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Past studies describe numerous endophenotypes associatedwith schizophrenia (SZ), but many endophenotypes
may overlap in information they provide, and few studies have investigated the utility of a multivariate index to
improve discrimination between SZ and healthy community comparison subjects (CCS). We investigated 16
endophenotypes from the first phase of the Consortium on the Genetics of Schizophrenia, a large, multi-site fam-
ily study, to determine whether a subset could distinguish SZ probands and CCS just as well as using all 16.
Participants included 345 SZ probands and 517 CCS with a valid measure for at least one endophenotype. We
used both logistic regression and random forest models to choose a subset of endophenotypes, adjusting for
age, gender, smoking status, site, parent education, and the reading subtest of the Wide Range Achievement
Test. As a sensitivity analysis, we re-fit models using multiple imputations to determine the effect of missing
values.
We identified four important endophenotypes: antisaccade, Continuous Performance Test-Identical Pairs 3-digit
version, California Verbal Learning Test, and emotion identification. The logistic regression model that used just
these four endophenotypes produced essentially the same results as the model that used all 16 (84% vs. 85%
accuracy).
While a subset of endophenotypes cannot replace clinical diagnosis nor encompass the complexity of the disease,
it can aid in the design of future endophenotypic and genetic studies by reducing study cost and subject burden,
simplifying sample enrichment, and improving the statistical power of locating those genetic regions associated
with schizophrenia that may be the easiest to identify initially.

Published by Elsevier B.V.
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1. Introduction

Schizophrenia (SZ) is a highly heritable yet complex multifactorial
psychiatric disorder (Braff, 2015; Braff et al., 2007b; Thibaut, 2006). Lo-
cating genes that are associatedwith schizophrenia is a key step in iden-
tifying potentially remediable biological pathways for the development
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of novel treatments. Endophenotypes (e.g., neurocognitive and neuro-
physiologic measures) reflect components of liability narrower than
the broad clinical diagnosis of schizophrenia and may facilitate the
search for susceptibility genes and biological pathways to illness
(Braff, 2015; Braff et al., 2007b; Braff et al., 2007c; Gottesman and
Gould, 2003). Criteria for endophenotypes include: deficits associated
with illness (moderate to large effect sizes between schizophrenia pa-
tients and community controls), state independence, heritability, and
deficits in unaffected relatives at a higher rate than in the general pop-
ulation (small to moderate effect sizes between biological relatives of
schizophrenia patients and community controls; Gur et al., 2007a).
Iacono (1998) suggested an additional criterion for a useful
endophenotype is that a deficit be unique to a class of related disorders
(i.e., display specificity), but notes that “because psychiatric diagnosis is
not perfectly reliable and the validity of the Diagnostic and Statistical
Manual (DSM) diagnostic criteria is not firmly established, it is not rea-
sonable to expect a complete absence of the endophenotype in an unre-
lated disorder that shows appreciable symptom overlap with the target
disorder. Also, someendophenotypeswill possibly index a dimension or
process representing a dysfunction shared across certain disorders.”
Arfken et al. (2009) and Thibaut et al. (2015) distinguish between
endophenotypes and biomarkers of a disease, such that biomarkers
are disease specific, can be state- or trait-dependent, and are not neces-
sarily heritable.

Because individual endophenotypes are more proximal functions of
gene action than is the diagnostic assignment of schizophrenia itself,
and individual endophenotypes are believed to reflect variation
among a smaller number of genes than the very large array of genes im-
plicated in schizophrenia, it should be simpler to localize the genetic loci
contributing to the endophenotypes than to localize those for schizo-
phrenia (Braff et al., 2007b; Braff et al., 2007c; Gottesman and Gould,
2003; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Iacono (1998) suggested that a multivariate pheno-
type might “have the greatest likelihood of assisting in the search for
schizophrenia-related genes.” While a number of studies have exam-
ined the association between individual endophenotypes and diagnosis,
only a few have addressed the additive impact of using multiple
endophenotypes simultaneously to improve discrimination between
target populations. Comparing univariate and multivariate logistic re-
gression, Price et al. (2006) showed that multivariate logistic regression
using four neurophysiological endophenotypes (mismatch negativity,
P50 suppression, P300 amplitude, and antisaccade error rate) to differ-
entiate 60 SZ and 44 control subjects produced superior values of sensi-
tivity (82%), specificity (73%), and accuracy (78%) compared to using
just one endophenotype. They suggest that this multivariate
endophenotype (i.e., the weighted linear combination using the coeffi-
cients from the multivariate logistic regression) could be used to in-
crease power in genetic linkage and association analyses. Johannesen
et al. (2013) investigated which subset of 14 neurophysiological
endophenotypes best separated 50 SZ subjects from 50 healthy normal
controls, and how that set of endophenotypes compared to the set that
best separated the 50 SZ patients from 50 bipolar patients. The final
model for separating SZ subjects from controls included five
endophenotypes (P300 amplitude and latency, N100 Target, LFR Target,
and GBR Standard), and yielded a sensitivity of 78%, specificity of 80%,
and overall accuracy of 79%, but applying this model to distinguish SZ
from bipolar patients yielded a sensitivity of 70%, specificity of 58%,
and accuracy of 64%. The model that best separated SZ from bipolar pa-
tients included three endophenotypes (N100 S1, N100 Target, and GBR
Target), and yielded a sensitivity of 74%, specificity of 70%, and overall
accuracy of 72%. Peters et al. (2014) investigated the ability of 20 EEG in-
dices to distinguish between 34 SZ and 37 control subjects. They first
screened individual endophenotypes by testing for the significance of
the area under the curve (AUC; equivalent to performing the nonpara-
metric Mann-Whitney U test; Hanley and McNeil, 1982; Zweig and
Campbell, 1993). Using the 11 indices that were significant, they
performed principal components analysis (PCA), resulting in three top
factors that explained 77% of the total variance. Using these three factors
in a multivariate logistic regression model yielded 82% sensitivity, 70%
specificity, and 76% accuracy; however, only one of the factorswas a sig-
nificant predictor in the model.

Numerous candidate endophenotypes for SZ have been proposed,
yet there is substantial overlap in endophenotype performance be-
tween SZ probands and healthy controls. Furthermore, many
endophenotypesmay overlap in the information they provide. Identify-
ing a subset of endophenotypes that taken together provide substantial
sensitivity and specificity to differentiate between SZ and healthy com-
parison subjects has a two-fold research utility: practically, the degree
to which the test battery can be limited is relevant to study cost, subject
burden, and other design considerations, and furthermore, identifica-
tion of key endophenotypes can help prioritize future genetic studies
and improve statistical power by limiting the number of individual
endophenotype statistical comparisons. We emphasize that we are
not suggesting the use of a subset of endophenotypes to replace clinical
diagnosis, nor are we suggesting that endophenotypes that are not part
of the identified subset do not matter; rather, we are motivated by de-
sign efficiency in order to increase the power of locating those genetic
regions associated with schizophrenia that may be the easiest to identi-
fy initially.

The goal of the first phase of the Consortium on the Genetics of
Schizophrenia (COGS-1) was to investigate the genetic basis of
endophenotypes for SZ (Calkins et al., 2007; Gur et al., 2007a). Results
from COGS-1 have been reported by numerous authors (Greenwood
et al., 2007; Greenwood et al., 2011; Greenwood et al., 2013; Horan
et al., 2008; Light et al., 2014; Olincy et al., 2010; Radant et al., 2010;
Radant et al., 2007; Radant et al., 2015; Stone et al., 2011; Swerdlow
et al., 2007; Turetsky et al., 2007; Turetsky et al., 2008) and focus on de-
scribing the heritability and deficits in SZ probands of individual
endophenotypes. The study described here uses statistical methods to
investigate which combination of COGS-1 endophenotypes that we
considered best distinguishes between SZ and healthy community com-
parison subjects (CCS) in a large, well-characterized sample.

2. Methods

2.1. Subjects

The current study utilizes data from the COGS-1 (Braff et al., 2007a;
Braff et al., 2007b; Calkins et al., 2007), a multisite, family-based study
on the genetics and heritability of neurocognitive and neurophysiologic
SZ endophenotypes. Participants in this studymet COGS-1 criteria as SZ
probands (n = 345) or CCS (n = 517) and completed at least one
endophenotype measure. The SZ subjects completed a structured clini-
cal diagnostic interview (the Diagnostic Interview for Genetic Studies;
Nurnberger et al., 1994) and a best-estimate consensus diagnostic pro-
cedure that included a comprehensive evaluation of psychosis, mood,
and substance use disorders and related symptomology (Calkins et al.,
2007; Greenwood et al., 2007). This information was used in concert
with a standardmedical record review to assess age, smoking status, ed-
ucation level, parental education level, handedness, and age at onset of
psychosis; the Family Interview for Genetics Studies (FIGS; Maxwell,
1992)was used to assess subjects' family history of SZ or schizoaffective
disorder; and the reading subtest of theWide Range Achievement Test,
3rd edition (WRAT-3; Jastak andWilkinson, 1993)was used to estimate
premorbid intellectual functioning. The SZ subjects were also assessed
using the Schedule for the Assessment of Negative Symptoms (SANS;
Andreasen, 1983) and Schedule for the Assessment of Positive Symp-
toms (SAPS; Andreasen, 1984); all probands met Diagnostic and Statis-
tics Manual of Mental Disorders, 4th edition (DSM-IV), diagnostic
criteria for SZ. Recruitment and ascertainment strategies, in-depth in-
clusion and exclusion criteria, in-person training and quality assurance
guidelines for the assessment team and endophenotype testers,
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informed consent procedures, and institutional review board approval
at all seven study sites are detailed in Calkins et al. (2007). Inclusion
criteria for SZ probands required that both biological parentswere avail-
able for genotyping, and at least one full sibling unaffected by SZ was
available for endophenotyping and genotyping.

2.2. Endophenotype assessment battery

The COGS-1 endophenotype assessment battery and its use in the
different COGS-1 sub-studies have been discussed in detail elsewhere
(see Introduction). We looked at one neurophysiological
endophenotype, antisaccade performance (AS; Radant et al., 2007)
measured as the ratio of correct antisaccades to total interpretable
antisaccades, and 15 neurocognitive endophenotypes: the Degraded
Stimulus (DS), 3-digit Identical Pairs (IP), and 4-digit IP versions of the
Continuous Performance Test (CPT), which were measured using the
signal/noise discrimination index (d′; Gur et al., 2007a); the Forward
and Reordered condition of the Letter-Number Span (LNS; Horan
et al., 2008) measured as the total number of correctly recalled se-
quences; the California Verbal Learning Test (CVLT; second edition),
specifically the total and total semantic clustering scores on trials 1–5
(CVLT total and CVLT semantic; Stone et al., 2011); and the sensorimo-
tor speed,motor speed, abstraction andmental flexibility, facememory,
spatial memory, spatial ability, working memory, and emotion identifi-
cation cognitive domains of the Penn Computerized Neurocognitive
Battery (CNB; Gur et al., 2007a; Gur et al., 2007b). For the Penn CNB
endophenotypes, all reported scores involving time were multiplied
by−1 so that larger scores indicated better performance. Sensorimotor
speed and motor speed were reported as z-scores based on the mean
and standard deviation for the CCS, and for all other Penn CNB
endophenotypes we used the efficiency scores, which were derived by
averaging the z-scores for accuracy and speed for that particular mea-
sure. All of these endophenotypes were expected to show larger mean
values for CCS compared to SZ subjects.

The COGS-1 study also included three other (neurophysiological)
endophenotypes: prepulse inhibition (PPI; Swerdlow et al., 2007) and
P50 suppression (measured as a ratio and a difference; Olincy et al.,
2010). However, because of the large percentage of missing values for
these endophenotypes (34% and 40%, respectively), we did not include
them in our analyses.

2.3. Data analysis

Demographic differences between SZ and CCS were tested using
Student's t-test for continuous variables and the chi-squared test for cat-
egorical variables. For categorical variables, confidence intervals for the
difference between two proportions were based on inverting the score
statistic (Newcombe, 1998).

As described in Price et al. (2006) and Johannesen et al. (2013), we
first compared unadjusted endophenotypes between groups using
summary statistics, strip charts, and two-sample t-tests (effect size
was computed using Cohen's d statistic).We also computed distribution
by group of the number of endophenotypes in the first quartile (based
on combining groups), and the correlations between endophenotypes.
Next, we used both logistic regression and random forest models
(Breiman, 2001; Kuhn and Johnson, 2013; Liaw and Wiener, 2002) to
determine which set of endophenotypes best distinguished between
SZ probands and CCS. Following previous COGS-1 studies comparing
endophenotype performance in SZ versus CCS, all models included the
covariates age, gender, smoking status, site, maximum of parents' edu-
cation, and WRAT-3 score. The logistic regression and random forest
models included only subjects with non-missing values for the model
covariates and all 16 endophenotypes.

For logistic regression, the first model included only the covariates,
denoted LR 0 EPs. The secondmodel entered each endophenotype by it-
self (i.e., 16 separatemodels), denoted LR 1 EP. The thirdmodel included
all 16 endophenotypes simultaneously as predictor variables, denoted
LR 16 EPs. The fourth model, denoted LR Top EPs, used the smallest sub-
set of endophenotypes that were indicated as important based on the
results from forward and backward stepwise logistic regression
(based on the Bayesian Information Criterion [BIC]) and random forest
[see below]). The association between endophenotype and proband sta-
tuswas summarizedwith the odds ratios (ORs) for proband, given a de-
crease (deficit) in endophenotype score equivalent to its interquartile
range (Harrell, 2001). Confidence intervals for the ORs were based on
Wald estimates.

Logistic regression models require explicit modeling of nonlinear
and interaction terms, and stepwisemethodsmay depend onwhich cri-
terion is used for inclusion or deletion. Random forestmodels, however,
are nonparametric, inherently account for nonlinearity and interactions,
and have built-in cross-validation (Breiman, 2001; Kuhn and Johnson,
2013; Liaw and Wiener, 2002). We therefore also ran a random forest
model using the 16 endophenotypes (denoted RF 16 EPs); variable im-
portance was computed based on the unscaled mean decrease in accu-
racy (Nicodemus et al., 2010).

Models were compared using three metrics: generalized R2 values
applicable to logistic regression (roughly the proportion of the variabil-
ity in the response, i.e., SZ vs CCS, attributable to the estimated model;
Harrell, 2001); sensitivity, specificity, and accuracy with confidence in-
tervals (sensitivity and specificity presentedwith joint confidence inter-
vals; Pepe, 2003); and Somer's Dxy rank correlation (Harrell, 2001)
between predicted probabilities and observed responses, which mea-
sures how well the model discriminates between SZ and CCS (Dxy = 1
denotes perfect discrimination, whereas Dxy = 0 implies that the
model does no better than a random assignment into groups; Dxy is
equivalent to the area under the curve: Dxy= 2(AUC – 0.5)). For the lo-
gistic regression models, both the generalized R2 and Somer's Dxy are
presented unadjusted, as well as corrected for optimism (i.e., model
overfitting; Harrell, 2001) based on resampling. ROC curveswere calcu-
lated to provide a visual comparison of models.

Because of the large proportion of subjectswithmissing values for at
least one of the endophenotypes, as a sensitivity analysis we repeated
the logistic regressions and random forest using multiple imputations
(Buuren and Groothuis-Oudshoorn, 2011). The imputations were per-
formed using the R package mice (Multiple Imputation by Chained
Equations), using predictive mean matching. All 16 endophenotypes
and the model covariates were used in the imputations. Fifty imputed
datasets were estimated. Pooled summary statistics were obtained by
averaging the estimates of models across the 50 imputed datasets.
Pooled total variances for summary statistics were estimated using
Rubin's formula (3.1.5; Rubin, 1987).

All analyses were performed using R version 3.2.0 (R Development
Core Team, 2011), the EnvStats package (Millard, 2013) to compute
summary statistics and plot strip charts, the randomForest package
(Liaw and Wiener, 2002), the rms package (Harrell, 2013) to carry out
logistic regressions and compute the R2 and Somer's Dxy values, the
pROC package (Robin et al., 2011) to construct the ROC curves, and the
mice package (Buuren and Groothuis-Oudshoorn, 2011) to perform
the multiple imputations.

3. Results

3.1. Demographic and clinical variables

Weobtained data on endophenotypes from862 subjects: 345 SZ and
517 CCS. SZ probands had an average age of onset of 21 years and were
more likely to be male, white, and smokers and to have less education
and a lower WRAT-3 score compared to CCS; however, the parents of
SZ probands were slightly more educated compared to the parents of
CCS (Table 1). There were 802 subjects (318 SZ, 484 CCS) with non-
missing data for the model covariates age, gender, smoking status,
site, maximum of parents' education, andWRAT-3 score. Supplemental



Table 1
Demographic and clinical characteristics of schizophrenia (SZ) and community comparison subjects (CCS).

Community comparison subjects (CCS) (n = 517)a Schizophrenia subjects (SZ) (n = 345)a P-valueb Difference (CCS – SZ) (95% CI)b

Age (years) 36.3 (12.7) [18, 65] 35.0 (11.1) [18, 62] 0.12 1.3 [−0.4, 2.9]
Gender (male) 223 (43%) 262 (76%) b0.0001 −33% [−39%, −26%]
Race (white) 345 (67%) 254 (74%) 0.04 −7% [−13%, −0.5%]
Smokerc 70 (14%) 158 (46%) b0.0001 −32% [−39%, −27%]
Education (years)d 15.3 (2.4) [8, 22] 13.5 (2.1) [8, 20] b0.0001 1.8 [1.6, 2.2]
Max parents' education (years)e 15.0 (3.2) [2, 25] 15.6 (3.5) [0, 25] 0.008 −0.6 [−1.1, −0.2]
WRAT-3 scoref 107.2 (10.6) [70, 125] 101.8 (11.7) [64, 122] b0.0001 5.4 [3.8, 6.9]
Age at onset of symptoms (years)g 20.9 (5.5) [6, 51]
SANSh 9.6 (5.9) [0, 25]
SAPSi 6.3 (4.1) [0, 20]

Abbreviations: CCS, community comparison subjects; CI, confidence interval; SANS, Schedule for the Assessment of Negative Symptoms; SAPS, Schedule for the Assessment of Positive
Symptoms; SD, standard deviation; SZ, schizophrenia subjects; WRAT-3, Wide Range Achievement Test, 3rd edition.

a Mean (SD) [Min, Max] presented for continuous variables. Number (%) presented for categorical variables.
b Between-group (CCS – SZ) P-values and confidence intervals are based on the chi-squared test for categorical variables and the t-test for continuous variables.
c 1 missing value (0.2%) for CCS, 5 missing values (1%) for SZ.
d 1 missing value (0.2%) for CCS, 2 missing values (1%) for SZ.
e 29 missing values (6%) for CCS, 9 missing values (3%) for SZ.
f 4 missing values (1%) for CCS, 15 missing values (4%) for SZ.
g 8 missing values (2%) for SZ.
h 9 missing value (3%) for SZ.
i 9 missing value (3%) for SZ.
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Fig. S1 presents a flow chart showing sample sizes by presence of
endophenotypes andmodel covariates, and Supplemental Table S1 pre-
sents the demographic and clinical characteristics of the 571 subjects
(174 SZ and 397 CCS) with complete data for all 16 endophenotypes
and model covariates.

3.2. Discriminatory effectiveness of endophenotypes

Table 2 presents descriptive statistics for the endophenotypes by
subject group, as well as the results of two-sample t-tests to compare
groups. As expected, all endophenotypes showed larger mean values
for CCS compared to SZ subjects. SZ subjects had higher rates of missing
values compared to CCS for all endophenotypes. Results based on in-
cluding only the 571 subjects with complete data for all 16
endophenotypes and adjusting for model covariates were similar (Sup-
plemental Table S2), except that DS-CPT was no longer significant. Sup-
plemental Fig. S2 uses strip charts with 95% confidence intervals to
illustrate the distributions of endophenotypes by group without
adjusting for covariates. The extremely large overlap in performance be-
tween groups is evident for all endophenotypes. However, Supplemen-
tal Table S3, which shows the distribution by group of the number of
endophenotypes in the first quartile (based on both unadjusted and ad-
justed scores), indicates that schizophrenia probands are more likely
than community control subjects to have lower scores on more
endophenotypes. Supplemental Table S4 displays pairwise
endophenotype correlations. Emotion identification is relatively highly
correlated with all other Penn CNB endophenotypes, except for motor
speed (which is only moderately correlated with any of the other
Penn CNB endophenotypes).

Table 3 displays the results of the logistic regression models used to
discriminate between SZ probands and CCS based on various combina-
tions of the 16 endophenotypes. The displayed ORs are based on com-
paring the odds of declaring a subject a proband assuming the
endophenotype is equal to its 25th percentile versus the same odds as-
suming the endophenotype is equal to its 75th percentile. For example,
looking at the results for the antisaccade task using model LR 1 EP, the
odds of declaring a subject SZ given a score of 0.64 (the 25th percentile)
divided by the sameodds given a score of 0.91 (the 75th percentile)was
4.09 with a 95% confidence interval of [2.86, 5.83]. For model LR 16 EPs,
in which all 16 endophenotypes were included in the same model, five
of the endophenotypes had ORs significantly N1, and two (DS-CPT and
spatial ability) unexpectedly had ORs b1; this result is likely due to
collinearity among the endophenotypes, in particular, spatial ability
had the highest variable inflation factor (2.4) of the 16 endophenotypes.
The forward stepwise regression model included the endophenotypes
antisaccade, CPT-IP 3-digit, CVLT total, emotion identification, and
motor speed, while the backward stepwise regression model included
these same endophenotypes as well as sensorimotor speed and spatial
ability. However, the random forest model (model RF 16 EPs; Supple-
mental Fig. S3) clearly indicates that the most important
endophenotypes are just the first four (i.e., antisaccade, CPT-IP 3-digit,
CVLT total, and emotion identification; model LR Top EPs). There is
very little difference in the generalized R2 or Somer's Dxy values be-
tween the model that uses all 16 endophenotypes (LR 16 EPs) and the
one that uses just the top four (LR Top EPs), and both of these models
are superior to using the model that includes just the covariates,
model LR 0 EPs, which had R2 and Somer's Dxy values of 0.32 and 0.59,
respectively. Supplemental Fig. S4 illustrates Price et al.'s (2006) multi-
variate endophenotype concept: strip charts by group of the predicted
probability of being assigned to the SZ group based on the LR Top EPs
model.

Table 4 shows the sensitivity, specificity, and accuracy of models LR
16 EPs, LR Top EPs, and RF 16 EPs, and Fig. 1 shows the associated ROC
curves. Not surprisingly, the ROC curve and Somer's Dxy based on the
random forest are lower compared to those based on the logistic regres-
sionmodels because random forest has built-in cross-validationwhere-
as standard logistic regression models do not. Using a predicted
probability of 0.5 as the cut-off for declaring a subject to be SZ, the sen-
sitivity is much smaller than the specificity, whereas using a cut-off of
0.3 makes the sensitivity approximately equal to the specificity.

As a sensitivity analysis, the logistic regression and random forest
models were re-estimated based on multiple imputation of missing
values using fifty imputations. Supplemental Fig. S5 shows that the
ORs and 95% confidence intervals formodel LR Top EPs using the original
data and based on the multiple imputations are similar. Supplemental
Table S5 compares sensitivity, specificity, and accuracy based on the
original versus imputed data. Point estimates for specificity and accura-
cy were similar between the imputation and original analyses. Howev-
er, point estimates for sensitivity based on the imputation analysis were
about 10 and 15 percentage points higher, respectively, for the logistic
regression and random forest models compared to the original analysis.
This is because for almost all endophenotypes, the mean
endophenotype value for the imputed values was less than the mean
for the non-missing data, and since more SZ than CCS subjects had



Table 2
Unadjusted endophenotypes for schizophrenia (SZ) and community comparison subjects (CCS). All endophenotypes were expected to show larger mean values for CCS compared to SZ.

Community comparison subjects (CCS) (n
= 517)

Schizophrenia subjects (SZ) (n = 345) P-valuea Effect
sizea

Difference
(CCS –
SZ)

95% CIa

Mean (SD) [range] Number
missing
(%)

Mean (SD) [range] Number
missing
(%)

Antisaccade (proportion
correct)b

0.82 (0.15) [0.04, 1.00] 22 (4%) 0.61 (0.26) [0.00, 0.98] 61 (18%) b0.0001 1.07 0.21 (0.18,
0.24)

DS-CPT (d′)c 2.54 (1.03) [−0.12,
5.42]

17 (3%) 2.35 (1.14) [0.05, 5.42] 63 (18%) 0.014 0.18 0.20 (0.04,
0.35)

CPT-IP 3-digit (d′)d 2.99 (0.80) [0.92, 4.79] 23 (4%) 2.15 (0.84) [−0.25, 4.52] 70 (20%) b0.0001 1.03 0.84 (0.72,
0.96)

CPT-IP 4-digit (d′)e 1.96 (0.84) [0.05, 4.26] 23 (4%) 1.28 (0.71) [−0.17, 3.51] 71 (21%) b0.0001 0.85 0.68 (0.56,
0.80)

LNS forward (number correct)f 14.3 (2.9) [7, 21] 3 (1%) 12.9 (2.9) [4, 21] 13 (4%) b0.0001 0.48 1.4 (1.0, 1.8)
LNS reordered (number correct)g 11.4 (2.7) [2, 20] 2 (b1%) 9.1 (2.9) [1, 17] 19 (6%) b0.0001 0.81 2.3 (1.9, 2.7)
CVLT total (number correct)h 56.2 (10.3) [21, 80] 5 (1%) 41.6 (12.8) [6, 75] 24 (7%) b0.0001 1.29 14.6 (13.1,

16.2)
CVLT semantic (number correct)i 2.0 (2.4) [−3.0, 8.5] 5 (1%) 0.4 (1.5) [−2.2, 7.6] 16 (5%) b0.0001 0.79 1.6 (1.4, 1.9)
Penn CNB

Speedj

Sensorimotor 0.00 (1.00) [−12.1, 1.3] 25 (5%) −0.80 (1.88) [−12.8,
1.3]

41 (12%) b0.0001 0.58 0.80 (0.61,
1.00)

Motor 0.00 (1.00) [−4.9, 4.6] 27 (5%) −0.70 (1.43) [−5.9, 4.5] 43 (12%) b0.0001 0.59 0.70 (0.53,
0.87)

Efficiency (mean of 2
z-scores)k

Abstraction/mental
flexibility

0.00 (0.85) [−4.5, 1.1] 32 (6%) −0.63 (1.15) [−6.7, 0.9] 49 (14%) b0.0001 0.65 0.63 (0.49,
0.77)

Face memory 0.01 (0.84) [−10.3, 1.4] 23 (4%) −0.71 (1.21) [−10.4,
1.0]

37 (11%) b0.0001 0.70 0.70 (0.56,
0.84)

Spatial memory 0.00 (0.64) [−3.2, 1.3] 35 (7%) −0.52 (0.98) [−6.0, 1.4] 54 (16%) b0.0001 0.66 0.52 (0.41,
0.64)

Spatial ability 0.00 (0.78) [−4.3, 1.2] 33 (6%) −0.27 (1.01) [−6.3, 1.2] 60 (17%) b0.0001 0.31 0.27 (0.14,
0.40)

Working memory 0.00 (0.77) [−3.5, 1.1] 29 (6%) −0.63 (1.13) [−5.2, 1.1] 68 (20%) b0.0001 0.68 0.63 (0.49,
0.76)

Emotion identification 0.00 (0.78) [−4.9, 1.5] 25 (5%) −1.19 (1.45) [−7.9, 1.0] 42 (12%) b0.0001 1.10 1.19 (1.03,
1.34)

Abbreviations: CCS, community comparison subjects; CI, confidence interval; SD, standard deviation; CNB, Computerized Neurocognitive Battery; CPT-IP, Continuous Performance Test,
Identical Pairs version; CVLT, California Verbal Learning Test; DS-CPT, Degraded Stimulus Continuous Performance Test; LNS, Letter-Number Span; SZ, schizophrenia subjects.

a P-value and 95% CI for difference in means based on two-sample t-test assuming equal variances. Effect size computed using Cohen's d statistic.
b Proportion correct out of a maximum of 60 trials.
c Overall signal/noise discrimination (d′).
d Three-digit d′.
e Four-digit d′.
f After each sequence, the participant is asked to recall the numbers and letters in the same exact order, with no reordering of the stimuli. The number of digits and letters increases by

one on each trial, from one up to a maximum length of 8 stimuli. Three sequences of the same length are presented during each trial. The test is discontinued when the subject fails three
consecutive sequences of the same length. The score is the total number of correctly recalled sequences.

g After each sequence, the participant is asked to repeat the numbers in ascending order first and then the letters in alphabetical order.
h Trials 1–5 Free Recall Correct.
i Total semantic clustering scores on trials 1–5.
j Sensorimotor andmotor valueswere reported as z-scores based on themean and standard deviation for the community comparison subjects. Z-scores were based on values that had

been multiplied by−1, so that a larger value indicated a better performance.
k Efficiency scores were derived by averaging the z-scores (based on the mean and standard deviation for the community comparison subjects) for accuracy and speed.
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missing data,more of the imputed low scoring outcomeswere also from
the SZ group, increasing the probability that a low scoring subject was
from the SZ group.

4. Discussion

The endophenotype concept is a tool that may potentially iden-
tify key genetic loci associated with schizophrenia. However, the
enormous overlap in endophenotype performance between schizo-
phrenia and healthy community control subjects displayed in the
strip charts shown in Supplemental Fig. S2 emphasizes the complex
nature of the disease. We have shown that for the COGS-1 study,
using just four endophenotypes (antisaccade, CPT-IP 3-digit, CVLT
total, and emotion identification) produces essentially the same
discrimination between SZ probands and CCS as using all 16
endophenotypes that we considered. This finding is consistent
both between models (logistic regression versus random forest)
and datasets (available versus imputed). The heritabilities [95% CI]
of these endophenotypes have been reported as 0.42 [0.27, 0.57],
0.38 [0.23, 0.52], 0.25 [0.11, 0.40], and 0.32 [0.18, 0.46], respectively
(Greenwood et al., 2007), and are similar to the estimated heritability
of SZ itself of 31% and 44% for nuclear and extended families,
respectively, based on the COGS-1 data (Light et al., 2014).
Greenwood et al. (2013) performed a genome-wide linkage analysis
on the COGS-1 data, and although the study had limited power, the
antisaccade task showed significant genome-wide linkage (LOD of 4
for chromosome 3p14) and emotion recognition almost attained
significant genome-wide linkage (LOD of 3.5 for chromosome 1p36).
The four key endophenotypes we identified also have the largest
effect sizes (Table 2 and Supplemental Table S2); however, in general,
endophenotypes with smaller effect sizes may end up being identified
as important for separating groups using the methods presented here,



Table 3
Results of logistic regression analyses using subjectswith complete data for 16 endophenotypes. Odds ratios (95% CI based onWald estimate) for schizophrenia subjects (SZ) versus CCS for
a decrease (deficit) in endophenotype equivalent to the endophenotype interquartile range. ORs in bold denote a significant difference from 1 (P b 0.05).a*

Model (n = 571)⁎

LR 1 EP LR 16 EPs LR Top EPs

Antisaccade 4.09 (2.86, 5.83) 3.45 (2.21, 5.39) 2.93 (1.97, 4.37)
DS-CPT 1.06 (0.81, 1.39) 0.68 (0.46, 0.99)
CPT-IP 3-digit 4.98 (3.23, 7.67) 1.67 (0.88, 3.16) 2.26 (1.38, 3.71)
CPT-IP 4-digit 3.66 (2.47, 5.43) 1.80 (0.98, 3.31)
LNS forward 1.41 (1.02, 1.95) 0.93 (0.58, 1.48)
LNS reordered 1.75 (1.33, 2.32) 0.96 (0.62, 1.47)
CVLT total 6.75 (4.10, 11.1) 2.18 (1.04, 4.59) 3.51 (1.99, 6.18)
CVLT semantic 2.22 (1.64, 3.01) 1.50 (0.97, 2.34)
Penn CNB
Sensorimotor 1.78 (1.38, 2.29) 1.59 (1.12, 2.26)
Motor 2.01 (1.50, 2.69) 1.60 (1.11, 2.30)
Abstraction/mental flexibility 2.64 (1.79, 3.88) 1.14 (0.64, 2.01)
Face memory 2.45 (1.74, 3.45) 1.37 (0.84, 2.23)
Spatial memory 1.75 (1.30, 2.36) 0.80 (0.51, 1.24)
Spatial ability 1.54 (1.14, 2.07) 0.49 (0.29, 0.82)
Working memory 2.32 (1.67, 3.22) 1.07 (0.67, 1.70)
Emotion identification 3.43 (2.40, 4.90) 2.36 (1.51, 3.68) 2.41 (1.65, 3.53)
R2 (corrected for optimism) 0.63 (0.56) 0.59 (0.54)
Somer's Dxy (corrected for optimism) 0.85 (0.80) 0.81 (0.79)

Abbreviations: CCS, community comparison subjects; CNB, Computerized Neurocognitive Battery; CPT-IP, Continuous Performance Test, Identical Pairs version; CVLT, California Verbal
Learning Test; DS-CPT, Degraded Stimulus Continuous Performance Test; LNS, Letter-Number Span; OR, odds ratio; SZ, schizophrenia subjects.

a All modelswere adjusted for age, gender, site, parents' education,WRAT-3 and smoking status. There are n=802 subjects with all these covariates present, but only n=571 subjects
(n= 174 SZ, n= 397 CCS) with all covariates and all 16 endophenotypes present. See Supplemental Fig. S1 for a flow chart showing sample sizes. LR 1 EP. Univariate models (i.e., only
one endophenotype included in the model at a time, along with covariates). LR 16 EPs. Multivariate model that includes all 16 endophenotypes, along with covariates. LR Top
EPs. Multivariate model that includes the top four endophenotypes based on forward and backward stepwise regression and random forest, along with covariates.
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because a variable can become important once other variables are in
the model (Sun et al., 1996).

Identifying a subset of endophenotypes with good discriminatory
characteristics can help prioritize future endophenotypic and genetic
studies in schizophrenia. Limiting the test battery will reduce cost and
subject burden, and limiting the number of individual endophenotype
comparisons can increase statistical power. Studies that enrich the sam-
ple by choosing controls that perform well on all or most
endophenotypes and/or probands that perform poorly on all or most
endophenotypes (Supplemental Table S3b) will be easier to conduct,
and genetic analyses could involve the multivariate endophenotype
(Supplemental Fig. S4).

Our study is similar to that of Price et al. (2006) and Johannesen et al.
(2013) except that we used a random forest model in addition to logis-
tic regression models, and our results are based on one of the largest
study samples to date that underwent uniform endophenotypic assess-
ments. Our results for sensitivity (85%) and specificity (85%) based on
the logistic regression model using just the four endophenotypes
(model LR Top EPs) and a cut-off of 0.3 for classification are superior to
those of Price et al. (2006), Johannesen et al. (2013), and Peters et al.
(2014). However, more realistic estimates for future studies based on
the random forest model indicate a sensitivity of 81% and specificity of
74%, which are similar to those of the three previous studies.

Some limitations of theprevious studies should bediscussed. First, in
addition to sensitivity, specificity, and accuracy, Price et al. (2006) pres-
ent estimates of positive predictive value (PPV) and negative predictive
Table 4
Sensitivity, specificity, and accuracy with 95% confidence intervals for logistic regression and ra
571).

Classify as proband when model probability N 0.5 Classify

Model Sensitivity (%) Specificity (%) Accuracy (%) Sensitiv
LR 16 EPs 70 (62, 78) 91 (88, 95) 85 (82, 88) 88 (82,
LR Top EPs 66 (58, 74) 92 (89, 95) 84 (81, 87) 85 (78,
RF 16 EPs 56 (48, 65) 92 (90, 95) 76 (73, 80) 81 (74,
value (NPV); however, correct estimates of PPV andNPV require know-
ing the prevalence of the disease and therefore require using a cohort
(not case-control) design or else an external estimate of the prevalence
in the computation of the estimates (Pepe, 2003; Pepe et al., 2004;
Zweig and Campbell, 1993). Second, given that the focus of these studies
was on using logistic regression models, there is no constraint on the
distribution of the predictor variables (i.e., the endophenotypes), yet
Johannesen et al. (2013) removed “outliers” based on looking at
boxplots. Third, Peters et al. (2014) selected variables for inclusion by
using results from univariate tests, which is not an optimal method to
determine the most important variables for a multivariate model, be-
cause a variable by itself may not significantly distinguish between
groups but can become significant once other variables are in the
model (Sun et al., 1996). Fourth, it is not clear whether Peters et al.
(2014) performed PCA on the raw data or the normalized (i.e., z-
transformed) data. If the variables are measured on scales with widely
different ranges, then the results of the PCA based on the raw data will
be dominated by the variables with the largest range (Johnson and
Wichern, 2007).

Supplemental Table S3 shows that the four endophenotypes we
identified are moderately correlated with each other (r = 0.35 to
0.45), except for the correlation between antisaccade and emotion iden-
tification (r = 0.28). However, these endophenotypes are associated
with diverse neurological functions: the antisaccade task measures the
ability of the oculomotor system to inhibit prepotent responses
(Radant et al., 2007), the Continuous Performance Test-Identical Pairs
ndom forest models for subjects with non-missing values for all 16 endophenotypes (n =

as proband when model probability N 0.3

ity (%) Specificity (%) Accuracy (%) Somer's Dxy raw (adjusted)
94) 86 (82, 90) 86 (84, 89) 0.85 (0.80)
91) 85 (81, 89) 85 (82, 88) 0.81 (0.79)
88) 74 (69, 79) 81 (78, 85) 0.72



Fig. 1. ROC curves for logistic regression and random forest models for subjects with non-
missing values for all 16 endophenotypes (n = 571).
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numbers version measures sustained focused attention with a demand
on working memory (Cornblatt and Keilp, 1994), the California Verbal
Learning Test measures verbal declarative memory (Stone et al.,
2011), and the Penn CNB emotion identification task measures social
cognition (Gur et al., 2010).

Using 12 of the 16 COGS-1 endophenotypes presented here (CPT-IP
3-digit, CVLT semantic, LNS forward, and Penn CNB working memory
were omitted), aswell as PPI, P50 gating, and an additional DS-CPTmea-
sure (reaction time for targets), Seidman et al. (2015) used factor anal-
ysis applied to SZ probands (n = 83), CCS (n = 209), and SZ
nonpsychotic siblings (n = 151) with non-missing values for all 15
endophenotypes to identify five factors, and then looked at
endophenotype loading on each factor, the correlation between factors,
and the heritability of the factors. Ten of the 15 endophenotypes were
associated with at least one of the factors, and the factor structure was
similar within each diagnostic subgroup. Based on the loadings, the
five factors were identified as reflecting primarily episodic memory,
workingmemory, perceptual vigilance, visual abstraction, and inhibito-
ry processing, respectively, with heritabilities ranging from 22% to 39%.
Unlike our study, which focuses on which subset of endophenotypes
best distinguishes SZ probands from CCS, the study by Seidman et al.
(2015) sought to identify underlying constructs (factors) that are re-
sponsible for the correlations between endophenotypes (Johnson and
Wichern, 2007). The four endophenotypes identified in our study load
on Seidman et al.'s episodic memory (antisaccade, CVLT total, and emo-
tion recognition), workingmemory (CVLT total), and inhibitory process
(antisaccade) factors (Seidman et al. did not include CPT-IP 3-digit, but
CPT-IP 4-digit loads on working memory).

There are many strengths to our study. The data are based on one of
the largest study samples to date that has undergone uniform
endophenotypic assessments. Unlike past studies investigating multi-
variate endophenotypes that used only neurophysiological
endophenotypes, we used both neurophysiological and neurocognitive
endophenotypes. We used multiple methods to determine which sub-
set of endophenotypes best distinguishes diagnostic groups, including
forward stepwise regression, backward stepwise regression, and ran-
dom forest. Finally, we used multiple imputations to show that our re-
sults are essentially the same after imputing missing values.

There are also limitations to our study. The number of neurophysio-
logical endophenotypes available was limited compared to past studies.
(Neurophysiological endophenotype collection in a substantially larger
cohort of SZ cases and healthy comparison subjects from our COGS-2
study has been reported [Swerdlow et al., 2015], and genetic analyses
are forthcoming.)We also did not have equivalentmeasurements in re-
lated diagnostic groups (e.g., bipolar disorder), which would be neces-
sary to examine whether the combination of endophenotypes
identified in this study will also show good discrimination between SZ
and other psychiatric diagnostic groups. Finally, the COGS-1 inclusion
requirement that both biological parents be available for genotyping,
and at least one full sibling unaffected by SZ be available for
endophenotyping and genotyping, may limit the generalizability of
our results.

In conclusion, our study confirms past studies that showed that
using a multivariate approach to endophenotype-based indices for dis-
criminating SZ probands from healthy controls yields sensitivity and
specificity on the order of 80% using just a few endophenotypes, and
in our study, four endophenotypes produced essentially the same dis-
crimination between groups as using all 16 endophenotypes. These
findings, and applying the methods we used here to other datasets
that may include endophenotypes we did not look at here, can help di-
rect future studies by helping researchers decide which
endophenotypes to include in a test battery and improving statistical
power by limiting the number of individual endophenotype statistical
comparisons.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.schres.2016.04.011.
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