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Bayesian-Optimized Riblet
Surface Design for Turbulent
Drag Reduction via
Design-by-Morphing with Large
Eddy Simulation
A computational approach is presented for optimizing new riblet surface designs in tur-
bulent channel flow for drag reduction, utilizing Design-by-Morphing (DbM), Large Eddy
Simulation (LES), and Bayesian Optimization (BO). The design space is generated using
DbM to include a variety of novel riblet surface designs, which are then evaluated using
LES to determine their drag-reducing capabilities. The riblet surface geometry and con-
figuration are optimized for maximum drag reduction using the mixed-variable Bayesian
optimization (MixMOBO) algorithm. A total of 125 optimization epochs are carried out,
resulting in the identification of 3 optimal riblet surface designs that are comparable to or
better than the reference drag reduction rate of 8%. The Bayesian-optimized designs com-
monly suggest riblet sizes of around 15 wall units, relatively large spacing compared to
conventional designs, and spiky tips with notches for the riblets. Our overall optimization
process is conducted within a reasonable physical time frame with up to 12-core parallel
computing and can be practical for fluid engineering optimization problems that require
high-fidelity computational design before materialization.

Keywords: Design-by-Morphing (DbM), Large Eddy Simulation, Bayesian Optimization,
Drag Reduction, Riblet Surface, Turbulent Channel Flow

1 Introduction
Fluid drag, a force that acts against the movement of an object

surrounded by fluid, is an inevitable challenge faced by objects
moving through air or water. To combat this energy-consuming
problem, nature has evolved various methods to reduce fluid
drag [1, 2]. Examples include shark skin’s micro-surface [3–5],
penguins’ microbubble-covered feathers, and hydrodynamic body
shape to reduce either friction or pressure drag [6, 7]. These bio-
logically inspired strategies have garnered significant interest in the
scientific community due to their potential applications in indus-
tries such as transportation and pipelines, where increased energy
efficiency is crucial. One area of active research involves replicat-
ing the micro-surface structure of shark skin, often simplified in
the form of riblets [8] (see Fig. 1), and incorporating it as a surface
modification in applications such as aircraft, automobiles, swim-
suits, or ship hulls [9]. Unlike a streamlined body, which requires
modifying the entire structure, riblets may simply be added to an
existing surface in the form of a film [10, 11].

To overcome the limitations of riblet designs imposed by fab-
rication restrictions, researchers have turned to additive manufac-
turing to create more complex riblet structures for drag reduction
[12, 13]. This has enabled the creation of three-dimensional riblet
structures, such as those mimicking the trident shape of shark den-
ticles, through multi-material 3D printing [13]. Additionally, addi-
tive manufacturing has facilitated the fabrication of closed channels
(pipes) with internal surfaces featuring micrometer-sized denticles
that reduce drag compared to smooth channels [14]. Despite the
expanded design possibilities offered by additive manufacturing,
few riblet designs have emerged that outperform conventional ones,
such as triangular, scalloped, or blade riblets. This is because the
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Fig. 1 Configuration of flow over a riblet surface consid-
ered in this paper. All riblets are aligned in parallel with the
streamwise direction.

removal of manufacturing constraints also means an infinite num-
ber of riblet configurations need to be designed and tested. As
such, further optimization of riblet structures for drag reduction
remains a critical area of research in the broader field of design.

In this study, we employ a combination of Design-by-Morphing
(DbM) and Bayesian optimization (BO) to identify and optimize
new riblet configurations for drag reduction (See Fig. 2). Our
approach involves generating novel riblet shapes by morphing ex-
isting ones from the literature and evaluating their drag-reducing
capabilities using Large Eddy Simulation (LES) and the Immersed-
Boundary (IB) method. The mixed-variable BO algorithm devel-
oped by Sheikh & Marcus [15] is then utilized to optimize riblet
geometry for maximum drag reduction, resulting in three optimal
riblet structures with drag reduction of 8.65%, 8.11%, and 7.84%,
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Fig. 2 Computation flowchart for riblet surface design, evaluation and optimization.

respectively. Our findings provide insight into the unique drag-
reducing mechanism of these optimized riblet structures, which is
thought to be due to the circulation zones created by the spiky tips
of the riblets. By combining DbM, LES, and BO, we aim to extend
the range of applicability of the riblet structures to a broader range
of fluidic conditions by optimizing the riblet configuration.

2 Riblet Surface Design
To systematically explore different riblet shapes, we utilize

Design-by-Morphing (DbM). This technique, introduced by Oh
et al. [16], investigates the aerodynamically optimal shape of a
high-speed train for drag reduction. The DbM technique initiates
by linearly morphing homeomorphic or, equivalently, topologi-
cally equivalent “baseline” shapes to generate continuously varying
shapes [17]. The homeomorphic condition establishes a one-to-one
correspondence between baseline shapes, which can be performed
in either function space [16] or geometric space [17, 18]. Here, we
consider morphing in geometric space by representing the bound-
ary of a baseline riblet shape as a set of discrete points that are
ordered consistently. If 𝑁 baseline shapes are reasonably chosen,
any new shape created by DbM is expressed as an ordered set of
𝑁 real values, where the 𝑖th value serves as a morphing “weight”
for the 𝑖th baseline shape. Consequently, using DbM, we construct
a continuous mapping of a design space for exploration to a sub-
space of R𝑁 , which is suitable for further optimization processes
such as artificial neural networks [16] or Bayesian optimizations
(BOs) [19, 20]. The benchmark study of DbM, demonstrating its
excellence in shape construction compared to conventional param-
eterization methods, can be found in Sheikh et al. [17].

2.1 Baseline Shape Selection. According to Sheikh et al.
[17], diversity in baseline shapes plays a key role in determining
how effectively and extensively the design space is established. It
is not only important to include conventionally accepted designs as
baseline shapes, but it is also worth considering “inferior” perform-
ers as part of them. Although each of these baseline shapes may
be far from the desired optimum, their combination resulting from
DbM provides novelty to the design exploration. This is because
negative weights are assigned to these baseline shapes during DbM
to allow for extrapolative morphing, which is an original feature
of the DbM technique that facilitates radical design changes [16].

Following this selection principle, we consider a total of ten
riblet shapes (𝑁 = 10) as the baseline shapes in this study, as
depicted in Fig. 3. All of them have been normalized with a unit
neck length and height. Due to this, the blade riblet shape appears
to be square here. The first eight riblet shapes were suggested in
the 1980s [21, 22] and have been widely accepted and studied as
riblet surface designs for several decades [23–27]. It is noteworthy
that several studies, including Walsh [22] and Bechert et al. [23],
have reported that riblets with sharp peaks excel in drag reduction.
However, for the purpose of exploring our design space extensively,
riblets with round or flat peaks are intentionally considered as the
baseline shapes.

The last two riblet shapes, which feature a common tapering
neck, are original designs proposed in this study. Although they

Fig. 3 Baseline riblet shapes for DbM in this study. The first
eight are picked from the literature [22], while the last two
are originally considered. All riblet baseline shapes depicted
here are normalized with a unit neck length and a unit height.

may be revealed as poor performers, they still contribute to the
novelty of the design space by explicitly incorporating the tapering-
neck feature into our considerations for riblet surface design. This
feature may not be achievable through conventional riblet surface
production methods, such as rolling processes, as noted in studies
such as Klocke et al. [28] and Gao et al. [29]. However, in the
context of additive manufacturing, which is the motivation for the
current shape optimization, tapering-neck riblets can be produced,
and as such, we believe that they are worth considering.

2.2 Design-by-Morphing. In order to establish one-to-one
correspondence between the baseline riblet shapes, we use curve
parameterization. In the two-dimensional Cartesian coordinate sys-
tem (𝑥, 𝑦), let’s suppose a variable 𝑡 that parameterizes the wetted
perimeter of a riblet shape R such that

R(𝑡) ≡
[︄
𝑥(𝑡)
𝑦(𝑡)

]︄
0 ≤ 𝑡 ≤ 1, (1)

where R(𝑡 = 0) = (0, 0) and R(𝑡 = 1) = (1, 0). That is, the initial
and final points correspond to the left and right ends of the riblet
neck, respectively. The presence of 𝑡 is manifest if we interpret 𝑡
as time and imagine someone drawing the curve from left to right
in a unit time on condition with respect to the total arc length of
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R, denoted 𝐿, that

𝐿 =

∫ 1

0
R′ (𝜏)𝑑𝜏. (2)

We keep the drawing speed R′ (𝑡) to be consistently 𝐿, and then
R(𝑡) is well-defined. Under this parameterization, all 10 baseline
riblet shapes R1, · · · , R10 establish the mutual one-to-one corre-
spondence for all 𝑡 in [0, 1].

The parameterization above should be discretized for the sake
of computation. If we discretize 𝑡 to 𝑡𝑗 for 𝑗 = 0, 1. · · · , 𝑝 such
that 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑝 = 1 that are equally spaced (i.e.
𝑡𝑗 = 𝑗/𝑝), we obtain the discretized form of the 𝑖 th baseline riblet
shape R𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 as the following 2 × (𝑝 + 1) matrix

R𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =

[︂
R0
𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

· · · R
𝑝

𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒

]︂
, (3)

where the ( 𝑗 + 1)th column R
𝑗

𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
is

R
𝑗

𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
=

[︄
𝑥𝑖 (𝑡𝑗 )
𝑦𝑖 (𝑡𝑗 )

]︄
. (4)

As a result, this discrete form is identical to (𝑝 + 1) points that are
equispaced along the wetted perimeter of the riblet shape. In this
study, we put 𝑝 = 1000 to numerically represent the baseline riblet
shapes. Unless needed, the “discrete" notation, as in Eqs. (3) and
(4), is omitted henceforth.

A morphed riblet shape via DbM M =
[︁
M0 M1 · · · M𝑝

]︁
from the 10 baseline riblet shapes R1, · · · , R10 is defined as

M 𝑗 =

⎡⎢⎢⎢⎢⎣
(︂∑︁10

𝑖=1 𝜔𝑖𝑥𝑖 (𝑡𝑗 ) − 𝐶1
)︂
/𝐶2|︁|︁|︁∑︁10

𝑖=1 𝜔𝑖𝑦𝑖 (𝑡𝑗 )
|︁|︁|︁ /𝐶3

⎤⎥⎥⎥⎥⎦ ( 𝑗 = 0, 1, · · · , 𝑝), (5)

where 𝜔𝑖 is the morphing weight assigned for R𝑖 . 𝐶1, 𝐶2 and 𝐶3
are the renormalization factors defined as follows:

𝐶1 = min
𝑗=0, · · · , 𝑝

(︄ 10∑︂
𝑖=1

𝜔𝑖𝑥𝑖 (𝑡𝑗 )
)︄
, (6)

𝐶2 = max
𝑗=0, · · · , 𝑝

(︄ 10∑︂
𝑖=1

𝜔𝑖𝑥𝑖 (𝑡𝑗 )
)︄
− 𝐶1, (7)

𝐶3 = max
𝑗=0, · · · , 𝑝

|︁|︁|︁|︁|︁ 10∑︂
𝑖=1

𝜔𝑖𝑦𝑖 (𝑡𝑗 )
|︁|︁|︁|︁|︁ . (8)

The absolute value of the weighted sum of the 𝑦 coordinates is
taken to avoid negative 𝑦 because we suppose the riblets to be
additively manufactured on a flat surface. The renormalization
factors make the morphed riblet shape fit into a unit box [0, 1] ×
[0, 1] since we later take into consideration their scaling after the
morphing (see §2.4).

The supplemental handling of the morphed riblet shape facili-
tates the effective truncation of the 10-dimensional weight space
𝝎 = (𝜔1, · · · , 𝜔10) ⊆ R10. First of all, it is sufficient to ex-
amine only the unit hypersphere (i.e. 9-sphere) centered at the
origin ∥𝝎∥2 = 1 because all positive multiples of a weight set
(𝜔1, · · · , 𝜔10) result in the same morphed shape. This reduces
the number of independent variables of the design space (i.e. di-
mensionality) by one. Introducing the 9-dimensional angular coor-
dinates (𝜑1, · · · , 𝜑9) for 𝜑1, · · · , 𝜑8 ∈ [0, 𝜋] and 𝜑9 ∈ (−𝜋, 𝜋]

Fig. 4 Truncated weight space visualized on the hemispher-
ical surface in the 3D subspace (ω1,ω2,ω3), parameterized
by ϕ1 and ϕ2. Interpolative morphing occurs in the green
zone, while extrapolative morphing happens in the blue zone.

[30] may be useful in this case, which are related to the weight
variables through

𝜔𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos(𝜑1) 𝑖 = 1[︂∏︁𝑖−1

𝑘=1 sin(𝜑𝑘)
]︂

cos(𝜑𝑖) 𝑖 = 2, · · · , 9∏︁𝑖−1
𝑘=1 sin(𝜑𝑘) 𝑖 = 10

(9)

Furthermore, it is safe to ignore one half of the hypersphere because
a morphed shape from −𝝎 is no more than a mirrored image of that
from 𝝎. We pick the half where

∑︁10
𝑖=1 𝜔𝑖 ≥ 0 that encompasses the

interpolative morphing region where 𝜔𝑖 ≥ 0 for all 𝑖 = 1, · · · , 10.
If all weights are non-negative, interpolation morphing occurs with
modest transition. Otherwise, if some are negative, extrapolation
morphing is performed, allowing radical design change. The visual
illustration of the truncated weight space is exhibited in Fig. 4 in its
3D subspace (𝜔1, 𝜔2, 𝜔3) for simplification (i.e. 𝜔4 = · · · = 𝜔10 =

0), where all morphed shapes are mapped on the unit hemispherical
surface that can be parameterized by 𝜑1 ∈ [0, 𝜋] and 𝜑2 ∈ (−𝜋, 𝜋].

2.3 Geometrical Feasibility Check. In the truncated weight
space ∥𝝎∥2 = 1 and

∑︁10
𝑖=1 𝜔𝑖 ≥ 0, denoted W, not all of the mor-

phed riblet shapes are geometrically feasible because some may
result in non-physical features, represented by self-intersections.
Examples of self-intersecting riblet shapes are shown in Fig. 5.
Although this is not a problem for interpolation (i.e., when all
weights are non-negative), it becomes problematic when it comes
to extrapolation (i.e., when some weights are negative), which we
allow to enable radical design changes. To computationally detect
self-intersections of a given shape, we utilize the MakeValid func-
tion provided by the GEOS C/C++ library [31], which transforms
a single shape to multi-geometries in case of self-intersections by
scanning the input vertices (i.e., (𝑝+1) points in M). The function
queries a subset of the vertices that can form a simple closed curve
(ring) and iterates this process until no more rings can be found
with the remaining vertices. If the function outputs two or more
rings, then the input is determined to be self-intersecting.

The treatment of self-intersections depends on how much tol-
erance there is for such invalid geometries. For instance, in the
airfoil optimization study with DbM by Sheikh et al. [17], self-
intersecting shapes were slightly buffered at the self-intersections
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𝜑1 = 1.858, 𝜑2 = 0.914, 𝜑3 = 1.372,
𝜑4 = 1.405, 𝜑5 = 1.866, 𝜑6 = 1.658,
𝜑7 = 0.757, 𝜑8 = 0.573, 𝜑9 = −1.960

(a) Riblet with a cavity

𝜑1 = 1.314, 𝜑2 = 1.407, 𝜑3 = 1.329,
𝜑4 = 1.355, 𝜑5 = 1.468, 𝜑6 = 1.465,
𝜑7 = 0.978, 𝜑8 = 1.442, 𝜑9 = −2.759

(b) Gourd-shaped riblet

Fig. 5 Invalid morphed riblet shapes with self-intersections.

and recovered. In this problem, however, we discard these self-
intersecting shapes (cf. [18]) because we see no practical benefit in
recovering them. In the context of our study, the self-intersections
create either a cavity structure in the riblet or a gourd-shaped struc-
ture on it, both of which are believed to be neither favorable for
drag reduction nor structurally stable.

2.4 Riblet Scaling and Spacing. The DbM technique de-
scribed so far composes morphed riblet shapes that are confined in
a unit box. Thus, it is necessary to scale the width 𝑤 and height
ℎ of the riblet to consider the effects of size and aspect ratio. In
addition, the spacing between the riblets 𝑠 is taken into account,
which is a necessary parameter for some riblet surfaces, like the
blade riblet surface. Fig. 6 depicts the implementation of the mor-
phed riblet surface design in the channel after scaling and spacing
with the three parameters 𝑤, ℎ, 𝑠. Here, 𝑤 > 0, ℎ > 0, and 𝑠 ≥ 0.

Walsh & Lindemann [32] reported that the use of wall units for
scaling provided consistent results, regardless of the Reynolds num-
ber or previous boundary-layer history. Many subsequent studies,
including those by Choi et al. [33] and García-Mayoral & Jiménez
[34], have adopted this scaling rule with success. We also utilize
the wall unit scaling, commonly denoted with the + superscript.
The wall units are defined as

𝑤+ ≡ 𝑤𝑢𝜏

𝜈
, ℎ+ ≡ ℎ𝑢𝜏

𝜈
, 𝑠+ ≡ 𝑠𝑢𝜏

𝜈
, (10)

where 𝜈 is the fluid kinematic viscosity and 𝑢𝜏 ≡
√︁
𝜏𝑤/𝜌 is the

wall-shear velocity. 𝜌 denotes the fluid density and 𝜏𝑤 indicates
the mean wall shear stress. For a channel flow, the channel half-
width 𝜍 in the wall unit scaling is called the friction Reynolds
number 𝑅𝑒𝜏 , that is,

𝑅𝑒𝜏 =
𝜍𝑢𝜏

𝜈
. (11)

This dimensionless parameter is going to be essential in determin-
ing the bulk flow characteristics in later numerical simulations (see
§3.2). According to literature [22, 23, 34, 35], the range of 𝑤+ or
ℎ+ in which the optimum is expected to exist is around 15, and
therefore, it seems sufficient to set their upper limit to 30. For 𝑠+,
to avoid too sparse riblets or, equivalently, to prevent them from
making little difference from a flat surface, we limit it up to 50.

The parametric space of the scaling and spacing parameters
𝒔 = (𝑤+, ℎ+, 𝑠+) ⊂ R3, denoted S, comprises another essential
design space in tandem with the feasible, truncated weight space D.
Consequently, the resulting design space in which we investigate
for the optimization should be D × S. The space is spanned by
9 independent variables for morphing, 𝜑1, 𝜑1, · · · , 𝜑9, and 3
independent variables for scaling and spacing, 𝑤+, ℎ+, 𝑠+, in total
12 real-valued variables.

Fig. 6 Overall DbM process for designing riblet surface.

3 Flow Simulation
For the performance evaluation within the design space D × S,

we use a full, non-linear, incompressible Navier-Stokes equation
solver with subgrid-scale modeling proposed by Lee & Hwang
[36]. Although the solver includes a heat transfer analysis module,
which we may consider for later optimization, in this present study,
we only utilize and focus on its momentum solution (i.e., drag
force). We note that the momentum solver has already been applied
to the ribbed passage simulation for the internal cooling flow of gas
turbine blades and was validated successfully with comparisons to
experimental results in the study by Baek et al. [37].

A number of numerical studies for the drag reduction of riblet
surfaces have used a Reynolds-Averaged Navier-Stokes (RANS)
solver to simulate turbulent flows [25–27]. It offers a relatively
fast and decent understanding of flow dynamics over the riblets.
However, the RANS-based solver typically requires some key in-
formation on turbulence prior to computation, such as turbulent
kinetic energy. The turbulence characteristics of the flow can be
dependent on the turbulence input, which is believed to be less
appropriate for the current problem where drag reduction is highly
likely to originate from turbulence-producing structures interact-
ing with the riblet surface [33, 38]. On the other hand, there is a
Direct Numerical Simulation (DNS) solver for the Navier-Stokes
equations [33]. It provides a great match with experimental results
(e.g., Walsh [21]) yet generally requires too exhaustive comput-
ing resources to resolve the natural dissipation length scale, i.e.,
the Kolmogorov length scale [39]. In the optimization aspect, the
DNS solver is too costly to be run repeatedly hundreds of times.

Our solver, belonging to the Large Eddy Simulation (LES)
solvers, is based on the full Navier-Stokes equations, similar to
DNS. However, it allows for a larger grid size than DNS because
the subgrid-scale motion is modeled. As the subgrid-scale model-
ing works using the relatively large eddy motion from turbulence
resolved at each time step, the computation can proceed without
the pre-manipulation of turbulence information. Moreover, the
solver takes advantage of the Immersed-Boundary (IB) method
[40] to form the riblet surface in the post-meshing stage. There-
fore, mesh-independent results can be generated if the same grid
input is applied, which is appropriate for comparison purposes.

3.1 Governing Equations. The essential form of the govern-
ing equations can be expressed as in the following:

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (12)

𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
− 𝑃𝛿1𝑖 −

𝜕𝑝

𝜕𝑥𝑖
+ 1
𝑅𝑒𝜏

𝜕2𝑢𝑖
𝜕𝑥𝑗𝑥𝑗

−
𝜕𝜏𝑖 𝑗

𝜕𝑥𝑗
, (13)
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where 𝑥𝑖 and 𝑢𝑖 are the three-dimensional Cartesian coordi-
nates and velocity components, respectively, 𝑡 is the time, 𝑃 is
the constant pressure gradient in the 𝑥1 direction (𝛿𝑗𝑘 indicates
the Kronecker delta), 𝑝 is the residual pressure, and 𝜏𝑖 𝑗 is the
subgrid-scale stress. All of the variables presented above are non-
dimensionalized by the channel half-width 𝜍 (given no riblets), the
fluid density 𝜌, and the wall-shear velocity 𝑢𝜏 , making 𝑅𝑒𝜏 appear
in the momentum equation. We use 𝑅𝑒𝜏 = 180 for all simula-
tions to take advantage of a plenty of the DNS references at this
Reynolds number condition [33, 41–44]. As for the flow direction,
we consider 𝑥1 as the streamwise direction, 𝑥2 as the wall-normal
direction, and 𝑥3 as the spanwise direction.

We decompose the pressure field 𝑝 into 𝑃 and 𝑝 as 𝑝 = 𝑃𝑥1 +
𝑝, where 𝑃 is kept constant to serve as the driving force in the
streamwise direction during the simulation. Given that the flow
is fully developed and there is no residual pressure in a spatially
averaged manner, 𝑃 = −1. This is because in the dimensional
form, the constant pressure gradient equals to −𝜌𝑢2

𝜏/𝜍 .
The subgrid-scale stress term 𝜏𝑖 𝑗 is calculated using the subgrid-

scale eddy viscosity model proposed by Vreman [45]. As with
the classical, renowned model by Smagorinsky [46], the model
employs the subgrid-scale stress tensor formula

𝜏𝑖 𝑗 −
1
3
𝜏𝑘𝑘𝛿𝑖 𝑗 = −2𝜈𝑇𝑆𝑖 𝑗 (14)

where 𝜈𝑇 is the subgrid-scale eddy viscosity and 𝑆𝑖 𝑗 is the rate-
of-strain tensor. The model evaluates 𝜈𝑇 in the following way
[44, 45]:

𝜈𝑇 = 𝑐

√︄
𝐵𝛽

𝛼𝑖 𝑗𝛼𝑖 𝑗
, (15)

𝛼𝑖 𝑗 =
𝜕𝑢𝑗

𝜕𝑥𝑖
, (16)

𝐵𝛽 = 𝛽11𝛽12 − 𝛽2
12 + 𝛽11𝛽33 − 𝛽2

13 + 𝛽22𝛽33 − 𝛽2
23, (17)

𝛽𝑖 𝑗 = Δ2
𝑚𝛼𝑚𝑖𝛼𝑚𝑗 , (18)

where 𝑐 is the model coefficient and Δ𝑚 indicates the local grid
interval dimensions. If 𝛼𝑖 𝑗 is zero, then 𝜈𝑇 is forced to be zero.
Unlike the model of Smagorinsky [46], the present subgrid-scale
model inherently constructs the subgrid-scale eddy viscosity that
correctly vanishes in the region where the dissipation is theoret-
ically believed to be zero [44]. In this work, we use 𝑐 = 0.07,
following the previous results from Vreman [45] and our a priori
tests of turbulent channel flows at 𝑅𝑒𝜏 = 180. Although several dy-
namic models that internally determine 𝑐 in terms of time [36, 44]
can be considered to improve the model’s autonomy, we decided to
maintain the constant model coefficient to avoid its recalculation at
every time step, as it significantly increases the total computation
time and aggravates the time-efficiency of the optimization.

3.2 Computational Domain Setup and Validation. Fig. 7
presents our computational domain. The no-slip condition is im-
posed on the wall regions, and periodic boundary conditions are
applied to both 𝑥1 and 𝑥3 directions. The wall-normal compu-
tational domain length 𝑋2 is expected to be 2, considering the
channel half-width 𝜍 as a reference, without the riblet surface. Re-
ferring to the DNS study by Choi et al. [33], we set the streamwise
computational period 𝑋1 to 𝜋 and the spanwise computational pe-
riod 𝑋3 to around 1. However, with the consideration of the riblet
surface later, 𝑋3 might slightly vary around 1 to maintain geometric
periodicity in the spanwise direction. Additionally, 𝑋2 might end
up being slightly larger than 2 to offset the channel’s cross-sectional
area loss caused by the riblets. As a result, the cross-sectional area
remains consistently 2𝑋3.

Table 1 Comparison of computed mean streamwise veloc-
ity gradients at the wall with no riblets.

Database Type Δ+
2,max 𝑅𝑒𝜏 ( 𝜕𝑢1/𝜕𝑥2) |𝑤 % Error

[41] DNS 4.4 180 179.93* -0.04%

[42] DNS 5.9 180 180.06* 0.03%

[47] LES 20 180 177.84 -1.20%

Present LES 14 180 181.21 0.67%

* values calculated from the computed skin friction coefficient 𝐶𝑓 (≡ 2𝑢2
𝜏/𝑈2

𝑏
)

as
√︁
𝐶𝑓 /2 ·𝑈𝑏 𝜍/𝜈 where 𝑈𝑏 is the computed mean bulk velocity.

The grid dependency of the current method for turbulent channel
flows was studied by Lee & Hwang [36] at a similar Reynolds
number of 𝑅𝑒𝜏 = 150. Our a priori tests at 𝑅𝑒𝜏 = 180 without
riblets also reveal a convergence trend (with respect to the grid
size) of the computed mean streamwise velocity gradient at each
channel wall ( 𝜕𝑢1/𝜕𝑥2) |𝑤 to its theoretical value, equal to 𝑅𝑒𝜏 ,
under the current non-dimensionalization based on 𝜌, 𝑢𝜏 , and 𝜍.
As a result, we use the grid cells of 16 × 108 × 320, the finest one
among the tests yielding the mean streamwise velocity gradient
within an error of 0.67% (see Table 1).

Uniformly distributed grid lines with a constant spacing Δ+
1 =

35.34 are used in the streamwise direction, corresponding to the
streamwise spacing condition of Choi et al. [33]. The uniform
mesh size is also used up to the 32nd wall-normal grid lines, which
are located away from each wall, corresponding to 𝑦+ = 30, as well
as for the entire spanwise grid lines. This ensures that Δ+

2 = 0.9375
and Δ+

3 ≈ 0.5625 near the walls, which are fine enough to resolve
the geometry of the riblet surface implemented as an immersed
boundary, as well as near-wall flow features. The remaining wall-
normal grid lines are deployed over the channel center with a hy-
perbolic tangent distribution, with the maximum spacing of 14
wall units at the channel centerline and the minimum spacing of
1 wall unit right above and below the uniform region. It is noted
that any length value given in wall units in a dimensionless man-
ner, e.g., 𝜉+, should be expressed as 𝜉+/𝑅𝑒𝜏 in the computational
domain, as 𝜍 serves as the reference scale. The spatial differen-
tiation and time integration are conducted using the finite volume
method of Kim et al. [40], which is based on a second-order cen-
tral difference method for space and a semi-implicit fractional-step
method for time [36]. The time step interval is controlled by the
Courant-Friedrichs-Lewy (CFL) condition, where the maximum
CFL number is empirically chosen to be three.

In Table 1, our computed result of ( 𝜕𝑢1/𝜕𝑥2) |𝑤 for the turbu-
lent channel flow with no riblets at 𝑅𝑒𝜏 = 180 is compared to
previous numerical studies [41, 42, 47]. Our result is the average
of ( 𝜕𝑢1/𝜕𝑥2) |𝑤 obtained from three independent simulation runs
with small random perturbation seeds of 𝑂 (10−5) applied to the
still fluid at the beginning, which helps to reach different yet sta-
tistically identical turbulent solutions. In each run, the mean is
taken both spatially and temporally over a time interval of 162.5
(where a unit time is equivalent to 𝜍/𝑢𝜏 in dimensional form) af-
ter the flow becomes turbulent and statistically steady. This time
interval for averaging is comparable to or longer than in previous
numerical studies [33, 43] and confirms a zero-percent difference
of ( 𝜕𝑢1/𝜕𝑥2) |𝑤 between the lower and upper walls within a stan-
dard deviation of 1 percentage point.

Finally, the riblet surface of interest, selected from the design
space D×S, is implemented using the immersed-boundary method
introduced by Kim et al. [40]. After the grid points are classified
into inner-body and outer-body points across the riblet surface, vir-
tual mass source (or sink) term 𝑚 and momentum forcing term 𝑓𝑖
are added to the right-hand sides of Eqs. (12) and (13), respec-
tively, to construct the immersed boundary within which the flow
velocity is zeroed out, i.e. 𝑢𝑖 = 0, while maintaining the continuity
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(a) x2x3-plane (b) x1x2-plane

Fig. 7 Computational domain with Cartesian grid layout (the grid rendered here is coarser than what is actually used). ε2
and ε3 are to keep the same channel cross-sectional area and to maintain the geometric periodicity in the spanwise (x3)
direction, respectively. For a simulation with no riblets, ε2 = ε3 = 0.

in the computational domain. Also, the no-slip boundary condition
is satisfied at the boundary so that we ultimately acquire the correct
flow solutions over the riblet surface of interest. For further infor-
mation on how 𝑚 and 𝑓𝑖 are determined to create the immersed
boundary from a given surface or body while preserving second-
order spatial accuracy, one may refer to Kim et al. [40]. Fig. 8
illustrates the use of the immersed-boundary method for a given ri-
blet surface. To establish the no-slip boundary condition, 𝑓𝑖 alters
the interface velocity of its action point, e.g. 𝑈3𝑐 in the dashed
box, and makes the linear interpolation of the adjacent velocity
components at the boundary point nearest the action point, e.g. a
red dot in the dashed box, zero. 𝑚 then corrects the continuity.

3.3 Drag Reduction Measurement. One of the benefits of
utilizing the immersed-boundary method is that the momentum
forcing term, 𝑓𝑖 , furnishes information about the force acting on
the body. In general, the intricate geometry of the riblet surface
makes it challenging to calculate the drag force 𝐷 directly from
the surface integral of the wall shear stress, particularly on parts
of the surface that are curved or unaligned with the grid lines.
On the other hand, employing the immersed-boundary method, the
equivalent force can be expressed as

𝐷 =

∫
F

(︃
1

𝑅𝑒𝜏

𝜕𝑢1
𝜕𝑥2

|︁|︁|︁|︁
𝑤

)︃
𝑑𝑆 +

∫
V
𝑃𝑑𝑉

−
∫
V

𝑓1𝑑𝑉 +
∫
V

(︃
𝜕𝑢1
𝜕𝑡

+
𝜕𝑢1𝑢𝑗
𝜕𝑥𝑗

)︃
𝑑𝑉,

(19)

where F is the wetted flat surface remaining on the wall due to
the riblet spacing and V corresponds to the riblet volumes. All the
integrals can be numerically calculated without complications. In
Eq. (19), the last term in the right-hand side is the convective term
derived by Lee et al. [48]. Although this term appears redundant
because 𝑢1 = 0 throughout V, it is retained because it can serve as a
correction term numerically computing Eq. (19), and accordingly,
the volume integral of 𝑓𝑖 in the third term on the right-hand side
only becomes approximately correct.

Our interest is in the mean reduction in drag of the riblet surface
compared to that of the flat surface. At every time step of com-
putation, we obtain the numerically computed drag force acting on

Fig. 8 Riblet surface generation in an immersed boundary
form. Mass source/sink m and momentum forcing fi terms
are added to zero out the flow velocity in the riblet (solid)
region. See Kim et al. [40] for further details.

the lower wall of the riblet surface 𝐷𝑟 and another one acting on
the upper wall of the flat surface 𝐷 𝑓 using Eq. (19). We then
calculate the instantaneous percentage drag reduction ratio, which
is given by (1 − 𝐷𝑟/𝐷 𝑓 ) × 100%, varying over time. To extract
the mean statistic, we time-average 𝐷𝑟 and 𝐷 𝑓 , and finally obtain
the mean percentage drag reduction ratio, 𝐷𝑅, as

𝐷𝑅 =
⎛⎜⎝1 −

1
𝑇

∫ 𝑡𝑖+𝑇
𝑡𝑖

𝐷𝑟 (𝜏)𝑑𝜏
1
𝑇

∫ 𝑡𝑖+𝑇
𝑡𝑖

𝐷 𝑓 (𝜏)𝑑𝜏
⎞⎟⎠ × 100%, (20)

where 𝑡𝑖 and 𝑇 are consistently set to 32.5 and 162.5 non-
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Fig. 9 Time history of the drags on the flat surface and on the riblet surface of the triangular shape of w+ = h+ = 20 and
s+ = 0. Flow instability is invoked at t ≈ 19.5 and time-averaging is performed during the turbulent stage from t = 32.5 to
t = 195. Note that t and D/(X1X3) are dimensionless using the scaling quantities ς/uτ and ρu2

τ , respectively.

dimensional time units, respectively. Fig. 9 exhibits the time his-
tory of 𝐷𝑟 , 𝐷 𝑓 , and their mean statistics that start at 𝑡 = 𝑡𝑖 with
the triangular riblet surface having 𝑤+ = 20, ℎ+ = 20 and 𝑠+ = 0.
We begin with the initial fluid of no bulk velocity. The time his-
tory confirms that 𝑇 = 162.5 is sufficient to generate statistically
steady results. Regardless of the riblet surface to be evaluated, it
should be ensured that the entire flow becomes turbulent before
𝑡 = 𝑡𝑖 = 32.5. To achieve this, the instability is deliberately trig-
gered when the flow forms the laminar velocity profile, driven by
𝑃, whose volume flow rate surpasses 90% of the mean volume
flow rate found in the previously examined flat channel flow case.
The instability is typically invoked around 𝑡 = 19.5 by the super-
position of the sinusoidal perturbation velocity profile suggested
by De Villiers [49] onto the laminar velocity profile. The pertur-
bation is initially imposed near the upper flat wall and then rapidly
develops into turbulence over the entire channel after around 10
non-dimensional time units (cf. Vreman & Kuerten [43]), i.e., at
𝑡 = 29.5 < 𝑡𝑖 .

For validation, some results with the triangular riblet surface are
compared with the previous experimental and DNS results [21, 33]
in Table 2. Like the previous turbulent channel flow simulations
with no riblets, 𝐷𝑅 is evaluated three times from three indepen-
dent simulation runs for each case, and the average is calculated.
The standard deviations are all again within 1 percentage point.
All the results, including ours, reveal the drag reduction ratios in
the descending order of cases D, C, A, and B in common. Con-
sidering the fact that the maximum percentage point difference of
the DNS results [33] from the experiments [21] among these cases
is 3 percentage points (case B), we believe that our measurements
are in reasonable agreement with the experiments. The experi-
mental measurements by Walsh [21] were obtained from the drag
measuring system with an error bound of ±1%. From error prop-
agation, the error bound for the drag reduction ratio is expected to
be larger than ±1 percentage points. As a result, when it comes
to the favorable drag reduction ratios (cases C and D), it turns out
that the mean drag reduction rate obtained from our simulations
matches the experiments within the error bound, showing a better
agreement than the DNS results.

4 Bayesian Optimization
Optimizing expensive black-box functions that involve categor-

ical or mixed variables is an active area of research. For these
complex problems, Bayesian optimization (BO) has proven to be
highly efficient, using a smaller number of function calls compared
to other optimization strategies [50]. Considering the relatively ex-

Table 2 Drag reduction ratios of the triangular riblet surface
of different scales.

Case 𝑤+ ℎ+ 𝑠+ Present DNS [33] Exp. [21]
(% point error) (% point error)

A 40 20 0 -3.79% -2% -3%
(-0.79%) (1%)

B 40 40 0 -8.02% -12%* -11%
(2.98%) (-1%)

C 20 10 0 3.00% 5% 2%
(1.00%) (3%)

D 20 20 0 3.40% 6%* 4%
(-0.60%) (2%)

* data obtained from the equilateral triangular riblet surface (ℎ+ =
√

3/2𝑤+).

pensive evaluation stage (LES) for each design case, BO is selected
as an optimizer to make our optimization framework work in prac-
tice.

Many engineering optimization problems have utilized a mixed-
variable design space, as seen in architected material design
[19, 20, 51–55], hyper-parameter tuning for machine learning al-
gorithms [56–58], drug design [59, 60] and fluid structure design
[17, 18, 61]. The current ribbed channel optimization problem
may also be considered in a mixed-variable space. Our design
space D × S is parameterized by the 9 angular coordinate vari-
ables (𝜑1, · · · , 𝜑8, 𝜑9) and the 3 scaling and spacing variables
(𝑤+, ℎ+, 𝑠+), as described in §2.4, and the most accurate way
to search this space is to treat all 12 variables as entirely contin-
uous. For noisy and multi-modal objective evaluations, such as
LES simulations, optimization algorithms can get stuck in local
optima and over-explore a limited section of space [18]. In such
cases, it is efficient to select a finite set of reasonable (e.g., equally
spaced) values for each variable and handle them in a discrete man-
ner. This reduces any redundant search that might take place on
a design point too close to previously evaluated points, ensuring
distances among potential search points. For example, we formally
select

𝜑𝑘 ∈
{︄

𝑛

𝑁𝑘
𝜋

|︁|︁|︁|︁|︁ 𝑛 = 0, 1, · · · , 𝑁𝑘

}︄
⊂ [0, 𝜋], (21)

for the first 8 angular coordinate variables spanning D (𝑘 =
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1, · · · , 8) (recall Fig. 4 for their geometric expression), and

𝜉+ ∈
{︄

𝑚

𝑀𝜉
𝜉+max

|︁|︁|︁|︁|︁ 𝑚 = (0, )1, · · · , 𝑀𝜉

}︄
⊂ [0, 𝜉+max], (22)

for the scaling and spacing variables spanning S (𝜉 = 𝑤, ℎ, 𝑠),
where 𝑚 = 0 must be excluded for the scaling variables to avoid
zero width or height (recall Fig. 6 for their geometric expression).
However, the selection formalism in Eq. (21) cannot be applied
to the last angular coordinate, 𝜑9, due to its range including both
[0, 𝜋] and (−𝜋, 0). Although there can be a couple of ways to
deal with 𝜑9, one possible way is to introduce a binary categorical
parameter 𝑙 ∈ {‘positive’, ‘negative’} that indicates the sign of 𝜑9.
In this way, we can treat 𝜑9 as if it only works in the range [0, 𝜋],
like the other angular coordinate variables, and then apply the same
formalism in Eq. (21) to all angular coordinate variables.

A mixed-variable problem can be generally described as:

𝒙𝑜𝑝𝑡 = argmax
𝒙∈X

𝑓 (𝒙), (23)

for maximizing the objective function 𝑓 . The mixed-variable vec-
tor 𝒙 constitutes the set X ≡ {(𝒚, 𝒛) | 𝒚 ∈ Y, 𝒛 ∈ Z} repre-
senting the design space of interest, where 𝒚 = [𝑦1, . . . , 𝑦𝑜] and
𝒛 = [𝑧1, . . . , 𝑧𝑐] indicate the ordinal and categorical variables, re-
spectively. Here Y and Z denote the ordinal and categorical spaces,
respectively. Generally, each ordinal variable 𝑦𝑝 ∈ {O1, . . . ,O𝜉 }
takes one of 𝜉 ordinal levels (i.e. discretized numbers on the real-
number line), and each categorical variable 𝑧𝑞 ∈ {C1, . . . ,C𝜁 }
takes one of 𝜁 unordered categories (which by definition cannot be
ordered on the real-number line).

In the context of our current riblet surface optimization problem,
𝑓 corresponds to 𝐷𝑅, X represents D × S, 𝒚 is a 12-dimensional
ordinal variable set (𝑜 = 12) encompassing the 9 angular coordinate
variables 𝜑1, · · · , 𝜑9 and the 3 scaling and spacing variables
𝑤+, ℎ+, 𝑠+, and 𝒛 is a 1-dimensional categorical variable set (𝑐 =

1) only including the binary parameter 𝑙. Based on the selection
formalism in Eqs. (21) and (22), we choose 7 ordinal levels for the
angular coordinate variables (𝑁𝑘 = 6 for all 𝑘 = 1, · · · , 9) and 6
ordinal levels for the scaling variables (𝑤+

max = ℎ+max = 30, 𝑀𝑤 =

𝑀ℎ = 6) and the spacing variable (𝑠+max = 50, 𝑀𝑠 = 5), resulting
in around 17 billion combinations of potential search points.

So far, we have adapted the problem of interest to the mixed-
variable optimization framework. To solve this optimization prob-
lem, we employ the Mixed-Variable, Multi-Objective Bayesian
Optimization (MixMOBO) algorithm [15]. This is a generalized
framework capable of addressing mixed-variable problems and op-
timizing a noisy black-box function with a small number of func-
tion calls. The algorithm has previously been applied to optimize
architected meta-materials [19, 20] and fluid structures [17, 18].
Note that MixMOBO is used here for a mixed-variable single-
objective problem. Sheikh et al. [15] demonstrated extensive
comparisons against other algorithms for such problems, revealing
that MixMOBO outperforms other small-data algorithms in these
scenarios.

MixMOBO, along with HedgeMO, is used in the single-
objective setting for the current problem. Expected Improve-
ment, Probability of Improvement, Upper Confidence Bound, and
Stochastic Monte Carlo are the acquisition functions used for
‘hedging’. Initial sample size of 10%-20% of the total itera-
tion budget is empirically a good approximation for MixMOBO
[15, 18]. The number of random evaluations to initialize the algo-
rithm in the current case was set at 50. The interested reader is
referred to Sheikh et al. [15] for further details on the MixMOBO
algorithm.

To evaluate the efficacy of MixMOBO for our optimization prob-
lem, we optimized four different test functions in a similar design
space. This helps us determine the performance of the algorithm
and if our evaluation budget (i.e., the number of iteration epochs)

Fig. 10 Benchmarks for MixMOBO for four test functions.

Fig. 11 Optimization history of top-three riblet surface de-
signs at each epoch in comparison with the experimental ref-
erence [22]. Data markers and labels are drawn whenever the
rank is updated. No rank change occurred after epoch #89
until the termination at epoch #125.

is sufficient. The test functions we used are the Spherical, Rastri-
gin, Syblinski-Tang, and Amalgamated functions. These functions
are standard functions used to test optimization schemes [62], with
the exception of the Amalgamated function, which we created to
mimic an anisotropic design space. The definitions of the test func-
tions are described in Appendix A. Similar to the design space of
our problem, each test function was tested with 9 ordinal variables
with 7 states each, 3 ordinal variables with 6 states each, and one
qualitative variable with 2 states. To test robustness, each function
was tested ten times. The mean normalized reward, defined as
(current optimum - random sampling optimum)/(global optimum
- random sampling optimum), is plotted with a band representing
0.2 × (standard deviation). The optimization was terminated af-
ter 125 epochs, which was our prescribed computational budget,
and the results are depicted in Fig. 10. It was found that Mix-
MOBO performed well for the Rastrigin and Spherical functions
in a similar design space. The performance for the Syblinski-Tang
and Amalgamated functions was worse, due to their highly multi-
modal nature with shallow global optima, which makes them highly
difficult to optimize, as can be seen from the function definitions.
Overall, these results indicate that within the prescribed compu-
tational budget of 125 epochs, it is possible to obtain reasonable
optimal results using MixMOBO.

5 Results
5.1 Bayesian-optimized Riblet Surface. After a total of 125

epochs of the Bayesian optimization sequence, some new riblet
surface designs were found to outperform the experimental opti-
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Table 3 Bayesian-optimized riblet surface design outputs.

Riblet surface Geometry DbM variables*
(Type of morphing) 𝑤+ ℎ+ 𝑠+ Drag reduction ratio

Type A 𝜑1 = 𝜋/6, 𝜑2 = 2𝜋/3
(Extrapolation) 15 10 20 8.65%

Type B 𝜑1 = 𝜋/6, 𝜑2 = 5𝜋/6
(Extrapolation) 5 10 40 8.11%

Type C
𝜑1 = 𝜋/6, 𝜑2 = 𝜋/3,

𝜑3 = 5𝜋/6, 𝜑4 = 2𝜋/3,
𝜑5 = 5𝜋/6, 𝜑6 = 2𝜋/3

(Extrapolation)

10 15 20 7.84%

Reference
[21, 22]

𝜑1 = 𝜋/2
(Baseline #2) 12 12 0 8%

* All unspecified variables are 0.

mum, with a drag reduction (𝐷𝑅) of 8% [21, 22]. These designs
were investigated and compared to the conventional designs shown
in Fig. 3. The history of the Bayesian optimization sequence is
depicted in Fig. 11 and shows the improvement in 𝐷𝑅 of the top
three designs. The best riblet surface design, with a 𝐷𝑅 of 8.65%,
appeared early in the optimization process (epoch 7) and main-
tained its position until the termination, implying the validity of
the optimization. The second-best design also slightly surpassed
the reference in terms of 𝐷𝑅. Although the third-best design did
not surpass the reference nominally, it was considered for further
analysis due to the uncertainty of the reference value of 8% 𝐷𝑅

[21], which may have arisen from errors in drag measurement.
The top three riblet surface designs with a 𝐷𝑅 of 8.65%, 8.11%

and 7.84% are presented in detail in Table 3, including their geom-
etry and scale information. Henceforth, these designs are referred
to as type A, type B, and type C, respectively. Although all of the
Bayesian-optimized riblet surface types are created from different
combinations of the DbM variables, they are commonly charac-
terized by two prominent design features: (i) a tapering neck, and
(ii) a notch top. It is noteworthy that the tapering neck feature
was explicitly desired to be present in the design space for novelty
through our original baseline designs (#9, #10). However, these
DbM baseline shapes did not participate in the construction of
the current optimal designs (i.e. 𝜔9 = 𝜔10 = 0 because 𝜑8 = 0).
Instead, the tapering-neck feature was obtained from the extrapola-
tive searches during the DbM process. This confirms the strength
of DbM to treat such radical designs outside the convention even
without specification in the baseline selection. The reason why the
original baseline designs were entirely dropped out is believed to
be because all the optima commonly possess the notch-top feature
as well, while the original baseline designs do not. They have ei-
ther flat (#9) or round (#10) riblet tops, which may not be suitable
to form a notch.

With these two common features combined, all Bayesian-
optimized riblet surfaces exhibit a spiky tip geometry. A downside
of a tapering neck or a notch top is the manufacturing challenge
due to the negative taper or overhang, as additive manufacturing is
assumed to be the primary fabrication method in this study. How-
ever, as the geometry is identical throughout the flow direction,

printing direction-based multiscale stereolithography may be uti-
lized to create micro-sized identical geometry even with overhang
[14].

When it comes to riblet scaling, the optimal riblet shapes are
scaled to a maximum of 15 wall units in width or height. This
result agrees with previous findings that the optimal riblet size
is 𝑂 (15) in wall units [22, 38]. Unlike the reference optimum of
repeating triangular riblets with zero spacing, known as V-grooves,
the current optimal riblet surface designs arrange the riblets in a
relatively sparse manner. For example, type B has a spacing of
40 wall units between neighboring riblets, meaning that a large
portion of this riblet surface remains flat. This sparse configuration
is favorable for additive manufacturing on flat walls, as it requires
less material usage. If we quantitatively consider the fraction of
the void in the riblet region (𝑦+ ≤ ℎ+), or the void fraction, a
reduction in material usage becomes more evident. For types A,
B, and C, the void fractions are 84%, 96%, and 75%, respectively,
in contrast to the reference case where it is only 50%.

As a result, we believe that the Bayesian-optimized riblet sur-
face designs we have computationally proposed are not only ge-
ometrically novel but also competent to be manufactured using
emerging 3D printing techniques. Speaking of performance, the
nominal improvement in 𝐷𝑅 of the best design, calculated as
(8.65 − 8)/8 = 8.1%, is significant enough to hold practical rel-
evance. Furthermore, the geometric resemblance among the top
three designs indicates the robustness of their shared features in
contributing to drag reduction.

5.2 Flow Structure Near Riblets. Although the main focus
of this study is the computational parametric optimization of riblet
surface for drag reduction, a brief analysis of the flow structures
is conducted here. The analysis presented here is preliminary, yet
still has significance in comprehending the physical mechanism
correlating the currently obtained designs, which especially reveal
the common features, with the reduction in drag forces. However,
too in-depth analysis is avoided here because it would be outside
the scope of this paper. A more profound analysis will follow after
higher resolution simulations and further experiments for design
validation are conducted in the future, as the current LES calcula-
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(a) Type A (b) Type B (c) Type C

Fig. 12 Instantaneous flow fields of top three riblet surface designs where turbulence structures are visualized using the
lambda-2 iso-surface of λ2 = −1 in green. At the back plane, an auxiliary contour of x1-vorticity is shown. For dimensionless
scaling, the channel half-height ς and the bulk velocity Ub are used.

tions had to trade off some time-efficiency for optimization to some
extent. Note that the observations made here are comprehensively
considered later to discuss how our proposed designs’ common
features potentially contribute to drag reduction (see §6.1).

In comparison to several pieces of literature, our LES results
are believed to be in good agreement with previous observations
regarding the passive drag reduction of a riblet surface. One of the
kinetic influences of riblets on a channel wall is that they hinder the
local motion of the flow closest to the wall, especially in the cross-
flow direction, resulting in a thickening of the viscous sublayer
in the turbulent boundary layer [23, 63]. The restriction in the
spanwise movement may lead to a weak “burst” that generates
turbulence near the wall [8], considered one of the main sources
of skin friction.

3D instantaneous turbulent flow fields over all three types of
Bayesian-optimized riblet designs are depicted in Fig. 12. All
fields were captured near the end of the simulation (𝑡 = 195), en-
suring that they are fully developed and turbulent. Green surfaces
represent the 𝜆2 iso-surface of 𝜆2 = −1, often used to detect where
vortex core lines are present in a given fluid velocity field [64].
Auxiliary contours of the 𝑥1-vorticity, indicating the secondary
flow motion in the 𝑥2-𝑥3 plane, are also drawn. It is noted that
in this figure, the bulk streamwise mean velocity 𝑈𝑏 is substituted
for the shear velocity 𝑢𝜏 for velocity scaling. Since 𝑢𝜏 was set so
that 𝑅𝑒𝜏 = 180 in the flat channel, the exact shear velocity in each
riblet case may slightly differ from 𝑢𝜏 defined in the flat case. To
reduce complexity and ensure a fair comparison, we use 𝑈𝑏 that
keeps all cases at the same dimensionless volume flow rate of 2𝑋3.

In Fig. 12, it is clear that on the riblet surface, turbulent vorti-
cal motion rarely intrudes into the riblet zone, whereas on the flat
surface, such vortical motion easily reaches the near-wall region.
Therefore, the riblet design significantly protects the majority of the
surface from the impact of turbulence. This supports the argument
that riblets hinder nearby cross-flow motion. Additionally, concen-
trated vortex lines are often detected at the spiky riblet tips because
the flow experiences a drastic change in orientation around these
sharp points. Such vorticity concentration at sharp riblet peaks was
similarly observed in conventional triangular riblet cases [25, 33]
and therefore appears rational. The configuration of the streamwise
vortices residing above the riblet tips (not in the notch valleys) also
appears to be similar to the drag-reducing case found experimen-
tally [65]. However, due to the relatively sparse distribution of
grids in the 𝑥1-direction, the current visualization may not accu-

rately express more precise 3D turbulent flow structures. Later, a
higher-resolution simulation should be necessary for more robust
validation of the proposed designs.

To check the turbulence statistics, we took the time average from
𝑡 = 32.5 to 𝑡 = 195 of each simulation and obtained the mean and
fluctuation flow fields. In Fig. 13, contours of the mean pressure
𝑝, 𝑥1-vorticity (∇ × 𝒖)1, and streamwise velocity 𝑢1 are given at
the middle cross-section (i.e., 𝑥1 = 0 in Fig. 12). Only two riblet
patterns in the computational domain are shown here for the sake
of simplicity. It is commonly observed that the riblet structures
have only a local influence on the flow near them. The pressure
contours reveal that the negative pressure area above the riblets has
a smaller absolute value than that below the top flat surface. This
indicates that the net vertical momentum transport is weakened due
to the riblets, which is presumably the result of hindrance in the
cross-flow direction.

A more distinct difference in the mean flow fields over the riblet
and flat surfaces can be seen in the 𝑥1-vorticity contour. We can
detect a horizontal line of paired vortices right above the riblet
tips. As seen in the instantaneous fields, highly concentrated vor-
tices are found at the tips. In addition, larger vortices, whose size
depends on the riblet spacing, also appear around them. The layer
of streamwise vortices over the riblets may serve as an impedi-
ment for low-speed fluid parcels near the wall (particularly within
the riblet spacing) from being lifted upward, which relates to the
vortex-surface interaction proposed from the V-groove surface ex-
amination [66]. Unlike the V-groove surface, where no spacing
exists between the patterns, the current riblet surfaces offer more
space for the flow to stay within the spacing of lower speed with
less turbulence. We affirm that this provides a unique practical
advantage to our designs in terms of turbulent drag reduction.

The retardation of the streamwise velocity within the spacing
due to the riblets is shown in Fig. 14. Two mean streamwise
profiles in red and black are obtained through the center of the
riblet spacing and past the riblet tip, respectively (one may refer
to Fig. 13 for the locations). The mean streamwise velocity slows
down notably as the flow approaches the riblets, which potentially
contributes to a decrease in skin friction. The centerline profile
changes relatively little compared to the flat surface counterpart,
especially when the spacing is large (e.g., type B). However, we
next show that the whole spacing region benefits from a reduction
in turbulence due to the riblets.

In Fig. 15, contours of the root-mean-square (RMS) fluctuation
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(a) Type A (b) Type B (c) Type C

Fig. 13 Contours of mean pressure, x1-vorticity and streamwise velocity at the channel section perpendicular to the flow di-
rection, representing time-averaged flow characteristics. For dimensionless scaling, the fluid density ρ and the bulk velocity
Ub are used.

(a) Type A (b) Type B (c) Type C

Fig. 14 Mean streamwise velocity profiles (red) through the center of riblet spacing and (black) past the riblet tip. For
dimensionless scaling, the channel half-height ς and the bulk velocity Ub are used.

pressure 𝑝′
𝑅𝑀𝑆

, 𝑥1-vorticity (∇ × 𝒖)′1,𝑅𝑀𝑆
, streamwise velocity

𝑢′1,𝑅𝑀𝑆
and turbulent kinetic energy (TKE) are displayed. Note

that for a scalar physical quantity, say 𝛼, its RMS fluctuation quan-
tity, 𝛼′

𝑅𝑀𝑆
, is calculated as

𝛼′
𝑅𝑀𝑆

=

√︂(︁
𝛼2)︁

𝑚𝑒𝑎𝑛 − (𝛼𝑚𝑒𝑎𝑛)2, (24)

and TKE is obtained as follows:

TKE =
1
2

3∑︂
𝑖=1

𝑢′
𝑖,𝑅𝑀𝑆

2
. (25)

The TKE contours clearly reveal that the local flow field around
the riblets, including the spacing region, is generally less turbulent.
This confirms the widespread consensus that riblets influence the
near-wall turbulent structure [67]. The other contours of the RMS
fluctuation quantities similarly show a reduction in turbulence in-
tensity near the wall; turbulent fluctuation is generally found to be
weaker compared to what can be observed near the top flat sur-
face, consistent with previous findings [8, 68]. The only exception

is the RMS fluctuation vorticity around the spiky tips of the riblets.
Such intense fluctuation implies that the riblet tips are exposed to
relatively high levels of turbulent shear stress and may be struc-
turally vulnerable to wear as a result, a consideration that should
be carefully addressed in future manufacturing practices.

6 Discussion
6.1 Drag Reduction Mechanisms. As the present optimiza-

tion resulted in geometrically similar riblet surfaces, it is mean-
ingful to discuss the physical mechanism of how these spaced and
spiky riblets are effective in reducing drag. Fig. 16 demonstrates
a schematic diagram of the spiky riblet surface that we have pro-
posed and the nearby flow. From the time-averaged flow fields of
all three optimal riblet surface designs, it is commonly observed
that there is a layer of periodic streamwise vortex pairs right above
the riblet tips (see Fig. 13), and turbulence is overall suppressed in
the riblet area, increasing steeply as soon as it leaves the riblets (see
Fig. 15). This circulation zone functions as a division between the
main part of the flow in the channel center and the flow below the
riblets, characterized by weak turbulence and relatively low speed.
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(a) Type A (b) Type B (c) Type C

Fig. 15 Contours of root-mean-square (RMS) fluctuation pressure, x1-vorticity, streamwise velocity and turbulent kinetic
energy (TKE) at the channel section perpendicular to the flow direction, representing turbulent flow characteristics. For
dimensionless scaling, the fluid density ρ and the bulk velocity Ub are used.

Fig. 16 Schematic diagram of a potential mechanism for tur-
bulent drag reduction by our new riblet surface designs.

We propose that the presence of the circulation zone serves two
major roles. First, it restricts the incursion of strong turbulence
into the lower layer. In other words, the vortex arrangement in the
circulation zone reduces the occurrence of downwash and ejection
motions. In particular, the downwash motion of strong turbulence
is mainly directed towards the riblet tips. Linking to our observa-
tion of intense vorticity fluctuation at the riblet tips, this implies
high skin friction only concentrated in this highly limited area.
The concentration of friction can contribute to drag reduction be-
cause the remaining large area benefits from relatively low skin
friction. Second, thanks to the location of the circulation zone,
the spacing between the riblets remains mostly weakly turbulent
and low-speed. The lower riblet surface as well as the bottom
flat wall should, therefore, experience less turbulent shear stress.
Although this comes at the expense of an increase in the wetted
area, like all other riblets, the relatively sparse riblet configuration
of our proposed designs is believed to be helpful in mitigating the
counter-effect.

It should be noted that the physical mechanisms described above
for riblet drag reduction are, by and large, still hypothetical and
need further corroboration. They are mostly based on the time-
averaged flow fields, and the instantaneous flow interaction has not
been taken into account yet. To relate to the previously suggested
riblet drag reduction mechanisms [8, 23, 33, 63], an in-depth inves-
tigation of the flow evolution over time should be conducted with
high resolution to gain a clear understanding of turbulent structures.

Algorithm 1 DbM + LES/IB Riblet Drag Reduction Evaluation
1: Constants:

𝑁 baseline riblet shapes (R𝑖 )𝑖=1:𝑁 ,
Reynolds number 𝑅𝑒𝜏 ,
Computational domain [−𝑋1/2, 𝑋1/2] × [0, 𝑋2 ] × [0, 𝑋3 ]

and grid (𝑥0
1 , · · · , 𝑥

𝑁1
1 ) × (𝑥0

2 , · · · , 𝑥
𝑁2
2 ) × (𝑥0

3 , · · · , 𝑥
𝑁3
3 )

Total time advancement 𝑇𝑓
2: Inputs:

𝑁 Design-by-Morphing weights (𝜔𝑖 )𝑖=1:𝑁
or (𝑁 − 1) angular coordinates (𝜑𝑖 )𝑖=1:𝑁−1, ⊲ Eq. (9)

3 scaling and spacing parameters (𝑤+, ℎ+, 𝑠+ )
3: Initialize:

𝑡 = 0; 𝒖 = 0; �̃� = 0; Σ𝐷𝑟 = 0; Σ𝐷𝑓 = 0
4: Morph M = morph ( (𝜔𝑖 )𝑖=1:𝑁 ; (R𝑖 )𝑖=1:𝑁 ) ⊲ Eq. (5)
5: if M is a self-intersecting curve then
6: return 𝐷𝑅 = 0 ⊲ Termination due to shape invalidity
7: end if
8: Scale M′ = scale(M, 𝑥2,max = ℎ+/𝑅𝑒𝜏 , 𝑥3,max = 𝑤+/𝑅𝑒𝜏 )
9: Space & patternize

{︁
M′

𝑖

}︁
𝑖=0:∞

where M′
𝑖
= translate(M′ , 𝑥1 = 𝑥1 − 𝑖 · (𝑤+ + 𝑠+ )/𝑅𝑒𝜏 )

10: while 𝑡 ≤ 𝑇𝑓 do
11: for each computation cell C𝑖 𝑗𝑘 do
12: if C𝑖 𝑗𝑘 captures

{︁
M′

𝑖

}︁
𝑖=0:∞ then ⊲ Fig. 8

13: Calculate momentum forcing
𝒇𝑖 𝑗𝑘 = mmt_forcing(𝑥𝑖1, 𝑥

𝑗

2 , 𝑥
𝑘
3 ;𝒖, �̃�,

{︁
M′

𝑖

}︁
𝑖=1:∞ )

14: Calculate mass source/sink
𝑚𝑖 𝑗𝑘 = mss_source(𝑥𝑖1, 𝑥

𝑗

2 , 𝑥
𝑘
3 ;𝒖, �̃�,

{︁
M′

𝑖

}︁
𝑖=1:∞ )

15: else
16: 𝒇𝑖 𝑗𝑘 = 0; 𝑚𝑖 𝑗𝑘 = 0
17: end if
18: Calculate subgrid-scale stress

𝝉𝑖 𝑗𝑘 = sgs_stress(𝑥𝑖1, 𝑥
𝑗

2 , 𝑥
𝑘
3 ;𝒖, �̃�,

{︁
M′

𝑖

}︁
𝑖=1:∞ )

⊲ Eq. (14)

19: end for
20: CFL time step Δ𝑡 = 3/

(︂∑︁3
𝑖=1 𝑢𝑖/Δ𝑥𝑖

)︂
max

21: Update (𝒖, �̃�) = finite_volume(𝒖, �̃�, 𝒇 , 𝑚, 𝝉, Δ𝑡 ) ⊲ Ref. [40]
22: if 𝑈𝑏/𝑈𝑏,reference reaches 90% then
23: Trigger instability 𝒖 = 𝒖 + 𝜹𝒖pert ⊲ Ref. [49]
24: end if
25: if 𝒖 is fully developed then
26: Σ𝐷𝑟 = Σ𝐷𝑟 + 𝐷𝑟 · Δ𝑡 ; Σ𝐷𝑓 = Σ𝐷𝑓 + 𝐷𝑓 · Δ𝑡 ⊲ Eq. (19)
27: end if
28: 𝑡 = 𝑡 + Δ𝑡

29: end while
30: return 𝐷𝑅 = max(1 − Σ𝐷𝑟/Σ𝐷𝑓 , 0) ⊲ Normal termination
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Fig. 17 Task flowchart for overall optimization. Each task uses multi-core parallelism and tasks in the same column are
executed in parallel. The computation was done using SDSC Expanse (AMD EPYC 7742 CPU, 4608 GFLOPS in total) [69].

6.2 Optimization Scheme. Our computational optimization
process consists of three numerically important parts, as shown in
Fig. 2, including Design-by-Morphing (DbM), Large Eddy Simu-
lation (LES), and Bayesian Optimization (BO). From the optimiza-
tion perspective, DbM and LES can be linked together to form a
consolidated algorithm that serves as a ‘black-box’ function. The
optimizer only needs to know the parametric inputs of the func-
tion (DbM weights, scaling, and spacing parameters) and its output
(drag reduction ratio 𝐷𝑅). Therefore, the optimization process can
be simplified to a sequential iteration of two algorithms: black-box
function evaluation and Bayesian optimum guess (or sampling).
The former procedure, explained in §2 and §3 and summarized
in Algorithm 1: DbM + LES/IB, emphasizes the importance of
the Immersed-Boundary (IB) method in the algorithm. It enables
the algorithm to run with a constant grid setup regardless of riblet
surface designs. On the other hand, the latter algorithm uses DbM
+ LES/IB for sampling and conducts estimation through BO. A
detailed algorithmic explanation is given in Sheikh et al. [18] for
reference.

Using this two-step simplification, the task flowchart for the
overall optimization is shown in Fig. 17 to analyze the practicality
of the present optimization. For efficiency, we applied parallelism
to each task and to the whole task flow to the best extent pos-
sible. The DbM+LES/IB task, using 8 cores for each, took an
average of 4.61 hours, and the BO task, using 12 cores for each,
finished in an average of 1.21 hours. As a result, it took 5.82
hours to complete one epoch in practice, meaning that the cur-
rent optimization attempt (see Fig. 11) achieved the best riblet
design (type A) within 2 days. Even without considering paral-
lelism, the total core hours for all DbM+LES/IB and BO tasks are
4.61 hours × 8 cores × (50 + 3 × 125) tasks = 1.567 × 104 core
hours and 1.21 hours × 12 cores × (1× 125) tasks = 1.815× 103

core hours, respectively. The time breakdown analysis shows that
the evaluation, despite involving LES, can be performed in 8.6
times the main optimization run time. Despite the conventional
belief that LES is not suitable for optimization due to its gener-
ally large computational expense, our optimization highlights the
possibility that LES can be favorably considered as part of fluid
engineering optimization tools with the advancement in modern
computing power.

7 Conclusion
The advancement of additive manufacturing has made it pos-

sible to consider more complex riblet surface structures for drag
reduction beyond simple geometric shapes on a flat surface. With
this motivation, we present a computational approach that com-
bines Design-by-Morphing (DbM), Large Eddy Simulation (LES),
and Bayesian Optimization (BO) to identify and optimize new ri-
blet surface designs in a channel flow for the purpose of drag
reduction. The approach begins by using DbM to generate an ex-

tensive and continuous design space involving novel riblet surface
designs by morphing existing ones not only interpolatively but also
extrapolatively. Following the scaling and spacing of riblets, their
drag-reducing capabilities are numerically evaluated using LES,
which incorporates the Immersed-Boundary (IB) method. This al-
lows every riblet surface design to be simulated under the same
computational grid condition, thereby avoiding grid dependency.
By treating DbM and LES/IB as black-box functions, the mixed-
variable BO algorithm, MixMOBO, is used to optimize the riblet
surface geometry for maximum drag reduction.

Taking into account our computing budget and the performance
test of the BO algorithm, we carried out a total of 125 epochs
(cycles) of the optimization process under the turbulent flow con-
dition of 𝑅𝑒𝜏 = 180. As a result, we identified three optimal riblet
surface designs that performed as well as or better than the ref-
erence triangular riblets for drag reduction of 8%, with respective
values of 8.65%, 8.11%, and 7.84%. All three Bayesian-optimized
designs showed riblet sizes in 𝑂 (15) in wall units, which agrees
with previous experimental studies, and relatively large spacing
compared to conventional designs. This spacing is favorable, as it
indicates less material usage from the perspective of additive man-
ufacturing. Interestingly, they all featured spiky tips with notches
on the riblets. This feature is believed to be physically beneficial in
creating a circulation zone right above the riblet tips, which helps
protect most of the channel wall region from experiencing large
skin friction due to high turbulent shear stress. However, further
investigation through experiments and high-resolution simulations
will be necessary to validate the precise drag reduction mechanism.

By using parallel computing with a moderate number of cores,
either 8 or 12, we could conduct our computational optimiza-
tion process within a reasonable physical time frame. Although
we heavily relied on LES for evaluation, which is often consid-
ered computationally expensive, the physical time required for a
DbM+LES/IB evaluation task was only about four times longer
than that for a single BO sampling task. Moreover, even with-
out considering parallelism, the resource usage ratio between the
two tasks was less than 10. These time breakdowns demonstrate
that LES in combination with BO can be practically used for en-
gineering optimization problems, especially when the reliability of
computational designs needs to be ensured before prototyping or
realization.
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Appendix A: Benchmark Test Functions
In what follows, we present the definitions of four test functions

used to benchmark the Bayesian optimization setup in the current
study (see Fig. 10 in §4). All the functions are multivariate with re-
spect to 𝑑 independent variables 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑑). The number
of independent variables 𝑑 can be chosen arbitrarily.

The Spherical function 𝑓𝑆 is a convex function defined as

𝑓𝑆 (𝒙) = −
𝑑∑︂
𝑖=1

𝑥2
𝑖 , (A1)

where 𝑥𝑖 ∈ (−10, 10) for all 𝑖. The Rastringin function 𝑓𝑅 is a
non-convex function defined as

𝑓𝑅 (𝒙) = −
𝑑∑︂
𝑖=1

[10 + 𝑥2
𝑖 − 10 cos(2𝜋𝑥𝑖)], (A2)

where 𝑥𝑖 ∈ (−5.12, 5.12) for all 𝑖. The Syblinski-Tang function
𝑓𝑆𝑇 is a non-convex function defined as

𝑓𝑆𝑇 (𝒙) = −
𝑑∑︂
𝑖=1

(𝑥4
𝑖
− 16𝑥2

𝑖
+ 5𝑥𝑖)

2
, (A3)

where 𝑥𝑖 ∈ (−5, 5) for all 𝑖. Lastly, the Amalgamated function 𝑓𝐴
is a non-convex, non-uniform and anisotropic function defined as

𝑓𝐴(𝒙) = −
𝑑∑︂
𝑖=1

𝑔(𝑥𝑖), (A4)

where, using 𝑘 ≡ mod(𝑖 − 1, 7), for all 𝑖:

𝑔(𝑥𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin(𝑥𝑖) 𝑥𝑖 ∈ (0, 𝜋)
if 𝑘 = 0,

(𝑥4
𝑖
− 16𝑥2

𝑖
+ 5𝑥𝑖)/2 𝑥𝑖 ∈ (−5, 5)

if 𝑘 = 1,

𝑥2
𝑖

𝑥𝑖 ∈ (−10, 10)
if 𝑘 = 2,

[10 + 𝑥2
𝑖
− 10 cos(2𝜋𝑥𝑖)] 𝑥𝑖 ∈ (−5.12, 5.12)

if 𝑘 = 3,

[100(𝑥𝑖 − 𝑥2
𝑖−1)

2 + (1 − 𝑥𝑖)2] 𝑥𝑖 ∈ (−2, 2)
if 𝑘 = 4,

−| cos(𝑥𝑖) | 𝑥𝑖 ∈ (−𝜋/2, 𝜋/2)
if 𝑘 = 5,

𝑥𝑖 𝑥𝑖 ∈ (−30, 30)
if 𝑘 = 6.

For ordinal and categorical variables, the range for each test func-
tion is equally discretized for each variable. The details of the
test functions, except the Amalgamated function, can be found in
Tušar [62]. All test functions presented above have known global
maxima. We produced the Amalgamated function, a piece-wise
function formed from commonly used analytical test functions with
different features. The Amalgamated function is non-convex and
anisotropic (as is our design space for the current problem), un-
like the other test functions listed here, which are isotropic. The
other test functions are commonly used for testing optimization
algorithms [20].
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