molecule and the electrodes [26, 27].

Even within the above model there exists a variety of different treatments which have been

pursued in the literature [27]. For instance, the self-energy matrix may be obtained from

tight-binding models, which may employ parameters obtained from molecular electronic

structure computations performed with open boundary conditions (sometimes the contact

regions between the electrodes and the molecule is also included in the description of the

latter so that electrode-molecule interface effects are described with improved accuracy).

Most of these prescriptions are guided by heuristic principles. The study of the Landauer

model in this thesis seeks to systematically construct the self-energy operator from first-

principles for a simple model, and perhaps shed light on some of the approaches which are

pursued in the literature.

1.4 Outline of Thesis

A variety of analytical techniques involving semiclassical analysis and singular perturbation

theory will be employed in this thesis. Therefore, Chapter 2 is dedicated to their discussion.

In particular, we provide the basics of the mathematical formalism which is later extensively
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employed as well as the physical interpretation of the most important results. Chapter 2

ends with an application of the methods described in the previous sections to the simple

case of weakly-perturbed noninteracting fermions satisfying Dirichlet boundary conditions

in one-dimension. While this example has been recently studied in the literature with a

different methodology [33], the derivation presented here is new, and serves to illustrate the

priorly exposed ideas.

Chapter 3 presents a systematic construction of semiclassical approximations to the particle

and kinetic energy densities of fermions on a line. This contains novel phenomena such as

tunneling which are unseen in the Dirichlet case. In this problem, all of the ideas introduced

in Chapter 2 are taken to their limit.

The novel results of the chapter 3 are extensively investigated in chapter 4. Analytical

corrections to Thomas-Fermi observables are derived in different configuration space regions,

and the numerical behavior of the particle and kinetic energy densities of one-dimensional

fermionic systems coupled to different classes of external potentials is explored.

In Chapter 5 we provide a new formulation for a simple model of molecular conductance. A

systematic construction of the self-energy operator in real-space is presented as well as the

ensuing generalized Dyson equation which follows from it.

In the Epilogue we provide a global discussion of the main results of this thesis including

comments on promising future research directions.
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Chapter 2

Mathematical Preliminaries

In this chapter we explain the essentials of semiclassical theories of many-fermion systems

and the concepts of Poisson duality and uniform asymptotic approximations. We end with

the construction of a semiclassical approximation to the density matrix of Dirichlet fermions.

This gives a demonstration of the ideas described in the first sections and provides a warm-up

exercise to the problem discussed in the next chapter. Our presentation alternates between

formal and heuristic. In particular, we aim to expose some of the mathematical subtleties

of this work without losing sight of their physical significance.

2.1 Semiclassical Analysis for Many-Fermion Systems

The predictions of classical mechanics are supposed to emerge from the quantum theory in

some limit. This is what is expected based on the fact that the former explains the behavior

of most macroscopic systems. Semiclassical analysis is concerned with the mathematical

investigation of this idea [18, 23, 110]. The non-triviality of the classical-quantum interface

is revealed by the simple observation that the states and observables according to each
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theory belong to different mathematical arenas: quantum-mechanical (pure) states are rays

in the projective Hilbert space, while observables are self-adjoint linear operators; classical-

mechanical states are phase space densities and its observables are phase space functions.

The quantum and classical theories are qualitatively different (an obvious fact in light of

their completely different interpretation). This is not an unprecedented situation in the

theoretical description of physical phenomena (as for instance the case of geometric optics

arising as a short-wave length limit of wave optics reveals [52]). Nonetheless, there is a myriad

of interesting questions which could be asked about the correspondence (or lack thereof)

between the mathematical structures governing the quantum and classical theories. In this

thesis we focus only on those related to the development of non-perturbative approximations

to the quantum-mechanical theory of many-particle systems which are simple, accurate and

contain the classical limit as a reference upon which quantum effects are included. As will

be seen in chapters 3 and 4 this strategy gives rise to highly accurate description of many-

fermion systems in terms of properties of classical phase space orbits.

2.1.1 A First Look at Thomas-Fermi Theory

The classical limit of atomic systems containing many-fermions is as old as quantum me-

chanics. It was obtained originally by Thomas [101] and Fermi [37]. A quick derivation of its

main result for the case of one-dimensional noninteracting fermions coupled to an external

potential v(x) can be obtained by employing some simple assumptions: i) quantum states

accessible to fermions become in the classical limit equivalent to phase space cells of area

2π~ (this is justified by the old Bohr-Sommerfeld quantization theory), ii) at 0K all phase

space states with energy lower than the so-called Fermi energy EF (defined by the number

of fermions described by the model, see below) are occupied by a single fermion (due to the

Pauli exclusion principle). This implies that within this theory the fermionic particle density
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can be written as

ρcl(x,EF ) =
1

2π~

∫
R

dp θ[EF −H(x, p)], (2.1)

with the normalization,

1

2π~

∫
R2

dxdp θ[EF −H(x, p)] = N, (2.2)

where H(x, p) = p2

2m
+ v(x) is the classical Hamiltonian for a given fermion and θ(z) is

the Heaviside step function [53]. It follows that the classical limit of the one-dimensional

noninteracting fermionic particle density is given by

ρcl(x,EF ) =

√
2[EF − v(x)]

π~
θ[EF − v(x)]. (2.3)

The classical limit of the expectation value of any observable O can also be quickly derived:

Ocl(N) =

∫
R2

dxdp O(x, p)θ[EF (N)−H(x, p)]. (2.4)

Figure 2.1 compares the classical limit of the quantum-mechanical particle density as pre-

dicted by Thomas-Fermi theory to the exact for the case where the confining potential is a

harmonic oscillator.

Here one sees the distinctive feature of the classical limit: it can only describe the av-

erage/bulk behavior of quantum-mechanical systems. Oscillations arising from quantum

interference (see below) and barrier penetration effects are completely absent from Thomas-

Fermi theory. In the exceptional harmonic oscillator case, the quantum oscillations and
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Figure 2.1: Quantum-Mechanical particle density for a system containing 4 noninteracting
fermions. Exact results are given in blue, while the classical limit is given in red

tunneling which can be seen from Fig. 2.1 (any region where the Thomas-Fermi particle

density vanishes, but not the exact can only be populated in the quantum-mechanical the-

ory) conspire in such a way that the values taken by Thomas-Fermi observables, e.g., the

average kinetic and potential energies of the system, match the exact. Obviously, such per-

fect cancellation does not happen generically, so that if quantum effects are relevant to the

description of a particular system, it becomes important to unravel corrections to Thomas-

Fermi theory. It is not obvious how these can be obtained from the above construction. In

particular, the above derivation does not even provide much insight into how the classical

limit emerges from the quantum formalism.

In the next subsection the semiclassical limit of quantum mechanics is discussed from a

more general perspective. This will provide the necessary pre-requisites to the study of the

semiclassical limit of many-fermion systems which we present in subsection 2.1.3.

2.1.2 Semiclassical Limit with the Feynman Path Integral

There exists a plethora of methods which may be employed to describe the emergence of

classical behavior from the fundamental postulates of quantum mechanics. Here we employ

the Feynman path integral, for it provides a systematic approach to the semiclassical limit

which is transparent and insightful [39, 55]. The discussion is limited to the case of single-
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particle quantum mechanics (for the case of many-particle systems see the next subsection).

In the Feynman approach to quantum mechanics, the probability amplitude for a given

event to be measured is expressed as a sum over all possible histories of the system be-

tween its initial and final states. Each particular history has with it associated a phase,

and the event probability is obtained by application of the Born rule. In particular, the

quantum-mechanical propagator indicating the probability amplitude for a particle coupled

to a smooth external potential V (x), first measured at q to be encountered in q′ after time

t can be represented by

〈q′|Û(t)|q〉 =
∑

paths α

dµ[xα]eiSα[q,q′,t]/~, (2.5)

where Û(t) denotes the (retarded) Green’s function for the time-dependent Schrodinger

equation, dµ[xα] is a measure on the space of histories, and Sα[q, q′, t] is the classical action

for the history (also commonly denoted by path) xα satisfying boundary conditions xα(0) =

q, xα(t) = q′, i.e.,

Sα[xα, ẋα] =

∫ t

0

dτL[xα(τ), ẋα(τ)], L(x, ẋ) = T (x, ẋ)− V (x), (2.6)

where ẋ(τ) = dx(τ)/dτ , and we assumed for simplicity that the Lagrangian has no explicit

time-dependence, and takes the conventional form given above.

Now suppose that the parameters defining the system (e.g., the particle mass) are sufficiently

large that a typical path xα(τ) gives rise to an action Sα which is much larger than ~. Then

the phase difference of neighboring paths will likely be sufficiently large and uncorrelated

that a random neighborhood of paths will be irrelevant to the computation of the quantum-

mechanical amplitude. In this case, the dominant contributions to the quantum-mechanical

amplitude are given by by the neighborhoods of paths {xcl(τ)} which extremize the classical
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action. They satisfy the Euler-Lagrange equations deriving from the action functional S[q]

δS[q]

δq

∣∣∣∣
x=xcl

= 0. (2.7)

This argument is justified with the observation that paths differing from xcl by a sufficiently

small amount give rise to an action which is different from that of the classical path only at

second order (in the path difference δx = x− xcl). Thus, from a macroscopic point of view

only classical paths (and those arbitrarily close to them) contribute to quantum-mechanical

probabilities (recall that ~ is O (10−34) in SI units, so the condition that the action is large

relative to ~ is satisfied by essentially any macroscopic system).

While the argument given is far from perfect (starting with the notion of a path integral

that despite all successes can only be rigorously proved to exist in a very small number of

simple cases [98]), it serves two main purposes: i) to show that the study of the classical

limit of quantum mechanics can be formally accomplished by assuming that ~ is a very small

quantity, and ii) it demonstrates how corrections to the semiclassical limit maybe concretely

derived within the formalism of path integrals. Furthermore, a variation of the argument

given here may be employed to extract the semiclassical limit in a variety of other contexts

[42, 55, 109].

2.1.3 Semiclassical Scaling for Many-Fermion Systems

The discussion of the previous subsection was limited to the semiclassical limit of particle

motion. It is unsurprising much of the points presented there remain valid when more than

one particle is present. However, complications can be foreseen from the fact that if ~→ 0,

but the number of particles N is kept fixed, the energy of the highest-occupied state of a
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system will become arbitrarily small. This maybe undesirable. Additionally, because the

Thomas-Fermi density (Eq. 2.3) only depends indirectly on N through the Fermi energy

EF , the latter seems to be a natural parameter to be kept fixed in the limiting process which

takes ~→ 0 (as opposed to the particle number). This is particularly true if the limit being

sought is that where the predictions of Thomas-Fermi theory agree with those of quantum

mechanics.

With EF constant, a variation of ~ then necessarily implies change in particle number (see

Eq. 2.2)]. This modifies the normalization of the Thomas-Fermi particle density, albeit in a

simple way, as both EF and v(x) remain fixed. The simple qualitative argument just given

thus determines not only that the semiclassical limit of many-fermion systems should be

approached by varying Planck’s constant and the particle number, but also in what way this

should happen. In particular, it follows from 2.2, that the Fermi energy is invariant under a

scaling of ~ and N , in which N →∞ and ~→ 0, but N~ remains fixed. This can be further

clarified by defining a small parameter γ ∈ R+ and the scaled particle number and Planck’s

constant, Nγ and ~γ, satisfying

Nγ =
N

γ
, ~γ = ~γ. (2.8)

The semiclassical limit is now understood to arise when γ → 0. A simple explicit illustration

of the above ideas is given by the harmonic oscillator. Let its frequency ω be equal to 1.

Then, Eγ
F = Nγ~γ = N~ but EN+1γ − ENγ = ∆Eγ = ~γ. The number of occupied states is

EFγ/∆Eγ = N/γ as required.

While the discussion of the semiclassical limit above was somewhat heuristic, it finds rigorous

justification in the works of Lieb and Simon [67] and of Fournais, Solovej and Lewin [40].

The former showed that Thomas-Fermi theory becomes exact for atomic systems (including

molecules and crystals) as the total nuclear charge of the system goes to infinity, while the
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latter have recently generalized the Lieb-Simon approach to any class of non-relativistic

quantum-mechanical fermionic system, thus proving the universality of the Thomas-Fermi

limit for any class of external couplings. In the mathematical literature, the scaling given

here is justified by a Lieb-Thirring inequality. This bounds the kinetic energy of a fermionic

system in such a way that requires N to scale as ~−1/d for the semiclassical limit to be

well-defined [40]. Notably, the semiclassical scaling we described above follows from the

requirement that all energy components scale with the same power of γ in the limit where

γ → 0. For the case of interacting systems it follows the mean-field (e.g., Hartree theory)

limit is coupled to the semiclassical [40].

Armed with these considerations, any formulation of quantum mechanics can be employed

to derive the semiclassical limit of noninteracting fermionic systems. We show in section

2.4 how the classical limit first derived by Thomas and Fermi arises from the full quantum

theory in the case of fermions constrained by Dirichlet boundary conditions. In chapter 3 we

discuss similarly the case where particles are confined only by a smooth external coupling.

For that the tools described in the next two sections will be of major importance.

2.2 Semiclassical Asymptotics for Observables

Observables of a system of noninteracting fermions can be evaluated by summing over the

contributions from each occupied quantum state (single-particle state), e.g., if Ô is a self-

adjoint operator in the Hilbert space of a single particle H, then in the N -particle sector of

the Fock space its expectation value on a noninteracting fermionic ground-state Ψ is given

by

〈Ψ|ÔN |Ψ〉 =
∞∑
i=1

〈ψi|Ô|ψi〉 θ (EF (N)− Ei) , (2.9)
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where ÔN is the representation of Ô on
⊗N

i=1Hi and the Hilbert spaces Hi are all isomorphic

(as the fermions are indistinguishable). It will be important for the derivation of the expecta-

tion value of observables in the semiclassical limit that it is understood how to approximate

sums such as that of Eq. 2.9. A hint on promising procedures is given by recalling that the

classical analog of Eq. 2.9 would not involve a discrete summation, but instead an integral

over a continuum set of occupied classical phase space states.

2.2.1 Euler-MacLaurin Summation

The idea of estimating sums over discrete sets by integrals (and vice-versa) is an old one

[5, 53, 107]. For instance, the Euler-MacLaurin (EM) formula was discovered almost 300

years ago [36, 73, 82]. It is valid for any f(x) with continuous derivatives at any x in the

summation domain. For the case where f has at least m derivatives, it may be written

explicitly as,

n∑
k=1

f(k) =

∫ n

1

dxf(x)+
1

2
[f(1) + f(n)]+

m∑
r=1

B2r

(2r)!

[
f (2r−1)(n)− f (2r−1)(1)

]
+Rm, (2.10)

where Bk denotes the k-th Bernoulli number [1], f(j) = djf(x)/dxj and Rm is a remainder

integral [5, 15].

The EM expansion is useful in a variety of contexts where f is a slowly-varying function or

has only a finite number of nonvanishing derivatives [15, 82]. However, as Eq. 2.10 shows, the

EM formula is expected to be problematic whenever the summand has any kind of singular

behavior in the complex plane. For instance, in cases where a function varies fast enough

in some domain (e.g., if it contains a pole), its derivatives become large and the coefficients

of the above expansion clearly go to infinity. We should note however that the EM formula
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was proven to be useful in demonstrating the connection between semiclassical WKB and

Thomas-Fermi theory [74]. This will be further discussed in chapters 3 and 4.

In any case, most of the interesting phenomena in the natural sciences arises from some

type of singular behavior. Therefore, generally speaking the Euler-MacLaurin formula finds

overall limited applicability. The next subsection provides an alternative method which will

serve as the basis for later developments.

2.2.2 Poisson Summation and Dual Representations of Sums

Our first hint towards the semiclassical limit of quantum-mechanical observables of many-

particle systems was obtained by considering their classical limit. Quantum corrections are

expected to introduce wave phenomena such as oscillations (see e.g., Fig. 2.1 and [38]). As

discussed, in this instance, the EM summation formula is expected to fail. Thus, in this

subsection we show an alternative method, that of Poisson summation, which, as will be

seen, is capable of generating the semiclassical behavior of the sums represented by Eq. 2.9.

Before introducing the Poisson summation formula we note that it is motivated by the ele-

mentary observation that functions may be represented in a variety of equivalent ways, some

of which are more useful than others in different contexts. For example, special functions can

be written as integral representations or as series expansions with the same domain. Integral

transforms provide a qualitatively different example as they map functions on some space to

another, so that while a function and its integral transform contain the same information,

they are not equal, but dual.
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Poisson summation provides a dual representation of discrete sums,

N−1∑
j=0

f(j) =
∞∑

k=−∞

∫ N+α−1/2

α−1/2

dλf(λ)e2πikλ, |α| < 1/2, (2.11)

where f(λ) is assumed to fulfill the following two criteria: i) it matches f(j) when λ = j ∈ N,

and ii) it satisfies Dirichlet conditions in any subinterval of unit length of (α−1/2, N+α−1/2)

[25]. Note that with α = 0, the k = 0 term of the Poisson summation is equal to that of

the Euler-MacLaurin formula (in fact there exists a correspondence between the EM and

Poisson summation formulas which is explicitly shown in [15]).

The Poisson summation formula allows the conversion of a finite sum of known coefficients

into an infinite sum of Fourier integrals over those. Thus, it may seem to have made the

initial problem harder. The following semiclassical argument shows why this is not the case.

In particular, we shall see that the r.h.s of Eq. 2.11 has a beautiful physical interpretation

which also reveals why it is more amenable to an asymptotic treatment compared to its

original representation.

Let ρ(x,EF ) denote the particle density for a system with Fermi energy EF corresponding

to N particles,

ρ(x,EF ) =
∞∑
j=0

|ψj(x)|2θ[EF (N)− Ej] =
∞∑

m=−∞

∫ N−1/2

−1/2

dλ|ψλ(x)|2e2πimλ, (2.12)

where in accordance with the description above ψλ(x) is required to match the discrete

eigenstates ψj(x), ∀ j ∈ Z+, and be continuously differentiable almost everywhere (i.e.,
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except at isolated points) in both λ and x. Then, we can rewrite it as

ρ(x,EF ) =
∞∑

m=−∞

Bm[x,EF (N)]eiGm[x,EF (N)]. (2.13)

Now consider the expression of the particle density in terms of the Schrodinger equation

propagator [41],

ρ(x,EF ) = lim
T→∞

∫ T

−T

dt

t− iη
eiEF t/~(x, t|x, 0), η → 0+. (2.14)

By employing a semiclassical approximation to the quantum propagator we necessarily obtain

a corresponding approximate particle density. We find the former by recalling the discussion

of subsections 2.1.2 and 2.1.3. They imply the semiclassical limit of the quantum propagator

can be represented by

(x, t|x, 0) ∼
∑

cl. paths,q(0)=q(t)=x

A[qcl(x)]eiS[qcl(t)]/~, ~→ 0+, (2.15)

where A[qcl] is proportional the density of classical trajectories in a neighborhood of qcl.

Thus, it depends only on quantities evaluated at the classical orbit with boundary conditions

qcl(0) = qcl(t) = x [55, 98].
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With the above result, a semiclassical approximation to the particle density is obtained

ρ(x,EF ) ∼
∫ ∞
−∞

dt

t− iη
eiEF t/~

 ∑
cl. paths,q(0)=q(t)=x

A[qcl]e
iS[qcl(t)/~]

 . (2.16)

The dominant behavior of the above integral in the limit where ~→ 0 can be obtained with

the method of stationary phase approximation [14, 28, 68]. It is given by

ρ(x,EF ) ∼
∞∑

j=−∞

∑
cl. paths

Cj[qj,cl, EF (N)] exp

[
i

~

∫
Cj

p(q′cl, EF )dq′ + iβj

]
, βj ∈ Zπ, (2.17)

where the classical paths being summed now correspond to to those which are closed and

along which a particle travels with energy EF , irrespective of the elapsed time.

Here it is important to understand that because the ground-state particle density is a time-

independent observable, the classical paths appearing in Eq. 2.17 include a primitive path

qcl and an infinite number of repetitions of the latter which we have labeled by j, where

j < 0 means that the path is travelled in the opposite direction relative to those paths with

j > 0. The index j classifies topologically inequivalent classical orbits, that is, those which

cannot be deformed onto each other by a small local perturbation.

The clear resemblance between equations 2.13 and 2.17 indicates the interpretation that each

term of the Poisson summation formula may be associated in the semiclassical limit to a class

of topologically equivalent paths of the classical system which corresponds to the quantum-

mechanical. Because of this interpretation, Berry has described the Poisson formula as a

topological sum [12, 12]. We will make extensive use of it in section 2.4 and chapter 3.
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2.3 Uniform Asymptotic Approximations

In the previous section we have shown an approach towards the derivation of semiclassical

approximations to the observables of noninteracting fermionic systems. For this to be use-

ful, knowledge is required of the semiclassical limit of the eigenstates of the single-particle

quantum Hamiltonian characterizing the noninteracting system. In this section we present

those for the case of interest to this thesis, that of one-dimensional particles confined by a

smooth external potential v(x).

The most traditional way of studying the semiclassical limit (for this section, the only limit

that is relevant is ~→ 0+) of the quantum states ψ(x) of a Hamiltonian of the form

Ĥ = −~2

2

d2

dx2
+ v(x), x ∈ R (2.18)

is via the WKB [19, 58, 106] approximation. In this method, an ansatz of the form

Ψ(x) = e
i
~A(x), A(x) = A0(x) + ~A1(x) + ..., (2.19)

is applied to the Schrodinger equation, and the coefficients Aj(x) are obtained by solving

simple coupled differential equations [23, 55]. If ~ → 0, it is expected that the terms Aj(x)

with j > 1 will become irrelevant in the expansion of A(x). Thus, retaining only A0(x) and

A1(x), we obtain the so-called WKB wave functions,

ψWKB
j (x) ∼


Nj

[Ej−v(x)]1/4
cos
[∫ x

xL

√
2[Ej − v(x′)]dx′ − π

4

]
xL < x < xR,

Nj
2|Ej−v(x)|1/4 exp

[
−
∫ x
xL

√
2|Ej − v(x′)|dx′

]
x < xL − η,

Nj
2|Ej−v(x)|1/4 exp

[
−
∫ x
xR

√
2|Ej − v(x′)|dx′

]
x > xR + η,

where η → 0+, Ej is obtained from the WKB quantization condition [11, 23] and xL and xR

denote the two turning points of the classical trajectory corresponding to Ej.
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Figure 2.2: Left: harmonic Oscillator orbital densities |ψ1(x)|2 computed exactly (blue) and
with WKB (red). Right: harmonic oscillator orbital densities |ψ3(x)|2 computed exactly
(blue) and with WKB (red).

While WKB provides a quick avenue towards the semiclassical limit, a quick look at the

WKB wave function reveals two major problems: it is not defined at the turning points xL

and xR, and it is also discontinuous across them. Figure 2.2 illustrates these problems by

showing orbital densities obtained with WKB wave functions for the states j = 1 and j = 3

corresponding to v(x) = 1/2x2.

The singular behavior of the (primitive) semiclassical wave function is a manifestation of the

fact that that the classical probability density for a particle to be found in the configuration

space interval (x, x + dx) diverges exactly at those points where the speed of a classical

particle vanishes. In fact, let Pcl(x,E) denote the probability to locate a classical particle in

the aforementioned interval. Then,

Pcl(x,E)dx =
dt(dx,E)

T (E)
, (2.20)

where T (E) denotes the period of the classical orbit with energy E. It follows that

Pcl(x,E) =
1

p(x,E)T (E)
, p(x,E) =

√
2[E − v(x)] =

dx

dt
. (2.21)
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Thus, the pathological behavior of WKB around turning points of the classical motion is

not an anomaly. It is a result of the singular nature of classical phase space motion when

projected to the configuration space.

The above discussion makes it clear that approximations to the particle density (and other

local observables) which are based on WKB will inherit its representation-dependent sin-

gularities [69]. To avoid this one may look for an alternative semiclassical wave function.

Because WKB works greatly in the bulk region which is far from turning points, this would

ideally reduce to WKB when it is appropriate but would also somehow include the smoothing

effect of quantum mechanics near the classical turning points. These characteristics might

be said to define a uniform semiclassical approximation.

Semiclassical uniform approximations are generally obtained in terms of canonical functions

which unfold the singularities intrinsic to primitive asymptotic treatments (e.g., WKB) [10,

11, 23, 98]. The Airy function

Ai(z) =
1

2π

∫ ∞
−∞

ei(t
3/3+zt)dt, (2.22)

is the oldest and most popular of this group of special functions [2]. Its preponderance

is attributed to the ubiquity of the fold catastrophe which arises as a coalescence of two

non-degenerate critical points of a mapping [23, 98]. For example, the stationary WKB

wave function can only be written if the corresponding classical Hamilton-Jacobi equations

have known solutions. Each defines a critical point of the classical action functional. In

one dimension, for a generic classically-allowed position and energy, there exists two real

solutions corresponding to positive and negative momentum. However, at a turning point

there is a single zero momentum critical point of the action. As a result, the projection

of the constant energy Lagrangian submanifold on configuration space is singular and the

stationary spatial WKB wave function loses its validity [6] as we explicitly saw above. We
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will show below there exists a semiclassical Airy uniform approximation to the quantum-

mechanical wave function. It is also based on the solutions to classical equations of motion,

but it encodes this information in a way that avoids the aforementioned issues altogether

[11, 23, 62].

In 1937 Langer proved that a semiclassical wave function existed which did not have any of

the singularities associated to the classical motion. Sufficient and necessary conditions for

its validity are that v(x) must be such that the corresponding zeroes of the squared classical

momentum p2(x,E) (turning points) are simple, and p(x,E) is analytic everywhere except

where it vanishes. From now on we assume these requirements are satisfied. Let E denote

the energy of a classical bound state, ω(E) the classical frequency of the periodic orbit with

energy E, x− the l.h.s turning point for a particle with energy E and S(x, x−, E) the classical

action measured from x−, i.e., S(x, x−, E) =
∫ x
x−
p(x′, E)dx′. Then, the corresponding Langer

wave function can be written as:

φ−(x,E) =

√
2mω(E)

p(x,E)

[
3

2

S(x, x−, E)

~

]1/6

Ai

[
−
(

3

2

S(x, x−, E)

~

)2/3
]
, (2.23)

where Ai(t) is the Airy function evaluated at t [1]. To simplify notation, we define

z(x,E) =

[
3

2

S(x, x−, E)

~

]2/3

. (2.24)

An identical approximation can be made where x− is replaced by x+ and the action rewritten

as S(x+, x, E) so it remains positive semidefinite in the classically-allowed region. While the

Airy uniform approximation was originally built for probems with a single turning point,

it may be extended (non-uniquely) for the case where there are two such points [77]. In

this work we employ the following prescription: let xm be defined such that S(xm, x−, E) =

S(x+, xm, E) = S(x+, x−, E)/2. Then, for x ≤ xm one may employ the left Langer wave

function φ−(x,E), while the right is used otherwise. Both will be denoted by φ(x,E) from
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now on.

Note that for any smooth v(x) where E defines a classical bound state state with two

turning points, φ(x,E) is defined for all real x. In the classically-forbidden region, the action

(and any quantities derived from it) must be analytically continued so that φ(x,E) remains

real and well-behaved. For example, for x < x−, it follows that p(x,E) = eiπ/2|p(x,E)|,

S(x,E) = e3πi/2|S(x, x−, E)|, and z(x,E) = (e3πi/23/2|S(x−, x, E)|/~)2/3, so

φ(x,E) =

√
2mω(E)

|p(x,E)|
|z(x,E)|1/4Ai (|z(x,E)|) , x < x−. (2.25)

In particular, φ(x,E) is a continuous function of x across the transition region (between

that which is classically-allowed and forbidden). Its behavior is oscillatory in the bulk of the

classically-allowed region (zF (x) >> 0) [1]. For large negative values of zF (x), i.e., for x far

from turning points in the classically-forbidden regions, it decays exponentially as expected

for a bound finite system. Further, if the asymptotic forms of the Airy function are employed

where the WKB wave function is well-defined, φ(x,E) is seen to be locally equivalent to that.

These remarks suggest the Langer wave function provides a promising starting point for

the construction of uniform approximations to the semiclassical particle and kinetic energy

densities. This will be verified to be true explicitly in chapter 3.

2.4 Warm-up Exercise: Dirichlet Fermions

This chapter is ended with a non-trivial example of the ideas exposed in the previous sections.

Define as Dirichlet fermions those which have zero probability to be located outside of a

compact interval, e.g., [0, 1], i.e., their wave functions satisfy vanishing Dirichlet boundary

conditions at x = 0 and x = 1. We consider noninteracting particles with the same spin, so
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they are only correlated by the Pauli principle. The single-particle hamiltonian governing

all properties of the system is given by

Ĥγ = −γ
2

2

d2

dx2
+ v(x), x ∈ [0, 1]. (2.26)

where γ > 0 is the semiclassical scaling parameter, v(x) is a smooth external potential and

we have set m = ~ = 1. The domain of Ĥ consists only of those functions which are square

integrable in [0, 1] and vanish at x = 0 and x = 1. We only treat systems with ground-state

energy E0 > v(x), ∀ x ∈ [0, 1]. In the next chapter we lift the latter two requirements and

remove the Dirichlet boundary conditions.

First we derive the ground-state density matrix, then we take the limit where x′ → x so the

particle density is obtained. A derivation of these results using completely different methods

can be found in references [22, 33].

2.4.1 One-Particle Density Matrix

The single-particle density matrix for a system of N noninteracting Dirichlet fermions is

given by

nD(x, x′) =
N−1∑
j=0

φj(x)φj(x
′), x, x′ ∈ [0, 1], φj(0) = φj(1) = 0 ∀ j ∈ N, (2.27)

where φj(x) denotes the eigenstate of Ĥ with energy Ej, such that Ej < Ei for all j < i and

z identifies the complex conjugate of z.

To find the limit of nγD(x, x′) as γ → 0+, we can employ WKB orbitals adapted to Dirichlet

boundary conditions. They correspond to uniform approximations for the studied system

since we assume that the equations Ei = v(x) have no solution on [0,1]. Then, it follows that
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primitive semiclassical wave functions are continuously differentiable for any energy E > E0.

By following the same idea given in our previous discussion of WKB one finds that,

φγ,WKB
j (x) =

√
2ωj
πpj

sin[Sj(x)/γ], (2.28)

where we employ the notation of the previous section. The WKB energies which should be

employed in the computation of ωj and pj are obtained by requiring that φγ,WKB
j satisfies

the appropriate boundary conditions for this problem:

Sγj (1) =

∫ 1

0

dx′
√

2
[
Eγ,WKB
j − v(x)

]
= γjπ. (2.29)

The implication of the above quantization condition is that, as expected, the spectrum of

the Hamiltonian (and with it every other quantity in eq. 2.28) depends on γ. For the sake

of simplicity, we adopt in the remainder of this derivation a simpler notation in which only

explicit γ dependence is shown and any reference to WKB is removed, though it should

be kept in mind that γ-scaled WKB energies are being employed to calculate any classical

property which is needed to construct the semiclassical Dirichlet density matrix.

From the above we have the WKB Dirichlet density matrix,

nγD(x, x′) =
Nγ−1∑
j=0

2ωj
π

1√
pj(x)pj(x′)

sin[Sj(x)/γ] sin[Sj(x
′)/γ], (2.30)

which can be further simplified to

nγD(x, x′) =

Nγ−1∑
j=0

ωj
π

1√
pj(x)pj(x′)

[
cos[γ−1(Sj(x)− Sj(x′))]− cos[γ−1(Sj(x) + Sj(x

′))]
]
, (2.31)
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and rewritten as an infinite sum with the aid of the Poisson summation formula:

nγD(x, x′) =
1

π

∞∑
m=−∞

∫ NγF

N0

dλ ωλ√
pλ(x)pλ(x′)

[
cos[γ−1(Sλ(x)− Sλ(x′))]− cos[γ−1(Sλ(x) + Sλ(x′))]

]
e2πimλ,

(2.32)

where N0 = −1/2 and Nγ
F = Nγ − 1/2. As γ → 0 the integrand above oscillates fast under

small variations of λ. This can be employed to obtain an approximation to each of the shown

integrals. In particular, if integration by parts is performed it is found that

nD(x, x′) =
ωF

π
√
pF (x)pF (x′)

∞∑
m=−∞

(I1 − I2) +O(γ), (2.33)

where

I1 =
1

2

∫ Nγ−1/2

−1/2

dλ
[
ei(Sλ(x)/γ−Sλ(x′)/γ+2πmλ) + e−i(Sλ(x)/γ−Sλ(x′)/γ−2πmλ)

]
, (2.34)

and

I2 =
1

2

∫ Nγ−1/2

−1/2

dλ
[
ei(Sλ(x)/γ+Sλ(x′)/γ+2πmλ) + e−i(Sλ(x)/γ+Sλ(x′)/γ−2πmλ)

]
. (2.35)

Note that we have neglected contributions from the lower-bound of the integration domain

(it can be shown they are irrelevant in the semiclassical limit). The integrals in I1 and I2

are still not simple enough to allow for an exact evaluation. However, they may be again

approximated with the method of integration by parts. We work the following example in

detail as the prescription will be adopted for each of the integrals encapsulated by I1 and I2.
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Let

If =

∫ Nγ−1/2

−1/2

dλ eif(λ) =

∫ fγF

f(−1/2)

df
eif

df/dλ
, (2.36)

where

f(λ) = 2πmλ+ Sλ(x)/γ + Sλ(x
′)/γ, (2.37)

and fγF = f (Nγ − 1/2). By employing the relations

(
df

dλ

)−1

=
1

2πm+ αλ(x) + αλ(x′)
, αλ(x) = γ−1∂Sλ(x)

∂λ
, (2.38)

we find to leading order in γ,

If ∼
ei[SF (x)/γ+SF (x′)/γ]−mπ

2πm+ αF (x) + αF (x′)
+O(γ). (2.39)

After performing the same steps for the other integrals associated to I1 and I2 we find the

result is

nD(x, x′) ∼ ωF

π
√
kF (x)kF (x′)

∞∑
m=−∞

[
sin[1/γ(SF (x)− SF (x′))]S1 − sin[1/γ(SF (x) + SF (x′))]S2

]
(2.40)

where we have only shown the leading terms in the limit where γ → 0+, and

S1 =
∞∑

m=−∞

e−iπm

αF (x)−αF (x′)
2

−mπ
, S2 =

∞∑
m=−∞

e−iπm

αF (x)+αF (x′)
2

− πm
. (2.41)

Fortunately the above sums can be evaluated exactly, so the infinite number of terms which
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initially appeared in the Poisson representation of the density matrix have been reduced to

an almost unbelievably simple semiclassical approximation [33]:

nγD(x, x′) ∼ ωF

π
√
pF (x)pF (x′)

sin[1/γ(SF (x)− SF (x′))]

sin
(
αF (x)−αF (x′)

2

) − sin[1/γ(SF (x) + SF (x′))]

sin
(
αF (x)+αF (x′)

2

)
 . (2.42)

The semiclassical particle density is obtained from the one-particle density matrix by taking

the limit where x→ x′ [22, 68]. It can be written as a dominant term corresponding to the

Thomas-Fermi density and an oscillatory correction of lower-order in γ,

ργD(x) ∼ pF (x)

πγ
− ωF cos[2SF (x)/γ]

pF (x)sin[αF (x)]
. (2.43)

Here one is reminded again of the singular nature of the Thomas-Fermi density (the first term

on the r.h.s) as it arises from the part of the diagonal element of nγD(x, x′) which corresponds

to a removable singularity.

Extensive discussion of the behavior of the Dirichlet density matrix and one-particle density

including their relevance to electronic structure can be found in [22, 33].
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Chapter 3

Semiclassical Approximations for

Many-Fermion Systems

3.1 Introduction

The present chapter focuses on the semiclassical limit of sums of quantum mechanical prob-

ability densities over the lowest N bound levels. In particular, we employ the methods

discussed extensively in chapter 2 to construct uniform semiclassical approximations to the

particle and kinetic energy densities of noninteracting fermionic systems in one dimension.

A literature review is given in subsection 3.1.1. In section 3.2 we introduce relevant definitions

and establish notation. Sections 3.3 and 3.4 contain the main developments of this chapter:

i) derivations of the uniform approximation to the semiclassical particle and kinetic energy

A portion of the text in this chapter is a reprint of the material as it appears in Corrections to Thomas-
Fermi Densities at Turning Points and Beyond Raphael F. Ribeiro, Donghyung Lee, Attila Cangi, Peter
Elliott, Kieron Burke, Phys. Rev. Lett. 114, 050401 (2015).
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densities, ii) a discussion of their analytic properties, and iii) their physical interpretation.

We conclude with a discussion of open problems. Appendices I and II provide further

comments on the smallness of higher-order terms neglected in the treatment employed in the

main text.

3.1.1 Literature Survey

In this section we provide a summary of previous research related to the problem solved later

in this chapter. It is important to recognize the priorly obtained limiting behaviors for the

particle and kinetic energy densities, as later we show the approximations derived in section

3.4 provide a unified description of all of them.

Primitive semiclassical approximations of limited range of validity have been obtained before

for both the particle and kinetic energy densities [22, 57, 63, 93]. For instance, Kohn and

Sham gave region-dependent discontinuous approximations to the one-dimensional fermionic

ground-state density [57] using semiclassical Green’s function theory. Lee and Light built

a similar approximation by heuristic generalization of some properties of the problem of a

particle in a linear potential, but had to resort to discontinuous ad-hoc corrections from a

different model to improve its accuracy [63]. More recently, Cangi et al. obtained a uniform

approximation to the particle and kinetic energy densities, but only in the case of vanishing

Dirichlet boundary conditions and Fermi energy above any critical point of the potential en-

ergy function [22] (see also section 2.4). Similarly, Roccia and Brack constructed semiclassical

approximations for the density and kinetic energy densities in a classically-allowed region by

employing the Van-Vleck-Gutzwiller [44, 104] semiclassical Green’s function [93, 94]. As a

result, their approximations are strongly singular at turning points and cannot be continued

to the classically-forbidden region.

Aside from the approaches just discussed, many variations are discussed in the older literature
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of a variety of subfields of theoretical physics and chemistry, e.g., [4, 7, 43, 81, 100]. Most

of the failures of older models can be either ascribed to a reliance on primitive semiclassical

methods (e.g., WKB) as a starting point or inadequate formalism upon which perturbation

theory is performed.

3.1.2 Definitions

For an isolated non-relativistic system of noninteracting 2N spin-1/2 fermions bound to a

smooth external potential v(x) with nondegenerate energy levels Ek, the ground-state wave

function Ψ can be written as the normalized antisymmetric tensor product of N single-

particle states (orbitals) ψi(x), i = 1, 2, ..., N satisfying (Ĥψi)(x) = Eiψi(x), where Ei <

Ej, ∀ i < j. The corresponding particle density ρ(x; 2N) ≡ n(x) is defined as the expectation

value of the operator
∑N

i=1 δ(x− x̂i),

n(x) = Tr

[
ρ̂
N−1∑
i=0

δ (x− x̂i)

]
= 2

N−1∑
i=0

|ψi(x)|2. (3.1)

The kinetic energy of the same fermionic system can be obtained as the expectation value

of the kinetic energy operator T̂ .Thus, we we define the kinetic energy density t(x),

t(x) = 2
N−1∑
i=0

ψ∗i (x)
(
T̂ψi

)
(x). (3.2)

The operator identity T̂ = Ĥ − V̂ may be employed so t(x) can be rewritten in a form that

will find use later:

t(x) = 2
N−1∑
i=0

p2(x,Ei)

2m
|ψi(x)|2, (3.3)

where m is the fermionic mass, and p2(x,Ei)/2m = Ei − v(x).
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Note that a nondegenerate fermionic ground state can be completely specified by its potential

energy function v(x) and number of particles N . Hence, we define the Fermi energy EF

so it lies between the energy of the lowest occupied and highest unoccupied orbitals, i.e.,

EN−1 < EF < EN . In this way, we may characterize a one-dimensional fermionic ground

state by v(x) and EF . Assuming, without loss of generality, that each orbital is occupied by

a single fermion of unit mass, the particle and kinetic energy densities for N noninteracting

bound fermions may be rewritten as:

n(x) =
∞∑
i=0

|ψi(x)|2θ (EF − Ei) , (3.4)

t(x) =
1

2

∞∑
i=0

|ψi(x)|2p2(x,Ei)θ (EF − Ei) , (3.5)

where the spectrum of Ĥ is assumed discrete for notational purposes.

3.2 Uniform Semiclassical Approximations

3.2.1 Particle Density

Our aim in this section is to obtain closed-form uniform approximations to the one-dimensional

non-interacting fermionic density which respect the leading-order asymptotics of n(x) every-

where in configuration space. As opposed to the derivation presented in section 2.4, the

semiclassical scaling parameter γ is not explicitly shown, though it is implied that we work

in the limit where semiclassical asymptotics is reliable. We choose to retain ~ in all equations.

This is done to aid clarity (as γ-scaling is omitted). Later we apply semiclassical scaling in the

Appendices to show that terms neglected in intermediate steps of the following derivations
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are irrelevant in the semiclassical limit.

Without loss of generality we assume orbitals are singly-occupied and the fermions have

m = 1. The external potential v(x) is required to be analytic and to have non-vanishing

first derivative at the turning points of all classical orbits with E < EF . Under these

conditions, the orbitals of non-interacting fermionic system can be uniformly and accurately

approximated by the Langer wave functions described in the previous chapter. It follows

from Eq. 3.4 that the same is true for n(x). Thus, our treatment has as its starting point Eq.

3.4 with Langer wave functions (eq. 2.23) employed as occupied orbitals. In what follows

EF will always be chosen so that the classical action (see below) S(EF , x+, x−) satisfies the

semiclassical quantization condition

S(EF , x+, x−) = Nπ~. (3.6)

This choice enforces normalization of the associated Thomas-Fermi density (the leading

term in any asymptotic expansion of the particle density) to N particles [37, 74, 101]. Also

equivalent is to assume the Fermi level corresponds to the energy of a state with half-integer

quantum number j = N − 1/2 in the WKB quantization condition

1

2π~

∮
dx′p[x′, E(j)] = (j + 1/2) . (3.7)

For this reason every quantity evaluated at j = N − 1/2 will be denoted by a subscript F .

Note the above implies the Fermi energy defines a compact Lagrangian submanifold of phase

space, so that no states in the continuum spectrum of Ĥ are occupied.

In the first step of our derivation we employ the finite Poisson summation formula (see

previous chapter and [25]). It allows the rewriting of the particle density in a way that
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(despite appearances) is amenable to a semiclassical treatment:

N−1∑
j=0

|ψj|2 =
∞∑

k=−∞

∫ N−1/2

1/2

dλ |ψ(λ)|2e2πikλ, (3.8)

where the conditions satisfied by ψ(λ) are described in section 2.2.2.

Using the finite Poisson summation formula and the Langer semiclassical uniform approxi-

mation to the wave function for each occupied energy level we obtain for the density n(x)

n(x) =
∞∑

k=−∞

∫ N−1/2

−1/2

dλ
2ω(λ)z1/2(x, λ)

p(x, λ)
Ai2[−z(x, λ)]e2πikλ. (3.9)

In the integrals above, physical quantities defined previously as functions of E are written as

functions of λ via the mapping E = E(λ) (e.g., ω(E) = ω(E(λ)) ≡ ω(λ)) which we assume

can be well approximated by EWKB(λ). Because our assumptions imply non-degeneracy of

energy levels and dE/dλ 6= 0 for all E ≤ EF , the map E(λ) is bijective in the integration

interval.

Our strategy consists of a perturbative evaluation of the integrals in Eq. 3.9, followed by

resummation of the dominant contributions to the asymptotic expansion of each. The terms

in Eq. 3.9 where k = 0 and k 6= 0 are treated in different subsections, since their asymptotic

treatments and physical interpretations are of a different nature, though, as will be seen,

deeply connected.

Dominant Behavior

The leading asymptotic contribution to the density in the semiclassical limit is well-known

to emerge from the zeroth component of the Poisson summation formula [11, 18]. In other

words, Thomas-Fermi theory may be obtained by approximating the summation in the
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(a) Generic behavior of |p(λ, x)| for fixed x.
(b) Typical v(x); the energies E1 and E2 cor-
respond to those with turning points at the
two values of x indicated in Figure 1.

definition of n(x) by an integral over classical (or WKB) probability densities [11, 22, 74].

Thus, we expect

n0(x) = 2

∫ N−1/2

−1/2

dλ
ω(λ)

p(x, λ)
z1/2(x, λ)Ai2[−z(x, λ)], (3.10)

to contain the classical limit of the one-particle density n(x). In what follows x will be

regarded as a parameter, so it will be assumed constant throughout all subsequent develop-

ments unless explicitly stated otherwise. For ease of notation we omit the spatial dependence

of physical quantities at intermediate steps of the derivation. Then, upon using the iden-

tity ~ω(λ)dλ = p(λ)dp(λ), n0(x) can be rewritten in a simpler form as a Riemann-Stieltjes

integral [108]:

n0(x) = 2~−1

∫ N−1/2

−1/2

dp(λ)p(λ)f−1(p)Ai2
[
f−2(p)p2(λ)

]
, (3.11)

where f(p) = f(p(λ)) = p(λ)/
√
z(λ). Both p(λ) and z(λ) are of bounded variation in any

compact interval of the (x, λ) plane (see Figures 1 and 2). Additionally, the integrand is

continuous in the integration domain. Therefore, the integral is well-defined.

If f(p) were constant as is the case for the linear potential v(x) = x, a closed-form solution
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would exist for n0(x). For well-behaved v(x) we expect f(p(λ)) to be a slowly-varying

function of λ. In fact, as the semiclassical limit defined in Section 2.1 is approached, the

variation of f with respect to λ tends to be small (see Appendix I). This suggests the following

zeroth order approximation, obtained under the assumption that f(p) is constant,

n
(0)
0 =

p(λ)

~
√
z(λ)

(
Ai2[−z(λ)] +

1

z(λ)
Ai′2[−z(λ)]

) ∣∣∣∣λ=N−1/2

λ=−1/2

. (3.12)

To extract corrections to n
(0)
0 we take partial derivatives of the above with respect to p (noting

that in this case ∂/∂p = ∂N/∂p ∂/∂N), change N to λ, and then apply the integration

operator
∫ N−1/2

−1/2
dp(λ) to both sides. After rearranging terms we find:

n0 =
p(λ)

~
√
z(λ)

(
Ai2[−z(λ)] + z−1(λ)Ai′2[−z(λ)]

) ∣∣∣∣λ=N−1/2
λ=−1/2

+
1

~

∫ N−1/2

−1/2
dp(λ)

∂f

∂p
z(λ)Ai2 [−z(λ)]

− 1

~

∫ N−1/2

−1/2
dp(λ)

∂f

∂p
Ai′2 [−z(λ)] , (3.13)

where f ′(p) = ∂f/∂p. The identity ∂f/∂p = ∂z/∂p ∂f/∂z allows us to rewrite the correction

to n
(0)
0 (x) in a simple form:

n0 = n
(0)
0 + L0 +

1

~

∫ N−1/2

−1/2

d {Ai[−z(λ)]Ai′[−z(λ)]} ∂f
∂z
, (3.14)

where L0 corresponds to the first term on the r.h.s of Eq. 3.13 evaluated at λ = −1/2.

Further integration by parts gives:

n0 = n
(0)
0 +

1

~

[
∂f

∂z

∣∣∣∣
z=zF

Ai[−zF ]Ai′[−zF ]−
∫ N−1/2

−1/2
dz(λ)

∂2f

∂z2
Ai[−z(λ)]Ai′[−z(λ)]

]
+L(x). (3.15)

where L contains all previously integrated terms evaluated at λ = −1/2, i.e.,

~L =

[
−p(λ)

√
z(λ)

(
Ai2[−z(λ)] +

1

z(λ)
Ai′2[−z(λ)]

)
− ∂f

∂z

∣∣∣∣
z=z(λ)

Ai[−z(λ)]Ai′[−z(λ)]

] ∣∣∣∣
λ=−1/2

. (3.16)

A hint that L(x) will turn out to be negligible under our assumptions is that λ = −1/2
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corresponds in the WKB approximation to a classical system with zero action, i.e.,

∮
dxp [x,E(−1/2)] = 0. (3.17)

In this case,the classical motion is supported on a minimum of v(x). In Appendix I we show

explicitly that both L(x) and the integral in Eq. 3.15 can be safely ignored under the scaling

given in Section 2.2. Hence, we find n0 may be approximated under conditions of small ~

and large N by:

n0 ∼
pF
~
√
zF
(
Ai2[−zF ] + z−1

F Ai′2[−zF ]
)

+

(
ωF
pFαF

− pF

2~z3/2
F

)
Ai[−zF ]Ai′[−zF ], (3.18)

where αF (x) = z
1/2
F (x)∂z(x, λ)/∂λ|λ=N−1/2.

Note that as x approaches a turning point corresponding to the Fermi energy, αF (x) →

2~ωF z3/2
F (x)/p2

F (x). Thus, Eq. 3.18 reduces to Eq. 3.12 (minus the terms depending on

λ = −1/2) in a neighborhood of each turning point. This is consistent with the assumption

that there exists a region near the turning points where the potential may be linearized and

where its properties become identical to those of the linear potential, a central requirement

of this work. Further, use of the Airy function asymptotic expansions for large positive zF

recovers the Thomas-Fermi limit for the density at leading order (see Appendix I).

Leading Corrections to Dominant Term

Let n1(x) denote the sum of the components of the Poisson summation formula with k 6= 0.

Then, using the integral representation of Ai2(−z) [71], n1(x) can be expressed as:

n1 = 2
∞′∑

k=−∞

∫ N−1/2

−1/2

dλ
ω(λ)

√
z(λ)

p(λ)
e2πikλ

∫
C

dt
e(t

3/12+z(λ)t)

4iπ3/2
√
t
, (3.19)
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(c) The contour represents a closed curve starting at∞e−iπ/3 and ending at∞eiπ/3. The black dot
represents a branch point at t = 0, and the branch cut is positioned at Re t < 0. For details, see
Ref. [71].

where the primed summation implies that k 6= 0 and the contour C is given in Figure 3.

To obtain approximate forms for the integrals in Eq. 3.19 a choice of perturbative method

must be made. For that, we recourse to the following arguments. It is well-known that the

semiclassical limit of the fermionic particle density is expressed in terms of quantities that

depend only on the Fermi energy [22, 68, 70, 74]. Similarly, as consequence of the Darboux-

Christoffel formula the fermionic ground-state harmonic oscillator particle and kinetic energy

densities can be written exactly in terms of the lowest unoccupied orbital ψN(x) [51], e.g.,

nSHO(x;N) =
1

2

(
dψN(x)

dx

)2

+
1

2
p2
F (x)ψ2

N(x), (3.20)

where units were chosen so ~ = m = ω = 1, single-occupation of the orbitals {ψ0, ..., ψN−1}

was assumed, and for the harmonic oscillator pF (x) =
√

2(N − 1/2x2). These motivate our

assumption that the dominant contribution to each of the integrals in n1(x) originates from

a small neighborhood of λ = N − 1/2 in the integration domain.

Define

F (λ) = 2πkλ− iz(λ)t, y(λ) = α(λ)z−1/2(λ), (3.21)

so ∂F/∂λ = F ′(λ) = 2πk − iy(λ)t. Then, upon switching the integration order in Eq. 3.19
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we obtain:

n1 = 2
∞′∑

k=−∞

∫
C

dt
et

3/12

4iπ3/2
√
t

∫ N−1/2

−1/2

dF (λ)
ω(λ)

√
z(λ)

p(λ)F ′(λ)
eiF (λ). (3.22)

From integration by parts we further find

n1 =
2ωF
√
zF

pF

∞′∑
k=−∞

(−1)k
∫
C

dt
exp [(t3/12 + zF t)]

4iπ3/2
√
t

1

2πik + z
−1/2
F αF t

+R1. (3.23)

The first term in the r.h.s of the above may give a useful approximation to n1(x) as long as

the remainder R1 is relatively small. In Appendix I, we show explicitly this is in fact the

case at the semiclassical limit.

The factor (2πik+αF t/
√
zF )−1 may be expanded as a convergent power series in t/(2πiky−1

F )

within the disk |t| < tr = |2πky−1
F |. While yF can be made arbitrarily small (but different

from zero) by the scaling defined in Section 2.2, no matter how large tr is, the integration

domain will contains regions where |t| ≥ tr. If term-by-term integration is performed, then

the resulting series will be divergent. Similar phenomenon arises in the case of many asymp-

totic expansions, such as the exponential and the Stieltjes integral [14, 28]. The behavior

of this class of asymptotic expansions is well-understood, see, e.g., [14, 28]. For instance,

the accuracy of estimates based on the leading term increases as the radius of convergence

of the associated geometric series is enlarged. In addition, approximations obtained by the

inclusion of higher-order corrections become progressively more accurate, but only until one

reaches the parameter-dependent optimal truncation point where the error made by the

asymptotic expansion is minimal, and beyond which the pathological behavior of the series

starts to show (the magnitude of higher-order approximations increases unboundedly).

For each value of k in Eq. 3.19, we are only interested in the lowest-order terms. Further,

as previously mentioned, the radius of convergence of the geometric series expansion of

(2πik+αF t/
√
zF )−1 is arbitrarily large in the semiclassical limit. Therefore, the pathological
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effects of the singularity in the integrand of Eq. 3.23 emerge only at high-order corrections

for which we have no use.

Thus, we expand (2πik + αF t/
√
zF )−1 as a geometric series in t/(2πiky−1

F ) and follow it by

changing the order of summation and integration to encounter:

n1 ∼ 2
ωF
√
zF

pF

∞∑
j=0

(
αF z

−1/2
F

)j ∞′∑
m=−∞

(−1)m

(2mπ)j+1

∫
C

dt
exp (t3/12 + zF t)

−4π3/2
√
t

(it)j. (3.24)

The expression above may be simplified by use of the identities:

∞′∑
m=−∞

(−1)m

(2πm)j+1
=

(−1)j2(2j − 1)ζ(j + 1)

πj+122j+1
, for j odd, 0 otherwise, (3.25)

∂j

∂zjF

∫
C

dt
exp (t3/12 + zF t)

4iπ3/2
√
t

=
∂j

∂zjF
Ai2[−zF ], (3.26)

where ζ(p) is the Riemann zeta function [1]. It follows that:

n1 ∼
ωF
√
zF

pF

∞∑
j=1

(−1)j
(
αF z

−1/2
F

)2j−1 (22j−1 − 1)ζ(2j)

π2j4j−1

∂2j−1

∂z2j−1
F

Ai2[−zF ]. (3.27)

This expression could be further simplified by using the binomial expansion for multiple

derivatives of a product and a recently discovered formula for the jth derivative of the Airy

function (so-called Airy polynomial [20]). The end result is:

n1 ∼
ωF
pF

2∑
q=0

∞∑
j=0

(−zF )−3j−q ξ3j+q(αF )Ai(q+1)/Z3 [−zF ]Ai′(1−q)/Z3 [−zF ], (3.28)

where for u ∈ Z, u/Z3 = u mod 3, and each of the {ξj(αF )} is a different power series in αF ,
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e.g.:

ξ0(α) =
∞∑
k=1

(−1)k−12
(
22k−1 − 1

)
B2k

(2k)!
α2k−1, (3.29)

ξ1(α) =
7α3

F

1440
+

31α5
F

17280
+

127α7
F

302400
+

21127α9
F

27371520
+

32532971α11
F

2615348736000
+ ... (3.30)

ξ2(α) =
31α5

F

24192
+

127α7
F

345600
+

73α9
F

1013760
+

1414477α11
F

11887948800
+ ... (3.31)

where B2k identifies the 2kth Bernoulli number. The power series ξj(α) seem to be related

to periodic functions. For example,

ξ0(α) = csc(α)− 1

α
. (3.32)

This is an important feature of the leading term in the expansion given for n1(x). Recall

that αF (x) (restricted to x−(EF ) < x < xm(EF ), or xm(EF ) < x < x+(EF )) is the angle-

variable canonically conjugate to the Fermi action corresponding to the periodic orbit at

EF . Therefore, unless its image is restricted, αF (x) takes an infinite number of values which

differ by ±2πk, k ∈ Z. It is an interesting fact that in the approximation obtained for n(x)

by summing the leading terms of n0(x) and n1(x) such constraint is completely unnecessary.

When the dominant term of Eq. 3.28 (that with (q, j) = (0, 0)) is added to Eq. 3.18, we

obtain an approximation for n(x) where αF (x) only occurs as the argument of a periodic

function, as expected. Thus the approximation obtained by combining n0(x) and the first

correction coming from n1(x) is single-valued and well-defined everywhere. Since the first

few terms of some of the ξj(αF ) also appear in series expansions of trigonometric functions
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of αF (around αF = 0), it is expected that the connection between the corrections of n0(x)

and n1(x) remains at higher-orders.

If only the dominant term in Eq. 3.28 is retained (see Appendix I), then

n1(x) ∼ ωF
pF (x)

ξ0(αF (x))Ai[−zF (x)]Ai′[−zF (x)]. (3.33)

The addition of the above to Eq. 3.18 generates the following semiclassical uniform approx-

imation to the fermionic particle density:

nsc(x) =
pF (x)

~

[(
√
zAi2(−z) +

Ai
′2(−z)√
z

)
+

(
~ωF csc[αF (x)]

p2F (x)
− 1

2z3/2

)
Ai(−z)Ai

′
(−z)

]
z=zF (x)

. (3.34)

Discussion

Equation 3.34 expresses the quantum density of a fermionic system in one-dimension in terms

of quantities evaluated along the complexified Lagrangian manifold defined by H(x, p) = EF

where H(x, p) = p2/2m+ v(x). It must be noted that while individual classical objects such

as the action or momentum become purely imaginary in regions where tunneling happens,

nsc(x) remains a real positive semidefinite function for all x ∈ R as required for a probability

measure. In addition, nsc(x) is continuous everywhere. It also has continuous first derivative

except at the matching point (defined in Section 2.3) xm(EF ). However, in the limit of large

N , small ~,and fixed N~,

lim
ε→0

∣∣∣∣∣∣∣∣∣
dnsc(x)

dx

∣∣∣∣
x=xm+ε

− dnsc(x)
dx

∣∣∣∣
x=xm−ε

n(xm)

∣∣∣∣∣∣∣∣∣ ∼
~ωF

9N~
√

2[EF − v(xm)]
. (3.35)

Because ωF and EF only depend on N and ~ via the Fermi action IF = N~ the above indi-

cates that in the semiclassical limit (see Appendix I) the discontinuity in the first derivative

of the particle density at xm is irrelevant.
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Higher-order corrections to the semiclassical density can in principle be included by ac-

counting for the contributions neglected to reach Eq. 3.34, e.g., the deviation of the Langer

uniform approximation from the exact single-particle states of Ĥ, the remainders of the var-

ious asymptotic approximations to integrals, etc. Nonetheless as will be shown in the next

chapter, the result obtained above is already of high accuracy for a variety of potentials even

when the number of occupied states is O(1) (see also[91]).

Towards a physical interpretation of the various terms in nsc(x), we recall the particle density

can be expressed in terms of the propagator K̂(t) = e−iĤt/~ in the configuration space

representation, i.e.,

n(x,EF ) = lim
T→∞

∫ T

−T

dt

t− iγ
eiEF t/~K(x, x, t), (3.36)

where time-reversal invariance guarantees the Green’s function is well-defined for negative

propagation times [55]. As we have shown in the section 2.1.2 the propagator K(x, x, t)

admits an interpretation in terms of an integral over the space of closed paths based on x

[39]. In the semiclassical limit, K(x, x, t) is expressed as a sum over amplitudes associated to

topologically inequivalent closed classical orbits [45, 69]. These are classified by the Morse

index µ. In the case of interest to the system discussed in this chapter µ is simply given by

the number of times the velocity vector of a closed orbit with x(0) = x(T ) = x and energy

E changed its sign [6]. As we have shown in section 2.2.2, the same interpretation can be

ascribed to the different components of the Poisson summation formula (see also [12, 13]). By

using the asymptotic forms of Ai(−z) and Ai′(−z) in the allowed regions for classical motion

at EF , it is therefore unsurprising that the leading terms terms of nsc(x) are decomposed

into the two expected classes: a dominant non-oscillatory density (Thomas-Fermi) arising

from the first two terms of Eq. 3.34, corresponding to the direct t → 0 orbit with µ = 0,

and an oscillatory correction obtained from the third term of Eq. 3.34 which stems from the

closed classical orbits with Morse index different from zero (see Appendices I and II).
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The uniform semiclassical approximation to the particle density simplifies in different regions

of configuration space. Classically-allowed: For zF (x) >> 1, the asymptotic form of the Airy

function applies, leading to

nsc(x)→ pF (x)

~π
− ωF cos [2SF (x)/~]

2πpF (x) sinαF (x)
, (3.37)

(simplifying Eq. (3.36) of Ref. [57]; see also [63]). The dominant smooth term arises from

the direct short-time classical orbit[11, 68]. The oscillatory contributions are generated by

single- (in n0(x)) and multiple- (in n1(x)) reflections from each turning point [11, 63, 68, 93].

Evanescent: For x far outside the classically allowed region for the density, −zF (x) >> 1,

and

nsc(x)→
[
pF (x)

3SF (x)
− ωF
pF (x) sinαF (x)

]
e−2|SF (x)|/~

4π
, (3.38)

generalizing the approximation of Ref. [57]. Turning point: At a Fermi energy turning point

x0, where v′(x0) 6= 0, we recover the known leading term for the particle density

nsc(x0) = c0~−2/3|dv/dx|1/3, (3.39)

where c0 = (2/9)1/3/Γ2(1/3). As promised all of the limits which may be obtained from the

previous literature are recovered by nsc.

3.2.2 Kinetic Energy Density

The kinetic energy density (KED) can be found by reasoning which is very similar to that

for the particle density. We start with the finite Poisson summation formula representation

for the KED defined in Eq. 3.3 with m = 1, singly-occupied orbitals and ψj replaced by
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Langer wave functions φ(λ) (Eq. 2.23):

t =
1

2

∞∑
k=−∞

∫ N−1/2

−1/2

dλ p2(λ)|φ(λ)|2e2πikλ. (3.40)

The dominant component can be rewritten as another Riemann-Stieltjes integral,

t0 =
1

~

∫ N−1/2

−1/2

dp(λ)p3(λ)f−1(p)Ai2
[
−p2(λ)f−2(p)

]
. (3.41)

Assuming f(p) is constant we again recover a result which is exact for a linear potential,

t
(0)
0 =

p3(λ)

6~

(
z1/2(λ)Ai2 [−z(λ)] + z−1/2(λ)Ai′2[−z(λ)] + z−3/2(λ)Ai[−z(λ)]Ai′[−z(λ)]

) ∣∣∣∣N−1/2
−1/2

. (3.42)

Upon re-setting N − 1/2 → λ in the above, following it by taking a partial derivative with

respect to p (for fixed x, but varying λ as usual), integrating both sides from −1/2 to N−1/2,

and then rearranging terms it is found that:

t0 = t
(0)
0 +

1

2~

∫ N−1/2

−1/2
dp(λ)

{
p4(λ)f ′(p)

f2(p)
Ai2

[
−p

2(λ)

f2(p)

]
− p2(λ)f ′(p)

2~
Ai′2

[
−p

2(λ)

f2(p)

]}
− 1

2~

∫ N−1/2

−1/2
dp(λ)f2(p)f ′(p)Ai

[
−p2(λ)

f2(p)

]
Ai′
[
−p2(λ)

f2(p)

]
. (3.43)

Each of the remaining integrals can be evaluated perturbatively. In particular, we change

variables from p to z so as to obtain for the first two:

1

2~

∫ N−1/2

−1/2
dp(λ)

p4(λ)f ′(p)

f2(p)
Ai2

[
−p

2(λ)

f2(p)

]
− 1

2~

∫ N−1/2

−1/2
dp(λ)p2(λ)f ′(p)Ai′2

[
−p

2(λ)

f2(p)

]
=

1

2~

∫ N−1/2

−1/2
dz(λ)

∂p(λ)

∂z(λ)

∂f

∂p
p2(λ)

{
z(λ)Ai2[−z(λ)]−Ai′2[−z(λ)]

}
. (3.44)

As noted before, under the scaling discussed in Appendices I and II, ∂f
∂z

is small, so the
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dominant term of the above can be obtained by integration by parts:

1

2~

∫ N−1/2

−1/2
d
{
Ai[−z(λ)]Ai′[−z(λ)]

} ∂f
∂z
p2(λ) =

1

2~
∂f

∂z
p2(λ)Ai[−z(λ)]Ai′[−z(λ)]

∣∣∣∣λ=N−1/2

λ=−1/2

− 1

2~

∫ N−1/2

−1/2
dz

[
∂

∂z

(
p2(λ)

∂f

∂z

)]
Ai[−z]Ai′[−z]. (3.45)

By the arguments discussed in Appendix I the latter term in the above equation, the last

of the integrals in Eq. 3.43 and all terms depending on λ = −1/2 can be neglected. Hence,

the following provides the dominant component of the the defined kinetic energy density in

the semiclassical limit:

t0 =
p3
F

√
zF

6~

[
Ai2 [−zF ] +

1

zF
Ai′2[−zF ] +

(
3~ωF
p2
FαF

− 1

2z2
F

)
Ai[−zF ]Ai′[−zF ]

]
. (3.46)

The above may be rewritten in a way that makes manifest its relation to the dominant term

in the semiclassical uniform approximation to the particle density given in eq. 3.18,

t0(x) =
p2
F (x)

6
n0(x) +

ωFpF (x)

3αF (x)
Ai[−zF (x)]Ai′[−zF (x)]. (3.47)

The higher-order terms emerging from the k 6= 0 components of Eq. 3.40 are obtained by

performing essentially the same calculation done for the analogous terms of n(x),

t1(x) ∼ 1

2

[
ωFpF (x) csc(αF (x))− ωFpF (x)

αF (x)

]
Ai[−zF (x)]Ai′[−zF (x)]. (3.48)

In fact, the relationship between n1(x) and t1(x) is simple,

t1(x) =
p2
F (x)

2
n1(x). (3.49)

Our final expression for the kinetic energy density can thus be written as:

tsc(x) =
p2
F (x)

6
nsc(x) +

pF (x)ωF
3sinαF (x)

Ai[−zF (x)]Ai′[−zF (x)]. (3.50)
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As a result of its simple relation to nsc an analysis of neglected terms in the approximations

made in this section would be identical to that in the previous. Further discussion of this

point is given in Appendix II. In Ref. [91], the behavior of the semiclassical kinetic energy

density was illustrated with a Morse potential including 21 bound states. Chapter 4 includes

a variety of other numerical studies of the accuracy of tsc(x).

Discussion

Equations 3.46, 3.49, and 3.50 indicate a strong similarity between the uniform approxima-

tions obtained for the particle and kinetic energy densities. This is unsurprising from the

classical point of view, for a classical distribution of particles of unit mass ρcl(x, p) has kinetic

energy density given by

tcl(x) =
1

2π~

∫
dpρcl(x, p)

p2

2
. (3.51)

Thus, if the classical phase space distribution ρcl(x, p) = 2θ[EF − H(x, p)] is employed,

then the Thomas-Fermi kinetic energy density given by p3
F/6π~ is obtained. Because the

one-dimensional particle density is given in the classical limit by nTF(x) = pF (x)/π~, the

Thomas-Fermi kinetic energy density can be rewritten as

tTF(x) =
p2
F (x)

6
nTF(x). (3.52)

This in turn explains the factor of 1/6 in Eq. 3.50 as a manifestation of the classical limit

of the quantum mechanical kinetic energy density.
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3.3 Conclusion

We presented detailed derivations of uniform semiclassical approximations to the noninter-

acting fermionic ground-state density and kinetic energy density in one-dimension. Open

questions naturally emerge from our treatment. They may be classified into internal or

external. The former corresponds to inquiries that can be discussed within the framework

developed here, whereas the latter regard applications to different systems and further gen-

eralizations.

A simple internal question is whether there is a general relationship between the terms in

the expansions for n0(x) and n1(x) which would allow the generation of higher-order terms

in n1 from those of n0. For example, Eq. 3.18 contains the factor α−1
F which is the leading

term in the Laurent series of csc(αF ) around the pole at αF = 0. The remaining terms of

this series are obtained from n1. Because αF is an angle variable and csc(αF ) is the simplest

trigonometric function which has a simple pole at zero, n1 could have been conjectured from

n0 without any of the extensive calculations done in Section 3.4. This is important because

n0 contains the Thomas-Fermi term which can be easily calculated for any noninteracting

model, but n1 is much less trivial as it includes non-perturbative effects due to an infinite

number of topologically distinct closed orbits in a complexified phase space. Note that we

do not comment here on the accuracy of our approximations for any given potential v(x).

In the semiclassical limit, as described by γ-scaling in the Appendices, the derivation here

given guarantees that corrections to nsc(x) vanish pointwise (though with different rates in

distinct regions of R), i.e, can be made arbitrarily small for sufficiently small γ. But for a

fixed v(x) and number of particles, we have not explored the difficult question of predicting,

in general, the quantitative accuracy of the main results of this chapter.

The behavior of various expectation values for observables depending only on local operators

is also worth further study. For instance, the energy of a noninteracting fermionic system
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can be estimated with Eqs. 3.34 and 3.50 by adding the configuration space integral of

v(x)nsc(x) to that of tsc(x). As shown in Ref. [91] (and in the next chapter), a pointwise

comparison of nsc(x) and tsc(x) with the corresponding TF approximations indicates the uni-

form approximations include all of the quantum effects missed by Thomas-Fermi theory. On

the other hand, the expectation values of configuration space observables O(x̂) are obtained

by taking the integral of n(x)O(x) over all space. In some cases, e.g., the harmonic oscillator,

this averaging perfectly cancels out errors in the Thomas-Fermi approximation, so that TF

theory provides exact results. The effect would obviously be reduced for any system that

cannot be reasonably approximated by a harmonic oscillator, but it implies further study of

this issue is warranted. Such investigation is undertaken in chapter 4.

It would also be interesting to find alternative derivations of the uniform approximations

given here. Semiclassical formulas can often be derived in more than one way, emphasizing

distinct aspects of a result. For instance, Refs. [22, 33, 34] provide three distinct derivations

of the semiclassical approximation to n(x) with EF > v(x) ∀ x ∈ [0, 1], n(0) = n(1) = 0.

Another example is Berry and Tabor’s derivation of the EBK density of states via the

Poisson summation formula [12], followed shortly later by an alternative which employed

the trace of a semiclassical action-angle variable propagator[13]. Each different methodology

brings a new light to previously obtained results. In the case of this paper, it would be

particularly beneficial to have an alternative systematic construction, since our derivation

employed various identities exclusive to Airy functions, making it far from obvious how to

extend the employed treatment to general systems in any finite number of dimensions.

The simplest extensions of the formalism developed here which would still be limited to

cases where classical dynamics is trivial are: a) the study of radial Coulomb problems, b)

the treatment of systems with multiple potential wells, e.g., a periodic potential or a simple

double well, and c) the development of uniform approximations to the density matrix.

It is unclear if the obtained semiclassical uniform approximations can be systematically
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amended to study radial Coulomb problems. For instance, the fast variation of the Coulomb

potential near its center would forbid the use of the results given here. However, only the

spherically symmetric s-states have substantial amplitude near the origin. Therefore, it could

be that except for such (which in any case will likely require a uniform approximation not

based on Airy functions [62]), our treatment remains valid.

Multiple potential wells in the weak coupling regime (high-energy barriers and/or large

separations) would pose no challenge to the approximations here utilized, as to leading order

in perturbation theory in the coupling constant each well can be treated independently and

so the uniform approximations here presented would apply immediately as long as the Fermi

energy is sufficiently below all local maxima of the potential energy function. However, it is

also uncertain whether there exists simple extensions of the formalism here presented which

would i) account for tunneling effects between regions separated by a barrier, and ii) provide

a non-singular description of the behavior of the particle density as the Fermi energy crosses

critical points of the external potential v(x).

The one-particle density matrix can be employed to evaluate the exchange energy. Therefore,

there exists large interest in the development of semiclassical approximations to the density

matrix which contain the Thomas-Fermi limit and its dominant corrections. For instance,

Elliott et al. [33] have recently demonstrated the low cost and high accuracy of exchange

energies obtained from a semiclassical approximation to the density matrix. However, their

result only applies to systems which satisfy Dirichlet boundary conditions and for which

a particle with the Fermi energy would encounter no turning points in any of its possible

classical histories. Hence, another possibility for future research is the application of the

methods here used to obtain a uniform approximation to the density matrix. However, the

introduction of another degree of freedom poses additional technical difficulties, as a new set

of classical singularities is introduced to the problem and much less analytical results exist

for integrals of products of Airy functions with different arguments.
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3.4 Appendix I - Corrections to the Semiclassical Par-

ticle Density

In the derivations of n0(x) and n1(x), we neglected two types of terms: remainder integrals,

such as the last term of Eq. 3.15, and integrated quantities evaluated at the minimum of

the potential well V0 = E(−1/2), e.g., Eq. 3.16. In this appendix we show that under

the scaling ~→ ~γ,Nγ → N/γ, the aforementioned quantities become negligible relative to

those included in Eq. 3.34 when γ is small.

Before doing so, let us recall two basic facts about our choice of scaling: i) because the

limit where γ → 0 implies ~γ = γ~ → 0, the local de Broglie wavelength associated to

the Fermi energy, |λFγ(x)| = γ~/|pFγ(x)| is almost vanishing outside a small neighborhood

of p−1
F (0). This condition also characterizes the regions where the WKB approximation

can be employed unrestrictedly [11, 23]; ii) as γ → 0, the Fermi energy is preserved, but the

spacing between energy eigenvalues of the original system is reduced to enforce the condition

that N/γ states are occupied. This can be seen by examining the behavior of the scaled

quantization condition for the Fermi action,

1

2πγ~

∮
pF,γ(x)dx =

N

γ
, (3.53)

whence it is seen that pFγ(x) = pF (x), and so EFγ = EF . The analysis that follows will shed

more light on some of these points.

First, note that under γ-scaling, zF (x)→ zFγ(x) = γ−2/3zF (x), so

n0γ =
pF
~γ

[
γ−1/3√zFAi2(−zFγ) +

γ1/3

√
zF
Ai′2(−zFγ) + γ

(
~ωF
p2
FαF

− 1

2
√
zF

3

)
Ai(−zFγ)Ai′(−zFγ)

]
.

(3.54)
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For any x different from a turning point, γ can be chosen small enough that the Airy function

and its first derivative are arbitrarily close to the leading term of their asymptotic expansions.

Hence, in the classically-allowed region we find,

n0γ ∼
pF
γ~π

− ωF cos(2SF/γ~)

2πpFαF
+O(γ) , zF (x) > 0, γ → 0. (3.55)

The first term is the TF contribution, while the second is the leading, spatially-oscillating

correction. Note that the oscillations become infinitely rapid in the limit. On the other

hand, in the classically-forbidden region,

n0γ ∼ e−2|SF |/~γ
[

ωF
4π|pF ||αF |

− |pF |
6π|SF |

+O(γ)

]
, zF (x) < 0, γ → 0 (3.56)

Here, no TF contribution ever arises, and every term vanishes exponentially with 1/γ. Near

a turning point of the Fermi energy the semiclassical particle density is given by:

n0γ ∼ γ−2/3 1

Γ2(1/3)

(
2

9~2

∣∣∣∣dvdx
(x0)

∣∣∣∣)1/3

+O(x− x0), x− x0 → 0. (3.57)

At this point we pause to note that the above considerations explicitly indicate that just as

it occurs with other local observables, there exists no simple global expansion of the particle

density in powers of ~. However, the local expansions shown above are all encapsulated by

the basic result expressed in Eq. 3.54 which will thus be used to determine negligible terms

as γ → 0 without the necessity of examining the behavior of individual terms in each region

with qualitatively different behavior for the particle density.

We can now look at the remainder integral in Eq. 3.15:

R0 = ~−1

∫ zF

z−1/2

dz
∂2f

∂z2
Ai[−z]Ai′[−z] = − 1

2~

[
∂2f

∂z2

∣∣∣∣zF
z−1/2

Ai2[−zF ]−
∫ zF

z−1/2

dz
∂3f

∂z3
Ai2[−z]

]
.

(3.58)
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Recalling that z ∈ O
(
~−2/3

)
, we find R0γ is O

(
γ2/3Ai2[−zF,γ]

)
. Thus, as γ → 0 it vanishes

relative to the terms included in Eq. 3.54.

In deriving n0 we also neglected

L(x) =
1

~

[
−pλ

√
z(λ)

(
Ai2[−z(λ)] +

1

z(λ)
Ai′2[−z(λ)]

)
− ∂f

∂z

∣∣∣∣
z(λ)

Ai[−z(λ)]Ai′[−z(λ)]

] ∣∣∣∣
λ=− 1

2
+δ

(3.59)

where we added to −1/2 a small constant δ → 0, for the Langer approximation requires

turning points to be simple zeros of the classical momentum. This is not the case when

λ = −1/2. In fact, the classical region for the corresponding state is a point. Therefore, any

contribution to n0(x) from this term is exponentially small and can be safely ignored.

Our final approximation for n1(x) (Eq. 3.33) transforms under γ scaling as:

n1γ(x) =
ωF
pF
ξ0(αF )Ai[−γ−2/3zF (x)]Ai′[−γ−2/3zF (x)]. (3.60)

As expected (based on the discussion in section 3.3) n1γ is O (γ0), i.e., of the same order in

γ as the last two terms of Eq. 3.55. In the classically-allowed region for a particle at the

Fermi energy,

n1γ ∼ −
ωF ξ0(αF )

2πpF
cos(2SF/γ~) +O(γ) , zF (x) > 0, γ → 0. (3.61)

Hence, the leading correction to the Thomas-Fermi term in Eq. 3.55 is of the same order as

the dominant term of n1(x). Similarly, in the forbidden region for the Fermi energy,

n1γ ∼
ωF e

−2|SF |/γ~

4π|pF |
(
csch(|αF |)− |αF |−1

)
+O(γ), zF (x) < 0, γ → 0, (3.62)
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while near a Fermi energy turning point,

n1γ ∼
[

1

Γ(1/3)Γ(2/3)

](
ω2
F

6
+

2v′′(x0)

15

)[
dv

dx
(x0)

]−1

+O(x− x0), x− x0 → 0. (3.63)

We also neglected two types of terms in the derivation of n1(x). The first is

R1(x) = −2
∞′∑

k=−∞

∫
C

dt
et

3/12

4iπ3/2
√
t

∫ N−1/2

−1/2

dF (λ)
eiF (λ)

iF (λ)

∂

∂λ

ω(λ)
√
z(λ)

p(λ)F ′(λ)
, (3.64)

while the second consists of

R2(x) ∼ ωF
pF

2∑
p=0

∞∑
j=1

(−zF )−3j−p ξ3j+p(αF )Ai(1+p)/Z3 [−zF ]Ai′(1−p)/Z3 [−zF ]+

ωF
pF

2∑
p=1

(−zF )−p ξp(αF )Ai(1+p)/Z3 [−zF ]Ai′(1−p)/Z3 [−zF ]. (3.65)

That R2(x) is of a higher order than Eq. 3.33 is easy to see because zFγ is O(γ−2/3) and

αFγ = αF . Thus, all terms in Eq. 3.65 are relatively small compared to those in n1(x) as

γ → 0.

In the case of R1(x) the next-order term in integration by parts will contain factors of 1/F
′2
λ

and 1/F
′3
λ . This will yield various power series in x if the argument on section 3.3 is followed.

Each contains terms in γ that vanish relative to n1(x).
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3.5 Appendix II - Higher-order Terms and Limiting

Behaviors of the Semiclassical Kinetic Energy Den-

sity

From the equations defining our approximations to t0 (Eq. 3.46) and t1 (Eq. 3.49), it is clear

that except for the introduction of p2
F and rational factors, the expressions for the uniform

approximation to the kinetic energy density share the same structure of those corresponding

to n0 and n1, respectively. Therefore, the considerations given in the previous Appendix can

be applied almost verbatim to explain the smallness of the terms neglected in the derivation

of tsc. In this appendix, we apply, for the sake of completeness, γ-scaling to Eq. 3.50 in the

regions where the kinetic energy density behaves qualitatively different. This will provide

further insight into the distinguishing features of the semiclassical approximations to the

particle and kinetic energy densities.

In the classically-allowed part of the configuration space of a particle with the Fermi energy,

the kinetic energy density behaves asymptotically as:

tγ ∼
p3
F

6γ~π
− ωFpF cos(2SF/γ~)

4πsin(αF )
, γ → 0, zF (x) > 0, (3.66)

whereas in the evanescent and transition regions,

tγ ∼
(

2|pF |3

3|SF |
− 3ωF |pF |

sinh|αF |

)
e−2|SF |/γ~

24π
, γ → 0, zF (x) < 0, (3.67)

tγ ∼ −
|dv/dx|

9Γ(2/3)Γ(1/3)
+O(x− x0), x− x0 → 0. (3.68)

In comparison to Eq. 23 of ref. [91], Eq. 3.67 contains an extra factor of 2 multiplying |pF |3.
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The former has a typo.

The above equations illustrate for one last time: i) the relative dominance of the Thomas-

Fermi term p3
F/6π~ in comparison to all others as γ → 0, ii) the exponential smallness of

contributions to the kinetic energy coming from regions where the Fermi energy classical

motion is forbidden, and iii) the absence of a global power series expansion in any single

variable which is valid for all of configuration space.
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Chapter 4

Numerical and Analytical Studies of

Corrections to Thomas-Fermi

4.1 Introduction

It is the aim of this chapter to investigate the properties of the approximations derived in the

previous in a variety of situations of relevance to atomic systems. We employ the uniform

semiclassical approximations to obtain universal corrections to 1D Thomas-Fermi kinetic

and potential energies in regions of configuration space where the behavior of a system is

qualitatively different. We also establish a general result on the depletion of the particle

density in a classically-allowed region due to tunneling. Comparisons between semiclassical

and exact numerical data illustrate our results.
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4.2 Notation

In this chapter we will employ the main results of Chapter 3 (eqs. 3.34 and 3.50) to obtain

information on energetic contributions emanating from different configuration space regions.

To make mathematical expressions simpler we introduce definitions which are only employed

in this chapter. For instance, the following provides a simple notation for products involving

Airy functions and/or their derivatives,

a(z) = Ai(−z), A0 = −aa′, A1 = a2, A2 = a′2, a0 = a(0) =
3−2/3

Γ(2/3)
. (4.1)

Next we combine different products of Airy functions which appear repeatedly in this work:

K0(z) = π
[
z1/2A1(z) + z−1/2A2(z)

]
, K1(z) = πA0(z), K2(z) = K0(z)− K1(z)

2z3/2
. (4.2)

Asymptotic expansions and integrals of the above expressions which will be useful later are

summarized in Appendix I.

In the notation just given the semiclassical particle density can be written in a simple form:

nsc(x) = f [pF (x), p̃F (x), SF (x)], with p̃F (x) =
ωF

pF (x)sinαF (x)
, (4.3)

and

f(p, p̃, S) =
p

π
K2[z(S)] +

p̃

π
K1[z(S)]. (4.4)

We also recall that z(S) = [3S/2]2/3, and S(x) =
∫ x
x0
p(x′)dx′. Similarly, for the semiclassical
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kinetic energy density it follows that:

tsc(x) = h[pF (x), p̃F (x), SF (x)], h(p, p̃, S) =
p2

6

[
p

π
K2(S) +

2p̃

π
K1(S)

]
. (4.5)

4.3 Methods

We consider hamiltonians of the conventional type

ĥ = −1

2
∇2 + v(x), x ∈ R. (4.6)

with smooth potential energy functions v(x) which either vanish or diverge positively at large

|x|. In the former case, we require the existence at least one bound state for the employed

methods to be valid. As in previous instances, here we will study the ground-state of N

noninteracting fermions at 0K. Particle and kinetic energy densities are defined as in chapter

3. In situations where the semiclassical scaling is relevant it is explicitly shown. Otherwise,

not. We employ units where ~ = m = 1.

4.3.1 Numerical

One of the great features of the uniform semiclassical approximations for the particle and

kinetic energy densities derived in the previous chapter is that they allow us to evaluate

these quantities for a given x ∈ R with minimal effort irrespective of the number of fermions

which live in the system. This is quite to the contrary of the general procedure of numerically

solving the Schrodinger equation for systems with a large number of particles, which involves

finding eigenvectors of large matrices for which the cost scales asymptotically as M3 (where

M is the dimension of the Hilbert space). Below we describe the numerical methods employed

in the computations we performed to compare semiclassical and Thomas-Fermi theory with
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exact results.

Accurate numerical solutions for the Schrodinger equation were extracted with the Matrix

Numerov method [84] whenever the studied potential gave rise to a Schrodinger equation

which we could not solve analytically. A grid spacing of 10−3 was chosen and the size L of the

system depended on the external potential and the Fermi energy. This choice of parameters

was guided by the requirement that kinetic and total energies were converged (relative to a

reduction in grid spacing and enlargement of L) up to the 4th decimal digit. In every case

we checked that both the exact particle and kinetic energy densities were at least of O(10−5)

when x = ±L.

4.3.2 Analytical

Several potentials are employed to illustrate our results. Some of these have analytical

solutions for any choice of γ (as defined in the previous section), e.g., the harmonic x2/2

[59] and Morse oscillators De[1 − exp(−ar)]2 [79]. Therefore, these are the most amenable

for testing the behavior of semiclassical quantities as γ → 0 (and N → ∞). The Poschl-

Teller potential −v0/ cosh2 x with v0 ∈ R+ also has analytic solutions, but only when v0 =

λ(λ+1)/2, λ ∈ N [85]. An external potential we studied for which the associated Schrodinger

equation has no analytical solution is the quartic v(x) = x4. All listed potentials are infinitely

differentiable and, except for the Morse, symmetric around x = 0.

We always choose N = 1 as our original system, and take γ → 0. In all cases, a larger initial

value of N makes convergence more rapid toward the semiclassical limit (except for the v(x)

which go to zero at infinity, in which case when N is large enough we expect the semiclassical

approximation to be less accurate - see below). In Fig. 4.1 we show the external potentials

studied in this chapter.
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Figure 4.1: External potentials employed for the quantitative analysis of the uniform semi-
classical approximations

Thomas-Fermi energies must be calculated numerically whenever the WKB quantization

condition cannot be solved analytically for the semiclassical spectrum. However, in case the

latter condition is satisfied, Thomas-Fermi kinetic and potential energies can be obtained

without much effort, i.e., without the need to perform complicated integrations over config-

uration space. This is the case for all of the external potentials we study here. Appendix II

provides the applied method.

4.4 Dominant Corrections to the Classical Limit

4.4.1 General Considerations

We start the analysis of leading corrections to TF theory by demonstrating in what way

the predictions of quantum mechanics approach those of its classical limit as γ~ → 0+ and

N/γ →∞. Figure 4.2 illustrates the behavior of particle densities as γ → 0+. In particular,

we show exact densities for the harmonic well with N = 1 and γ = 1, 1/4 and 1/16. In
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each case where γ 6= 1 we multiply the density by γ so all of them are on the same scale.

We also show the Thomas-Fermi density. We see the exact particle density approaches the

TF only in a weak or distributional sense as γ goes to zero(see e.g., [22, 40]). This simply

means that any expectation value obtained with Thomas-Fermi theory will agree with that

obtained with the quantum theory in the limit where γ → 0+. Note that, pointwise, the

TF density does not everywhere have relative error approaching zero. For example, in the

evanescent region, the TF density is identically zero, leading to 100% error relative to the

exact density.

Figure 4.2: Harmonic oscillator particle densities with N = 1, for γ = 1 (blue), 1/4 (orange),
1/16 (green); nTF(x) (black) and nsc(x) (dashed, red)

Figure 4.2 also gives the semiclassical particle density for N = γ = 1. We only show its

behavior for γ = 1, as, for all other values of γ the semiclassical is everywhere indistinguish-

able from the exact curve. In order to emphasize this fact, we plot in Fig. 4.3 the ratio

of semiclassical and exact particle densities for different values of γ. It clearly approaches

1 everywhere, thus showing its relative error vanishes for sufficiently small γ, for all values

of x. This shows that indeed the semiclassical particle density is a uniform asymptotic ap-

proximation and suffers none of the difficulties of previous works [57, 63, 93], despite the

qualitatively different behavior of spatially-varying properties in the traveling, transition and

evanescent regions.
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Figure 4.3: nsc(x)/n(x) for the harmonic oscillator with γ = 1, 1/2, 1/4, 1/8, 1/16 (blue, red,
green, orange, black, respectively)

4.4.2 Pointwise Analysis

Figures 4.2 and 4.3 demonstrate the greater pointwise accuracy of semiclassical approxima-

tions relative to that of Thomas-Fermi theory. In this section we perform a quantitative

analysis of this point.

We begin our discussion with the harmonic well. Consider again a single particle in the unit

frequency harmonic oscillator. We use the density-error measure introduced in [91], which

is:

η =
1

N

∫ ∞
−∞

dx|nsc − n(x)|. (4.7)

Table 4.1 shows the pointwise error as a function of γ for both the particle and the kinetic

energy densities (which we denote by ηT ). Even for γ = 1, the error is far smaller than TF,

and vanishes much more rapidly with decreasing γ, a result that we expected based on the

qualitative discussion of the prior subsection.

Another beautiful illustration of the pointwise accuracy of the semiclassical results is seen

by considering the particle and kinetic energy densities at the classical turning points of a
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Table 4.1: Semiclassical (η, ηT ) and TF (ηTF , ηTFT ) pointwise errors for the particle and
kinetic energy densities

γ η ηTF ηT ηTFT
1 0.0118 0.6183 0.0321 0.1685

1/2 0.0026 0.5982 0.0080 0.0898
1/3 0.0015 0.5905 0.0037 0.0615
1/4 0.0007 0.5864 0.0020 0.0469
1/5 0.0005 0.5839 0.0013 0.0379

phase space Fermi energy orbit. The explicit formulas are [57, 90, 91]

nγTP →
c0

lF
γ−2/3 − bF

2lF
√

3π
, tγTP → −

l−3
F

12
√

3π
γ2/3, (4.8)

where

c0 = (2/9)1/3/Γ2(1/3), (4.9)

lF = (2F )−1/3, F = |v′F |(xTP ), and bF =

∣∣∣∣ l4F3
[
ω2
F +

4v′′F
5

]
(xTP )

∣∣∣∣ . (4.10)

In Fig. 4.4, we plot γ2/3lFn
γ
TP/c0 and (tsc/t)(xTP ) for the harmonic and Morse potentials

(with N = 1). These show that as γ → 0 the turning point particle and kinetic energy

densities rapidly approach the limits given by eqs. 4.8 and 4.10 irrespective of the external

potential. Thus, the universality of the small γ limit is demonstrated. Corresponding TF

quantities are identically zero. Table I shows the high accuracy of the semiclassical uniform
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Figure 4.4: Left: γ2/3lFn
γ(xTP )/c0 vs γ2/3 for harmonic oscillator (black) and left (blue) and

right (red) turning points of the Morse potential (all with N = 1). Continuous lines represent
the semiclassical behavior as γ → 0 given by eq 4.8. Right: tsc/t|TP vs γ2/3 for harmonic
oscillator (black) and left (blue) and right (red) turning points of the Morse potential (all
with N = 1). The continuous line represents the semiclassical behavior as γ → 0 given by
eq. 4.10

approximation for the case of the quartic potential.

Table 4.2: Error in quartic potential semiclassical turning point densities as a function of γ
(N = 1).

γ nsc/n(x)− 1
1 −3.8× 10−3

1/2 −9.5× 10−3

1/4 −3.5× 10−3

1/8 −1.4× 10−3

1/16 −5.4× 10−4

1/32 −2.1× 10−4

4.4.3 Regional Particle Number and Energies

The previous subsection demonstrated the far greater accuracy of the semiclassical uni-

form approximations relative to Thomas-Fermi theory when absolute pointwise errors are

employed as a comparison norm. In this section we employ the uniform semiclassical approx-

imations to obtain dominant corrections to Thomas-Fermi observables emanating from the

classically-forbidden and allowed regions (as determined by the Fermi energy). For example,

we will analytically determine the depletion in particle number in the classically-allowed
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region, i.e., the tunneling effect on the particle density in the semiclassical limit.

We will justify a variety of upcoming arguments with semiclassical scaling, so we recall that

according to the discussion of section 2.1, the semiclassical limit is obtained when γ → 0+.

This implies the particle number Nγ = N/γ → ∞ while ~γ = γ~ → 0. Because the Fermi

energy is invariant under these transformations (see Eq. 3.6), any other classical property

which depends strictly only on the phase space orbit defined by the Fermi energy εF also

remains constant (e.g., the classical frequency at εF , etc.)

Let f(x) denote either n(x), v(x)n(x) or t(x). Then, we define the contributions from

different configuration space regions to the expectation value of the particle number N , and

total potential and kinetic energies V and T by,

fLallow =

∫ xm

xL

dxf(x), fRallow =

∫ xR

xm

dxf(x), (4.11)

fLforbid =

∫ xL

−∞
dxf(x), fRforbid =

∫ ∞
xR

dxf(x), (4.12)

where L/R denotes left and right Fermi energy turning points and xm is the Fermi mid-

phase point defined in section 2.3. Thus, it follows the expectation value of N , T or V can

be obtained with

∫ ∞
−∞

dxf(x) =
∑
S=L,R

(
fSallow + fSforbid

)
. (4.13)
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The above definitions allows us to discriminate average behavior of a system in different

regions and will prove useful in determining leading corrections to Thomas-Fermi.

Our strategy to analytically find the corrections to TF for observables in different spatial

regions relies on the following observations: corrections to TF particle density in the bulk

of the classically-allowed region (where zF >> 0) are oscillations of frequency O(1/γ) and

amplitude O(γ0) (see eq 3.37) while deep into the region which is classically-unaccessible for

a particle at the Fermi energy corrections to TF are exponentially small (see eq. 3.38). These

suggest that if there are corrections to TF of O(γα), with α < 1 (recall that TF energies

scale as 1/γ, so the next-order term is expected to be O(γ0)), they can only be due to a small

neighborhood of the turning point (at which zF → 0), where the behavior of the particle and

kinetic energy densities are qualitatively different relative to the prior mentioned regions (see

e.g., eq. 3.39). In particular, near turning points, classical quantities evaluated at the Fermi

level such as zF (x) and pF (x) are simply related so that the semiclassical approximations

become even simpler. This can be seen by noting that in the neighborhood of a turning

point xTP for a particle with the Fermi energy εF , we may write

v(x) = v(xTP ) + (x− xTP )v′F (xTP ) + (x− xTP )2v
′′
F

2
+ ... (4.14)

Defining,

y = (x− xTP )/lF , (4.15)
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it then follows that,

pF →
√
y
[
1− gFy +O(y2)

]
, gF =

1

2
l4Fv
′′
F , (4.16)

SF =
2

3
y3/2

[
1− 3gFy

5
+O(y2)

]
, zF = y

[
1− 2gFy

5
+O(y2)

]
, (4.17)

τF/lF = 2(lFy)1/2
[
1 +

gFy

3
+O(y2)

]
. (4.18)

This yields a semiclassical approximation to the particle density valid only in a small neigh-

borhood around turning points,

nsc,TP ∼ 1

lFπ
[
√
zFK0 (zF ) + bFK1(zF )] . (4.19)

There are some interesting aspects to this formula. First, it agrees with that of a 1D Airy

gas [56]. Second, we see that the coefficient bF contains the second-derivative of the potential

at the turning point. Thus it vanishes if the Fermi energy is at a point of inflection of the

potential, and either adds to or subtracts from the linear contribution to bF depending on

which side of that point x is located at. A similar approximation may be derived for the

kinetic energy density near one of the Fermi energy turning points.
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From Eq. 4.19 (and its analogous for the kinetic energy density) the dominant corrections to

TF energies will be derived in the classically-allowed and forbidden regions below. Numerical

confirmation will be presented by comparing analytical results to the exact for the cases of

the Morse and harmonic potentials.

Tunneling Effect on Particle Number

We start with some considerations on the number of particles in a given region. In the

classical limit it is obvious that all particles are located only in regions which are classically-

allowed, so TF predicts Nforbid = 0 in any circumstance. To obtain the correction to the

classical behavior according to the uniform semiclassical approximation, define

∆Nallow =
∑

S=L/R

∫ xm

xS

dx∆n(x), (4.20)

where xL and xR denote the left and right-hand-side turning points as usual. Inserting the

semiclassical particle density given in eq. 4.19 and using the relationship

pdx =
√
zdz, (4.21)

which is valid everywhere in the classically-allowed region, we find ultimately:

∆N sc,TPγ
allow → ∆N0 +

∑
S=L/R

bSFa
2
0γ

2/3 + ..., (4.22)

where

∆N0 = − 1

3
√

3π
. (4.23)
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Applying the same reasoning to the region that is not accessible classically we find

∆N sc,TPγ
forbid → −∆N sc,TPγ

allow , (4.24)

i.e., term-by-term in the γ-expansion, the change in the particle number in the evanescent

region precisely cancels that of the allowed region. This is an explicit demonstration that

the semiclassical density, which is not exactly normalized in general, is normalized to this

order in the γ expansion.

Additionally, since the TF density is entirely within the allowed region, we find that to

leading order, approximately 0.03 electrons leak out beyond each turning point into the

evanescent region. This is a universal result for all 1D potentials. It is illustrated in Fig.

4.5.

Figure 4.5: Average particle number in left or right classically-forbidden regions for the
harmonic oscillator (black) and left (blue) and right (red) turning points of the Morse po-
tential (all with N = 1); the straight lines correspond to the predictions implied by Eq. 4.24
decomposed into contributions from the classically-forbidden regions beside each turning
point
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Leading Corrections to the Thomas-Fermi Potential and Kinetic Energies

The next simplest observable we can address is the total potential energy. A similar analysis

yields:

∆V sc,TPγ
allowed → −εF∆N0 +

∑
S=L/R

a2
0εF

[
bSF −

1

(10lSF )
2
εF

]
γ2/3 + ... (4.25)

The first term is universal, again showing dependence only on the semiclassical Fermi energy,

determined by Eq. 3.6. In fact, we may write this as −εF∆Nallowed, i.e., it is as if the fraction

of a particle that spills out of the allowed region has potential energy equal to the Fermi

energy.

But, just as before, we find the corrections in the classically-allowed region exactly cancels

that of the forbidden, leaving zero contribution to the total potential energy. This is true for

both the the contribution which is independent of γ and for the O(γ2/3) coefficient. Figure

4.6 illustrates how the behavior implied by Eq. 4.25 is approached in the case of the Morse

and harmonic potentials.

Finally, we repeat the calculation for the kinetic energy, finding

∆T TPγallowed →
∑

S=L/R

a2
0

5 (lSF ) 2
γ2/3 + ... (4.26)

In figure 4.7 we illustrate the emergence this universal limit as γ → 0 (in the evanescent

region) for the Morse and harmonic oscillators. Here again, the leading correction to TF in

the classically-allowed region is cancelled by that of the classically-forbidden.
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Figure 4.6: Average potential energy in the left or right classically-forbidden regions for the
harmonic oscillator (black) and Morse potentials (for which left evanescent region results are
given in blue and right are in red) with N = 1; straight lines correspond to the predictions
implied by the appropriate decomposition of minus Eq. 4.25 into contributions due to each
each turning point

4.5 Global Analysis of Energies

In this section we explore the accuracy of semiclassical total potential and kinetic energies

for the harmonic, Morse and quartic oscillators.

Figure 4.8 illustrates the results for the harmonic well. As priorly mentioned, Thomas-

Fermi kinetic and potential energies match the exact for this system, so the performance

of the semiclassical approximation is necessarily worse relative to TF. Figure 4.8 includes

straight lines which indicate a small error of O(γ) in the expectation values predicted by

the uniform semiclassical approximations. This is pertinent because Thomas-Fermi energies

scale as 1/γ. Thus, leading corrections are expected to be O(γ0), but they vanish (see

discussion of previous section). Because the semiclassical approximation only guarantees

that the leading correction to TF is given exactly, its error is necessarily O(γα) with α > 0.

This is consistent with the observations of the previous subsection: the leading energetic

corrections to TF from the classically-allowed and forbidden regions are either O
(
γ2/3

)
or
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Figure 4.7: Average l2Fγ
2/3× kinetic energy from the left or right classically-forbidden regions

for the harmonic oscillator (black) and Morse potentials (for which left evanescent region
results are given in blue and right are in red) with N = 1; the straight line corresponds to the
predictions implied by the appropriate decomposition of minus Eq. 4.26 into contributions
due to each turning point

O (γ0) in the classically-allowed and forbidden regions, but they have opposite signs in each

domain, and therefore, cancel yielding no net correction to the expectation value predicted

by Thomas-Fermi theory.

For the Morse oscillator TF potential energies are again exact, but kinetic energies are not.

In any case, it can be seen from Fig. 4.9 that the latter are accurately predicted by TF.

The semiclassical total kinetic energies do not show improvement relative to TF results. In

fact, the O(γ) error of TF kinetic energies is 0.01 according to the least squares fit shown in

Fig. 4.9, while that of the semiclassical approximation is 0.05. As argued in detail for the

harmonic oscillator, these results in no way discredit the semiclassical approximation.

The quartic potential provides a case where all TF observables are inexact. In this case, the

semiclassical total potential energies are consistently more accurate than those predicted by

TF. However, the opposite trend is seen for the total kinetic energy.
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Figure 4.8: Errors in N = 1 harmonic oscillator total semiclassical kinetic and potential
energies as a function of γ; straight lines correspond to a least squares fit to the results for
all γ < 1/32.

Figure 4.9: Semiclassical and TF total kinetic (red and orange, respectively) and semiclassical
total potential energy (blue) errors for the Morse potential as a function of γ; straight lines
correspond to a least squares fit to the points with γ < 1.
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Figure 4.10: Semiclassical and TF total kinetic (red and orange, respectively) and potential
energies (blue and green, respectively) errors for the quartic potential as a function of γ;
straight lines correspond to a least squares fit to the points with γ < 1.

4.6 Breakdown of Semiclassical Approximation?

Two basic assumptions of the semiclassical approximations are that i) ωF 6= 0, and ii)

v′F (xL/R) 6= 0. If the latter is not verified, then the Langer semiclassical wave function fails

entirely to be a uniform approximation to the quantum-mechanical, thus invalidating the

starting point of the derivations in chapter 3. The former means that the Fermi energy is

located within the discrete part of the spectrum of a given potential (in other words the

corresponding classical motion is bound), which we assumed from the beginning. In this

section we look at the symptoms of a breakdown in nsc and tsc when the potential well

described by v(x) is sufficiently shallow that both ωF and v′F (xL/R) are near zero.

We employ the Poschl-Teller potential described before with v0 = 1 in which case there exists

only one bound state with energy equal to −1/2. The semiclassical Fermi energy is −0.086.

We compare this extreme case to that of v0 = 3 and v0 = 6 which give rise to two and three

bound states, respectively (Fig. 4.11). In every case, we choose N = γ = 1. Table 1 gives

numerical results while Figs. 4.12 and 4.13 compare semiclassical, Thomas-Fermi and exact
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particle and kinetic energy densities.

Figure 4.11: Poschl-Teller potentials (continuous lines) and lowest-energy states (dashed
horizontal lines); v(x) with v0 = 1 corresponds to the black curve; v0 = 3 to the red and
v0 = 6 to the blue.

Table 4.3: Poschl-Teller percent errors in energies for N = 1, pointwise particle density error
and pointwise kinetic energy error/exact kinetic energy.

v0 %∆T sc %∆T TF %∆V sc %∆V TF %∆Esc %∆ETF η ηTF ηT /T ηTFT /T

1 13.3 12.1 −4.1 −3.0 −9.9 −8.1 0.07 0.20 0.75 1.1
3 7.7 11.4 −1.0 −0.5 −2.8 −2.9 0.02 0.23 0.33 1.0
6 2.4 8.8 −0.8 −0.2 −1.2 −1.4 0.01 0.24 0.21 0.9

Table 4.3 verifies our expectations. As the depth of the probed well increases, the semiclas-

sical approximations have their accuracy improved. This follows according to any measure

chosen to check semiclassical pointwise and/or global errors for the potential and kinetic

energies. Figures 4.12 and 4.13 illustrate the gradual reduction in accuracy of the uniform

semiclassical approximations as the ability of a potential to bind particles becomes weaker.

Significantly, while we see a systematic reduction in the efficacy of the predictions of the semi-

classical approximation it does not provide any egregious or qualitative incorrect behavior

for either the particle or kinetic energy density.
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Figure 4.12: Poschl-Teller semiclassical (dashed) and exact (continuous) particle densities
for N = 1, v0 = 1 (black), 3 (red) and 6 (blue).

Figure 4.13: Poschl-Teller semiclassical (dashed) and exact (continuous) kinetic energy den-
sities for N = 1, v0 = 1 (black), 3 (red) and 6 (blue).
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4.7 Conclusions

In this chapter we have explored some properties of the uniform semiclassical approximations

to the particle and kinetic energy densities of noninteracting fermionic systems confined by

a smooth external potential derived in chapter 3. Both local and global behavior were exam-

ined. In particular, we have demonstrated the high pointwise accuracy of the semiclassical

approximations. These indisputably capture the dominant corrections to the classical limit

in the region where the quantum-mechanical particle density oscillates and also in those

where it decays exponentially. However, we found that dominant corrections to the energet-

ics given by the classical limit in these dissimilar regions cancel exactly. This leads to the

large accuracy of averages obtained with Thomas-Fermi theory, despite its poor pointwise

behavior. Further study is needed to determine whether there exists a given class of external

potentials for which total potential and kinetic energies predicted by the uniform semiclassi-

cal approximations are consistently more accurate relative to TF. Currently, we do not know

what factors determine whether semiclassical total energies are better or worse than those

given by TF.

We have also checked the behavior of the uniform semiclassical approximations in a situation

where vital assumptions required for their derivation are almost violated. The results only

indicated mild symptoms of a breakdown.

4.8 Appendix I - Relevant Properties of Airy functions

4.8.1 Asymptotic Expansions

Below we list the asymptotic expansions of z1/2A1(z), z−1/2A2(z), A0(z) (see section 4.2) in

the three regions where they behave qualitatively different [103].
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In the traveling region,

z1/2A1(z) ∼ 1 + sin(2S)

2π
− 5cos(2S)

72πS
+O(1/S2), z >> 0, (4.27)

z−1/2A2(z) ∼ 1− sin(2S)

2π
− 7cos(2S)

72πS
+O(1/S2), z >> 0, (4.28)

A0(z) ∼ −cos(2S)

2π
+

6 + sin(2S)

72πS
+O(1/S2), z >> 0. (4.29)

In the classically-forbidden region (branches are chosen such that multiplication by p = i
√
p

gives the correct signs in the density or kinetic energy density semiclassical approximations),

z1/2A1(z) ∼ ie−2|S|
(

1

4π
− 5

144π|S|
+O(1/S2)

)
, z << 0 (4.30)

z−1/2A2(z) ∼ −ie−2|S|
(

1

4π
+

7

144π|S|
+O(1/S2)

)
, z << 0 (4.31)

A0(z) ∼ −e−2|S|
(

1

4π
+

1

144π|S|
+O(1/S2)

)
, z << 0. (4.32)
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In a small neighborhood of a turning point,

z1/2A1(z) ∼ a2
0 +

z3/2

√
3π

+
z5/2

12π2a2
0

+O(z7/2), z → 0 (4.33)

z−1/2A2(z) ∼ a4
0z
−1/2

9
− z3/2

2
√

3π
− z5/2

18π2a2
0

+O(z7/2), z → 0 (4.34)

A0(z) ∼ − 1

2
√

3π
− z

12π2a2
0

+
a2

0z
2

2
+O(z3), z → 0

4.8.2 Integrals

To derive corrections to Thomas-Fermi in the allowed and forbidden regions (section 4.4) we

had to evaluate a variety of integrals containing products of Airy functions. Here we show

those which are needed to verify our results. Let,

Imp =

∫ ∞
0

dzzm+1/2Kp(z), (4.35)

then it follows that

I0
0 = − 1

6
√

3
, I1

0 =
πa2

0

5
, (4.36)
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I
−1/2
1 =

1

6
√

3
, I

1/2
1 = − 1

12πa2
0

. (4.37)

4.9 Appendix II - Basic Results of Thomas-Fermi The-

ory

In this appendix we collect some basic results of 1D Thomas-Fermi theory which are needed

to obtain some data shown in the main text (sections 4.5 and 4.6). The particle and kinetic

energy densities are given in terms of the potential v(x) and Fermi energy εF by

nTF,γ(x) =
pF (x)

πγ
θ[EF − v(x)], tTF,γ(x) =

π2 [nγTF(x)]3

6
γ2. (4.38)

From these it follows that as expected both the TF kinetic and potential energies scale as

1/γ.

The total kinetic and potential energies can be obtained by evaluating the integrals,

TTF =

∫ ∞
−∞

dx tTF(x), V TF =

∫ ∞
−∞

dx v(x)nTF(x), (4.39)

where we have taken γ = 1 (in view of the relations above, the generalization to arbitrary

γ is obvious). However, in many cases it is possible to evaluate TF kinetic and potential

energies without having to perform the spatial integrations given above. Particularly, if the

semiclassical Fermi energy can be obtained analytically (as is the case for all of the potential

energy functions discussed in this chapter), then it is also the case for the total TF kinetic
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and potential energies.

Let EWKB(n; β) be the energy given as a function of quantum number n for a system with

potential energy function v(x; β) = βv(x). Then, it follows from the Hellmann-Feynman

theorem [64] that,

∂EWKB(n; β)

∂β
= V WKB(n; β), TWKB(n; β) = EWKB(n; β)− V WKB(n; β). (4.40)

After setting β = 1 to the above results, the procedure first given by March and Plaskett in

[74] to relate WKB and Thomas-Fermi theory can be employed to give TF energies:

V TF =

∫ N−1/2

−1/2

dj V WKB(j), TTF =

∫ N−1/2

−1/2

dj TWKB(j). (4.41)

This reformulation of the problem still requires one to evaluate integrals to obtain the TF

kinetic and potential energies. However, these are generally much simpler relative to eq.

4.39. For instance, for the Morse potential:

EWKB(n; β) = a
√

2βDe

(
j +

1

2

)
− 1

2
a2

(
j +

1

2

)2

. (4.42)

It follows quickly that,

V WKB(j) = a
√
De/2

(
j +

1

2

)
. (4.43)
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Because integrals over polynomial functions are simple, TF energies for the Morse system

(and any other studied in this chapter) can be obtained with no numerical effort.
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Chapter 5

A Model of One-Dimensional

Quantum Transport

5.1 Introduction

In this chapter we develop a novel mathematical treatment for a model of one-dimensional

quantum transport. In particular, we establish a formal relationship between the properties

of an idealized molecular junction and those of the corresponding isolated (conducting)

molecule.

Our model consists of two main ingredients: i) noninteracting one-dimensional fermions

prepared at featureless leads in the limit where the stationary bias goes to zero (we work

within the framework of the Landauer model [26, 27, 60]) and ii) a short-range (vanishing

outside of a finite interval of R) potential v(x) representing the effects of the molecular

coupling. Only basic principles are shown, so no discussion of feasibility or cost for realistic

computations is given.
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In section 2 we review the required background (scattering theory and Green’s functions),

while section 3 contains the theory first exposed in this work. In section 4 we illustrate the

main result of this chapter with a semiclassical approximation. The novelties introduced

by this work are put into context in section 5, which also includes general discussion. The

appendix contains intermediate results necessary for some derivations included in the main

text.

5.2 Background

This work is restricted to one-dimensional systems, but the principles illustrated can be

generalized to three dimension, e.g., with periodic boundary conditions in the other two

directions [26, 27]. We use atomic units throughout.

Molecular conductance can be interpreted with the tools of scattering theory [26, 27], and

one-dimensional scattering has been extensively studied, e.g., in [8, 32]. In this section we

review some of these results and fix the notation that will be later employed.

Consider scattering off an external potential here denoted by v(x). We assume it is symmetric

with respect to a parity transformation, i.e., v(−x) = v(x). This is employed to simplify

some of the further considerations, but it is not necessary in principle. It is also assumed

that v(x) is of finite range, i.e., it vanishes for x > a. This constraint can be weakened. In

particular, if the decay of v(x) as x → ∞ is exponential, then the errors induced by the

discussed formalism will be exponentially small.

Transmission (t) and reflection (r) amplitudes completely characterize one-dimensional scat-

tering. These are obtained as functions of the incoming momentum k from the conditions

satisfied by a scattering wave function outside the range of influence of the external poten-

tial v(x). For example, if χ(x) denotes a scattering state incoming from the left, then the
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transmission and reflection amplitudes can be defined by the asymptotic conditions,

χ(x) =

 eik(x+a) + re−ik(x+a), x ≤ a,

teik(x−a), x ≥ a.
(5.1)

From r and t transmission and reflection probabilities are obtained via the usual quantum-

mechanical prescription [29], i.e., T = |t|2, R = |r|2.

Parity and time-reversal symmetry simplifies the study of one-dimensional quantum scatter-

ing. In particular, in this case the scattering matrix admits the simple form,

S =

√R i
√
T

i
√
T
√
R

 eiθ. (5.2)

This implies knowledge of the transmission amplitude t =
√
Teiθ is sufficient to determine

the reflection amplitude r by using r =
√
Rei(θ−π/2).

Because later results depend on various properties of Green’s functions we also list here some

of their useful relations. Let Lk be a linear differential operator with a domain consisting of

generalized functions satisfying outgoing boundary conditions at infinity of the class,

Φ(x)→ ceik|x|, |x| → ∞, c ∈ C. (5.3)

If φL(x) and φR(x) = φL(−x) are the solutions of Lkφ(x) = 0 satisfying the above given

boundary conditions at x = −∞ and x = +∞, respectively, then the Green’s function

g(x, x′; k) can be written as

g(x, x′; k) =

 φL(x)φR(x′)/W (k) x′ > x,

φL(x′)φR(x)/W (k) x > x′,
(5.4)
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where W (k) is the Wronskian determinant for the Schrodinger equation, i.e.,

W (k) =

∣∣∣∣∣∣∣
φL(x) φR(x)

d
dx
φL(x) d

dx
φR(x)

∣∣∣∣∣∣∣ . (5.5)

By using the basis formed by Eq. 5.1 and a corresponding scattering state incoming from

the right, we can find a Green’s function suitable for the study of one-dimensional scattering

in accordance with the above,

g(+)(x, y; k) =

 teik|x−y|/ik, x < −a, y > a,

eik|x−y|

ik
+ r

t
eik(|x|+|y|)

ik
, x > y > a > 0,

(5.6)

where the + superscript reminds outgoing boundary conditions with Im(ε(k) > 0) are em-

ployed. In particular, g(+)(x, y; k) is simply related to the Green’s function defined in Eq.

5.4 via

g(+)(x, y; k) = lim
η→0+

g(x, y; k + iη). (5.7)

From the previous results it follows that t and r can be obtained in terms of Green’s functions

evaluated beyond the range where v(x) is effective:

 t(k) = ik e−2ikag(+)(a,−a; k),

r(k) = e−2ika
[
ik g(+)(a, a; k)− 1

]
,

(5.8)

where to obtain the second expression, the limit x→ y → a+ was taken.

As an example consider v(x) = −δ(x)/α. Then,

g(+)(a, a; k) =
1

ik

(
1− 1

ikα + 1
e2ika

)
, (5.9)
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g(+)(a,−a; k) =
e2ikaα

1 + ikα
, (5.10)

whence r(k) = −1/(1 + ikα) and t(k) = ikα/(1 + ikα).

Note the transmission amplitude can also be directly obtained from the Green’s function

with

t(k) = − i
k

∂2g(+)(a,−a; k)

∂x∂y
e−2ika. (5.11)

A similar result for the reflection amplitude follows from consideration of the parametrization

for the S-matrix given in Eq. 1. Thus, the Green’s function can be used to directly obtain

the S-matrix.

5.3 Generalized Dyson Equation and Self-Energy

The main result of this work is derived in this section: a Dyson-like equation relating an

isolated molecule Dirichlet Green’s function g0(x, y; k) to that of a system in which the

molecule is coupled to featureless leads with outgoing boundary conditions at infinity. In

particular, for the Dirichlet system we assume H0 = −1/2d2/dx2 +v(x), ψ(±a) = 0, whereas

for the coupled system the Hamiltonian is the same, though we denote it by H, for the

boundary conditions require the wave functions of bound states to be square integrable

whereas scattering states oscillate at long distances.

The following family of Hamiltonians will prove useful throughout the derivation:

Hβα = −1

2

d2

dx2
+ v(x) + β−1δ(x+ a) + α−1δ(x− a), (5.12)
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where β, α ≥ 0, v(x) is of finite range r, and |a| > r. Note that by varying (β, α) we can

interpolate between the systems defined by H and H0 above. For example, it is obvious

that H∞∞ = H, and it can be shown that H00 = H0. For a given pair (β, α) the associated

Green’s function to Hβα will be denoted gβα. To simplify notation we will in this section

omit the dependence of the Green’s function on the energy, and also introduce the following

definitions: g0 ≡ g00, g∞ ≡ g∞∞, gL ≡ g0∞, and gLα ≡ g0α. In fact these subscripts will be

employed whenever possible to identify properties of the system for which the Hamiltonian

is Hβα. Then, for example, H00 ≡ H0, H0∞ = HL, etc.

The derivation can be summarized by three steps: in the first we relate g0 and gL; the

second connects g∞ and gL, while the third gives a relationship between g0 and g∞ which is

a generalized Dyson equation (the main result of this chapter).

The Green’s function for HLα can be related to that of H0 by the integral equation:

gLα(x, y) = g0(x, y) +

∫
dzg0(x, z)vα(z)gLα(z, y), (5.13)

where vα = δ(x− a)/α. By standard techniques it is written as:

gLα(x, y) = g0(x, y) +
f0(x)f0(y)

α− h0

, (5.14)

where fLα(x) = gLα(x, a), hLα = fLα(a).

With the objective of expressing g0(x, y) in terms of gLα(x, y) we invert 5.14 to find:

g0(x, y) = gLα(x, y)− 1

α− hα
f0(x)f0(y) (5.15)

Note hLα = gLα(a, a) = h0α/(α − h0) and fLα(x) = f0(x)α(α + hLα) (this follows from eq.

5.14). Note that as α → 0, hLα → −α. However, by defining KLα(x) = fLα(x)/hLα =

gLα(x, a)/gLα(a, a) this issue is resolved, since KLα(x) = K0,0(x) = g0(x, a)/g0(a, a), so it is

96



independent of α. From now on we will write KLα(x) = K(x) unless we wish to emphasize

the value of α we are using to evaluate K(x). Hence, we rewrite the above as:

g0(x, y) = gLα(x, y)− h2
0

α− h0

f0(x)

h0

f0(y)

h0

, (5.16)

g0(x, y) = gLα(x, y)− h2
0

α− h0

K(x)K(y). (5.17)

As α → 0 we find to leading order (and here we have to specify that ε = k2/2 is not an

eigenvalue of the box hamiltonian otherwise the limiting process we take becomes undefined;

it is sufficient to set Im(k) > 0):

g0(x, y) = gLα(x, y) + h0K(x)K(y), α→ 0. (5.18)

For α = 0, we evaluate K(x) with L’Hôpital’s rule:

K(x) = KL(x) = lim
η→0+

gL(x, a− η)

gL(a− η, a− η)
, (5.19)

K(x) =
∂gL(x, y)/∂y|y=a

dgL(x, x)/dx|x=a

. (5.20)

It is important to note that in the denominator the limit is taken on the diagonal element

of the Green’s function (a single-variable function). It follows that:

g0(x, y) = gL(x, y) + f0K(x)K(y), (5.21)
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g0(x, y) = gL(x, y) + f0(y)

∂gL(x,a)

∂y

dgL(a,a)
dx

. (5.22)

Finally,

g0(x, y) = gL(x, y) + c−1g0(y, a)
∂gL(x, a)

∂y
(5.23)

where c = dgL(a, a)/dx.

The identities derived in Appendix I allow us to rewrite the above as:

g0(x, y) = gL(x, y)− i

2k

∂gL(x, a)

∂y

∂g0(a, y)

∂x
. (5.24)

By using the Green’s function integral equation we can additionally relate g∞ to gL, and as

a result g∞ to g0(x, y). This latter relationship is what we are after, since g∞(x, y) is the

Green’s function for a system trapped by two hard-walls (thus corresponding to a model of

an isolated molecule), while g0 is the Green’s function corresponding to a model of a molecule

coupled to featureless external leads. Introducing the relationship found for gL(x, y) in terms

of g0(x, y), we find,

g0(x, y) = g∞(x, y) +

∂g∞(x,−a)
∂y

dg∞(−a,−a)
dy

gL(−a, y) +

∂gL(x,a)
∂y

dgL(a,a)
dx

g0(a, y). (5.25)

To get rid of any factor involving gL(x, y) or its partial derivatives in eq. 5.25, we employ

the results derived in Appendix I as well as the following identities:

gL(−a, y) = g0(−a, y)− 1

2
g0(a, y)

∂gL(−a, a)

∂y
, (5.26)
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∂gL(x, a)

∂y
=
∂g∞(x, a)

∂y
− 1

2

∂g∞(x,−a)

∂y

∂gL(−a, a)

∂y
, (5.27)

where the first equation was obtained from 5.23 (after replacing c by 2 as derived in Appendix

I), and the second from 5.25 (with the same priorly mentioned replacement). After applying

the above and additional results obtained in Appendix 1 we obtain

g0(x, y) = g∞(x, y)− i

2k

∂g∞(x,−a)

∂y

∂g0(−a, y)

∂x
− i

2k

∂g∞(x, a)

∂y

∂g0(a, y)

∂x
,−a ≤ x, y ≤ a.

This provides a partial differential equation equation relating the Green’s function of a system

modeled by the external potential v(x) satisfying open boundary conditions, in terms of the

Green’s function for the same system satisfying closed boundary conditions.

The self-energy may be read from the Dyson-like equation given above by recalling that it

can be defined by the integral equation,

g(x, y; k) = g0(x, y; k) +

∫
dzdz′g0(x, z; k)Σ(z, z′; k)g(z′, y; k). (5.28)

Hence, it follows that for the model studied in this chapter, the self-energy operator is given

in real-space by:

Σ(x, x′; k) = − i

2k
δ′(x− a)δ′(x′ − a)− i

2k
δ′(x+ a)δ′(x′ + a). (5.29)
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5.4 Quantum Transport Properties

While the derived Dyson-like equation relates the isolated and connected Green’s functions

for a model system in 1D, it is unlikely to be exactly solvable for any system of practical

interest. However, as shown in section 5.2, S-matrix elements and therefore, transport

observables, can be directly obtained from the mixed second derivative of the connected

Green’s function g(x, y) (g0(x, y) in the notation of the previous section) evaluated at the

box endpoints x = a, y = −a. This quantity can be obtained without solving the Dyson-

like equation given above. To see that, let γ denote the 2x2 Hessian matrix of any Green’s

function evaluated at the endpoints, i.e.,

γ±± =
i

2k

∂2g(x, y)

∂x∂y

∣∣∣∣
x=±a,y=±a

. (5.30)

Then, the generalized Dyson equation given above can be manipulated to give:

γ−+ =
γ0
−+

detγ0 + Tr γ0 + 1
. (5.31)

Because t(k) = 2γ−+e
−2ika, we explicitly see that the transmission can be obtained from the

isolated Green’s function Hessian matrix. In the next section we explore a simple approxi-

mations to Eq. 5.31.

5.5 Example: Semiclassical Approximation

In this section we illustrate the use of Eq. 5.31 by using a semiclassical approximation. For

simplicity we assume the energy of the incoming particle ε = k2/2 > v(x), ∀ x ∈ R. Then,

WKB applied to a system with Dirichlet boundary conditions gives the following Green’s
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function,

g(0)(x, y; k) =
cos[θL(x)− θR(y)]− cos[θL(x) + θR(y)]√

k(x)k(y)sinΘ
, (5.32)

where −a ≤ x < y ≤ a, θL(x) =
∫ x
−a dx k(x), θR(x) =

∫ x
a

dx k(x), and Θ = θL(a). From this

we can calculate the mixed second derivative Green’s function matrix γη,ζ defined above,

γ0 = i

cot(Θ) csc(Θ)

csc(Θ) cot(Θ)

 . (5.33)

It follows from Eq. 5.31 that

γ−+(k) =
eiΘ

2
, (5.34)

whence we obtain the approximate transmission amplitude,

t(k) = eiΘe−2ika = ei
∫ a
−a[k(x)−k]dx, (5.35)

so the semiclassical approximation to the one-dimensional scattering phase-shift emerges.

Note that semiclassical transmission above barrier has unit probability as the phenomenon

of reflection above barrier is exponentially small and cannot be described with primitive

semiclassical theory.

5.6 Summary

We have analytically constructed the self-energy operator in real-space for the case of a

conducting system connected to two featureless leads in the limit of zero bias. This can be

shown to be the long-distance limit for a tight-binding chain in which the leads are described
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by a nearest-neighbor hopping hamiltonian and the coupling to a central molecular system

only happens at their interface [92]. As such, our model is not realistic. However, it provides

an explicit example in which computations done for isolated subsystems may be employed

to understand the properties of a coupled infinite system.

5.7 Appendix I - Some Useful Identities

In this appendix we derive some results used in section III. For instance, the factors g0(y, a)

and dgL(x, x)/dx|x=a can be rewritten by taking advantage that a is beyond the finite range

of the potential v(x). For this purpose we introduce a new Hamiltonian H free
0 = −1/2d2/dx2,

defined on the real line, with

gfree
0 (x, y) = eik|x−y|/ik. (5.36)

Some of the notation introduced before was employed since H free
0 corresponds to Hαβ with

v(x) = 0, α = β =∞. The integral equation for the Green’s function of H reads:

g0(x, y) = gfree
0 (x, y) +

∫
R

dzgfree
0 (x, z)v(z)g0(z, y). (5.37)

Naturally, g0 here corresponds to H00(α = β = 0, the hamiltonian for the coupled system

which has v(x) 6= 0). Taking partial derivatives w.r.t x on both sides of the previous equation

and multiplying by −i/k gives

−i
k

∂g0(x, y)

∂x
= [θ(x− y)− θ(y − x)]

eik|x−y|

ik
+∫

R
dz [θ(x− z)− θ(z − x)]

eik|x−z|

ik
v(z)g0(z, y). (5.38)
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Now set x = a and note that because a is chosen so that it lies beyond the range of influence

of v(x), y < x = a and v(z) = 0,∀z ≥ a. Hence,

−i
k

∂g0(a, y)

∂x
=
eik|a−y|

ik
+

∫ a

−∞
dz
eik|a−z|

ik
v(z)g0(z, y). (5.39)

We can extend the integration domain, for v(z) = 0, ∀ z > a. Thus,

−i
k

∂g0(a, y)

∂x
=
eik|a−y|

ik
+

∫
R

dz
eik|a−z|

ik
v(z)g0(z, y), (5.40)

which implies

−i
k

∂g0(a, y)

∂x
= gfree

0 (a, y) +

∫
R

dzgfree
0 (a, z)v(z)g0(z, y) (5.41)

as well as

g0(a, y) = − i
k

∂g0(a, y)

∂x
, y < a, v(z) = 0 ∀ z ≥ a (5.42)

which is the identity we wanted. Now we show that

dgL(x, x)/dx|x=a = 2. (5.43)

For this we need gfree
L which has hfree

L = −1/2d2/dx2 (with domain ψ(a) = 0}):

gfree
L (x, y) =

eik|x−y| − eik|2a−x−y|

ik

− 1

ik

(
eik|x| − e2ikae−ikx

) (
eik|y| − e2ikae−iky

)
ikα−1 + (1− e2ika)

, x, y < a. (5.44)
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We also note that dgfree
L (x, x)/dx|x=a = 2. We use again the integral equation for the Green’s

function of gL(x, y):

gL(x, y) = gfree
L (x, y) +

∫
R

dzgfree
L (x, z)v(z)gL(z, y). (5.45)

Taking the derivative of the diagonal element gL(x, x) with respect to x and setting x = a, we

find the only contributing term comes from dgfree
L (x, x)/dx|x=a.This happens because a > r

and v(z) vanishes for |z| > r.We find the desired relationship

dgL(x, x)/dx|x=a = 2. (5.46)

Similar identities follow at x = −a. For example,

g0(−a, y) =
i

k

∂g0(−a, y)

∂x
. (5.47)

Now let gfree
∞ correspond to the Green’s function of the free particle in a box with edges

x = ±a,

gfree
∞ (x, y) =

2sink(x< + a)sink(x> − a)

ksin2ka
, (5.48)

where x> = max(x, y), and x< = min(x, y). It follows that

dgfree
∞ (x, x)

dx

∣∣∣∣
x=±a

= ±2. (5.49)

For the integral equation relating g∞ and gfree
∞ , we find

g∞(x, y) = gfree
∞ (x, y) +

∫
R

dzgfree
∞ (x, z)v(z)g∞(z, y). (5.50)

Evaluating dg∞(x, x)/dx|x=±a gives as the only contributing term dgfree
∞ (x, x)/dx|x=±a which
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is equal to ±2. This happens again because a > r where r is the range of v(x).
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Chapter 6

Epilogue

6.1 Semiclassical Fermions

A variety of novel results was given in this thesis for the nonrelativistic ground-state of

noninteracting fermions living on a line. In particular, in chapter 3 we solved a long-standing

problem investigated by researchers in fields as diverse as chemical, condensed matter and

nuclear physics: the unravelling of general semiclassical approximations to the particle and

kinetic energy densities of fermions coupled to an external potential in one dimension.

A large part of the fascination with the problems here solved is related to the quest for unify-

ing principles in theoretical chemistry and physics. For instance, the simple approximations

given by eqs. 3.34 and 3.50 are independent of particle number and may be applied to any

set of spinless fermions coupled to any generic potential v(x) (the generalization to spinful

fermions without spin-dependent couplings is obvious). Therefore, we were able in chapter

4 to uncover universal aspects of local and global properties of one-dimensional fermionic

systems. While we have limited ourselves in this thesis to the study of external potentials

consisting of a single well/center, a simple perturbative argument essentially guarantees the
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validity of the uniform semiclassical approximation in the weak coupling regime of a mul-

ticentered trapping potential. The case of strong coupling remains to be studied, but the

methods described in this thesis may be useful in this context, too.

From a methodological point of view the main novelty of this research consists of the par-

ticular blend of techniques of semiclassical analysis employed to obtain the main results.

Notably, we have shown that the Poisson summation formula is a powerful tool for the study

of the local behavior of finite fermionic systems in the semiclassical limit. In chapter 2

we showed that semiclassical arguments combined with application of Poisson summation

quickly led to the non-trivial density matrix for fermions confined to a box. Next, in chapter

3 we saw that the same device was equally effective in decoding the universal behavior of

particle and kinetic energy densities of fermions confined only by a smooth external poten-

tial, though intermediate steps were more convoluted as a result of the richer behavior of

quantum-mechanical particles in an unbounded domain.

Nevertheless, because the universe as we know consists of three spatial dimensions, one

cannot help but wonder about

• the establishment of similar results for general 3D systems, and

• what are the lessons learned from this project which could be applied to the field of

electronic structure theory.

It is hard to foresee generalizations of the results presented in the first part of this thesis to

generic 3D external potentials. This follows from the general non-integrability of classical

dynamics in the case of more than one dimension, and the richness of classical phase space

structures which then exist.

The question posed by item 2 is subtler. For example, chapter 4 shows in general that an ac-

curate local description of quantum effects on the particle and kinetic energy densities does
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not necessarily guarantee improved energetics. This follows from a strong cancellation of

quantum effects emanating from parts of configuration space where the particle density be-

haves in qualitatively different manners. The extent to which this phenomenon is generalized

to 2 or 3 dimensions remains to be investigated.

To conclude we list several directions which may be pursued with the methods and results

introduced by our research:

• adaptation of semiclassical uniform approximations to many-fermion systems coupled

to 2D or 3D isotropic external potentials, [102]

• development of semiclassical uniform approximation to the one-particle density matrix

(or equivalently, the derivation of semiclassical approximations to the one-dimensional

exchange energy density given some effective fermion-fermion coupling),

• application of the semiclassical approximation to one-dimensional systems with multi-

ple wells,

• analytical determination of next-order corrections to the semiclassical particle and

kinetic energy densities, and numerical study of the effect on energetics,

• derivation of semiclassical thermal particle and kinetic energy densities.

Thus, even in the modest context of one-dimensional system many challenges still lay ahead

towards a complete description of noninteracting fermionic systems in the semiclassical limit.

6.2 Quantum Transport

We have shown explicitly for a simple model of transport within a molecular junction the

general behavior of a coupled system (represented by knowledge of its Green’s function) can
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be determined from the properties of the corresponding isolated (central) conductor confined

to a compact domain by vanishing Dirichlet boundary conditions.

A few questions remain to be investigated, for instance:

• whether the chosen model can be generalized to accommodate a realistic coupling

between the leads and the central conductor, e.g., one that is not limited to occur only

between interface degrees of freedom,

• if accurate transmission coefficients may be obtained with computations involving a

finite/truncated Hilbert space (of the isolated system satisfying Dirichlet conditions).

It would also be interesting to analyze what changes would be incurred on the self-energy

operator if the leads are not assumed to be featureless.
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