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Psychology Department
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Abstract

A rule-plus-exception model of category
learning, RULEX (Nosofsky, Palmeri, &
McKinley, 1992), and an exemplar-based
connectionist model of category learning,
ALCOVE (Kruschke, 1992), were evaluated on
their ability to predict the types of generalization
patterns exhibited by human subjects. Although
both models were able to predict the average
transfer data extremely well, each model had
difficulty predicting certain types of
generalizations shown by individual subjects. In
particular, RULEX accurately predicted the
prominence of rule-based generalizations,
whereas ALCOVE accurately predicted the
prominence of similarity-based generalizations.
A hybrid model, incorporating both rules and
similarity to exemplars, might best account for
category learning. Furthermore, a stochastic
learning rule, such as that used in RULEX,
might be crucial for capturing the different types
of generalizations patterns exhibited by
humans.

Introduction

Two major theories have been advanced to
describe category learning. Rule-based models
posit that the category membership of a novel
object is determined by the application of rules.
Exemplar-based models posit that the category
membership of a novel object is determined by
how similar it is to previously stored exemplars.

This work was supported by Grant PHS RO1
MH48494-01 from the National Institute of
Mental Health to Indiana University.
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In general, rule-based models have been limited
to situations where the categories are well-
defined. In this paper, we tested a new rule-
plus-exception model, RULEX, which has been
successful at learning ill-defined categories in
addition to well-defined categories (Nosofsky,
Palmeri, & McKinley, 1992). RULEX and an
exemplar model, ALCOVE (Kruschke, 1992), are
tested on their ability to predict the different
types of generalization patterns that people make
when categorizing novel objects.

In a typical category learning task, objects are
presented one at a time and subjects are asked to
decide whether an object is a member of category
A or category B. During training, corrective
feedback is provided about whether the correct
response has been made. Following training, a
transfer phase is given in which old objects as
well as new objects are presented, without
feedback. Subjects are required to judge whether
the new objects are from category A or category
B by generalizing from what they have learned
during training.

Traditionally, category learning models have
been judged by how well they predict average
transfer data or learning data. A point has been
reached in theory development where each of the
major theories are able to quantitatively predict
a large number of extant phenomena (Estes, in
press). Clearly, additional data are needed to
tease apart the predictions of each of the existing
models.

An approach that we propose is to examine the
types of generalization patterns made by
individual subjects (see also Pavel, Gluck, &
Henkle, 1988). It is reasonable to suggest that
different subjects might be using very different
strategies during a category learning experiment.
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Average transfer data obscure the different
patterns of generalization that might be found at
the individual subject level (see also Martin &
Caramazza, 1980). Our goal is to compare the
observed generalization patterns to those
predicted by RULEX and ALCOVE.

Table 1 displays the abstract category
structure that was used (Medin & Schaffer,
1978). The categories were ill-defined in that
there was not a simple rule which could be used
to decide if a given stimulus was a member of
category A or B. There were seven transfer
stimuli, T1-T7. A generalization pattern
AAABBBB reflects a subject who classified
stimuli T1-T3 as an A and T4-T7 as a B.

We fit an exemplar model, ALCOVE, and a
rule-plus-exception model, RULEX, to the
resulting distribution of generalization patterns.
Although both models were able to accurately
predict the average transfer performance with
high accuracy, each model was able to
qualitatively predict only a portion of the
distribution of generalization patterns found with
individual subjects.

Method

Subjects. Subjects were 227 undergraduates at
Indiana University who participated to receive
credit in an introductory psychology course.

Stimulus Observed RULEX ALCOVE

Category A

Al 1112 086 0.86 0.90

A2 1212 090 0.89 0.90

A3 1211 093 0.93 0.93

A4 1121 066 0.71 0.61

A5 2111 065 0.70 0.64

Category B

Bl 1122 031 0.34 0.34 &

B2 2112 034 0.34 0.38 s

B3 2221 012 012  0.16 ¢

B4 2222 005 0.07 0.07 -§°
©

Transfer "

T1 1221 059 0.60 0.61

T2 1222 037 0.41 034

T3 1111 092 0.93 093

T4 2212 035 0.40 0.38

5 2121 023 0.28 0.16

™6 2211 058 0.60 064

T7 2122 008 0.08 0.07

Table 1. Observed transfer data and predictions
by RULEX and ALCOVE.
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Stimuli. The stimuli were computer-generated
line drawings of rocketships that varied along
four binary-valued dimensions: shape of wing,
nose, porthole, and tail. The abstract category
structure is given in Table 1. Assignment of
physical dimension to abstract dimension was
randomized for every subject.

Procedure. There were 16 blocks of training
trials. Each of the 9 training stimuli, A1-A5 and
B1-B4, were presented once per block. The order
of presentation was randomized for each subject.
On every trial, the subject was presented with a
rocketship and was asked to judge if it was from
planet A or planet B. After responding,
corrective feedback was provided.

During transfer, subjects were shown the 9
training stimuli as well as 7 new transfer
stimuli, T1-T7, in random order. Subjects judged
whether each of the rocketships was from planet
A and planet B. There were three blocks of
transfer trials. No feedback was provided.

Results and Discussion

A median split was conducted on the total
number of errors made during the last four
blocks of training. Overall transfer performance
from the top median, the "learners," is shown in
Table 1 as the probability of responding with
category A.

Our primary interest was the distribution of
generalization patterns which underlie the

average transfer performance shown in Table 1.
Observed Data

—
0.05 0.20

Probabiity "
Figure 1. Observed distribution of
generalization patterns.
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Because there were 7 new transfer stimuli, each
of which could be classified as an A or a B, there
were 2'=128 possible transfer patterns. Only 31
of the possible patterns were observed. Figure 1
displays a histogram of the 19 patterns of
generalization that were observed in more than
one subject.

As shown in Figure 1, there were three
prominent generalization patterns observed,
AAABBBB, ABABBAB, and BBAABAB. Pattern
AAABBBB is consistent with a single dimension
rule along the first dimension, where value 1
signals an A. Similarly, pattern BBAABAB is
consistent with a single-dimension rule along the
third dimension. We discuss the potential source
of these and the other generalization patterns in
more detail below.

Theoretical Analyses
RULEX

The Model. Nosofsky et al. (1992) introduced a
rule-plus-exception model of classification
learning called RULEX. The basis for
classification learning is the acquisition of simple
single-dimension rules or conjunctive rules
supplemented by the partial storage of exceptions
to those rules. One of the main properties of
RULEX is that the behavior of individual
subjects is highly idiosyncratic -- different
subjects will form different rules and store
different partial exceptions to those rules.
Average classification data are presumed to be a
mixture of these individual strategies. The
notion that much of classification learning is
based on the extraction of simple rules with the
occasional storage of exceptions is not a new one
(see Martin & Caramazza, 1980; Pavel et al.,
1988; Ward & Scott, 1987). However, RULEX is
the first rule-plus-exception model to have been
explicitly formulated and tested on a wide
variety of existing data sets (see Nosofsky et al.,
1992, for details).

A schematic flow-diagram of the processing
stages of RULEX is shown in Figure 2. First,
RULEX attempts to form a perfect single-
dimension rule. An individual dimension is
sampled according to its intrinsic salience and a
single-dimension rule is formed over that
dimension. If the rule works perfectly for a
certain number of trials, called the upper test
window (equal to twice the number of training
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Figure 2. Schematic flow diagram of RULEX.

items by default), then it is permanently stored.
If the rule fails to work perfectly, then it is
discarded and a new dimension is selected
according to its salience.

If no dimension yields a perfect rule then
RULEX searches for imperfect single-dimension
rules. A dimension is selected according to its
intrinsic salience and an imperfect single-
dimension rule is retained for a minimum
number of trials, called the lower test window
(equal to the number of training items by
default). The imperfect single-dimension rule is
maintained only if its performance exceeds a lax
criterion (around 60% correct by default). Once
the upper test window is reached, the imperfect
rule is permanently stored if performance
exceeds a strict criterion, scrit (in general, scrit
can vary over some distribution of values). If
this rule does not exceed the strict criterion then
it is discarded and another dimension is selected.
When all dimensions have been sampled a search
for conjunctive rules begins in a manner similar
to that for single-dimension rules.

After a single-dimension rule or a conjunctive
rule is permanently stored, then RULEX begins
the exception-storage process. If an item is
encountered that contradicts the rule, RULEX
probabilistically samples each of the dimensions
of the item with probability pstor, which is a free
parameter (in general, pstor can vary over some
distribution of values); the dimensions that were
part of the failed rule are sampled with
probability one. Storage of the exceptions is also
probabilistic. It is a function of the number of
dimensions sampled and the number of
exceptions already stored in memory.

Consider the category structure shown in
Table 1. Suppose a subject formed a rule that
value 1 on dimension 1 signals an A and value 2
on dimension 1 signals a B. Upon encountering
stimulus 2111, the rule is applied, and an error



occurs. To form an exception, dimension 1 is
sampled with probability one, and dimensions 2,
3, and 4 are sampled with probability pstor. If
the sampled exception were 21** (where *
represents a nonsampled dimension that can
match any value), then RULEX would attempt to
learn that the exception 21** signals category A.
If this exception is stored and later produces an
error, it is discarded from memory.

Classification decisions are made by first
checking all of the exceptions stored in memory.
If an exception applies to the given stimulus,
then it is used to make a response. For example,
the exception 21** applies to training stimuli
2111 and 2112. If no exceptions apply, then the
rules are checked. If none of the rules apply,
then a random guess is made.

Predicted Generalizations. RULEX is a
simulation model which is inherently stochastic
in terms of the rules and exceptions that are
stored (although it uses a deterministic response
rule). So, 5000 simulated "subjects" were run
through 16 blocks of training and then were
tested on the 9 old and the 7 new stimuli in a
transfer block. RULEX was fitted to the
averaged transfer data by minimizing the sum-
of-squared deviations between the observed and
predicted probabilities.' A four-parameter
version of RULEX was fitted to the data, where
pstor and scrit varied along an interval. The
best fitting values were pstor varying between
.30 and .85, and scrit varying between .60 and
.80. The predicted average transfer performance
is shown in Table 1 (using these same parameter
values). As expected, the fit to the average
transfer data was very good (RMSD=.029,
%Var=99.1).

The predicted distribution of generalization
patterns is shown in Figure 3. RULEX
accounted for 68% of the variance in the
distribution of generalization patterns
(RMSD=.014). RULEX qualitatively predicts the
prominence of patterns AAABBBB and
BBAABAB, although it overpredicts their
probabilities. As expected from these patterns,
RULEX predicted that 40% of subjects would
develop rules based on dimension 1 (pattern
AAABBBB) and that 40% would develop rules

! Attempts to fit RULEX to the observed
distribution of generalization patterns increased
the fit only slightly.
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RULEX Predictions
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Probability
Figure 3. Distribution of generalization patterns
predicted by RULEX.

based on dimension 3 (pattern BBAABAB). The
remaining subjects developed single-dimension
rules along dimension 4 or else stored only
idiosyncratic, high-dimension exceptions.
RULEX greatly underpredicts the probability of
the generalization pattern ABABBAB. Although
RULEX has some shortcomings, it is able to
qualitatively predict some of the important
generalization patterns exhibited by individual
subjects. Recall too that it yielded excellent
quantitative predictions of the averaged transfer
data.

ALCOVE

The Model. ALCOVE (Kruschke, 1992) is a
connectionist implementation of an exemplar
model, the Generalized Context Model (GCM;
Nosofsky, 1984, 1986), which incorporates error-
driven learning. The main property of all
exemplar models is that all of the individual
instances of a given category are stored in
memory. Classification decisions are made by
responding with the category label corresponding
to the stored items that are most similar to the
new item. A crucial aspect of the GCM and
ALCOVE is that similarity can be modified by
selective attention to the component dimensions
of objects. Individual dimensions are selectively
attended to depending on their diagnosticity.
For example, in the category structure shown in
Table 1, dimension 2 is relatively nondiagnostic
because half of the items in category B have
value 1 on that dimension and the other half
have value 2.



Category nodes

Error-driven learning
of association weights

Exemplar nodes

Error-driven learning
of attention strengths

Psychological
dimension nodes

Figure 4. Schematic diagram of ALCOVE.

As shown in Figure 4, ALCOVE is a three-
layer feed-forward network., The input layer has
a single node for each dimension of the stimuli.
The activation value of an input node is equal to
the value of the stimulus on that dimension.
Each hidden node represents a single training
exemplar. The activation of a hidden node is a
function of the similarity between the input
stimulus and the exemplar that hidden node
represents. The present stimuli were composed
of binary-valued dimensions, so the activation of
the jth hidden node is given by a* = exp(-c I, o,
d;), where d;=0 if the input stimulus and
exemplar node j have the same value on
dimension i, otherwise d,=1. The positive
constant c is called the specificity of the node.
Like the GCM, each dimension is weighted by a
selective attention parameter o,. Unlike the
GCM, where these attention weights are free
parameters, in ALCOVE these weights are
learned via backpropagation.

Every hidden node in ALCOVE is connected to
each category output node. The activation of
output node k is given by o, = I, w, o,
where w,, is the weight on the connection
between hidden node j and output node k, and
a/ is the activation of hidden node j. Output
activations are converted to response
probabilities by an exponential form of Luce’s
choice rule,

exp(dag”)
Y exp(da;”)
out k

where p(K) is the probability of responding with
category label K and ¢ is a positive real-valued
mapping constant.

pK) =

Transter Pattamn

The attention weights, o, and the weights
between hidden nodes and output nodes, w,;, are
learned via backpropagation (Rumelhart, Hinton,
& Williams, 1986), with

Awy" = A (1, - af"'} a’m

Aa, = -1, [3 (t-a)™wy] a,wcd‘
Nd) outk

where the teacher value, ¢, = +1 if the stimulus
belongs to category k, or ¢, = -1 if the stimulus
does not.

Predicted Generalizations. Unlike RULEX,
ALCOVE has a deterministic learning rule and
responses are probabilistic. Hence, simulations
were not required, and the model could be fitted
directly to the distribution of generalizations.
The average predicted transfer performance is
shown in Table 1 (using the parameters given
below). As expected, the fit by ALCOVE is
comparable to that of RULEX (RMSD=.012,
%Var=98.6).

The predicted distribution of generalizations is
shown in Figure 5 (RMSD=.017, %Var=50.9).
The best fitting parameter values were ¢=1.335,
A,=0.055, A,=0.261, c=0.810. ALCOVE greatly
underpredicts the probabilities for generalization
patterns AAABBBB and BBAABAB. However,
ALCOVE is able to predict the prominence

prominence of pattern ABABBAB, unlike
RULEX. A straightforward interpretation of this
ALCOVE Predictions
AAAABMR
AAABANE
AMABAER
AMABBAB
AMMEERR
MABEBEBE
ABAMAAE
ABAABAB
ABMEBAR
ABABEEE
BEAMAAE
BEAABAB
BRAMARER
BRABAAE
BBABABB
BEABBAR
BRABERE
0.00 0.05 0..10 0‘15 0.‘!0 0.2%
Probabiity

Figure 5. Distribution of generalization patterns
predicted by ALCOVE.
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pattern of generalization, therefore, is that it
represents subjects who used a similarity-to-
examples strategy for classification.

Conclusions

We compared a rule-plus-exception model,
RULEX, and an exemplar model, ALCOVE, on
their ability to account for generalization
patterns observed by individual subjects.
Although both models were able to accurately
account for averaged transfer data quite
accurately, both models had difficulty,
qualitatively and quantitatively, accounting for
the distribution of generalization patterns
observed at the individual subject level. Our
subjects exhibited three primary patterns. Two
of these were best accounted for by RULEX and
could easily be characterized by single-dimension
rules along dimensions 1 and 3. The third
pattern was best accounted for by ALCOVE and
could easily be characterized by similarity to
stored exemplars.

One possible explanation for our results is that
some subjects used a rule-plus-exception strategy
whereas other subjects used an exemplar
strategy. Indeed, we have conducted preliminary
exploration of such a mixed model and it
produces greatly improved results. In addition,
protocols extracted from subjects after the
experiment revealed that some subjects reported
using simple rules whereas other subjects
reported merely memorizing the stimuli.

Another possible explanation is that category
learning consists of both rule learning and
storage of exemplars, not merely storage of
exceptions to rules. Early in learning, subjects
could easily pick up on the imperfect rules which
underlie the categories. Later in learning, after
each of the stimuli have been presented a
number of times, category decisions are based on
similarity to stored exemplars. @ We have
preliminary evidence from another experiment
showing a larger number of similarity-based
generalization patterns when additional training
blocks are given.

One problem with the current work is that a
stochastic-learning model with a deterministic
response rule, RULEX, was compared to a
deterministic-learning model with a probabilistic
response rule, ALCOVE. We are currently
working on the development of a stochastic
version of ALCOVE which might better compete
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with RULEX. Furthermore, the version of
RULEX that we investigated allowed for
distributions of parameter values across different
simulated subjects. We are also investigating
how individual differences in generalization
patterns could be captured in ALCOVE by
allowing individual differences in parameters or
initial conditions.
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