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ABSTRACT

Different users apply computer forensic systems, models,
and terminology in very different ways. They often make
incompatible assumptions and reach different conclusions
about the validity and accuracy of the methods they use to
log, audit, and present forensic data. In fact, it can be hard
to say who, if anyone is right. We present several forensic
systems and discuss situations in which they produce valid
and accurate conclusions and also situations in which their
accuracy is suspect. We also present forensic models and dis-
cuss areas in which they are useful and areas in which they
could be augmented. Finally, we present some recommen-
dations about how computer scientists, forensic practition-
ers, lawyers, and judges could build more complete models
of forensics that take into account appropriate legal details
and lead to scientifically valid forensic analysis.

Categories and Subject Descriptors

D.4.5 [Reliability]: Verification; D.4.6 [Operating Sys-
tems]: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses); H.1.0 [Models and Prin-
ciples|: General; K.4 [Computers and Society]: Public
Policy Issues—Abuse and crime involving computers; K.6.5
[Management of Computing and Information Sys-
tems|: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses), Unauthorized access (e.g.,
hacking, phreaking)

General Terms

Security, Design, Experimentation, Legal Aspects, Manage-
ment, Measurement, Reliability, Standardization, Verifica-
tion

Keywords
Auditing, data measurement, forensic analysis, forensic sys-
tems, logging, models, scientific method, security
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1. INTRODUCTION

Who attacked this computer system? What actions did they
take? What damage did they do? With what degree of cer-
tainty, and under what assumptions, do we make these asser-
tions? Will these assertions be acceptable in a court? These
questions are asked during the computer forensic analysis
process. They are often hard to answer in practice. Com-
puter scientists and forensic practitioners have both made
headway on developing functional systems for forensic anal-
ysis. Some of those systems are based on theoretical models
that help to construct complete solutions, but there are se-
rious and important gaps in these systems.

The field of computer forensics has become a critical part
of legal systems throughout the world. As early as 2002
the FBI stated that “fifty percent of the cases the FBI now
opens involve a computer” [24]. However, the accuracy of the
methods—and therefore the extent to which forensic data
should be admissible—is not yet well understood. There-
fore, it is not yet safe to make the kinds of claims about com-
puter forensics that can be made about other kinds of foren-
sic evidence that has been studied more completely, such as
DNA analysis. The accuracy of DNA analysis is well under-
stood by experts, and the results have been transformational
both in current and previous court cases. DNA evidence
has been instrumental in convicting criminals, and clearing
people who have been wrongly convicted and imprisoned.
DNA evidence condenses to a single number (alleles) with
a very small, and well defined, probability of error. On the
other hand, computer forensic evidence has matured without
foundational research to identify broad scientific standards,
and without underlying science to support its use as evi-
dence. Another key difference between DNA and computer
forensic data is that DNA evidence takes the form of tangi-
ble physical “objects” created by physical events. Contrast
these to computer objects that are created in a virtual world
by computer events.

Computer-based evidence has only recently become common
in court proceedings, but its impact in the legal system has
been significant. Cases are frequently decided on evidence
obtained from computer systems—evidence that many ex-
perts claim is unreliable. Consider the recent case State of
Connecticut v. Julie Amero in Norwich, Connecticut [16].
An elementary school substitute teacher, Ms. Amero was
accused, tried, and convicted of contributing to the delin-
quency of minors because a spyware-infected school com-
puter in her class displayed pornographic sites’ pop-ups dur-



ing her lecture. The legal system’s lack of technical aware-
ness resulted in a conviction that was eventually overturned
but permanently impacted Ms. Amero’s life and diminished
the credibility of our legal system. Judges and juries make
inappropriate assumptions because they expect that com-
puter forensic evidence in real life is as reliable and conclu-
sive as it is on television. The impact of these assumptions
cannot be undone merely by reversing a court decision. In
many cases such as these, the forensic tools being used are
accurate, but the assumptions made about them are wrong.

Most judges and lawyers do not understand actions and ob-
jects inside computer systems well. Therefore, the legal sys-
tem is often in the dark as to the validity, or even the sig-
nificance, of computer evidence. In many ways, computer
forensics is behind other methods such as fingerprint anal-
ysis, trace evidence of soil samples, cigar ash, the timing of
insect infesting corpses, and the chemical traces of poison-
ing [59] because there have been fewer efforts to measure
and improve its accuracy.

For example, one problem arises when the traces of an attack
have been altered so that the attack is hidden [57]. In this
case, the data itself can be inaccurate or misleading. In
other cases, the data may be accurate but not support the
conclusions that are drawn. As an example, Mary may own
a file, but there is no way to show that Tom was logged in
to Mary’s account during the time period in question.

Many technical disciplines used in forensic testimony pro-
duce results with well-defined margins of error. When tech-
nical evidence is presented, an expert witness is frequently
asked to answer specific questions (“How fast would the car
have had to be going for the metal to have crumpled like
this?”). But in computer forensics, analysts are asked to
tell complete stories—the meaning of a series of events, how
those events were triggered, and who triggered them. Unfor-
tunately, an expert may not be able to justify their answer
rigorously because the limits of the methods used in com-
puter forensics are not understood as well as those in, say,
DNA analysis.

Few analysts are currently challenged to defend the validity
of the results that their tools present. One reason for this
could be that some analysts may feel that they can claim
that the forensic software that they use has been certified
by the U.S. National Institute of Standards and Technology
(NIST) [37]. However, NIST tests how well tools conform
to specific requirements of law enforcement staff; that is,
against what the forensic tools are supposed to do. For ex-
ample, according to the NIST Deleted File Recovery specifi-
cation [38], the testing assumes that “the deleted file recov-
ery tools are used in a forensically sound environment” (p.
6). In order to evaluate a particular instance of use of the
tool, the analyst must know the characteristics of the envi-
ronment in which the tool works well, and where it works
poorly. Further, the NIST program does not provide metrics
to determine how accurately a tool works; it simply deter-
mines whether a set of requirements are, or are not, met.
In practice, “shades of grey” complement the NIST work on
determining where the lines of “black” and “white” lie.

Electronic voting machines are a good example of a class of

machines that produce output which should be beyond ques-
tion. The public assumes that the ballots cast are recorded
accurately, precisely, and reliably. The public assumes that
the machines allow the correct number of votes per race per
valid, registered voter, while protecting both anonymity and
secrecy of the ballot. But many engineering studies have
challenged these assumptions [8, 9, 61, 21, 31]. Those stud-
ies are important because many of the requirements of elec-
tronic voting systems also apply to tools for computer foren-
sics on general-purpose computer systems. And, indeed, if
electronic voting systems were redesigned with forensic is-
sues in mind, then forensic tools and techniques could help
to measure the accuracy and reliability of electronic voting
machines. The problem is that neither reliability and accu-
racy, nor the steps that must be taken to ensure them, are
clear. Consider the the electronic voting machines used in
Goshen, New York, which functioned perfectly well until the
vote tally exceeded 999 votes. At that point, the counter re-
set to zero [2]. The results of the election were invalid, and
true counts will never be known. Here, the (implicit) as-
sumption was that no voting machine would need to record
more than 999 votes for a candidate. In the environment
in which those systems were used, the assumption failed to
match reality.

Computer scientists can take steps to move computer foren-
sics into a more rigorous position as a science by being able
to make well-reasoned and concrete claims about the accu-
racy and validity of conclusions presented in court. Our goal
is to try to point out the confusion between forensic prac-
titioners, law enforcement officials, and computer scientists,
and to encourage a dialog, in hopes that the groups will be-
gin to work more closely together in order to solve the critical
problems that exist in the application of computer science to
legal issues. We seek to help the different groups understand
the steps that must be taken in order to make claims about
computer forensic data, and under what conditions those
claims are appropriate and when they are not. In this pa-
per, Section 2 discusses the varying terminology used by the
different people involved with computer forensics. Section 3
discusses the technology used by forensic practitioners, and
that which has been developed by computer scientists. Sec-
tion 4 discusses the notion of forensic models, how different
groups use the term, and how the concept can be unified.
Section 5 presents our conclusions on how forensic systems
can ultimately be improved to advance computer forensics
as a science.

2. FORENSIC LANGUAGE AND TERMINOL-

OGY

Those involved in computer forensics often do not under-
stand one other. Groups have evolved separately with only
little interaction. Each group has largely separate confer-
ences, journals, and research locations, and few attempts
have successfully brought these groups together. Indeed,
the language used to describe computer forensics—and even
the definition of the term itself—varies considerably among
those who study and practice it: computer scientists, com-
mercial ventures, practitioners, and the legal profession. As
a result, it is difficult for these groups to communicate and
understand each others’ goals.

Legal specialists commonly refer only to the analysis, rather



than the collection, of enhanced data: “The tools and tech-
niques to recover, preserve, and examine data stored or
transmitted in binary form.” [26] By way of contrast, com-
puter scientists have defined it as “[v]alid tools and tech-
niques applied against computer networks, systems, periph-
erals, software, data, and/or users — to identify actors, ac-
tions, and/or states of interest.” [62]

Even within the computer science discipline, there is dis-
agreement about terminology. “Software forensics” has been
defined as “tracing code to its authors.” [53] Some computer
scientists focus largely on the examination of filesystem data
[13], whereas others also include the collection of data [11,
15, 20, 32, 33, 54].

The term forensics derives from the Latin forensis, which
meant “in open court or public,” which itself comes from the
term forum, referring to an actual location—a “public square
or marketplace used for judicial and other business.” [1]
Contemporary use of the word forensics, therefore, generally
continues to relate to law, and has come to mean “scientific
tests or techniques used with the detection of crime.” Thus,
computer forensics implies a connection between computers,
the scientific method, and crime detection. Digital forensics
is largely used interchangeably with computer forensics, but
implies the inclusion of devices other than general-purpose
computer systems, such as network devices, cell phones, and
other devices with embedded systems. However, largely ev-
eryone ezcept academic computer science researchers use the
term in connection with the law. Many computer scientists
have simply been using the word “forensics” as “a process of
logging, collecting, and auditing or analyzing data in a post
hoc investigation.”

The result of a lack of common language has been that fre-
quently, the groups do not understand what each other con-
siders important. Most computer forensic solutions in com-
mon use by law enforcement have not advanced significantly
since The Coroner’s Toolkit (TCT) ,which was developed
in 1999. To be sure, we have had significant technological
progress, and tools like Sleuth Kit, that examine the filesys-
tem, have been large steps forward. In addition, our ability
to gather data has improved greatly; we now even have the
ability to determine the contents of data stored in semicon-
ductors [23]. However, there is still little understanding in
any community as to when and how such techniques and
tools are applicable in a court of law, and to what extent
claims can be made about the data derived from them. Dan
Farmer and Wietse Venema noted:

“Certainly the current set of software tools is not
terribly compelling. Our own Coroner’s Toolkit,
while at times useful, could be much improved
upon. Other packages—most notably the Sleuth
Kit and EnCase—are worthy efforts, but they
still have far to go. It’s too bad that we have
not progressed much further than the erstwhile
dd copying program, but automated capture and
analysis are very difficult.” [20]

One of the reasons for the difference in terminology is the
difference in goals. To computer scientists, computer au-

dit trails have other uses than computer forensic data. For
example, the analysis of audit trails can provide assurance
that a machine is operating according to functional, reliabil-
ity, and performance specifications. Audit trails may be used
for billing and accounting purposes. The needs of accounting
and debugging are often quite different from forensics.

Computer audit trails are not the only type of computer
forensic data that law enforcement uses. For example, at
present, the vast majority (80%) of cases considered by judges
and law enforcement to be “computer crime” involve child
pornography [34], and therefore, the vast majority of the
forensic data used are simply files on a disk (or possibly files
that have been deleted from the file catalog and subsequently
recovered by analysts). Much more “computer crime” ex-
ists than law enforcement acknowledges or identifies, and
there are many techniques that law enforcement is largely
unaware of. Because the focus of law enforcement is on re-
covering files rather than discovering how the files entered
the system, there is little emphasis on enhancing systems to
collect such data. Therefore, the vastly enhanced solutions
that computer scientists offer forensic practitioners are seen
as unnecessary by the practitioners.

Computer scientists who are working with law enforcement
officials should be driven by legal goals, but they need to
understand those goals. Computer scientists also need to
make their capabilities known. Forensic practitioners need
to establish and communicate what they are looking for. Of-
ten, that is to tie an action or object to a specific person.
Just as often, computer science cannot establish that fact
with any reasonable degree of certainty. So, the question
for judges and lawmakers is how precise the evidence needs
to be. Must the possible range of perpetrators be reduced
to one in ten or one in 10007 It is up to practitioners and
policy makers, with input from computer scientists, to de-
termine a set of requirements that can be implemented. It
is up to computer scientists to build systems that fit these
requirements, to validate and verify that the systems meet
the requirements, and to specify the conditions under which
the systems meet the requirements. Similar techniques can
be used to provide defensible solutions not just to forensic
practitioners and lawyers, but to any group (such as states
and counties purchasing electronic voting machines or hos-
pitals purchasing highly sensitive medical equipment) that
need systems with measurable and verifiable accuracy.

3. FORENSIC SYSTEMS

In practice, forensic analysis of a computer system involves
identifying suspicious objects or events and then examining
them in enough detail to form a hypothesis as to their cause
and effect. Data for forensic analysis can be collected by in-
trospection of a virtual machine during deterministic replay
[17], as long as nondeterministic events can be logged, the
overhead is acceptable, and the target machine has only a
single processor (because multiprocessors introduce nonde-
terminism). Specialized hardware [36] can make nondeter-
ministic event logging practical, but this kind of hardware is
rarely available. Most existing tools simply operate on a live,
running system, and look both at system and network-level
events and files on a disk.

The concepts of “logging” and “auditing” have been around



for a long time. Anderson and Bonyun first proposed use of
audit trails on computer systems [4, 10]. They discussed the
merits of certain data and the placement of mechanisms to
capture that data, but did not discuss how the process of se-
lecting data could be generalized. Throughout the early evo-
lution of audit trails, sophisticated logging capabilities were
developed for multiple platforms. However, the purpose was
purely an ad hoc method of capturing data thought to be
useful for investigatory purposes, and was not intended for
legal use.

Two approaches to auditing are state-based and transition-
based [7]. State-based auditing periodically samples the
state of the system. This approach is imprecise—important
information may be missed—and risks slowing a system un-
acceptably. Transition-based auditing monitors for specific
events, which are more easily recorded. Both state-based
and transition-based logging require deciding in advance on
levels of granularity to record. But state-based logging also
requires deciding the frequency with which to save state in-
formation, and finding the right balance between generated
load and missing key information is difficult. As an example,
debugging breakpoints and fault tolerance checkpoints are
instances of state-based logging mechanisms. Both of these
tasks can involve an iterative processes of logging, analysis,
and replay. With debugging, when a bug is suspected, the
analyst might insert a series of breakpoints to check the val-
ues of a number of variables at various points in time. If
the analyst determines she needs more information, or if a
fault occurs again before the breakpoint is triggered, then
the breakpoints can be changed and the program re-run.
But security and forensics do not allow an exact replay of
the series of events leading to a suspected attack unless de-
terministic replay is used. The relevant information is only
seen once. If an attack occurs between two captures of state
information, traces of the attack may already have been re-
moved by the time the second snapshot is taken. Therefore,
in forensics, one must rely on specific events to trigger the
logging mechanism. Thus, transition-based logging is gen-
erally the most appropriate.

Examples of successful tools include Tripwire [27], which
records information about files, and TCP Wrappers [58],
which records information about network communications.
Additionally, The Coroner’s Toolkit,* Sleuth Kit,> EnCase,®
and the Forensic Tool Kit (FTK),* are all useful for ana-
lyzing filesystems and files that are present or have been
recently deleted from filesystems.

Today, UNIX system log (syslog) entries, and the equiva-
lents on other operating systems, are commonly used foren-
sic data sources. However, these mechanisms were designed
for debugging purposes for programmers and system admin-
istrators, and not for forensics [3]. Similarly, the Sun Ba-
sic Security Module (BSM) [39] and cross-platform succes-
sors are constructed based on high-level assumptions about
what events are important to security, and not to answer
specific forensic questions such as who committed a certain

"http://www.porcupine.org/forensics/tct.html
http://www.sleuthkit.org/sleuthkit/

3http: //www.guidancesoftware.com/

4http: //www.accessdata.com/common/
pagedetail.aspx?PageCode=homepage

action. The most successful forensic work has involved uni-
fying these tools using a “toolbox” approach [20, 40] that
combines application-level mechanisms with low-level mem-
ory inspection and other state-based analysis techniques.

Most of the techniques that are currently used to gather
information in court are an essential part of the forensic
process, and probably should continue to be used. But we
assert that their application is flawed. None of the forensic
techniques currently used in court are sufficient to justify
claims that implicate a specific person. It is not enough to
recover a deleted file or view a standard system log. One
has to know the history of files and the events that led up to
their creation, viewing, deletion, and modification. Consider
again the Amero case mentioned in Section 1. A criminal
conviction requires (among other things) proving beyond a
reasonable doubt that Ms. Amero intentionally downloaded
child pornography onto the school’s computer. Images might
appear on a disk without the computer user knowing about
them for many reasons—pop-up images on web sites may
download files in the background and save them in the cache;
the images could be part of unsolicited “spam” email; an-
other person may simply have downloaded them, either to
view the pornography themselves, or to implicate someone
else. Many forms of malware are capable of commandeer-
ing a computer in order to store and/or redistribute porn.
Such malware would have explained the images as well as
the corresponding changes to the browser’s history file, all
done without Ms. Amero’s consent or knowledge.

However, the forensic software used in the vast majority of
court cases cannot make the distinction among these meth-
ods of file creation. Such software does not provide suffi-
cient information to enable an analyst to reconstruct previ-
ous events rather than just objects, particularly when those
events appear “ordinary,” such as when committed by insid-
ers [43]. In court, a jury must consider questions that are
not as straightforward as whether a file exists or an action
has taken place. The jury needs to know how the file got
there and who took the action.

Sometimes information is accurate, but the claims derived
from it are not supported by scientific experiments. More
often, we are uncertain of the accuracy of the data. The abil-
ity to combine the information from forensic mechanisms
to arrive at an understanding of the events behind an at-
tack often relies on luck rather than on methodical planning.
Specifically, an analyst who finds the machine immediately
after an intrusion has taken place can gather information
about that system’s state before the relevant components
are overwritten or altered. Otherwise, the analyst is forced
to reconstruct the state from incomplete logs and the cur-
rent, different state—and as the information needed to do
the reconstruction is rarely available, often the analyst must
guess. The quality of the reconstruction depends on the
quality of the evidence present, and the ability of the an-
alyst to deduce changes and events from that information.
Often, tools cannot provide sufficient information because
the level of granularity of the information they gather is far
too high, or the data is difficult to correlate, or, even when
several tools are used together, they do not record infor-
mation from enough sources to perform a thorough forensic
analysis. We are left with the question of which existing



techniques work at all, and if so, when, and to do what?

Forensic analysis requires better data, and in particular data
that can be collected without having to predict specific se-
curity vulnerabilities or exploits in advance. One way to do
this uses a technique of logging function and system library
calls as well as kernel calls [44].

BackTracker [28] uses previously recorded system calls and
some assumptions about system call dependencies to gener-
ate graphical traces of system events that have affected or
have been affected by the file or process given as input. This
addresses a problem of correlating data that many other log-
ging and auditing tools have been unable to. However, an
analyst using BackTracker may not know what input to pro-
vide, since suspicious files and process IDs are not easy to
discover when the analysis takes place long after the intru-
sion. For example, identifying a file would show a graphical
trace of the processes and network sockets that cause it to be
there. But BackTracker does not help identify the starting
point; it was not a stated goal of BackTracker, or its succes-
sors [50, 29]. Nor does BackTracker help to identify what
happens within the process, because BackTracker is primar-
ily aimed at a process-level granularity. Therefore, using
BackTracker to answer questions about data that stand up
as forensic evidence is not appropriate, even though the tool
may appear to be perfectly accurate.

Data from intrusion detection systems has been proposed for
use as legal forensic evidence [51, 55], and the admissibility
and validity of the IDS data as evidence (rather than sim-
ply an early-warning system) has been studied [52]. More
work is needed in this area, however. Indeed, it is not clear
what admissible claims can truly be made from specific IDS-
generated data.

Data describing actions on networks would seem to be sim-
pler than data describing actions on hosts. But even here,
the forensic situation is complicated. One can capture net-
work traces, which are useful in understanding remote ma-
nipulation of systems. Sometimes even encrypted data can
yield useful information about a system [30]. But sometimes
tools that gather this information are simply unreliable [19].
Tools that gather network traces can drop packets—and
those dropped packets could contain critical evidence. At-
tackers can forge packets designed to make the information
that is collected confusing.

Data gathered from a host can be forged, too. For example,
administrators can make their own syslog entries by altering
the appropriate file, which is stored on a non-secure medium
[49] or transmitted over a network using a non-secure proto-
col. How can we know that data in those logs has not been
forged or tampered with?

This points to a key deficiency: the need to measure the ac-
curacy of data before using it as scientifically valid evidence.
This is a tricky problem; indeed, in some environments, it
might be intractable [60]. However, this problem needs to
be addressed. The scientific method must form the basis of
measuring the accuracy of tools and techniques.

Earlier sections discussed how people who use systems or

data from systems often make incorrect or invalid assump-
tions about the way the systems actually work. Similarly,
many research efforts in computer science are conducted in
ways that other scientific disciplines would view as not being
scientifically valid [41]. That is, they fail to use techniques
that have been validated using this process:

1. Define the question

2. Form a hypothesis

3. Perform an experiment and collect data
4. Analyze the data

5. Interpret the data and draw conclusions that serve as
a starting point for new hypotheses

6. Publish the results (return to #3 and iterate)

Consider the work in applying biological techniques to intru-
sion detection [25]. Though it was ultimately shown to be
valid (and has been extended by many others) some of the
data that was initially used to evaluate its effectiveness was
shown to be flawed [56]. Before the eventual re-analysis of
the technique, the impact such a discovery would have had
on any ongoing legal case based on evidence collected by such
an IDS is unclear. How much can we depend on individual
software tools that have not been reviewed by disinterested
parties, and whose reviews are not reproducible? Consider
the problem of measuring effectiveness in intrusion detection
in genera. A number of papers use the DARPA /Lincoln
Labs network intrusion detection datasets as a method of
evaluating their own techniques, despite the significant flaws
shown in the datasets [35]. One of the reasons why re-
searchers continue to use the datasets is because creating
new datasets is hard, and getting them to be widely adopted
(so that other, future methods can be compared directly
with current ones) is perhaps even harder. Further, even
those researchers who do create their own datasets often
run their experiments in variable conditions, such that even
if the dataset were properly captured, the experiment could
not be reproduced exactly. This violates one of the fun-
damental tenets of scientific experiments mentioned above:
reproducibility for third-party verifiability.

Once the accuracy of techniques have been established, we
must develop and use models of forensic process to under-
stand the circumstances under which it is appropriate to
make claims about the data derived from the techniques.

4. FORENSIC MODELS

Forensic practitioners and computer scientists both agree
that “forensic models” are important for guiding the devel-
opment of forensic tools and techniques. Models generalize
an ad hoc process to provide a framework that enables peo-
ple to understand what that process does, and does not, do.
The way in which each party use the term “model” has im-
portant differences. Practitioners define the term “model”
as an abstraction of a process of examining evidence, re-
gardless of whether the evidence is DNA or computer files
[47]. The same process used for examining DNA evidence
is mapped to computer files using the models. Computer



scientists use “model” to mean a simplified description to
assist calculations and descriptions. In computer science,
a model represents an abstraction of something that con-
tains sufficient detail to be useful as a predictive formula.
Putting it bluntly (and somewhat unfairly), forensic practi-
tioners think of models as recipes, while computer scientists
think of models as simplifications of reality.

Each definition refers a predictive formula or mapping. The
difference between the two is simply the level of abstraction.
The computer science definition focuses most closely on link-
ing a low-level series of events within an operating system
to a higher-level event. The “calculation” refers to capturing
nondeterministic events in order to predict and understand
the deterministic series of events that follow. In discussing
the mapping of recorded data to analyzed data, computer
scientists sometimes refer to the data that is collected on a
system already, and at other times refer to data the collec-
tion of which requires augmenting a system. The definition
used by forensic practitioners looks at a higher level, which
includes multiple steps: gathering, protecting, preserving,
and analyzing data. That definition focuses on data col-
lected from an existing system, rather than data that might
be collected were the system modified. The practitioners’
model emphasizes the broader forensic process because the
practitioners consider the legal aspects of using the data.
That is, the emphasis is not on a mathematically complete
mapping and total understanding of the past events, but on
practical elements of data collection and issues of admissi-
bility, such as preserving the chain of custody of the evi-
dence. Ideally, a definition of “model” should include both a
low-level view of a system and a high-level view that takes
physical, procedural, and legal elements into account, too.

The tools discussed in the previous section can be used to
collect data specified by forensic models. The models should
allow an analyst to determine when using existing tools is
appropriate and when to develop new tools that better fit the
needs of forensic practitioners. In some sense, the hypothesis
describing events in enough detail to deduce cause and effect
is the default model of anyone using those tools. We seek a
more complete hypothesis, along with a measure of accuracy.

Numerous approaches by forensic practitioners and even com-
puter scientists focus on the elements of computer forensics
that relate directly to the law. Andrew’s model [5]—a “pro-
cess model”—consists of two principles (consistent results
and static storage) and five laws (association, context, ac-
cess, intent, and validation). The principles and laws define
a mapping between data and the methods by which that
data is collected and analyzed, and the admissibility of that
data in court. The process model also defines possible out-
comes, such as “can be shown to have occurred,” “can be
shown to be have likely occurred,” “can be shown to be un-
likely to have occurred,” and “can be shown to have not
occurred.” As an example, the law of access is: “It must be
demonstrated that the individual had access to the device
at the time the data was created.” The law specifies ways
in which that fact can be shown, but ultimately, neither the
law or the model in general specify how such a requirement
can be implemented, and then how the implementation can
be tested and measured.

Carrier created a model that maps the physical investiga-
tive process to the digital world [14]. The steps in a physi-
cal investigation include preservation of evidence, survey for
evidence, documentation of evidence, search for evidence,
crime scene reconstruction, presentation of a theory. Dur-
ing the search for physical evidence, Carrier first discusses
how the physical search process will also turn up digital ev-
idence in the form of disks and other digital media. He then
discusses how the exact same steps in the physical process
are necessary in the digital world as well, and feed back to
create a more thorough crime scene reconstruction. Finally,
Carrier discusses at a high level how some of the elements
of a digital investigation map directly back to aid a physical
investigation, such as digital photographs that identify real
people. Carrier’s model is useful and important. It teaches
computer scientists how their tools and the resulting data
are likely to be used by forensic analysts in an investigation.
But it has a specific goal of mapping “physical to digital,”
which does not address the lower-level issues of the valid-
ity of computer forensic evidence or when it is appropriate
to make claims about the digital evidence itself. Carrier’s
model is one example of high-level models of the computer
forensic process, and is representative of the goals and style
of other such models. However, this type of model must be
merged with a lower level computer science-based model to
be complete.

Computer scientists have also tried several approaches to
construct forensic models. Gross [22] studied usable data
and analysis techniques from unaugmented systems. He for-
malized existing auditing techniques already used by foren-
sic analysts. One method involved classifying system events
into categories representing transitions between system states.
Then, he developed methods of analyzing the differences be-
tween system states to attempt to reconstruct the actions
that occurred between them, using assumptions about the
transitions that must have come before. In Gross’s model,
broad classifications of events included creation, deletion,
storage, retrieval, query, and change. Each of those cat-
egories is represented in different scenarios in a computer
system by a different mechanism. For example, in a process,
“storage” and “retrieval” refer to swapping a process out to or
in from disk, whereas when referring to an I/O device, “stor-
age” and “retrieval” refer to sending or receiving information
to or from the I/O device. By applying the classification for
each scenario (processes, I/O, memory management, files,
and the kernel) to an operating system, one can examine the
data sources (e.g., system log messages from applications,
and network connection information from TCP Wrappers)
and apply the classifications to piece together the grains of
the previous events.

Gross did not discuss a methodology for separating the rel-
evant information from the rest of the system information.
However, the process of building a model useful for legal pur-
poses should address a methodology of understanding the
information actually mecessary to analyze specific, discrete
events such as attacks. Most of Gross’s research that focused
on events focused on using available data that was already
being collected on systems to improve analysis, and make it
more efficient, as opposed to augmenting a system to collect
necessary data that is not yet being collected. One area that
did focus on augmenting systems was a model that included



an entropy analysis of the relationship between a filesystem
and a disk that could be used to recover previously-erased
files. Both models that Gross developed could be highly use-
ful to legal applications. However, on their own, they do not
address goals of the models used by forensic practitioners, or
the combined model that we wish to produce because they
do not tell us how and when it is appropriate and valid to
use data produced or recovered by the techniques in court.

Previous research in modeling systems has examined the lim-
its of auditing in general [6] and auditing for policy enforce-
ment [48]. However, neither of these efforts studied present-
ing useful information to a human analyst or requirements
for legally admissible information. Other work [32] evalu-
ated the effect of using different audit methods for different
areas of focus (attacks, intrusions, misuse, and forensics)
with different temporal divisions (real-time, near real-time,
periodic, or archival), but again, the results focused primar-
ily on performance rather than forensic value .

One framework that has focused on usability by a forensic
analyst presented a mechanism that ties objects and events
back to their origin [12, 11]. It binds labels to processes and
system objects. This approach could be viewed as being sim-
ilar to the approached used in BackTracker [28], but broader
and more flexible. A simple example is a type of network
traceback to look at a chain of ssh connections. The goal
would be to determine the system that the chain of connec-
tions originated from, and if possible the originating process
and user. The use of the model to build the mechanism
differs from previous efforts to build computer forensic sys-
tems, because the process starts by asking what is necessary
(i.e., data that helps to find the origin of a crime) and then
helps to guide and augment the mechanisms to provide that
data. The model could be a useful component of a broader
model incorporating legal issues, but a lack of experimen-
tal data makes difficult gauging the actual usefulness of the
model in practice.

Another framework from computer science is a scientific,
hypothesis-based approach using finite state machine mod-
els to analyze events and objects in computer systems [15].
This approach links forensic data to the steps that must be
taken to investigate the history of that data by answering
specific questions through the observation of a controlled ex-
periment. In this manner, the model follows the application
of the scientific method. The model established multiple
classes of analysis techniques that could be used to test hy-
potheses about forensic questions, and a proof demonstrated
the classes to be complete.

For example, “does file X exist” seems like a simple forensic
question, but understanding the validity of the answer raises
multiple questions. How would we observe if the file existed?
What are the capabilities of the system to store such data?
In practical terms, can we test that hypothesis? The ap-
plication of Carrier’s model to court cases has not yet been
demonstrated, nor has experimental data been developed to
validate the implementation of the model in practice. Nev-
ertheless, Carrier’s approach demonstrates how the scientific
method can be applied to a forensic model, which we believe
is ultimately a crucial element of a complete model.

Previous work has discussed many of the problems and con-
straints in existing computer forensics tools and developed a
set of principles to address those problems [43]. Those prin-
ciples have been used to develop a solution [44]. But even
there, assumptions underlie claims about the completeness
and effectiveness of the solution. A systematic approach and
a model that guides forensic logging and auditing is neces-
sary [45, 46]. The structured approach is needed for two
reasons. First, understanding the landscape of possible ob-
jects and events must precede deciding whether a solution
is complete. Second, understanding the problem allows the
development of the relevant necessary and sufficient objects
and actions. Indeed, the model is designed to investigate
intruders attempting to achieve their goals. The model em-
ploys attack graphs based on intruder goals and violations
of security policy to define the information that needs to be
logged on a computer system in order to forensically analyze
those events.

As an example of this model, consider an intruder trying to
gain remote access to a UNIX shell without properly authen-
ticating. The 1988 Internet Worm [18], a classic multi-stage,
multi-exploit attack, exploited a buffer overflow vulnerabil-
ity in fingerd, and several problems with other UNIX pro-
grams to break into systems. The attack caused denials
of service by propagating to as many machines as possible,
causing the systems to be swamped and unusable. Using
this model, we can show that additional data would have
simplified analysis of the worm, as follows.

The ultimate goal of the worm was to spread. The worm
took the following steps, which are characteristic of a broad
class of worms:

1. Run multiple exploits against a system.

2. Once on the system, invoke a shell running as the user
who owned the process that was exploited, or as a user
whose account was compromised (either by guessing a
password or through trust relationships).

3. Spawn a copy of itself approximately every 3 minutes
to refresh its appearance of use.

4. Meanwhile, try to spread to other machines.

The Internet worm could be modeled at a higher or lower
level of abstraction. We choose a level appropriate for our
analysis in which we model the known steps and attempt
to place bounds on the unknown ones—the exploits—that
are impossible to predict completely and too numerous to
enumerate. In this case, the model considers each stage of
the worm separately after having first been triggered by the
initial remote access connection. The construction of the
model then drives the specific forensic data needed for anal-
ysis. Since that forensic data is rarely recorded automati-
cally by the system, gathering it may require modification
to the system (via a kernel module, etc...) to capture the
data.

Using a simple set of assumptions [42], we compared the ef-
fectiveness of that model and a previous approach, and both
show promise. Ultimately, however, we wish to find a way



of rigorously and scientifically evaluating both approaches
as well as the approaches of other existing and future foren-
sic tools under the proper environment [41], which we hope
will include legal applications.

None of the practitioners’ models address forensic logging
and auditing at a low enough level of abstraction that sys-
tems can be practically implemented using those models
alone. Likewise, none of the computer science models—
even those that focus on scientific method and addressing
specific legal questions—can be applied to address the prob-
lems that make computer forensic data inaccurate or often
invalid, due to open questions about the accuracy of mea-
surements and/or validity about the meaning of the data.

One method of integrating models of different foci and levels
of granularity is to first understand the needs of law enforce-
ment, then apply a process model approach [14] to drive the
understanding of intruder goals and a forensic logging sys-
tem based on attack graphs [46]. Ultimately, one could use a
hypothesis-based model [15] that uses the scientific method
[41] to enhance the theoretical model and verify complete-
ness. But the details of this method are complicated, and
the solution is not so simple as this example suggests. How-
ever, it is an example of the kind of process and tools that
must be used to develop a more complete solution.

Integrating the models, understanding the goals needs of
law enforcement, and the capabilities of forensic systems
will also lead to defining metrics to understand the value
of forensic data. For example, how do we measure how
well forensic methodologies and tools, capture data? Met-
rics should guide the nature and amount of data necessary
to validate the metric, or refine it. One aspect of such a
metric could be how well it maps the forensic data back to
a particular attack or set of attacks. Ideally, each forensic
“trace” should correspond to a single attack or vulnerability.
However, if this is not possible, one could focus on metrics
that simply minimize the set of possible attacks. This also
helps refine the tools and techniques used to uncover the
data. For example, suppose that three types of data from
separate data sources are gathered, and from that data, it
can be concluded that one of ten possible attacks was used.
If it is possible to add one more type of data and reduce
the number of possible attacks to two, but adding two other
types of data reduce the number of attacks to three, the first
is preferable in most cases. This suggests an obvious metric.

But the metric may be misleading. Perhaps the second case
allows one more type of data to be added and helps to deter-
mine which of the three attacks were used, but the first case
requires three more types of data to determine which of the
two attacks were used. This suggests the metric should fa-
vor the second case over the first. Therefore, measuring the
accuracy of forensic tools and technologies requires that the
tools be related to the forensic evidence which they are to
uncover. To understand the limits of these tools, one must
also understand the nature of that which they measure, at-
tacks and vulnerabilities.

The synthesis of the computer scientists’ forensic models
with the forensic practitioners’ forensic models will ultimately
result in a more complete and useful method for mapping

the forensic data to the systems that are built to identify,
collect, preserve, examine, analyze, and present it, and ulti-
mately produce a legal decision. Undoubtedly, some of the
tools suggested by the model will exist. For example, TCP
Wrappers is a robust and reliable tool for collecting data
about TCP network connections. This is important informa-
tion in many models, and so TCP Wrappers is a reasonable
tool to consider using when models require this data. At
other times, the models will require data that existing tools
do not gather, and then either new tools must be created
or existing tools must be enhanced, to gather the required
data. For example, a model may specify some requirements
for securing the integrity and confidentiality of audit logs.
TCP Wrappers does not do that on its own. The computer
science-based forensic models demonstrate that it is possible
to determine accuracy of logging and analysis methods by
suggesting metrics for evaluating those methods.

But the models still do not indicate when the data is not
valid. Biologists know how DNA evidence can be contami-
nated and what the relationships are between DNA taken
from one individual and that individual’s identical twin,
other siblings, and parents. But computer science models
ignore key questions that involve human procedure and how
data is really created. Is a file on the system because Al-
ice downloaded it or because Bob planted it? How can we
tell the difference between Alice’s actions and Bob’s? The
computer science models also ignore components of the most
critical components of the rules of evidence that govern ad-
missibility, such as ensuring that there exists a mechanism
that records it with complete accuracy and that once stored,
the data is inviolate.

5. CONCLUSIONS

The need for a common language for computer forensics is
clear. Computer forensics lags behind other forensic disci-
plines in part due to insufficient dialogue between researchers
and practitioners, and the result is that science—a fun-
damental component of forensics—is largely absent from
computer forensics. An ability to communicate about the
challenges of each side will ultimately help bring scientific
method [41, 42] to computer forensics in the way that it ex-
ists in other forensic disciplines, such as DNA analysis where
the statistics and science regarding the accuracy of the tests
is well-understood.

The problems that can be answered through the collabo-
ration of forensic practitioners and computer scientists by
understanding each other’s goals, building complete mod-

els of systems and procedures, and then implementing those
systems and following the procedures, include the following;:

1. How accurate is the method used to produce the data?
2. How accurate is the method used to analyze the data?
3. What claims can be made about the data?

4. What assumptions must be made to make those claims?

o

What can we do to reduce the amount of assumptions
that must be made to use the data?



We cannot achieve perfection in a world that requires in-
teraction with and interpretation by humans. None of the
computer systems will stand on their own without a thor-
ough analysis of each system to understand and define the
limits of the technology and which human procedures sup-
port it. But it is essential that we take the realistic steps
to contribute to legal systems by way of accurate and valid
forensic tools, contributions to democracy by way of design-
ing and implementing unassailable voting systems, and con-
tributions to other disciplines and industries that assume
that the work of computer scientists has been scientifically
supported to a much greater extent than it actually has.
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