Lawrence Berkeley National Laboratory
LBL Publications

Title

Development of the T+M coupled flow-geomechanical simulator to describefracture
propagation and coupled flow-thermal-geomechanical processes intight/shale gas systems

Permalink
https://escholarship.org/uc/item/53h4p5kd
Authors

Kim, Jihoon

Moridis, George

Publication Date
2013-06-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/53h4p5kd
https://escholarship.org
http://www.cdlib.org/

Development of the T+M coupled flow-geomechanical simulator to describe
fracture propagation and coupled flow-thermal-geomechanical processes in
tight/shale gas systems

Jihoon Kim, George J. Moridis

Earth Sciences Division, Lawrence Berkeley National Laboratory.

This report has been published in Computers & Geosciences 60 (2013): 184-198

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. While this document is believed to
contain correct information, Neither the U.S. Government nor any agency
thereof, nor the Regents of the University of California, nor any of their
employees, makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness, of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
References herein to any specific commercial product, process, or service by
trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the U.S. Government or any agency thereof, or the Regents of
the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the U.S. Government or
any agency thereof or the Regents of the University of California.

Abstract
We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely

T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary
conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M
simulator can model the initial fracture development during the hydraulic fracturing operations, after which the
domain description changes from single continuum to double or multiple continua in order to rigorously model
both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling
between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability
and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume.

We also fully accounts for leak-off in all directions during hydraulic fracturing.

We first validate the T+M simulator, matching numerical solutions with the analytical solutions for
poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various
cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile
failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast
injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear
effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical

responses are still well-posed.

Keywords: Hydraulic fracturing, Poromechanics, Tensile failure, Fracture propagation, Double porosity, Shale gas.



1. Introduction

Hydraulic fracturing is widely used in reservoir enginegriapplications to increase production by enhancing
permeability (Zoback, 2007; Fjaer et al., 2008). Injectadrfluid generates high pressure around wells, which can
create a fracture normal to the direction of the smallestmitade of the principal total stresses. The creation of the
fracture significantly improves permeability, changingthand fluid flow regimes. For example, hydraulic fracturing
is applied to geothermal engineering because the fracigeethermal reservoirs can increase heat extraction from
geothermal reservoirs (Legarth et al., 2005; Rutqvist.e28D8). In reservoir engineering, gas production in stighe
gas reservoirs typically hinges on hydraulic fracturingdese of the extremely low permeability of such reservoirs
(Freeman et al., 2011; Vermylen and Zoback, 2011; Fishersagbinski, 2012). The horizontal wells along with
hydraulic fracturing are typically applied to maximize gemtion of gas in the shale gas reservoirs (Freeman et al.,
2011; Vermylen and Zoback, 2011). Longuemare et al. (20@jexd fracture propagation based on the PKN fracture
model, associated with a 3D two phase thermal reservoirlatoru Adachi et al. (2007) reviewed a brief history of the
models of hydraulic fracturing in reservoir engineerindniethh were developed before the stage of full 3D hydraulic
fracturing simulation. According to Adachi et al. (2000t models from plane strain geomechanics, namely PKN
model (Perkins and Kern, 1961) and KGD model (Nordren, 19%2ye developed at early times, assuming simple
fracture geometries. Then, the pseudo-3D (P3D) model amgldmar 3D model (PL3D) model were proposed for
more realistic fracture shapes than those of the PKN and K@Dets. The four models provide low computational
cost, but they cannot properly simulate the cases of hydrénalcturing tightly coupled to flow, such as shale gas
reservoirs. Hydraulic fracturing in the shale gas resesu@quires rigorous modeling in fracture propagation aud fl
flow, such as tightly coupled flow and geomechanics.

Several studies to develop algorithms for hydraulic frentysimulation have been made in reservoir or geothermal
engineering. Ji et al. (2009) developed a numerical modehyadraulic fracturing, considering coupled flow and
geomechanics, where the algorithm is based on the dynandiateipf the boundary conditions along the fracture
plane, fundamentally motivated by the node splitting. Latassir et al. (2012) partially incorporated shear failtor
hydraulic fracturing, although poromechanical effeces aot fully considered. Dean and Schmidt (2009) employed
the same fracturing algorithm in Ji et al. (2009) for tensibecturing, while using different criteria based on rock

toughness. Fu et al. (2012) used the node-splitting methHuehvmaterial faces tensile failure, based on the elastic



fracture mechanics (Henshell and Shaw, 1975; Camacho dirj £996; Ruiz et al., 2000). The algorithm by Ji et al.
(2009) can only consider the vertical fracturing, but casilgebe implemented to the finite element geomechanics
codes, changing the boundary conditions and the corresppadta connectivity. Furthermore, it can easily couple
flow and geomechanics, accounting for the leak-off of thedtgd fluid to the reservoirs. On the other hand, the
method by Fu et al. (2012) is not restricted to the verticattinring. However, fracturing in 3D problems causes high
complexity in code development, and massive modificatiothefdata connectivity is much challenging, compared
with the algorithm by Ji et al. (2009). Moreover, the methgdo et al. (2012) only allows fluid flow along gridblocks,
so the leak-off of the injected fluid to the gridblokcs canpitperly be considered.

The enhanced assumed strain (EAS) and extended finite elemetimods (XFEM) have been studied in the com-
putational mechanics community in order to model strongatitinuity in displacement (e.g., Borja (2008) and Moes
et al. (1999)). These methods introduce discontinuousgatation functions, and theoretically do not require the
remeshing when applied to the modeling in fracture propagatHowever, even though the mesh is not updated, the
applications in the full 3D problems are still much challemg requiring huge complexities and coding effort, beeaus
the fracture shape in 3D is at least two-dimensional, wHilgpPoblems have mainly been studied, where the fracture
shapes in 2D are simply a line. Furthermore, the couplingef nd geomechanics by the EAS method or XFEM has
little been investigated. For example, Legarth et al. (3@plied XFEM to hydraulic fracturing, but the application
potentially has the same difficulties as the method by Fu.gR@ll2). Ji et al. (2009) showed significant differences
between the results with and without poroelastic effectsyidraulic fracturing. The poromechanical effects can be
significant for low permeable and high compressible reseswoith low compressible fluid, such as water injection
(Kim et al., 2011c, 2012a).

From the aforementioned characteristics of the algoritbfis/draulic fracturing, we develop a coupled flow and
geomechanic simulator of hydraulic fractuiring in thisdtuusing a similar method of Ji et al. (2009) for tensile
fracturing. In addition, we employ a tensile failure critar that can also account for shear stress effect as well as
normal stress (Ruiz et al., 2000). We also include shearrtaivith Drucker-Prager and Mohr-Coulomb models (e.g.,
Wang et al. (2004)), and can simultaneously account foilleeasd shear failures.

Creation of the fractures by tensile or shear failure imgptieat two different porous media, such as fracture and

rock matrix, coexist at a continuum level, and thus the dewabplmultiple continuum methods are desirable for more



accurate modeling in not only flow-only but also coupled flovd geomechanics simulation (Barenblatt et al., 1960;
Pruess and Narasimhan, 1985; Berryman, 2002; Kim et al2901The developed simulator can consider thermo-
poro-mechanical effects in pore volume more rigorouslyhi@ multiple porosity model, as described in Kim et al.
(2012b). We consider the permeability change in the fra¢s)r motivated by the cubic law (Witherspoon et al.,
1980; Rutqvist and Stephansson, 2003). Then we take vialidigsts for poromechanical effects, the widths of static
fractures, and fracture propagations. We will also perf8inseveral nhumerical simulations in shale gas reservoirs,
and investigate evolution of flow and geomechanical prigeend variables such as the dimension and opening of the

fractures, fluid pressure, and effective stress.

2. Mathematical formulation
2.1. Governing Equation
Hydraulic fracturing requires the modeling of coupled flbeat flow and geomechanics rigorously. The governing

equation for fluid flow is written as follows.

i/mkd9+/f’“-ndr:/qkda, 1)
dt Jg r Q

where the superscrigt indicates the fluid componenti(-)/d¢ means the time derivative of a physical quanfity
relative to the motion of the solid skeletom.” is mass of componert f* andg¢” are its flux and source terms on the
domain$ with a boundary surfack, respectively, whera is the normal vector of the boundary.

The fluid mass of componehtis written as

mb =" ¢S1ps X5 +6s(1 - ¢)prYY, 2
J

where the subscript indicates fluid phases is the true porosity, defined as the ratio of the pore voluntaedulk

volume in the deformed configuratiofi,;, p.;, and X% are saturation and density of phageand the mass fraction of
component in phase/, respectivelyjg is the indicator for gas sorptioig = 0.0 for non-sorbing rock such as tight
gas systems, whilés = 1.0 for gas-sorbing media, such as shales (Moridis et al., 2042)s the rock density, and

T¢ is the mass of sorbed component per unit mass of rock.



The mass flux term is obtained from

£ = 37 (wh + 7). ®)

J

wherew”® andJ* are the convective and diffusive mass flows of compokentphase/. For the liquid phase] = L,

w’ can be given by Darcy’s law as

Py kg

k k
w;=Xjwy;, wj=
HJy

k, (Gradp; — p; g), (4)

wherek,, is the absolute (intrinsic) permeability tensor. The tepmsk,. s, p; are the viscosity, relative permeability,
and pressure of fluid phask respectively.g is the gravity vector, an@zrad is the gradient operator. Depending
on the circumstances, we use more appropriate flow equatimtsas the Forchheimer equation (Forchheimer, 1901),

which incorporates laminar, inertial and turbulent efedi this case, Darcy’s law is written with scalar permeagbés

2(Gradp; — psg)
2 b
P+ \/(k:‘,;’J) +4xsp5 |Gradp; — psg|

wherey ; is the turbulence correction factor (Katz, 1959).

()

W= —=pJ

For the gaseous phasé~= G, wg is given by

X k k
Xk = Xhwe, wa = - (1 n Pf;) kP2 (Gradpe - po ), (6)

wherek is the Klinkenberg factor (Klinkenberg, 1941). The diffessiflow J* is described as

I = —¢ 87 7o D* p; Grad X%, 7)

whereD* andr¢ are the hydrodynamic dispersion tensor and gas tortuositpectively.

The governing equation for heat flow comes from heat balamdten as

1/deQ+/fH-ndr=/quQ, (8)
dt Jo r Q



where the superscrigil indicates the heat component.”, f#, andq’ are heat, its flux, and source terms, respec-

tively. The termm® is the heat accumulation term, and is expressed as

T
m = (1=6) [ prCrdl +3 65 pres+5(1 - S)pnesc®. (©)
To J

whereT’, Cr and are temperature, heat capacity of the porous medium, arterefe temperature:; andeg ¢

denote specific internal energy of phasand sorbed gas, respectively. The heat flux is written as

f = —Ky GradT + Y hywy, (10)
J

whereK g is the composite thermal conductivity of the porous medige 3pecific internal energy,, and enthalpy,

h s, of component# in phase/ become, respectively,

k k

More detailed descriptions of the governing equations fadfand heat flow are shown in Moridis et al. (2012). For
the boundary conditions for the flow problems, we considetundary conditions; = p; (prescribed pressure) on
the boundary’,,, andw ; - n = w; (prescribed mass flux) on the bound&ry, wherel', \T'y = @, andl’, UT'; = 052.
The boundary conditions for heat flow afe= T (prescribed temperature) on the boundBgy, and f - n = fH
(prescribed heat flux) on the bounddty;, wherel'r NT'y; = 0, andl'r U T = 09

The governing equation for geomechanics is based on thé spadis assumption (Coussy, 1995), written as

Dive +p,g =0, (12)

whereDiv is the divergence operatos is the total stress tensor, apg is the bulk density. Note that tensile stress
is positive in this study. The infinitesimal transformatignused to allow the strain tensar,, to be the symmetric

gradient of the displacement vectar,

<GradT u+ Grad u) . (13)

N =

E =



The boundary conditions for geomechanics are as follows;a, given displacement, on a boundaty, ando-n =7,
traction on a boundar¥;, whereIl', UT; = 91, the boundary over the domain, afig N T'; = () . The initial total
stress satisfies the mechanical equilibrium for given banndonditions.

Note that the boundary conditions of geomechanics in hyidréracturing are not prescribed but dependent on the
solutions of geomechanics (i.e., nonlinearity). Convamdl plastic mechanics such as Mohr-Coulomb failure yields
material nonlinearity while the boundary conditions art gtescribed (Simo and Hughes, 1998). On the other hand,
geomechanics of hydraulic fracturing in this study doesymeld material nonlinearity while nonlinearity lies in the
boundary conditions.

2.2. Constitutive relations

Gas flow within homogeneous rock can be modeled using simglesjiy poromechanics, extended from Biot’s
theory (Coussy, 1995). However, when failure occurs anctdras are created, we face local heterogeneity because
fractures and rock matrix coexist. In this case, it is déd&rdo use double or multiple porosity models, which allow
local heterogeneity, particularly for low permeable rochtrix, as shown in Figure 1. We employ the generalized

formulation that can be used for the non-isothermal mutgehflow and multiple porosity models, described as (Kim

etal., 2012b)
So’

—TN— ~

do = Cyup:0(e—ep)—=b ;op1, g1 — Kg:00T1, b) ; = —K4,-(bSy)s, (14)
, )
€e
1 Nk n an ~
= — m = K r —_ 3 b = — — B b = 3 15
Ko Kk>cp d (K>kck L (K)z 1= 3(arn) (15)
5CZ,J - 5¢(Z,J)p = bi‘](gev,e + Ll_,}7m7]5pm,l - Dl,J,méTma (16)
—_——
0C(1,7)e

(S - gr](sm.])l = _Bler(;Ev - Dl,m,ldpm,l + Dl,méT‘mm (17)
5[‘.‘11 = 7Hl . 561, (18)

where the subscripts andp denote elasticity and plasticity, respectively, and deubtlices indicate summation.
is the rank-2 identity tensoe,. ande, are the elastic and plastic strains, respectivély, andC,,, are the upscaled
elastoplastic drained bulk and tangent moduli at the lefalgridblock. o is the Biot coefficient of the subelemdint
(i.e.,a; = 1— K; /K, whereK is the intrinsic solid grain bulk modulus .. is the thermal dilation coefficient; is

the volume fraction of the subeleménaindK; is the drained bulk modulus of the subelemery,; ), andg, ), are



the elastic and plastic fluid contents for the matefriahd phase/, respectively.5( 5. = (6m/p); s, wherem_

is the fluid mass of phasé within the subelement L = {L; s, 1} iS a positive-definite tensor, extended from the
Biot modulus of single phase flows is the total entropy, and; is the internal entropy per unit mass of the phdse
(i.e., specific entropy); andg,; are the internal stress-like and strain-like plastic \alga for material, respectively.
H, is a positive definite hardening modulus matrix for materidd = {D; ,,, ; } is determined by coupling beween
fluid flow and heat transfer, regardless of geomechanicsfhﬁd{[)l,m} is the heat capacity term. The off-diagonal
terms of D andD are typically taken to be zero. Then, the diagonal termB @indD are determined b$a; ; and
(Ca/T), respectively.3a; ; is the thermal dilation coefficient related to solid graimighasel of the subelement
andC} is the total volumetric heat capacity.

For¢,),, we take (Armero, 1999)

Sy, = bl j08u p- (29)

L for single phase flow with a fracture-rock matrix (doublegmity) system can be written in a matrix form, when the

off-diagonal terms are taken to be zero, as

: (20)
0 M Nar

where Nr and N,, are the inverse of the Biot modull/» and M, , for the fracture and rock matrix media, re-
spectively, (i.e.Np = 1/Mp and Ny = 1/Myr, WhereMy = ¢cy + (of — ¢)/ K, andey is the intrinsic fluid
compressibility). The subscripts and M indicate the fracture and rock matrix, respectively. Moetadls of the
formulation are described in Kim et al. (2012b).

Here, we can relate the above formulation to the porositg irsseeservoir simulationp, called Lagrange’s porosity
or reservoir porosity (Settari and Mourits, 1998; Tran et2004).® is defined as the ratio of the pore volume in the
deformed configuration to the bulk volume in the referenggi¢ally initial) configuration. Specifically, for single

phase flow,

1d 1d
Smy = p1 Oy (cy Ops — e OT) + pymd®, where ¢y = — L op = — = PL (21)

s CT )
psdps ps dT



where the subscript means fluid.cr is the thermal expansivity of fluid. Comparing Equation 2ihvEquation 16,

we obtain

a2 o] — (I)l bl
60, = [ =+ ) 6T — =60, 22
! (Kz + . > pf + 3ar, o - O, (22)

whereo, is the total (volumetric) mean stress.

In this study, we neglect the heat contribution directlynirgeomechanics to heat flow, ignoring the term related
to —b, K 4,-0¢,, of Equation 17 (i.e., one-way coupling from heat flow to geohamics). This assumption is justified
when heat capacity of material or fluid is high, or direct hgateration from deformations is negligible (Lewis and
Schrefler, 1998; Kim et al., 2012a).

Note that the double porosity model is used initially foruratly fractured reservoirs, while, in this study, we
change the single porosity model into the double porositindwsimulation dynamically when a material faces plastic-
ity. Thus, for the naturally fractured reservoiG,, and K, at a gridblock are obtained from the upscaling from given
properties of subelements such as fracture and rock magignals. Accordingly, the return mapping for elastoplas-
ticity is performed at all the subelements (Kim et al., 2012b

On the other hand, in this stud¢,, and K4, are directly obtained from the elastoplastic tangent moalia
gridblock (global) level, not the subelements, while wechedetermine the drained bulk moduli of the fracture and
rock matrix materials for the double porosity model, folevby the coupling coefficients. To this end, we assume
that the rock matrix has the same drained bulk modulus asftthe single porosity material before plasticity (i.e.,
elasticity), because the rock matrix is undamaged (Kim anddiit, 2012a). Then, from Equation 16, the drained bulk

modulus of the fracture can be determined as

B Ky Ky
MKy — Kar(L—1y)

Ky (23)

Consideringi 4 and Ky to be positive for wellposedness, the volume fraction oftheture,n ¢, has the constraint as

(24)
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2.3. Failure and Fracturing
2.3.1. Tensile failure

We employ a tensile failure condition for large-scale fuaetpropagation, used in Ruiz et al. (2000), as follows.

o, (= VAR 2) + t) >, (25)

wheret,,, t;, andt, are the normal and shear effective stresses, acting ontaregaane, as shown in Figure Z, is
tensile strength of material, typically determined froneadion test such as the Brazilian test. From Equation 25, we
can account for contribution from both normal and shearcéffe stresses to tensile failure. Whén= ~o, the tensile
failure is purely caused by the normal effective stress. Fer 1.0, o/, of Equation 25 becomes identical to that of
Asahina et al. (2011).

Note that we employ the fracturing condition based on terstilength in this study, rather using toughness-based
fracturing conditions, because we focus on large scaléUrapropagation. The toughness-based fracturing conditi
with the stress intensity factor is typically employed inahscale fracture propagation (Adachi et al., 2007).

For a given geomechanical loading, the boundary conditigggomechanics is modified when the effective stresses
reach atensile failure condition. The internal naturalann) boundary conditions are introduced at the areasawher
the effective stresses satisfy the tensile failure comdljtEquation 25.

When hydraulic fracturing induces a dry zone of a createddracfollowed by a fluid lag (Adachi et al., 2007), the
fluid pressure within the dry zone is determined from the@urding reservoir pressure in this study. This implies that
the pressure of the dry zone is locally equilibrated withgheroundings, because the time scale of the local pressure
equilibrium is much smaller than the time scale of fluid flowthin the fracture.

2.3.2. Shear failure
For shear failure, we use the Drucker-Prager and Mohr-@ollmodels, which are widely used to model failure

of cohesive frictional materials. The Drucker-Prager maglexpressed as

f:ﬁfjl+\/J2_/€f§07 g:ﬂgll"_\/JQ_h:ggOa (26)

wherel; is the first stress invariant of the effective stress dnis the second stress invariant of the effect deviatoric

stress. f andg are the yield and plastic potential functions, respedtivel;, ¢, 54, andx, are the coefficients to
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characterize the yield and plastic potential functions.

The Mohr-Coulomb model is given as

f=1,—onsinW¥r—cpcos¥y <O, g=1, —onsinWy —cpcos Wy <0, (27)
/ / r_ ot
o= and o, = T, (28)

whereo!, o5, ando} are the maximum, intermediate, and minimum principal éffecstresses, respectively,, ¥,
and ¥, are the cohesion, the friction angle, and the dilation gngigpectively. Figure 3 shows the yield functions
of the Drucker-Prager and Mohr-Coulomb models. The Druékager model can also be modified for the Mohr-

Coulomb model, takings, k¢, 84, andk, as, respectively,

g, = sin Wy (29)
d 0.5 (3(1 —sin ¥y)sin 6 + v/3(3 +sin W) COS@),

3Ch
ky = , 30
! 0.5 (3(1 —sin ¥y)sin 6 + v/3(3 + sin ¥ ) cos 0) (30)

ﬂ . sin \I/d (31)
Y 0.5(3(1 —sinWy)sing + V/3(3 + sin W) cos )

SC}L
k, = ) 32
7 0.5 (3(1 — sin Wq) sin 4+ v/3(3 + sin ¥,) cos 6) (32)

wheref is the Lode angle (Bathe, 1996; Wang et al., 2004), written as

1 (3V3 )
0= gCOS <2t]§)/2> N (33)

whereJs is the third stress invariant of the effect deviatoric stres
3. Numerical modeling

We developed the T+M hydraulic fracturing simulator by clingp the Lawrence Berkeley National Laboratory

(LBNL) in-house simulator TOUGH+RealGasH20 (for the dgstwn of the non-isothermal flow of water and a real
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gas mixture through porous/fractured media) with the ROCMEN-house geomechanics simulator. We describe the
numerical algorithms and characteristics of the coupledikitor as follows.

3.1. Discretization

Space discretization is based on the finite volume methsd,@llled the integral finite difference method, in the
simulation of fluid and heat flow (TOUGH+RealGasH20 code}l the finite element method in the geomechanical
component of the coupled simulations (ROCHMECH code). T+éates a coupled simulator from the flow and
geomechanics simulators. Time discretization in both et components of T+M is based on the backward Euler
method that is typically employed in reservoir simulation.

3.2. Failure Modeling
3.2.1. Tensile failure and node splitting

We introduce the new internal Neumann boundaries by sglittiodes when fracturing occurs, and assign the
traction from the fluid pressure inside the fractures. Thdensplitting is performed based on the tensile failure
condition, as described in the previous section. In thigystthe focus is on vertical tensile fracturing. Because of
symmetry, we easily extend the numerical simulation cdpi@sito 3D domains. The fracture plane is located at the
outside boundary (Ji et al., 2009), as shown in Figure 4.

3.2.2. Shear failure and elastoplasticity

We use classical elastoplastic return mapping algoritlemghe Mohr-Coulomb and Drucker-Prager models (Simo
and Hughes, 1998). Unlike tensile failure, we account farastfailure with no assumption of a certain fracturing
direction. The Drucker-Prager model provides a simpleadamnalytical formulation for return mapping because it is
only associated witll; and.J,. However, the Mohr-Coulomb model also takks and thus the return mapping is not
straightforward unlike the Drucker-Prager model.

We employ the two-stage return mapping algorithm propogewang et al. (2004) for the the Mohr-Coulomb
model, after slight modification. At the edges of the failarerelope, we also employ the Drucker-Prager model with
the explicit treatment of'; to avoid numerical instability. The Drucker-Prager modéhwhe explicit treatment of;
can simulate the Mohr-Coulomb failure accurately not ortltha edges but also over the failure envelope (Kim and

Moridis, 2012b).
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3.3. Sequential implicit approach

There are two typical solution approaches to solve the ealptoblems; fully coupled and sequential implicit
methods. The fully coupled method usually provides undiorl and convergent numerical solutions for mathemat-
ically wellposed problems. However, it requires a unifiedvfigeomechanics simulator, which results in enormous
software development effort and a large computational cost

On the other hand, the sequential implicit method usesiegisimulators for the solution of the constituent sub-
problems. For example, the subproblems of non-isotherroal for of geomechanics, are solved implicitly, fixing
certain geomechanical (or flow) variables, and then geoaréch (or flow) is solved implicitly from the flow (or
geomechanics) variables obtained from the previous stegorling to Kim et al. (2011b) and Kim et al. (2011c),
the fixed stress sequential scheme provides uncondititedaility and numerical convergence with high accuracy in
poromechanical problems. The unconditional stabilityls® avalid for the given multiple porosity formulation (Kim
et al., 2012b). By the fixed-stress split method, we solvdltveproblem, fixing the total stress field. This scheme can
easily be implemented in flow simulators by updating the bage porosity function and its correction term as follows

(Kim et al., 2012b).

a?  ap—®7
@’;H*l _ ;7' — ([(ll + lK l ) Z S;H*l (pﬁjl . p?]) + 3aT,lOél (T\ln+1 . /len) o Aq)lm (34)
s J

n
®cy

Ad; = % Ka { (e = en™) + D03 b (ph —pit) + D e (T - T;“)}, (35)
kK J k

n—1
(on—0u")

whereA(-)™ = (-)"*! — ()™, and the superscriptindicates the time levet, is the pore compressibility in reservoir
simulation. The porosity correction tertv@®', is calculated from geomechanics, which corrects the fitgrestimated
from the pore compressibility.

For permeability of the fracture, we employ nonlinear pealikty motivated by the cubic law (Witherspoon et al.,
1980; Rutqvist and Stephansson, 2003), written as, for ample of single water phase,

wne

Qw = Q¢ 12#1”

H (Gradp — p,g), (36)
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wherew is the fracture opening (also called aperture or widéh). and H are flow rate of water and the fracture plate
width, respectivelyn, characterizes the nonlinear fracture permeability. Whgnr= 3.0, Equation 36 is identical to
the cubic law.a. is the correction factor reflecting the fracture roughnassjsed in Nassir et al. (2012). We calculate
the fracture permeability of a gridblock based on harmow@age of the permeabilities at the grid corner points near
the gridblock.

For geomechanical properties of the fracture, we assigncdonow Young's modulus, compared with rock matrix,
when tensile fracturing occurs. For shear failure, therretnapping algorithm automatically determines nonlinear
geomechanical properties. Figure 5 briefly shows how flowgewmechanics simulators are communicated sequen-

tially.

4. Validation examples

We show three verification tests that can provide analyscéitions. The first test is Terzaghi's and Mandel’s
problems, which can examine the poromechanical effetsz&tini, 1943; Abousleiman et al., 1996), as shown in
Figure 6. Consideration of the poromechanical effects, (iveo-way coupling between flow and geomechanics) is
necessary for accurate modeling of fracture propagatioronly within the shale gas reservoirs but also outside the
reservoirs, for example, which are highly water-saturateach more incompressible than gas (Kim et al., 2012a). For
the second and third tests, shown in Figure 7, We also an#hgzeidth variation of static fractures (Sneddon and
Lowengrub, 1969) and fracture propagations in plane sgaomechanics (Valko and Economies, 1995; Gidley et al.,
1990), respectively.

4.1. Terzaghi’'s and Mandel’s problems

For Terzaghi's problem, the left of Figure 6, we have 31 dddks, the sizes of which are uniform, 1.0 m. Liquid
water is fully saturated, and the initial pressure is 8.3 MRge impose a drainage boundary on the top and no-
flow conditions at the bottom. The initial total stress isal8.3 MPa over the domain, and we set 16.6 MPa as the
overburden, two times greater than the initial total strég® Young’s modulus and Poisson ratio are 450 MPa and 0.0,
respectively. Only vertical displacement is allowed andjravity is applied. We consider isothermal fluid flow, where
liquid water at25°C is fully saturated. The permeability and porosity &&l1 x 10~ m?2, 6.6 mD, (1 Darcy=

9.87 x 10713 m?) and 0.425, respectively. Biot's coefficient is 1.0. The faming well is located at the last gridblock.
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From the left of Figure 8, the numerical solution from T+M gfas the analytical solution. We identify the
accurate instantaneous pressure buildup at the initial, iallowed by the decrease of pressure due to the fluid flow to
the drainage boundary at the top.

For Mandel’s problem, by symmetry, we take the upper half @ionn the right of Figure 6 for numerical simula-
tion, 20 m x 0.265 m. We haved0 x 5 gridblocks, the sizes of which are uniform in the x directi®rd m, while the
sizes in the z direction are non-uniform, 0.005 m, 0.01 mM5®00.1 m, 0.1 m. The initial pressure is 10.0 MPa. We
have the drainage boundary at the left and right sides arftbwazonditions at the other sides. The initial total stress i
also 10.0 MPa over the domain, and we have 20.0 MPa of the ungeh, two times greater than the initial total stress.
We approximate the constraint of Mandel's problem that #wical displacement at the top is uniform. The Young's
modulus and Poisson ratio are 450.0 MPa and 0.0. We have thpgaP® strain geomechanics. The monitoring well
is located at (5.25 m, 0.215 m), as shown in the right of Figuré&lo gravity is considered. Only horizontal flow is
allowed, while vertical flow is hydro-static. We take the gafiow variables and properties as the previous Terzaghi
problem.

The right of Figure 8 shows that the result from T+M matchesahalytical solution. The numerical result captures
the Mandel-Cryer effect of Mandel’s problem, correctly,igihcannot be captured by the flow-only simulation.

4.2. Static fracture in plane strain geomechanics

We take, by symmetry, a quarter of the domain in Figure 7 fanerical simulation, i.e., the upper and right
domain. We hava50 x 1 x 10 gridblocks for the plane strain geomechanics problem thatéhstatic fracture. No
gravity is considered. The sizes of the gridblocks in the,xand z directions are uniform, 0.05 m, 0.1 m, and 0.1 m,
respectively. The initial total stress is zero, and the fluiglssure within the fracture is uniform, 10 MPa, resultimg i
10 MPa of the net pressure. Then, the fracture width is tested with various geomechanics properties, i.e. MPa
and 6.0 GPa of Young’s modulus, and 0.0 and 0.3 of Poissotits ra

We use an analytical solution of the width of a static fragtrplane strain geomechanics for a given net pressure,
proposed by Sneddon and Lowengrub (1969). From Figure fuheerical solutions match the analytical solutions

for the different geomechanics properties, validatingT# simulator.
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4.3. Fracture propagation in plane strain geomechanics

We inject water to a fully water-saturated reservoir for tadic fracturing. The simulation domain is a quarter
of the domain in Figure 7. We have 150 gridblocks for flow witktie fracture in the x direction, the sizes of which
are uniform, 0.05 m, 0.5, m, 0.5 m. The initial reservoir prtge is 10 MPa, and no gravity is considered. The
reservoir permeability and porosity 88655 x 10722 m? and 0.1, respectively. The density and viscosity of water ar
1000 kg/m? and1.0 x 10~2 Pa - s, respectively. For geomechanics, we use 6.0 GPa of Youngdutas and 0.3
of Poisson’s ratio, which represent a shale gas reservegr(ige et al., 2007). Biot's coefficient is 0.0, because the
analytical solutions used in this section do not accounttferporomechanical effects.

Then we test two cases: viscosity-dominated and toughuh@ssaated regimes in hydraulic fracturing. For the
viscosity-dominated regime, the solution can be approtéchdy a limit solution from the assumption that rock has
zero toughness (Detournay, 2004). We bi$ex 10~7 kg/s of the injection rate and an extremely low value of tensile
strength,1.0 x 10~* Pa. Even though there is no definitive mathematical relatiomvben tensile strength and rock
toughness, according to Zhang (2002), tensile strengthttendhodel toughnessK¢ are related positively based
on experimental observations from the data of the previtudiess. Precisely, Zhang (2002) proposed an empirical
relation asT, (M Pa) = 6.88 x K¢ (M Pa m®?). For the toughness-dominated regime, we usex 10-6 kg/s
of the injection rate an@.1 M Pa of tensile strength, where fracturing is controlled by réokghness. We use the
analytical solutions shown in Valko and Economies (199%) @idley et al. (1990) for the viscosity and toughness
dominated regimes, respectively (Dean and Schmidt, 200@t &l., 2012).

Figure 10 shows that numerical solutions of T+M are closehtodnalytical solutions, validating T+M. Small
differences are mainly due to the sequential implicit mdthehere only one iteration is performed , the empirical

relation between tensile strength and rock toughness sthegptions of the analytical solutions.

5. Numerical examplesfor 3D vertical fracture propagation

We then investigate several 3D numerical examples of hyidr&nacturing induced in a shale gas reservoir, as
shown in the right of Figure 4. Even though the flow and georapitial properties used in this section mostly represent
shale gas reservoirs, we investigate sensitivity anafgsia parameter space not restricted to the shale gas ré@servo
The in-depth investigation and discussion of the shale ggervoirs such as Marcellus shale will be shown elsewhere

(Kim and Moridis, 2012a).
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The domain of geomechanics has 50, 5, 50 gridblocks in X, yzadidections, respectively, where the x-z plane
is normal to the direction of the lowest magnitude of the gipal total stresses;, (i.e., the minimum compressive
principal total stress). The sizes of the gridblocks in thengl z directions are uniform, i.eAz = Az = 3 m. The
sizes of the gridblocks in the y direction are non-uniforra, 0.1 m, 0.5 m, 3.0 m, 10.0 m, 20.0 m.

The Young’s modulus and Poisson’s ratio are 6.0 GPa and €sBectively. The tensile strength of material for
the reference case is 4.0 MPa. Initial fluid pressure is 1MP@ at 1350m in depth with the 12.44 kPa/m gradient.
Initial temperature i$8.75 °C' at 1350 m in depth with th@.025 °C'/m geothermal gradient. The initial total principal
stresses are -26.21 MPa, and -23.30 MPa, and -29.12 MPa @33 depth in X, y, and z directions, respectively,
where the corresponding stress gradients are -19.42 kPa/rB9 kPa/m, and -21.57 kPa/m, respectively. We consider
gravity with 2200 kg/m? of the bulk density, have no horizontal displacement bogndanditions at sides, except the
fractured nodes, and have no displacement boundary at ttwrho

For flow, we have 50, 6, 50 gridblocks in x, y and z directionfieve one more layer for the fracture plane
is introduced for flow within the fracture, 0.1m. The initipermeability and porosity of the shale reservoir are
8.65 x 10719 m?2, and 0.19, respectively. Once tensile fracturing occurs, ftacture permeability is determined
from Equation 36, where, = 3.0 anda. = 0.017. For shear failure, we simply assign a constant permegbilit
5.9 x 107 m?2, 60 mD. Once failure occurs, we change the single porosityi¢odouble porosity model where
fracture and rock matrix volume fractions are 0.1 and 0.% fference fracture porosity is 0.9, when the fracture is
created, and the porosity varies during simulation due torpechanical effects. Biot's coefficient is 1.0. We inject
gas at (x=75m, z=-1440m), and vary the injection rate, asbperties, and the initial total stress field. We assume
that the injected gas has the same physical properties kesgasafor simplicity. We choose gas injection as a reference
case because gas has higher mobility in shale gas resethairsvater does, which can enhance fracturing.

There are several options for modeling relative permegidind capillarity, implemented in the flow simulator,
TOUGH+RealGasH20. In this study, we use a modified versioBtofe’s relative permeability model (Aziz and

Settari, 1979) and the van Genutchen capillary pressurehfegh Genuchten, 1980), respectively, written as

oy
=3
<

Il

) Sy —Sir s\
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wherek, ;, S;» ; , andny, are relative permeability of phasg irreducible saturation of phask and the exponent
that characterizes the relative permeability curve, retpdy. P, A, andll. are capillary pressure, the exponent
that characterizes the capillary pressure curve, and thiasgt modulus, respectively. Then, we takg.,, = 0.08,
Sir.g = 0.01, andn;, = 4.0 for relative permeability, and,, = 0.45, Sy, = 0.05, S, o = 0.0, andIl. = 2.0 kPa

for capillarity, where smalle§,,. ., andsS;, , are chosen in the capillary pressure model in order to ptevgrhysical
behavior (Moridis et al., 2008). Note that we employ the egjeint pore-pressure concept in multiphase flow coupled
with geomechanics (Coussy, 2004), not using the averagepessure concept. According to Kim et al. (2011a), the
equivalent pore-pressure provides high accuracy for gteaipillarity, while the average pore-pressure, widelyduse
reservoir simulation, may cause large errors and/or nwaldristability when strong capillarity exists.

5.1. Gas injection

We first test a reference case, where the injection rate ikg9) as follows. We do not consider shear failure for
this reference case. Figure 11 shows the fracture propegativertical direction due to tensile failure. At initiairte,
we obtain a much small fracture. As the injection procedusfriacture grows, propagating horizontally and verticall
In this test, the fracture propagates upward more than danthvbecause, from the initial condition$, decreases
more than the initial pressure as the depth decreasesngahigiher net pressure. The increase of the net pressure
yields lager opening of the fracture around the top areaefréicture than that of the bottom area, shown in the right
of Figure 11. During the period of the simulation, we obtaiimée (stable) growth of the fracture. This implies that
the fracture propagation from hydraulic fracturing can betmlled by injection time.

In Figure 12, we observe the distinct pressure distribubiemveen inside and outside the fractured zone. Note that
the fracture of tensile failure creates much high permégbiBecause of high permeability, the pressure within the
fracture is almost same as the injection pressure at lat tmd its gradient is very low. As a result, the pressure
difference at the fracture tip is considerably high.

Figure 13 shows the evolution of pressure at the injectiont@md the total number of fractured nodes of the reser-
voir domain. From the left figure, at early time, pressureéases because of injection. Once the injection induces a
pressure value enough for tensile failure at the fractgrefricturing occurs and the fracture volume increasesaimst
taneously. As a result, the pressure within the fractureedses instantaneously, based on the fluid compressibility

Specifically, the pressure at the injection point increageso 38 MPa, and drops significantly. Then, the pressure
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increases again due to the fluid injection. We observe this\mgr during the fracturing process, yielding saw-tooth
pressure history. At early time, the oscillation is highdnege of small pore volume of the fracture. As the fracture por
volume becomes large, the oscillation becomes mild. The figure shows the evolution of the total number of the
fractured nodes. Note that a sequential implicit method/ben flow and geomechanics might limit numerical stability
in hydraulic fracturing. Thus, to ensure the numerical ifitgowe control time step sizes that can cause no fracturin
at least once at the next time of any events of fracturing. rigte figure shows the aforementioned characteristics of
the sequential implicit method in hydraulic fracturing veall as finite fracturing during simulation.

Figure 14 shows evolution and distribution of effective ahstress, i.e.,/J,. From the figure, the shear stress
increases during simulation, and the high shear stresedscated around the fracture tip. The effective stresstigat
x-z plane at early and late times are plotted in Figure 15,hiM@oulomb plot). From the figure, effective stresses at
many locations may cross over the failure line at late tinndgn cohesion is low, indicating potential shear failure,
which will be tested in the next section.

5.2. Mohr-Coulomb plasticity

We investigate effects of shear failure in hydraulic fraictg, simultaneously considering tensile failure as well.
We takec, = 2.0 MPa and®y = &; = 28.6°(0.5 rad), which yield the same failure line shown in Figure 15.
From Figure 16, shear failure occurs in all directions, uddahg the y direction. The shear failure zone is not thin nor
two-dimensional, but three-dimensional, having somemauAll the effective stresses of the domain, not only the x-z
plane but also the inside domain, are plotted in Figure 17.id&fatify that all the effective stresses are on and inside
the yield surface.

As shear failure grows during simulation, and it limits theatical fracture propagation from tensile failure, shown
in the left of Figure 18. The fractured area from tensileuiaglis much smaller than that of the reference case, even
though the injection time is two times. Note that shear failincreases permeability of the reservoir formations.
The failure along to the y direction induces flow of fluid in thalirection followed by additional shear fracturing
horizontally, because changes in pore-pressure inducegekan effective stress. We also observe different behavio
in pressure between with and without shear failure, showthénright of Figure 18, when it is compared with the

evolution of pressure in Figure 13,
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5.3. Effect of the injection rate

We change the injection rate of the reference case, #dnkg/s to 0.8 kg/s. From Figure 19, we find that
the fracture propagation is nearly proportional to inj@atiate. When the injection rate is reduced by one order, the
fracture propagates more slowly by the same order. The #onlaf pressure also shows almost the same behavior as
that of the reference case. But, the total number of thedradtnodes at 6000 s, approximately 300 nodes, is smaller
than that of the reference case at 600 s, approximately 4d@snavhere the same amount of fluid is injected for both
cases, because longer time allows more leak-off of the ftuttie reservoir formation.

5.4. Contribution of effective shear stress in tensileufail

We test the effect off of Equation 25 in order to investigate minor contributioreffective shear stress in tensile
failure, takings = 10.0. In Figure 20, we obtain almost the same results as thoseegkflrence case. The width of
the fracture is also nearly same as that of the reference(tteseght figure). This implies that small perturbations in
shear effective stress for tensile failure only cause satehges in hydraulic fracturing. The tensile failure ctindi
is well-posed, when we consider the mixed failure mode withhal and shear effective stresses.

5.5. Effect of the maximum compressive total horizontakstr

We increase the maximum compressive total horizontal stig, which is higher than overburden stress;

(i.e., Sy = 1.2 x Sy). Failure is fundamentally determined by effective stregsich results from close interactions
between flow and geomechanics. Thdg; indirectly affects hydraulic fracturing. In Figure 21, wétain more
vertical fracturing (the left figure), compared with theeresfnce case, while the width of the fracture is similar ta tha
of the reference case (the right figure). Hi§h is more favorable to fracture propagation in the vertica¢dion,

limiting horizontal fracturing in the x direction.

6. Conclusions

We developed the T+M hydraulic fracturing simulator by clingpthe TOUGH+RealGasH20 flow simulator with
the ROCMECH geomechanics code. T+M has the following chearistics: (1) vertical fracturing is mainly modeled
by updating the boundary conditions and the corresponditeystructures; (2) shear failure can also be modeled during
hydraulic fracturing; (3) a double- or multiple-porositg@oach is employed after the initiation of fracturing irer
to rigorously model flow and geomechanics; (4) nonlinear ef®br permeability and geomechanical properties can

easily be implemented; (5) leak-off in all directions dgrinydraulic fracturing is fully considered; and (6) the code
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provides two-way coupling between fluid-heat flow and geomechanics, rigorously describing thermo-poro-mechanical
effects, and accurately modeling changes in effective stress, deformation, fractures, pore volumes, and permeabilities.
Numerical solutions of the T+M simulator matched the analytical solutions of poromechanical effects, the widths
of the static fractures, and the fracture propagations of the viscosity and toughness dominated regimes, which validated
the T+M simulator. From various tests of the planar fracture propagation, shear failure can limit the vertical fracture
propagation of tensile failure, while it induces the enhanced permeability areas inside the domain, followed by inducing
the leak-off into the reservoirs. When the same amount of fluid is injected, slow injection results in more leak-off and
less fracturing, compared with fast injection. The maximum horizontal total stress, Sy, affects tensile fracturing,
and contributions of shear effective stress to tensile failure can also change the fractured areas. For both cases, the

geomechanical responses are still stable and well-posed.
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Figure 1: Left: a schematic diagram that represents a fractu re-matrix system after failure. Right: a conceptual diagra m of
the multiple interacting continuum (MINC) model, as an exam ple of the multiple porosity model (Pruess and Narasimhan,
1985). In the MINC model, fluid flows though a high permeable mat erial, such as the fracture, over the domain, while the other
materials store fluid and convey it to the high permeable mate rial.
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Figure 2: A schematic diagram for a planar fracture. Fluid pr essure acts as traction on the fractured area. Effective nor mal
stress, t,, mainly induces tensile failure and the fracture opening in hydraulic fracturing. Effective shear stresses, ty and ts,
may also contribute to tensile failure in hydraulic fractur ing.
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Drucker-Prager model

Hydrostatic axis

Mohr-Coulomb model

o) O,

Figure 3: The yield surfaces of the Mohr-Coulomb and Drucker -Prager models on (a) the principle effective stress space a nd
(b) on the deviatoric plane. All the effective stresses are | ocated inside or on the yield surface.

Traction

“"Wl’ 7 o
) ) g 0 s 1 ey
"""""" * Horizontal well .
Fracture plane
Figure 4: Schematics of hydraulic fracturing in 3D. Left: ge neral type of planar fracturing. Right: vertical propagati on of a
fracture, reduced from a general planar fracture due to no ho rizontal displacement condition at the plane that contains the

vertical fracture, by symmetry.
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Figure 5: The sequential implicit algorithm based on the fixe d-stress split method. Flow and geomechanics simulators ar e
communicated sequentially.
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Figure 6: Left: Terzaghi's problem. Right: Mandel's proble m. Verification for poromechanical effects is tested.

Figure 7: Hydraulic fracturing in plane strain geomechanic s. Injection of fluid induces tensile failure and opens the cr eated
fracture. oo, py, ) . 1y indicate the initial total stress acting on the fracture, flu id pressure within the fracture, the injection
rate, the fracture width, and the fracture length.
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Figure 8: Comparison between numerical solutions of T+M and a nalytical solutions of Terzaghi's problem (left) and Mande I's
. . . . . . _ . _ k f )
problem (right). T+M matches the analytical solutions. ¢y is the consolidation coefficient, defined as cy = m P;

is the initial reservoir pressure.
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Figure 9: Comparison between the numerical solutions of T+M a nd the analytical solutions for the fracture widths. T+M is
validated for various geomechanical properties, matching the analytical solutions.
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Figure 10: Comparison between the numerical solutions of T+M and the analytical solutions of the fracture propagation.
Left: the viscosity dominated regime. Right: the toughness dominated regime. M; is the initial mass of water in place. The

numerical solutions match analytical solutions, validati ng T+M.
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Figure 11: Fracture propagation in vertical direction due t o tensile failure. Left: fractured areas at different times . Right:
the fracture opening (i.e., half of the width) at the end of sim ulation. The fracture propagates upward more than downward
because of low S}, at the shallower depth. As a result, we obtain larger opening of the fracture around the top area than the

fracture opening at the bottom area.
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Figure 12: Pressure distribution on the x-z plane at differe nt times. The pressure within the fracture is almost same as th e
injection pressure at late time because of its high permeabi lity.
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Figure 13: Evolution of pressure at the injection point (the left figure) and the total number of fractured nodes (the righ tfigure)
over the domain. During the fracturing process, we observe sa w-tooth pressure history. At early time, the oscillation is h igh
because of small pore volume of the fracture, while the oscill ation becomes mild, as the fracture pore volume becomes larg e.
Stairwise fracturing of the right figure ensures numerical st ability of the sequential implicit method.
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Figure 14: Evolution and distribution of effective shear st ress, +/J2, at different times. The high shear stresses are concen-
trated near the fracture tip.
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Figure 15: Effective stresses at the x-z plane at different t imes. Effective stresses at many locations may cross over th e
failure line at late times, when cohesion is 2.0 MPa and =04 = 28.69(0.5 rad).
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Figure 16: Evolution of the areas of shear failure during sim ulation. The value indicates the number of Gauss points at a
gridblock which face shear failure. Shear failure occurs in a Il directions, including the y direction. The shear failure zone is
not thin nor two-dimensional.
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Figure 17: Effective stresses of the domain on the Mohr-Coul omb plot at different times. All the effective stresses are o n and
inside the yield surface.
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Figure 18: Left: the fractured zone at t=1602 s. Right: evolu  tion of pressure at the injection point. Shear failure limit s the
vertical fracture propagation of tensile failure, compare d with the reference case.
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Figure 19: Effect of the injection rate. When the injection ra

slower by the same order.

te is reduced by one order, the fracture propagation becomes
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Figure 20: Effect of effective shear stress in tensile failu re. When introducing small perturbations in shear effective stress

for tensile failure,

B = 10.0, we still obtain small changes in hydraulic fracturing.
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Figure 21: Effect of the maximum compressive total horizont al stress. More vertical fracturing occurs (the left figure) , com-

pared with the reference case, although the width of the fractu

re is similar to that of the reference case (the right figure).





