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ABSTRACT OF THE THESIS

A Spatial-Temporal Analysis

of Corporate Bankruptcies

by

Rafael Amaral Porsani

Master of Science in Statistics

University of California, Los Angeles, 2017

Professor Ying Nian Wu, Chair

Albeit rare, bankruptcies of publicly-traded firms can dilapidate the net worth of equity

investors and potentially trigger additional corporate failures. In this study, we utilize a two-

dimensional abstract asset allocation space to model bankruptcies of publicly-traded firms

as purely spatial and as spatial-temporal point processes. By modeling the data through

an epidemic type aftershock sequence model, we show that a bankruptcy can potentially

help trigger another one that is as “far” as twenty months apart from it. Our analysis

provides insights into the temporal triggering function associated with these unusual events,

and sheds light onto their productivity. This study may contribute to the development of

regulatory policies that safeguard the economy against contagion effects in equity markets;

the spatial-temporal model employed here, moreover, also yields implications for investment

strategies.

ii



The thesis of Rafael Amaral Porsani is approved.

Terence Chi-Shen Tao

Frederic R. Paik Schoenberg

Ying Nian Wu, Committee Chair

University of California, Los Angeles

2017

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Description of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Spatial-Temporal Analysis of Bankruptcies . . . . . . . . . . . . . . . . . . 6

3.1 Overview of Point Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Purely Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Epidemic Type Aftershock Sequence Model with Covariate . . . . . . . . . . 8

4 Implications and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Implications for Economic Policies . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Implications for Investment Policies . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Limitations of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



LIST OF FIGURES

1.1 Abstract Asset Allocation Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Bankruptcies in Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Bankruptcies in Region with Greatest Activity . . . . . . . . . . . . . . . . . . . 12

3.3 Histogram of Corporate Bankrupcies . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 F, G and J Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 K Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 L Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Marked G Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Kernel estimation of the Papangelou intensity . . . . . . . . . . . . . . . . . . . 18

3.9 Papangelou Intensity estimated via Pseudo-Loglikelihood . . . . . . . . . . . . . 19

3.10 Temporal Triggering Function - g(t) . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.11 Superthinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.12 G Function of Superthinned Points . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



LIST OF TABLES

3.1 Coefficient estimates for Inhomogeneous Poisson Process . . . . . . . . . . . . . 19

3.2 Coefficient estimates for ETAS Model . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



CHAPTER 1

Introduction

Typically, corporations and individuals that lend money to a firm receive close to nothing

back if that firm goes bankrupt. Those who had lent out money to the investment bank

Lehman Brothers, for example, received only 17 cents for every dollar they gave to Lehman

([Dug14]) - Lehman’s bankruptcy was one of the largest in US history. Notice, consequently,

that if a corporation lends money to another one, and the recipient of those funds never pays

back the funds it owes, that corporation (i.e., the lender/creditor) may have difficulties in

meeting its financial obligations itself, and thus may also go bankrupt - especially if there

are limited sources of funds available to such firm. Thus, one bankruptcy can trigger another

one, and so on, much like earthquakes can. And also, much like earthquakes, bankruptcies

are somewhat “rare” and unexpected. When taken together, these facts suggest that point

process models, which are commonly used as frameworks for analyzing events such as earth-

quakes and wildfires, may also shed light on the occurrence of bankruptcies - in particular,

they can help us in measuring how these events can trigger others through time.

Asset managers, furthermore, frequently think about an abstract asset allocation space

where they, on a daily basis, invest the money/funds entrusted to them by investors. Instead

of thinking about our usual spatial dimensions, latitude and longitude, however, they often

instead think about two other dimensions: (i) market value and (ii) liquidation value. Market

value measures how much something costs. In the context of corporations, it measures how

much one would have to pay to buy off all of the shares of a firm (this is called market

capitalization). The other dimension, liquidation value, measures what would be left off to

the owner of a firm if he or she sold off all of its assets and paid off all of its liabilities (i.e.

if the firm is liquidated) - this can be proxied through the accounting measure book-value-
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of-equity that can be found in the balance sheet statement of any firm.

The conditional intensity associated with bankruptcies, which hereafter we refer to as λ

, may be high in some regions of this space, and low in others. So much like an individual

might seek to avoid going to a crime-prone neighborhood and be robbed, an asset manager

may want to avoid investing in, or “going to”, a region of this “asset allocation space” where

λ is high. Figure 1.1 presents a diagram that depicts this space. The y axis in this graph

shows the variable market value, or market capitalization; the x axis represents liquidation

value, or book-value-of-equity. Asset managers often think that the bankruptcy intensity

is low for valuable firms (area in yellow), and high for firms with low market value (area

in blue). Also, they have reasons to believe that λ is high below the 45 degree line shown

in this figure, and low above it1. One can reasonably conjecture, therefore, that there is

inhomogeneity in this space - which point process models can help us analyze.

In this thesis, we make use of the aforementioned two-dimensional abstract asset allo-

cation space - our coordinates are, as we alluded to above, market value (market capital-

ization2) and liquidation value (proxied via book-value-of-equity3); and proceed to model

bankruptcies of publicly-traded firms as purely spatial and as spatial-temporal point pro-

cesses. By modeling the data through an epidemic type aftershock sequence model, we hope

to better understand the temporal triggering function associated with these rare events, and

gain further insights into their productivity. We argue that such knowledge can have eco-

nomic/policy implications. A purely spatial analysis, moreover, helps to further elucidate

how the conditional intensity may vary across our spatial dimensions.

1Below the 45 degree line we have firms whose liquidation values are higher than their market values.
This indicates that such firms possibly face greater liquidation risk than firms that are in the region situated
above the 45 degree line - which have market value above liquidation value and are thus seen as ongoing
concerns.

2We’ll refer to the terms market capitalization and market value interchangeably.

3We’ll also refer to book-value-of-equity and liquidation value interchangeably going forward.
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Figure 1.1: Abstract Asset Allocation Space. The y axis depicts the variable
market value - or market capitalization - measured in billions of US Dollars;
the x axis represents liquidation value, which we proxy via the accounting
variable book-value-of-equity. Large-capitalization stocks can be found in the
yellow area; the green area houses mid-cap stocks; and the blue neighborhood
contains small-cap stocks. The conditional intensity is expected to be “high”

in blue region, and in region below the 45 degree line.
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CHAPTER 2

Data Selection

2.1 Description of Data

The data we analyze is composed of 456 points, each of which represents the bankruptcy of

a publicly-traded firm1. Our observation time-window goes from January 1971 to December

2007. Each point τi (i ∈{1,...,456}) is associated with two coordinates in space, xi and yi,

which represent, respectively, the book-value-of-equity and market capitalization of a firm

filing for bankruptcy. Each point also has a time coordinate, ti, which denotes the time/day

when the bankruptcy occurred; as well as a mark, mi, that contains the amount of debt

each bankrupt firm had when it became insolvent. The more debt a firm has when it goes

bankrupt, the more bankruptcies it may likely trigger - debt-levels, therefore, are modeled

in this study as being analogous to earthquake magnitudes.

The market capitalization of a firm filing for bankruptcy was computed as the product

of the share-price of such firm on the day prior to the filing2, and the total number of

shares outstanding for such firm on that same day. Prices and numbers of shares, used in

that computation, come from the CRSP (Center for Research in Security Prices) US Stock

Database. Debt-levels3 and data on book-values-of-equity come from the Compustat Annual

1Traded on the New York Stock Exchange, American Stock Exchange or NASDAQ; and recorded in the
CRSP US Stock database under delisting code 574.

2If share-price on the day prior to the filing was unavailable, we used instead share-price on the most
recent date prior to the filing, provided that date was at most 7 working days apart from the bankruptcy
filing date.

3The debt-level of a firm filing for bankruptcy was defined as the total debt of such firm, in billions of
dollars, as shown in Compustat. If this information was unavailable, we used instead long-term debt plus
current liabilities. If current liabilities were also unavailable, we used instead long-term debt. In the rare
occurrences were neither total debt nor long-term debt were available, current liabilities were used as a proxy.
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database. Compustat compiles accounting data that is presented in annual financial reports

filed by corporations.

A time covariate was also used in our study - we refer to it as the default spread, or simply

as spread. It measures the difference between the return (or yield) promised by high risk

corporate bonds (rated BAA by the credit rating agency Moody’s), and the return promised

by safe corporate bonds (rated AAA by the same agency). This covariate proxies for the

state of the economy. When the economy is booming this variable tends to be low, and in

periods of economic contraction it tends to be high. Data for this covariate was obtained

from the website of the Board of Governors of the Federal Reserve System.

Note that we have, purposely, left out of our analysis the period corresponding to the fi-

nancial crisis. During such period, the US Government engaged in an unprecedented effort to

provide funds to firms that were close to experiencing financial distress. If we were to include

this period, our parameter estimates might underestimate the impact that one bankruptcy

could have on future ones in normal times - i.e., without government interventions.
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CHAPTER 3

Spatial-Temporal Analysis of Bankruptcies

3.1 Overview of Point Pattern

Figure 3.1 presents the point pattern we analyze in this study. Each circle in this diagram

represents one of the points in our sample - these, as we argued, denote in turn bankruptcies of

publicly-traded firms. Circle sizes are proportional to the outstanding debt-levels of bankrupt

firms, i.e., they are proportional to the values of marks associated with each point (debt-

levels are in billions of US dollars). Lighter colors represent events/points occurring in more

recent times; darker colors, conversely, denote bankruptcy filings occurring in older periods.

This figure illustrates that some firms filing for bankruptcy had market values in excess of US

$500 million when they became insolvent1, indicating that some of these events may have

come as a shocking surprise to market participants. Figure 2 also suggests the potential

occurrence of “temporal clustering” in our data - the colors shown in this figure imply that

a good portion of bankruptcy events occurred in the early 2000’s.

In Figure 3.2, we show the spatial region with greatest activity. We can see here that most

bankruptcies occurred in the region denoted by market capitalizations of 0 to 250 million

dollars, and book values of -2 to 6 billion dollars.

Figure 3.3 shows a histogram containing bankruptcy events per year of occurrence. We

have periods with few bankruptcies followed by periods with many, again suggesting some

type of temporal triggering in our data.

1These corresponded to the bankruptcies of Mirant Corporation (an energy producer), Delphi (a producer
of auto parts), Worldcom (a telecommunications company) and Enron (an energy, commodities and services
firm).
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In the analyses that follow, our x, y and t coordinates were standardized so as to go from

0 to 1. Similarly, all marks (debt-levels) were standardized so as to be within that same

interval.

3.2 Purely Spatial Analysis

We start our analysis by conducting a purely spatial assessment of our data. Figure 3.4

shows the F, G and J functions, all of which indicate potential clustering or inhomogeneity

in the data. The F function shows, for example, that there is roughly a 22% probability that

the distance of a randomly chosen location to its nearest point is less than or equal to 0.075 -

a value much smaller than we would expect if the underlying process generating these points

in space were a stationary Poisson process. This, in turn, indicates the prevalence of “a good

deal of empty space” in our [0, 1]× [0, 1] spatial window, suggesting thus clustering or simply

inhomogeneity. The G function shows that the probability that a randomly chosen point is

less than or equal to, say, 0.025, is almost 1 - this suggests that points are much closer than

what we would expect if the underlying process was a stationary Poisson process - which

again indicates possible clustering, or inhomogeneity. Lastly, the J function lies below 1 for

various distances, also confirming the conclusions we drew from the F and G functions about

the process generating our points.

Figure 3.5 depicts the K function, and Figure 3.6 the L function. Both of these also

indicate the potential occurrence of clustering or inhomogeneity. Figure 3.7 shows the values

of our marked G function. This diagram shows the probability that a point τi with mark

mi ≤ 0.5 is within distance r of another point τj with mark mj ≥ 0.8, i 6= j. This graph

indicates that there is a probability of almost 0 that a bankruptcy with low magnitude

(m ≤ 0.5) will be very close to one of large magnitude (m ≥ 0.8) in our asset allocation

space.

Figure 3.8 contains the results of our kernel estimation of the Papangelou intensity, when

a bandwidth of 0.8 is used (other bandwidth levels were used as well)2.The estimates we

2We choose to use a “large” bandwidth level so as to “squash” more our points and thus get estimates
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obtained with this bandwidth (and others) seem to be arguably too low for the region where

most points are: a quick visual inspection of this graph shows that if we were integrate the

estimated rate over, say, the [0, 0.2] × [0, 0.2] square, we would get an estimated expected

number of points in this region much lower than the actual number of points observed there.

Next, we fit an inhomogeneous Poisson model to our data using the pseudo-loglikelihood

method. The model we use is of the form λ(x, y) = µ + ax + by + cxy. The results of

our estimation are shown in Figure 3.9. We see here that, for example, a one unit increase

in y (which corresponds to an increase of approximately US$ 700 million in market value)

promotes an increase in the Papangelou intensity of ∂λ(x,y)
∂y

= b + cx = 50.27 − 341.42x .

Hence, the impact of an increase in y on the Papangelou intensity depends on the value of

the x coordinate in our diagram. A similar analysis can be applied to interpret how changes

in x affect λ(x, y). A spatial-temporal approach is in order.

3.3 Epidemic Type Aftershock Sequence Model with Covariate

The ETAS model we fit is presented below. We have:

λ(x, y, t) = µ(x, y, t) +
∑

{t′|′t′<t}

g∗(x, y)g(t− t′)h(m′)

Where:

µ(t, x, y) = µ̄+ax+ by + ct+ dspreadt

And:

g(t) = αe−α(t),

h(m
′
) = Keβm

′

g∗(x, y) =
1{x≤0.2,y≤0.2)

0.2× 0.2

for the Papangelou intensity that would be non-zero across a large range of the [0, 1]× [0, 1] spatial window.
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Note that our model is a variation of those introduced by [Oga88] and [Oga98]. The

background rate, here denoted as µ(x, y, t), is allowed in our model to vary according to

a time trend; moreover, the background rate depends here on our spread covariate, which

serves as a proxy for the state of the economy; lastly, we specify µ as a linear function of x,

y, t and our covariate - this facilitates interpreting the parameters that affect µ.

The temporal triggering function is exponential. The impact function, h, is as usual,

with m0 set to 0 - so we consider all shocks/bankruptcies in our study.

Notice, furthermore, that the spatial triggering function that we use, g∗(x, y), is a density:

it integrates to one over all space. Differently from commonly used spatial triggering func-

tions, however, g∗(x, y) takes on here a constant value over a small 0.2 by 0.2 square, which

in our model represents the most “active spatial region”. The idea here is that bankruptcies,

wherever they happen, will lead to more bankruptcies in exactly this active region, but not

in other places. Firms in this region are more fragile. They will usually have accumulated

many losses, and have limited access to capital markets. Firms in other regions will likely

be less affected by previous bankruptcies given they may either have enough cash available

or have access to outside funding sources. Thus, this active region can be thought of as “a

death zone”.

Our parameter estimates are shown in Table 1 - they were obtained via maximum likeli-

hood3. The background rate falls as x or y increases. An increase of one unit in y (or roughly

US$ 700 million) is associated, for example, with a decrease of 19.78 in the background rate.

The a and c coefficients can be interpreted in a similar fashion4.

Moreover, a one unit increase in the spread covariate is associated with a 16.67 increase

3We fit our model using optim in R - to arrive at our results, we ran optim twice. This procedure took
5 minutes and 45 seconds in total. We also tried using simulated annealing to maximize our log-likelihood
function (using the function GenSA, from the GenSA package). We allowed GenSA to also run for 5 minutes
and 45 seconds. Despite having performed well in a number of global optimization tests in [Mul14], GenSA
yielded a lower log-likelihood than optim.

4Notice that even though our standard errors are high for many parameters, these are only relevant to
the extent that we have found an optimal solution to the global maximization problem at hand, which may
not be the case. We should thus take these with a grain of salt.
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in the background rate (this covariate oscillated between 0.55 and 2.69 within our sample)5.

The expected number of first generation aftershocks is given by E[h(m)], which we esti-

mate to be equal to 0.9753, indicating that bankruptcies are fairly persistent events.

The temporal triggering function, g(t), is shown in Figure 3.10. Put simply, this function

suggests that bankruptcies can help trigger bankruptcies up to approximately 20 months into

the future.

Lastly, an analysis of the performance of our model is shown in Figures 3.11 and 3.12.

Superthinning (Figure 3.11) shows that our ETAS model overpredicts (λ is too high) in the

active 0.2 by 0.2 region. One could potentially deal with this by simply reducing the size of

the “death zone” region in the model, where triggering takes place. The G function of the

superthinned points (shown in Figure 3.12) shows, nevertheless, that the calibrated model

does a reasonably good job in explaining our data.

Our model has investment implications, as well as implications for regulatory prac-

tices/policies. We discuss these below in the next chapter.

5The spread covariate was not standardized in our analysis.
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Figure 3.1: Bankruptcies in Space-Time. This figure illustrates the point
pattern we analyze in this thesis. Each circle in this diagram corresponds
to one of the points in our sample - these denote, in turn, bankruptcies of
publicly-traded firms. Circle sizes are proportional to the outstanding debt-
levels of bankrupt firms, i.e., they are proportional to the values of marks
associated with each point (debt-levels are in billions of US dollars). Lighter
colors represent events/points occurring in more recent times; darker colors,
conversely, denote bankruptcy filings that took place in older periods. Some
firms filing for bankruptcy had market values in excess of US $500 million
when they became insolvent, indicating that some of these events may have
come as a shocking surprise to market participants. This figure also suggests

the possible occurrence of “temporal clustering” in our data.
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Figure 3.2: Bankruptcies in Region with Greatest Activity. In this figure,
we provide a ‘closer’ overview of the spatial region where activity is greatest.
The majority of our points can be found in the region denoted by market
capitalizations of US$0 million to US$250 million, and book values of US$-2

billion to US$6 billion.
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Figure 3.3: Histogram Showing Corporate Bankruptcies. Periods of
”low” activity are followed by periods of ”high” activity, suggesting that a
bankruptcy event may help trigger other ones at later dates, giving rise to a

contagion effect in financial markets.
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Figure 3.4: F, G and J Functions. These functions indicate clustering or
inhomogeneity in our data. The F function suggests the prevalence of “a
good deal of empty space” in our [0, 1]× [0, 1] spatial window - thus pointing
towards clustering or simply inhomogeneity. The G function in turn suggests
that points are much closer than what we would expect if the underlying
process was a stationary Poisson process. The J function lies below 1 for
various distances, also implying potential clustering or inhomogeneity. Data:

red line; Poisson: green line.
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Figure 3.5: K Function. The K function also indicates clustering or inho-
mogeneity. Data: red line; Poisson: green line.
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Figure 3.6: L Function. This figure depicts the L Function, which, similarly
as the K, F, G and J functions, suggests inhomogeneity or clustering. Data:

red line.

16



Figure 3.7: Marked G Function. Our marked G function describes the
probability that a point with m ≤ 0.5 is within distance r of point with
m ≥ 0.8. We can infer from this figure that the probability that a bankruptcy
with low magnitude (m ≤ 0.5) will lie very close to one of large magnitude
(m ≥ 0.8) in our asset allocation space is small. Data: Red; Poisson: Green.
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Figure 3.8: Kernel estimation of the Papangelou intensity. This figure shows
estimates for the Papangelou intensity, obtained via kernel estimation, when

a bandwidth of 0.8 is used.
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Table 3.1: Coefficient estimates and standard errors for Inhomogeneous Pois-
son Process. Model: λ(x, y) = µ̄ + ax + by − cxy. The impact of an increase
in y on the Papangelou intensity depends on the value of the x coordinate.

µ̄ a b c

539.17 −50.27 50.27 −341.42
(98.44) (1553.06) (385.40) (1977.14)

Figure 3.9: Papangelou Intensity Estimated via Pseudo-Loglikelihood.
Model: λ(x, y) = 539.17 − 50.27x + 50.27y − 341.42xy; SE =

[98.44,1553.06,385.40,1977.14].

19



Table 3.2: Coefficient estimates and standard errors for Epidemic Type Af-
tershock Sequence Model. The background rate decreases with market capi-
talization and book value, and increases with time. The expected number of

first generation aftershocks is E[h(m)], which we estimate to be 0.9753.

µ̄ a b c d α β K

2.052 -11.450 -19.775 18.837 16.667 62.990 0.016 0.975
(60.252) (24.660) (24.257) (38.759) (39.229) (8.974) (0.849) (0.052)

Figure 3.10: Temporal Triggering Function - g(t). Our temporal triggering
function suggests that bankruptcies may help trigger bankruptcies up to 20

months apart from the original event.
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Figure 3.11: Superthinning. The ETAS model ”overpredicts” (λ is too high)
in [0,2]x[0,2], while exhibiting good performance in the remaining regions.

Green points: original data.
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Figure 3.12: G Function of Superthinned Points. The G function suggests
here that our calibrated model does a reasonably good job in explaining the

data. Data: Red Line; Poisson: Green Line.
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CHAPTER 4

Implications and Limitations

4.1 Implications for Economic Policies

Firstly, note that our model has implications for the regulatory environment in which firms

operate. Which firms might be construed as being too big to fail? If the expected value

of the impact function, h(m), is greater than 1, the process we model becomes explosive.

Thus, government could potentially consider passing legislation stating for example that no

firm could have debt levels that made h(m) be greater than 1. This would preclude the

expectation of h(m) from ever being above 1. We can solve for the value of m tied to this

rule. By doing so, we get that the maximum debt that should be allowed, according to such

policy, should be about 26 billion dollars. But some firms have more than 600 billion dollars

in debt today! This suggest that some firms in operation may, indeed, be too big to fail.

4.2 Implications for Investment Policies

Our model also has investment implications. As we move farther to the right in our spatial

diagram (i.e., as x increases), the background rate decreases. The region were x is “high”

is also unaffected by triggering in our model. The conditional intensity, λ, is thus relatively

low for high values of x, indicating that the right-most region of our asset allocation space

is safer, from a bankruptcy perspective. Suppose one invests in stocks in this region, which

also have liquidation value (x coordinate) above their market value (y coordinate). Assume

that these stocks, moreover, also have “good fundamentals”, in the sense that their earnings

23



are non-decreasing1. These companies are somewhat unlikely to go bankrupt, as they are

situated in a region where x is relatively high. They are also unlikely to move to the left-

most region of the spatial diagram, considering they have positive earnings - earnings tend

to be the main driver of changes in book-values-of-equity. But notice that if they do not go

bankrupt, then in the long run we would expect their market values to rise and become at

least as large as their liquidation values. This could potentially thus be a “winning” strategy.

Interestingly, one could argue that such strategy is very much in line with the one Warren

Buffet seems to have implemented in the later stages of his life ([OKK17]): buying stocks

of firms that look “cheap” (i.e. which have liquidation value above market value); that are

large (have high liquidation/book-values); and which have “good fundamentals” (and thus

potentially have positive earnings); and holding on to them for long periods of time2.

4.3 Limitations of Study

Note, however, that our study is not devoid of limitations. We have not considered the impact

of bankruptcies of private firms on publicly traded ones - having more time, we would like to

find databases which contain information on bankruptcy events associated with such firms

and to incorporate these into our analysis. Other covariates, particularly those associated

with the availability of credit in the economy, could also impact our estimates.

Lastly, we could also have defined our asset allocation space differently, using “network

theories” to create measures of proximity between firms. The temporal and spatial triggering

functions, moreover, could also be estimated non-parametrically. We intend to implement

these extensions in future studies.

1Decreases in book-values-of-equity (x coordinate) tend to occur mostly due to negative earnings.

2In a recent documentary conducted by HBO (see [OKK17]), Buffet states that early on in his life he
implemented a strategy similar to this one - however, instead of investing in the region were x is high, he
instead invested in small firms (which would tend to have low liquidation/book values). He apparently later
on realized that this strategy was “too risky”, and decided to move his investments towards larger firms,
which would tend to be farther to the right in our diagram.
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CHAPTER 5

Final Remarks

5.1 Conclusion

In this thesis, we have proposed a novel approach for modeling bankruptcies of publicly-

traded firms, making use of an intuitive abstract asset-allocation space that is in line with how

equity managers often frame some of their investment decisions in the first place. We have,

moreover, incorporated into an epidemic type aftershock sequence model a macroeconomic

variable that helps to capture how the state of the economic may affect the occurrences

of bankruptcies, allowing for a more realistic assessment of how the conditional intensity

associated with the process under scrutiny here varies across space and time. Perhaps our

greatest contribution lies in helping to demonstrate, in a straightforward fashion, how point

processes can, by themselves, be applied to modeling financial events while taking a spatial

domain into consideration. While Hawkes processes that utilize solely a time dimension are

becoming increasingly popular - albeit at a slow pace - in the finance literature, models

that make use of spatial coordinates arguably enjoy much less recognition in that field.

Furthermore, ETAS models are, one might reasonably conjecture, even less known to many

financial researchers than Hawkes models are. By showing how an ETAS model can be

readily applied to bankruptcies, we hope to contribute to a swifter and faster integration

between the point process and finance literatures.

Our study delivers, moreover, somewhat surprising insights into possible regulatory poli-

cies that might be pursued by government entities that intend to avoid streaks of failures in

the economy. At first sight, according to our analysis, a conservative approach would entail

“ruling” that publicly-traded firms should have less than US$ 26 billion in debt - as this
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would preclude the process we model from ever becoming explosive. Although this would

be a very conservative measure - and in no means we are recommending it be adopted - this

number provides a reference point regarding what firms might bear excessive leverage.

Throughout our analysis, we have also provided insights into the temporal triggering

function associated with bankruptcy shocks. Our results indicate that a bankruptcy can

potentially help trigger another one that is as far as twenty months apart from it.

Lastly, our analysis is also capable of yielding implications for the development of possi-

ble investment strategies which might prove profitable for individual investors. The results

shown herein help substantiate investment strategies that focus on purchasing stocks of

companies that are located in the southeast portion of our spatial domain, and which simul-

taneously possess stable earnings. We argue that this strategy shares similarities with the

one famous investor Warren Buffet seems to have implemented in the later stages of his life

([OKK17]).

5.2 Future Work

This thesis can be extended in a number of ways. An interesting extension would be to

define an abstract asset allocation space where all assets could be intuitively placed - not

only shares of corporations; and proceed to investigate how big negative shocks to different

asset classes could impact the conditional intensity associated with large negative shocks in

this space. Investment banks often implement or suggest asset allocation strategies based on

contemporaneous correlations between different asset classes or assets, without taking into

consideration how large drops in value in assets or asset classes might propagate through time.

ETAS models might, in that regard, assist in providing new views on how one might choose

to diversify or adjust their portfolios conditionally upon the occurrence of “large” negative

events in financial markets. As we have alluded to earlier, moreover, other applications

abound: one might, for example, estimate temporal and spatial triggering functions non-

parametrically using a framework similar to the one described in [ML08], or even utilize

network theories to define an equity-oriented asset-allocation space differently.
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