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ABSTRACT OF THE DISSERTATION

The graded module category of a generalized Weyl algebra

by

Robert Jeffrey Won

Doctor of Philosophy in Mathematics

University of California San Diego, 2016

Professor Daniel Rogalski, Chair

The first Weyl algebra, A1 = k〈x, y〉/(xy−yx−1) is naturally Z-graded by

letting deg x = 1 and deg y = −1. In [Sie09], Sierra studied gr -A1, the category

of graded right A1-modules, computing its Picard group and classifying all rings

graded equivalent to A1. In [Smi11], Smith showed that in fact gr -A1 is equivalent

to the category of quasicoherent sheaves on a certain quotient stack. He did this

by constructing a commutative ring C, graded by finite subsets of the integers,

and giving an equivalence of categories gr -A1 ≡ gr -(C,Zfin).

In this dissertation, we generalize results of Sierra and Smith by studying

the graded module category of certain generalized Weyl algebras. We show that

for a generalized Weyl algebra A(f) with base ring k[z] defined by a quadratic

polynomial f , the Picard group of gr -A(f) is isomorphic to the Picard group of

gr -A1. For each A(f), we also construct a commutative ring whose graded module

category is equivalent to the quotient category qgr -A(f), the category gr -A(f)

modulo its full subcategory of finite-dimensional modules.

xii



Chapter 1

Introduction

Throughout this dissertation, fix an algebraically closed field k of charac-

teristic zero. All vector spaces and algebras are taken over k and all categories

and equivalences of categories are k-linear.

1.1 Overview

Noncommutative rings are ubiquitous in mathematics. Given a commuta-

tive ring R and a nonabelian group G, the group ring R[G] is a noncommutative

ring. The n×n matrices with entries in C or, more generally, endomorphism rings

of modules are noncommutative rings. Noncommutative rings also arise as differen-

tial operators: the ring of differential operators on k[t] generated by multiplication

by t and differentiation by t is isomorphic to the Weyl algebra,

A1 := k〈x, y〉/(xy − yx− 1).

The Weyl algebra is a fundamental example in noncommutative ring the-

ory. As A1 is a differential polynomial ring, it can be viewed as an analogue of a

commutative polynomial ring in two variables—in particular, it is a noetherian do-

main of Gelfand-Kirillov dimension 2. However, in contrast with any commutative

ring, the Weyl algebra is a simple ring which is not a division algebra.

As noncommutative rings are a larger class of rings than commutative ones,

not all of the same tools and techniques are available in the noncommutative set-

1
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ting. For example, localization is only well-behaved at certain subsets of noncom-

mutative rings called Ore sets. Care must also be taken when working with other

ring-theoretic properties. The left ideals of a ring need not be (two-sided) ideals.

One must be careful in distinguishing between left ideals and right ideals, as well

as left and right noetherianness or artianness.

In commutative algebra, there is a rich interplay between ring theory and

algebraic geometry. One can associate to an N-graded k-algebra R =
⊕

i∈NRi

the projective scheme ProjR, the space of homogeneous prime ideals of R not

containing the irrelevant ideal R≥1. Localizing R at the homogeneous prime ideals,

one can then construct the structure sheaf on ProjR. Algebraic properties of the

ring R can be translated to geometric properties of the space ProjR and vice versa.

In the noncommutative setting, there are obstructions to generalizing this

idea. Therefore, in noncommutative projective geometry, rather than generalizing

the space of homogeneous ideals of a ring, one approach has instead been to study

the module category over the ring. This idea is due to a theorem of Serre: if a

commutative graded k-algebra R is generated over k by elements of degree one

then coh(ProjR), the category of coherent sheaves on ProjR, is equivalent to

qgr -R, the category of finitely generated graded R-modules modulo torsion.

Previous work in noncommutative projective geometry has largely focused

on N-graded rings. While the Weyl algebra A1 is not N-graded, it admits a natural

Z-grading given by letting deg x = 1 and deg y = −1. In [Sie09], Sierra studied

gr -A1, the category of finitely generated graded right A1-modules. She determined

the group of autoequivalences of gr -A1 and classified all rings graded equivalent to

A1. The simple modules of gr -A1 can be pictured as follows. For each λ ∈ k \ Z,

there is a simple module Mλ = A1/(xy + λ)A1, while for each n ∈ Z, the module

A1/(xy + n)A1 is the nonsplit extension of two simple modules X〈n〉 and Y 〈n〉.
We can therefore represent the simple modules as the affine line with integer points

doubled. Sierra gives the following picture:

Sierra studied the Picard group—the group of autoequivalences—of this

category. She showed that there were many symmetries of this picture. There is an

autoequivalence of gr -A1 induced by a graded automorphism of A1 which reflects
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−3 −2 −1 0 1 2 3

Figure 1.1.1: The simple modules of gr -A1.

the picture, sending A1/(xy+n)A1 to A1/(xy− (n+ 1))A1 for all n ∈ Z. The shift

functor SA1 is an autoequivalence of the category which translates the picture,

sending A1/(xy+n)A1 to A1/(xy+n+ 1)A1 for all n ∈ Z. Hence, Pic(gr -A1) has

a subgroup isomorphic to D∞. Further, Sierra constructed autoequivalences ιn of

gr -A1, which permute X〈n〉 and Y 〈n〉 and fix all other simple modules. Let Zfin

denote the group of finite subsets of the integers, with operation exclusive or. The

subgroup of Pic(gr -A1) generated by the ιn is isomorphic to Zfin.

Theorem 1.1.1 (Sierra, [Sie09, Corollary 5.11]). The group Pic(gr -A1) is isomor-

phic to Zfin oD∞.

In [Smi11], Smith showed that in fact Gr -A1, the category of graded right

A1-modules, is equivalent to the category of quasicoherent sheaves on a certain

quotient stack, χ. He constructed a commutative ring R graded by Zfin:

R := k[z][
√
z − n | n ∈ Z],

where deg
√
z − n = {n}. Smith then proved:

Theorem 1.1.2 (Smith, [Smi11, Theorem 5.14 and Corollary 5.15]). There is an

equivalence of categories

Gr -A1 ≡ Gr -(R,Zfin) ≡ Qcoh(χ).

In this dissertation, we generalize results of Sierra and Smith by studying

the graded module category over certain generalized Weyl algebras (GWAs). We

study GWAs A(f) with base ring k[z] defined by a quadratic polynomial f ∈ k[z]

and an automorphism σ : k[z] → k[z] mapping z to z + 1. The GWA A(f) has

presentation

A(f) =
k[z]〈x, y〉(

xz = σ(z)x yz = σ−1(z)y

xy = f yx = σ−1(f)

) .
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When the defining polynomial f is clear from context, we use the notation A to

denote A(f). We assume, without loss of generality, that f = z(z + α) for some

α ∈ k. The properties of A(f) are determined by the roots of f . When α = 0,

we say that f has a multiple root, when α ∈ Z \ {0}, we say that f has congruent

roots, and when α ∈ k \ Z, we say that f has non-congruent roots.

In the non-congruent root case, the picture of gr -A(f) can be thought of

as a doubled version of the picture of gr -A1.

−3

α− 3

−2

α− 2

−1

α− 1

0

α

1

α + 1

2

α + 2

3

α + 3

Figure 1.1.2: The simple modules of gr -A(f) when f has non-congruent roots.

In this case, for each integer n, A/(z + n)A is a nonsplit extension of two simple

modules which we call Xf
0 〈n〉 and Y f

0 〈n〉 and additionally, A/(z + n + α) is a

nonsplit extension of two simple modules which we call Xf
α〈n〉 and Y f

α 〈n〉. Each

pair of these simple modules behaves in the same way as the pair Xf〈n〉 and Y f〈n〉
in gr -A1.

In the multiple root case, the picture of gr -A(f) is the same as for gr -A1.

−3 −2 −1 0 1 2 3

Figure 1.1.3: The simple modules of gr -A(f) when f has a double root.

For every integer n, A/(z + n)A is a nonsplit extension of two simple modules,

Xf〈n〉 and Y f〈n〉. However, although the picture is the same, the category is

not—the simple modules Xf〈n〉 and Y f〈n〉 also have nonsplit self-extensions.

Finally, in the congruent root case, there exist finite-dimensional simple

modules: the shifts of a module we call Zf . For each integer n, A/(z + n)A has a

composition series consisting of Xf〈n〉, Y f〈n〉, and Zf〈n〉.
In this case, let fdim -A(f) be the full subcategory of gr -A(f) consisting of

finite-dimensional modules. More concretely, the objects of fdim -A(f) are given
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−3 −2 −1 0 1 2 3

Figure 1.1.4: The simple modules of gr -A(f) when f has congruent roots.

by finite direct sums of shifts of Zf . We consider qgr -A(f) = gr -A(f)/ fdim -A(f),

the quotient category of gr -A(f) modulo its full subcategory generated by finite-

dimensional modules and prove that qgr -A(f) is equivalent to the category in the

multiple root case.

Theorem 1.1.3 (Theorem 6.4.5). Let α ∈ N+. There is an equivalence of cate-

gories

qgr -A (z(z + α)) ≡ gr -A
(
z2
)
.

In all three cases, we construct autoequivalences of gr -A(f) which are anal-

ogous to Sierra’s involutions ιn. For all quadratic f ∈ k[z], we determine the

Picard group of A(f), showing that Pic (gr -A(f)) ∼= Pic (gr -A1).

Theorem 1.1.4 (Theorem 5.2.4). For any quadratic polynomial f ∈ k[z],

Pic(gr -A(f)) ∼= Zfin oD∞.

We also construct commutative rings similar to those in [Smi11] whose

categories of graded modules are equivalent to qgr -A(f). In the non-congruent

root case, we define Zfin × Zfin graded-ring

C :=
k[cn, dn | n ∈ Z]

(c2
n − n = c2

m −m, c2
n = d2

n − α | m,n ∈ Z)

where deg cn = (n, ∅) and deg dn = (∅, n) and prove

Theorem 1.1.5 (Theorem 6.5.2). Let α ∈ k \ Z and f = z(z + α). Then there is

an equivalence of categories

gr -A(f) ≡ gr -(C,Zfin × Zfin).

In the multiple and congruent root cases, we define the Zfin graded ring

B :=
k[z][bn | n ∈ Z]

(b2
n = (z + n)2 | n ∈ Z)

where deg bn = {n} and prove
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Theorem 1.1.6 (Theorem 6.4.5 and Corollary 6.4.6). Let α ∈ N+. There are

equivalences of categories

gr -A
(
z2
)
≡ qgr -A (z(z + α)) ≡ gr -(B,Zfin).

We then prove some basic results about the ring B, characterizing its min-

imal prime ideals and showing that B is a non-noetherian, reduced ring of Krull

dimension 1.

1.2 Structure of this dissertation

In the remainder of the introduction, we briefly summarize the contents

of this dissertation. In Chapter 2, we establish notation and give background on

graded rings, categories of graded modules, and generalized Weyl algebras. In

Chapter 3 we study the category gr -A(f). We study the finite length modules

of gr -A(f) in sections 3.1 and 3.3. In section 3.2, we introduce the important

concept of the structure constants of a graded right A-submodule of Qgr (A(f))

and in section 3.4, we investigate the rank one projective modules of gr -A(f).

In Chapter 4, we develop some technical tools which allow us to define a

functor on gr -A by first defining it on the full subcategory of rank 1 projective

modules. We use these tools in Chapter 5, where we construct autoequivalences

of gr -A(f) which are analogous to the ιJ of [Sie09] and compute the Picard group

of gr -A(f). Finally, in Chapter 6, we study the quotient category qgr -A(f) and

construct commutative rings whose graded module categories are equivalent to

qgr -A(f).



Chapter 2

Background

2.1 Graded rings and modules

We begin by fixing basic definitions, terminology, and notation. We follow

the convention that 0 is a natural number so N = Z≥0. We use the notation N+

to denote the positive natural numbers.

A k-algebra R is a ring with a multiplicative identity which is a k-vector

space such that for all r, s ∈ R and λ ∈ k, λ(rs) = (λr)s = r(λs). All rings in this

dissertation are k-algebras. If Γ is an abelian semigroup, then we say a k-algebra

R is Γ-graded if R has a k-vector space decomposition

R =
⊕
γ∈Γ

Rγ

such that Rγ · Rδ ⊆ Rγ+δ for all γ, δ ∈ Γ. For a Z-graded Ore domain R, we

write Qgr(R) for the graded quotient ring of R, the localization of R at all nonzero

homogeneous elements.

A graded right R-module is an R-module M with a k-vector space decom-

position M =
⊕

γ∈ΓMγ such that Mγ · Rδ ⊆ Mγ+δ for all γ, δ ∈ Γ. If M and N

are graded right R-modules and δ ∈ Γ, then a Γ-graded right R-module homomor-

phism of degree δ is an R-module homomorphism ϕ such that ϕ(Mγ) ⊆ Nγ+δ for all

γ ∈ Γ. If δ = 0, then ϕ is referred to as a Γ-graded right R-module homomorphism.

Define HomR(M,N)δ to be the set of all graded homomorphisms of degree δ from

7
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M to N and define

HomR(M,N) =
⊕
δ∈Γ

HomR(M,N)δ.

The category of all Γ-graded right R-modules with Γ-graded right R-module

homomorphisms is an abelian category denoted Gr -(R,Γ). When Γ = Z we use

the notation Gr -R in place of Gr -(R,Z). We follow the convention that if Xyz-R

is the name of a category then xyz-R is the full subcategory of Xyz-R consisting

of noetherian objects. Hence, gr -(R,Γ) is the category of all noetherian Γ-graded

right R-modules. The category of all right R-modules with module homomor-

phisms is denoted Mod-R.

When we are working in the category gr -R, we denote the Γ-graded R-

module homomorphisms by

Homgr -R(M,N) = HomR(M,N)0.

We write ExtR and Extgr -R for the derived functors of HomR and Homgr -R, respec-

tively.

For a graded k-algebra R, the shift functor on gr -R sends a graded right

module M to the new module M〈1〉 =
⊕

j∈ZM〈1〉j, defined by M〈1〉j = Mj−1.

We write this functor as SR : M 7→ M〈1〉. Similarly, M〈i〉j = Mj−i. This is in

keeping with the convention of Sierra in [Sie09], although we warn that this is

the opposite of the standard convention. For a graded k-vector space V , we use

the same notation to refer to the shift of grading on V : V 〈i〉j = Vj−i. For right

R-modules M and M ′, note that as graded vector spaces,

HomR(M〈d〉,M ′〈d′〉) ∼= HomR(M,M ′)〈d′ − d〉.

Given two categories C and D, a covariant functor F : C → D is called

an equivalence of categories if there is a covariant functor G : D → C such that

G ◦ F ∼= IdC and F ◦ G ∼= IdD. We say that C and D are equivalent and write

C ≡ D. An equivalence of categories F : C → C is called an autoequivalence of C.

Given a category of Γ-graded modules, gr -(R,Γ), let Aut(gr -(R,Γ)) be the group

of autoequivalences of gr -(R,Γ) with operation composition. Denote by ∼ the
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equivalence relation on Aut(gr -(R,Γ)) given by natural isomorphism. We define

the Picard group of gr -(R,Γ)

Pic(gr -(R,Γ)) = Aut(gr -(R,Γ))/ ∼ .

Following [Sie11b], we define a Z-algebra R to be a k-algebra without 1,

with a (Z× Z)-graded k-vector space decomposition

R =
⊕
i,j∈Z

Ri,j

such that for any i, j, k ∈ Z, Ri,jRj,k ⊆ Ri,k and if j 6= j′ then Ri,jRj′,k = 0.

Additionally, we require that each of the subrings Ri,i has a unit 1i which acts

as a left identity on all Ri,j and right identity on all Rj,i. If R and S are Z-

algebras, we say that a k-algebra homomorphism ϕ : R→ S is graded of degree d

if ϕ(Ri,j) ⊆ Si+d,j+d. A Z-algebra isomorphism is a degree 0 k-algebra isomorphism

ϕ : R→ S such that ϕ(1i) = 1i for all i ∈ Z.

For a Z-graded ring R, we define the Z-algebra associated to R

R =
⊕
i,j∈Z

Ri,j

where Ri,j = Rj−i. A degree 0 automorphism of R is called inner (see [Sie09,

Theorem 3.10]) if for all m,n ∈ Z, there exist gm ∈ Rm,m and hn ∈ Rn,n such that

for all w ∈ Rm,n,

γ(w) = gmwhn.

In [Sie09] and [Sie11b], Sierra studies the relationship between R and gr -R.

In particular, Sierra proves the following:

Theorem 2.1.1 (Sierra, [Sie11b, Theorem 3.6]). Let R and S be Z-graded k-

algebras. The following are equivalent:

1. The Z-algebras R and S are isomorphic via a degree-preserving map.

2. There is an equivalence of categories Φ : gr -R → gr -S such that for all

n ∈ Z, Φ(R〈n〉) ∼= S〈n〉.
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A functor Φ satisfying condition 2 in Theorem 2.1.1 above is called a twist

functor. Sierra further gives the following result on twist functors.

Theorem 2.1.2 (Sierra, [Sie09, Corollary 3.11]). Let R be a Z-graded ring and

suppose that all automorphisms of R of degree 0 are inner. If Φ : gr -R→ gr -R is

a twist functor, then Φ is naturally isomorphic to Idgr -R.

2.2 Category theoretic preliminaries

The category of modules over a ring is the prototypical example of an

abelian category. In this section, we establish category theoretic definitions that we

will need in chapters 4 and 6. If C and D are abelian categories, a functor F : C→ D

is called additive if F(f + f ′) = Ff + Ff ′ for any morphisms f, f ′ : X → Y . A

biproduct diagram for objects X, Y ∈ C is a diagram

X
p1

�
i1

Z
p2

�
i2

Y

such that p1i1 = IdX , p2i2 = IdY , and i1p1+i2p2 = IdZ . The object Z is a biproduct

of X and Y , as the projections p1 and p2 make Z a categorical product while i1

and i2 make Z a categorical coproduct. A nice property of additive functors is

that they preserve biproduct diagrams.

Proposition 2.2.1 (See [Mac78, Proposition VIII.2.4]). A functor F : C → D is

additive if and only if F carries each binary biproduct diagram in C to a biproduct

diagram in D.

We will also need the concept of the generator of a category. A set of objects

{Gi | i ∈ I} in C is said to generate C if for any two morphisms f, g : X → Y in

C such that f 6= g, there is some i ∈ I and some morphism h : Gi → X such that

f ◦ h 6= g ◦ h. If the set consists of a single object G, then G is called a generator

of C.

A subcategory D of an abelian category C is a Serre subcategory if for every

short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0
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in C, M is an object of D if and only if M ′ and M ′′ are objects of D—that is, D is

closed under subobjects, factor objects, and extensions.

The quotient category C/D of an abelian category by a Serre subcategory

was first defined by Gabriel in his thesis [Gab62] as follows. The objects of C/D

are the objects of C. If M and N are objects of C, then

HomC/D(M,N) := lim−→HomC(M ′, N/N ′),

where the direct limit is taken over all subobjects M ′ ⊆ M and N ′ ⊆ N where

M/M ′ ∈ D and N ′ ∈ D. Composition of morphisms in C/D is induced by

composition in D. There is also a canonical exact functor, the quotient functor

π : C → C/D. For an object M , πM = M and for a morphism f , πf is given by

the image of f in the direct limit.

We state properties of morphisms in C/D as summarized in lecture notes

of Paul Smith [Smi00].

Proposition 2.2.2 (See [Smi00, Proposition 13.7]). Let f ∈ HomC(M,N). Then

1. the kernel and cokernel of πf are π(ker f) and π(coker f) respectively;

2. πf is zero if and only if im f ∈ D;

3. πf is monic if and only if ker f ∈ D;

4. πf is epic if and only if coker f ∈ D;

5. πf is an isomorphism if and only if ker f ∈ D and coker f ∈ D.

2.3 Dimension in noncommutative rings

For a commutative ring S and an S-module M , the Krull dimension of M

is defined to be the maximal length of a chain of prime ideals in S/ annM . How-

ever, the relative scarcity of two-sided ideals makes this definition less useful for a

noncommutative ring. Hence, there are several notions of dimension in the non-

commutative setting. Of course, for a k-algebra R, we can consider the dimension

of R as a k-vector space. We refer to this as the k-dimension of R and denote it
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dimk(R). We now discuss three different dimension functions for noncommutative

rings.

The first notion of dimension we introduce is called the Gelfand-Kirillov

dimension or GK dimension of R. A full treatment of GK dimension can be

found in [KL00]. Let R be a finitely generated k-algebra R and let V be a finite-

dimensional k-subspace of R containing 1 and generating R as a k-algebra. We

define the GK dimension of R to be

GKdimR = lim sup
n→∞

logn dimk V
n.

This definition is independent of the choice of generating subspace V .

Example 2.3.1. The first Weyl algebra A1 = k〈x, y〉/(xy − yx − 1) has GK

dimension 2. We can choose the generating subspace V = {1, x, y}. Then for any

monomial w in x and y of degree n, we can use the relation xy − yx− 1 to write

w as a sum of monomials of the form xiyj with i+ j ≤ n. Since there are exactly

n+ 1 such monomials of degree n, and V n is spanned by the monomials of length

at most n, we see that dimk V
n = (n+ 1)(n+ 2)/2. Hence,

GKdimA1 = lim sup
n→∞

logn
(n+ 1)(n+ 2)

2
= 2.

We can also generalize the definition of Krull dimension to modules over

noncommutative noetherian rings. A detailed discussion of Krull dimension can be

found in chapter 6 of [MR87]. LetR be a noetherian ring andM a finitely generated

right R-module. We define the Krull dimension of M , KdimM , inductively as

follows. If M = 0 then KdimM = −∞, otherwise if M is artinian, then KdimM =

0. For n ∈ N, we say that KdimM = n if (a) for each m < n, KdimM 6= m and

(b) in any descending chain of submodules of M , all but finitely many factors have

Krull dimension less than n.

The (right) Krull dimension of R is the Krull dimension of R as a right

module over itself. This definition coincides with the usual Krull dimension in the

case that R is commutative. For n ∈ N, we say that a right R-module M is n-

critical if KdimM = n and for each nonzero submodule N ⊆M , KdimM/N < n.

Therefore, a 0-critical module is a simple module and any factor of a 1-critical

module is artinian.
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The last kind of dimension we consider here is global dimension. For a right

R-module M , the projective dimension of M , denoted pdM , is defined to be the

minimal length among all finite projective resolutions of M . If M does not admit

a finite projective resolution, then pdM =∞. The (right) global dimension of R,

denoted gldimR, is defined to be

gldimR = sup
M∈mod-R

{pdM}.

2.4 Noncommutative projective schemes

In recent years, the field of noncommutative projective algebraic geometry

has generalized the techniques of commutative algebraic geometry to the study of

noncommutative rings. We begin by recalling some classical algebraic geometry.

The necessary scheme-theoretic background is developed in detail in Hartshorne’s

text [Har77]. Throughout this section, let R =
⊕

i∈NRi be a commutative N-

graded algebra, generated in degree 1 over R0 = k.

From the commutative ring R, we can construct the projective scheme

ProjR. As a set, ProjR consists of the homogeneous prime ideals of R not con-

taining the irrelevant ideal R≥1. We make ProjR a topological space under the

Zariski topology: the closed sets are of the form V (a) = {p ∈ ProjR | p ⊇ a} for a

a homogeneous ideal of R. We then construct the structure sheaf O on ProjR by

localizing at homogeneous prime ideals. Specifically, let Rp be the localization of R

at the set of all homogeneous elements of R not in p. For an open set U ⊆ ProjR,

define O(U) be the set of functions f : U →
∐
p∈U

Sp such that f(p) ∈ Sp and f is

locally a quotient of elements in S.

As this construction of ProjR shows, in classical algebraic geometry, the

technique of localization and the abundance of prime ideals are important. A

näıve generalization of this technique to noncommutative rings has at least two

obstructions. First, in noncommutative rings, localization is well-behaved only at

certain multiplicatively closed subsets called Ore sets. A more basic difficulty is

the scarcity of two-sided ideals. Let q ∈ k× be a nonroot of 1. The quantum plane

kq[x, y] = k〈x, y〉/(xy − qyx)
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is a noncommutative analogue of the projective line Projk[x, y] = P1. However,

while k[x, y] has many homogeneous prime ideals, kq[x, y] has only four: (0), (x),

(y) and (x, y).

Rather than attempting to generalize directly the construction of a pro-

jective scheme, one successful approach has instead been to generalize the study

of sheaves over a scheme. This idea is motivated by a theorem of Serre. Let

tors -R be the full subcategory of gr -R consisting of finite-dimensional modules.

Let qgr -R = gr -R/ tors -R.

Theorem 2.4.1 (Serre, see [Har77, Ex 5.9]). There is an equivalence of categories

coh(ProjR) ≡ qgr -R.

Therefore, studying the coherent sheaves ProjR is the same thing as study-

ing the category of R-modules. Noncommutative rings with few two-sided ideals

can have rich (right) module categories, so this approach has been fruitful. In

[AZ94], Michael Artin and James Zhang defined the noncommutative projective

scheme of a noncommutative ring purely module-theoretically.

Definition 2.4.2 (Artin-Zhang, [AZ94]). Let A be a right noetherian graded k-

algebra. The noncommutative projective scheme of A is the triple

(qgr -A, πA,S)

where S denotes the shift functor on qgr -A.

Much of the literature on noncommutative projective schemes has focused

on connected graded k-algebras—N-graded k-algebras with A0 = k. Since the

commutative polynomial ring under its usual grading satisfies these hypotheses,

connected graded k-algebras are analogues of (quotients of) commutative polyno-

mial rings. For a connected graded k-algebra A of GK dimension 2, we call qgr -A

a noncommutative projective curve. If A has GK dimension 3, we call qgr -A a

noncommutative projective surface.

The noncommutative projective curves were classified by Artin and Stafford,

who showed that every noncommutative curve was equivalent to the category



15

of coherent sheaves on a commutative curve. The classification of noncommu-

tative projective surfaces is an active area of current research. The noncom-

mutative analogues of k[x, y, z] (so-called Artin-Schelter regular algebras of di-

mension 3) are well-understood (see [AS87, ATV91, Ste96, Ste97]) and many

other examples of noncommutative projective surfaces have been studied (see

[Van01, Van11, Rog04, Sie11a]).

2.5 Generalized Weyl algebras

Fix f ∈ k[z], let σ : k[z]→ k[z] be the automorphism given by σ(z) = z+1,

and let

A(f) =
k[z]〈x, y〉(

xz = σ(z)x yz = σ−1(z)y

xy = f yx = σ−1(f)

) .
Then A(f) = k[z] (σ, f) is a generalized Weyl algebra of degree 1 with base ring

k[z], defining element f and defining automorphism σ. Generalized Weyl algebras

were introduced by Vladimir Bavula, who studied rings of the form A(f) for f of

arbitrary degree [Bav93, BJ01]. Timothy Hodges studied the same rings under the

name noncommutative deformations of type-A Kleinian singularities [Hod93]. By

results in [Bav93], for all f , A(f) is a noncommutative noetherian domain of Krull

dimension 1.

By a theorem of Bavula and Jordan, A(f) ∼= A(g) if and only if f(z) =

ηg(τ ± z) for some η, τ ∈ k with η 6= 0 [BJ01, Theorem 3.28]. Hence, by adjusting

η we may assume f is a monic polynomial and by adjusting τ we may assume

that 0 is a root of f . We may also assume that 0 is the largest integer root of f .

Results of Bavula and Hodges show that the properties of A(f) are determined by

the distance between the roots of f . In general we say that two distinct roots, λ

and µ are congruent if λ− µ ∈ Z. The global dimension of A(f) depends only on

whether f has multiple or congruent roots, as follows.

Theorem 2.5.1 (Bavula and Hodges, [Bav93, Theorem 5] and [Hod93, Theorem
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4.4]). The global dimension of A is equal to

gldimA =


∞, if f has at least one multiple root

2, if f has no multiple roots but has congruent roots;

1, if f has neither multiple nor congruent roots.

In this dissertation, we study generalized Weyl algebras A(f) for quadratic

polynomials f . Without loss of generality, f = z(z+α). When α = 0, since f has

a multiple root, we say we are in the multiple root case. When α ∈ N+, we say we

are in the congruent root case. Finally, when α ∈ k \Z, we say that f has distinct

non-congruent roots and refer to this case as the non-congruent root case.

Like the first Weyl algebra, the rings A(f) are naturally Z-graded by letting

deg x = 1, deg y = −1, deg z = 0. Note that every graded right A(f)-module is

actually a graded (k[z], A(f))-bimodule; for any ϕ ∈ k[z], we define its left action

on a right A(f)-module M by

ϕ ·m = mσ−i(ϕ)

for any m ∈ Mi. This gives M a bimodule structure by the relations xz = σ(z)x

and yz = σ−1(z)y.

Bavula and Jordan [BJ01] call a polynomial g(z) ∈ k[z] reflective if there

exists some β ∈ k such that g(β − z) = g(z). They observe that every quadratic

polynomial is reflective. Indeed, if f is quadratic, there exists an outer automor-

phism ω of A(f) such that ω(x) = y, ω(y) = x, and ω(z) = 1 − α − z which

reverses the grading on A. More specifically, there is a group automorphism of Z,

and the k-algebra automorphism ω respects this automorphism. The group auto-

morphism, which we denote ω̄, is given by negation and ω(An) = Aω̄(n). Together,

we call (ω, ω̄) a ω̄-twisted graded ring automorphism of A.

For any group automorphism θ̄ of Z, any θ̄-twisted graded ring automor-

phism (θ, θ̄) of A induces an autoequivalence of gr -A, denoted θ∗. Given a module

M ∈ gr -A, θ∗M is defined to be M with the grading (θ∗M)n = Mθ̄(n). We write

θ∗m to regard the element m ∈M as an element of θ∗M . The action of an element

a ∈ A on an element θ∗m ∈ θ∗M is given by

θ∗m · a = θ∗(mθ(a)).
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We suppress the asterisk in the subscript and simply refer to the autoe-

quivalence induced by (ω, ω̄) as ω. We also define ω on a graded k-vector space

as the functor that reverses grading, i.e. (ωV )n = V−n. Then, as Sierra notes

in [Sie09, (4.2)], if M and N are right A-modules, then ω gives isomorphisms of

graded k-vector spaces

HomA(ωM,ωN) ∼= ωHomA(M,N)

Ext1
A(ωM,ωN) ∼= ω Ext1

A(M,N).
(2.1)



Chapter 3

The graded module category gr-A

In this chapter, we carefully study the graded right modules over generalized

Weyl algebras A(f) defined by quadratic polynomials f . We determine the simple

modules and classify some of the finite length indecomposable modules. We then

turn our attention to the rank one projective right modules and the morphisms

between them.

3.1 Simple modules

We first describe the simple modules of gr -A(f).

Lemma 3.1.1. Let f = z(z + α).

1. If α = 0, then up to graded isomorphism the graded simple A(f)-modules

are:

• Xf = A/(x, z)A and its shifts Xf〈n〉 for each n ∈ Z;

• Y f = (A/(y, z − 1)A) 〈1〉 and its shifts Y f〈n〉 for each n ∈ Z;

• M f
λ = A/(z + λ)A for each λ ∈ k \ Z.

2. If α ∈ N+, then up to graded isomorphism the graded simple A(f)-modules

are:

• Xf = (A/(x, z + α)A) 〈−α〉 and its shifts Xf〈n〉 for each n ∈ Z;

18
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• Y f = (A/(y, z − 1)A) 〈1〉 and its shifts Y f〈n〉 for each n ∈ Z;

• Zf = A/(yα, x, z)A and its shift Zf〈n〉 for each n ∈ Z;

• M f
λ = A/(z + λ)A for each λ ∈ k \ Z.

3. If α ∈ k \Z, then up to graded isomorphism the graded simple A(f)-modules

are:

• Xf
0 = A/(x, z)A and its shifts Xf

0 〈n〉 for each n ∈ Z;

• Y f
0 = (A/(y, z − 1)A) 〈1〉 and its shifts Y f

0 〈n〉 for each n ∈ Z;

• Xf
α = A/(x, z + α)A and its shifts Xf

α〈n〉 for each n ∈ Z;

• Y f
α = (A/(y, z + α− 1)A) 〈1〉 and its shifts Y f

α 〈n〉 for each n ∈ Z;

• M f
λ = A/(z + λ)A for each λ ∈ k \ (Z ∪ Z + α).

Proof. We do, as an example, the case that α = 0. The other cases follow similarly

from [Bav93, §3]. In [Bav93, §3], Bavula studies the simple k[z]-torsion A-modules,

that is, modules for which tor(M) := {m ∈ M | m · g = 0 for some 0 6= g ∈ k[z]}
is equal to M . Every graded simple right A- module is isomorphic to A/I for some

homogeneous right ideal I of A. Further, every homogeneous element of A can be

written as gxi or gyi for some g ∈ k[z] and i ∈ N. Hence, for every element a of

A/I, there exists h ∈ k[z] such that a · h = 0, so A/I is k[z]-torsion. By [Bav93,

Theorem 3.2], up to ungraded isomorphism, the simple k[z]-torsion A-modules are

• A/(x, z)A

• A/(y, z − 1)A

• One module A/(z + λ)A for each coset of k/Z.

For each λ ∈ k \ Z, observe that M f
λ+1
∼= M f

λ 〈1〉 via the isomorphism mapping

1̄ to ȳ. Further, by Bavula’s theorem, if λ − µ /∈ Z, then M f
λ and M f

µ are not

even ungraded isomorphic. Hence, if λ 6= µ then M f
λ 6∼= M f

µ in gr -A. Finally,

we see that there are no other graded isomorphisms between any shift of Xf , Y f ,

or M f
λ simply by looking at the degrees in which these modules are nonzero (see

Remark 3.1.2 below). Hence, we conclude that the graded isomorphism classes of
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graded simples correspond to the shifts Xf〈n〉, Y f〈n〉, and one module M f
λ for

each element of k \ Z.

When there is no danger of confusion, we will make two changes in notation

for convenience. When it is clear which case we are in (multiple, congruent, or

distinct roots), we will suppress the superscript on graded simple modules and

refer to them as X, Y , Z, and Mλ. Also, for a right ideal I, we will often refer to

the element a+ I ∈ A/I simply as a.

Remark 3.1.2. We also remark that for each integer n and each simple module

S, dimk S ≤ 1. We explicitly give the degrees in which each simple module is

nonzero. Additionally, by using the explicit description of the simple modules as

quotients of A, we can also determine the action of the autoequivalence ω on the

graded simple modules. In all cases, for λ ∈ k \ (Z ∪ Z + α), dimk(Mλ)n = 1 for

all n and ω(Mλ) = Mµ for some µ ∈ k \ (Z ∪ Z + α).

1. If α = 0, then

• dimkXn = 1 if and only if n ≤ 0,

• dimk Yn = 1 if and only if n > 0,

• ω(X〈n〉) ∼= Y 〈−n− 1〉 and ω(Y 〈n〉) ∼= X〈−n− 1〉.

2. If α ∈ N+, then

• dimkXn = 1 if and only if n ≤ −α,

• dimk Yn = 1 if and only if n > 0,

• dimk Zn = 1 if and only if −α < n ≤ 0,

• ω(X〈n〉) ∼= Y 〈α − n − 1〉, ω(Y 〈n〉) ∼= Y 〈α − n − 1〉, and ω(Z〈n〉) ∼=
Z〈α− n− 1〉.

3. If α ∈ k \ Z, then

• dimk(X0)n = dimk(Xα)n = 1 if and only if n ≤ 0,

• dimk(Y0)n = dimk(Yα)n = 1 if and only if n > 0,
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• ω(X0〈n〉) ∼= Yα〈−n− 1〉, ω(Y0〈n〉) ∼= Yα〈−n− 1〉,

• ω(Xα〈n〉) ∼= Y0〈−n− 1〉, and ω(Yα〈n〉) ∼= Y0〈−n− 1〉.

Lemma 3.1.3. Let α ∈ N and let n ∈ Z. Then (z+n)(X〈n〉) = (z+n)(Y 〈n〉) = 0.

If α 6= 0, then (z + n)(Z〈n〉) = 0. As graded left k[z]-modules, we have

(A/zA)〈n〉 ∼= (A/(z − 1)A)〈n+ 1〉 ∼=
⊕
j∈Z

k[z]

(z + n)
.

Proof. Recall that there is a left action of k[z] on an A-module. If degm = i

then for p ∈ k[z], p · m = mσ−i(p). This result follows from the fact that in

X〈n〉 = (A/(x, z + α)A) 〈−α + n〉, deg 1 = n− α and

(z + n) · 1 = 1σα−n(z + n) = z + α = 0.

Similarly, in Y 〈n〉, deg 1 = n+ 1 so

(z + n) · 1 = 1σ−n−1(z + n) = z − 1 = 0,

and in Z〈n〉, deg 1 = 0 and

(z + n) · 1 = z = 0.

For each j ≥ n, ((A/zA)〈n〉)j is generated as a left k[z] module by xj−n.

Further, for all g ∈ k[z], g · xj−n = xj−nσn−j(g) = σn(g)xj−n. Hence, as a left

k[z]-module the annihilator of ((A/zA)〈n〉)j is given exactly by the ideal (z + n).

For j < n, ((A/zA)〈n〉)j is generated as a left k[z] module by yn−j. By a similar

argument, the annihilator is given exactly by the ideal (z + n) so

(A/zA)〈n〉 ∼=
⊕
j∈Z

k[z]

(z + n)
.

The same proof shows that

(A/(z − 1)A)〈n+ 1〉 ∼=
⊕
j∈Z

k[z]

(z + n)
.
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Lemma 3.1.4. Let α ∈ k \ Z and let n ∈ Z. Then (z + n)(X0〈n〉) = 0 =

(z + n)(Y0〈n〉) and (z + α + n)(Xα〈n〉) = 0 = (z + α + n)(Yα〈n〉). As graded left

k[z]-modules, we have

(A/zA)〈n〉 ∼= (A/(z − 1)A)〈n+ 1〉 ∼=
⊕
j∈Z

k[z]

(z + n)
and

(A/(z + α)A)〈n〉 ∼= (A/(z + α− 1)A)〈n+ 1〉 ∼=
⊕
j∈Z

k[z]

(z + α + n)
.

Proof. This follows from the same proof as that of Lemma 3.1.3.

Since Mλ
∼=
⊕

j∈Z k[z]/(z + λ) as a left k[z]-module, when combined with

the previous lemmas, any finite length graded A-module, when considered as a

left k[z]-module, is supported at finitely many k-points of Speck[z]. We restate

[Sie09, Definition 4.9].

Definition 3.1.5. If M is a graded A-module of finite length, define the support

of M , SuppM , to be the support of M as a left k[z]-module. We are interested in

the cases when SuppM ⊂ Z or SuppM ⊂ Z−α. When SuppM ⊂ Z, we say that

M is integrally supported. We are also interested in cases when SuppM = {n} or

SuppM = {n− α} for some n ∈ Z (we say M is simply supported at n or n− α).

Lemma 3.1.3 shows that in the case that α ∈ N, X〈n〉 and Y 〈n〉 are the

unique simples supported at −n. In the case that α /∈ Z, Lemma 3.1.4 shows that

X0〈n〉 and Y0〈n〉 are the unique simples supported at −n and Xα〈n〉 and Yα〈n〉
are the unique simples supported at −(n+α). For λ ∈ k \ (Z∪Z+α), the simple

module Mλ is the unique simple supported at −λ.

3.2 The structure constants of a graded submod-

ule of the graded quotient ring of A

We seek to understand the rank one projective modules of gr -A(f). Since

A(f) is noetherian, A(f) is an Ore domain, so we can construct Qgr (A(f)), the

graded quotient ring of A(f). Every homogeneous element of A(f) can be written
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as xig(z) or yig(z) for some i ≥ 0 and some g(z) ∈ k[z]. Since in the graded

quotient ring y = x−1f , we see that Qgr (A(f)) embeds in the skew Laurent poly-

nomial ring k(z)[x, x−1;σ]. Finally, since every element of k(z)[x, x−1;σ] can be

written as a quotient of elements of A(f), therefore Qgr (A(f)) = k(z)[x, x−1;σ].

To understand the rank one projective modules, we begin by considering

submodules of Qgr (A(f)). Let I be a finitely generated graded right A-submodule

of Qgr (A(f)). Recall that σ(z) = z + 1 and every graded right A-module is a

graded left k[z]-module with

ϕ ·m = m · σ−i(ϕ)

for ϕ ∈ k[z] and degm = i. We will examine I as a graded left k[z]-submodule of

Qgr(A). As a left k[z]-module,

Qgr(A) ∼=
⊕
i∈Z

k(z)xi.

Suppose I is generated as an A-module by the homogeneous generators

m1, . . . ,mr, with degmi = di. Then for each n ∈ Z, In =
∑
miAn−di where In is

the degree n graded component of I. Since each graded component of A is finitely

generated as a left k[z]-module, so is In. If we clear denominators and use the fact

that k[z] is a PID, we deduce that In is generated as a left k[z]-module by a single

element anx
n where an ∈ k(z). Denote by (an) the left k[z]-submodule of k(z)

generated by an. Then

I =
⊕
i∈Z

(ai)x
i.

Because I is a right A-submodule, we have for each i ∈ Z

(ai)x
i · x ⊆ (ai+1)xi+1 and

(ai+1)xi+1 · y = (ai+1)σi(f)xi ⊆ (ai)x
i.

Therefore, for each i ∈ Z, we have (ai) ⊆ (ai+1) and (ai+1σ
i(f)) ⊆ (ai). Define

ci = aia
−1
i+1. We then have 1 | ci and ci | σi(f), so ci ∈ k[z]. By multiplying by an

appropriate element of k, we assume that ci is monic so

ci ∈ {1, σi(z), σi(z + α), σi(f)}.
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Definition 3.2.1. We call the elements of this sequence {ci}i∈Z the structure

constants of I. The lemma below shows that a finitely generated graded right

A-submodule of Qgr(A) is determined up to graded isomorphism by its structure

constants.

As an example, we compute the structure constants of the ring A.

Example 3.2.2. For n ∈ Z, An is generated as a left k[z]-module by xn when

n ≥ 0 and y−n when n < 0. Also, for n > 0, ynxn = σ−1(f) · · ·σ−n(f), so as a

graded left k[z]-module,

A =
⊕
i∈Z

(ai)x
i with ai =

1, i ≥ 0,

σ−1(f) · · ·σi(f), i < 0.

The structure constants {ci} of A are therefore given by

ci =

1 i ≥ 0,

σi(f) i < 0.

Lemma 3.2.3. Let I and J be finitely generated graded submodules of Qgr(A)

with structure constants {ci} and {di}, respectively. Then I ∼= J as graded right

A-modules if and only if ci = di for all i ∈ Z.

Proof. As argued above there exist {ai}, {bi} ⊆ k(z) such that

I =
⊕
i∈Z

(ai)x
i and J =

⊕
i∈Z

(bi)x
i.

Then by definition, for each i ∈ Z, ci = aia
−1
i+1 and di = bib

−1
i+1. Let g = a−1

0 b0 ∈
k(z). If ci = di for all i ∈ Z, then (aig) = (bi) for all i. Hence, I ∼= J via left

multiplication by g.

Conversely, suppose ϕ : I → J is a graded isomorphism of A-modules.

Since, for each i ∈ Z, ϕ : Ii → Ji is an isomorphism, we must have, up to a scalar

in k×, ϕ(aix
i) = bix

i. Then, up to a scalar,

bix
i+1 = ϕ(aix

i)x = ϕ(aix
i+1) = ϕ(ai+1cix

i+1) = ϕ(ai+1x
i+1σ−(i+1)(ci))

= ϕ(ai+1x
i+1)σ−(i+1)(ci) = bi+1x

i+1σ−(i+1)(ci) = bi+1cix
i+1,
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so up to a scalar di = bib
−1
i+1 = ci for all i. Since we assumed that structure

constants were monic, ci = di for all i ∈ Z.

Lemma 3.2.4. Suppose I =
⊕

i∈Z(bi)x
i is a finitely generated graded right A-

submodule of Qgr(A) with structure constants {ci}. Then for n � 0, cn = 1 and

c−n = σ−n(f).

Proof. Since I is finitely generated as an A-module, if n ∈ Z is greater than the

highest degree of all generators, we have In · x = In+1. Then (bn) = (bn+1) so

cn = 1. On the other hand, if n is less than the least degree of all generators, then

In · y = In−1. That is,

(bn−1)xn−1 = (bn)xny = (bn)xn−1f = (bn)σn−1(f)xn−1,

so cn−1 = σn−1(f). Hence, for n� 0, cn = 1 and c−n = σ−n(f).

We remark that for any choice {ci}i∈Z satisfying (i) for each integer n,

cn ∈ {1, σn(z), σn(z + α), σn(f)} and (ii) cn = 1 and c−n = σ−n(f) for n � 0,

we can construct a module with structure constants {ci}. Let b0 = 1 and for all

integers i, define bi such that bib
−1
i+1 = ci. Let I =

⊕
i∈Z(bi)x

i. Since bix
i · x ∈

(bi+1)xi+1 and bix
i · y ∈ (bi−1)xi−1, therefore I is a graded submodule of Qgr(A).

Further, there exists N ∈ N such that for all n ≥ N , cn = 1 and c−n = σ−n(f).

Thus, the elements {bixi | −N ≤ i ≤ N} generate I as an A-module, so I is a

finitely generated graded right A-submodule of Qgr(A).

Hence, isomorphism classes of finitely generated graded right A-submodules

of Qgr(A) are in bijection with such sequences of structure constants, {ci}. One

reason taking this point of view is useful is that we can now state properties

of a graded submodule I ⊆ Qgr(A) in terms of its structure constants and vice

versa. First, we show that the simple factors of I are determined by its structure

constants. We have the two following lemmas, one in the case that f has congruent

or multiple roots (α ∈ N) and one in the case that the roots of f are distinct

(α ∈ k \ Z).

Lemma 3.2.5. Let α ∈ N. Let I =
⊕

i∈Z(ai)x
i be a finitely generated graded right

A-submodule of Qgr(A) with structure constants {ci}. Then
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1. I surjects onto X〈n〉 if and only if cn−α ∈ {1, σn−α(z)},

2. I surjects onto Y 〈n〉 if and only if cn ∈ {σn(z), σn(f)},

3. If α > 0, I surjects onto Z〈n〉 if and only if cn−α ∈ {σn−α(z + α), σn−α(f)}
and cn ∈ {1, σn(z + α)}.

Proof. Suppose I surjects onto Z〈n〉. Then there exists a graded submodule J =⊕
i∈Z(bi)x

i of I such that

0 −→ J −→ I −→ Z〈n〉 −→ 0

is a short exact sequence. Let {di} be the structure constants of J .

Because Z〈n〉i = 0 for all i > n and all i ≤ n − α, we must have bi = ai

for all i > n and all i ≤ n − α. Now by Lemma 3.1.3, as a left k[z]-module,

for all n − α < i ≤ n, Z〈n〉i ∼= k[z]/(z + n). Hence, bi = (z + n)ai for all

n−α < i ≤ n. Therefore, for all i 6= n, n−α, ci = di. However, (z+n)dn−α = cn−α

and dn = (z+n)cn. Since we know dn−α ∈ {1, σn−α(z), σn−α(z+α), σn−α(f)}, this

forces cn−α ∈ {σn−α(z + α), σn−α(f)}. Similarly, cn ∈ {1, σn(z + α)}.
Conversely, if cn−α ∈ {σn−α(z + α), σn−α(f)} and cn ∈ {1, σn(z + α)}, then

we can construct J =
⊕

i∈Z(bi)k[z] ⊆ I by setting bi = ai for all i > n and i ≤ n−α
and bi = (z + n)ai for all n − α < i ≤ 0. If we define di = bib

−1
i+1 to be monic (by

multiplying by the appropriate scalar), then because cn−α ∈ {σn−α(z+α), σn−α(f)}
and cn ∈ {1, σn(z+α)}, therefore dn−α ∈ {1, σn−α(z+α)} and dn ∈ {σn(z), σn(f)}.
For all other integers i, di = ci. Therefore, the {di} are the structure constants

of a finitely generated graded submodule of Qgr(A) which is isomorphic to J . By

[Bav93, Theorem 2.1], A is 1-critical. Hence, the factor module I/J has finite

length. Also, I/J is simply supported at −n, and is nonzero only in degrees

n− α < i ≤ 0. Hence, I/J ∼= Z〈n〉 so I surjects onto Z〈n〉.
The cases of I surjecting onto X〈n〉 or Y 〈n〉 are similar but give a condition

on just one structure constant each.

Lemma 3.2.6. Let α ∈ k \ Z. Let I =
⊕

i∈Z(ai)x
i be a finitely generated graded

right A-submodule of Qgr(A) with structure constants {ci}. Then
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1. I surjects onto X0〈n〉 if and only if cn ∈ {1, σn(z + α)},

2. I surjects onto Xα〈n〉 if and only if cn ∈ {1, σn(z)},

3. I surjects onto Y 0〈n〉 if and only if cn ∈ {σn(z), σn(f)},

4. I surjects onto Y α〈n〉 if and only if cn ∈ {σn(z + α), σn(f)}.

Proof. This follows from essentially the same proof as Lemma 3.2.5.

Observe that in the cases of distinct roots or a multiple root, whether

a simple module is a factor of a finitely generated graded right A-submodule of

Qgr(A) or not depends on only a single structure constant. In the case of congruent

roots, each simple factor of the form Z〈n〉 is determined by two different structure

constants. Additionally, as a consequence of the constructions in Lemmas 3.2.5

and 3.2.6, we obtain the following two corollaries, the latter of which is an analogue

of [Sie09, Lemma 4.11].

Corollary 3.2.7. Let I be a finitely generated graded right A-submodule of Qgr(A)

and let S be a simple graded A-module. Then for each each n ∈ Z

dimk HomA(I, S)n ≤ 1.

Proof. We claim that there is a unique kernel J ⊆ I for any surjection I → S. If S

is supported at Z∪(Z−α) then this follows from the construction in Lemmas 3.2.5

and 3.2.6.

If S = Mλ for some λ ∈ k, λ /∈ Z∪Z+α, then notice that we can construct

J = (z + λ)I such that I/J ∼= Mλ. Further, since Mλ is simply supported at −λ
with degree 1 in each graded component, J is the unique kernel for any surjection

I →Mλ.

Hence for any simple module S, if there is a surjection I → S, we have

HomA(I, S) ∼= HomA(I/J, S) ∼= HomA(S, S).

Since all graded simple modules have k-dimension 0 or 1 in each graded component,

we conclude that for each n ∈ Z, dimk HomA(I, S)n ≤ 1.
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Corollary 3.2.8. Let I be a finitely generated graded right A-submodule of Qgr(A).

If α ∈ N, then for all n� 0,

Homgr -A(I,X〈n〉) = Homgr -A(I, Y 〈−n〉) = k.

If α ∈ k \ Z, then for all n� 0,

Homgr -A(I,X0〈n〉) = Homgr -A(I, Y0〈−n〉) = k and

Homgr -A(I,Xα〈n〉) = Homgr -A(I, Yα〈−n〉) = k.

Proof. The result follows from Lemmas 3.2.4, 3.2.5, 3.2.6, and Corollary 3.2.7.

3.3 Finite length modules

We now seek to understand the finite length modules of gr -A(f). We will

see that the extensions between graded simple modules are few: if M and M ′ are

graded simple modules, then Ext1
A(M,M ′) is either 0 or k. For clarity, we consider

the three cases (congruent, multiple, and non-congruent roots) separately.

3.3.1 Multiple root

Let α = 0 so that f = z2 and we are in the multiple root case. We record

the Ext groups between simple modules.

Lemma 3.3.1. 1. As graded vector spaces, Ext1
A(X, Y ) = Ext1

A(Y,X) = k,

concentrated in degree 0.

2. As graded vector spaces, Ext1
A(X,X) = Ext1

A(Y, Y ) = k, concentrated in

degree 0.

3. Let λ, µ ∈ k\Z. If λ 6= µ, then Ext1
gr -A(Mλ,Mµ) = 0, but Ext1

gr -A(Mλ,Mλ) =

k.

4. Let λ ∈ k \ Z. Let S ∈ {X, Y }. Then Ext1
A(Mλ, S) = Ext1

A(S,Mλ) = 0.
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Proof. Recall that X = A/(x, z)A and Y = A/(y, z − 1)A〈1〉. Let IX and IY be

the ideals of A defining X and Y respectively, that is, IX = (x, z)A and IY =

(y, z − 1)A. Now for S ∈ {X, Y }, we have the exact sequence

0→ IS〈d〉 → A〈d〉 → S → 0 (3.1)

where if S = X then d = 0 and if S = Y then d = 1. For any graded simple

module S ′, we then apply the functor HomA(−, S ′) to yield

0→ HomA(S, S ′)→ HomA(A, S ′)〈−d〉 → HomA(IS, S
′)〈−d〉

→ Ext1
A(S, S ′)→ 0.

(3.2)

We know that HomA(S, S ′) = k, concentrated in degree 0 if and only if S = S ′,

otherwise HomA(S, S ′) = 0. We also know that as a graded k-vector space,

HomA(A, S ′)〈−d〉 ∼= S ′〈−d〉. Additionally, based on Lemma 3.2.5 and Corol-

lary 3.2.7, we can compute HomA(IS, S
′)〈−d〉. Hence, we will able to deduce

Ext1
A(S, S ′).

1. Let S = X, S ′ = Y , and d = 0 in the exact sequence (3.2). Notice that

by the construction in Lemma 3.2.5, A and IX have the same structure

constants except in degree 0, where A has structure constant 1 and IX has

structure constant z. Hence, HomA(A, Y ) and HomA(IX , Y ) differ only in

degree 0 where Homgr -A(A, Y ) = 0, Homgr -A(IX , Y ) = k so Ext1
A(X, Y ) = k,

concentrated in degree 0. By applying the autoequivalence ω as in equation

(2.1), we deduce Ext1
A(Y,X) = k.

2. Let S = S ′ = X and d = 0 in the exact sequence (3.2). In this case,

HomA(X,X) = k. Again, by the construction in Lemma 3.2.5, A and IX

have the same structure constants except in degree 0, where A has structure

constant 1 and IX has structure constant z. Notice then that HomA(A,X)n =

HomA(IX , X)n for every degree n ∈ Z. By considering the exact sequence

in each degree, we conclude Ext1
A(X,X) = k, concentrated in degree 0.

Applying ω yields the result Ext1
A(Y, Y ) = k.

3. Apply Homgr -A(−,Mµ) to the short exact sequence

0→ (z + λ)A→ A→Mλ → 0 (3.3)
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to yield

0→ Homgr -A(Mλ,Mµ)→ Homgr -A(A,Mµ)→ Homgr -A((z + λ)A,Mµ)

→ Ext1
gr -A(Mλ,Mµ)→ 0.

Since dimk(Mµ)0 = 1, Homgr -A(A,Mµ) ∼= Homgr -A((z + λ)A,Mµ) = k.

Hence, it follows that Ext1
gr -A(Mλ,Mµ) ∼= Homgr -A(Mλ,Mµ) which is k when

λ = µ and 0 otherwise.

4. Let λ ∈ k \ Z and apply HomA(−,Mλ) to the short exact sequence (3.1).

This yields

0→ HomA(A,Mλ)〈−d〉 → HomA(IS,Mλ)〈−d〉 → Ext1
A(S,Mλ)→ 0.

Now by Corollary 3.2.7, in every graded component

HomA(A,Mλ) ∼= HomA(IS,Mλ)

so Ext1
A(S,Mλ) = 0.

Now let S ∈ {X, Y } and apply HomA(−, S) to the short exact sequence (3.3)

yielding

0→ HomA(A, S)→ HomA((z + λ)A, S)→ Ext1
A(Mλ, S)→ 0.

But since z + λ has degree 0, each HomA((z + λ)A, S) ∼= HomA(A, S) so

Ext1
A(Mλ, S) = 0.

This lemma allows us to characterize all length two indecomposables in

gr -A. Since Ext1
A(X, Y ) = k, there is a unique (up to isomorphism) nonsplit

extension of X by Y . We denote this module EX,Y and similarly we denote by

EY,X , EX,X and EY,Y the extensions of Y by X, X by X, and Y by Y , respectively.

We record these modules explicitly:

Lemma 3.3.2. Let α = 0. The length two indecomposable modules of gr -A whose

simple factors are X or Y are precisely the modules
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1. EX,Y ∼= A/zA;

2. EY,X ∼= A/(z − 1)A〈1〉;

3. EX,X ∼= A/xA;

4. EY,Y ∼= A/yA〈1〉.

Proof. We record the nonsplit exact sequences. To show that A/zA is an extension

of X by Y , we consider the natural quotient map A/zA→ A/(x, z)A = X whose

kernel is the submodule (xA + zA)/zA. We can construct an isomorphism Y →
(xA+zA)/zA mapping 1 to x. This map is clearly surjective, and is injective since

yA + (z − 1)A is the right annihilator of x in A/zA. Similar arguments apply in

the other cases. All four nonsplit exact sequences are recorded below.

0 −→ Y
x·−→ A/zA −→ X −→ 0

0 −→ X
y·−→ (A/(z − 1)A)〈1〉 −→ Y −→ 0

0 −→ X
z·−→ A/xA −→ X −→ 0

0 −→ Y
(z−1)·−→ (A/yA)〈1〉 −→ Y −→ 0

These short exact sequences do not split. As an example, in the first case,

any nonzero element of non-positive degree generates A/zA so there does not exist

a nonzero map X → A/zA.

3.3.2 Congruent roots

Let α ∈ N+ so that we are in the congruent root case.

Lemma 3.3.3. 1. As graded vector spaces,

Ext1
A(X,Z) = Ext1

A(Z,X) = Ext1
A(Y, Z) = Ext1

A(Z, Y ) = k,

concentrated in degree 0.

2. Let S ∈ {X, Y, Z}. Then Ext1
A(S, S) = 0.

3. Ext1
A(X, Y ) = Ext1

A(Y,X) = 0.
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4. If λ 6= µ, then Ext1
gr -A(Mλ,Mµ) = 0, but Ext1

gr -A(Mλ,Mλ) = k.

5. Let λ ∈ k \ Z. Let S ∈ {X, Y, Z}. Then Ext1
A(Mλ, S) = Ext1

A(S,Mλ) = 0.

6. Ext1
A(Z,A) = 0.

Proof. We will use similar arguments as in the proof of Lemma 3.3.1. Let IX =

(x, z+α)A, IY = (y, z−1)A, and IZ = (yα, x, z)A be the right ideals of A defining

X, Y , and Z, respectively. Now for S ∈ {X, Y, Z}, we have the exact sequence

0→ IS〈d〉 → A〈d〉 → S → 0 (3.4)

where if S = X then d = −α, if S = Y then d = 1, and if S = Z then d = 0. For

any graded simple module S ′, we then apply the functor HomA(−, S ′) to yield

0→ HomA(S, S ′)→ HomA(A, S ′)〈−d〉 → HomA(IS, S
′)〈−d〉

→ Ext1
A(S, S ′)→ 0.

(3.5)

We will use Lemma 3.2.5 and Corollary 3.2.7 to compute HomA(IS, S
′)〈−d〉 from

which we will deduce Ext1
A(S, S ′).

1. Let S = X and S ′ = Z in the exact sequence (3.5). Since HomA(X,Z) =

0, we need only determine in which degrees HomA(A,Z)〈α〉 differs from

HomA(IX , Z)〈α〉. By the construction in Lemma 3.2.5, observe that A and IX

have the same structure constants except in degree 0 where A has structure

constant 1 and IX has structure constant z + α. Again, by Lemma 3.2.5, IX

surjects onto exactly those shifts of Z that A does except IX additionally

surjects onto Z〈α〉. That is for each n ∈ Z,

HomA(A,Z)〈α〉n = HomA(IX , Z)〈α〉n,

except when n = 0. In degree 0, we have that Homgr -A(A,Z)〈α〉 = 0 and

Homgr -A(IX , Z)〈α〉 = k. Hence, Ext1
A(X,Z) = k, concentrated in degree 0.

Applying the autoequivalence ω implies that Ext1
A(Y, Z) = k.

Now let S = Z and S ′ = X in the exact sequence (3.5). By Lemma 3.2.5,

A and IZ have the same structure constants except in degrees 0 and −α.



33

In degree 0, A has structure constant 1 and IZ has structure constant z

whereas in degree−α, A has structure constant σ−α(f) while IZ has structure

constant σ−α(z). Again, by Lemma 3.2.5, IZ surjects onto exactly those

shifts of X that A does except IX additionally surjects onto X. Hence,

Ext1
A(Z,X) = k and by applying the autoequivalence ω, we also see that

Ext1
A(Z, Y ) = k.

2. This follows by a similar argument.

3. This follows by a similar argument.

4. This follows by the same argument as in Lemma 3.3.1.

5. This follows by the same argument as in Lemma 3.3.1.

6. Suppose for contradiction that for some n ∈ Z, there exists a nonsplit ex-

tension of Z〈n〉 by A. That is, there exists a graded right A-module I such

that

0→ A→ I → Z〈n〉 −→ 0

is a nonsplit exact sequence.

We claim that I is isomorphic to a submodule of the graded quotient ring

of A, so is isomorphic to a right ideal of A. We first show that A ⊆ I is an

essential extension of modules. Suppose for contradiction that A ⊆ I is not

essential so there exists 0 ( J ⊆ I such that J ∩ A = 0. Observe that we

have the inclusion
J + A

A
⊆ I

A
∼= Z〈n〉

so J+A/A is a submodule of Z〈n〉. Since Z〈n〉 is simple, and since J∩A = 0,

this implies that J + A/A ∼= Z〈n〉 so we have the isomorphisms

J ∼=
J

J ∩ A
∼=
J + A

A
∼=
I

A
∼= Z〈n〉.

Tracing these canonical isomorphisms gives us a splitting I/A→ I, which is

a contradiction since I is a nonsplit extension of A by Z〈n〉.
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Now since A→ I is an essential extension, we can embed in the injective hull

of A, which is Qgr(A), proving our claim. Let {di} be the structure constants

of A. By the construction in Lemma 3.2.5, since A is the kernel of the

surjection I → Z〈n〉, therefore dn−α ∈ {1, σn−α(z)} and dn ∈ {σn(z), σn(f)}.
But by the computation in Example 3.2.2, this is impossible. Hence, there

are no nonsplit extensions of Z〈n〉 by A and Ext1
A(Z,A) = 0.

The preceding lemma allows us to characterize all length two indecompos-

ables in gr -A. There is a unique (up to isomorphism) nonsplit extension of X by

Z. We denote this module EX,Z and similarly we denote by EZ,X , EY,Z and EZ,Y

the extensions of Z by X, Y by Z, and Z by Y , respectively. We record these

modules explicitly:

Lemma 3.3.4. Let α ∈ N+. The length two indecomposable modules of gr -A

whose simple factors are X, Y , or Z are precisely the modules

1. EZ,X ∼= A/(x, z)A;

2. EX,Z ∼= A/(xα+1, z + α)A〈−α〉;

3. EZ,Y ∼= A/(y, z + α− 1)〈1− α〉;

4. EY,Z ∼= A/(yα+1, z − 1)A〈1〉.

Proof. We will show that EZ,X is a nonsplit extension of Z by X. There is a

natural projection

EZ,X =
A

(x, z)A
−→ A

(x, yα, z)A
= Z (3.6)

whose kernel is given by

(x, yα, z)A

(x, z)A
∼=

yαA

yαA ∩ (x, z)A
.

It is easy to check that there is a well-defined homomorphism

X =
A

(x, z + α)A
〈−α〉 −→ yαA

yαA ∩ (x, z)A
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mapping 1 to yα. Since X is simple and this map is a surjection, therefore the

kernel of (3.6) is isomorphic to X.

To see that EZ,X is a nonsplit extension of Z by X, we will show that

Homgr -A(Z,EZ,X) = 0. If ϕ is a homomorphism Z → EZ,X , then ϕ(1) = g for

some g ∈ k[z]. Then ϕ(yα+1) = gyα+1. But since yα+1 = 0 in Z, therefore g = 0

in EZ,X so ϕ is the zero map. The remaining computations are done analogously.

By Lemma 3.3.3, these modules represent all length two indecomposable modules

of gr -A.

We will also need some understanding of indecomposable modules of length

3. While we will not characterize all such modules, we will show, for various lists of

simple modules, that there is a unique indecomposable module with those ordered

Jordan-Hölder quotients. This will allow us to name these modules by specifying

their Jordan-Hölder quotients, in order.

Lemma 3.3.5. Let α ∈ N+.

1. EX,Z,X :=
A

(xα+1, (z + α)x, (z + α)2)A
〈−α〉 is the unique indecomposable

module which is a nonsplit extension of EX,Z by X.

2. EY,Z,Y :=
A

(yα+1, (z − 1)y, (z − 1)2)A
〈1〉 is the unique indecomposable module

which is a nonsplit extension of EY,Z by Y=.

3. EZ,Y,X := A/zA is the unique indecomposable module which is a nonsplit

extension of EZ,Y by X and a nonsplit extension of EZ,X by Y .

Proof. We will prove the first claim. The other two follow from similar arguments.

There is a natural surjection

EX,Z,X =
A

(xα+1, (z + α)x, (z + α)2)A
〈−α〉 −→ A

(xα+1, z + α)A
〈−α〉 = EX,Z

whose kernel is given by

(xα+1, z + α)A

(xα+1, (z + α)x, (z + α)2)A
〈−α〉 ∼=

(z + α)A

(xα+1, (z + α)x, (z + α)2)A
〈−α〉.

This kernel is isomorphic to X via the homomorphism mapping 1 to z+α. There-

fore, EX,Z,X is an extension of EX,Z by X.



36

To see that this is a nonsplit extension, suppose ϕ ∈ Homgr -A(EX,Z , EX,Z,X).

Then ϕ(1) = g for some g ∈ k[z]. To ensure that ϕ is well-defined, ϕ(z + α) = 0,

so z + α | g. But then ϕ(x) = gx = 0 so ϕ is not an isomorphism onto its image.

Finally, we show that EX,Z,X is the unique module that is an extension of

EX,Z by X. Apply HomA(−, X) to the exact sequence

0→ Z → EX,Z → X → 0

to obtain the sequence

· · · → Ext1
A(X,X)→ Ext1

A(EX,Z , X)→ Ext1
A(Z,X)→ Ext2

A(X,X)→ · · · .

Now by [Bav93, Theorem 5], X has projective dimension 1 so Ext2
A(X,X) = 0.

Then by Lemma 3.3.3, Ext1
A(EX,Z , X) = k, concentrated in degree 0. So there is

a unique extension of EX,Z by X, namely EX,Z,X .

3.3.3 Non-congruent roots

Let α ∈ k \ Z so that we are in the non-congruent root case. We again

begin by careful analysis of the extensions between graded simple A(f)-modules.

Lemma 3.3.6. 1. As graded vector spaces, Ext1
A(X0, Y0) = Ext1

A(Y0, X0) =

Ext1
A(Xα, Yα) = Ext1

A(Yα, Xα) = k, concentrated in degree 0 .

2. Let S ∈ {X0, Y0, Xα, Yα}. Then Ext1
A(S, S) = 0.

3. Let S0 ∈ {X0, Y0} and Sα ∈ {Xα, Yα}. Then Ext1
A(S0, Sα) = Ext1

A(Sα, S0) =

0.

4. If λ 6= α, then Ext1
gr -A(Mλ,Mαu) = 0, but Ext1

gr -A(Mλ,Mλ) = k.

5. Let λ ∈ k \ (Z ∪ Z + α). Let S ∈ {X0, Y0, Xα, Yα}. Then Ext1
A(Mλ, S) =

Ext1
A(S,Mλ) = 0.

Proof. We use the same techniques as in our proofs of Lemmas 3.3.1 and 3.3.3. Let

IX0 = (x, z)A, IY0 = (y, z−1)A, IXα = (x, z+α)A, and IXα = (y, z+α−1)A be the
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ideals of A defining X0, Y0, Xα and Yα respectively. Now for S ∈ {X0, Y0, Xα, Yα},
we have the exact sequence

0→ IS〈d〉 → A〈d〉 → S → 0 (3.7)

where if S = X0 or Xα then d = 0 and if S = Y0 or Yα then d = 1. For any graded

simple module S ′, we then apply the functor HomA(−, S ′) to yield

0→ HomA(S, S ′)→ HomA(A, S ′)〈−d〉 → HomA(IS, S
′)〈−d〉

→ Ext1
A(S, S ′)→ 0.

(3.8)

Based on Lemma 3.2.6 and Corollary 3.2.7, we can compute HomA(IS, S
′)〈−d〉.

Hence, we will able to deduce Ext1
A(S, S ′).

1. Let S = X0, S ′ = Y0, and d = 0 in the exact sequence (3.8). Now

HomA(X0, Y0) = 0 and HomA(A, Y0) ∼= Y0 as graded k-vector spaces, so to

compute Ext1
A(X0, Y0) we need to compute in which degrees HomA(IX0 , Y0)

is nonzero. By the construction in Lemma 3.2.6, A and IX0 have the same

structure constants except in degree 0, where A has the structure constant

1 and IX0 has the structure constant z. Hence, by Lemma 3.2.6 and Corol-

lary 3.2.7, A and IX0 surject onto exactly the same shifts of Y0 except that IX0

surjects onto Y0 while A does not. Therefore, Ext1
A(X0, Y0) = k, concentrated

in degree 0. Applying the autoequivalence ω shows that Ext1
A(Yα, Xα) = k.

An analogous argument shows that Ext1
A(Y0, X0) = Ext1

A(Xα, Yα) = k, con-

centrated in degree 0.

2. This follows by a similar argument.

3. This follows by a similar argument.

4. This follows by the same argument as in Lemma 3.3.1.

5. This follows by the same argument as in Lemma 3.3.1.
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We now know that there is a unique extension of X0 by Y0, Y0 by X0, Xα

by Yα and Yα by Xα. We classify these extensions explicitly. We leave the proof

to the reader, since it is similar to the other cases.

Corollary 3.3.7. Let α ∈ k \ Z. The following nonsplit exact sequences in gr -A

represent all length two indecomposables of gr -A whose simple factors are supported

at Z ∪ Z− α:

0→ Y0
x·−→ A/zA −→ X0 −→ 0,

0 −→ X0
y·−→ (A/(z − 1)A)〈1〉 −→ Y0 −→ 0,

0 −→ Yα
x·−→ A/(z + α)A −→ Xα −→ 0,

0 −→ Xα
y·−→ (A/(z + α− 1)A)〈1〉 −→ Yα −→ 0.

3.4 Rank one projective modules

3.4.1 Structure constants and projectivity

We now seek to understand the finitely generated graded right projective

A-modules of rank one. Since every rank one graded projective A-module embeds

in Qgr(A), we may use the results of section 3.2. For a finitely generated rank one

graded projective A-module P , if we have a graded embedding P ⊆ Qgr(A), then

there exists some g ∈ k[z], such that gP ⊆ A. Since gP ∼= P , we can view P as

a graded right ideal of A. We will see that the projectivity of a finitely generated

right A-submodule of Qgr(A) can be determined by its structure constants.

By Theorem 2.5.1, the global dimension of A(f) depends on the roots of f .

In the non-congruent root case (α ∈ k\Z), gldimA(f) = 1, i.e. A(f) is hereditary.

Hence, the isomorphism classes of right ideals of A are the same as the isomorphism

classes of rank one projective right A-modules. However, in the multiple root case

(α = 0) gldimA(f) =∞ and in the congruent root case (α ∈ N+), gldimA(f) = 2.

In these cases, it takes some work to determine whether a finitely generated graded

right A-submodule of Qgr(A) is projective. Eventually we will give conditions on
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structure constants (or equivalently, conditions on simple factors) that determine

the projectivity of a right ideal. We begin by stating two standard results on

projective dimension. For a right R-module M , let pd(M) denote the projective

dimension of M .

Proposition 3.4.1. [Rot08, Proposition 8.6] Let R be any ring. For a right R-

module M , pd(M) ≤ n if and only if ExtkR(M,N) = 0 for all right A-modules N

and all k ≥ n+ 1.

Corollary 3.4.2. If 0 −→ L −→ M −→ N −→ 0 is an exact sequence of right

A-modules then

1. pd(L) ≤ max{pd(M), pd(N)− 1} .

2. pd(M) ≤ max{pd(L), pd(N)}.

3. pd(N) ≤ max{pd(L) + 1, pd(M)}.

Proof. This follows from the long exact Ext sequence induced by HomA(−, P ) over

all A-modules P and Proposition 3.4.1.

In the congruent root case, by [Bav93, Theorem 5], the finite-dimensional

simple module Z is the only simple module with projective dimension 2. We begin

our study of the projectivity of a right ideal by seeing that an ideal P is projective

if and only if there is no extension of Z by P .

Lemma 3.4.3. Let α ∈ N+ and let P be a right ideal of A. Then the following

are equivalent:

(i) P is projective;

(ii) Ext1
A(Z, P ) = 0;

(iii) HomA(Z,A/P ) = 0;

(iv) A/P has projective dimension at most 1.
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Proof. By Corollary 3.4.2, (i) and (iv) are equivalent. Now apply the functor

HomA(Z,−) to the exact sequence

0 −→ P −→ A −→ A/P −→ 0 (3.9)

to obtain

0 −→ HomA(Z,A/P ) −→ Ext1
A(Z, P ) −→ 0,

because by Lemma 3.3.3, Ext1
A(Z,A) = 0. Hence, (ii) and (iii) are equivalent.

We now prove that (i) implies (iii). Suppose for contradiction that Z is a

submodule of A/P for a projective right ideal P . Then we have the exact sequence

0 −→ Z −→ A/P −→ C −→ 0,

where C is the cokernel of the morphism Z −→ A/P . Consider any right A-module

N . By applying HomA(−, N) we have the long exact Ext sequence

· · · −→ Ext2
A(A/P,N) −→ Ext2

A(Z,N) −→ 0,

since A has global dimension 2. By the equivalence of (i) and (iv), A/P has

projective dimension 1, so by Proposition 3.4.1, Ext2
A(A/P,N) = 0 and hence

Ext2
A(Z,N) = 0. Since this holds for all N , again by Proposition 3.4.1, Z has

projective dimension at most 1. But this is a contradiction, for in [Bav93, Theorem

5], Bavula shows that Z has projective dimension 2.

Finally, we show that (iii) implies (iv), completing the proof. We prove

the statement by induction on the length of A/P . For simple modules, [Bav93,

Theorem 5] shows that all simples except Z have projective dimension 1. Now

suppose for all modules M of length at most n, HomA(Z,M) = 0 implies M has

projective dimension 1. Suppose A/P has length n + 1 and HomA(Z,A/P ) = 0.

Then A/P has a submodule S isomorphic to either X〈n〉, Y 〈n〉 or Mλ for some

λ ∈ k \Z. The quotient (A/P )/S has length n, so by the induction hypothesis, as

long as HomA(Z, (A/P )/S) = 0, both S and (A/P )/S have projective dimension

1 and thus A/P will have projective dimension 1.

So suppose that HomA(Z, (A/P )/S) 6= 0, that is, that (A/P )/S has a

submodule isomorphic to Z〈n〉 for some n. Since this Z〈n〉 is not a submodule of
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A/P , in fact A/P must have a submodule that is a nontrivial extension of Z〈n〉
by S. By Lemma 3.3.4, the only such extensions are EZ,X〈n〉 or EZ,Y 〈n〉. Call this

submodule T . By [Bav93, Theorem 5], T has projective dimension 1, so as long as

HomA(Z, (A/P )/T ) = 0, we are done by the induction hypothesis.

Suppose for contradiction that HomA(Z, (A/P )/T ) 6= 0. Arguing as above,

A/P must now have a submodule that is a nontrivial extension of Z〈m〉 by T for

some integer m. Now the exact sequence

0 −→ X −→ EZ,X −→ Z −→ 0

induces the long exact Ext sequence

0 −→ HomA(Z,Z) −→ Ext1
A(Z,X) −→ Ext1

A(Z,EZ,X) −→ 0,

since Ext1
A(Z,Z) = 0 by Lemma 3.3.3. Again, by Lemma 3.3.3, Ext1

A(Z,X) = k

and since HomA(Z,Z) = k, we conclude that Ext1
A(Z,EZ,X) = 0. Hence, there is

no nontrivial extension of Z〈m〉 by EZ,X〈n〉, which is a contradiction. A similar

contradiction arises if T is a nontrivial extension of Z by EZ,Y 〈n〉.

Corollary 3.4.4. Let α ∈ N+ and let P be a graded right ideal of A with structure

constants {ci}. Then P is projective if and only if for each n ∈ Z, it is not the

case that both cn−α ∈ {1, σn−α(z)} and cn ∈ {σn(z), σn(f)}.

Proof. Suppose P =
⊕

i∈Z(ai)x
i is a projective right ideal of A and suppose for con-

tradiction that for some n ∈ Z, both cn−α ∈ {1, σn−α(z)} and cn ∈ {σn(z), σn(f)}.
Let

P ′ = (z + n)P =
⊕
i∈Z

((z + n)ai)k[z]

and note that P ′ is graded isomorphic to P . We will construct an ideal I of A

which is an extension of Z〈n〉 by P ′.

Let I =
⊕

i∈Z(bi)x
i where

bi =


(z + n)ai, i ≤ n− α

ai, n− α + 1 ≤ i ≤ n

(z + n)ai, i ≥ n+ 1.
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This is a well-defined ideal of A as long as di = bib
−1
i+1 ∈ {1, σi(z), σi(z + α), σi(f)}

for all i ∈ Z. But for all i 6= n, n − α, by construction di = ci. Further, since

cn−α ∈ {1, σn−α(z)} therefore dn−α = (z + n)cn−α ∈ {z + n, σn−α(f)}. And finally

cn ∈ {σn(z), σn(f)} implies that dn = (z + n)−1cn ∈ {1, σn(z + α)}.
Now note that P ′ ⊆ I and I/P ′ has finite length, is simply supported at

−n, and is nonzero precisely in degrees between n − α + 1 and n, inclusive. So

I/P ′ ∼= Z〈n〉 and I is an extension of Z〈n〉 by P ′. Clearly, such an extension is

nontrivial, since Z〈n〉 is not a submodule of A. But since P ′ is projective, this

contradicts Lemma 3.4.3.

Conversely, suppose P is not projective. By Lemma 3.4.3, there exists a

nontrivial extension

0 −→ P −→ I −→ Z〈n〉 −→ 0.

By an argument identical to the one in part 6 of Lemma 3.3.3, I is isomorphic

to a submodule of Qgr(A). By clearing denominators we may assume that I is a

right ideal of A, say I =
⊕

i∈Z(bi)x
i. But now as in the proof of Lemma 3.2.5, we

can construct P as the kernel of the morphism I → Z〈n〉, and so conclude that

cn−α ∈ {1, σn−α(z)} and cn ∈ {σn(z), σn(f)}.

In the multiple root case (α = 0), we get an analogue of Corollary 3.4.4,

though we use a different technique as there is no analogue of Lemma 3.4.3. Indeed,

the following lemma is the same result as if we let α = 0 in Corollary 3.4.4.

Lemma 3.4.5. Let α = 0. Let P be a graded right ideal of A with structure

constants {ci}. Then P is projective if and only if for each n ∈ Z, cn 6= σn(z).

Proof. First we show that if, for all n ∈ Z, cn 6= σn(z), then P is projective. Note

that both xA and yA are projective, so EX,X = A/xA and EY,Y = A/yA〈1〉 both

have projective dimension 1. Hence, if Q is any rank one projective that surjects

onto EX,X or EY,Y , the kernel of this surjection will also be projective. Since P

is finitely generated, by Lemma 3.2.4, there exist N1, N2 ∈ Z such that for all

n ≥ N1, cn = 1 and for all n ≤ N2, cn = σn(f).

We will construct P by constructing a finite sequence of projective modules

{Pi} until we arrive at a module with the same structure constants as P . Let
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P0 = A〈N1〉. Clearly P0 is projective. If the structure constants of P0 are {di}
then since P0 is a shift of A, we know that dn = 1 for all n ≥ N1 and dn = σn(f) for

all n < N1. Let i0 be the largest index where di0 differs from ci0 . Since di0 = σi0(f),

then ci0 = 1 (since we are assuming for all n that cn 6= σn(z)). We construct P1 by

letting (P1)n = (P0)n for all n ≤ i0 and letting (P1)n = (z+ i0)2(P0)n for all n > i0.

Then P1 is a submodule of Qgr(A) with structure constants equal to those of P0

except in degree i0, where P1 has structure constant 1. Further, the quotient P0/P1

is supported at i0 and has k-dimension two in each graded component of degree

greater than i0. Hence, P0/P1 is isomorphic to EY,Y 〈i0〉 or Y 〈i0〉 ⊕ Y 〈i0〉. There

is a unique submodule of P0 containing P1 (the module where P0 is multiplied by

z + i0 in all degrees greater than i0), and therefore P0/P1
∼= EY,Y 〈i0〉. Therefore,

P1 is projective.

We continue this process for the finitely many indices where ci differs from

di until we reach a module PN such that P0/PN has composition series consisting

of only distinct shifts of EY,Y . By Corollary 3.4.2, P0/PN has projective dimension

1 so PN is projective. Further, since they have the same structure constants,

PN ∼= P , so P is projective.

Conversely, suppose there exist some indices n such that cn = σn(z). Con-

struct a module Q with structure constants {di} such that Q has the same structure

constants as P except if cn = σn(z) then dn = 1. By the above argument, Q is

projective. Now we construct a finite sequence {Qi} of submodules of Q such that

QN
∼= P , and we can show QN is not projective. Let Q0 = Q. Let i0 be the largest

index where Q0 differs from P . Construct Q1 by letting (Q1)n = (Q0)n for all

n ≤ i0 and (Q1)n = (z+ i0)(Q0)n for all n > i0. Then Q1 is a submodule of Qgr(A)

(with structure constants equal to those of Q0 except in degree i0, where Q1 has

structure constant 1). The quotient Q0/Q1 is supported at i0 and has k-dimension

one in each graded component of degree greater than or equal to i0. Hence, Q0/Q1

is isomorphic to Y 〈i0〉.
Continue this process for the finitely many indices where Q differs from P

to reach a QN such that Q0/QN has composition series consisting only of distinct

shifts of Y . Since there are no extensions between any distinct shifts of Y , Q0/QN
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must be a direct sum of shifts of Y , and since Y has infinite projective dimension,

so does Q0/QN . But since Q0 was projective, this proves that QN is not projective.

Further, QN
∼= P , proving that P is not projective.

As a corollary, we see that a graded rank one projective module has a unique

simple factor supported at n for each n ∈ Z. As a further corollary, we see that a

rank one projective is determined by its integrally supported simple factors.

Corollary 3.4.6. Let P be a rank one graded projective A-module. Let n ∈ Z.

• If α = 0, then P surjects onto exactly one of X〈n〉 and Y 〈n〉.

• If α ∈ N+, then P surjects onto exactly one of X〈n〉, Y 〈n〉, and Z〈n〉.

• If α ∈ k \Z, then P surjects onto exactly one of X0〈n〉 and Y0〈n〉. Likewise,

P surjects onto exactly one of Xα〈n〉 and Yα〈n〉.

Proof. If α = 0 or α ∈ k \ Z, then this result follows immediately from Corol-

lary 3.4.5, Lemma 3.2.6, and Lemma 3.2.5.

If α ∈ N+, then let {ci} be the structure constants of P . First, by

Lemma 3.2.5 if P surjects onto X〈n〉 or Y 〈n〉, then cn ∈ {σn(z), σn(f)} or cn−α ∈
{1, σn−α(z)}, so P cannot surject onto Z〈n〉. Similarly, if P surjects onto Z〈n〉, it

cannot surject onto either X〈n〉 or Y 〈n〉. And by Corollary 3.4.4, it is not possible

that P surjects onto both X〈n〉 and Y 〈n〉. Hence, P surjects onto at most one of

X〈n〉, Y 〈n〉, or Z〈n〉.
Now we show that P surjects onto exactly one of X〈n〉, Y 〈n〉, or Z〈n〉. If P

does not surject onto Y 〈n〉, cn ∈ {1, σn(z+α)}. If, additionally, P does not surject

onto X〈n〉 then cn−α ∈ {σn−α(z + α), σn−α(f)}. In either case, by Lemma 3.2.5,

P then surjects onto Z〈n〉.

Definition 3.4.7. For a rank one projective P we have shown that for each j ∈ Z,

P has a unique simple factor supported at −j. We use the notation Fj(P ) to refer

to this simple factor. Similarly, if α /∈ Z, for every j ∈ Z, P has a unique simple

factor supported at −j − α. We use the notation Fα
j (P ) to refer to this simple

factor.
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Corollary 3.4.8. A rank one graded projective A-module is determined up to

isomorphism by its simple factors which are supported at Z ∪ Z− α.

Proof. Let P be a rank one graded projective A-module with structure constants

{ci}. In all cases, the integrally supported simple factors determine the {ci} and

therefore determine P . In the non-congruent root case, the result follows from

Lemma 3.2.6. In the multiple root case, this follows from Lemma 3.2.5 and Corol-

lary 3.4.6. In particular, if P has a factor of X〈n〉 then cn = 1 and if P has a

factor of Y 〈n〉 then cn = σn(f).

In the congruent root case, note that by Corollary 3.4.6, for each n ∈ Z,

P surjects onto exactly one of X〈n〉, Y 〈n〉 or Z〈n〉. Now, for each j ∈ Z, we can

determine cj by using Lemma 3.2.5. In particular, whether or not X〈j + α〉 and

Y 〈j〉 are factors of P completely determine cj. If both X〈j + α〉 and Y 〈j〉 are

factors, then cj = σj(z). If X〈j + α〉 is a factor but Y 〈j〉 is not then cj = 1. If

X〈j +α〉 is not a factor but Y 〈j〉 is, then cj = σj(f). And if neither X〈j +α〉 nor

Y 〈j〉 are factors of P , then cj = σj(z + α). We make this explicit in Table 3.4.1,

below.

Table 3.4.1: The structure constants of a rank one projective module.

Fj(P ) = X〈j〉 Fj(P ) = Y 〈j〉 Fj(P ) = Z〈j〉
Fj+α(P ) = X〈j + α〉 cj = 1 cj = σj(z) cj = 1

Fj+α(P ) = Y 〈j + α〉 cj = σj(z + α) cj = σj(f) cj = σj(z + α)

Fj+α(P ) = Z〈j + α〉 cj = σj(z + α) cj = σj(f) cj = σj(z + α)

Lemma 3.4.9. 1. Let α ∈ N. For each n ∈ Z choose Sn ∈ {X〈n〉, Y 〈n〉, Z〈n〉}
such that for n� 0, Sn = X〈n〉 and S−n = Y 〈−n〉. Then there exists a rank

one graded projective P such that Fn(P ) = Sn for all n.

2. Let α = 0. For each n ∈ Z choose Sn ∈ {X〈n〉, Y 〈n〉} such that for n � 0,

Sn = X〈n〉 and S−n = Y 〈−n〉. Then there exists a rank one graded projective

P such that Fn(P ) = Sn for all n.



46

Proof. First, let α ∈ N. We can construct a module P ⊆ Qgr(A) that surjects onto

Sn for all n. We do this by specifying the structure constants {ci} of P : for each

n, cn is determined by Sn and Sn+α as described in Table 3.4.1. By the remark

following Lemma 3.2.4, P is a finitely generated graded right submodule of Qgr(A).

By Corollary 3.4.4, P will be projective as long as, for each n ∈ Z, it is

not the case that both cn ∈ {1, σn(z)} and cn+α ∈ {σn+α(z), σn+α(f)}. But if

cn ∈ {1, σn(z)}, then by the first row of the table, P surjects onto X〈j + α〉.
If P surjects onto X〈j + α〉, then by the first column of the table, we see that

cn+α ∈ {1, σn+α(z + α)}. Therefore, in fact P is projective. By construction,

Fn(P ) = Sn for all n ∈ Z.

The case α = 0 is analogous. In this case, if Sn = X〈n〉, then let cn = 1

and if Sn = Y 〈n〉 then let cn = σ−n(f).

3.4.2 Morphisms between rank one projectives

In this section, we describe the morphisms between finitely generated rank

one projective A-modules. We again make use of the fact that every right A-

module is also a left k[z]-module. The fact that k[z] is a PID leads to a nice

characterization of the morphisms between rank one projectives. We first note

that if P and Q are finitely generated rank one projectives, then any morphism

f ∈ Homgr -A(P,Q) is either 0 or else an injection. This is because A is 1-critical

and therefore P/ ker f is a finite length module, but Q has no nonzero finite length

submodules. Hence, either ker f = P or else ker f = 0. We define a maximal

embedding between right A-modules.

Definition 3.4.10. Let P and Q be finitely generated right A-modules. An A-

module homomorphism f : P → Q is called a maximal embedding if there does

not exist an A-module homomorphism g : P → Q such that f(P ) ( g(P ).

We will prove that in fact, if P and Q are finitely generated rank one

projectives, there exists a unique (up to scalar) maximal embedding P → Q.

Proposition 3.4.11. Let P and Q be finitely generated graded rank one projective

A-modules embedded in Qgr(A). Then every homomorphism P → Q is given by left
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multiplication by some element of k(z) and as a left k[z]-module, Homgr -A(P,Q)

is free of rank one.

Proof. Since P and Q are finitely generated graded submodules of Qgr(A), we may

multiply by some element of k[z] and assume P and Q are right ideals of A. Let

f ∈ Homgr -A(P,Q). Now since P0, Q0 ⊆ A0 = k[z], P0 and Q0 are actually left

k[z]-submodules of k[z] and hence ideals of k[z]. Because k[z] is a PID, we can

write P0 = (p0) and Q0 = (q0) for some p0, q0 ∈ k[z]. Let f0 be the restriction of

f to P0. Since f is a right A-module homomorphism, it is also a left k[z]-module

homomorphism. Therefore, f0 is given by left multiplication by some ϕ ∈ k(z)

such that (ϕp0) ⊆ (q0) in k[z].

We claim that f0 determines f . Define mn = xn for n ≥ 0 and mn = yn

for n < 0. Now in each graded component, we have that Pn = (pn)mn and

Qn = (qn)mn where pn, qn ∈ k[z]. Let fn be the restriction of f to Pn. Note that

(p0)mn is a nonzero submodule of (pn)mn, and

f(p0mn) = f(p0)mn = ϕp0mn,

so on the submodule (p0)mn ⊆ Pn, f is given by left multiplication by ϕ. Viewing

fn as a left k[z]-module homomorphism, we conclude that fn is given by left

multiplication by ϕ for each n, so f is simply left multiplication by ϕ. Conversely,

left multiplication by ϕ ∈ k(z) will be an element of Homgr -A(P,Q) if and only if

(ϕpn) ⊆ (qn) for all n.

Now Homgr -A(P,Q) is a left k[z]-submodule of Homgr -k[z](P,Q) which the

above shows is isomorphic to some left k[z]-submodule of k(z). Since in addition

multiplication by ϕ is a homomorphism only if ϕ ∈ k[z]q0/p0, we can clear denom-

inators so that (p0) Homgr -A(P,Q) is actually a left k[z]-submodule of k[z]. Since

k[z] is a PID, (p0) Homgr -A(P,Q) = (g) for some g ∈ k[z]. Finally, we see that

Homgr -A(P,Q) is generated as a left k[z]-module by g/p0 ∈ k(z). Let θ = g/p0.

Then all homomorphisms Homgr -A(P,Q) are given by left multiplication by some

k[z]-multiple of θ.

The above proposition tells us that a Hom set between rank one projective

A-modules is generated as a left k[z]-module by a unique (up to scalar) maxi-
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mal embedding. Note, however, the element θ ∈ k(z) as in the previous lemma

depends on a fixed embedding of P and Q in A. As an example, zA ∼= A, but

Homgr -A(zA,A) is generated as k[z]-module by left multiplication by z−1 while

Homgr -A(A,A) is generated by left multiplication by 1.

Given rank one projectives P and Q we would like to have canonical rep-

resentations of P and Q as submodules of the graded quotient ring Qgr(A). This

would also give us a canonical representation of the maximal embedding P → Q.

We will do this graded component by graded component. Suppose P has structure

constants {ci}. We will give a canonical sequence {pi} such that

P ∼=
⊕
i∈Z

(pi)x
i ⊆ Qgr(A).

By Lemma 3.2.4, there exists an integer N such that for all n > N , cn = 1. Now

recalling that pi = cipi+1, for any n ∈ Z, let pn =
∏

j≥n cj. Observe that pn ∈ k[z]

since all but finitely many of the factors are 1.

Definition 3.4.12. Given a graded rank one projective module P , the represen-

tation of
⊕

(pi)x
i ⊆ Qgr(A) given above is called canonical representation of P .

We call
⊕

(pi)x
i a canonical rank one projective module.

Now given canonical graded rank one projective modules P =
⊕

(pi)x
i and

Q =
⊕

(qi)x
i, we can compute the maximal embedding of P into Q, which is

unique if we require that θ be monic.

Lemma 3.4.13. Let P and Q be rank one graded projective A-modules with struc-

ture constants {ci} and {di}, respectively. As above, write

P =
⊕
i∈Z

(pi)x
i =

⊕
i∈Z

(∏
j≥i

cj

)
xi and Q =

⊕
i∈Z

(qi)x
i =

⊕
i∈Z

(∏
j≥i

dj

)
xi.

Then the maximal embedding P → Q is given by multiplication by

θP,Q = lcm
i∈Z

(
qi

gcd(pi, qi)

)
= lcm

i∈Z

 ∏
j≥i dj

gcd
(∏

j≥i cj,
∏

j≥i dj

)


where by lcm we mean the unique monic least common multiple θP,Q ∈ k[z].
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Proof. As we saw in Proposition 3.4.11, the maximal embedding P → Q is given

by multiplication by some θP,Q ∈ k(z) such that (θP,Qpi) ⊆ (qi) for all i ∈ Z.

Because, for large enough i, pi = qi = 1, we see that θP,Q ∈ k[z]. In fact, that

(θP,Qpi) ⊆ (qi) implies that θP,Q must be a k[z]-multiple of qi/ gcd(pi, qi) for all i.

The minimal such θP,Q is given by

θP,Q = lcm
i∈Z

(
qi

gcd(pi, qi)

)
Since the structure constants of a graded submodule of Qgr(A) were defined to be

monic, θP,Q is monic. Because there exists some N ∈ N such that for all n ≥ N ,

cn = dn and c−n = d−n, therefore qi/ gcd(pi, qi) = qj/ gcd(pj, qj) for all i, j ≥ N

and all i, j ≤ −N , so the least common multiple can be taken over finitely many

indices.

Corollary 3.4.14. Suppose α ∈ k \ Z or α = 0. Assume the hypotheses of

Lemma 3.4.13. Then there exists an N ∈ Z such that

θP,Q =
qN

gcd(pN , qN)
=

∏
j≥N dj

gcd
(∏

j≥N cj,
∏

j≥N dj

) =

∏
j≥N dj∏

j≥N gcd (cj, dj)
.

Proof. If α ∈ k \ Z or α = 0, we can compute the maximal embedding P → Q

without taking a least common multiple, as follows. The irreducible factors of θP,Q

are all σi(z) or σi(z + α) for some i ∈ Z. If α ∈ k \ Z or α = 0, then σi(z) and

σi(z + α) can only appear as factors of the structure constant in degree i. Thus,

if i 6= j, then qi shares no irreducible factors with pj or qj. Hence, if n < m, then

qm/ gcd(pm, qm) divides qn/ gcd(pn, qn). By Lemma 3.2.4, there exists an N ∈ Z
such that for all i ≤ N , pi = qi. For this N , we can write

θP,Q =
qN

gcd(pN , qN)
=

∏
j≥N dj

gcd
(∏

j≥N cj,
∏

j≥N dj

) =

∏
j≥N dj∏

j≥N gcd (cj, dj)
.

We now show that the cokernel of a maximal embedding has a special

structure.

Lemma 3.4.15. Let P and Q be graded rank one projective A-modules and let

f : P → Q be a maximal embedding. Then the module Q/f(P ) is supported at

Z ∪ Z− α.
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Proof. Let N = Q/f(P ). As A has Krull dimension 1, N has finite length. By

Lemma 3.1.1, N has a finite composition series whose factors are either supported

at Z∪Z−α or isomorphic to some Mλ with λ 6∈ Z∪Z−α. Suppose for contradiction

that Mλ is a subfactor of N . Then we have f(P ) ⊆ Q1 ⊆ Q2 ⊆ Q with Q2/Q1
∼=

Mλ and so Q1 = (z + λ)Q2. But now (z + λ)−1f(P ) ⊆ (z + λ)−1Q1 = Q2 ⊆ Q,

contradicting the maximality of f .

Finally, we give necessary and sufficient conditions for a collection of pro-

jective objects in gr -A to generate the category.

Proposition 3.4.16. A set of rank one graded projective A-modules P = {Pi}i∈I
generates gr -A if and only if for every graded simple module M which is supported

at Z ∪ Z− α, there exists a surjection to M from a direct sum of modules in P.

Proof. One direction is clear. Now suppose P is a set of graded projective A-

modules that generates all graded simple modules supported at Z∪Z−α. We will

show that every shift of A is the image of a surjection from a direct sum of modules

in P , and so P generates gr -A. Let P ∈ P and choose a maximal embedding

ϕ : P → A〈n〉. It suffices to construct a surjection ψ :
⊕

j∈J Pj → A〈n〉/P for

some J ⊆ I. This is because, by the projectivity of the Pj, there exists a lift

ψ :
⊕

j∈J Pj → A〈n〉 and because imϕ+ imψ = A〈n〉.
Since A has Krull dimension 1, the quotient A〈n〉/P has finite length. By

Lemma 3.4.15, it is supported at Z ∪ Z− α. We induct on the length of A〈n〉/P .

Now there exists some integrally supported simple module M0 which fits into the

exact sequence

0 −→ K0 −→ A/P −→M0 −→ 0.

Again, it suffices to give surjections onto M0 and K0. By hypothesis, P generates

M0. By induction, P generates K0, completing the proof.



Chapter 4

Functors defined on subcategories

of projectives

The results of section 3.4 suggest that much information about the category

gr -A is contained in its rank one projective modules and the morphisms between

them. We will therefore develop the machinery necessary to define a functor on

gr -A by first defining it on the full subcategory of direct sums of rank one projective

modules. We remark that a dual statement to Lemma 4.0.1 is stated in [Van01,

Proposition 3.1.1 (3)] (in terms of injective objects), but no detailed proof is given.

Lemma 4.0.1. Let C be an abelian category with enough projectives. Let P be a

full subcategory consisting of projective objects in C such that every object in C has

a projective resolution by objects in P. Given an additive functor F : P→ C, there

is a unique (up to natural isomorphism of functors) extension of F to an additive

functor F̃ : C→ C which is right exact.

Proof. We begin by defining F̃ on objects. For each M ∈ C, fix a partial projective

resolution

P1
d0−→ P0 −→M −→ 0

where P0, P1 are objects in P. Then apply F to yield

F(P1)
F(d0)−→ F(P0)
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and let F̃(M) = cokerF(d0) so there is a right exact sequence

F(P1)
F(d0)−→ F(P0) −→ F̃(M) −→ 0.

For P ∈ P, we always fix the resolution

0 −→ P −→ P −→ 0

so that F̃(P ) = F(P ).

Next we define F̃ on morphisms. Let g : M → N be a morphism and

let P1 → P0 → M and Q1 → Q0 → N be the partial projective resolutions of

M and N , respectively. Because P0 and P1 are projective, there exist lifts of g,

homomorphisms h0 and h1 such that

P1

h1

��

// P0

h0

��

//M

g

��

// 0

Q1
// Q0

// N // 0

(4.1)

commutes. Although h0 and h1 are not necessarily unique, they do induce unique

maps on homology (i.e. any choices for h0, h1 are chain homotopic). Then applying

F to this commutative diagram yields

F(P1)

F(h1)

��

// F(P0)

F(h0)

��

// F̃(M) // 0

F(Q1) // F(Q0) // F̃(N) // 0

which induces a unique map F̃(g) : F̃(M)→ F̃(N) such that

F(P1)

F(h1)

��

// F(P0)

F(h0)

��

// F̃(M)

F̃(g)
��

// 0

F(Q1) // F(Q0) // F̃(N) // 0

commutes. Further, since homotopic maps stay homotopic after applying a functor,

and since any choices of h0, h1 were homotopic, therefore F(h0) and F(h1) are also

unique up to homotopy. Hence, the induced map on zeroth homology, F̃(g), is

well-defined. Note also that clearly F̃ extends F and since F is additive, F̃ is

additive.
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Again, since any choice of lifts h0, h1 induce the same map on homology,

in particular, we get unique maps on zeroth homology. Thus, if g : M → M is

the identity, we may choose h0, h1 to be the identity also. Then clearly F̃(g) :

F̃(M)→ F̃(M) is the identity. Given g′ : L→M and g : M → N , the uniqueness

of the induced maps on homology gives F̃(g ◦ g′) = F̃(g)◦ F̃(g′) so F̃ is functorial.

We now show that F̃ is independent of the choice of projective resolution.

Suppose that we had fixed a different choice of projective resolutions leading to

a functor F̃ ′. Let P1
d0→ P0 → M and P ′1

d′0→ P ′0 → M be the choices of partial

projective resolutions of M in defining F̃ and F̃ ′, respectively. Choosing lifts of

the identity M →M as before, we obtain the commutative diagram

P1

j1
��

// P0

j0
��

//M

IdM
��

// 0

P ′1

k1

��

// P ′0

k0

��

//M

IdM
��

// 0

P1
// P0

//M // 0

(4.2)

and since k0 ◦ j0 is the identity on P0/ im d0, therefore j0 gives an isomorphism

P0/ im d0 → P ′0/ im d′0. Applying F to this diagram yields

F(P1)

F(j1)

��

// F(P0)

F(j0)

��

// F̃(M) // 0

F(P ′1) // F(P ′0) // F̃ ′(M) // 0

from which we get a map F̃(M)→ F̃ ′(M) induced by F(j0). Since j0 was an iso-

morphism on homology, therefore F(j0) induces an isomorphism F̃(M)→ F̃ ′(M).

Suppose that Q1
e0→ Q0 → N and Q′1

e′0→ Q′0 → N are the choices of partial

projective resolutions of N in defining F̃ and F̃ ′ respectively. Let g : M → N

be given. Construct h0 and h′0 lifting g as in diagram (4.1) and construct maps

j0 : P0 → P ′0 and `0 : Q0 → Q′0 as in diagram (4.2) to obtain the diagram

P0

h0

��

j0 // P ′0

h′0
��

Q0
`0 // Q′0

. (4.3)
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A diagram chase shows that this square commutes on zeroth homology. That is,

P0/ im d0

h0

��

j0 // P ′0/ im d′0

h′0
��

Q0/ im e0
`0 // Q′0/ im e′0

.

commutes (the maps are well-defined on homology). Applying F to (4.3) yields

F(P0)

F(h0)
��

F(j0) // F(P ′0)

F(h′0)

��
F(Q0)

F(`0) // F(Q′0)

which again commutes on zeroth homology. Therefore, we conclude that the iso-

morphisms ηM : F̃(M)→ F̃ ′(M) and ηN : F̃(N)→ F̃ ′(N) induced by F(j0) and

F(`0) give a commuting square

F̃(M)

F̃(g)
��

ηM // F̃ ′(M)

F̃ ′(g)
��

F̃(N)
ηN // F̃ ′(N)

and so F̃ and F̃ ′ are naturally isomorphic via η.

Finally, to check that F̃ is right exact, let

0 −→ L
g−→M

f−→ N −→ 0

be an exact sequence in C. Let P1 → P0 → L and Q1 → Q0 → N be partial

projective resolutions for L and N respectively. Now the Horseshoe Lemma gives

the commutative diagram

0

��

0

��

0

��
P1

//

��

P0
//

��

L

g

��

// 0

P1 ⊕Q1

��

// P0 ⊕Q0

��

//M

f

��

// 0

Q1
//

��

Q0
//

��

N //

��

0

0 0 0



55

in which the columns are exact. Since F is additive, by Proposition 2.2.1 it pre-

serves finite direct sums so

0

��

0

��
F(P1) //

��

F(P0) //

��

F̃(L)

F̃(g)
��

// 0

F(P1)⊕F(Q1)

��

// F(P0)⊕F(Q0)

��

// F̃(M)

F̃(f)
��

// 0

F(Q1) //

��

F(Q0) //

��

F̃(N) // 0

0 0

commutes. A diagram chase then shows the right column is exact at F̃(M) and

that F̃(M)
F̃(f)−→ F̃(N) is a surjection. Hence, F̃ is right exact.

As a corollary of the above lemma, we prove that we can check if two

categories are equivalent by checking if they are equivalent on a full subcategory

of projective objects.

Corollary 4.0.2. Let C and C′ be abelian categories with enough projectives. Let

P (respectively P′) be a full subcategory of projective objects such that every object

of C (respectively C′) has a projective resolution by objects of P (respectively P′).

Then if F : P→ P′ is an equivalence of categories, then there exists an equivalence

of categories F̃ : C→ C′ which extends F .

Proof. Suppose F : P → P′ is an equivalence of categories with quasi-inverse

G : P′ → P. We may regard F as a functor F : P → C′ and G as a functor

G : P′ → C. Now by Lemma 4.0.1, there exist functors F̃ : C→ C′ and G̃ : C′ → C

which extend the functors F and G.

Now G ◦ F : P → P is naturally isomorphic to the identity functor IdP.

Consider the composition G̃ ◦ F̃ : C → C. Then G̃ ◦ F̃ is an extension of G ◦ F
to the category C so by Lemma 4.0.1 is the unique such extension up to natural
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isomorphism. Since IdC is an extension of IdP, we conclude that G̃ ◦ F̃ ∼= IdC.

Similarly, G̃ ◦ F̃ ∼= IdC′ and hence, C ≡ C′.

We have shown that in order to define a functor on a category, it suffices

to construct a functor on “enough” of the projective objects in that category. In

the next chapter, we will construct autoequivalences of gr -A in this way. We

now show that, in fact, the subcategory consisting of only canonical rank one

projective modules is “big enough”, as additive functors defined on these objects

extend uniquely to direct sums.

Lemma 4.0.3. Let C be an abelian category. Let R be the full subcategory of gr -A

consisting of the canonical rank one projective modules and let P be the full subcat-

egory of gr -A consisting of all finite direct sums of canonical rank one projective

modules. If F : R → C is an additive functor, then F extends to an additive

functor F̃ : P→ C.

Proof. We begin by defining F̃ on objects. For P ∈ P, choose canonical rank one

projective modules Pi and write P =
⊕n

i=1 Pi. Define F̃(P ) =
⊕n

i=1F(Pi).

We now define F̃ on morphisms. Let P,Q,R ∈ P and write P =
⊕n

i=1 Pi,

Q =
⊕m

j=1 Qj, and R =
⊕r

k=1 Rk. First we observe that

Homgr -A(P,Q) = Homgr -A

(
n⊕
i=1

Pi,
m⊕
j=1

Qj

)
∼=

n⊕
i=1

m⊕
j=1

Homgr -A (Pi, Qj)

so we can represent ϕ ∈ Homgr -A(P,Q) as a sum ϕ =
∑n

i=1

∑m
j=1 ϕi,j where ϕi,j ∈

Homgr -A(Pi, Qj). Define

F̃(ϕ) =
n∑
i=1

m∑
j=1

F(ϕi,j).

Now we can write IdP =
∑n

i=1 IdPi and use the fact that F is a functor to

deduce that

F̃ (IdP ) =
n∑
i=1

F (IdPi) =
n∑
i=1

IdF(Pi) = IdF̃(P ) .

We now check that F̃ preserves compositions. If ψ ∈ Homgr -A(Q,R), then we can

write

ψ ◦ ϕ =
n∑
i=1

r∑
k=1

(ψ ◦ ϕ)i,k =
n∑
i=1

m∑
j=1

r∑
k=1

ψj,k ◦ ϕi,j
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so, since F is an additive functor,

F̃(ψ ◦ ϕ) =
n∑
i=1

r∑
k=1

F ((ψ ◦ ϕ)i,k) =
n∑
i=1

m∑
j=1

r∑
k=1

F (ψj,k ◦ ϕi,j)

=
n∑
i=1

m∑
j=1

r∑
k=1

F(ψj,k) ◦ F(ϕi,j)

=
m∑
j=1

r∑
k=1

F(ψj,k) ◦
n∑
i=1

m∑
j=1

F(ϕi,j) = F̃(ψ) ◦ F̃(ϕ).

Hence, F̃ preserves compositions of morphisms and so F̃ : P → C is a functor

extending F .

The remaining results in this section give the technical tools used to con-

struct autoequivalences of gr -A switching X and Y .

Lemma 4.0.4. Let C be an abelian category with enough projectives, let P be

a full subcategory of C consisting of projective objects, and let D ⊆ C be a full

subcategory which is closed under subobjects. Suppose that for every M ∈ P, there

exists a unique smallest subobject N ⊆M such that M/N ∈ D. Write N = F(M).

Then there is an additive functor F : P→ C where for each projective P , F(P ) is

as defined above, with the action of F on morphisms being restriction.

Proof. Let P and Q be projective objects and f ∈ HomC(P,Q). If we can show

that f(F(P )) ⊆ F(Q) then f |F(P ) : F(P ) → F(Q) is a well-defined restriction,

and it is easy to see the functor F : P→ C defined as above is additive.

Now Q/F(Q) ∈ D by the definition of F(Q) and P/f−1(F(Q)) embeds

into Q/F(Q). Since D is closed under subobjects, P/f−1(F(Q)) ∈ D. Then

F(P ) ⊆ f−1(F(Q)) because F(P ) was defined to be the unique smallest N ⊆ P

such that P/N ∈ D. Hence, f(F(P )) ⊆ F(Q), as desired.

The preceding lemma is the main tool we will use to construct our autoe-

quivalence. We will construct a full subcategory D of gr -A and a functor ι0 that

maps a rank one projective module to the smallest kernel of morphisms to elements

of D.
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Proposition 4.0.5. Let C be an abelian k-linear category. Let I = {I1, . . . , In}
be a finite set of indecomposable objects in C and let D ⊆ C be the full subcategory

consisting of all finite direct sums of elements of I, possibly with repeats. Suppose

further for every C ∈ C and every D ∈ D that HomC(C,D) is finite-dimensional

and that D is closed under subobjects. Then for each M ∈ C, there exists a unique

smallest N ⊆M such that M/N ∈ D.

Proof. Let M be an object in C. By hypothesis, for each 1 ≤ i ≤ n, HomC(M, Ii)

is finite-dimensional, say spanned by ϕi1 , . . . , ϕid . Note that for 1 ≤ j ≤ d,

M/ kerϕij ⊆ Ii is an object in D, because D is closed under subobjects.

Define Ji = ∩dj=1 kerϕij . First, sinceM/Ji ⊆ ⊕dj=1M/ kerϕij and D is closed

under direct sums and subobjects, M/Ji ∈ D. Further, for any ψ ∈ HomC(M, Ii),

Ji ⊆ kerψ.

Now consider the intersection N = ∩ni=1Ji ⊆M . Again, since each M/Ji ∈
D, we have M/N ∈ D. To show that N is the unique smallest such object,

let L = ⊕rj=1Iαj be an object in D and let ψ ∈ HomC(M,L). Because C is an

abelian category, HomC(M,L) = HomC(M,⊕rj=1Iαj) = ⊕rj=1 HomC(M, Iαj). But

as N = ∩ni=1 ∩dj=1 kerϕij , therefore N ⊆ kerψ.



Chapter 5

The Picard group of gr-A

In this chapter, we determine the Picard group of gr -A. Let Zfin be the

group of finite subsets of Z with operation ⊕ given by exclusive or. For the first

Weyl algebra, A1, in [Sie09, Corollary 5.11] Sierra computed that

Pic(gr -A1) ∼= Zfin oD∞.

The subgroup of Pic(gr -A1) isomorphic to D∞ is generated by the shift functor

SA1 and the autoequivalence reversing the graded structure of A1. For quadratic

polynomials f , gr -A(f) is still equipped with both a shift functor SA(f) as well as

the grading-reversing autoequivalence ω. We therefore expect D∞ to appear as a

subgroup of Pic(gr -A(f)).

The subgroup of Pic(gr -A1) isomorphic to Zfin is generated by autoequiv-

alences that Sierra calls involutions of gr -A1. In section 5.2, we will construct

analogous involutions of gr -A(f), and so we will show that for any quadratic poly-

nomial f ∈ k[z],

Pic(gr -A(f)) ∼= Zfin oD∞ ∼= Pic(gr -A1).

5.1 The rigidity of gr-A

In this section, we will show that gr -A exhibits the same sort of rigidity as

gr -A1. The general structure of our arguments parallel [Sie09, §5]. In particular,
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we will first prove that an autoequivalence of gr -A is determined by its action on

only the simple modules supported at Z ∪ Z − α. We will then prove that any

autoequivalence of gr -A must permute the simple modules in a rigid way.

We begin by proving an analogue of [Sie09, Lemma 5.1]. Recall from sec-

tion 2.1, that for a Z-graded ring R, we defined the Z-algebra associated to R

R =
⊕
i,j∈Z

Ri,j

where Ri,j = Rj−i. Recall also that an automorphism γ of R is called inner if for

all m,n ∈ Z, there exist gm ∈ Rm,m and hn ∈ Rn,n such that for all w ∈ Rm,n,

γ(w) = gmwhn.

We will first study the automorphisms of A. Following the notation of

Sierra, define mij ∈ Aij = Aj−i to be the canonical k[z]-module generator of Aj−i;

that is, mij is xj−i if j ≥ i and yi−j if i > j.

Lemma 5.1.1. Every automorphism of A of degree 0 is inner.

Proof. Let γ be an automorphism of A. Since γ is an automorphism, for all i, j ∈ Z
there is a unit ζij ∈ k[z] such that γ(mij) = ζijmij. Thus, ζij ∈ k∗. Further, for

all n ∈ Z, we have ζnn = 1. Denote by γn the restriction of γ to Ann = k[z]. Since

γn is an automorphism of k[z], we know it is of the form z 7→ anz + bn for some

an, bn ∈ k.

Applying γ to the identity

mn,n+1mn+1,n = z(z + α) · 1n

yields

ζn,n+1ζn+1,nmn,n+1mn+1,n = [a2
nz

2 + an(2bn + α)z + bn(bn + α)] · 1n.

Since, in addition

ζn,n+1ζn+1,nmn,n+1mn+1,n = (ζn,n+1ζn+1,nz
2 + ζn,n+1ζn+1,nαz) · 1n,

by comparing coefficients, either bn = 0 or bn = −α. If bn = 0, then an =

ζn,n+1ζn+1,n = a2
n. Since ζn,n+1ζn+1,n is a unit, therefore an = ζn,n+1ζn+1,n = 1. On
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the other hand, if bn = −α, then −an = ζn,n+1ζn+1,n = a2
n. In this case, an = −1.

In either case, ζn,n+1ζn+1,n = 1.

Now, apply γ to the identity

mn,n+1mn+1,n −mn,n−1mn−1,n = (2z + α− 1) · 1n (5.1)

to obtain

mn,n+1mn+1,n − ζn,n−1ζn−1,nmn,n−1mn−1,n = (2anz + 2bn + α− 1) · 1n. (5.2)

Subtracting these equations yields

(ζn,n−1ζn−1,n − 1)mn,n−1mn−1,n = (2z − 2anz − 2bn) · 1n

and so

(ζn,n−1ζn−1,n − 1)(z − 1)(z + α− 1) · 1n = (2z − 2anz − 2bn) · 1n.

If ζn,n−1ζn−1,n−1 6= 0, then the left-hand side is quadratic in z, but the right-hand

side is linear z. Hence, ζn,n−1ζn−1,n = 1. But now, comparing equations (5.1) and

(5.2) means

γn(z · 1n) = z · 1n.

So for all n, γn is the identity on Ānn. Hence, for any g ∈ k[z] = Āii and i, j ∈ Z,

we have

γ(g ·mij) = ζijg ·mij.

Now, for all i, j, l ∈ Z, mijmjl = hmil for some h ∈ k[z] = Āii. By applying γ, we

conclude ζijζjl = ζil. So if v ∈ Aij, we have γ(v) = ζijv = ζi0vζ0j, so γ is inner by

[Sie09, Theorem 3.10].

This technical result allows us to prove an analogue of [Sie09, Corollary

5.6]. As in the case of gr -A1, we can check if two autoequivalences of gr -A are

naturally isomorphic by checking on a relatively small set of simple modules.

Lemma 5.1.2. Let F and F ′ be autoequivalences of gr -A. Then F ∼= F ′ if and

only if F(S) ∼= F ′(S) for all simple modules S supported at Z ∪ Z− α.
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Proof. Suppose F(S) ∼= F ′(S) for all simple modules S supported at Z∪Z−α. By

Corollary 3.4.8, since any rank one projective is determined by its simple factors

supported at Z ∪ Z − α, we have that F(P ) ∼= F ′(P ) for all rank one projectives

P . In particular, for all integers n, (F ′)−1F(A〈n〉) ∼= A〈n〉. Hence, (F ′)−1F is a

twist functor. Finally, by Lemma 5.1.1 and Theorem 2.1.2, (F ′)−1F ∼= Idgr -A and

so F ∼= F ′.

The proof of the preceding lemma also demonstrates what we noticed in

section 3.4—that the structure of gr -A is largely determined by its subcategory of

rank one projective modules. We now prove analogues of [Sie09, Theorem 5.3].

Theorem 5.1.3. Let α ∈ N and let F be an autoequivalence of gr -A. Then there

exist unique integers a = ±1 and b such that for all n ∈ Z

{F(X〈n〉),F(Y 〈n〉)} ∼= {X〈an+ b〉, Y 〈an+ b〉},

and for all λ ∈ k \ Z,

F(Mλ) ∼= Maλ+b.

If α > 0, then additionally

F(Z〈n〉) ∼= Z〈an+ b〉.

Proof. The proof is essentially the same as Sierra’s. First, let α = 0. Since F is

an autoequivalence, for any integer n there exists an integer n′ such that F maps

the pair {X〈n〉, Y 〈n〉} to the pair {X〈n′〉, Y 〈n′〉} since by Lemmas 3.3.1, these

are the only pairs of simple modules with both nonsplit self-extensions as well as

nonsplit extensions by each other. Now let α > 0. In this case, for any integer n

there exists an integer n′ such F(Z〈n〉) ∼= Z〈n′〉 since the shifts of Z are the only

simple modules that have projective dimension 2. Then we also see that F maps

the pair {X〈n〉, Y 〈n〉} to the pair {X〈n′〉, Y 〈n′〉} since these are the unique simple

modules which have nonsplit extensions with Z〈n′〉.
For any α ∈ Z, for any λ ∈ k\Z, there exists a µ ∈ k\Z such that F(Mλ) ∼=

Mµ since these are the only simple modules whose only nonsplit extensions are self-

extensions. Altogether then, there exists a bijective function g : k→ k such that
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(i) If λ ∈ Z, then g(λ) ∈ Z and F({X〈λ〉, Y 〈λ〉}) ∼= {X〈g(λ)〉, Y 〈g(λ)〉} (and if

α > 0, F(Z〈λ〉) ∼= Z〈g(λ)〉).

(ii) If λ /∈ Z, then g(λ) /∈ Z and F(Mλ) ∼= Mg(λ).

Now consider the functor F0 = F(− ⊗k[z] A)0 : mod-k[z] → mod-k[z].

Notice that F0(k[z]) ∼= k[z]. Further, for all λ ∈ k, we have that F0(k[z]/(z +

λ)) ∼= k[z]/(z + g(λ)). If λ ∈ Z, this follows from Lemma 3.1.3, otherwise it

follows from the definition of Mλ and Mg(λ). The functor F0 gives a k-algebra

homomorphism ϕ : Homk[z](k[z],k[z]) → Homk[z](F0k[z],F0k[z]). Identify k[z]

with Homk[z](k[z],k[z]), where h ∈ k[z] corresponds to left multiplication by h.

The functor F0 takes the short exact sequence

0→ k[z]
(z+λ)·−→ k[z] −→ k[z]/(z + λ) −→ 0

to

0→ F0k[z] −→ F0k[z] −→ k[z]/(z + g(λ)) −→ 0,

so ϕ maps multiplication by z+λ to multiplication by c(z+g(λ)) for some c ∈ k∗.
Therefore, ϕ(z) must be linear in z, i.e. ϕ(z) = γz + δ for some γ, δ ∈ k. Then

γz + δ + λ = ϕ(z + λ) = c(z + g(λ))

and so g(λ) = (λ+δ)/γ. Since g maps Z bijectively to Z, we conclude that γ = ±1

and δ ∈ Z. Take a = γ and b = aδ.

Theorem 5.1.4. Let α ∈ k \Z, and α /∈ Z+ 1/2. Let F be an autoequivalence of

gr -A. Then exactly one of the following is true:

1. There exists a unique integer b such that for all n ∈ Z

{F(X0〈n〉),F(Y0〈n〉)} ∼= {X0〈n+ b〉, Y0〈n+ b〉},

{F(Xα〈n〉),F(Yα〈n〉)} ∼= {Xα〈n+ b〉, Yα〈n+ b〉},

and for all λ ∈ k \ (Z ∪ Z + α)

F(Mλ) ∼= Mλ+b.
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2. There exists a unique integer b such that for all n ∈ Z

{F(X0〈n〉),F(Y0〈n〉)} ∼= {Xα〈−n+ b〉, Yα〈−n+ b〉},

{F(Xα〈n〉),F(Yα〈n〉)} ∼= {X0〈−n+ b〉, Y0〈−n+ b〉},

and for all λ ∈ k \ (Z ∪ Z + α)

F(Mλ) ∼= M−λ+α+b.

Proof. This proof is quite similar to the previous one, although the details are

slightly messier.

From Lemma 3.1.1 and Lemma 3.3.6, for any λ ∈ k \ (Z ∪ Z + α), there

exists a µ ∈ k \ (Z ∪ Z + α) such that F(Mλ) ∼= Mµ, since these are the only

simple modules with nonsplit self extensions. Further, by Lemma 3.3.6, for all

n ∈ Z F must map the pair {X0〈n〉, Y0〈n〉} to either a pair {X0〈n′〉, Y0〈n′〉} or a

pair {Xα〈n′〉, Yα〈n′〉} for some integer n′, since these pairs form the only nonsplit

extensions of two nonisomorphic simples. Likewise for the pair {Xα〈n〉, Yα〈n〉}.
That is, there is a bijection g : k→ k such that

(1) If λ ∈ Z, then either

• g(λ) ∈ Z and F({X0〈λ〉, Y0〈λ〉}) ∼= {X0〈g(λ)〉, Y0〈g(λ)〉} or else

• g(λ) ∈ Z + α and F({X0〈λ〉, Y0〈λ〉}) ∼= {Xα〈g(λ)− α〉, Yα〈g(λ)− α〉}.

(2) If λ ∈ Z + α, then either

• g(λ) ∈ Z+α and F({Xα〈λ−α〉, Yα〈λ−α〉}) ∼= {Xα〈g(λ)−α〉, Yα〈g(λ)−
α〉} or else

• g(λ) ∈ Z and F({Xα〈λ− α〉, Yα〈λ− α〉}) ∼= {X0〈g(λ)〉, Y0〈g(λ)〉}.

(3) If λ /∈ (Z ∪ Z + α), then g(λ) /∈ (Z ∪ Z + α) and F(Mλ) ∼= Mg(λ).

As in the proof of Lemma 5.1.3, consider the functor F0 = F(−⊗k[z] A)0 :

mod-k[z]→ mod-k[z]. Just as in the previous proof, there exist δ, γ ∈ k such that

g(λ) = (λ + δ)/γ. Since g maps Z ∪ Z + α bijectively to itself, we conclude that
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γ = ±1. Since we assumed α /∈ Z + 1/2, if γ = 1 then δ ∈ Z, and if γ = −1 then

δ ∈ Z− α.

If γ = 1, let b = δ ∈ Z. In this case,

{F(X0〈n〉),F(Y0〈n〉)} ∼= {X0〈n+ b〉, Y0〈n+ b〉} and

{F(Xα〈n〉),F(Yα〈n〉)} ∼= {Xα〈n+ b〉, Yα〈n+ b〉}.

If γ = −1, let b = −α− δ. In this case,

{F(X0〈n〉),F(Y0〈n〉)} ∼= {Xα〈−n+ b〉, Yα〈−n+ b〉} and

{F(Xα〈n〉),F(Yα〈n〉)} ∼= {X0〈−n+ b〉, Y0〈−n+ b〉}.

Definition 5.1.5 ([Sie09, Definition 5.4]). If F is an autoequivalence of gr -A, we

call the integer b above the rank of F . The integer a above is called the sign of F .

If a = 1, then we say F is even and if a = −1, we say F is odd. If F is even and

has rank 0, we say that F is numerically trivial.

Example 5.1.6. As was the case for autoequivalences of gr -A1, SnA is an even

autoequivalence of rank n and ω is an odd autoequivalence of rank −1.

Notice that if α ∈ Z + 1/2, then there are potentially extra symmetries of

gr -A. In the proof of Theorem 5.1.4, the function g : k→ k could be of the form

g(λ) = λ + 1/2, as this maps Z + α bijectively to itself if α ∈ Z + 1/2. We show

that in fact, in this case, there is an autoequivalence which acts in this way.

−3

−5/2

−2

−3/2

−1

−1/2

0

1/2

1

3/2

2

5/2

3

7/2

Figure 5.1.1: The simple modules of gr -A(f) when α = 1/2.

Proposition 5.1.7. Let α ∈ Z + 1/2. There exists an autoequivalence F of gr -A

such that for all n ∈ Z,

F(X0〈n〉) ∼= Xα〈n+ 1/2− α〉, F(Y0〈n〉) ∼= Yα〈n+ 1/2− α〉,

F(Xα〈n〉) ∼= X0〈n+ 1/2 + α〉, F(Yα〈n〉) ∼= Y0〈n+ 1/2 + α〉,
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and for all λ ∈ k \ (Z ∪ Z + 1/2)

F(Mλ) ∼= Mλ+1/2.

Proof. We will construct an autoequivalence F that translates Figure 5.1.1 by 1/2.

By Lemmas 4.0.3 and 4.0.1, it suffices to define F on the full subcategory R of

gr -A consisting of the canonical rank one projective right A-modules. Let P be a

rank one canonical projective module with structure constants {ci}. By the work

in section 3.2, we know we can write each structure constant as ci = aibi where

ai ∈ {1, σi(z)} and bi ∈ {1, σi(z + α)}. Let σ1/2 be the automorphism of k[z] with

σ1/2(z) = z + 1/2.

Define F(P ) as the canonical rank one projective module whose structure

constants {c′i} are defined as follows. If an+α−1/2 = σn+α−1/2(z), then c′n has a factor

of σn(z+α). If bn−α−1/2 = σn−α−1/2(z+α), then c′n has a factor of σn(z). Overall,

the irreducible factors of the {c′i} are given by {σ1/2(ai)} and {σ1/2(bi)}, where the

factors appear in the structure constant of the appropriate degree. Since, for all

n, c′n ∈ {1, σn(z), σn(z + 1/2), σn(f)}, and for n � 0, c′n = 1 and c′−n = σ−n(f),

these structure constants define a canonical rank one projective module.

Let P and Q be canonical rank one projective modules with structure con-

stants {ci} and {di}, respectively. Let the structure constants of F(P ) and F(Q)

be {c′i} and {d′i} respectively. By Lemma 3.4.13 and Corollary 3.4.14, there is an

N ∈ Z such that HomA(P,Q) and HomA(F(P ),F(Q)) are generated as a k[z]-

module by multiplication by

θP,Q =

∏
j≥N dj∏

j≥N gcd (cj, dj)
and

θF(P ),F(Q) =

∏
j≥N d

′
j∏

j≥N gcd
(
c′j, d

′
j

) ,
respectively. Notice that by the way we defined the structure constants of F(P )

and F(Q),

θF(P ),F(Q) = σ1/2 (θP,Q) .

Let g ∈ HomA(P,Q), so g = ϕθP,Q for some ϕ ∈ k[z]. Define F(g) to be left

multiplication by σ1/2(ϕθP,Q) = σ1/2(ϕ)θF(P ),F(Q).
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Since every morphism in R is given by left multiplication by an element

of k[z] and F acts on morphisms by applying σ1/2 to this element, clearly F
is functorial. Since the identity morphism is just multiplication by 1, we have

F(IdP ) = IdF(P ). Hence, F is a functor. It is also easy to see that F is essentially

surjective on canonical rank one projective modules. Given a rank one projective

module P ′, we reverse the structure constant construction to construct a canonical

rank one projective P such that F(P ) ∼= P ′. Since σ1/2 is an automorphism of

k[z], it gives an isomorphism

HomA(P,Q) = θP,Qk[z] ∼= σ1/2(θP,Qk[z]) = HomA (F(P ),F(Q)) .

Hence, F is full and faithful and so is an autoequivalence of R, which extends

uniquely to an autoequivalence of gr -A by Corollary 4.0.2 and Lemma 4.0.3.

We need only show that F has the claimed action on simple modules. For

each λ ∈ k, F maps the exact sequence

0 −→ A
(z+λ)·−→ A −→ A/(z + λ)A −→ 0

to the exact sequence

0 −→ F(A)
(z+λ+1/2)·−→ F(A) −→ F(A/(z + λ)A) −→ 0.

Hence, F(A/(z + λ)A) is supported at −(λ + 1/2) so if λ /∈ Z + 1/2, F(Mλ) ∼=
Mλ+1/2. The pair of simple modules {X0〈n〉, Y0〈n〉} which are supported at −n
must map to the pair {Xα〈n+ 1/2−α〉, Yα〈n+ 1/2−α〉}, as these are the simples

supported at −(n+ 1/2). Similarly, the pair {Xα〈n〉, Yα〈n〉} must map to the pair

{X0〈n− 1/2 + α〉, Y0〈n− 1/2 + α〉}.
Now consider the short exact sequence

0 −→ (xA+ zA)〈n〉 1·−→ A〈n〉 → X0〈n〉 −→ 0.

Using the construction in Lemmas 3.2.5 and 3.2.6, we can explicitly compute the

structure constants of xA + zA. Since in each graded component of degree i ≤ 0,

(xA+zA)i = z(A)i and for i > 0, (xA+zA)i = Ai, therefore xA+zA has structure

constants which are the same as that of A, except in degree 0 where xA+zA has a
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structure constant of z. Multiplying structure constants to compute the canonical

representation of xA+ zA, we observe that xA+ zA is itself a canonical rank one

projective module. Since maximal embeddings of canonical rank one projectives

are given by multiplication by elements in k[z], the inclusion xA + zA → A in

(5.1) is a maximal embedding.

Since F of multiplication by 1 is again given by multiplication by 1, F maps

(5.1) to the exact sequence

0 −→ F((xA+ zA)〈n〉) 1·−→ F(A〈n〉) −→ F(X0〈n〉) −→ 0.

Hence, F(X0〈n〉) is zero in sufficiently large degree, so F(X0〈n〉) ∼= Xα〈n+1/2−α〉.
This then implies F(Y0〈n〉) ∼= Yα〈n+ 1/2− α〉. A similar computation for Xα〈n〉
completes the proof.

Remark 5.1.8. The autoequivalence constructed in Proposition 5.1.7 translates the

picture of the simple modules by 1/2. Since the square of this autoequivalence is

isomorphic to SA, we call it S1/2.

For completeness, we can extend Definition 5.1.5 to the case α ∈ Z + 1/2

in a natural way. If F is an autoequivalence of gr -A(f), and for all β ∈ k, F
maps the simples supported at β to simples supported at β + n/2 for some n ∈ Z,

we say that F is even and has rank n/2. If F maps the simples supported at β

to simples supported at −β + n/2 for some n ∈ Z, we say that F is odd and has

rank n/2. If F is even and has rank 0 then we say F is numerically trivial. The

autoequivalence S1/2 is even and has rank 1/2.

Corollary 5.1.9. Let Pic0(gr -A) be the subgroup of Pic(gr -A) of numerically triv-

ial autoequivalences. Then Pic(gr -A) ∼= Pic0(gr -A) oD∞.

Proof. By Lemma 5.1.2, each autoequivalence in Pic(gr -A) is determined by its

action on the simple modules supported at Z ∪ Z − α. Let α 6∈ Z + 1/2. By

checking their action on the simple modules supported at Z ∪ Z − α, we observe

that ωSA ∼= S−1
A ω and so the subgroup

〈ω,SA〉 ⊆ Pic(gr -A)
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is isomorphic to D∞.

Again, by considering the action of numerically trivial autoequivalences on

the simple modules, we observe that Pic0(gr -A) is a normal subgroup of Pic(gr -A).

If F is a numerically trivial autoequivalence in 〈ω,SA〉, then we can write F = S iAωj

for some i, j ∈ Z. Since F is numerically trivial and ω2 = Idgr -A, in fact F = S iA
which then implies i = 0 so F = Idgr -A. Therefore,

Pic0(gr -A) ∩ 〈ω,SA〉 = {Idgr -A}.

By Theorems 5.1.3 and 5.1.4, any autoequivalence can be written as the

product of an autoequivalence in 〈ω,SA〉 and a numerically trivial autoequivalence.

Therefore, Pic(gr -A) ∼= Pic0(gr -A) oD∞, as desired.

In the case α ∈ Z + 1/2, Pic(gr -A) contains a subgroup isomorphic to

D∞ generated by the autoequivalences S1/2 and ω. This is a finer copy of D∞,

containing 〈ω,SA〉 as a subgroup. The remainder of the proof is identical to the

previous case.

5.2 Involutions of gr-A

Having shown that gr -A(f) has the same rigidity as gr -A1, we now show

that Pic0(gr -A(f)) is also isomorphic to Pic0(gr -A1). We construct autoequiva-

lences which are analogous to the involutions ιj of Sierra.

Proposition 5.2.1. Let α ∈ N. Then for any j ∈ Z, there is a numerically

trivial autoequivalence ιj of gr -A such that ιj(X〈j〉) ∼= Y 〈j〉, ιj(Y 〈j〉) ∼= X〈j〉,
and ιj(S) ∼= S for all other simple modules S. For any i, j ∈ Z, S iAιj ∼= ιi+jS iA,

and ι2j
∼= Idgr -A.

Proof. First, suppose α ∈ N+. It will suffice to construct ι0, for if ι0 exists then

we may define ιj = SjAι0S
−j
A . Let P be the full subcategory of gr -A whose objects

are direct sums of canonical rank one projective modules and let R be the full

subcategory of gr -A whose objects are the canonical rank one projective modules.

Note that since every finitely generated graded right A-module has a projective



70

resolution by objects in P, by Lemma 4.0.1, we can construct ι0 by defining it on

P, then extend to gr -A. By Lemma 4.0.3, it suffices to define ι0 only on R.

Let

S = {0, X, Y, Z,EZ,X , EZ,Y , EX,Z , EY,Z , EZ,Y,X , EX,Z,X , EY,Z,Y }

and let D be the full subcategory of gr -A whose objects are exactly the elements

of S. It is clear that D is closed under subobjects. Let P be a graded rank one

projective module. By Corollary 3.4.6, P surjects onto exactly one of X, Y , and

Z, a module that we call F0(P ). Suppose F0(P ) = X. Since P is projective, the

surjection f0 : P → X lifts to a morphism f1 : P → EX,Z . Since f1 is a lift of a

surjection to X, f1 is surjective, as EX,Z has no subobject isomorphic to X. Again,

since P is projective, f1 lifts to a surjection f2 : P → EX,Z,X , as EX,Z,X has no

subobject isomorphic to EX,Z .

Given the structure constants {ci} of P , we can in fact construct the sub-

module of P that is the kernel of f2. We construct this submodule in three steps.

First, we construct K0, the kernel of f0, which is unique by Corollary 3.2.7. Follow-

ing the construction in Lemma 3.2.5, K0 is the submodule of P that has structure

constants equal to ci for all i ∈ Z except when i = −α, where K0 has structure

constant zc−α. We then construct ker f1 = K1 as a submodule of K0. Note that

since (P/K1)/(K0/K1) ∼= P/K0, we must have that K1 is the unique submodule

of K0 which is the kernel of the surjection K0 → Z. Again, by the construction

in Lemma 3.2.5, K1 has structure constants ci for all i ∈ Z except when or i = 0

where K1 has structure constant zc0. Finally, we can construct ker f2 = K2 as a

submodule of K1, by constructing the unique submodule such that K1/K2
∼= X.

Observe that K2 has structure constants ci for all i ∈ Z, except when i = −α,

where K2 has structure constant zc−α and when i = 0, where K2 has structure

constant zc0.

Similarly, if F0(P ) = Y , there is a unique submodule of P which is the

kernel of a surjection P → EY,Z,Y . If F0(P ) = Z, then Homgr -A(P,EZ,Y,X) = k so

there is a unique submodule which is the kernel of a surjection P → EZ,Y,X . In any

case, there exists a unique smallest submodule N of P such that P/N ∈ D. Define

ι0P = N . By Lemma 4.0.4, ι0 gives an additive functor R → gr -A such that ι0
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acts on morphisms by restriction. By using Lemma 4.0.3 and Proposition 4.0.1,

we extend ι0 to a functor ι0 : gr -A→ gr -A.

We now show that ι0 has the claimed properties. Suppose P has structure

constants {ci}. Above, we computed the structure constants, {di} of ι0P . By

Lemma 3.2.5 and Corollary 3.4.4 if F0(P ) = X, then c−α ∈ {1, σ−α(z)} and

c0 ∈ {1, z + α}. We showed that d−α = zc−α and d0 = zc0 ∈ {z, f}. For all

i 6= 0,−α, we saw that ci = di. Hence, we can find ι0(P ) explicitly as a submodule

of P as follows:

(ι0P )i =


z2Pi if i ≤ −α

zPi if − α < i ≤ 0

Pi if i > 0.

Similarly, if F0(P ) = Y , then c0 ∈ {z, f} and c−α ∈ {σ−α(z + α), σ−α(f)} and

d0 = z−1c0 and d−α = z−1c−α. We can explicitly construct ι0P as follows:

(ι0P )i =


Pi if i ≤ −α

zPi if − α < i ≤ 0

z2Pi if i > 0.

Finally, if F0(P ) = Z, then P surjects onto EZ,Y,X = A/zA, and (ι0P )i = zPi for

all i ∈ Z, so ci = di for all i ∈ Z.

We can describe the action of ι0 on P purely in terms of its structure

constants, as follows. If both c0 and c−α can be multiplied by z (i.e. for i = 0,−α,

zci ∈ {1, σi(z), σi(z+α), σi(f)}) then ι0P has d0 = zc0 and d−α = zc−α. Likewise,

if both c0 and c−α can be divided by z, then ι0P has d0 = z−1c0 and d−α = z−1c−α.

Otherwise, d0 = c0 and d−α = c−α. Observe that by Lemma 3.2.5, if F0(P ) = X

then F0(ι0P ) = Y and vice versa. Hence, by repeating the above process once

by taking the kernel to EX,Z,X and next the kernel to EY,Z,Y we compute that

ι20P = z2P .

So for any rank one projective, P , ι20P = z2P ∼= P . Additionally, if P ′ is

another rank one projective, Proposition 3.4.11 tells us that Homgr -A(z2P, z2P ′) =

Homgr -A(P, P ′) is given by left multiplication by a k[z]-multiple of some θ ∈ k(z).

Since ι0 is defined on morphisms to be restriction, this shows that ι20 also gives
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an isomorphism Homgr -A(P, P ′) ∼= Homgr -A(ι20P, ι
2
0P
′). Since ι0 is additive, it pre-

serves finite direct sums, so for a direct sum of rank one projectives, ι20 is given by

multiplication by z2 in each component. Hence, ι20 is naturally isomorphic to the

identity functor on the full subcategory of finite direct sums of rank one projec-

tives. Extending to all of gr -A, this shows that ι0 is an autoequivalence of gr -A

(with quasi-inverse ι0).

Now, because for any rank one graded projective module P , the structure

constants of ι0P differ from those of P only in degrees 0 and −α, ι0P has the same

integrally supported simple factors as P except possibly X, X〈α〉, Y , Y 〈−α〉, Z,

and Z〈±α〉. But if Fα(P ) = X〈α〉, then by Table 3.4.1, c0 ∈ {1, z}. By the

construction of ι0P (multiplying c0 by 1, z or z−1 to compute d0), this means d0 ∈
{1, z} as well, so Fα(ι0P ) = X〈α〉. Similarly, if F−α(P ) = Y 〈−α〉 then F−α(ι0P ) =

Y 〈−α〉 as well. If F0(P ) = Z, then we observed above that ιP ∼= P so F0(ι0P ) = Z.

If Fα(P ) = Z〈α〉 then c0 ∈ {z+α, f}. Again, since ι0P acts on structure constants

only multiplying by 1, z, or z−1, this means d0 ∈ {z + α, f}. Since ι0P does

not affect the structure constant in degree α, by Lemma 3.2.5, Fα(ι0P ) = Z〈α〉.
Similarly, if F−α(P ) = Z〈−α〉, then F−α(ι0P ) = Z〈−α〉. Altogether, all of the

integrally supported simple factors of ι0P are the same as those of P , except that

if F0(P ) = X then F0(ι0P ) = Y and vice versa.

We will now show that ι0 fixes all simples modules other than X and Y . Let

S 6∈ {X, Y } be an integrally supported simple module. Suppose for contradiction

that ι0S 6∼= S. By Lemma 3.4.9, we can construct a canonical rank one projective

module P such that S is a factor of P but ι0S is not. Note that ι0S is a factor of

ι0P . But by the discussion above, P and ι0P have the same integrally supported

simple factors except possibly X and Y , so S is also a factor of ι0P . Applying ι0

again, we conclude that both ι0S and ι20S are factors of ι20P , but since ι20
∼= Idgr -A,

this is a contradiction, as ι0S is not a factor of P . Hence, ι0 fixes all integrally

supported simple modules other than X and Y .

Since ι0 fixes all integrally supported simple modules other than X and Y ,

ι0 is numerically trivial. By Theorem 5.1.3, ι0Mλ
∼= Mλ for all λ ∈ k \Z. Further,

for a projective module P , if F0(P ) = X then F0(ι0P ) = Y . Therefore, ι0X ∼= Y .
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For the case that α = 0, we use the same argument, letting D be the full

subcategory of gr -A whose objects are in the set S = {0, X, Y, EX,X , EY,Y }. In

this case, for a rank one projective P , we can again explicitly construct ι0P ⊆ P .

If F0(P ) = X, then

(ι0P )i =

z2Pi if i ≤ 0

Pi if i > 0

and if F0(P ) = Y , then

(ι0P )i =

Pi if i ≤ 0

z2Pi if i > 0.

Let {di} be the structure constants of ι0P . In this case, if c0 = 1 then d0 = z2.

If c0 = z2 then d0 = 1. The remainder of the proof is analogous to the previous

case.

In the case that α ∈ N, we have thus constructed analogues of Sierra’s

autoequivalences ιj [Sie09, Proposition 5.7]. These autoequivalences, which we

also call ιj share many of the same properties as Sierra’s. First notice that since

we defined ιj = SjAι0S
−j
A , we construct ιj by shifting all the modules of S by j and

repeating the same construction. This also that means that for a rank one graded

projective module P , ι2jP = (z + j)2P , by the same argument as in the previous

proof. Also, reviewing the construction above, it is clear that for any integers i and

j, ιiιj = ιjιi and so the subgroup of Pic(gr -A) generated by the {ιj} is isomorphic

to (Z/2Z)(Z).

We identify (Z/2Z)(Z) with finite subsets of the integers, Zfin with operation

given by exclusive or. We often denote the singleton set {n} ∈ Zfin as simply n.

For each J ∈ Zfin, we define the autoequivalence

ιJ =
∏
j∈J

ιj.

As we noted in the previous proof, ιj has quasi-inverse ιj so ιJ has quasi-inverse

ιJ . For completeness, define ι∅ = Idgr -A.
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Having constructed involutions in the case α ∈ N, we now turn our attention

to the case α ∈ k \Z. In this case we will also be able to construct generalizations

of Sierra’s autoequivalences.

Proposition 5.2.2. Let α ∈ k \ Z. Then for any j ∈ Z, there is a numerically

trivial autoequivalence ι(j,∅) of gr -A such that ι(j,∅)(X0〈j〉) ∼= Y0〈j〉, ι(j,∅)(Y0〈j〉) ∼=
X0〈j〉, and ι(j,∅)(S) ∼= S for all other simple modules S. For any i, j ∈ Z, S iAι(j,∅) ∼=
ι(i+j,∅)S iA, and (ι(j,∅))

2 ∼= Idgr -A.

Similarly, for any j ∈ Z, there is a numerically trivial autoequivalence ι(∅,j)

of gr -A such that ι(∅,j)(Xα〈j〉) ∼= Yα〈j〉, ι(∅,j)(Yα〈j〉) ∼= Xα〈j〉, and ι(∅,j)(S) ∼= S for

all other simple modules S. For any i, j ∈ Z, S iAι(∅,j) ∼= ι(∅,i+j)S iA, and (ι(∅,j))
2 ∼=

Idgr -A.

Proof. The construction is similar to that in the proof of Proposition 5.2.1. We

construct ι(∅,0) and define ι(∅,j) = SjAι(∅,0)S−jA . Let R be the full subcategory of

gr -A whose objects are the canonical rank one projectives. We define ι(∅,0) on R,

then use Lemmas 4.0.3 and 4.0.1 to extend to a functor defined on all of gr -A.

The construction of ι(0,∅) is completely analogous.

Let S = {0, Xα, Yα} and let D be the full subcategory of gr -A whose objects

are the elements of S. Clearly D is closed under subobjects. Let P be a graded

rank one projective module. By Corollary 3.4.6, P surjects onto exactly one of

Xα and Yα, a module that we called Fα
0 (P ). Hence, there exists a unique smallest

submodule N ⊆ P such that P/N ∈ S. Let N = ι(∅,0)P . By Lemma 4.0.4,

ι(∅,0) gives an additive functor R → gr -A whose action on morphisms is given by

restriction.

Focusing now on structure constants, let {ci} and {di} be the structure

constants for P and ι(∅,0)P , respectively. We can compute d0 by constructing the

unique kernel to the surjection P → Fα
0 (P ). If Fα

0 (P ) = Xα, then

(ι(∅,0)P )i =

(z + α)Pi if i ≤ 0

Pi if i > 0
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and if Fα
0 (P ) = Y , then

(ι(∅,0)P )i =

Pi if i ≤ 0

(z + α)Pi if i > 0.

In particular, If c0 ∈ {1, z} then d0 = (z + α)c0 and if c0 ∈ {z + α, f}, then

d0 = (z + α)−1c0. By repeating this construction, we see that ι2(∅,0)P = (z + α)P

and so gr -A is an autoequivalence of gr -A with quasi-inverse ι(∅,0).

Because for any rank one graded projective module P the structure con-

stants for ι(∅,0)P differ from those of P only in degree 0, where they differ only by

a factor of z+α, by Lemma 3.2.6, ι(∅,0)P has the same integrally supported simple

factors as P except if Fα
0 (P ) = Xα then Fα

0 (ι(∅,0)P ) = Yα and vice versa. Again,

examining the action of ι(∅,0) over all rank one projectives P , we deduce that ι(∅,0)P

has the claimed action on simple modules, fixing all but Xα and Yα.

We have therefore also constructed analogues of Sierra’s ιj in the case that

α ∈ k \ Z. The subscript on the ι keeps track of which of the simples modules is

being permuted: the first coordinate corresponds to the shifts of X0 and Y0 while

the second coordinate corresponds to the shifts of Xα and Yα. Observe that in this

case the subgroup of Pic(gr -A) generated by the {ι(j,∅), ι(∅,j)} is isomorphic to the

direct product Zfin × Zfin. For every J, J ′ ∈ Zfin × Zfin we define

ι(J,J ′) =
∏
j∈J

ι(j,∅)
∏
j∈J ′

ι(∅,j).

For completeness, define ι(∅,∅) = Idgr -A.

Finally, we are able to determine Pic0(gr -A) and therefore Pic(gr -A).

Lemma 5.2.3. Let α ∈ N. Then the map

Φ : Zfin → Pic0 (gr -A(f))

J 7→ ιJ

is a group isomorphism.

Let α ∈ k \ Z. Then the map

Ψ : Zfin × Zfin → Pic0 (gr -A(f))

(J, J ′) 7→ ι(J,J ′)
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is a group isomorphism.

Proof. First let α ∈ N. For any i ∈ Z, we saw that ι2i
∼= Idgr -A. Hence, ιJ ιJ ′ ∼= ιJ⊕J ′

so Φ is a group homomorphism. It is clear that Φ is injective. To show surjectivity,

suppose F ∈ Pic0(gr -A). Since F is numerically trivial, by Theorem 5.1.3, F fixes

all shifts of Z.

By Lemma 3.4.9, we can construct a canonical rank one projective P such

that Fn(P ) = X〈n〉 for all n ≥ 0 and Fn(P ) = Y 〈n〉 for all n < 0. Note that

since F is numerically trivial, for any j ∈ Z, F(Fj(P )) ∼= Fj(F(P )). Now by

Corollary 3.2.8, F(Fj(P )) can only differ from Fj(F(P )) for finitely many j. Let

J be precisely those indices at which they differ. By Lemma 5.1.2, ιJ ∼= F , so Φ

is surjective.

The case α ∈ k \ Z follows from the same argument, doubling the number

of indices where necessary.

Theorem 5.2.4. Let f ∈ k[z] be quadratic. Then

Pic(gr -A(f)) ∼= Zfin oD∞.

Proof. This follows from Corollary 5.1.9, Lemma 5.2.3, and the fact that

Zfin × Zfin
∼= Zfin.

Finally, we are interested in when the collections of modules {ιJA | J ∈ Zfin}
(in the case α ∈ N) or {ι(J,J ′) | (J, J ′) ∈ Zfin×Zfin} (in the case α ∈ k\Z) generate

gr -A(f). In the cases of a multiple root or non-congruent roots, then just as in

the case for the first Weyl algebra, these collections of modules generate gr -A(f).

However, in the case of a congruent root, we see that {ιJA | J ∈ Zfin} does not.

Lemma 5.2.5. Let f = z(z + α).

1. If α = 0, then {ιJA | J ∈ Zfin} generates gr -A(f).

2. If α ∈ k \ Z, then {ι(J,J ′)A | (J, J ′) ∈ Zfin × Zfin} generates gr -A(f).

3. If α ∈ N+, then {ιJA | J ∈ Zfin} does not generate gr -A(f).
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Proof. In the first two cases, this follows from Proposition 3.4.16, Proposition 5.2.1,

and Proposition 5.2.2. In the case that α ∈ N+, for all J ∈ Zfin, the shifts

of Z that are factors ιJ(A) are exactly those that are factors of A. Namely,

Homgr -A(ιJ(A), Z〈n〉) = 0 for n < 0 and n ≥ α. Hence, no ιJ(A) has a surjection

to Z〈−1〉, and so {ιJ(A) | J ∈ Zfin} does not generate gr -A(f).

Lemma 5.2.6. Let α ∈ N+. The action of Pic0(gr -A) on the set of graded rank

one projective modules has infinitely many orbits, one for each finite subset of Z.

Proof. By Lemma 3.4.9, if for each n we choose Sn ∈ {X〈n〉, Y 〈n〉, Z〈n〉} such that

for n � 0, Sn = X〈n〉 and S−n = Y 〈−n〉, then there exists a rank one projective

whose integrally supported simple factors are precisely the Sn. By Theorem 5.1.3,

an autoequivalence F ∈ Pic0(gr -A) will have F(Z〈n〉) ∼= Z〈n〉. Also, by Propo-

sition 5.2.1, there exist numerically trivial autoequivalences permuting X〈n〉 and

Y 〈n〉 for any n. Hence, for each finite subset J of Z there is an orbit consisting

of all rank one graded projective modules that surject onto exactly Z〈j〉 for each

j ∈ J .

Remark 5.2.7. In the case α = 0 or α ∈ k \ Z, it is easily checked that the action

of Pic0(gr -A) is transitive on the set of graded rank one projective modules.



Chapter 6

Constructing a homogeneous

coordinate ring for gr-A

The main result in this chapter is that for a generalized Weyl algebra A(f)

defined by a quadratic polynomial f , there exists a commutative k-algebra B(f),

graded by a group Γ such that qgr -A(f) ≡ gr -(B(f),Γ). We will construct the

graded ring B(f) explicitly in all cases. The main tool in proving this equivalence

of categories is a theorem of Angel del Ŕıo [del91, Theorem 7].

6.1 Notation

In order to use del Ŕıo’s theorem, we will use essentially the same notation

as found in the discussion before [Smi11, Theorem 5.13]. Let R and S be k-algebras

graded by the abelian groups Γ and G, respectively. Following the definition of del

Ŕıo in [del91], we define a bigraded R-S-bimodule to be an R-S-bimodule P with

a k-vector space decomposition

P =
⊕

(γ,g)∈Γ×G

P(γ,g)

that respects the graded structure of R on the left and S on the right. That is, for

any γ, δ ∈ Γ and any g, h ∈ G,

Rγ · P(δ,h) · Sg ⊆ P(γ+δ,g+h).

78
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When we want to specify the degrees of an element p ∈ P(γ,g), we use the notation

γpg.

For any γ ∈ Γ we have the G-graded right S-module

P(γ,∗) =
⊕
g∈G

P(γ,g).

Note that if r ∈ Rδ, then left multiplication by r is an S-module homomorphism

P(γ,∗) → P(γ+δ,∗) that preserves G-degree and hence we get a k-linear map

ϕ : Rδ → Homgr -(S,G)(P(γ,∗), P(γ+δ,∗)). (6.1)

We now define a functor HS(P,−) : gr -(S,G) → gr -(R,Γ). if M is a

G-graded right S-module, let

HS(P,M) =
⊕
γ∈Γ

Homgr -(S,G)(P(−γ,∗),M).

First, note that HS(P,M) is Γ-graded. The right R-module structure is given

as follows : given h ∈ Homgr -(S,G)(P(−γ,∗),M) and r ∈ Rδ, recall that as in

equation (6.1), multiplication by r gives a G-graded S-module homomorphism

ϕ(r) : P(−γ−δ,∗) → P(−γ,∗). Then

h · r = h ◦ ϕ(r) ∈ Homgr -(S,G)(P(−γ−δ,∗),M).

We obtain a functor

HS(P,−) : gr -(S,G)→ gr -(R,Γ) (6.2)

by defining HS(P,−) on a morphism h : M → N to be composition with h. In his

discussion before [del91, Proposition 2], del Ŕıo notes that HS(P,−) is naturally

isomorphic to the functor he denotes (−)P∗ .

In the subsequent sections we will attempt to construct a graded com-

mutative ring B and a bigraded B-A-bimodule P , and then use del Ŕıo’s theo-

rem to prove that HA(f)(P,−) is an equivalence of categories. In the cases of a

multiple root or distinct non-congruent roots, we will be able to construct such

a ring and bimodule. In the case of congruent roots, we will pass to the quo-

tient category qgr -A(f) obtained by taking gr -A(f) modulo its full subcategory



80

of finite-dimensional modules. We then show that qgr -A(f) ≡ gr -(B,Zfin) for a

commutative ring B. In the next section, we develop machinery which constructs

Γ-graded rings R from autoequivalences in the Picard group of gr -(S,G).

6.2 Defining a ring from autoequivalences

Suppose we have an abelian subgroup Γ ⊆ Pic(gr -(S,G)) and for each

γ ∈ Γ, choose one autoequivalence Fγ ∈ Aut(gr -(S,G)). Since Pic(gr -(S,G)) is

the group Aut(gr -(R,Γ)) modulo natural isomorphism, we have, for all γ, δ ∈ Γ

FγFδ ∼= FδFγ ∼= Fγ+δ.

Let Θγ,δ be the G-graded S-module isomorphism FγFδS → Fγ+δS (i.e. Θγ,δ is the

natural isomorphism at S). Motivated by Paul Smith’s construction in [Smi11,

§10], we can define a Γ-graded ring R if the isomorphisms Θγ,δ satisfy the following

condition: for all γ, δ, ε ∈ Γ and for all ϕ ∈ Homgr -(S,G)(S, ιγS)

Θε,γ+δ ◦ Fε(Θδ,γ) ◦ FεFδ(ϕ) = Θδ+ε,γ ◦ Fδ+ε(ϕ) ◦Θε,δ. (6.3)

Morally, this says that the map Aut(gr -(S,G))×Aut(gr -(S,G))→ Aut(gr -(S,G))

mapping (Fγ,Fδ) to Fγ+δ is associative, although it is a weaker condition, since

the isomorphisms Θγ,δ are only at the module SS.

Proposition 6.2.1. Assume the setup and notation above. If the autoequivalences

{Fγ | γ ∈ Γ} and isomorphisms {Θγ,δ | γ, δ ∈ Γ} satisfy condition (6.3) then

R =
⊕
γ∈Γ

Homgr -(S,G)(S,FγS)

is an associative Γ-graded ring with multiplication defined as follows. For ϕ ∈ Rγ

and ψ ∈ Rδ

ϕ · ψ = Θδ,γ ◦ Fδ(ϕ) ◦ ψ.

Proof. We need to check that the multiplication defined above is associative. It

suffices to check on homogeneous elements, so let ϕ, ψ, ξ ∈ R be homogeneous

elements of degree γ, δ, and ε, respectively. Then, by definition

(ϕ · ψ) · ξ = Θε,γ+δ ◦ Fε(Θδ,γ) ◦ FεFδ(ϕ) ◦ Fε(ψ) ◦ ξ
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and

ϕ · (ψ · ξ) = Θδ+ε,γ ◦ Fδ+ε(ϕ) ◦Θε,δ ◦ Fε(ψ) ◦ ξ.

Since we assumed the isomorphisms satisfied condition (6.3), R is associative.

If, for example, S is a Z-graded ring and we take Γ = Z generated by the

shift functor on gr -S, then SnSm = Sn+m so the isomorphisms Θn,m are trivial and

condition (6.3) is automatic. By the construction in Proposition 6.2.1, we recover

our original ring as R ∼= S. Since we found that for a GWA A, gr -A has many

autoequivalences, we can choose a more interesting subgroup of autoequivalences

to define such a ring.

Given rings R and S as in Proposition 6.2.1, condition (6.3) also allows us

to define a bigraded R-S-bimodule P . Let

P =
⊕
γ∈Γ

FγS.

The G-graded right S-module structure on each FγS gives P a G-graded right

S-module structure. Let ϕ ∈ Rγ and p ∈ P(δ,∗) = FδS. Then P has a Γ-graded

left R-module structure given by

ϕ · p = [Θδ,γ ◦ Fδ(ϕ)] (p) ∈ P(γ+δ,∗). (6.4)

For ϕ ∈ Rγ, ψ ∈ Rδ,

(ψ · ϕ) · p = [Θε,γ+δ ◦ Fε(Θδ,γ) ◦ FεFδ(ϕ) ◦ Fε(ψ)] (p)

while

ψ · (ϕ · p) = [Θδ+ε,γ ◦ Fδ+ε(ϕ) ◦Θε,δ ◦ Fε(ψ)] (p).

and since we assumed condition (6.3), therefore equation (6.4) gives P a Γ-graded

left R-module structure. Since Fδ is an autoequivalence of gr -(S,G) and Θδ,γ

is a G-graded S-module isomorphism, it is easily checked that this makes P a

bigraded R-S-bimodule. This extra left R-module structure makes HS(P, P ) a

bigraded R-R-bimodule.
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As a graded ring, R has its usual bigraded R-R-bimodule structure. We

define the bigraded R-R-bimodule

R̂ =
⊕
γ∈Γ

⊕
δ∈Γ

R(γ,δ) =
⊕
γ∈Γ

⊕
δ∈Γ

Rγ+δ =
⊕
γ∈Γ

⊕
δ∈Γ

Homgr -(S,G)(S,Fγ+δS)

and note that there exists a canonical homomorphism of bigraded R-R-bimodules

%PR : R̂ −→ HS(P, P ) =
⊕
γ∈Γ

Homgr -(S,G)

(
F−γS,

⊕
δ∈Γ

FδS

)

where %PR maps the element γϕδ to the homomorphism which maps p ∈ P(γ,∗) =

F−γS to ϕ · p ∈ FδS where ϕ acts as in equation (6.4) and maps all other homo-

geneous elements to 0. This map %PR is the same as the one del Ŕıo calls %PA in

[del91, Lemma 5], though del Ŕıo’s bigraded bimodule’s module structures are on

opposite sides.

Proposition 6.2.2. Assume the setup and notation above. If P is a generator of

gr -(S,G), then HS(P,−) gives an equivalence of categories

gr -(R,Γ)→ gr -(S,G).

Proof. This follows immediately from [del91, Theorem 7(c)] as long as P is a

projective generator of gr -(S,G) and %PR is an isomorphism. Since each Fγ is an

autoequivalence, FγS is automatically projective so if P is a generator then it

is a projective generator. Hence, we need only show that %PR is an isomorphism.

Assuming the setup above, recall that for an element

γϕδ ∈ γRδ = Homgr -(S,G)(S,Fγ+δS)

%PR(ϕ) is given by the homomorphism Θδ,γ ◦ Fδ(ϕ) : F−γS → FδS. Now since Fγ
is an autoequivalence it gives an isomorphism

Homgr -(S,G)(S,Fγ+δS) ∼= Homgr -(S,G)(F−γS,F−γFγ+δS)

and Θ−γ,γ+δ gives an isomorphism F−γFγ+δS → S. Hence, %PR is an isomorphism

and HS(P,−) is an equivalence of categories.
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With this framework in place, we need only find subgroups of Pic(gr -(S,G))

such that the autoequivalences {Fγ | γ ∈ Γ} satisfy condition (6.3) and the FγS
generate gr -(S,G). Cranking the machinery yields a Γ-graded ring R such that

gr -(R,Γ) ≡ gr -(S,G). For a generalized Weyl algebra A(f), we will see that

the autoequivalences {ιJ | J ∈ Zfin} constructed in Chapter 5 often satisfy these

conditions.

6.3 Multiple root

Let α = 0. We saw that in Chapter 5 the autoequivalences {ιn | n ∈ Z}
formed a subgroup of Pic(gr -A) isomorphic to Zfin. By Lemma 5.2.5, we know that

the set {ιJA | J ∈ Zfin} generates gr -A. We will show that these autoequivalences

satisfy condition (6.3), and hence we can construct a Zfin-graded commutative ring

B such that gr -(B,Zfin) ≡ gr -A. For each J ∈ Zfin, we define the polynomial

hJ =
∏
j∈J

(z + j)2.

For completeness, define h∅ = 1. Recall that in Proposition 5.2.1 we showed that

for a projective module P , ι2nP = (z + n)2P and so ι2n
∼= Idgr -A. We denote by σn

the isomorphism ι2nA→ A. Since A is projective, σn is given by left multiplication

by h−1
n . Similarly, for J ∈ Zfin, we define

σJ : ι2JA→ A

given by left multiplication by h−1
J . Now, for I, J ∈ Zfin, we define

ΘI,J = ιI⊕J(σI∩J) = ΘJ,I

ΘI,J : ιIιJA = ιI⊕J ι
2
I∩JA→ ιI⊕JA.

Lemma 6.3.1. The isomorphisms {ΘI,J | I, J ∈ Zfin} and the autoequivalences

{ιK | K ∈ Zfin} satisfy condition (6.3).

Proof. We must show that for all I, J,K ∈ Zfin and all ϕ ∈ Homgr -A(A, ιIA),

ΘK,I⊕J ◦ ιK(ΘJ,I) ◦ ιKιJ(ϕ) = ΘJ+K,I ◦ ιJ+K(ϕ) ◦ΘK,J
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or equivalently that

ιI⊕J⊕K(σ(I⊕J)∩K) ◦ ιKιI⊕J(σI∩J) ◦ ιKιJ(ϕ)

=ιI,J⊕K(σI∩(J⊕K)) ◦ ιJ⊕K(ϕ) ◦ ιJ⊕K(σJ∩K)

Recall that by Proposition 3.4.11, the homomorphisms between rank one

projective modules are all given by multiplication by an element in the commuta-

tive ring k(z). Since the autoequivalences ιL act on morphisms by restriction, we

need only check that multiplication by h−1
I∩Jh

−1
(I⊕J)∩K is the same as h−1

J∩Kh
−1
I∩(J⊕K).

This is true since

(I ∩ J) ∩ (I ⊕ J) ∩K = (J ∩K) ∩ I ∩ (J ⊕K) = ∅

and

(I ∩ J) ∪ (I ⊕ J) ∩K = (I ∩ J) ∪ (I ∩K) ∪ (J ∩K) = (J ∩K) ∪ (I ∩ (J ⊕K)).

Therefore, we conclude that the isomorphisms {ΘI,J | I, J ∈ Zfin} and autoequiv-

alences {ιK | K ∈ Zfin} satisfy condition (6.3).

As in Proposition 6.2.1, we can define the Zfin-graded ring

B =
⊕
J∈Zfin

BJ =
⊕
J∈Zfin

Homgr -A(A, ιJA).

To be explicit, the multiplication in B is defined as follows. For a ∈ BI and b ∈ BJ ,

a · b ∈ Homgr -A(A, ιI⊕JA) is defined by

a · b = ιI⊕J(σI∩J) ◦ ιJ(a) ◦ b.

Theorem 6.3.2. There is an equivalence of categories

gr -A ≡ gr -(B,Zfin).

Proof. This is an immediate corollary of Propositions 6.2.1 and 6.2.2 together with

Lemma 6.3.1.
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Our next results describe some properties of the ring B which will allow us

to give a presentation for B. We first establish some notation. For J ∈ Zfin let ϕJ

be the map

ϕJ : (ιJA)0 → Homgr -A(A, ιJA)

which takes m ∈ (ιJA)0 to the homomorphism defined by ϕJ(m)(a) = m · a. It

is clear that ϕJ is an isomorphism of k[z]-modules, and we will use ϕJ to identify

BJ with (ιJA)0. For J ∈ Zfin, define bJ := ϕJ(hJ) ∈ BJ with b∅ := ϕ∅(1).

Lemma 6.3.3. Let α = 0 and let I, J ∈ Zfin.

1. (ιJA)0 = hJk[z] so bJ freely generates BJ as a right B∅-module.

2. bIbJ = b2
I∩JbI⊕J so bJ =

∏
j∈J bj.

3. For all n ∈ Z, b2
n = ϕ∅(hn).

4. B is a commutative k-algebra generated by {bn | n ∈ Z}.

Proof. This is an analogue of [Smi11, Lemma 10.2]; we use similar arguments to

Smith, altering them slightly when necessary. Though these results are similar, we

will see later in this section that, interestingly, the ring B exhibits properties that

are rather different those of from Smith’s ring C.

1. Recall that in Proposition 5.2.1, for each n ∈ Z and for each rank one

projective P , we constructed ιnP as a submodule of P , in particular the

kernel of a nonzero morphism P → EX,X〈n〉 or P → EY,Y 〈n〉. We also saw

that (ι2nP )0 = (z + n)2P0. Therefore, (z + n)2A0 = (ι2nA)0 ⊆ (ιnA)0. But

since ιnA is the kernel of the nonzero morphism to EX,X〈n〉 or EY,Y 〈n〉, and

these modules have k-dimension 2 in all graded components where they are

nonzero, so (ιnA)0 has k-codimension 2 in A0. Hence,

(ιnA)0 = (z + n)2A0 = hnk[z].

Now, since the autoequivalences ιn commute, (ιJA)0 ⊆ (ιjA)0 = hjk[z] for

each j ∈ J . Additionally, (ιJA)0 has k-codimension 2|J | in A0. Therefore,

(ιJA)0 = hJk[z].
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Identifying (ιJA)0 with BJ via ϕ, we see that bJ = ϕJ(hJ) freely generates

BJ as a k[z]-module. Now since ι∅ = Idgr -A, multiplication BJ × B∅ → BJ

sends (f, g) to f ◦ g. Since B∅ = k[z], the result follows.

2. This result follows from a proof identical to the proof of [Smi11, Lemma

10.2.(5)-(6)]. For convenience, we summarize it here. By the definition of

multiplication in B,

bIbJ = ιI⊕J(σI∩J) ◦ ιJ(ϕI(hI)) ◦ ϕJ(hJ).

Recalling that the involutions {ιI | I ∈ Zfin} act on morphisms by restriction,

we see that bIbJ : A → ιI⊕JA is given by left multiplication by hI∪J , and

therefore

bIbJ = ϕI⊕J(hI∪J).

Now note that

b2
I∩JbI⊕J = bI∩J(bI∩JbI⊕J) = bI∩J(ϕI∪J(hI∪J)) = bI∩JbI∪J

= ϕ(I∩J)⊕(I∪J)(h(I∩J)∪(I∪J))

= ϕI⊕J(hI∪J) = bIbJ .

Induction on |J | yields bJ =
∏

j∈J bj.

3. For a ∈ A,

(bn.bn)(a) = σn(h2
n)(a) = (z + n)−2h2

na = hna.

Hence, b2
n is given by multiplication by (z + n)2, that is,

b2
n = ϕ∅((z + n)2).

4. Notice that

b2
1 − b2

0 = ϕ∅((z + 1)2 − z2) = ϕ∅(2z + 1)

so

ϕ∅(z) =
1

2

(
b2

1 − b2
0 − ϕ∅(1)

)
.

Hence, the bn generate B∅ as a k-algebra, and combined with parts 1 and 2,

the bn generate B as a k-algebra. By part 2, bnbm = bmbn for all n,m ∈ Z,

and the result follows.
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Proposition 6.3.4. The Zfin-graded ring B has presentation

B ∼=
k[z][bn | n ∈ Z]

(b2
n = (z + n)2 | n ∈ Z)

where deg z = ∅ and deg bn = n.

Proof. By Lemma 6.3.3, the elements {bn | n ∈ Z} generate B as a k-algebra and

satisfy the relations b2
n = (z + n)2 for all n ∈ Z. Hence, we need only show that

the ideal generated by these relations contains all relations in B.

Let r = 0 be a relation in B. Since B is graded, we may assume that r is

homogeneous of degree I. By Lemma 6.3.3, we can write

r = bIβ = 0

where β is a k[z]-linear combination of products of b2
j ’s for some integers j. By

using the relations b2
j = (z + j)2 for each j, we can rewrite β in B as a polynomial

g(z) ∈ k[z]. Hence

r = bIg(z) = 0

but since BI is freely generated as a right B∅ = k[z]-module by bI , this implies

that g(z) = 0, so the relation r was already in the ideal (b2
n = (z + n)2 | n ∈ Z),

completing our proof.

We use this presentation to prove some basic results about B. While the

construction of B was analogous to that of Smith’s ring C in [Smi11], the two

rings are different enough to warrant closer examination. Smith proves that C

is an ascending union of Dedekind domains. In contrast, since b2
n − (z + n)2 =

(bn + z + n)(bn − z − n), B is not even a domain.

Lemma 6.3.5. The minimal prime ideals of B are of the form

(bn + (−1)εn(z + n) | n ∈ Z)

for some choice of εn ∈ {0, 1} for each n ∈ Z.
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Proof. We work in the polynomial ring S = k[z][bn | n ∈ Z]. The prime ideals

of B correspond to prime ideals of S containing (b2
n = (z + n)2 | n ∈ Z). For each

n ∈ Z, choose εn ∈ {0, 1}. Viewing S as a polynomial ring with coefficients in k[z],

we see that

p = (bn + (−1)εn(z + n) | n ∈ Z)

is the kernel of the map evaluating a polynomial g(bn | n ∈ Z) at the point

((−1)εn(z + n) | n ∈ Z) and so p is a prime ideal of S. To see that p corresponds

to a minimal prime, we observe that for every n ∈ Z, a prime ideal containing

b2
n− (z+n)2 must contain either bn + (z+n) or bn− (z+n). Hence p corresponds

to a minimal prime.

For J ∈ Zfin we write RJ for the k-subalgebra of B generated by the ele-

ments {1, z} ∪ {bn | n ∈ J}. By the same argument as in Proposition 6.3.4, RJ

has the presentation

RJ
∼=

k[z][bn | n ∈ J ]

(b2
n = (z + n)2 | n ∈ J)

.

We will use the fact that B is an ascending union of the subrings RJ for any

ascending, exhaustive chain of subsets J ∈ Zfin.

Proposition 6.3.6. B is a non-noetherian, reduced ring of Krull dimension 1.

Proof. We showed in Lemma 6.3.5 that B has infinitely many minimal prime ideals,

so B is not noetherian. Further, the quotient of B by a minimal prime is isomorphic

to k[z], and hence B has Krull dimension 1. We will show that the intersection

of all minimal primes is (0), so the nilradical n(B) = (0). Let a be an element

in the intersection of all minimal primes. We can write a as a sum of finitely

many homogeneous terms, so a is an element of the subring RJ for some J ∈ Zfin.

Suppose j ∈ J . Since

a ∈ (bj + (z + j)) + (bn − (z + n) | n ∈ J \ {j}) and

a ∈ (bj − (z + j)) + (bn − (z + n) | n ∈ J \ {j}) ,

we can write

a = (bj + (z + j))r + s = (bj − (z + j))r′ + s′, (6.5)
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for some r, r′ ∈ RJ and some s, s′ ∈ (bn − (z + n) | n ∈ J). Setting bn = (z + n)

for all n ∈ J , the right hand side of (6.5) is identically 0 and hence

r ∈ (bn − (z + n) | n ∈ J)

so

a = (bj + (z + j))r + s ∈
(
b2
j − (z + j)2

)
+ (bn − (z + n) | n ∈ J \ {j}) .

Since (b2
j − (z + j)2) = (0) in B, therefore

a ∈ (bn − (z + n) | n ∈ J \ {j}) .

Inducting on the size of J , we conclude that a = 0 and since a was an arbitrary

element in the intersection of all primes, we conclude that n(B) = (0).

6.4 Congruent roots and the quotient category

qgr-A

Let α ∈ N+ so that we are in the congruent root case. The fact that the

set {ιJA | J ∈ Zfin} does not generate gr -A is a significant difference from the

other cases. In particular, we are unable to use Proposition 6.2.2. One of the main

obstructions is that there are infinitely many orbits of rank one graded projectives

under the action of numerically trivial autoequivalences since numerically trivial

autoequivalences fix the finite-dimensional simple modules, Z〈i〉.
To deal with this obstruction, we will take the quotient category of gr -A

modulo its full subcategory of finite-dimensional modules. This is the same con-

struction that Artin and Zhang [AZ94] use in their definition of the noncommu-

tative projective scheme associated to an N-graded ring R. However, as A is

Z-graded, the details are somewhat different. We will investigate this quotient

category fairly explicitly.

Let fdim -A denote the full subcategory of gr -A consisting of all finite-

dimensional modules. The only finite-dimensional simple modules are the shifts of

Z so each object in fdim -A has a composition series consisting entirely of shifts of
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Z. By Lemma 3.3.3, therefore every object in fdim -A is a direct sum of shifts of

Z. Since fdim -A is a Serre subcategory, we can define

qgr -A = gr -A/ fdim -A.

The next lemma allows us to write down a Hom set in qgr -A in a very concrete

way.

Lemma 6.4.1. 1. For every finitely generated graded right A-module M , there

exists a unique smallest submodule κ(M) ⊆M such that M/κ(M) ∈ fdim -A.

2. For every finitely generated graded right A-module N , there exists a unique

largest submodule τ(N) ⊆ N such that τ(N) ∈ fdim -A.

Proof. 1. Since M is finitely generated, HomA(M,Z) is finite-dimensional over

k and is nonzero in only finitely many degrees, say d1, . . . , dn. Letting I =

{Z〈d1〉 . . . , Z〈dn〉} and D be the full subcategory of gr -A consisting of all

finite direct sums of elements from I, by Proposition 4.0.5, there exists a

unique smallest submodule M ′ such that M/M ′ ∈ D. Let κ(M) = M ′. Note

that in fact κ(M) is the unique smallest submodule such that M/κ(M) ∈
fdim -A because M/κ(M) ∈ fdim -A and any factor of M in fdim -A is also

in D.

2. Since N is finitely generated and A is noetherian, N is noetherian. Since the

sum of two objects in fdim -A is again an object in fdim -A, there exists a

unique largest submodule of N that is a direct sum of shifts of Z. Call this

largest submodule τ(N).

The preceding lemma allows us to describe Homqgr -A(M,N) without any

reference to a direct limit. In particular,

Homqgr -A(πM, πN) = Homgr -A(κ(M), N/τ(N)).

Further, for a module M , Proposition 4.0.5 not only gives the existence of κ(M),

it also gives the construction. Indeed, we can construct κ(M) by taking the inter-

section of all kernels of maps M → Z〈i〉.
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Proposition 6.4.2. Let P be a projective graded right A-module. Then πP is

projective in qgr -A if and only if κ(P ) = P .

Proof. Suppose P is projective in gr -A and κ(P ) = P . Let M and N be graded

A-modules and let g ∈ Homqgr -A(πM, πN) be an epimorphism. We show that for

any morphism h : πP → πN , there exists a lift j : πP → πM so that πP is

projective.

To show projectivity of πP , we are only concerned with these morphisms in

qgr -A, so we may replace M by κ(M) since πM = πκ(M) and similarly we may

replace N by N/τ(N). Then g is represented by a morphism g ∈ HomA(M,N)

such that coker(g) ∈ fdim -A. But since coker(g) ∈ fdim -A, πN = π im g, so we

may replace N with im g and assume that g is surjective.

Now note that since κ(P ) = P , we have Homqgr -A(πP, πN) = HomA(P,N).

So h is represented by a morphism h : P → N , which by the projectivity of P in

gr -A lifts to a morphism j : P →M . Let j = π(j).

Conversely, suppose that κ(P ) 6= P . Then κ(P ) fits into the exact sequence

0 −→ κ(P ) −→ P −→
⊕
i∈I

Z〈i〉 −→ 0

for some finite set of integers I. Note that by Lemma 3.4.3 this exact sequence

shows that κ(P ) is not projective. By Lemma 3.4.2, κ(P ) has projective dimension

at most 1, and since κ(P ) is not projective, it has a projective resolution in gr -A

of length 1:

0 −→ P1
d1−→ P0

d0−→ κ(P )→ 0. (6.6)

Suppose for contradiction that πP = πκ(P ) is projective in qgr -A. Since

π is an exact functor, we have the following exact sequence in qgr -A:

0 −→ πP1
πd1−→ πP0

πd0−→ πκ(P )→ 0.

Since we assumed πκ(P ) is projective, there exists a splitting h : πκ(P ) → πP0

such that πd0 ◦ h = Idπκ(P ). The splitting h is represented by a morphism h ∈
HomA(κ(P ), P0), since P0 has no finite-dimensional submodules. Now h gives a

splitting of (6.6), since π(h◦d0) = Idπκ(P ) and since κ(P ) has no finite-dimensional
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submodules, we know that Homqgr -A(πκ(P ), πκ(P )) = HomA(κ(P ), κ(P )). Hence,

h ◦ d0 = Idκ(P ). But a splitting of (6.6) shows that κ(P ) is projective, which is a

contradiction.

Corollary 6.4.3. If P is a rank one projective in gr -A then π(P ) is projective in

qgr -A if and only if for each n ∈ Z, P surjects onto exactly one of X〈n〉 or Y 〈n〉.

Proof. This follows immediately from Proposition 6.4.2 and Corollary 3.4.6.

Note that in particular, the previous corollary says that A is not projective

in qgr -A.

Proposition 6.4.4. Let P = {Pi}i∈I be a set of projective modules in gr -A. If P
generates every shift of X and Y then πP = {πPi}i∈I generates qgr -A.

Proof. Suppose P is a set of projective modules in gr -A which generates every

shift of X and Y . Since the shifts of A generate gr -A, likewise the shifts of πA

generate qgr -A. Since πA = πκ(A), we will show that P generates every shift of

κ(A) and hence πP generates every shift of πκ(A).

Let P ∈ P and choose a maximal embedding ϕ : P → κ(A)〈n〉. It suffices

to construct a surjection ψ :
⊕

j∈J Pj → κ(A)/P for some J ⊆ I. This is because,

by the projectivity of the Pj, there exists a lift ψ :
⊕

j∈J Pj → κ(A)〈n〉 and because

imϕ+ imψ = κ(A)〈n〉.
Since A has Krull dimension 1, the quotient κ(A)〈n〉/P has finite length.

Further, since HomA(κ(A), Z) = 0, so κ(A)〈n〉/P is a direct sum of indecompos-

ables, none of which has a factor of Z. It thus suffices to show that P generates

every such indecomposable.

Without loss of generality, suppose κ(A)〈n〉/P is an indecomposable with

a factor of X〈i〉. We induct on the length of the indecomposable. By hypothesis,

some P0 ∈ P surjects onto X〈i〉. By the projectivity of P0, this surjection then

lifts to a map g : P0 → κ(A)〈n〉/P . If this is a surjection, then we are done.

Otherwise, P0 surjects onto a proper submodule of κ(A)〈n〉/P . Again, it suffices

to give a surjection onto the cokernel of g. But now note that since κ(A)〈n〉 surjects

onto (κ(A)〈n〉/P )/ im(g), then (κ(A〈n〉/P )/ im(g) again has no factor of Z and
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has shorter length. By induction, P generates (κ(A)〈n〉/P )/ im(g) and thus P
generates κ(A)〈n〉.

Theorem 6.4.5. Let α ∈ N+. There is an equivalence of categories

gr -A
(
z2
)
≡ qgr -A (z(z + α)) .

Proof. Let f = z2 and g = z(z + α). Let P be the full subcategory of gr -A(f)

consisting of direct sums of the canonical rank one projective A-modules (as de-

scribed in Lemma 3.4.13). Let P′ be the full subcategory of qgr -A(g) consisting

of the images in qgr -A(g) of direct sums of the canonical rank one projectives of

gr -A(g) that remain projective in qgr -A(g). We will define an equivalence of cat-

egories G : P→ P′. We will then use Lemma 4.0.2 to extend this to an equivalence

gr -A(f) ≡ qgr -A(g).

First, we define G on objects. Let P be a canonical rank one projective A(f)-

module. By Corollary 3.4.6, for each n ∈ Z, P surjects onto exactly one of Xf〈n〉
and Y f〈n〉. Define P ′ to be the canonical projective object of gr -A(g) with simple

factors corresponding to those of P , that is, for all n ∈ Z, if Fn(P ) = Xf〈n〉 then

Fn(P ′) = Xg〈n〉 and if Fn(P ) = Y f〈n〉 then Fn(P ′) = Y g〈n〉. Such a projective P ′

exists by Lemma 3.4.9. By Corollary 6.4.3, P ′ is a projective object of qgr -A(g).

Now define G(P ) = π(P ′). By abuse of notation, we will also refer to the object of

gr -A(g) as G(P ). For a direct sum of canonical rank one projectives, P =
⊕

i∈I Pi,

define G(P ) :=
⊕

i∈I G(Pi).

Suppose now that P =
⊕

i∈Z(pi)x
i and Q =

⊕
i∈Z(qi)x

i are canonical rank

one projectives of gr -A(f) with structure constants {ci} and {di}, respectively.

By Lemma 3.4.13, Homgr -A(f)(P,Q) is generated as a k[z]-module by left mul-

tiplication by θP,Q = lcmi∈Z(qi/ gcd(pi, qi)). Since G(P ) and G(Q) are the im-

ages under π of projectives P ′ and Q′ in gr -A(g), they have no finite-dimensional

submodules, κ(P ′) = P ′, and κ(Q′) = Q′. Hence, Homqgr -A(g) (G(P ),G(Q)) ∼=
Homgr -A(g) (G(P ),G(Q)) is also generated as a k[z]-module by some maximal em-

bedding. We will show that in fact this maximal embedding is given by multipli-

cation by the same θP,Q.

By Lemma 3.2.5 and Corollary 3.4.5, for every i ∈ Z, ci = 1 if and only if

Fi(P ) = Xf〈i〉, and ci = (z+ i)2 if and only if fi(P ) = Y f〈i〉. The same is true for
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the structure constants {di} of Q. Now let I = {i1, . . . , ir} ⊂ Z be precisely those

indices ij such that Fij(P ) = Xf〈ij〉 and Fij(Q) = Y f〈ij〉. These are the indices

ij such that cij = 1 and dij = (z+ ij)
2. Observe that for distinct integers n and m

then cn and dn are relatively prime to cm and dm so that

θP,Q = lcm
i∈Z

qi
gcd (pi, qi)

=
∏
ij∈I

(z + ij)
2.

Let {c′i} and {d′i} be the structure constants for P ′ = G(P ) =
⊕

i∈Z(p′i)x
i

and Q′ = G(Q) =
⊕

i∈Z(q′i)x
i. As in Corollary 3.4.8, for each n ∈ Z, we can

calculate c′n from the simple factors of P ′. Specifically c′n depends only on Fn(P ′)

and Fn+α(P ′). For any integer n, the polynomial z + n is only possibly a factor

of cn or cn−α and these structure constants depend only on the simple factors at

n, n+ α and n− α. We use Table 3.4.1 from Corollary 3.4.8 and the fact that no

shift of Z is a factor of P ′ to construct the following table:

Table 6.4.1: The structure constants of P ′ in terms of its simple factors.

Fn(P ′) = Xg〈n〉 Fn(P ′) = Y g〈n〉
Fn+α(P ′) = Xg〈n+ α〉 c′n = 1 c′n = σn(z)

Fn+α(P ′) = Y g〈n+ α〉 c′n = σn(z + α) c′n = σn(f)

Fn−α(P ′) = Xg〈n− α〉 c′n−α = 1 c′n−α = σn−α(z + α)

Fn−α(P ′) = Y g〈n− α〉 c′n−α = σn−α(z) c′n−α = σn−α(f)

Observe from the table that either

(i) Fn(P ′) = Y g〈n〉 in which case z + n is a factor of both c′n and c′n−α, or else

(ii) Fn(P ′) = Xg〈n〉 in which case z + n is not a factor of either c′n or c′n−α.

Now when we calculate the maximal embedding P ′ → Q′

θP ′,Q′ = lcm
i∈Z

q′i
gcd (p′i, q

′
i)

we see that for ij ∈ I, qij−α has a factor of (z + ij)
2 while pij−α has no factor of

(z + ij). For all other integers n, the factor (z + n) appears either only as a factor

of pn and pn−α or else as a factor of pn, pn−α, qn, and qn−α. Hence,

θP ′,Q′ =
∏
ij∈I

(z + ij)
2 = θP,Q.
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So the maximal embeddings P → Q and G(P )→ G(Q) are both given by multipli-

cation by the same element θP,Q. If f ∈ Homgr -A(f)(P,Q) is given by multiplication

by θP,Qβ then define G(f) ∈ Homqgr -A(g)(G(P ),G(Q)) to be multiplication by θP,Qβ

also. By our definition of G on morphisms, it is clear that G(Id) is the identity and

G respects composition.

Altogether, we have defined G on the canonical rank one projectives of

gr -A(f). By Lemma 4.0.3, we can extend G to a functor G : P → P′. It is easily

seen that G is an equivalence on these subcategories. To see that G is full and

faithful, notice that for canonical rank one projectives P and Q of gr -A(f) our

construction of G gave an isomorphism

Homgr -A(P,Q) ∼= Homqgr -A(f)(G(P ),G(Q)).

Now given direct sums of canonical rank one projectives
⊕

i∈I Pi and
⊕

j∈J Qj, the

construction in Lemma 4.0.3 gives an isomorphism

Homgr -A

(⊕
i∈I

Pi,
⊕
j∈J

Qj

)
∼=
⊕
i∈I

⊕
j∈J

Homgr -A (Pi, Qj)

∼=
⊕
i∈I

⊕
j∈J

Homqgr -A(f) (G(Pi),G(Qj)) ∼= Homqgr -A(f)

(
G
⊕
i∈I

Pi,G
⊕
j∈J

Qj

)
.

To see that G is essentially surjective, notice that given P ′ in P′, we can construct

a module P of gr -A(f) such that G(P ) ∼= P ′ by constructing a direct sum of

canonical rank one projectives in gr -A(f) with corresponding simple factors.

By Proposition 3.4.16, every object of gr -A(f) has a projective resolution

by objects of P. Similarly, by Proposition 6.4.4, every object of qgr -A(g) has

a projective resolution by objects of P′. Hence, by Corollary 4.0.2, there is an

equivalence gr -A(f) ≡ qgr -A(g).

Corollary 6.4.6. Let α ∈ N+. Then there is an equivalence of categories

qgr -A (z(z + α)) ≡ gr(B,Zfin).

Proof. This follows immediately from Theorem 6.4.5 and Theorem 6.3.2.
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6.5 Non-congruent roots

Let α ∈ k \ Z, so we are in the distinct, non-congruent root case. Recall

that this case bore similarities to the case of the first Weyl algebra, A1. We saw

that the category gr -A looked like a “doubled” version of gr -A1. In particular,

we indexed our autoequivalences ι(J,J ′) by Zfin × Zfin, and many of the properties

of these autoequivalences were the same as Sierra’s ιJ , with indices doubled. For

notational convenience, let Γ = Zfin × Zfin.

This case also bears resemblance to the multiple root case. By Lemma 5.2.5,

we know that the set {ιγA | γ ∈ Γ} generates gr -A. We will show that the

isomorphisms between these autoequivalences satisfy condition 6.3, so we can use

Proposition 6.2.1 to define a ring C with an equivalent graded module category.

We will then show that C is commutative, and give a presentation for C.

For each (J, J ′) ∈ Γ, define the polynomial

h(J,J ′) =
∏
j∈J

(z + j)
∏
j′∈J ′

(z + j′ + α). (6.7)

For a projective module P we showed ι2(n,∅)P = (z+n)P and ι2(∅,n)P = (z+n+α)P

and so ι2(n,∅)
∼= Idgr -A

∼= ι2(∅,n). We denote by σ(n,∅) the isomorphism ι2(n,∅)A → A

and by σ(∅,n) the isomorphism ι2(∅,n)A → A. Since A is projective, σ(n,∅) is given

by left multiplication by h−1
(n,∅) and σ(∅,n) is given by left multiplication by h−1

(∅,n).

Similarly, for (J, J ′) ∈ Γ, we define

σ(J,J ′) =
∏
j∈J

σ(j,∅)
∏
j′∈J ′

σ(∅,j′) : ι2(J,J ′)A→ A

and note that σ(J,J ′) is also given by left multiplication by h−1
(J,J ′).

Now, for (I, I ′), (J, J ′) ∈ Γ, we define

Θ(I,I′),(J,J ′) = ι(I⊕J,I′⊕J ′)(σ(I∩J,I′∩J ′)) = Θ(J,J ′),(I,I′)

Θ(I,I′),(J,J ′) : ι(I,I′)ι(J,J ′)A = ι(I⊕J,I′⊕J ′)ι
2
(I∩J,I′∩J ′)A→ ι(I⊕J,I′⊕J ′)A.

Lemma 6.5.1. The isomorphisms {Θγ,δ | γ, δ ∈ Γ} and the autoequivalences

{ιγ | γ ∈ Γ} satisfy condition (6.3).
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Proof. This result follows from the same proof as Lemma 6.3.1 with doubled in-

dices.

Having checked that our autoequivalences satisfy condition (6.3), we use

Proposition 6.2.1, to define the Γ-graded ring

C =
⊕
γ∈Γ

Cγ =
⊕
γ∈Γ

Homgr -A(A, ιγA) =
⊕

(J,J ′)∈Zfin×Zfin

Homgr -A(A, ι(J,J ′)A).

Theorem 6.5.2. There is an equivalence of categories

gr -A ≡ gr -(C,Γ).

Proof. This is an immediate corollary of Propositions 6.2.1 and 6.2.2 together with

Lemma 6.5.1.

Finally, we describe properties of and give a presentation for the ring C.

For γ ∈ Γ let ϕγ be the map

ϕγ : (ιγA)0 → Homgr -A (A, ιγA) , ϕγ(m)(a) = m · a.

We use the k[z]-module isomorphism ϕγ to identify Cγ with (ιγA)0. For γ =

(J, J ′) ∈ Γ we also define

cJ = ϕ(J,∅)(h(J,∅)) ∈ C(J,∅) and

dJ ′ = ϕ(∅,J ′)(h(∅,J ′)) ∈ C(∅,J ′).

For completeness, define c∅ = d∅ = 1.

Lemma 6.5.3. Let α ∈ k \ Z and let γ = (I, I ′) ∈ Γ.

1. (ιγA)0 = hγk[z].

2. cIdI′ = dI′cI .

3. The element cIdI′ freely generates Cγ as a C(∅,∅)-module.

4. cIcJ = c2
I∩JcI⊕J and dIdJ = d2

I∩JdI⊕J and so cIdI′ =
∏

i∈I ci
∏

i′∈I′ di′.
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5. For all n,m ∈ Z
c2
n − n = c2

m −m

d2
n − n = d2

m −m

c2
n = d2

n − α.

6. C is a commutative k-algebra generated by {cn, dn | n ∈ Z}.

Proof. The arguments in this proof are similar to those found in Lemma 6.3.3 and

therefore [Smi11, Lemma 10.2].

1. For each n ∈ Z, we constructed ι(n,∅)A by taking the kernel of the nonzero

morphism to X0〈n〉 or Y0〈n〉. Since

(z + n)A0 = (ι2(n,∅)A)0 ⊆ (ι(n,∅)A)0

and (ι(n,∅)A)0 has k-codimension 1 in A0, therefore

(ι(n,∅)A)0 = (z + n)A0 = (z + n)k[z].

By an analogous argument, (ι(∅,n)A)0 = (z + n + α)k[z]. And since the

autoequivalences commute

(ιγA)0 ⊆ (ι(i,∅)A)0 = (z + i)k[z] and (ιγA)0 ⊆ (ι(∅,i′)A)0 = (z + i+ α)k[z]

for each i ∈ I and i′ ∈ I ′. Since (ιγA)0 has k-codimension |I| + |I ′| in A0.

Therefore,

(ιγA)0 = hγk[z].

2. This follows since the ιγ act on morphisms by restriction. Both cJdJ ′ and

dJ ′cJ are given by multiplication by h(J,∅)h(∅,J ′) = h(∅,J ′)h(J,∅).

3. Since ι(∅,∅) = Idgr -A, multiplication Cγ ×C(∅,∅) → Cγ sends (g, h) to g ◦h. By

part 1, Cγ = ϕ (hγk[z]). Since C(∅,∅) = k[z] it follows that Cγ is generated

as a right C(∅,∅)-module by ϕγ (hγ), or left multiplication by hγ. Now by the

definition of multiplication in C,

cIdI′ = ι(∅,I′)
(
ϕ(h(I,∅))

)
ϕ
(
h(∅,I′)

)
.

and since ι(I,∅) acts on morphisms by restriction, cIdI′ is given by multipli-

cation by h(I,∅)h(∅,I′) = hγ.
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4. This has the same proof as part 2 of Lemma 6.3.3.

5. For a ∈ A,

(cn.cn)(a) = σ(n,∅)
(
(z + n)2

)
(a) = (z + n)−1(z + n)2a = (z + n)a.

Hence, c2
n is given by multiplication by z + n, that is,

c2
n = ϕ(∅,∅)(z + n).

Similarly,

d2
n = ϕ(∅,∅)(z + n+ α),

from which the claim follows.

6. This follows from parts 2, 3, and 4.

Proposition 6.5.4. The Γ-graded ring C has presentation

C ∼=
k[cn, dn | n ∈ Z]

(c2
n − n = c2

m −m, c2
n = d2

n − α | m,n ∈ Z)

where deg cn = (n, ∅) and deg dn = (∅, n).

Proof. By Lemma 6.5.3, the elements {cn} and {dn} generate C as a k-algebra

and satisfy the relations c2
n − n = c2

m −m and c2
n = d2

n − α for all n,m ∈ Z. We

need to show that the ideal generated by these relations contains all relations in

C.

Let r = 0 be a relation in C. We may assume that r is homogeneous of

degree (I, I ′). By Lemma 6.5.3, we can write

r = cIdI′β = 0

where β is a k[z]-linear combination of products of c2
j ’s and d2

j ’s for some integers

j. By using the relations c2
j = (z + j) and d2

j = c2
j + α for each j, we can rewrite

β in C as a polynomial g(z) ∈ k[z]. Hence

r = cIdI′g(z) = 0
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but since B(I,I′) is freely generated as a right B(∅,∅) = k[z]-module by cIdI′ , this

implies that g(z) = 0, so the relation r was already in the ideal(
c2
n − n = c2

m −m, c2
n = d2

n − α | m,n ∈ Z
)
,

completing our proof.



Chapter 7

Future questions

Noncommutative algebraic geometry has made much progress in under-

standing the geometry of connected N-graded k-algebras. These rings are nat-

ural to consider, as they are analogues of quotients of commutative polynomial

rings. The work of Sierra ([Sie09]) and Smith ([Smi11]) on the first Weyl alge-

bra suggested that there might be interesting geometry hiding within Z-graded

k-algebras which are not necessarily connected. In this dissertation, we have gen-

eralized some of these results to certain generalized Weyl algebras. Like the Weyl

algebra, the GWAs A(f) studied here are Z-graded domains of GK dimension 2

with (A(f))0
∼= k[z].

These results are especially interesting in light of Artin and Stafford’s clas-

sification of noncommutative projective curves in [AS95].

Theorem 7.0.1 (Artin-Stafford, [AS95]). Let A be a connected N-graded domain,

generated in degree 1 with GK dimension 2. Then there exists a projective curve

X such that qgr -A ≡ coh(X).

Might there be an analogue to Theorem 7.0.1 for Z-graded domains of

GK dimension 2? In this final chapter, we propose directions for future work in

understanding noncommutative Z-graded rings.

The rings B and C in Theorems 6.3.2 and 6.5.2 would be interesting objects

for future study. One would like to know the properties of B and C and of the

schemes SpecB and SpecC. Their algebro-geometric properties are important for

101
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the following reason. For a Γ-graded commutative ring R, there is an action of

the affine algebraic group SpeckΓ on SpecR corresponding to the grading on R.

Therefore, we can form the quotient stack [SpecR/ SpeckΓ].

Question 7.0.2. What are the properties of the stacks [SpecB/ SpeckZfin] and

[SpecC/ Speck(Zfin × Zfin)]?

Question 7.0.3. For a Z-graded domain R of GK dimension 2, under what con-

ditions is there a stack χ such that qgr -R ≡ coh(χ)?

One generalization of the work in this dissertation might be to begin with

the study of other GWAs of GK dimension 2: those defined by non-quadratic poly-

nomials or different base rings. Many interesting rings are GWAs. The quantum

Weyl algebra Aq = k〈x, y〉/(xy − qyx− 1) and, more generally, ambiskew polyno-

mial rings are GWAs (see [Jor00]). The universal enveloping algebra of sl(2) and

similar algebras studied by Smith in [Smi90] can also be constructed as GWAs.

One could also consider Z-graded rings of higher dimension. In [BR16], Bell

and Rogalski classified certain simple Z-graded rings of arbitrary dimension. They

proved that in GK dimension 2, all of these rings are graded Morita equivalent to

GWAs. It would be interesting to study the higher-dimensional simple Z-graded

rings studied by Bell and Rogalski.

For all of these Z-graded rings R, it would be interesting to study gr -R. It

is particularly important to understand the Picard group Pic(gr -R).

Question 7.0.4. For the Z-graded rings R above, what is Pic(gr -R)?

Understanding Pic(gr -R) is an important first step in constructing a com-

mutative ring whose graded modules are equivalent to gr -R. Recall the construc-

tion used in section 6.2. For an abelian subgroup Γ ⊂ Pic(gr -R), we choose

autoequivalences {Fγ | γ ∈ Γ}. If these autoequivalences satisfy condition (6.3),

then we can define an associative Γ-graded ring

S =
⊕
γ∈Γ

Homgr -R(R,FγR) (7.1)

The category gr -(S,Γ) is equivalent to gr -R if
⊕

γ∈ΓFγR is a projective generator

of gr -R.
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In some sense, we would like to find “small” subgroups Γ of Pic(gr -R). If,

for example, Γ = Z is the subgroup of Pic(gr -R) generated by the shift functor,

then we recover the ring R ∼= S. Hence, if Γ contains S, then S contains R as a

subring and so S is noncommutative. However, Γ must be large enough that FγR
generates gr -R.

Question 7.0.5. For a noncommutative Z-graded ring R, how can we choose

subgroups Γ ⊆ Pic(gr -R) and autoequivalences {Fγ | γ ∈ Γ} satisfying condi-

tion (6.3)? When does
⊕

γ∈ΓFγR generate gr -R? When is S commutative?

We can also take an opposite view of (7.1). That is, given a stack χ, a

quasicoherent sheaf O on χ, and an autoequivalence S of coh(χ) of infinite order,

we can consider the Z-graded ring⊕
n∈Z

HomQcoh(χ) (O,SnO) . (7.2)

Question 7.0.6. Under what conditions on the stack χ and the sheaf O does (7.2)

give a Z-graded domain of GK dimension 2?

The study of the geometry of connected N-graded rings has led to a deeper

understanding of these rings. In exploring the questions posed in this chapter, we

hope that a more complete theory of the geometry of Z-graded rings is developed.
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