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Abstract 
We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely 

T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary 

conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M 

simulator can model the initial fracture development during the hydraulic fracturing operations, after which the 

domain description changes from single continuum to double or multiple continua in order to rigorously model 

both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling 

between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability 

and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. 

We also fully accounts for leak-off in all directions during hydraulic fracturing. 

 

We first validate the T+M simulator, matching numerical solutions with the analytical solutions for 

poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various 

cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile 

failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast 

injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear 

effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical 

responses are still well-posed. 

 
Keywords: Hydraulic fracturing, Poromechanics, Tensile failure, Fracture propagation, Double porosity, Shale gas. 
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1. Introduction

Hydraulic fracturing is widely used in reservoir engineering applications to increase production by enhancing

permeability (Zoback, 2007; Fjaer et al., 2008). Injectionof fluid generates high pressure around wells, which can

create a fracture normal to the direction of the smallest magnitude of the principal total stresses. The creation of the

fracture significantly improves permeability, changing heat and fluid flow regimes. For example, hydraulic fracturing

is applied to geothermal engineering because the fracturedgeothermal reservoirs can increase heat extraction from

geothermal reservoirs (Legarth et al., 2005; Rutqvist et al., 2008). In reservoir engineering, gas production in shale/tight

gas reservoirs typically hinges on hydraulic fracturing because of the extremely low permeability of such reservoirs

(Freeman et al., 2011; Vermylen and Zoback, 2011; Fisher andWarpinski, 2012). The horizontal wells along with

hydraulic fracturing are typically applied to maximize production of gas in the shale gas reservoirs (Freeman et al.,

2011; Vermylen and Zoback, 2011). Longuemare et al. (2001) studied fracture propagation based on the PKN fracture

model, associated with a 3D two phase thermal reservoir simulator. Adachi et al. (2007) reviewed a brief history of the

models of hydraulic fracturing in reservoir engineering, which were developed before the stage of full 3D hydraulic

fracturing simulation. According to Adachi et al. (2007), two models from plane strain geomechanics, namely PKN

model (Perkins and Kern, 1961) and KGD model (Nordren, 1972), were developed at early times, assuming simple

fracture geometries. Then, the pseudo-3D (P3D) model and the planar 3D model (PL3D) model were proposed for

more realistic fracture shapes than those of the PKN and KGD models. The four models provide low computational

cost, but they cannot properly simulate the cases of hydraulic fracturing tightly coupled to flow, such as shale gas

reservoirs. Hydraulic fracturing in the shale gas reservoirs requires rigorous modeling in fracture propagation and fluid

flow, such as tightly coupled flow and geomechanics.

Several studies to develop algorithms for hydraulic fracturing simulation have been made in reservoir or geothermal

engineering. Ji et al. (2009) developed a numerical model for hydraulic fracturing, considering coupled flow and

geomechanics, where the algorithm is based on the dynamic update of the boundary conditions along the fracture

plane, fundamentally motivated by the node splitting. Later, Nassir et al. (2012) partially incorporated shear failure to

hydraulic fracturing, although poromechanical effects are not fully considered. Dean and Schmidt (2009) employed

the same fracturing algorithm in Ji et al. (2009) for tensilefracturing, while using different criteria based on rock

toughness. Fu et al. (2012) used the node-splitting method when material faces tensile failure, based on the elastic
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fracture mechanics (Henshell and Shaw, 1975; Camacho and Ortiz, 1996; Ruiz et al., 2000). The algorithm by Ji et al.

(2009) can only consider the vertical fracturing, but can easily be implemented to the finite element geomechanics

codes, changing the boundary conditions and the corresponding data connectivity. Furthermore, it can easily couple

flow and geomechanics, accounting for the leak-off of the injected fluid to the reservoirs. On the other hand, the

method by Fu et al. (2012) is not restricted to the vertical fracturing. However, fracturing in 3D problems causes high

complexity in code development, and massive modification ofthe data connectivity is much challenging, compared

with the algorithm by Ji et al. (2009). Moreover, the method by Fu et al. (2012) only allows fluid flow along gridblocks,

so the leak-off of the injected fluid to the gridblokcs cannotproperly be considered.

The enhanced assumed strain (EAS) and extended finite element methods (XFEM) have been studied in the com-

putational mechanics community in order to model strong discontinuity in displacement (e.g., Borja (2008) and Moes

et al. (1999)). These methods introduce discontinuous interpolation functions, and theoretically do not require the

remeshing when applied to the modeling in fracture propagation. However, even though the mesh is not updated, the

applications in the full 3D problems are still much challenging, requiring huge complexities and coding effort, because

the fracture shape in 3D is at least two-dimensional, while 2D problems have mainly been studied, where the fracture

shapes in 2D are simply a line. Furthermore, the coupling of flow and geomechanics by the EAS method or XFEM has

little been investigated. For example, Legarth et al. (2005) applied XFEM to hydraulic fracturing, but the application

potentially has the same difficulties as the method by Fu et al. (2012). Ji et al. (2009) showed significant differences

between the results with and without poroelastic effects inhydraulic fracturing. The poromechanical effects can be

significant for low permeable and high compressible reservoirs with low compressible fluid, such as water injection

(Kim et al., 2011c, 2012a).

From the aforementioned characteristics of the algorithmsof hydraulic fracturing, we develop a coupled flow and

geomechanic simulator of hydraulic fractuiring in this study, using a similar method of Ji et al. (2009) for tensile

fracturing. In addition, we employ a tensile failure criterion that can also account for shear stress effect as well as

normal stress (Ruiz et al., 2000). We also include shear failure with Drucker-Prager and Mohr-Coulomb models (e.g.,

Wang et al. (2004)), and can simultaneously account for tensile and shear failures.

Creation of the fractures by tensile or shear failure implies that two different porous media, such as fracture and

rock matrix, coexist at a continuum level, and thus the double or multiple continuum methods are desirable for more
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accurate modeling in not only flow-only but also coupled flow and geomechanics simulation (Barenblatt et al., 1960;

Pruess and Narasimhan, 1985; Berryman, 2002; Kim et al., 2012b). The developed simulator can consider thermo-

poro-mechanical effects in pore volume more rigorously in the multiple porosity model, as described in Kim et al.

(2012b). We consider the permeability change in the fracture(s), motivated by the cubic law (Witherspoon et al.,

1980; Rutqvist and Stephansson, 2003). Then we take validation tests for poromechanical effects, the widths of static

fractures, and fracture propagations. We will also perform3D several numerical simulations in shale gas reservoirs,

and investigate evolution of flow and geomechanical properties and variables such as the dimension and opening of the

fractures, fluid pressure, and effective stress.

2. Mathematical formulation

2.1. Governing Equation

Hydraulic fracturing requires the modeling of coupled flow-heat flow and geomechanics rigorously. The governing

equation for fluid flow is written as follows.

d

dt

∫

Ω

mkdΩ +

∫

Γ

fk · n dΓ =

∫

Ω

qkdΩ, (1)

where the superscriptk indicates the fluid component.d(·)/dt means the time derivative of a physical quantity(·)

relative to the motion of the solid skeleton.mk is mass of componentk. fk andqk are its flux and source terms on the

domainΩ with a boundary surfaceΓ, respectively, wheren is the normal vector of the boundary.

The fluid mass of componentk is written as

mk =
∑

J

φSJρJXk
J + δS(1 − φ)ρRΥG, (2)

where the subscriptJ indicates fluid phases.φ is the true porosity, defined as the ratio of the pore volume tothe bulk

volume in the deformed configuration.SJ , ρJ , andXk
J are saturation and density of phaseJ , and the mass fraction of

componentk in phaseJ , respectively.δS is the indicator for gas sorption.δS = 0.0 for non-sorbing rock such as tight

gas systems, whileδS = 1.0 for gas-sorbing media, such as shales (Moridis et al., 2012). ρR is the rock density, and

ΥG is the mass of sorbed component per unit mass of rock.
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The mass flux term is obtained from

fk =
∑

J

(
wk

J + Jk
J

)
, (3)

wherewk
J andJk

J are the convective and diffusive mass flows of componentk in phaseJ . For the liquid phase,J = L,

wk
J can be given by Darcy’s law as

wk
J = Xk

JwJ , wJ = −ρJ krJ

µJ
kp (GradpJ − ρJ g), (4)

wherekp is the absolute (intrinsic) permeability tensor. The termsµJ , krJ , pJ are the viscosity, relative permeability,

and pressure of fluid phaseJ , respectively.g is the gravity vector, andGrad is the gradient operator. Depending

on the circumstances, we use more appropriate flow equationssuch as the Forchheimer equation (Forchheimer, 1901),

which incorporates laminar, inertial and turbulent effects. In this case, Darcy’s law is written with scalar permeability as

wJ = −ρJ
2(GradpJ − ρJg)

µJ

kpkrJ
+

√
(

µJ

kpkrJ

)2

+ 4χJρJ |GradpJ − ρJg|
, (5)

whereχJ is the turbulence correction factor (Katz, 1959).

For the gaseous phase,J = G, wk
G is given by

Xk
G = Xk

GwG, wG = −
(

1 +
kK

PG

)

k
ρG krG

µG
(GradpG − ρG g), (6)

wherekK is the Klinkenberg factor (Klinkenberg, 1941). The diffusive flowJk
J is described as

Jk
J = −φ SJ τG Dk

J ρJ GradXk
J , (7)

whereDk
J andτG are the hydrodynamic dispersion tensor and gas tortuosity,respectively.

The governing equation for heat flow comes from heat balance,written as

d

dt

∫

Ω

mHdΩ +

∫

Γ

fH · n dΓ =

∫

Ω

qHdΩ, (8)
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where the superscriptH indicates the heat component.mH , fH , andqH are heat, its flux, and source terms, respec-

tively. The termmH is the heat accumulation term, and is expressed as

mH = (1 − φ)

∫ T

T0

ρR CR dT +
∑

J

φ SJ ρJeJ + δS(1 − φ)ρReS,GΥG, (9)

whereT , CR andT0 are temperature, heat capacity of the porous medium, and reference temperature.eJ andeS,G

denote specific internal energy of phaseJ and sorbed gas, respectively. The heat flux is written as

fH = −KH GradT +
∑

J

hJ wJ , (10)

whereKH is the composite thermal conductivity of the porous media. The specific internal energy,eJ , and enthalpy,

hJ , of componentsk in phaseJ become, respectively,

eJ =
∑

k

Xk
J ek

J , hJ =
∑

k

Xk
J hk

J . (11)

More detailed descriptions of the governing equations for fluid and heat flow are shown in Moridis et al. (2012). For

the boundary conditions for the flow problems, we consider the boundary conditionspJ = p̄J (prescribed pressure) on

the boundaryΓp, andwJ ·n = w̄J (prescribed mass flux) on the boundaryΓf , whereΓp∩Γf = ∅, andΓp∪Γf = ∂Ω.

The boundary conditions for heat flow areT = T̄ (prescribed temperature) on the boundaryΓT , andfH · n = f̄H

(prescribed heat flux) on the boundaryΓH , whereΓT ∩ ΓH = ∅, andΓT ∪ ΓH = ∂Ω.

The governing equation for geomechanics is based on the quasi-static assumption (Coussy, 1995), written as

Div σ + ρb g = 0, (12)

whereDiv is the divergence operator.σ is the total stress tensor, andρb is the bulk density. Note that tensile stress

is positive in this study. The infinitesimal transformationis used to allow the strain tensor,ε , to be the symmetric

gradient of the displacement vector,u,

ε =
1

2

(

GradT u + Gradu
)

. (13)
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The boundary conditions for geomechanics are as follows;u = ū, given displacement, on a boundaryΓu, andσ·n = t̄,

traction on a boundaryΓt, whereΓu ∪ Γt = ∂Ω, the boundary over the domain, andΓu ∩ Γt = ∅ . The initial total

stress satisfies the mechanical equilibrium for given boundary conditions.

Note that the boundary conditions of geomechanics in hydraulic fracturing are not prescribed but dependent on the

solutions of geomechanics (i.e., nonlinearity). Conventional plastic mechanics such as Mohr-Coulomb failure yields

material nonlinearity while the boundary conditions are still prescribed (Simo and Hughes, 1998). On the other hand,

geomechanics of hydraulic fracturing in this study does notyield material nonlinearity while nonlinearity lies in the

boundary conditions.

2.2. Constitutive relations

Gas flow within homogeneous rock can be modeled using single porosity poromechanics, extended from Biot’s

theory (Coussy, 1995). However, when failure occurs and fractures are created, we face local heterogeneity because

fractures and rock matrix coexist. In this case, it is desirable to use double or multiple porosity models, which allow

local heterogeneity, particularly for low permeable rock matrix, as shown in Figure 1. We employ the generalized

formulation that can be used for the non-isothermal multiphase flow and multiple porosity models, described as (Kim

et al., 2012b)

δσ =

δσ
′

︷ ︸︸ ︷

Cup : δ (ε − εp)
︸ ︷︷ ︸

εe

−b∗l,Jδpl,J1 − Kdr b̃lδT1, b∗l,J = −Kdr(bSJ )l, (14)

1

Kdr
=

ηk

Kk
, Cup = Kdr

( η

K

)

k
Ck, bl = −

(αη

K

)

l
, b̃l = 3(αT η)l, (15)

δζl,J − δφ(l,J)p
︸ ︷︷ ︸

δζ(l,J)e

= b∗l,Jδεv,e + L−1
l,J,m,Iδpm,I − D̄l,J,mδTm, (16)

(
S̄ − s̄JδmJ

)

l
= −b̃lKdrδεv − D̄l,m,Iδpm,I + D̃l,mδTm, (17)

δκl = −Hl · δξl, (18)

where the subscriptse andp denote elasticity and plasticity, respectively, and double indices indicate summation.1

is the rank-2 identity tensor.εe andεp are the elastic and plastic strains, respectively.Kdr andCup are the upscaled

elastoplastic drained bulk and tangent moduli at the level of a gridblock.αl is the Biot coefficient of the subelementl,

(i.e.,αl = 1−Kl/Ks, whereKs is the intrinsic solid grain bulk modulus.).αT is the thermal dilation coefficient,ηl is

the volume fraction of the subelementl, andKl is the drained bulk modulus of the subelementl. ζ(l,J)e
andφ(l,J)p

are
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the elastic and plastic fluid contents for the materiall and phaseJ , respectively.δζ(l,J)e
= (δm/ρ)l,J , wherem(l,J)

is the fluid mass of phaseJ within the subelementl. L = {Ll,J,m,I} is a positive-definite tensor, extended from the

Biot modulus of single phase flow.̄S is the total entropy, and̄sJ is the internal entropy per unit mass of the phaseJ

(i.e., specific entropy).κl andξl are the internal stress-like and strain-like plastic variables for materiall, respectively.

Hl is a positive definite hardening modulus matrix for materiall. D̄ =
{
D̄l,m,I

}
is determined by coupling beween

fluid flow and heat transfer, regardless of geomechanics, andD̃ =
{

D̃l,m

}

is the heat capacity term. The off-diagonal

terms ofD̄ andD̃ are typically taken to be zero. Then, the diagonal terms ofD̄ andD̃ are determined by3αs
l,I and

(Cd/T )l, respectively.3αs
l,I is the thermal dilation coefficient related to solid grain and phaseI of the subelementl,

andCd is the total volumetric heat capacity.

Forφ(l,J)p
, we take (Armero, 1999)

δφ(l,J)p
= b∗l,Jδεv,p. (19)

L for single phase flow with a fracture-rock matrix (double porosity) system can be written in a matrix form, when the

off-diagonal terms are taken to be zero, as

L−1 =







ηF NF 0

0 ηMNM







, (20)

whereNF andNM are the inverse of the Biot moduli,MF andMM , for the fracture and rock matrix media, re-

spectively, (i.e.,NF = 1/MF andNM = 1/MM , whereMf = φcf + (αf − φ)/Ks andcf is the intrinsic fluid

compressibility). The subscriptsF andM indicate the fracture and rock matrix, respectively. More details of the

formulation are described in Kim et al. (2012b).

Here, we can relate the above formulation to the porosity used in reservoir simulation,Φ, called Lagrange’s porosity

or reservoir porosity (Settari and Mourits, 1998; Tran et al., 2004).Φ is defined as the ratio of the pore volume in the

deformed configuration to the bulk volume in the reference (typically initial) configuration. Specifically, for single

phase flow,

δml = ρl Φηl (cf δpf − cT δT ) + ρJηlδΦ, where cf =
1

ρf

dρf

dpf
, cT = − 1

ρf

dρf

dT
, (21)
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where the subscriptf means fluid.cT is the thermal expansivity of fluid. Comparing Equation 21 with Equation 16,

we obtain

δΦl =

(
α2

l

Kl
+

αl − Φl

Ks

)

δpf + 3αT,lαlδT − bl

ηl
δσv, (22)

whereσv is the total (volumetric) mean stress.

In this study, we neglect the heat contribution directly from geomechanics to heat flow, ignoring the term related

to −b̃lKdrδεv of Equation 17 (i.e., one-way coupling from heat flow to geomechanics). This assumption is justified

when heat capacity of material or fluid is high, or direct heatgeneration from deformations is negligible (Lewis and

Schrefler, 1998; Kim et al., 2012a).

Note that the double porosity model is used initially for naturally fractured reservoirs, while, in this study, we

change the single porosity model into the double porosity during simulation dynamically when a material faces plastic-

ity. Thus, for the naturally fractured reservoirs,Cup andKdr at a gridblock are obtained from the upscaling from given

properties of subelements such as fracture and rock matrix materials. Accordingly, the return mapping for elastoplas-

ticity is performed at all the subelements (Kim et al., 2012b).

On the other hand, in this study,Cup andKdr are directly obtained from the elastoplastic tangent moduli at a

gridblock (global) level, not the subelements, while we need to determine the drained bulk moduli of the fracture and

rock matrix materials for the double porosity model, followed by the coupling coefficients. To this end, we assume

that the rock matrix has the same drained bulk modulus as thatof the single porosity material before plasticity (i.e.,

elasticity), because the rock matrix is undamaged (Kim and Moridis, 2012a). Then, from Equation 16, the drained bulk

modulus of the fracture can be determined as

Kf = ηf
KdrKM

KM − Kdr(1 − ηf )
. (23)

ConsideringKdr andKf to be positive for wellposedness, the volume fraction of thefracture,ηf , has the constraint as

ηf > 1 − KM

Kdr
. (24)
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2.3. Failure and Fracturing
2.3.1. Tensile failure

We employ a tensile failure condition for large-scale fracture propagation, used in Ruiz et al. (2000), as follows.

σ′

c

(

=
√

β−2 (t′2t + t2s) + t2n

)

≥ Tc, (25)

wheretn, tt, andts are the normal and shear effective stresses, acting on a fracture plane, as shown in Figure 2.Tc is

tensile strength of material, typically determined from a tension test such as the Brazilian test. From Equation 25, we

can account for contribution from both normal and shear effective stresses to tensile failure. Whenβ = ∞, the tensile

failure is purely caused by the normal effective stress. Forβ = 1.0, σ′

c of Equation 25 becomes identical to that of

Asahina et al. (2011).

Note that we employ the fracturing condition based on tensile strength in this study, rather using toughness-based

fracturing conditions, because we focus on large scale fracture propagation. The toughness-based fracturing conditions

with the stress intensity factor is typically employed in small scale fracture propagation (Adachi et al., 2007).

For a given geomechanical loading, the boundary condition of geomechanics is modified when the effective stresses

reach a tensile failure condition. The internal natural (Neumann) boundary conditions are introduced at the areas where

the effective stresses satisfy the tensile failure condition, Equation 25.

When hydraulic fracturing induces a dry zone of a created fracture, followed by a fluid lag (Adachi et al., 2007), the

fluid pressure within the dry zone is determined from the surrounding reservoir pressure in this study. This implies that

the pressure of the dry zone is locally equilibrated with thesurroundings, because the time scale of the local pressure

equilibrium is much smaller than the time scale of fluid flow within the fracture.

2.3.2. Shear failure

For shear failure, we use the Drucker-Prager and Mohr-Coulomb models, which are widely used to model failure

of cohesive frictional materials. The Drucker-Prager model is expressed as

f = βfI1 +
√

J2 − κf ≤ 0, g = βgI1 +
√

J2 − κg ≤ 0, (26)

whereI1 is the first stress invariant of the effective stress andJ2 is the second stress invariant of the effect deviatoric

stress.f andg are the yield and plastic potential functions, respectively. βf , κf , βg, andκg are the coefficients to
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characterize the yield and plastic potential functions.

The Mohr-Coulomb model is given as

f = τ ′

m − σ′

m sin Ψf − ch cos Ψf ≤ 0, g = τ ′

m − σ′

m sinΨd − ch cos Ψd ≤ 0, (27)

σ′

m =
σ′

1 + σ′

3

2
and τ ′

m =
σ′

1 − σ′

3

2
, (28)

whereσ′

1, σ′

2, andσ′

3 are the maximum, intermediate, and minimum principal effective stresses, respectively.ch, Ψf ,

andΨd are the cohesion, the friction angle, and the dilation angle, respectively. Figure 3 shows the yield functions

of the Drucker-Prager and Mohr-Coulomb models. The Drucker-Prager model can also be modified for the Mohr-

Coulomb model, takingβf , kf , βg, andkg as, respectively,

βf =
sin Ψf

0.5
(
3(1 − sin Ψf ) sin θ +

√
3(3 + sinΨf ) cos θ

) , (29)

kf =
3ch

0.5
(
3(1 − sin Ψf ) sin θ +

√
3(3 + sinΨf ) cos θ

) , (30)

βg =
sin Ψd

0.5
(
3(1 − sin Ψd) sin θ +

√
3(3 + sinΨd) cos θ

) , (31)

kg =
3ch

0.5
(
3(1 − sin Ψd) sin θ +

√
3(3 + sinΨd) cos θ

) , (32)

whereθ is the Lode angle (Bathe, 1996; Wang et al., 2004), written as

θ =
1

3
cos−1

(

3
√

3

2

J3

J
3/2
2

)

, (33)

whereJ3 is the third stress invariant of the effect deviatoric stress.

3. Numerical modeling

We developed the T+M hydraulic fracturing simulator by coupling the Lawrence Berkeley National Laboratory

(LBNL) in-house simulator TOUGH+RealGasH2O (for the description of the non-isothermal flow of water and a real
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gas mixture through porous/fractured media) with the ROCMECH in-house geomechanics simulator. We describe the

numerical algorithms and characteristics of the coupled simulator as follows.

3.1. Discretization

Space discretization is based on the finite volume method, also called the integral finite difference method, in the

simulation of fluid and heat flow (TOUGH+RealGasH2O code), and the finite element method in the geomechanical

component of the coupled simulations (ROCHMECH code). T+M denotes a coupled simulator from the flow and

geomechanics simulators. Time discretization in both constituent components of T+M is based on the backward Euler

method that is typically employed in reservoir simulation.

3.2. Failure Modeling

3.2.1. Tensile failure and node splitting

We introduce the new internal Neumann boundaries by splitting nodes when fracturing occurs, and assign the

traction from the fluid pressure inside the fractures. The node splitting is performed based on the tensile failure

condition, as described in the previous section. In this study, the focus is on vertical tensile fracturing. Because of

symmetry, we easily extend the numerical simulation capabilities to 3D domains. The fracture plane is located at the

outside boundary (Ji et al., 2009), as shown in Figure 4.

3.2.2. Shear failure and elastoplasticity

We use classical elastoplastic return mapping algorithms for the Mohr-Coulomb and Drucker-Prager models (Simo

and Hughes, 1998). Unlike tensile failure, we account for shear failure with no assumption of a certain fracturing

direction. The Drucker-Prager model provides a simple closed analytical formulation for return mapping because it is

only associated withI1 andJ2. However, the Mohr-Coulomb model also takesJ3, and thus the return mapping is not

straightforward unlike the Drucker-Prager model.

We employ the two-stage return mapping algorithm proposed by Wang et al. (2004) for the the Mohr-Coulomb

model, after slight modification. At the edges of the failureenvelope, we also employ the Drucker-Prager model with

the explicit treatment ofJ3 to avoid numerical instability. The Drucker-Prager model with the explicit treatment ofJ3

can simulate the Mohr-Coulomb failure accurately not only at the edges but also over the failure envelope (Kim and

Moridis, 2012b).
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3.3. Sequential implicit approach

There are two typical solution approaches to solve the coupled problems; fully coupled and sequential implicit

methods. The fully coupled method usually provides unconditional and convergent numerical solutions for mathemat-

ically wellposed problems. However, it requires a unified flow-geomechanics simulator, which results in enormous

software development effort and a large computational cost.

On the other hand, the sequential implicit method uses existing simulators for the solution of the constituent sub-

problems. For example, the subproblems of non-isothermal flow, or of geomechanics, are solved implicitly, fixing

certain geomechanical (or flow) variables, and then geomechanics (or flow) is solved implicitly from the flow (or

geomechanics) variables obtained from the previous step. According to Kim et al. (2011b) and Kim et al. (2011c),

the fixed stress sequential scheme provides unconditional stability and numerical convergence with high accuracy in

poromechanical problems. The unconditional stability is also valid for the given multiple porosity formulation (Kim

et al., 2012b). By the fixed-stress split method, we solve theflow problem, fixing the total stress field. This scheme can

easily be implemented in flow simulators by updating the Lagrange porosity function and its correction term as follows

(Kim et al., 2012b).

Φn+1
l − Φn

l =

(
α2

l

Kl
+

αl − Φn
l

Ks

)

︸ ︷︷ ︸
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∑
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J

(
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l,J

)
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l
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c, (34)
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(
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k

)

}

︸ ︷︷ ︸

(σn
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v )

, (35)

where∆(·)n = (·)n+1 − (·)n, and the superscriptn indicates the time level.cp is the pore compressibility in reservoir

simulation. The porosity correction term,∆Φl
c, is calculated from geomechanics, which corrects the porosity estimated

from the pore compressibility.

For permeability of the fracture, we employ nonlinear permeability motivated by the cubic law (Witherspoon et al.,

1980; Rutqvist and Stephansson, 2003), written as, for an example of single water phase,

Qw = ac
ωnp

12µw
H (Grad p − ρwg) , (36)
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whereω is the fracture opening (also called aperture or width).Qw andH are flow rate of water and the fracture plate

width, respectively.np characterizes the nonlinear fracture permeability. Whennp = 3.0, Equation 36 is identical to

the cubic law.ac is the correction factor reflecting the fracture roughness,as used in Nassir et al. (2012). We calculate

the fracture permeability of a gridblock based on harmonic average of the permeabilities at the grid corner points near

the gridblock.

For geomechanical properties of the fracture, we assign a much low Young’s modulus, compared with rock matrix,

when tensile fracturing occurs. For shear failure, the return mapping algorithm automatically determines nonlinear

geomechanical properties. Figure 5 briefly shows how flow andgeomechanics simulators are communicated sequen-

tially.

4. Validation examples

We show three verification tests that can provide analyticalsolutions. The first test is Terzaghi’s and Mandel’s

problems, which can examine the poromechanical effets (Terzaghi, 1943; Abousleiman et al., 1996), as shown in

Figure 6. Consideration of the poromechanical effects (i.e., two-way coupling between flow and geomechanics) is

necessary for accurate modeling of fracture propagation not only within the shale gas reservoirs but also outside the

reservoirs, for example, which are highly water-saturated, much more incompressible than gas (Kim et al., 2012a). For

the second and third tests, shown in Figure 7, We also analyzethe width variation of static fractures (Sneddon and

Lowengrub, 1969) and fracture propagations in plane straingeomechanics (Valko and Economies, 1995; Gidley et al.,

1990), respectively.

4.1. Terzaghi’s and Mandel’s problems

For Terzaghi’s problem, the left of Figure 6, we have 31 gridblocks, the sizes of which are uniform, 1.0 m. Liquid

water is fully saturated, and the initial pressure is 8.3 MPa. We impose a drainage boundary on the top and no-

flow conditions at the bottom. The initial total stress is also -8.3 MPa over the domain, and we set 16.6 MPa as the

overburden, two times greater than the initial total stress. The Young’s modulus and Poisson ratio are 450 MPa and 0.0,

respectively. Only vertical displacement is allowed and nogravity is applied. We consider isothermal fluid flow, where

liquid water at25oC is fully saturated. The permeability and porosity are6.51 × 10−15 m2, 6.6 mD, (1 Darcy=

9.87×10−13 m2) and 0.425, respectively. Biot’s coefficient is 1.0. The monitoring well is located at the last gridblock.
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From the left of Figure 8, the numerical solution from T+M matches the analytical solution. We identify the

accurate instantaneous pressure buildup at the initial time, followed by the decrease of pressure due to the fluid flow to

the drainage boundary at the top.

For Mandel’s problem, by symmetry, we take the upper half domain in the right of Figure 6 for numerical simula-

tion, 20 m × 0.265 m. We have40 × 5 gridblocks, the sizes of which are uniform in the x direction, 0.5 m, while the

sizes in the z direction are non-uniform, 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.1 m. The initial pressure is 10.0 MPa. We

have the drainage boundary at the left and right sides and no-flow conditions at the other sides. The initial total stress is

also 10.0 MPa over the domain, and we have 20.0 MPa of the overburden, two times greater than the initial total stress.

We approximate the constraint of Mandel’s problem that the vertical displacement at the top is uniform. The Young’s

modulus and Poisson ratio are 450.0 MPa and 0.0. We have the 2Dplane strain geomechanics. The monitoring well

is located at (5.25 m, 0.215 m), as shown in the right of Figure8. No gravity is considered. Only horizontal flow is

allowed, while vertical flow is hydro-static. We take the same flow variables and properties as the previous Terzaghi

problem.

The right of Figure 8 shows that the result from T+M matches the analytical solution. The numerical result captures

the Mandel-Cryer effect of Mandel’s problem, correctly, which cannot be captured by the flow-only simulation.

4.2. Static fracture in plane strain geomechanics

We take, by symmetry, a quarter of the domain in Figure 7 for numerical simulation, i.e., the upper and right

domain. We have150 × 1 × 10 gridblocks for the plane strain geomechanics problem that has a static fracture. No

gravity is considered. The sizes of the gridblocks in the x, y, and z directions are uniform, 0.05 m, 0.1 m, and 0.1 m,

respectively. The initial total stress is zero, and the fluidpressure within the fracture is uniform, 10 MPa, resulting in

10 MPa of the net pressure. Then, the fracture width,ωf , is tested with various geomechanics properties, i.e., 600MPa

and 6.0 GPa of Young’s modulus, and 0.0 and 0.3 of Poisson’s ratio.

We use an analytical solution of the width of a static fracture in plane strain geomechanics for a given net pressure,

proposed by Sneddon and Lowengrub (1969). From Figure 9, thenumerical solutions match the analytical solutions

for the different geomechanics properties, validating theT+M simulator.
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4.3. Fracture propagation in plane strain geomechanics

We inject water to a fully water-saturated reservoir for hydraulic fracturing. The simulation domain is a quarter

of the domain in Figure 7. We have 150 gridblocks for flow within the fracture in the x direction, the sizes of which

are uniform, 0.05 m, 0.5, m, 0.5 m. The initial reservoir pressure is 10 MPa, and no gravity is considered. The

reservoir permeability and porosity are8.65 × 10−23 m2 and 0.1, respectively. The density and viscosity of water are

1000 kg/m3 and1.0 × 10−3 Pa · s, respectively. For geomechanics, we use 6.0 GPa of Young’s modulus and 0.3

of Poisson’s ratio, which represent a shale gas reservoir (Eseme et al., 2007). Biot’s coefficient is 0.0, because the

analytical solutions used in this section do not account forthe poromechanical effects.

Then we test two cases: viscosity-dominated and toughness-dominated regimes in hydraulic fracturing. For the

viscosity-dominated regime, the solution can be approximated by a limit solution from the assumption that rock has

zero toughness (Detournay, 2004). We use5.0× 10−7 kg/s of the injection rate and an extremely low value of tensile

strength,1.0 × 10−4 Pa. Even though there is no definitive mathematical relation between tensile strength and rock

toughness, according to Zhang (2002), tensile strength andthe modeI toughness,K1C are related positively based

on experimental observations from the data of the previous studies. Precisely, Zhang (2002) proposed an empirical

relation asTc (MPa) = 6.88 × K1C (MPa m0.5). For the toughness-dominated regime, we use1.0 × 10−6 kg/s

of the injection rate and0.1 MPa of tensile strength, where fracturing is controlled by rocktoughness. We use the

analytical solutions shown in Valko and Economies (1995) and Gidley et al. (1990) for the viscosity and toughness

dominated regimes, respectively (Dean and Schmidt, 2009; Fu et al., 2012).

Figure 10 shows that numerical solutions of T+M are close to the analytical solutions, validating T+M. Small

differences are mainly due to the sequential implicit method, where only one iteration is performed , the empirical

relation between tensile strength and rock toughness, the assumptions of the analytical solutions.

5. Numerical examples for 3D vertical fracture propagation

We then investigate several 3D numerical examples of hydraulic fracturing induced in a shale gas reservoir, as

shown in the right of Figure 4. Even though the flow and geomechanical properties used in this section mostly represent

shale gas reservoirs, we investigate sensitivity analysisfor a parameter space not restricted to the shale gas reservoirs.

The in-depth investigation and discussion of the shale gas reservoirs such as Marcellus shale will be shown elsewhere

(Kim and Moridis, 2012a).
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The domain of geomechanics has 50, 5, 50 gridblocks in x, y andz directions, respectively, where the x-z plane

is normal to the direction of the lowest magnitude of the principal total stresses,Sh (i.e., the minimum compressive

principal total stress). The sizes of the gridblocks in the xand z directions are uniform, i.e.,∆x = ∆z = 3 m. The

sizes of the gridblocks in the y direction are non-uniform, i.e. 0.1 m, 0.5 m, 3.0 m, 10.0 m, 20.0 m.

The Young’s modulus and Poisson’s ratio are 6.0 GPa and 0.3, respectively. The tensile strength of material for

the reference case is 4.0 MPa. Initial fluid pressure is 17.10MPa at 1350m in depth with the 12.44 kPa/m gradient.

Initial temperature is58.75 oC at 1350 m in depth with the0.025 oC/m geothermal gradient. The initial total principal

stresses are -26.21 MPa, and -23.30 MPa, and -29.12 MPa at 1350 m in depth in x, y, and z directions, respectively,

where the corresponding stress gradients are -19.42 kPa/m,-17.59 kPa/m, and -21.57 kPa/m, respectively. We consider

gravity with2200 kg/m3 of the bulk density, have no horizontal displacement boundary conditions at sides, except the

fractured nodes, and have no displacement boundary at the bottom.

For flow, we have 50, 6, 50 gridblocks in x, y and z directions, where one more layer for the fracture plane

is introduced for flow within the fracture, 0.1m. The initialpermeability and porosity of the shale reservoir are

8.65 × 10−19 m2, and 0.19, respectively. Once tensile fracturing occurs, the fracture permeability is determined

from Equation 36, wherenp = 3.0 andac = 0.017. For shear failure, we simply assign a constant permeability,

5.9 × 10−14 m2, 60 mD. Once failure occurs, we change the single porosity tothe double porosity model where

fracture and rock matrix volume fractions are 0.1 and 0.9. The reference fracture porosity is 0.9, when the fracture is

created, and the porosity varies during simulation due to poromechanical effects. Biot’s coefficient is 1.0. We inject

gas at (x=75m, z=-1440m), and vary the injection rate, plastic properties, and the initial total stress field. We assume

that the injected gas has the same physical properties as shale gas for simplicity. We choose gas injection as a reference

case because gas has higher mobility in shale gas reservoirsthan water does, which can enhance fracturing.

There are several options for modeling relative permeability and capillarity, implemented in the flow simulator,

TOUGH+RealGasH2O. In this study, we use a modified version ofStone’s relative permeability model (Aziz and

Settari, 1979) and the van Genutchen capillary pressure model (van Genuchten, 1980), respectively, written as

kr,J = max

{

0,min

{(
SJ − Sir,J

1.0 − Sir,w

)nk

, 1

}}

, (37)

Pc = Πc((S
e)−1/λp − 1)1−λp , Se =

Sw − Sir,w

1 − Sir,g − Sir,w
, (38)
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wherekr,J , Sir,J , andnk are relative permeability of phaseJ , irreducible saturation of phaseJ , and the exponent

that characterizes the relative permeability curve, respectively. Pc, λp andΠc are capillary pressure, the exponent

that characterizes the capillary pressure curve, and the capillary modulus, respectively. Then, we takeSir,w = 0.08,

Sir,g = 0.01, andnk = 4.0 for relative permeability, andλp = 0.45, Sir,w = 0.05, Sir,g = 0.0, andΠc = 2.0 kPa

for capillarity, where smallerSir,w andSir,g are chosen in the capillary pressure model in order to prevent unphysical

behavior (Moridis et al., 2008). Note that we employ the equivalent pore-pressure concept in multiphase flow coupled

with geomechanics (Coussy, 2004), not using the average pore-pressure concept. According to Kim et al. (2011a), the

equivalent pore-pressure provides high accuracy for strong capillarity, while the average pore-pressure, widely used in

reservoir simulation, may cause large errors and/or numerical instability when strong capillarity exists.

5.1. Gas injection

We first test a reference case, where the injection rate is 8.0kg/s, as follows. We do not consider shear failure for

this reference case. Figure 11 shows the fracture propagation in vertical direction due to tensile failure. At initial time,

we obtain a much small fracture. As the injection proceeds, the fracture grows, propagating horizontally and vertically.

In this test, the fracture propagates upward more than downward, because, from the initial conditions,Sh decreases

more than the initial pressure as the depth decreases, causing higher net pressure. The increase of the net pressure

yields lager opening of the fracture around the top area of the fracture than that of the bottom area, shown in the right

of Figure 11. During the period of the simulation, we obtain afinite (stable) growth of the fracture. This implies that

the fracture propagation from hydraulic fracturing can be controlled by injection time.

In Figure 12, we observe the distinct pressure distributionbetween inside and outside the fractured zone. Note that

the fracture of tensile failure creates much high permeability. Because of high permeability, the pressure within the

fracture is almost same as the injection pressure at late time, and its gradient is very low. As a result, the pressure

difference at the fracture tip is considerably high.

Figure 13 shows the evolution of pressure at the injection point and the total number of fractured nodes of the reser-

voir domain. From the left figure, at early time, pressure increases because of injection. Once the injection induces a

pressure value enough for tensile failure at the fracture tip, fracturing occurs and the fracture volume increases instan-

taneously. As a result, the pressure within the fracture decreases instantaneously, based on the fluid compressibility.

Specifically, the pressure at the injection point increasesup to 38 MPa, and drops significantly. Then, the pressure
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increases again due to the fluid injection. We observe this behavoir during the fracturing process, yielding saw-tooth

pressure history. At early time, the oscillation is high because of small pore volume of the fracture. As the fracture pore

volume becomes large, the oscillation becomes mild. The right figure shows the evolution of the total number of the

fractured nodes. Note that a sequential implicit method between flow and geomechanics might limit numerical stability

in hydraulic fracturing. Thus, to ensure the numerical stability, we control time step sizes that can cause no fracturing

at least once at the next time of any events of fracturing. Theright figure shows the aforementioned characteristics of

the sequential implicit method in hydraulic fracturing, aswell as finite fracturing during simulation.

Figure 14 shows evolution and distribution of effective shear stress, i.e.,
√

J2. From the figure, the shear stress

increases during simulation, and the high shear stresses are located around the fracture tip. The effective stresses atthe

x-z plane at early and late times are plotted in Figure 15, (Mohr-Coulomb plot). From the figure, effective stresses at

many locations may cross over the failure line at late times,when cohesion is low, indicating potential shear failure,

which will be tested in the next section.

5.2. Mohr-Coulomb plasticity

We investigate effects of shear failure in hydraulic fracturing, simultaneously considering tensile failure as well.

We takech = 2.0 MPa andΦf = Φd = 28.60(0.5 rad), which yield the same failure line shown in Figure 15.

From Figure 16, shear failure occurs in all directions, including the y direction. The shear failure zone is not thin nor

two-dimensional, but three-dimensional, having some volume. All the effective stresses of the domain, not only the x-z

plane but also the inside domain, are plotted in Figure 17. Weidentify that all the effective stresses are on and inside

the yield surface.

As shear failure grows during simulation, and it limits the vertical fracture propagation from tensile failure, shown

in the left of Figure 18. The fractured area from tensile failure is much smaller than that of the reference case, even

though the injection time is two times. Note that shear failure increases permeability of the reservoir formations.

The failure along to the y direction induces flow of fluid in they direction followed by additional shear fracturing

horizontally, because changes in pore-pressure induce changes in effective stress. We also observe different behavior

in pressure between with and without shear failure, shown inthe right of Figure 18, when it is compared with the

evolution of pressure in Figure 13,
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5.3. Effect of the injection rate

We change the injection rate of the reference case, from8.0 kg/s to 0.8 kg/s. From Figure 19, we find that

the fracture propagation is nearly proportional to injection rate. When the injection rate is reduced by one order, the

fracture propagates more slowly by the same order. The evolution of pressure also shows almost the same behavior as

that of the reference case. But, the total number of the fractured nodes at 6000 s, approximately 300 nodes, is smaller

than that of the reference case at 600 s, approximately 410 nodes, where the same amount of fluid is injected for both

cases, because longer time allows more leak-off of the fluid to the reservoir formation.

5.4. Contribution of effective shear stress in tensile failure

We test the effect ofβ of Equation 25 in order to investigate minor contribution ofeffective shear stress in tensile

failure, takingβ = 10.0. In Figure 20, we obtain almost the same results as those of the reference case. The width of

the fracture is also nearly same as that of the reference case(the right figure). This implies that small perturbations in

shear effective stress for tensile failure only cause smallchanges in hydraulic fracturing. The tensile failure condition

is well-posed, when we consider the mixed failure mode with normal and shear effective stresses.

5.5. Effect of the maximum compressive total horizontal stress

We increase the maximum compressive total horizontal stress, SH , which is higher than overburden stress,SV

(i.e.,SH = 1.2 × SV ). Failure is fundamentally determined by effective stress, which results from close interactions

between flow and geomechanics. Thus,SH indirectly affects hydraulic fracturing. In Figure 21, we obtain more

vertical fracturing (the left figure), compared with the reference case, while the width of the fracture is similar to that

of the reference case (the right figure). HighSH is more favorable to fracture propagation in the vertical direction,

limiting horizontal fracturing in the x direction.

6. Conclusions

We developed the T+M hydraulic fracturing simulator by coupling the TOUGH+RealGasH2O flow simulator with

the ROCMECH geomechanics code. T+M has the following characteristics: (1) vertical fracturing is mainly modeled

by updating the boundary conditions and the corresponding data structures; (2) shear failure can also be modeled during

hydraulic fracturing; (3) a double- or multiple-porosity approach is employed after the initiation of fracturing in order

to rigorously model flow and geomechanics; (4) nonlinear models for permeability and geomechanical properties can

easily be implemented; (5) leak-off in all directions during hydraulic fracturing is fully considered; and (6) the code
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provides two-way coupling between fluid-heat flow and geomechanics, rigorously describing thermo-poro-mechanical 

effects, and accurately modeling changes in effective stress, deformation, fractures, pore volumes, and permeabilities. 

     Numerical solutions of the T+M simulator matched the analytical solutions of poromechanical effects, the widths 

of the static fractures, and the fracture propagations of the viscosity and toughness dominated regimes, which validated 

the T+M simulator. From various tests of the planar fracture propagation, shear failure can limit the vertical fracture 

propagation of tensile failure, while it induces the enhanced permeability areas inside the domain, followed by inducing 

the leak-off into the reservoirs. When the same amount of fluid is injected, slow injection results in more leak-off and 

less fracturing, compared with fast injection. The maximum horizontal total stress, SH , affects tensile fracturing, 

and contributions of shear effective stress to tensile failure can also change the fractured areas. For both cases, the 

geomechanical responses are still stable and well-posed. 
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Figure 1: Left: a schematic diagram that represents a fractu re-matrix system after failure. Right: a conceptual diagra m of
the multiple interacting continuum (MINC) model, as an exam ple of the multiple porosity model (Pruess and Narasimhan,
1985). In the MINC model, fluid flows though a high permeable mat erial, such as the fracture, over the domain, while the other
materials store fluid and convey it to the high permeable mate rial.

Figure 2: A schematic diagram for a planar fracture. Fluid pr essure acts as traction on the fractured area. Effective nor mal
stress, tn, mainly induces tensile failure and the fracture opening in hydraulic fracturing. Effective shear stresses, tt and ts,
may also contribute to tensile failure in hydraulic fractur ing.
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Figure 3: The yield surfaces of the Mohr-Coulomb and Drucker -Prager models on (a) the principle effective stress space a nd
(b) on the deviatoric plane. All the effective stresses are l ocated inside or on the yield surface.

Figure 4: Schematics of hydraulic fracturing in 3D. Left: ge neral type of planar fracturing. Right: vertical propagati on of a
fracture, reduced from a general planar fracture due to no ho rizontal displacement condition at the plane that contains the
vertical fracture, by symmetry.

Figure 5: The sequential implicit algorithm based on the fixe d-stress split method. Flow and geomechanics simulators ar e
communicated sequentially.
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Figure 6: Left: Terzaghi’s problem. Right: Mandel’s proble m. Verification for poromechanical effects is tested.

Figure 7: Hydraulic fracturing in plane strain geomechanic s. Injection of fluid induces tensile failure and opens the cr eated
fracture. σ0, pf , qf ωf , lf indicate the initial total stress acting on the fracture, flu id pressure within the fracture, the injection
rate, the fracture width, and the fracture length.
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Figure 11: Fracture propagation in vertical direction due t o tensile failure. Left: fractured areas at different times . Right:
the fracture opening (i.e., half of the width) at the end of sim ulation. The fracture propagates upward more than downward
because of low Sh at the shallower depth. As a result, we obtain larger opening of the fracture around the top area than the
fracture opening at the bottom area.
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Figure 12: Pressure distribution on the x-z plane at differe nt times. The pressure within the fracture is almost same as th e
injection pressure at late time because of its high permeabi lity.
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Figure 15: Effective stresses at the x-z plane at different t imes. Effective stresses at many locations may cross over th e
failure line at late times, when cohesion is 2.0 MPa and Φf = Φd = 28.60(0.5 rad).
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Figure 16: Evolution of the areas of shear failure during sim ulation. The value indicates the number of Gauss points at a
gridblock which face shear failure. Shear failure occurs in a ll directions, including the y direction. The shear failure zone is
not thin nor two-dimensional.
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Figure 17: Effective stresses of the domain on the Mohr-Coul omb plot at different times. All the effective stresses are o n and
inside the yield surface.
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Figure 18: Left: the fractured zone at t=1602 s. Right: evolu tion of pressure at the injection point. Shear failure limit s the
vertical fracture propagation of tensile failure, compare d with the reference case.
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Figure 19: Effect of the injection rate. When the injection ra te is reduced by one order, the fracture propagation becomes
slower by the same order.
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Figure 20: Effect of effective shear stress in tensile failu re. When introducing small perturbations in shear effective stress
for tensile failure, β = 10.0, we still obtain small changes in hydraulic fracturing.
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Figure 21: Effect of the maximum compressive total horizont al stress. More vertical fracturing occurs (the left figure) , com-
pared with the reference case, although the width of the fractu re is similar to that of the reference case (the right figure).




