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Abstract

BACKGROUND—Deep layer excitatory circuits in the prefrontal cortex represent the strongest 

locus for genetic convergence in autism, but specific abnormalities within these circuits that 

mediate key features of autism, such cognitive or attentional deficits, remain unknown. Attention 

normally increases the sensitivity of neural populations to incoming signals by decorrelating 

ongoing cortical circuit activity. Here we investigated whether mechanisms underlying this 

phenomenon might be disrupted within deep layer prefrontal circuits in mouse models of autism.

METHODS—We isolated deep layer prefrontal circuits in brain slices then used single-photon 

GCaMP imaging to record activity from many (50-100) neurons simultaneously, in order to study 

patterns of spontaneous activity generated by these circuits under normal conditions and in two 

etiologically distinct models of autism: mice exposed to valproic acid (VPA) in utero and FMR1 

KO mice.

RESULTS—We found that modest doses of the cholinergic agonist carbachol normally 

decorrelate spontaneous activity generated by deep layer prefrontal networks. This effect was 

disrupted in both VPA-exposed and FMR1 KO mice, but intact following other manipulations 

which do not model autism.

CONCLUSIONS—Our results suggest that cholinergic modulation may contribute to attention 

by acting on local cortical microcircuits to decorrelate spontaneous activity. Furthermore, defects 
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in this mechanism represent a microcircuit-level endophenotype that could link diverse genetic 

and developmental disruptions to attentional deficits in autism. Future studies could elucidate 

pathways leading from various etiologies to this circuit-level abnormality, or use this abnormality 

itself as a target, and identify novel therapeutic strategies that restore normal circuit function.

Keywords

calcium imaging; GCaMP; prefrontal cortex; Fragile X syndrome; acetylcholine; valproic acid

INTRODUCTION

Autism reflects disparate genetic and environmental causes, suggesting that common 

behavioral phenotypes may reflect convergent defects at the level of neuronal circuits 

controlling these behaviors. Consistent with this hypothesis, recent analyses have revealed 

that several genes linked to autism are co-expressed within deep layer microcircuits in the 

prefrontal cortex (PFC) (1, 2). Identifying convergent abnormalities located within these 

microcircuits would yield attractive targets for future circuit-based therapeutic interventions. 

Until recently, a major barrier to identifying such circuit-level abnormalities has been 

recording from large numbers of neurons simultaneously. However, advances in imaging 

and electrophysiological techniques have made it possible to characterize patterns of circuit-

level activity by, for example, calculating correlations between neurons (3, 4). Despite these 

advances, cognitive processes are associated with complex neural dynamics embedded 

within a high dimensional state space. Thus, in order to reveal defects in circuit-level 

activity that are associated with disorders such as autism, it is valuable to first identify 

specific neuronal correlates or signatures for relevant cognitive processes. Identifying these 

signatures makes it possible to evaluate whether they are altered in the setting of diseases 

such as autism. Any such alterations represent putative pathophysiological mechanisms 

contributing to cognitive dysfunction in these disease states.

Here, we set out to identify possible microcircuit-level abnormalities associated with autism. 

Our approach was to look for convergent abnormalities that are 1) conserved across 

multiple, etiologically distinct models of autism, and 2) impact neural correlates of cognitive 

processes that are known to be abnormal in autism. In particular, two recent studies 

identified a possible neural signature of attention using multi-neuronal recording in monkeys 

performing a visuospatial attention task (5, 6). Both studies observed the same result: during 

the attended portion of the task, the pairwise correlations between cortical neurons 

decreased. This decorrelation would reduce the overall noise of an output signal that was 

composed of a sum across the population – in fact, this pairwise decorrelation accounted for 

80% of the total improvement in the signal-to-noise ratio (6). This phenomenon is 

hypothesized to reflect the decorrelation of spontaneous network activity by 

neuromodulation. In particular, cholinergic modulation plays a well-established role in 

attention and cortical decorrelation in vivo (7). Nevertheless, it remains unknown whether 

cholinergic modulation can induce such decorrelations by acting directly on cortical 

microcircuits and if so, whether defects in this mechanism might be present in autism or 

other conditions with a high comorbidity of attentional deficits. Notably, in Fragile X 

syndrome (the most common known single gene cause of autism), 70% of affected children 
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meet criteria for an attentional deficit (8). Overall, approximately 50% of children with 

autism also meet criteria for attention deficit hyperactivity disorder (8). Deficits in attention 

have also been observed in FMR1 KO mice (9-11) and other mouse models of autism (12).

To examine how autism might affect a neural correlate of attention, we studied how 

cholinergic modulation affects spontaneous activity generated by deep layer prefrontal 

microcircuits under normal conditions and in mouse models of autism. We focused on 

microcircuits in deep layers of the PFC because cholinergic modulation within the PFC has 

been directly implicated in attention (13, 14), and abnormalities associated with autism are 

likely to be intrinsic to deep layer prefrontal microcircuits (1). Therefore, we isolated these 

microcircuits in brain slices, and used single-photon, wide field GCaMP imaging (15) to 

measure spontaneous activity in many neurons (50-100) at once. As described below, we 

found that cholinergic modulation can indeed act directly on cortical microcircuits to 

decorrelate spontaneous activity, mimicking the neural signature previously linked to 

attention in vivo. Furthermore, this decorrelation, which represents a possible neural 

substrate for attention, is defective in two etiologically distinct mouse models of autism.

MATERIALS AND METHODS

All experiments were conducted in accordance with procedures established by the 

Administrative Panels on Laboratory Animal Care at the University of California, San 

Francisco.

Subjects

P26-33 mice of either sex (Charles River) were injected unilaterally with 500 nL of AAV5/2

—synapsin::GCaMP6s (UNC viral vector core) at the coordinates (in mm): 1.7 anterior-

posterior (AP), 0.3 mediolateral (ML), and −2.2 dorsoventral (DV). Experiments studying 

the valproic acid (VPA) model of autism used C57BL/6 mice whose pregnant mothers had 

been injected with a single dose of VPA (500 mg/kg i.p.) at E10.5. For these experiments, 

control mice were C57BL/6 mice whose pregnant mothers had been injected with saline at 

E10.5. VPA solution was prepared by dissolving VPA in 0.9% saline to a final concentration 

of 150 mg/mL. Experiments studying a mouse model of Fragile X syndrome used male 

FMR1 WT or KO mice on a FVB background (Jackson labs). In some cases (active ACSF 

cohorts), these FMR1 WT and KO mice were littermates, while others (carbachol cohorts) 

were not.

For some experiments, C57Bl/6 mice were treated with fluoxetine based on a previously 

described protocol (16). Fluoxetine was administered (5 mg kg−1, I.P.) once daily for 6 days 

prior to imaging with the final injection coming 24-48 hours before imaging. Dominant 

negative DISC1 mutant mice were generated by crossing B6-CamKII::TtA (JAX: 00310) 

mice with tetO-DISC1dn (JAX: 008790) to yield mice expressing dominant negative DISC1 

in neocortical pyramidal cells.

Slice preparation

In all cases, 350 micron thick coronal slices were prepared from these animals 15-27 days 

after injection (6-8 weeks of age). Slices preparation followed our previously described 
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protocol (17) with one deviation: immediately after brain slices were prepared, they were 

transferred to an N-Methyl-D-Glucamine (NMDG)-based recovery solution for 10 min 

before being transferred to ACSF for the remainder of their recovery (18). The NMDG-

based solution was maintained at 32° C, and consisted of the following (in mM): 93 N-

Methyl-D-Glucamine (NMDG), 93 HCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 25 glucose, 

20 HEPES, 5 Na-ascorbate, 5 Na-pyruvate, 2 thiourea, 10 magnesium sulfate, 0.5 calcium 

chloride. This NMDG preparation method was used to improve the overall health of adult 

slices to ensure sufficient amounts of activity for analysis. ACSF contained the following (in 

mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl, and 10 glucose. 

All recordings were at 32.5 +/− 1°C. “Active” ACSF was identical to normal ACSF except 

with elevated KCl (3.5mM vs. 2mM) and reduced CaCl (1.2mM vs. 2mM).

Imaging

GCaMP imaging was performed on an Olympus BX51 upright microscope with a 20× 

1.0NA water immersion lens, 0.5× reducer (Olympus), and ORCA-ER CCD Camera 

(Hamamatsu Photonics). Illumination was delivered using a Lambda DG4 arc lamp (Sutter 

Instruments). Light was delivered through a 472/30 excitation filter, 495nm single band 

dichroic, and 496nm long pass emission filter (Semrock).

All movies that were analyzed consisted of 36000 frames acquired at 10Hz (1 hr) with 4×4 

sensor binning yielding a final resolution of 256 × 312 pixels. Light power during imaging 

was 100 – 500 μW/mm2. The Micro Manager software suite (v1.4, NIH) was used to control 

all camera parameters and acquire movies Any movies that had significant drift (greater than 

~0.25 soma diameters), movement, or lacked significant amounts of activity were excluded 

from further analysis. Significant movement could be detected during independent 

components analysis (ICA) by the appearance of elliptical rather than circular segments. We 

observed that active, GCaMP-expressing neurons were found within a discrete layer (c.f. 

Fig. 1A) consistent with the location of layer 5 in medial prefrontal cortex.

Signal extraction

All analyses and signal extraction was performed using MATLAB (Mathworks). Locations 

of cells were automatically identified using a modified version of the published CellSort 1.1 

toolbox (19). In particular, a factor, μ, specifies the weight between spatial and temporal 

sparseness: μ = 0 is purely spatial and μ = 1 is purely temporal. All of our analyses used μ = 

0.2 which was within the optimal range outlined in (19). Signals were extracted from movies 

and the baseline fluorescence function, F0, was calculated for every trace using the mode of 

the kernel density estimate over a 100s rolling window, implemented via the MATLAB 

function ksdensity following the procedure outlined in (20). All signal traces shown 

represent normalized versions of the (F-F0)/F0 trace.

Threshold based event detection was performed on the traces by detecting increases in (F-

F0)/F0 exceeding 2.5σ over one second, and then further thresholding these events by 

keeping only those events which exceeded a 4σ increase over two seconds. σ is the standard 

deviation of (F-F0)/F0, calculated over the entire movie. Thus all detected events have a 

deviation of at least 4σ from baseline. After identifying these events in the calcium signal 
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from a cell, the cell was considered “active” during the entire period from the beginning to 

the peak of the event. The beginning of the event was defined as the first point for which (F-

F0)/F0 increases by 2.5σ within 1 second and by 4σ within 2 seconds. The peak of the event 

was defined as the local maximum of the entire event, from the beginning of the event until 

(F-F0)/F0 returns to the same baseline value. We then created a matrix in which each row 

corresponds to a neuron, and each column corresponds to a frame. Entries in this matrix 

were 1 if a given neuron was active during a given frame, and 0 otherwise. All subsequent 

analyses were performed on this two-dimensional representation of network activity over 

time (c.f. Fig. 1C).

Correlations between cells were calculated between the binary event trains corresponding to 

those two cells after subtracting the mean level of activity from each event train.

The standard deviation projection in Figure 1 was obtained as follows. For each pixel, we 

computed the standard deviation of (F-F0)/F0 over 30 second intervals throughout the first 

10 minutes of a movie, then plotted the maximum value of these standard deviations.

Statistical analysis

Unless otherwise noted, we used the Mann Whitney U-test to compare pairs of groups, 

repeated measures ANOVA to compare multiple groups, and the two-tailed Kolmogorov-

Smirnov (KS) test to compare pairs of distributions. To compare the number of strong 

correlations between conditions, we treated the fraction of strong correlations in each slice 

as an observation. Error bars where shown indicate standard error unless otherwise noted. 

Cell identification, signal extraction and normalization, event detection, and all other data 

analysis was done using fully automated routines that were independent of the investigator 

and thus blinded.

RESULTS

We recorded sparse, robust GCaMP signals from neurons in layer 5 (L5) of the medial 

prefrontal cortex (mPFC; Fig. 1) in acute brain slices from late adolescent (P41-57) mice (n 

= 95). Using a combination of independent component analysis (ICA) and image 

segmentation (19), we located neurons, measured their GCaMP signals, and detected events 

corresponding to increased activity in these neurons (Fig. 1A-C). Each experiment recorded 

from 50-100 active L5 neurons for 1 hour. Table 1 lists all of our experiments, performed in 

control mice or mice modeling autism or other manipulations, and using either carbachol or 

high K+ ACSF to elicit spontaneous activity. Table 1 also includes summary statistics for 

each set of experiments.

We first sought to demonstrate the presence of correlated activity within our datasets. 

Experiments contained more strong correlations than shuffled datasets, in which the event 

train for each neuron is shifted in time by a different random amount, or scrambled datasets, 

in which the neuronal identities associated with each event are randomly reassigned (Fig 

1D). Shuffled datasets preserve the temporal structure of activity within each neuron, 

whereas scrambled datasets preserve the number of neurons active at any given point in 

time, thus maintaining the temporal structure of activity at the network level. We set an 
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arbitrary threshold of 0.15, and quantified the fraction of correlations exceeding this 

threshold. As shown in Fig. 1D, correlations exceeding this threshold were present at 

negligible levels in shuffled or scrambled datasets, so we used this threshold to define 

“strong” correlations, i.e. correlations which exceed those expected simply by chance.

Given the posited link between cholinergic modulation and cortical circuit decorrelation, we 

next compared spontaneous prefrontal microcircuit activity elicited by 2 μM carbachol to 

activity in “active ACSF” (21), which contains relatively high K+ and low Ca2+. Active (or 

high K+) ACSF elicits similar levels of spontaneous activity as 2 μM cabrachol (avg % time 

active = 4.2 ± 0.3 in carbachol vs. 4.5 ± 0.5 in high K+), making it possible to compare the 

properties of such activity when cholinergic modulation is present or absent, independent of 

changes in activity levels. These experiments, comparing recordings in carbachol to those in 

high K+, were all done using WT mice on an FVB background, which served as controls for 

experiments with FMR1 KO mice described below. Consistent with our hypothesis that 

cholinergic modulation decorrelates prefrontal microcircuit activity, the distribution of 

pairwise correlations was shifted to the right in high K+ compared to carbachol (Fig. 2A). 

This resulted in a marked increase in the fraction of “strong” correlations (correlations 

>0.15), from 1.2 ± 0.3% in carbachol to 4.0 ± 0.9% in high K+ (Fig. 2A inset).

Notably the decrease in correlations observed in carbachol was not an artifact of differences 

in activity. Plotting the fraction of strong correlations against the mean % time activity for 

each experiment in carbachol or high K+ shows that the fraction of strong correlations is 

increased in high K+ compared to carbachol, for all activity levels (Fig. 2D). To 

quantitatively and explicitly account for possible confounding effects of activity on the 

prevalence of strong correlations, we performed linear regression (Fig. 2D), and computed 

the difference between the observed fraction of strong correlations and the number expected 

based simply on the level of activity. These residual values are shown in Fig. 2E, and 

confirm that even when activity levels are taken into account, correlations in high K+ are 

stronger than those in carbachol.

Next, we examined whether this carbachol-induced decorrelation, which represents a 

possible biological substrate for attention, might be disrupted in in two etiologically 

dissimilar mouse models of autism. First, we studied mice exposed to valproic acid (VPA) 

in utero at E10.5 (Methods). VPA is an anticonvulsant and mood stabilizer, and there is a 

markedly elevated rate of autism in the children of mothers treated with VPA (but not other 

anticonvulsants) during pregnancy (22-24). Rodents exposed to VPA in utero exhibit 

numerous autism-like phenotypes (25, 26). We also studied FMR1 KO mice, which model 

Fragile X syndrome, the most common known genetic cause of autism (27).

In stark contrast to the carbachol-induced decorrelation described earlier, in both VPA-

exposed and FMR1 KO slices, carbachol failed to elicit a leftward shift of the correlation 

distribution (Fig. 2B,C). In fact, carbachol increased correlations in the VPA-exposed 

microcircuits (Fig. 2C). A potentially complicating factor is that unlike the case in wild-type 

slices, in both VPA-exposed and FMR1 KO slices, levels of activity were lower in carbachol 

compared to high K+ ACSF. We calculated correlations using mean subtracted even trains, 

which should minimize activity level-dependent effects. Indeed, as Fig. 2D shows, there is at 
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best a very weak relationship between activity levels and correlations. We also carried out 

additional analyses described in the Supplemental Information which confirm that the 

absence of a carbachol-induced decorrelation in autism models was not simply an artifact of 

differences in activity levels (Fig. S1).

We reasoned that this loss of the carbachol-induced decorrelation should cause correlations 

during carbachol-induced activity to be higher in models of autism compared to controls. 

We compared VPA-exposed mice to age-matched controls whose mothers had been injected 

with saline at the same timepoint. For FMR1 KO mice, we used age-matched FMR1 WT 

controls. In carbachol, both autism models exhibit a significant increase in the fraction of 

strong correlations relative to controls (Fig. 3A,B). Notably, levels of carbachol-induced 

activity were essentially identical in FMR1 WT and KO mice (4.2 ± 0.3% and 4.3 ± 0.4% in 

WT and KO respectively), demonstrating that the abnormally high correlations we observed 

during carbachol-induced activity in FMR1 KO mice are not simply an artifact of 

differences in activity. By contrast, levels of carbachol-induced activity were different for 

VPA-exposed mice and their wildtype controls, but once again, accounting for these 

differences could not explain the abnormally increased strong correlations observed in VPA-

exposed mice (Fig. S2C; Fig. S3).

Finally, we evaluated whether this abnormal increase in correlations during carbachol-

induced activity possesses specificity for autism. For this, we examined genetic and 

pharmacologic perturbations that affect the PFC but do not model autism: mice expressing a 

dominant negative version of DISC1 in excitatory neurons (CaMKII-TTA / TetO-dnDISC1), 

and mice chronically treated with the commonly prescribed selective-serotonin reuptake 

inhibitor fluoxetine. DISC1 disruption models aspects of schizophrenia and depression, 

including behaviors related to PFC dysfunction, e.g. impaired working memory and 

decreased social interaction (28-30). Chronic treatment with fluoxetine alters cell 

proliferation in the mPFC (31) in ways that may contribute to its effects on depression-like 

and repetitive behaviors. If the changes we saw in VPA-exposed and FMR1 KO mice were 

simply nonspecific consequences of perturbing PFC microcircuits, then we would expect 

these other mice to exhibit a similar increase in correlations during carbachol-induced 

activity. However, we observed no such increase in correlations during carbachol-induced 

activity in either of these cases compared to controls (Fig. 3C, D).

DISCUSSION

In this study we have identified a putative microcircuit level-phenotype associated with 

autism: a defect in the ability of cholinergic modulation to decorrelate spontaneous cortical 

circuit activity. We show that this decorrelation, previously observed in vivo, can also be 

observed at the level of isolated cortical microcircuits, and that it is lost in two mouse 

models of autism. Lastly, we show that this defect is at least somewhat specific for autism, 

as it is not present following two other manipulations that affect prefrontal cortex: chronic 

treatment with fluoxetine, and expression of a dominant-negative form of DISC1. This 

suggests that the loss of cholinergic-dependent decorrelation observed might represent a 

microcircuit-level phenotype with specificity for autism, and thus could constitute an 

attractive target for novel circuit level-therapies.
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Relationship to in vivo studies

While we have shown the cholinergic decorrelation to be present in vitro, it will be 

important to compare our findings to features of activity occurring in vivo. That being said, 

in vivo recordings address fundamentally different questions from those addressed here. 

Activity in vivo is strongly influenced by synaptic inputs originating outside the local 

microcircuit as well as factors such as behavior state. Thus, while in vivo studies are 

uniquely able to identify network phenomena, e.g., decorrelations recruited by attention (5, 

6) and acetylcholine (7), they are not well suited for determining how these phenomena 

relate to local microcircuit mechanisms. For example, even if it were possible to precisely 

control levels of neuromodulation in vivo, doing so would almost certainly elicit 

confounding changes in feedforward and feedback inputs. Here, by studying isolated 

microcircuits within brain slices, we demonstrate unequivocally that the decorrelations 

observed in vivo can emerge as a result of cholinergic modulation acting directly on 

microcircuits. (Interestingly, whereas we studied ongoing patterns of spontaneous network 

activity similar to those believed to mediate attentional effects in vivo, another recent in vitro 

study (4) showed that acetylcholine decorrelates the latency to the first spike in 

somatosensory neurons responding to thalamic input).

We go on to demonstrate that the carbachol-induced decorrelation of spontaneous network 

activity we found is disrupted in models of autism. If one observed abnormal correlations in 

models of autism in vivo, it would be unclear whether these abnormalities reflect the 

inability of cholinergic modulation to decorrelate local circuits (as we have found) vs. more 

macroscopic deficits, e.g. the inability of these animals to engage the appropriate behavioral 

state. Our approach is specifically intended to isolate and examine the integrity of specific 

microcircuit mechanisms, in a way that complements in vivo work. Our focus on 

mechanisms that are intrinsic to deep layer prefrontal circuits is particularly relevant given 

that these circuits represent the single strongest locus of convergence for autism genes (1).

Relevance to autism

Great progress has been made in identifying genes and environmental factors that contribute 

to autism. However, it has been challenging to understand how all of these “add up” to alter 

circuit activity in ways that could impact behavior. Cortical microcircuits, within which 

many cell types and synapses interact to generate patterns of neural activity, represent an 

attractive locus at which at which many different genetic, environmental, and developmental 

lesions could converge to elicit common phenotypes. Thus, many studies have begun 

exploring possible circuit-level endophenotypes for complex neuropsychiatric disorders 

including autism (32-34).

As discussed above, attentional deficits are a major feature of autism generally, and Fragile 

X syndrome in particular. The failure of cholinergic modulation to decorrelate PFC 

microcircuit activity in autism models holds face validity as a possible contributor to these 

deficits. The presence of this same abnormality in two models of autism with very different 

etiologies (but not in association with other manipulations of prefrontal function) provides 

additional empirical validity for the hypothesis that this abnormality plays a role in the 

pathophysiology of autism. Importantly, this circuit-level abnormality may come about as a 
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result of multiple, dissimilar cellular and synaptic effects in FMR1 KO and VPA-exposed 

mice. Indeed, as stated earlier, numerous autism-related genes are convergently expressed 

within the deep layer PFC circuits we have shown are abnormal (1). This highlights the 

importance of identifying microcircuit-level phenotypes, such as the loss of cholinergic 

decorrelation, that could represent convergent consequences of disruptions in multiple 

genes, and which could plausibly contribute to common aspects of autism, e.g. attentional 

deficits.

Possible circuit mechanisms

Of course, it will still be important to identify the cellular and/or synaptic actions of 

cholinergic modulation which normally help desynchronize microcircuit activity, but are 

abnormal in VPA-exposed and/or FMR1 KO mice. Various studies have shown that 

cholinergic modulation can increase the excitability of interneurons which express 

somatostatin or vasoactive intestinal peptide (35, 36), hyperpolarize fast-spiking 

interneurons (36), regulate short-term plasticity at both excitatory and inhibitory synapses 

(37), preferentially elicit persistent firing in subcortically-projecting (vs. callosally-

projecting) L5 pyramidal neurons (38), and suppress intracortical (but not thalamocortical) 

excitatory synapses (39). Of course, it remains unclear whether each of these effects is 

present in the prefrontal circuits we have studied, contributes to the cholinergic-ineduced 

decorrelation we have found, and/or is altered in FMR1 KO and VPA-exposed mice.

Rather than to explore each of these effects individually, we instead took the unconventional 

approach of developing a new assay, using it to examine whether all the effects of 

cholinergic modulation add up to exert some net influence on circuit activity, and then 

evaluating whether that net circuit-level influence is altered in a consistent way across VPA-

exposed and FMR1 KO mice. Examining individual cellular and synaptic effects of 

cholinergic modulation would be time consuming, and might miss the “big picture” of how 

diverse abnormalities can add up to elicit a common, circuit-level phenotype. By contrast, 

the approach demonstrated here can explore how various factors shape pairwise 

decorrelation and other emergent network properties. For example, one could combine 

optogenetic inhibition of genetically targeted cell populations with GCaMP imaging to 

explore how specific cell types influence network correlation / decorrelation.

Conclusions

By describing a potential new microcircuit-level phenotype for autism, our study builds a 

critical foundation for future work to elucidate the detailed pathways, leading from the 

FMR1 gene or VPA exposure, to the abnormal response of prefrontal microcircuits to 

cholinergic modulation we have found. One could also evaluate potential therapies by 

measuring how well they improve the ability of cholinergic modulation to decorrelate these 

circuits – this approach might reveal novel therapeutic strategies that bypass the molecular 

pathways disrupted in autism, and instead exploit alternative mechanisms to normalize 

overall circuit function.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This work was supported by the Staglin Family and International Mental Health Research Organization (IMHRO), 
Simons Foundation for Autism Research, Alfred P. Sloan Foundation, NIMH (R00MH085946), and NIH Office of 
the Director (DP2MH10001101). FL received support from an IMSD fellowship from NIGMS (R25GM56847). 
Tosha Patel and Audrey Brumback provided VPA-exposed mice. Philip Sabes and Michael Stryker provided 
helpful comments on the manuscript. We also acknowledge the use of GCaMP constructs developed by Vivek 
Jayaraman, Rex Kerr, Douglas Kim, Loren Looger, and Karel Svoboda as part of the GENIE Project at the Janelia 
Farm Research Campus, Howard Hughes Medical Institute.

REFERENCES

1. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. Coexpression networks 
implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 
2013; 155:997–1007. [PubMed: 24267886] 

2. Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D. Genotype to phenotype relationships in 
autism spectrum disorders. Nat Neurosci. 2014

3. Sadovsky AJ, MacLean JN. Scaling of topologically similar functional modules defines mouse 
primary auditory and somatosensory microcircuitry. J Neurosci. 2013; 33:14048–14060. 14060a. 
[PubMed: 23986241] 

4. Runfeldt MJ, Sadovsky AJ, MacLean JN. Acetylcholine Functionally Reorganizes Neocortical 
Microcircuits. J Neurophysiol. 2014

5. Mitchell JF, Sundberg KA, Reynolds JH. Spatial attention decorrelates intrinsic activity fluctuations 
in macaque area V4. Neuron. 2009; 63:879–888. [PubMed: 19778515] 

6. Cohen MR, Maunsell JH. Attention improves performance primarily by reducing interneuronal 
correlations. Nat Neurosci. 2009; 12:1594–1600. [PubMed: 19915566] 

7. Goard M, Dan Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat 
Neurosci. 2009; 12:1444–1449. [PubMed: 19801988] 

8. (!!! INVALID CITATION !!!)

9. Moon J, Beaudin AE, Verosky S, Driscoll LL, Weiskopf M, Levitsky DA, et al. Attentional 
dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav 
Neurosci. 2006; 120:1367–1379. [PubMed: 17201482] 

10. Casten KS, Gray AC, Burwell RD. Discrimination learning and attentional set formation in a 
mouse model of Fragile X. Behav Neurosci. 2011; 125:473–479. [PubMed: 21517146] 

11. Dickson PE, Corkill B, McKimm E, Miller MM, Calton MA, Goldowitz D, et al. Effects of 
stimulus salience on touchscreen serial reversal learning in a mouse model of fragile X syndrome. 
Behav Brain Res. 2013; 252:126–135. [PubMed: 23747611] 

12. McTighe SM, Neal SJ, Lin Q, Hughes ZA, Smith DG. The BTBR mouse model of autism 
spectrum disorders has learning and attentional impairments and alterations in acetylcholine and 
kynurenic acid in prefrontal cortex. PLoS One. 2013; 8:e62189. [PubMed: 23638000] 

13. Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: 
neural and neurochemical substrates. Neurosci Biobehav Rev. 2004; 28:771–784. [PubMed: 
15555683] 

14. Parikh V, Sarter M. Cholinergic mediation of attention: contributions of phasic and tonic increases 
in prefrontal cholinergic activity. Ann N Y Acad Sci. 2008; 1129:225–235. [PubMed: 18591483] 

15. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, et al. Imaging neural activity in 
worms, flies and mice with improved GCaMP calcium indicators. Nature methods. 2009; 6:875–
881. [PubMed: 19898485] 

Luongo et al. Page 10

Biol Psychiatry. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, et al. Cortico-striatal synaptic defects 
and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007; 448:894–900. [PubMed: 
17713528] 

17. Gee S, Ellwood I, Patel T, Luongo F, Deisseroth K, Sohal VS. Synaptic activity unmasks 
dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal 
cortex. J Neurosci. 2012; 32:4959–4971. [PubMed: 22492051] 

18. Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, et al. Cell type-specific channelrhodopsin-2 
transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods. 2011; 8:745–
752. [PubMed: 21985008] 

19. Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated analysis of cellular signals from large-
scale calcium imaging data. Neuron. 2009; 63:747–760. [PubMed: 19778505] 

20. O'Connor DH, Peron SP, Huber D, Svoboda K. Neural activity in barrel cortex underlying 
vibrissa-based object localization in mice. Neuron. 2010; 67:1048–1061. [PubMed: 20869600] 

21. Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent 
activity in neocortex. Nat Neurosci. 2000; 3:1027–1034. [PubMed: 11017176] 

22. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. A clinical study of 57 
children with fetal anticonvulsant syndromes. J Med Genet. 2000; 37:489–497. [PubMed: 
10882750] 

23. Rasalam AD, Hailey H, Williams JH, Moore SJ, Turnpenny PD, Lloyd DJ, et al. Characteristics of 
fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol. 2005; 47:551–
555. [PubMed: 16108456] 

24. Christensen J, Gronborg TK, Sorensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal 
valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013; 
309:1696–1703. [PubMed: 23613074] 

25. Schneider T, Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid: 
animal model of autism. Neuropsychopharmacology. 2005; 30:80–89. [PubMed: 15238991] 

26. Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, et al. Gender-
specific behavioral and immunological alterations in an animal model of autism induced by 
prenatal exposure to valproic acid. Psychoneuroendocrinology. 2008; 33:728–740. [PubMed: 
18396377] 

27. Bakker CE, Verheij C, Willemsen R, van der Helm R, Oerlemans F, Vermey M, et al. Fmr1 
knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X 
Consortium. Cell. 1994; 78:23–33. [PubMed: 8033209] 

28. Pletnikov MV, Ayhan Y, Nikolskaia O, Xu Y, Ovanesov MV, Huang H, et al. Inducible expression 
of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent 
of schizophrenia. Mol Psychiatry. 2008; 13:173–186. 115. [PubMed: 17848917] 

29. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, et al. Dominant-negative 
DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures 
translatable to humans. Proc Natl Acad Sci U S A. 2007; 104:14501–14506. [PubMed: 17675407] 

30. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, et al. Behavioral phenotypes of 
Disc1 missense mutations in mice. Neuron. 2007; 54:387–402. [PubMed: 17481393] 

31. Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell 
proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry. 2004; 56:570–580. 
[PubMed: 15476686] 

32. Markram H, Rinaldi T, Markram K. The intense world syndrome--an alternative hypothesis for 
autism. Front Neurosci. 2007; 1:77–96. [PubMed: 18982120] 

33. Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition 
and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. 
J Neurophysiol. 2008; 100:2615–2626. [PubMed: 18784272] 

34. Goncalves JT, Anstey JE, Golshani P, Portera-Cailliau C. Circuit level defects in the developing 
neocortex of Fragile X mice. Nat Neurosci. 2013; 16:903–909. [PubMed: 23727819] 

35. Kawaguchi Y. Selective cholinergic modulation of cortical GABAergic cell subtypes. J 
Neurophysiol. 1997; 78:1743–1747. [PubMed: 9310461] 

Luongo et al. Page 11

Biol Psychiatry. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Xiang Z, Huguenard JR, Prince DA. Cholinergic switching within neocortical inhibitory networks. 
Science. 1998; 281:985–988. [PubMed: 9703513] 

37. Pafundo DE, Miyamae T, Lewis DA, Gonzalez-Burgos G. Cholinergic modulation of neuronal 
excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for 
gamma oscillations. J Physiol. 2013; 591:4725–4748. [PubMed: 23818693] 

38. Dembrow NC, Chitwood RA, Johnston D. Projection-specific neuromodulation of medial 
prefrontal cortex neurons. J Neurosci. 2010; 30:16922–16937. [PubMed: 21159963] 

39. Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators 
and activity. Neuron. 1997; 19:679–686. [PubMed: 9331357] 

Luongo et al. Page 12

Biol Psychiatry. Author manuscript; available in PMC 2017 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Single photon GCaMP imaging resolves simultaneous activity from many neurons in 
prefrontal slices
a, Regions of Interest (ROIs) obtained by an automated algorithm, showing the locations of 

neurons, superimposed on the maximum standard deviation projection of a GCaMP6s 

movie .

b, Sample GCaMP6s signals from 8 neurons (out of 84 total neurons imaged). Overlaid red 

lines indicate times when we detected that a neuron was active.

c, Example raster of spontaneous network activity for a single 60 min experiment with 84 

neurons.

d, Cumulative probability distributions for correlations in real datasets (black line; n = 29 

experiments from wild-type mice) vs. those observed in data shuffled by shifting each 

neuron's event train by a different random amount (“shuffled”, purple line) or by randomly 

reassigning the neuronal identity associated with each event (“scrambled”, blue line). Inset: 

the fraction of correlations > 0.15 are shown for real and shuffled / scrambled datasets. In 

each case, both the individual datapoints as well as the means and standard errors are shown.
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Figure 2. Cholinergic modulation decorrelates microcircuit activity in wild-type mice, but not in 
models of autism
a. Cumulative distribution of pairwise correlations for FMR1 WT datasets using either 2 μM 

carbachol (n = 7) or high K+ ACSF to elicit activity (n = 6). Inset: In carbachol, there are 

fewer strong correlations (>0.15) compared to high K+ ACSF (p < 0.01).

b, Cumulative distribution plot for correlations recorded from FMR1 KO mice in carbachol 

(green line) or high K+ ACSF (black line). Inset: In carbachol, there is no reduction in strong 

correlations (>0.15), compared to high K+ ACSF. Both individual datapoints as well as the 

means and standard errors are shown.

c, Cumulative distribution plot for correlations recorded from VPA-exposed mice in 

carbachol (red line) or high K+ ACSF (black line). Inset: In carbachol, there are more strong 

correlations (>0.15), compared to high K+ ACSF. Both individual datapoints as well as the 

means and standard errors are shown.

d, Scatterplot of the fraction of strong correlations as a function of the fraction of time active 

for WT datasets in carbachol (black O symbols) or high K+ ACSF (brown X symbols). The 

gray dashed line represents a linear fit of all points (carbachol and high K+ ACSF).

e, Residual values for the fractions of strong correlations, i.e. the difference between the 

actual values, and the fraction expected based on a linear relationship between activity and 

strong correlations, for carbachol (black) and high K+ ACSF (brown) datasets. Even after 

accounting for a possible relationship between activity and strong correlations, the fraction 
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of strong correlations in high K+ ACSF is still significantly greater than in carbachol. ** p 

<0.01 by Wilcoxon rank sum test
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Figure 3. Autism models, but not DISC1 mutant or fluoxetine-treated mice, exhibit abnormally 
elevated correlations in carbachol
a, Left: Plot of the average amount of time each neuron was active for FMR1 WT (filled 

black circles, left; n=7) or FMR1 KO slices (filled green circles, right; n=6). Right: 
Cumulative distribution of correlations, averaged over all experiments in FMR1 WT (black; 

n=7) or FMR1 KO slices (green; n=6). Inset shows fraction of strong correlations, i.e. values 

> 0.15 for each condition, and both individual datapoints as well as the means and standard 

errors are plotted.
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b, Similar to a, but compares experiments in saline-exposed (black; n=9) or VPA-exposed 

slices (orange; n=12).

c, Similar to a, but compares experiments in control (black circles, left; n=8) vs. dominant 

negative DISC1 mutant mice (blue circles, right; n=6).

d, Similar to a, but compares experiments in saline-treated (black circles, left; n=6) 

compared to FLX-treated mice (purple circles, right; n=7).

** p < 0.01 by Wilcoxon ranksum test.
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Table 1

List of all experiments along with summary statistics describing network activity.

Genotype/Condition Background Bath condition No. Slices No. Mice No. Cells % time active Fraction 
pairs > 0.15

GCaMP6s

VPA VPA exposed C57B16 2μM Carbacho 1 11 7 64 ± 2.3 1.4 ± 0.1 0.094 ± 0.010

VPA exposed C57B16 ‘active’ ACSF 10 6 83 ± 2.3 3.1 ± 0.3 0.043 ± 0.009

saline exposed controls C57B16 2μM Carbacho 1 7 4 76 ± 4.2 2.8 ± 0.3 0.039 ± 0.009

FMR1 FMR1 KO FVB1 2μM Carbacho 1 6 4 83 ± 1.8 4.3 ± 0.4 0.045 ± 0.015

FMR1 WT FVB1 2μM Carbacho 1 7 4 86 ± 1.8 4.2 ± 0.3 0.012 ± 0.003

FMR1 KO FVB1 ‘active’ ACSF 12 7 85 ± 1.6 5.6 ± 0.4 0.026 ± 0.005

FMR1 WT FVB1 ‘active’ ACSF 6 3 80 ± 2.4 4.5 ± 0.5 0.040 ± 0.009

FLX Fluoxetine injected C57B16 2μM Carbacho 1 8 6 85 ± 1.3 4.1 ± 0.2 0.010 ± 0.002

Saline injected C57B16 2μM Carbacho 1 6 5 78 ± 1.7 3.6 ± 0.8 0.033 ± 0.018

DISC1dn CamKII::ttA / tetO - 
DISC1dn

C57B16 2μM Carbacho 1 6 3 86 ± 2.4 3.8 ± 0.3 0.020 ± 0.009

tetO - DISC1dn/ + C57B16 2μM Carbacho 1 2 2 86 ± 0.5 3.2 ± 0.1 0.016 ± 0.005

CamKII :: ttA / + C57Bl6 2μM Carbacho 1 4 3 83 ± 3.5 3.7 ± 0.8 0.011 ± 0.004

+/+ C57Bl6 2μM Carbacho 1 3 3 89 ± 4.0 3.3 ± 0.5 0.008 ± 0.003

All values shown as mean with SEM

Each row describes a single experimental condition. Mice that correspond to controls and experimental manipulations (e.g. FMR1 WT and KO 
mice) are listed together. In addition to the experimental condition, we present the background for all mice, the bath condition used to elicit activity 
(either carbachol or active ACSF), the number of cells in each experiment, the % time that each cell was active, and the fraction of pairwise 
correlations between neurons that exceed 0.15. All data show represent means across an experimental condition ± one S.E.M.
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