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Abstract 

Efficient crop type mapping based on remote sensing in the Central Valley, 

California 

by 

Liheng Zhong 

Doctor of Philosophy in Environmental Science, Policy and Management 

University of California, Berkeley 

Professor Greg Biging, Chair 

 
Most agricultural systems in California’s Central Valley are purposely flexible and 
intentionally designed to meet the demands of dynamic markets. Agricultural land use is 
also impacted by climate change and urban development. As a result, crops change 
annually and semiannually, which makes estimating agricultural water use difficult, 
especially given the existing method by which agricultural land use is identified and 
mapped. A minor portion of agricultural land is surveyed annually for land-use type, and 
every 5 to 8 years the entire valley is completely evaluated. So far no effort has been 
made to effectively and efficiently identify specific crop types on an annual basis in this 
area. The potential of satellite imagery to map agricultural land cover and estimate 
water usage in the Central Valley is explored. Efforts are made to minimize the cost and 
reduce the time of production during the mapping process. 
 
The land use change analysis shows that a remote sensing based mapping method is the 
only means to map the frequent change of major crop types. The traditional maximum 
likelihood classification approach is first utilized to map crop types to test the 
classification capacity of existing algorithms. High accuracy is achieved with sufficient 
ground truth data for training, and crop maps of moderate quality can be timely 
produced to facilitate a near-real-time water use estimate. However, the large set of 
ground truth data required by this method results in high costs in data collection. It is 
difficult to reduce the cost because a trained classification algorithm is not transferable 
between different years or different regions. 
 
A phenology based classification (PBC) approach is developed which extracts 
phenological metrics from annual vegetation index profiles and identifies crop types 
based on these metrics using decision trees. According to the comparison with 
traditional maximum likelihood classification, this phenology-based approach shows 
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great advantages when the size of the training set is limited by ground truth availability. 
Once developed, the classifier is able to be applied to different years and a vast area 
with only a few adjustments according to local agricultural and annual weather 
conditions. 250 m MODIS imagery is utilized as the main input to the PBC algorithm and 
displays promising capacity in crop identification in several counties in the Central Valley. 
A time series of Landsat TM/ETM+ images at a 30 m resolution is necessary in the crop 
mapping of counties with smaller land parcels, although the processing time is longer. 
Spectral characteristics are also employed to identify crops in PBC. Spectral signatures 
are associated with phenological stages instead of imaging dates, which highly increases 
the stability of the classifier performance and overcomes the problem of over-fitting. 
Moderate accuracies are achieved by PBC, with confusions mostly within the same crop 
categories. Based on a quantitative analysis, misclassification in PBC has very trivial 
impacts on the accuracy of agricultural water use estimate. The cost of the entire PBC 
procedure is controlled to a very low level, which will enable its usage in routine annual 
crop mapping in the Central Valley. 
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Chapter 1. Introduction 

1.1 Background 

 Crop mapping plays an important role in various applications spanning from 
environment, economy to policy (Wardlow et al., 2007). As the population of the world 
increases rapidly, more food and irrigation water is needed. Crop type maps are among 
the most important datasets in yield estimation as required by decision makers in the 
global food market (Doraiswamy et al., 2004, Haboudane et al., 2002, Thenkabail et al., 
2009). The conflict between rapid agriculture development and limited water resource 
present a challenge to irrigation water management and planning. Crop classifications 
are useful in the calculation of regional crop water consumption (Stehman & Milliken, 
2007). Currently the use of biofuels results in high demand of biofuel crops and 
unprecedentedly accelerates the change of cropland distribution, water availability and 
soil condition (Hoekman, 2009, Shao et al., 2010). Also green house gas emission 
estimates vary by crop types and rotations (Pena-Barragan et al., 2011). Therefore, as a 
changing business with considerable uncertainty in human influences and socio-
environmental effects, agriculture highly values the capacity to reliably map crop types 
(Xiao et al., 2005, Le Toan et al., 1997). 
 In arid and semi-arid areas, a detailed and up-to-date crop type map is 
particularly needed to facilitate water planning and provide an irrigation schedule (El-
Magd & Tanton, 2003, Xie et al., 2007). The high productivity of the Central Valley, 
California is driven by favorable climate and other geographic factors. However, water 
scarcity as a result of the dry Mediterranean summer makes water planning a difficult 
task (Dinar & Zilberman, 1991, Zilberman et al., 1994). Agricultural water management 
relies on the knowledge of crop types to estimate agricultural water use, since the 
amount of water required in a land parcel is highly dependent on the crop type. Crop 
type map is an essential input to a variety of models to estimate water use (Allen et al., 
2005, Norman et al., 1995, Anderson et al., 1997, Bastiaanssen et al., 1998). The widely 
used method to estimate agricultural evapotranspiration suggested by FAO (Food and 
Agriculture Organization) employs reference evapotranspiration (ETo) along with crop-
specified coefficients (Kc) to compute evapotranspiration in crop fields (Allen et al., 
1998). After water use is estimated by incorporating crop types in the model, water use 
data is compared to planned water supply to develop a water balance and evaluate the 
spatial extent and severity of water shortage for the purpose of water planning. 
 Currently, agricultural land use information is mostly updated by farmer 
communications or land survey to identify crop types and monitor land use change 
(Pena-Barragan et al., 2011, Pinter et al., 2003) These procedures provide accurate 
information, but the long data acquisition time and high cost limit their uses as regular 
crop mapping approaches (Wade et al., 1994). In California, every year a land use survey 
is performed by state agencies, but the spatial extent only covers about two counties 
since ground visits are too time- and labor-intensive. Other government agencies such 
as the US Department of Agriculture (USDA) collects crop plantation information 
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reported by individual farmers, however, the information tends to be limited in spatial 
coverage and crop category (food or economic crops only) and the data consistency 
cannot be guaranteed. A crop mapping approach with low cost which can be routinely 
utilized and can produce annual crop maps over large areas is highly desirable. 
 Remote sensing offers an efficient and reliable means to map crop types and 
areas. In previous attempts, sensor platform and image resolution vary depending on 
cost, processing time, data availability and study area conditions. Radar data are less 
likely to be affected by cloud cover, but are subjective to the problems of low resolution, 
high level of noise and high cost (Del Frate et al., 2003, Tso & Mather, 1999, Soares et al., 
1997). Regular uses of expensive hyperspectral images in crop mapping are also 
uneconomic (Pal & Mather, 2006). Suitable input images are selected by balancing 
computational cost and spatial resolution. While AVHRR (Advanced Very High 
Resolution Radiometer) data has been utilized to monitor agricultural land at daily 
frequency and continental scales (Loveland et al., 1991, Loveland et al., 2000, De Fries et 
al., 1998, Hansen et al., 2000), the coarse resolution (>1000 m) is unlikely to effectively 
map small crop fields in California (Wardlow et al., 2007, Jakubauskas et al., 2001). By 
contrast, classification based on high resolution images is limited by computational time 
and data availability. The National Agriculture Imagery Program (NAIP), administrated by 
USDA Farm Service Agency, acquires 1 meter high resolution aerial imagery on a three-
year cycle (http://www.fsa.usda.gov/Internet/FSA_File/naip_2009_info_final.pdf). 
While spatial details of agricultural land are emphasized, NAIP imagery lacks the 
capacity of capturing crop seasonality and annual variance, and a considerable amount 
of data processing time is required. Therefore, most of the existing crop mapping 
studies focus on medium to moderate resolution (10 ~ 500 m) multispectral images. 
 The MODIS (MODerate resolution Imaging Spectroradiometer) imagery with 36 
spectral bands, moderate spatial resolution and a sampling frequency of 2 images per 
day is capable of tracking crop seasonality over a large area (Xavier et al., 2006, Zhong et 
al., 2009, Zhong et al., 2011). Over the U.S. Central Great Plains, MODIS 250 m time 
series has been successfully applied in mapping specific crop types such as alfalfa, corn, 
sorghum, soybean, and wheat (Wardlow et al., 2007). However, the moderate spatial 
resolution (at best 250 m) presents a challenge for crop mapping in the Central Valley, 
California, where parcels are relatively small. Multispectral, medium resolution images 
from the Landsat TM/ETM+ (Thematic Mapper / Enhanced Thematic Mapper Plus) and 
SPOT (Satellite Pour l'Observation de la Terre) have proven suitable for discriminating 
crops as well as retrieving land parcel at a finer scale (Xie et al., 2007, Erol & Akdeniz, 
2005, Martinez-Casasnovas et al., 2005, Murakami et al., 2001, Turker & Arikan, 2005). 
Crop maps derived from medium resolution images are comparable to these from high 
resolution images but with much lower cost (Xie et al., 2007). Although land use maps 
have been continuously produced from Landsat TM and ETM+ data, in these 
classification schemes cropland was only classified into a single or a very few number of 
classes (Homer et al., 2004, Vogelmann et al., 2001). The cropland data layer (CDL) of 
the USDA National Agricultural Statistics Service (NASS) is a detailed, state-level crop 
classification. However, the CDL is not frequently updated everywhere (Wardlow et al., 
2007). In California, so far there are three CDLs developed in 2007, 2009 and 2010 
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respectively (NASS CDL, http://nassgeodata.gmu.edu/CropScape/). The use of Landsat 
imagery (and data from similar sensors, e.g., SPOT) for repetitive, large-area mapping is 
still limited by considerable time and efforts required for image processing including 
registration of multiple scenes, georeferencing, and correction (Fisher & Mustard, 2007). 
In California, Landsat data availability is limited by the difficulty of acquiring cloud-free 
images in winter as a result of the 16-day revisit time and weather condition. 
Regular crop mapping for a large area is an especially challenging task. Despite the 
difficulties of maintaining data continuity, processing large volumes of data, and 
developing robust methods, the design of the classifier is complex in order to account 
for regional agricultural systems with various crop types. Most previous large-area 
mapping efforts did not attempt to identify specific crop types. Croplands were usually 
generalized as a single “agriculture” class or only a few classes such as winter/summer 
crops and irrigation/non-irrigation cropland (Thenkabail et al., 2009, Loveland et al., 
2000, Hansen et al., 2000, Homer et al., 2004, Biggs et al., 2006). Some studies focused 
on only a limited number of specific crop types, but an overall crop map for the entire 
study area was not produced (Le Toan et al., 1997, Xavier et al., 2006, Murthy et al., 
2003). Large-area comprehensive crop mapping was successful for uniform growing 
patterns with limited crop types (Wardlow et al., 2007). By contrast, California has 
diverse agricultural systems with a vast variety of crop types in multiple distinct climate 
regions, and current crop mapping efforts are still very insufficient. 
 Maximum likelihood classification is a widely used algorithm in cropland use 
mapping (El-Magd & Tanton, 2003, Congalton et al., 1998), while other algorithms such 
as neural networks and support vector machines have generated encouraging results 
(Del Frate et al., 2003, Pal & Mather, 2006, Murthy et al., 2003). The algorithm of 
decision trees has been increasingly used in crop classification for its advantages over 
other methods (Pena-Barragan et al., 2011). A decision tree is a non-parametric 
classifier that provides full control, flexibility and computational efficiency (Thenkabail 
et al., 2009, Friedl & Brodley, 1997). In the agricultural system, the assumption of 
certain statistical data distribution, which is the base of many parametric classifiers, 
tends to fail due to human influences. Classifiers developed based on decision trees 
allow users to make an individual classification strategy for each type with few 
mathematical restrictions. 
 One of the most noticeable characteristics of agricultural land is that crops 
usually display specific and often separable seasonal growth stages. As a result, the 
significance of classification based on multi-temporal images has been well-recognized 
(Tso & Mather, 1999, Martinez-Casasnovas et al., 2005, Murakami et al., 2001, Turker & 
Arikan, 2005, Choudhury & Chakraborty, 2006, De Wit & Clevers, 2004, De Santa Olalla 
et al., 2003). In the use of multi-temporal images, increased number of images tends to 
enhance the ability of depicting seasonality but also elevates the difficulty of processing 
large volumes of data. A large set of multi-temporal images may also contain 
considerable redundancy and result in increased requirement for training data for 
classification algorithms such as maximum likelihood. Image transformation approaches 
such as principal component analysis (PCA) were developed to extract information from 
high dimension data set (Murthy et al., 2003, Pu et al., 2008) but this kind of 



 

4 
 

transformation lacks a physical and physiological basis and the sequential relation 
between the multi-temporal images is lost. The curve-fitting method fits pre-defined 
functions to vegetation index (VI) time series computed from multi-temporal images 
and converts images into interpretable function parameters that represent time series 
characteristics. A variety of functions have been designed to fit VI time series, including 
polynomial (Vandijk et al., 1987), Fourier (Vandijk et al., 1987, Olsson & Eklundh, 1994, 
Verhoef et al., 1996), piecewise linear functions (Chen et al., 2004) and piecewise 
logistic functions (Zhang et al., 2003).  
 The curve-fitting approaches using piecewise logistic functions or other similar 
functions have been widely employed to detect phenological phases and transitions of 
natural vegetation (Zhang et al., 2003, Myneni et al., 1997, Beck et al., 2006, Fisher, 
2006, Soudani et al., 2008), though few efforts have been done to map agricultural 
crops (Sakamoto et al., 2005, Badhwar, 1984). The piecewise logistic function was 
rewritten using an asymmetric double-sigmoid function so that some meaningful 
phenological metrics were explicitly given in the expression (Soudani et al., 2008). 
Vegetation dynamics of each mode (a growing cycle including both increasing and 
decreasing stages) are modeled as an asymmetric double-sigmoid function of the form: 

))](tanh())([tanh(
2
1)( diab DtqDtpVVtV −−−+=   (1) 

where V(t) is the VI at time t and the unit of t is day of year (DOY). Vb is the “background” 
VI value corresponding to unleafy season. Va is the amplitude of VI variation within the 
current growing cycle. Di and Dd are the DOYs with the highest increasing and 
decreasing rates of VI, respectively. The overall changing rates of the increasing and 
decreasing slopes are characterized by p and q. Figure 1.1 shows an example of VI time 
series and the corresponding asymmetric double-sigmoid function fitted. These metrics 
tend to be type-specific in agricultural systems, showing great potential in crop type 
mapping. The method of curve-fitting using asymmetric double-sigmoid functions is 
suitable for various agricultural conditions because i) in contrast to PCA, each part of the 
image is treated individually so the result is not biased by the whole dataset and less 
sensitive to background environment, ii) there is no need to set empirical thresholds, iii) 
multiple modes of growth and senescence/harvest within a single annual cycle, which 
are usual in crop rotation, are well represented (Pettorelli et al., 2005), even for very 
short growing cycles (Beck et al., 2006). This method is capable of extracting crop 
phenological metrics. Phenological metrics are the temporal markers which indicate 
vegetation seasonality such as green-up, maturity, senescence and dormancy. 
Phenological metrics derived from remotely sensed data are comparable to ground 
observations and thus have great potentials to characterize crop-specific growth in a 
large area (Fisher & Mustard, 2007). Key phenological transition dates can be directly 
derived from the fitting parameters and used in crop mapping. 



 

5 
 

 
Figure 1.1. An example of VI time series in diamond symbol and the fitted curve. Some 
phenological metrics are labeled. 

  
 Although the curve-fitting method highly reduces computational complexity, 
large-area crop mapping may still be limited by long data processing time. The 
technique of image segmentation is capable of further saving computational cost by 
increasing the minimum analysis unit from pixels to segments (or objects). Images are 
first segmented by grouping adjacent pixels with spectral similarity and then 
classification is performed based on these objects by assigning the same class to all 
pixels within an object. The method of object based classification has been increasingly 
implemented in remote sensing analysis for its advantages over other methods 
(Blaschke, 2010). Despite low computational cost, object based classification i) 
overcomes problems of inaccurate identification due to pixel heterogeneity, mixed 
pixels, and crop pattern variability within the field, ii) produces low-noise map products 
with consistently higher accuracy than pixel based classification (Luisa Castillejo-
Gonzalez et al., 2009), and iii) enables incorporating new spectral, textural and 
hierarchical features after image segmentation as additional useful classification metrics 
(Pena-Barragan et al., 2011). 
 

1.2 Objectives 

 A classification approach based on remotely sensed data is to be developed to 
map crop types and facilitate agricultural water planning in the Central Valley, California. 
Due to the weather and crop diversity of the Central Valley, a hybrid classification 
approach which possesses the capacity to treat each sub-area separately is desired. All 
previous studies in other areas only deal with simpler conditions and have not produced 
a proper method for the Central Valley yet. While existing classifiers might be suitable 
for some locations with advantages of simplicity and short adaptation time, new 
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approaches have to be designed to map the challenging areas and to conduct water 
planning for the entire valley. To develop new crop identification approaches, a 
framework is established to test various classifiers with flexibility to incorporate 
techniques including curve-fitting, decision tree, and object based classification, which 
are believed to be capable of improving crop identification. The finalized classification 
approach is supposed to be able to map cropland at a fine resolution that is comparable 
to common field sizes and identify most of the numerous crop types. In addition, to 
ensure high classification efficiency and stable performances, the classification approach 
should come with several desirable features. 
 One of the features is to minimize the cost of routine crop mapping. The major 
cost for crop mapping includes remote sensing imagery, labor for method development, 
and labor for collecting data. Attempts will be made to only utilize free remote sensing 
imagery such as Landsat TM/ETM+ and MODIS for most studies. Classifiers with various 
complexities are tested to strike a balance between time required for approach 
development and classification effectiveness. Previously ground truth data is the most 
important source of cost on time and labor. Ground truth data availability is one of the 
most limiting factors for a variety of classification algorithms due to the time and labor 
intensive process of data collection. With the development of an approach based on 
crop phenology, the classification approach is supposed to require very few ground 
truth data for training but only the knowledge on local crop calendar and agricultural 
practices, which is usually available as the focus of traditional agricultural studies and 
publications.  
 Another feature is to maximize the information extracted from remotely sensed 
images. In practice multi-temporal images cannot be fully utilized due to cloud cover 
and other factors affecting image quality. In most crop mapping attempts only images 
with low cloud coverage are selected and other images are abandoned. Since the year 
2003 Landsat 7 ETM+ has suffered the loss of its scan line corrector and only acquired 
about 75 percent of the data for any given scene. The gaps of the images prohibit the 
use in crop classification because no effective gap-filling method has been developed for 
agricultural lands. All these factors prohibit the full use of available remotely sensed 
data and limit the information content acquired. In the desired method, it is hoped that 
images with partial coverage are also input to the classification algorithm to maximize 
the distinguishing power. This strategy may result in unacceptable high computational 
cost so efforts are needed to optimize the calculation process. 

The mapping approach should also be designed to enable the inter-annual and 
inter-region transfer of classification algorithm and parameters. In crop type 
classification, it is a common problem that a classifier trained in a certain year cannot be 
applied to another year due to weather variability. Some classifiers are subject to the 
problem of over-fitting and their use is limited to the source area of the training data. 
The curve-fitting method enables the derivation of phenological metrics from remotely 
sensed data. Phenological metrics are related to phenological characteristics and 
physical processes of crops, which are comparable between different years. It is 
believed that with the incorporation of phenological metrics, the same set of classifier 
parameters can be consistently applied to multiple years. In addition, the classification 
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algorithm used in one area should be able to be applied to another area without 
collecting much additional ground truth data. In general, the designed approach is 
supposed to possess great flexibility and extensibility to adapt to various periods and 
regions and provide the feasibility to build a semi-automatic tool for routine crop 
mapping.  
 The ultimate goal of crop mapping is to estimate crop evapotranspiration (ETc) 
which helps provide essential information for agricultural water use monitoring and 
planning. While most of the classification efforts focus exclusively on the accuracy of the 
crop map, assessments of the misclassification effects on ETc values are rarely made. 
The only attempt to quantify ETc deviation resulting from crop classification error is 
based on a statistical analysis of a stratified random sample consisting of ground visit 
field data (Stehman & Milliken, 2007). In order to understand the sensitivity of ETc to 
uncertainties in crop classification, analysis should be performed to explore error 
propagation during each calculation step from crop types to ETc. This analysis is also 
beneficial for the purpose of classifier optimization. Separation between crop types with 
similar water consumption might be simplified, while attention should be focused on 
classification of crops with distinct ETc.  
 In summary, compared to most other areas in North America, specific crop type 
mapping in California is challenging because of small parcel sizes and diversified 
agricultural land use. The ultimate goal of the exploration is to develop an effective and 
efficient approach to produce annual California crop maps and facilitate water 
management. The classification approach is to be improved step by step to achieve all 
the desired features. These features are mandatory in order to efficiently map crop 
types in a large area on an annual basis. In Chapter 2, the importance of remote sensing 
based crop classification is demonstrated and a simple approach is developed to make 
use of existing algorithms and create crop maps at a short time for the purpose of timely 
water planning. Chapter 3 introduces the concept of phenology based classification (PBC) 
and applies the approach to present the advantages over traditional classification 
methods. In Chapter 4, the PBC approach is improved to account for a more 
complicated agricultural system with smaller parcel sizes by incorporating new sets of 
input images and classification metrics. 
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Chapter 2.  A simple crop mapping strategy for prompt adaptation 

2.1 Background 

 As introduced in Chapter 1, compared to the survey approach crop mapping 
based on remote sensing possesses the advantages of high efficiency and low cost, 
which makes frequent mapping feasible. Land survey still yields higher mapping 
accuracy than the remote sensing based approach, and thus the replacement of land 
survey with remote sensing mapping depends on the rate of land use change. If 
considerable land use change occurs within the period between two consecutive 
surveys, the remote sensing based approach with a capacity of mapping at a much 
higher frequency is necessary. Otherwise, more accurate survey data is sufficient for 
most applications. 

In this chapter, the study focuses on the practical use of remote sensing based 
crop mapping, in which the classification algorithm should be ready to implement in 
most circumstances and the time required for input data processing should be as short 
as possible. The approach of maximum likelihood classification (MLC) is tested as the 
classification algorithm. MLC is a widely used supervised classification approach with 
advantages such as: i) MLC is available in most remote sensing data analysis 
environments without additional development efforts, ii) the relatively robust MLC 
method is unlikely to yield abnormal or over-fitted results, and iii) as a supervised 
parametric classifier, MLC generates predictable and understandable outputs. Criteria 
for selecting the input dataset include low cost, short preprocessing time, large 
coverage, suitable spatial resolution, and high frequency of image acquisition. 

For some short-term water planning applications, the capacity of real-time or 
near-real-time identification of crop type is desirable for the purpose of providing a 
current year water use estimate. Thus we want algorithms and procedures that allow us 
to map crop type as early in the growing season as possible. With concerns described 
above, the objectives of the study involved in this chapter includes: i) to determine the 
necessity of using remote sensing technique in crop mapping by land use change 
analysis; ii) to develop a simple crop mapping approach with the classification algorithm 
and the input imagery that are easily obtained and used, and iii) to explore the 
timeliness of remote sensing based classification when real-time crop mapping is 
needed. 
 

2.2 Materials and method 

2.2.1 Study area  

 Four counties are particularly important to the agricultural economy of the 
Central Valley:  Fresno, Kings, Merced and Sutter (Figure 2.1).  The total value of 



 

9 
 

agricultural products sold from these counties is about 36 percent of all agricultural 
products sold from the Valley and depends on flexible agricultural systems that are 
adaptable to annual or semi-annual economic conditions, as indicated by historic map 
data (USDA, 2004).  Experience indicates that land use has changed significantly within 
the last 5-8 years which has gone unrecorded by the current land use sampling method. 
Therefore, these four counties are selected for a quantitative analysis of land use 
change to demonstrate the necessity of frequent and timely mapping based on remote 
sensing. Any of these counties are logical study areas for this research because of their 
economic importance and planers’ needs for accurate land use information. The Merced 
County in year 2002 is chosen among these counties as an example of crop classification 
attempts. 

 
Figure 2.1. The counties of California involved in the study. 
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2.2.2 Data sources 

2.2.2.1 MODIS imagery 

 Two MODIS Terra image sets are used in this study: 16-day-interval vegetation 
index (Normalized Difference Vegetation Index, NDVI and Enhanced Vegetation Index, 
EVI) at 250 m spatial resolution and 8-day-interval surface reflectance at 250 m spatial 
resolution for red (620-670 nm) and near infrared (841-876 nm) bands. The origin 
images in sinusoidal projection have the geographic center at 35.34° Lat, -116.34° Lon, 
and the geographic extent is defined by the four corner points: 29.83° Lat, - 115.37° Lon; 
40.00° Lat, -130.54° Lon; 40.09° Lat, -117.36° Lon; 29.91° Lat, -103.70° Lon. The images 
are obtained at no cost from NASA’s Earth Observation System Warehouse Inventory 
Search Tool (discontinued, updated data sources are at https://lpdaac.usgs.gov/), where 
the images are corrected for the effects of atmosphere, dynamic aerosol and cirrus 
clouds. The quality is ensured, and for most cloud and snow free, low aerosol load pixels, 
the values are very reliable. However, MODIS was off during a 15-day period, leaving a 
data gap in June, 2002. In total 19 NDVI images and 42 reflectance images are used. The 
time coverage of vegetation index and Reflectance are illustrated in Figure 2.2 and 
Figure 2.3, respectively.  
 

 
Figure 2.2. The indices and corresponding time coverage for 19 MODIS 16-day-interval 
vegetation index images, which include the bands NDVI. 
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Figure 2.3. The indices and corresponding time coverage for 42 MODIS 8-day-interval 
reflectance images (red and near infrared). 

 
 

2.2.2.2 Land use data 

 The land use program of the California Department of Water Resources (CDWR) 
provides the land use data for all the counties in California. The field work of the land 
use survey is performed every year by CDWR to identify land uses of parcels, whose 
boundaries are digitized from aerial photographs. The land use data for is provided by 
CDWR in a format of shape files in a Transverse Mercator or California state plain 
projection. Each parcel or land use unit is represented by a polygon and the land use 
type is contained in the attributes of the polygon. Nine categories of agricultural land 
use types are coded for the attributes: 1) grain and hay crops, 2) rice, 3) field crops, 4) 
pasture, 5) truck nursery and berry crops, 6) deciduous fruits and nuts, 7) citrus and 
subtropical, 8) vineyard and 9) idle. Each of the first eight categories is further divided 
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into individual plant types, which are used as the ground truth data in this study. Most 
of the parcels are single-use during the year while others are multiple cropping types.  

In this study the counties of interests and the corresponding survey years are: 
Kings (1991, 1996 and 2003), Fresno (1984, 1994 and 2000), Merced (2002) and Sutter 
(1998 and 2004). Multi-temporal land use maps are used for Kings, Fresno and Sutter to 
detect land use change, and the land use of Merced is examined in detail and processed 
to perform classification. The study focuses on the agricultural land use in year 2002, 
when the latest survey in Merced County was performed.  More than sixty types of 
polygons are extracted from the shape file, and nine types whose combined polygon 
acreages are greater than 10,000 are considered as major types. Table 2.1 shows that 
these nine major types comprise 83% of the distinguishable agricultural lands.  
 

Table 2.1. Major agricultural types determined from land use survey in Merced County, 2002 

Name Acreage Percent 
Almonds 96439 17% 
Alfalfa & alfalfa mixtures a 91143 17% 
Grain <-> Corn b 66576 12% 
Cotton 59781 11% 
Mixed pasture 44235 8% 
Grain and hay crops c 36871 7% 
Tomatoes 29998 5% 
Corn (field & sweet) d 16311 3% 
Vineyards 14260 3% 
Others 90631 17% 
Total 546246 100% 
a: “Alfalfa” for short. 
b: A rotational type with grain and corn grown alternately. 
c: Includes wheat, barley, and oats. “Grain” for short. 
d: “Corn” for short. 
 

2.2.3 Change detection 

The method to detect agricultural land use change between different years’ 
survey data is based on the spatial intersection performed by ESRI ArcGIS. First all the 
agricultural land parcels are extracted and the total area is calculated. The parcels 
change from agricultural land to non-agricultural land or vice versa are also counted in. 
Parcels with identical values for the attributes of different years are considered as “no 
change” parcels, while others are changed parcels. The agricultural land use change 
ratio is defined as the area of changed parcels over the total agricultural land area 
(Table 2.2). 
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2.2.4 Classification 

 The classification processes focus on the nine major crop types defined in Table 
2.1. First, the 19 MODIS NDVI images through the year 2002 are used to perform the 
classification, with a time interval of approximate 16 days. To derive the “ground truths” 
points from the survey shape file, a buffer with a negative distance (-100 m) is created 
first to eliminate the influences of the mixed pixels along the parcel boundaries, and 
those buffered areas are converted into raster format with the type codes as point 
values. The number of ground truth points for each crop varies from 76 to as many as 
500. The average NDVI values are calculated for each crop class, and those values are 
plotted versus the order number of NDVI images to analyze their separability. Then a 
maximum likelihood algorithm is used for the classification with a probability threshold 
set to 0.5. 50% of those ground truth points are extracted randomly as the training set, 
and the other 50% of points form a test set. This procedure repeats ten times, and the 
mean and the standard deviation of the ten classifications are calculated. 
 Of practical concern is how early in the year the agricultural land use of the 
whole year can be identified. Therefore in the next step, the number of NDVI images 
used is changed to n (n≤19), and only the images from the 1st to the nth comprise the 
input bands for the maximum likelihood classification. One of the training sets 
generated above is used for training and the validation process is performed using the 
corresponding test set. 
 Since the 250 m resolution NDVI images are actually produced from the 250 m 
resolution MODIS surface reflectance for red and near infrared, the original reflectance 
images at a time interval of 8 days are then used to perform the classification. The time 
interval for NDVI images is two times as long as the time interval for surface reflectance 
images, and each reflectance image has two bands (red and NIR), so for each NDVI 
image there are four corresponding reflectance bands and with more available 
information the distinguishing power is likely to be improved. The same classification 
method and training and test sets are used as the previous steps. 
 

2.3 Results 

 For the counties with multi-year land use data available, the land change ratio is 
calculated for each time period and shown in Table 2.2. 

Table 2.2. Land use change during periods between survey years. 

County name Periods Changed acreage Total acreage Change ratio (%) 
Kings 1991-1996 394883 591238 66.79 

1996-2003 375681 577953 65.00 
Fresno 1986-1994 1004809 1347669 74.60 

1994-2000 961184 1337723 71.85 
Sutter 1998-2004 123889 298984 41.44 
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 The plot of NDVI values versus the order number of the image reflects the 
seasonal trends for the crop classes (Figure 2.4). The classification with 19 NDVI images 
repeats 10 times using a different random partition of the ground truth points as 
training sets and test sets, and the result is given by Table 2.3. The confusion matrices of 
the classifications are quite similar, and the confusion matrix with producers’ and users’ 
accuracy for the first pair of training and test set is given in Table 2.4. 

 
Figure 2.4. Seasonal trends of NDVI values for major crop classes by day of year (DOY) within 
the time coverage of the 19 NDVI images. 

 

Table 2.3. Overall accuracy and kappa coefficient for classification using the whole NDVI series. 

No. of Test Overall accuracy (%) Kappa Coefficient 
1 80.3406 0.7715 
2 81.7035 0.7870 
3 81.9584 0.7900 
4 81.7300 0.7870 
5 81.6788 0.7870 
6 80.4124 0.7725 
7 81.2995 0.7825 
8 80.7018 0.7761 
9 80.5732 0.7748 

10 80.2362 0.7695 
Mean 81.0634 0.7798 

Standard Deviation 0.6742 0.0077 
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Table 2.4. Confusion matrix for one of the classifications using 19 NDVI images. 

Class 
Ground truth 

Total Users’ 
Accu. (%) 1 2 3 4 5 6 7 8 9 

Unclassified 1 3 6 9 4 7  2  32  
Almonds(1) 157   7  2 9  3 178 88.2 
Cotton(2)  102 1  1   8 2 114 89.4 
Corn(3) 2 6 14   2  1 3 28 50.0 
Grain(4) 2   179 11 2 13   207 86.4 
Grain<->corn(5)  4 2 6 121 5 3 2  143 84.6 
Alfalfa(6) 3 8 5 3 7 247 13 4  290 85.1 
Mixed pasture(7) 7   8 3 5 139  4 166 83.7 
Tomatoes(8) 4 13 12 6 5 2 1 45  88 51.1 
Vineyards(9) 6   1  2 3  34 46 73.9 
Total 182 136 40 219 152 274 181 62 46 1292  
Prod’s accu. (%) 86.2 75.0 35.0 81.7 79.6 90.1 76.8 72.5 73.9   
 
 In the classification, if only the first nth NDVI images are used, then the accuracy 
and kappa coefficient increase with the number of images used. This relationship is 
shown in Figure 2.5 for the first pair of training set and test set.  
 If the 8-day-interval surface reflectance images are used instead of the NDVI 
images, the accuracy and kappa coefficient also increase with the number of images 
used but at different rates (Figure 2.6). Two surface reflectance images correspond to 
one NDVI image during the same period. Though 42 images from the beginning of 2002 
are available, there are not enough ground truth points for some types and the 
classification cannot be performed if the total number of bands exceeds 35, so the 
maximum number of images used is 17 (17<35/2). 
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(a) 

 
(b) 

 

Figure 2.5. Plots of accuracy (a) and kappa coefficient (b) versus the number of NDVI images 
used in classification. 
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(a) 

 
(b) 

 

Figure 2.6. Plots of accuracy (a) and kappa coefficient (b) versus the number of surface 
reflectance images used in classification. 
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2.4 Discussion 

In the land use change detection (Table 2.2) it is observed that for the counties 
Kings and Fresno, Over 60% of the agricultural lands have changes in plant type during 
the less-than-ten-year time intervals. For Sutter, which is a major producing area for rice, 
the change ratio is not so high, but still over forty percent. The changes in agricultural 
land use from year to year are mostly determined by the market factors, and the 
variance is especially high for economic agricultural plants. Therefore, the lands in those 
important agricultural counties generally have considerable changes, and it is necessary 
to develop an efficient and effective way to do the up-to-date survey rather than relying 
on the former land use map. 

The classification using NDVI image series all through the year 2002 demonstrates 
a high distinguishing power since generally the agricultural plants show different 
seasonal trends for NDVI values (Figure 2.4). However, the low accuracies for some 
classes are not acceptable in application. Neither the user’s accuracy nor the producer’s 
accuracy for the type “corn” are more than 50% and the users’ accuracy “tomatoes” is 
only 51.1% (Table 2.4). From the confusion matrix it is found that a large proportion of 
“corn” pixels are classified as “tomatoes” and “cotton” pixels are classified as “corn”. 
There are two reasons for the low accuracies: i) some plant classes have similar seasonal 
trends in NDVI values, and ii) the plant classes with low accuracies have relatively small 
total areas and also small parcel sizes, so the numbers of available “pure” pixels for 
those classes are limited and thus the composition of the training set is biased. 
Therefore, to improve the overall classification accuracy, on one side more detailed 
knowledge on the seasonal trends of crops should be gained, and on the other finer 
spatial resolution data than the 250 m MODIS images is necessary which requires more 
processing time. 

In the classification using NDVI series, at least 12 consequent NDVI images are 
needed to increase the accuracy to approximately 75% (Figure 2.5). The surface 
reflectance images provide more spectral information about the plants’ seasonal trends, 
and only 17 reflectance images, which correspond to less than 9 16-day-interval NDVI 
images, are needed to produce the same level of overall classification accuracy (Figure 
2.6). Such number of reflectance images can be acquired as early as the beginning of 
May of the year, which means that the mapping of the agricultural land use of the whole 
year can be accomplished at an early time and the land use information can be 
employed in the agricultural management such as water resource allocation for the 
remaining of the year. 
 

2.5 Summary 

 The large change ratios in the agricultural land use in several important 
agricultural counties in California show the necessity of an effective and efficient 
mapping approach. However, the medium spatial resolution limits the availability of the 
pure ground truth pixels and reduces the accuracy of the classification focusing on the 
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major agricultural plant types. With higher spatial resolution, the effect of mixed pixels 
is likely to be reduced and thus the classification can be improved. The NDVI image 
series all through a year demonstrate the power to identify the seasonal trends and 
distinguish the agricultural plants, and the surface reflectance images, which are the 
source of the NDVI, provide more bands to delineate the seasonal trends. Using surface 
reflectance images, it is possible to map the major agricultural plant types of the year 
almost as early as in the first four months, and such a timely agricultural land use map 
can surely help the agricultural management for the remaining of the year. 
 The shortcomings of the classification approach in this study are apparent. Due 
to the parametric characteristic of the maximum likelihood classifier, high accuracies 
achieved in this study highly depend on a large and reliable training set. The size of the 
training set for each crop type should be at least greater than the number of bands used 
in the classification (so classification using surface reflectance images requires a larger 
ground truth dataset than using NDVI images). In practice, a much larger size than the 
ideal minimum is required to fully represent the distribution in a multi-dimensional 
space. However, for most years without land use surveys such a large set of high quality 
ground truth points is unavailable. Ground truths collected in one year cannot be used 
directly in the training of another year's classification because growing seasons of crops 
are variable as a result of changing weather and markets. The shortage of ground truth 
data for training is the most limiting factor of crop mapping using a traditional MLC 
approach. 
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Chapter 3. Phenology based classification of major crop types in 
the San Joaquin Valley, California 

3.1 Background 

 Existing classifiers are not able to effectively map crop types in the Central Valley 
with shortcomings discussed in Chapter 2 as a result of complicated environmental 
conditions and diverse agricultural systems. A variety of techniques including curve-
fitting, decision tree, and object based classification are explored to develop a 
phenology based classification (PBC) approach for the purpose of crop mapping. 
Introductions to these techniques and motivations of classifier development have been 
given in Chapter 1.  

3.2 Materials and methods 

3.2.1 Study area 

 This study was carried out in the San Joaquin Valley (SJV), the south part of the 
Central Valley (Figure 3.1). This area is characterized by vast flat terrain, high agricultural 
productivity and Mediterranean climate with hot dry summers and cool rainy winters. 
Two counties were the focus of our study: Merced County (ME) in the northern part of 
SJV and Kern County (KN) in the south end. Both of the counties are of great importance 
in agriculture. According to the latest agricultural statistics database in the year 2007 
(USDA, 2009), KN and ME had the 1st and 5th largest total farmland acreage in California, 
respectively. The annual average precipitation of ME is below 380 mm, and KN below 
250 mm. Agriculture in both counties relies heavily on irrigation. 
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Figure 3.1. The San Joaquin Valley and the two counties of special interest shown on California 
topographic map. 

3.2.2 Data 

3.2.2.1 MODIS 250 m reflectance (MOD09Q1) data 

 MODIS red and near infrared reflectance 8-day composite images at 250 m 
spatial resolution (MOD09Q1 product) are obtained from NASA’s Earth Observation 
System Warehouse Inventory Search Tool (discontinued, updated data sources are at 
https://lpdaac.usgs.gov/), where the images have been corrected for the effects of 
atmosphere, dynamic aerosol and cirrus clouds. A quality assessment flag is provided 
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within MOD09Q1 to evaluate the data quality of each pixel. The entire SJV is covered by 
one scene of MOD09Q1 image, which is row 05 and path 08 (h08v05). All available 
images in year 2002, 2006, 2007 and 2008 are acquired and reprojected to Albers equal-
area conic projection using MODIS Reprojection Tool (MRT, 
https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool).  

3.2.2.2 CDWR land use data 

 The land use survey of the California Department of Water Resources (CDWR) 
provides the most reliable land use data for all counties in California. Crop survey is 
taken every year by CDWR for counties alternately, at a frequency of every 5-10 years 
for an individual county. Each parcel or land use unit is digitized from an aerial 
photograph as a polygon and assigned a label of crop type. Details of the land use 
program and data are given in Section 2.2.2.2. Though the land use data is of high 
quality, the acquisition is labor intensive and expensive. Furthermore, timely 
information may not be available for management because the survey frequency is too 
low to detect agricultural land use changes and considerable time is needed to finish 
each survey and process the data. 
 The latest survey in ME was performed in year 2002. More than sixty crop types 
of polygons were found from the crop survey data. Eight specific types whose total 
areas were greater than 4,000 ha were considered as major crop types. These major 
crop types comprised 75% of the total size of crop lands (Table 2.1). The average field 
size was ~15 ha, and ~80% of the fields were smaller than 20 ha, corresponding to less 
than four MODIS 250 m pixels. 
 Compared to ME, KN has greater diversity in crop types and larger field sizes. 
According to the surveyed land use map of KN in year 2006, twelve specific types were 
considered as major crop types. These crop types comprised ~85% of the total size of 
crop lands (Table 3.1). The average field size was ~28 ha, and ~80% of the fields were 
smaller than 40 ha, corresponding to less than seven MODIS 250 m pixels. 
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Table 3.1. Major crop types of KN from land use survey in year 2006. 

Type Total area (ha) Percentage of 
agricultural land use 

Almonds 69207 18.9 
Vineyards 41859 11.4 
Cotton 41818 11.4 
Grain 37803 10.3 
Alfalfa 36691 10.0 
Pistachios 25526 7.0 
Oranges 22237 6.1 
Carrots 10038 2.7 
Grain & corn 9494 2.6 
Corn 9271 2.5 
Onions & Garlic 4468 1.2 
Tomatoes 3989 1.1 
Unspecified 26694 7.3 
Others 27713 7.6 
Total 366814  

 

3.2.2.3 USDA CDL 

 The USDA Crop Data Layer (CDL) in year 2007 includes a crop-specific land cover 
map for the entire state of California. There are two versions of 2007 California CDL, one 
derived from 56 m AWiFS (Advanced Wide Field Sensor) satellite imagery and the other 
from 30 m Landsat 5 TM imagery, and the latter was used for its finer spatial resolution 
and higher reported accuracy. The CDL was produced based on the supervised 
classification of TM imagery. There was a variety of ancillary datasets used in the 
classification including the United States Geological Survey (USGS) National Elevation 
Dataset (NED), the USGS National Land Cover Dataset 2001 (NLCD 2001), and MODIS 
250 m 16 day NDVI composites. A total of 36 specific crop classes and 9 non-agricultural 
classes are presented for the entire state of California. The classification accuracy was as 
high as 97.22% according to the metadata provided by USDA NASS. However, the 
accuracy is likely to be over-estimated as a result of over-fitting and other factors based 
on visual assessment. 
 Efforts are not made specifically to determine the major crop types of the entire 
SJV because CDL is not a completely reliable crop type map and the classification 
scheme of CDL is different from the scheme of this study. The major crop types of ME 
and KN are still used as classes of interest based on the assumption that these major 
crop types could represent most of the cropland cover in the study area. The selected 
set of interested crop types in the CDL is utilized as ground truth reference data for 
validation. There is no strict one-to-one relation between the classes in the CDL and the 
crop types focused by this study, so some modifications were made on the classes. The 
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rotation type grain & corn and the single use type corn are not distinguished in the CDL, 
so the corresponding types in the classified image are merged to facilitate validation. In 
the CDL pistachios were not explicitly identified but combined with other classes to form 
a miscellaneous type “other tree nuts & fruits”, so classification of pistachios is not 
validated using the CDL. 

3.2.2.4 Field data 

 I conducted cropland field sampling in KN in year 2008. Sample fields were 
visited multiple times to capture the crop types in various seasons. Generally the 
recognized fields distributed evenly across the entire county, and all crop types were 
recorded. Pixels in MODIS images in 2008 corresponding to the fields were labeled with 
the crop types and used for accuracy assessment. No matter how large the field was, it 
was represented by only one point. If a field is small it was not sampled to make sure 
that points recorded by the GPS unit locate at pure pixels in the remotely sensed images. 
 

3.2.3 Method 

3.2.3.1 MODIS time series preprocessing 

 In this study, the MOD09Q1 products are utilized to derive “phenological 
metrics”, and a classifier is developed to work on these phenological metrics to identify 
specific crop types. This is the major difference from traditional multi-temporal 
classification algorithms, which focus on the distribution of original remotely sensed 
variables (surface reflectance or vegetation indices) rather than derived metrics 
associated with phenology. Red and infrared bands are extracted from all available 
MOD09Q1 products within each study period. For a certain year, since winter grain is 
usually sowed at the end of the last year, the beginning of the study period is extended 
to November of the last year. The end of the study period is the end of the calendar 
year or the first one or two weeks of the next year, if no images are available at the year 
end. All the 250 m 8-day surface reflectance images within each study period were 
applied with Equation (2) and sequentially stacked to generate NDVI profiles:  

rednir

rednir

BB
BB

NDVI
+
−

=  (2) 

where Bnir and Bred are surface reflectance for the near infrared and red bands 
respectively. Less reliable data is removed based on the quality flag and replaced by 
temporal linear interpolation. Because the curve-fitting approach used in this study 
(Section 3.2.3.2) tends to be affected by false low or high NDVI values (Pettorelli et al., 
2005), NDVI profiles are smoothed first. An iterative smoothing algorithm is performed 
for the NDVI profile of every pixel: in each iteration the deviation of each NDVI value 
from the two neighbor values is calculated and the value with maximum deviation is 
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replaced with the mean of neighbor values, until the maximum is smaller than a 
threshold.  
 

3.2.3.2 Derivation of phenological metrics 

 Phenological metrics are derived by fitting double asymmetric sigmoid functions 
to the NDVI profiles. In the first step, the “background” value of each smoothed NDVI 
time series is determined. The background NDVI value corresponds to fallow (field crops) 
or unleafy (trees) periods, represented by Vb in Equation (1). NDVI is the only VI used in 
this chapter so V is specified as N to refer to the background NDVI Nb, same for other VI 
variables. Based on the double sigmoid growing model the land parcels before sowing or 
after harvest are assumed to keep a constant value of Nb. For the agricultural lands in 
SJV, during the entire study period Nb of an image pixel is usually stable even for 
multiple growth modes. For most field crops and nut trees, Nb is around 0.2, while for 
the tropical fruit trees such as oranges, Nb can be as high as 0.5 because of the absence 
of defoliation. 
 Secondly, after periods in which background values are labeled, other periods 
with NDVI values higher than Nb are assumed to have seasonal vegetation cover causing 
the “increase-and-decrease” patterns (or modes) in the NDVI profiles. Patterns with 
variations smaller than a pre-determined threshold are neglected. The entire multi-
temporal NDVI profiles are partitioned into such individual patterns (sub-profiles). 
 In the third step, an asymmetric double sigmoid function is fitted to each sub-
profile with a non-linear least square method using the Gauss-Newton algorithm. The 
function parameters including Vb (Nb), Va (Na), p, Di, q and Dd in Equation (1)  are then 
derived. In this study, these parameters are considered as phenological metrics that are 
capable of identifying the crop type of each sub-profile. 
 

3.2.3.3 Interpreting phenological metrics 

 Metrics extracted from the time series are interpreted based on respective 
biophysical meanings related to phenological phases and transitions. The classification 
capacity of each metric or combination of metrics is evaluated for each specific crop 
type according to the well recognized crop calendars and agricultural practices in the 
study areas. 
 Since most crop types usually have specific crop calendars, the dates of the 
phenological phases are relatively fixed. Metrics representing the timing of phenological 
phases and transitions are of great significance in recognizing distinct crop calendars for 
specific crop types. Di and Dd in Equation (1) are the inflection (steepest) points on the 
double sigmoid curves, or the maximum and the minimum points of the first derivative, 
respectively. Di is considered as representing the date when most leaves are likely to 
emerge. This date is temporally stable for various canopy densities. In addition, because 
Di is constrained by the entire shape of the phenology, it is less affected by noises 
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(Fisher & Mustard, 2007). Similarly, Dd is the date with the most rapid decrease of leaf 
content. Generally Dd has the same advantages as Di, especially for field crops that are 
cultivated in a short time. Comparatively, Dd is more uncertain for trees because 
defoliation is gradual and the rate depends on weather conditions and water availability. 
Thus, Di and Dd are important phenological metrics used to distinguish crops with 
different crop calendars. 
 Among other metrics in Equation (1) derived from curve-fitting, p and q are also 
useful in classification since crops show different NDVI increasing and decreasing rates 
in green-up and defoliation (or harvest) stages. Nb and Na also have the potentials to 
classify crops with different NDVI levels. However, NDVI is sensitive to crop density and 
may show large variation within each crop type, so the relationship between crop type 
and NDVI values at certain stages is inconsistent. 
 Besides the fitting parameters above, some useful metrics are not explicitly given 
by Equation (1). For annual NDVI profiles with multiple modes, some crop types could 
be implied by the number of modes (n). For example, crop rotation between wheat and 
corn usually has n=2. Another example is alfalfa, a major pasture in the study areas 
which is characterized by multiple same-year planting/cultivation and short growing 
seasons (~2.5 months). The sowing dates are highly uncertain, distributing randomly 
within most of a year. Curve-fitting is not effective as a result of the short growing 
periods. While metrics derived from curve-fitting are not available, the value of n 
greater than 4 or 5 become a reliable criterion to identify alfalfa. 
 Crops with stable crop calendars tend to maintain a high level of NDVI for a 
certain period within the growing season. The difference (Dd - Di), which is the length of 
high NDVI period (LHNP), is a good indicator of the length of growing season of different 
crops. LHNP is of great importance in recognizing crops with distinct lengths of growing 
season, for example, cotton and tomatoes. 
 While the DOYs with the most rapid changes of NDVI could be found by 
inspecting the first derivative of the curve, higher order derivatives of NDVI profile also 
have the potential of representing phenological phases (Soudani et al., 2008). In this 
study, the DOYs when the second derivative of the NDVI profile reached extrema are 
focused. Among the four such DOYs of a double sigmoid function, the first point, D1, is 
selected as an indicator of the onset of greenness and the fourth point, D4, is selected as 
an indicator of the onset of dormancy/fallow (Figure 1.1). The expressions of D1 and D4 
are given by: 
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All terms are defined previously. This approach is slightly different from previous studies, 
where the extrema of curvature was used instead of the extrema of the second 
derivative (Zhang et al., 2003). The time between D1 and D4, (D4-D1), is defined as the 
length of the growing season (LGS). These metrics are used in crop mapping when they 
have higher accuracy in characterizing crop growth than Di, Dd and LHNP. 
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3.2.3.4 Decision tree classifier 

 Decision trees predict class membership by recursively partitioning a dataset into 
more homogeneous subdivisions (De Fries et al., 1998). The decision tree classifier has 
substantial advantages for remote sensing classification because of its flexibility, 
intuitive simplicity, and computational efficiency (Thenkabail et al., 2009, Friedl & 
Brodley, 1997). In particular, the decision tree classifier is a nonparametric classifier 
which makes no assumptions concerning the statistical distributions of the input 
variables. Decision tree classifiers with phenological metrics as input data are suitable in 
mapping crop types, because mathematically predefined distributions of phenological 
metrics could rarely be found for crop types. For example, sowing date is selected based 
on variety and human decision, which are difficult to be modeled by parametric 
distributions. The assumption of central tendency employed by many traditional 
classifiers tends to fail in agricultural systems. In addition, the great flexibility of decision 
tree classifiers guarantees that they could easily adjust to new local conditions and crop 
types by modifying a part of the decision tree. 
 Thresholds of a decision tree classifier are determined based on crop calendars, 
knowledge on agricultural practices, and visual interpretation of MODIS NDVI profiles. A 
constructed decision tree was applied to phenological metrics of the pixels within SJV in 
year 2002, 2006, 2007 and 2008. The same decision tree is applied to all the study years 
since no extreme meteorological and artificial conditions are observed among these 
years. One problem of this approach is that the accuracy assessment tends to be slightly 
biased because the entire ground truth dataset was used as the test set, but a part of 
the ground truth dataset is already used to interpret NDVI seasonal profiles of each crop 
type. However, this effect is trivial because only a very small number of parcels (<10 for 
each type) are used in the process of decision tree construction. 
 All the crop types are divided into three categories and each category is treated 
individually by the decision trees. The first category consists of crops such as grain 
(including wheat, barley and oats), corn, cotton and tomatoes, whose increasing and 
decreasing NDVI trends in NDVI profiles are closely related to agricultural practices such 
as sowing and harvest. The crop cover is assumed to be completely removed after 
harvest. The second category includes nut trees (almonds and pistachios) and vineyards, 
whose NDVI variations are caused by phenological phase transitions such as green-up, 
senescence and defoliation. These two categories are considered as having “normal” 
NDVI profiles within a growing season. Other crop types that do not have normal NDVI 
profiles belong to the third category, including alfalfa and oranges. Alfalfa has flexible 
planting dates and multiple short growing seasons (~2.5 months) that cannot be fitted 
properly by the double sigmoid function. Oranges maintain a high (>0.4) and semi-
constant level of NDVI values as a result of subtropical plant characteristics. The NDVI 
profiles of oranges cannot be fitted by the double sigmoid function, but oranges can still 
be easily recognized by their high Nb and low Na values. Crop types in the third category 
are handled individually in special ways by the decision tree. 
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3.2.3.5 Validation 

 The crop classification map derived from remote sensing is validated using 
reference data in the study areas (land use polygons for ME 2002 and KN 2006, CDL for 
the entire SJV 2007, and field survey data for KN 2008). For ME 2002 and KN 2006, 
ground truth data of each entire county are available from the DWR land survey 
polygons so the test dataset included all the crop parcels in these counties. Pixel-based 
validation is performed rather than parcel-based method because i) parcel edges could 
not be precisely extracted from the MODIS data due to the relatively small parcel size 
and relatively coarse resolution, ii) locations of parcel edges could not be precisely 
determined in field survey, and iii) in the pixel-based validation large parcels gain more 
weight so the result is not biased by the many parcels that are smaller in size than the 
250 m footprint of the MODIS data in the study areas. In addition, if equal-area 
projection is used (as the case of this study), the number of correctly classified pixels 
represents the total area of the croplands that are successfully identified. The test set 
for 2007 is derived from the preprocessed CDL. Within each 250 m MODIS pixel, 30 m 
CDL grids for each crop type are counted and the majority type is treated as the ground 
truth of the corresponding MODIS pixel. The majority type must exceed 50% of the land 
cover within each MODIS pixel or the pixel is labeled as unclassified at the MODIS 
resolution and eliminated from validation. In total 143772 250 m ground truth points 
are generated for SJV in 2007 using the CDL. For KN 2008, accuracy assessment is only 
performed using the field sample data because the limited coverage of fieldwork. 
Confusion matrices are created for the four crop maps in the respective study areas. 
 

3.2.3.6 Maximum likelihood classification 

 For the sake of comparison, the traditional MLC is also applied to the three land 
survey datasets: ME 2002, KN 2006, and KN 2008. The CDL in 2007 is excluded because 
the reliability of this resampled product is relatively low for the retrieval of suitable 
training datasets and the difference in classification scheme prevents its use in 
producing a map of desired crop types. For the two datasets of ME 2002 and KN 2006, 
the ground truth reference data from land use survey data are split into training sets 
and test sets. Because the PBC approach requires a very small training set as one of its 
main advantages, attention is paid to the performance of the MLC with various sizes of 
training sets. In this study, ground truth datasets used in the MLC are split randomly 
with 3 different ratios: 10:90 (10 percent as the training set and 90 percent as the test 
set), 20:80 and 50:50 as long as the minimum requirements on the size of the training 
set are met. Training and validation are performed for each split group respectively. 
Unlike ME 2002 and KN 2006, KN field data in 2008 is used entirely as the test set. The 
trained parameters from KN 2006 are directly used in the MLC of the images in 2008. 
The reasons for the different treatment are: i) the comparison aims to test the stability 
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of the maximum likelihood classifier in multi-year classification which is affected by 
inter-annual variation, and ii) the relatively small size of the field data in 2008 does not 
suffice the minimum requirements on the size of the training set after the splitting 
process. Confusion matrices are generated for the accuracy assessment. 
 

3.3 Results 

3.3.1 Decision tree building 

 A decision tree is constructed mainly based on local crop calendars with derived 
phenological metrics as input variables. The final decision tree is designed in a 
hierarchical manner. Firstly, oranges are extracted by examining the annual NDVI 
profiles, which show semi-constant high NDVI level throughout the year. Since annual 
NDVI profiles of oranges include no increasing-and-decreasing growing modes, time 
related metrics are not derived from curve-fitting by the double sigmoid function and 
thus Nb and Na become the sole criteria to identify orange pixels. Secondly, NDVI 
profiles that are not recognized as oranges are split into individual growing modes. Each 
growing mode is classified by a new decision tree (Figure 3.2, II) to identify the specific 
crop type of the mode. Thirdly, the type of the entire annual NDVI profile is determined 
based on the identified individual modes within the profile. If there is no identified 
mode, the pixel is labeled as “unclassified”. If there is only one identified mode, the 
pixel is labeled with the crop type of the mode. For profiles with more than one 
identified modes, two multiple-use crop types are considered specifically: alfalfa and the 
rotation type “grain & corn”. Alfalfa is a pasture type with multiple cuts at short 
intervals. Annual NDVI profiles with 4 or more qualified short modes are recognized as 
alfalfa. Another major crop type, grain & corn, refers to winter grain and summer corn 
planted alternately in the same year and parcel. NDVI profiles containing both the two 
identified types are labeled as this rotational type. Since the planting of corn in this 
rotational type tends to be delayed compared to fields with only corn planted in a year, 
the NDVI peak in late summer is identified as corn only when grain is identified earlier in 
the current year. The three steps are completed by three decision trees, given in Figure 
3.2. Usage of metrics for individual crop types is further discussed in the following 
sections. 
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Figure 3.2. Three levels of decision trees for classification. The result of current tree becomes 
inputs to the next level. Rounded rectangles represent conditions. From the conditions left 
branches represent “true” and right branches represent “false”. 
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3.3.1.1 Nut trees & vineyards 

 The three types, almonds, pistachios and vineyards, have regular annual NDVI 
profiles, whose NDVI begin increasing as a result of green-up in spring, maintain a high 
level throughout the summer, decrease gradually following the late fall defoliation and 
have a low value in winter before budburst. NDVI profiles are less influenced by human 
practices, and mostly depend on climate and regional factors that are relatively stable. 
Di is the most important parameter to distinguish nut trees and vineyards from other 
crop types. Those summer field crops (cotton, corn and tomatoes) may have similar Di 
values to pistachios and vineyards, but pistachios and vineyards usually have a longer 
green period with high NDVI level. In this case, LHNP becomes a useful parameter 
showing phenological distinction of pistachios and vineyards from other crop types. For 
the classification between these three types, Di of almonds is ~80 and Di of pistachios 
and vineyards is ~120, so almonds are distinguished very well by Di. Classification 
between pistachios and vineyards is more challenging and only using Di is inadequate. 
From observations, LHNP of pistachios is slightly longer than that of vineyards. 
Furthermore, for pistachios the decrease of NDVI in late fall is not as gradual as 
vineyards, so the type of pistachios has bigger values of parameter q. The uses of LHNP 
and q partly solved the problem of confusion between pistachios and vineyards.  
 

3.3.1.2 Grain 

 Grain (including wheat, barley and oats) is the only early season (winter) crop in 
major crop types. The distinct crop calendar is adequate to separate grain from other 
major crop types. By visual examination, Di is between ~ -20 and ~80, and LHNP is 
between ~50 and ~120. Usually larger Di is associated with shorter LHNP. Grain can also 
be planted for green chop to feed livestock, which is harvested early before the mature 
phase. Thus it is also possible for the type of grain to have short LHNP. Though grain has 
distinct Di values and certain LHNP ranges, confusion occurs between grain and weeds, 
which grows in the same season as grain when rainfall is sufficient. Weeds growing in 
fallow parcels are separated effectively from grain when the NDVI level is equivalent.  
 

3.3.1.3 Summer field crops 

 Summer field crops (cotton, corn and tomatoes) have similar crop calendars. 
Summer field crops are easily identified with fixed growing seasons, but are further 
divided into specific types with high confusion rates. Di and LHNP ranges of cotton, corn 
and tomatoes are only slightly different and have great overlap, increasing the difficulty 
of classification.  
 The type grain & corn refers to a rotation between early season grain (mostly 
wheat) and late season corn as stated above. Rotations between grain and other 
summer crops are very rare in our study areas. So when grain and an unspecific summer 
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crop type are both found in the annual NDVI profile, the summer crop type is most likely 
to be corn and the pixel with such a double-peak NDVI profile is classified as “grain & 
corn”. 
 

3.3.1.4 Oranges 

 With subtropical nature, oranges maintain a high NDVI level all year long. NDVI 
variation of this type cannot be modeled by the double sigmoid function (repeat as 
before). High Nb (>0.40) and low Na (<0.20) are sufficient criteria to classify oranges from 
other major types. When summer water depression occurs, NDVI of oranges may drop 
slightly so the annual NDVI profile shows a “U” shape. Too low summer NDVI is one 
possible reason for under-classifying oranges, but this case is rare. The biggest confusion 
associated with the crop type oranges is that natural forests in adjacent mountainous 
areas are sometimes misclassified as oranges. Those forests are generally far away from 
crop land so the misclassified pixels are easily masked out in post-processing. 
 

3.3.1.5 Alfalfa 

 Multiple short growing cycles in a year distinctly characterize the planting and 
harvest pattern of alfalfa. NDVI variation within each cycle is not modeled by a double 
sigmoid function since the growing period is too short and only a limited number of 
observations are available for each period. In addition, flexible dates for planting and 
harvest make the parameters Di and Dd useless in classification. Each growing cycle is 
identified as alfalfa by 1) the length of the entire cycle, represented by LGS, which should 
be shorter than 64 days (eight 8-day periods), and 2) the difference between the 
maximum and minimum NDVI within the cycle, which must be greater than 0.3. Pixels 
with more than 4 such recognized cycles in a year are considered as alfalfa fields. 
 Alfalfa is the dominant pasture type in our study areas. Many parcels are 
intercropped with alfalfa and other pasture types. The total area of such “mixed pasture” 
parcels is considerable, but the land use of these parcels is regarded as a nonspecific 
type and excluded from the assessment dataset. Since alfalfa contributes to the NDVI 
variation of the mixed pasture fields, many of the pixels in those fields are classified as 
alfalfa, which is reasonable but is not validated by field data. For this reason, the actual 
classification accuracy for alfalfa is not exactly represented by the accuracy assessment. 
 

3.3.1.6 Other major crop types 

 All the major crop types of ME have been discussed above and the 
corresponding decision tree thresholds are determined accordingly. However, in KN, 
two major types, carrots and onions & garlic (onions and garlic have similar 
characteristics and belong to the same type in the land use survey data), cannot be 
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classified using phenological metrics. Both of the two types have relatively flexible crop 
calendars, multiple growing cycles and short growing periods, which is similar to alfalfa 
and alfalfa intercropping pasture. However, compared to alfalfa, these two types have 
more irregular NDVI profiles, which are very difficult to recognize from phenological 
metrics. Thus the PBC approach is not designed to deal with the crop types of carrots 
and onions & garlic. 
 

3.3.2 ME 2002 crop mapping 

 Classification of specific types is challenging in ME, where crop land parcels are 
usually small and patchy (~4 MODIS 250 m pixels on average). Identified crop types that 
are major types of KN (Table 3.1), but not major types of ME (Table 2.1) are treated as 
unclassified. By visual assessment, classified crop patterns are generally in agreement 
with the surveyed crop patterns (Figure 3.3). Summer crops and alfalfa in the southwest 
part of ME, almonds and vineyards in the northeast, and rotation cropping areas of 
grain and corn in the north are well depicted. Center pixels of large parcels are 
recognized very well, while most of the pixels along parcel edges are unclassified. As a 
result, parcels in the classification map are usually smaller than the corresponding 
parcels in the survey map, and some parcels are not identified when they only occupied 
several mixed pixels on the images. The confusion matrix shows that the specific crop 
type map of ME has an overall accuracy of 70.0%. Though this accuracy is not high, 
according to the first row of the confusion matrix, the major source of error is too many 
unclassified pixels. By observation it is found that the edge effect described above is the 
major reason for this kind of confusion. Excluding the first row, the remaining confusion 
matrix has an accuracy of 82.9%, showing that for the classified pixels the chance of 
correct identification is high. Therefore, such level of accuracy already has great 
potential in specific crop type mapping, especially when parcel edges can be acquired 
from other data sources as auxiliary data. 
 The accuracy by the MLC method varies significantly with the splitting 
percentages. In the 50:50 group (50% of ground truth reference data are used as 
training data) high accuracy (80.1 %) is achieved, which is consistent with the accuracy 
reported for ME in a previous paper (Zhong et al., 2009). The 50% large training set 
made the MLC more accurate than the PBC approach. In addition, unlike the PBC 
approach, the MLC generates only a few unclassified pixels as a result of a low 
probability threshold and most of the confusion exists between classes. However, as the 
size of the training set decreases the accuracy of the MLC drops significantly. The 
accuracy is 75.6% for the 20:80 group, and only 66.8% for the 10:90 group. So when the 
training set is smaller than 10% of the entire coverage, the MLC fails to yield acceptable 
results. 
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Figure 3.3. (a) Phenology-based crop classification map from MODIS NDVI time series versus 
(b) DWR survey map as the reference data, for ME 2002. 

3.3.3 KN 2006 crop mapping 

 KN has slightly larger average parcel area (corresponding to < 7 MODIS 250 m 
pixels) than ME. The final 10-class crop map portrays a landscape in which the classified 
and ground truth maps have good general agreement (Figure 3.4). Large parcels of 
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almonds and pistachios are visually observed in the northwest side, while oranges are 
grown along the east side also in large parcels. Field crops and alfalfa are found in 
various parcel sizes in the middle, and some large parcels of cotton are also seen in the 
southwest. Most large parcels greater than 6 pixels are correctly identified, particularly 
for the pixels in the center of the parcels. Small parcel size and close crop calendar are 
the two major confusion sources. Therefore, field crops usually have lower chance of 
correct identification compared to nut trees, vineyards and oranges. The worst case is 
corn and tomatoes, which are both summer crops grown in small to moderate size 
parcels. The confusion matrix indicated an overall map accuracy of 76.7%. Similar to ME 
2002 crop map, errors are mostly caused by pixels that are unclassified rather than mis-
classified. For pixels that are not “unclassified”, the chance of correct classification is 
85.1%, showing that the inter-class confusion is small. The high classification accuracy 
for the large parcels in KN is very promising in crop identification. 
 The accuracies of the MLC for KN 2006 are similar to those of ME 2002. The 
50:50 group achieves a high accuracy of 81.4%, while the accuracies of the 20:80 and 
the 10:90 groups are only 72.4% and 58.5% respectively. Although KN has larger parcels 
than ME, the classification with small training sets (20:80 and 10:90 groups) in KN is 
even worse than for ME. The possible reason is that more crop types are involved in the 
classification of KN.  
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Figure 3.4. (a) Phenology-based crop classification map from MODIS NDVI time series versus 
(b) DWR survey map as the reference data for KN, 2006. 

 

3.3.4 KN 2008 crop mapping 

 The KN 2008 crop map is compared to the KN 2006 crop map by visual 
assessment (Figure 3.5). The general spatial pattern of perennial crop types is consistent 
between the two maps, which is expected because crops such as nut trees, oranges and 
vineyards tend to remain unchanged in a short 2-year period. Annual field crops and 
pastures display considerable change in spatial distribution, which shows the necessity 
for annual crop mapping. The overall accuracy is 78.6%, comparable to the accuracy of 
the KN 2006 crop map. Because the KN 2008 crop map is validated mostly using points 
within large homogeneous parcels, the effects of mixed pixels on parcel edges are highly 
reduced. Confusion between summer crops (cotton, corn and tomatoes) becomes the 
most significant error source (Table 3.2). 
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 The MLC for KN 2008 uses parameters trained from the same three training sets 
as used in the maximum classification of KN 2006. All available ground truths from 
fieldwork are employed for validation and low overall accuracies are achieved for all 
groups (64.1% for the 50% training set group, 60.7% for the 20% group and 52.7% for 
the 10% group). The poor performance suggests that the MLC fails to yield consistent 
outputs as a result of the inter-annual variation. Confusion matrices are not presented 
here due to low accuracies. 

 
Figure 3.5. Phenology-based crop classification map for KN, 2008. 

Table 3.2. Confusion matrix for the PBC in KN, 2008. 

Mapped classes Ground truths Total User’s 
accuracy 

 Others Gr Ct Cr Af T Am P O V GC   

Unclassified 39 1 2 1 3 2 11 6 3 9 3 80  
Grain (Gr) 10 12   1  1  1   25 48% 
Cotton (Ct) 3  84     1  1  89 94% 
Corn (Cr) 3  2 28 4  1  1 2 2 43 65% 
Alfalfa (Af) 6    81       87 93% 
Tomatoes (T) 6   4  14      24 58% 
Almonds (Am) 10    2  123 10  1  146 84% 
Pistachios (P)        56  6  62 90% 
Oranges (O)       2  58   60 97% 
Vineyards (V) 2  1    4 6 2 45  60 75% 
Grain & Corn (GC) 6  2 4 3      15 30 50% 

Total 85 13 91 37 94 16 142 79 65 64 20 706  

Producer’s accuracy 46% 92% 92% 76% 86% 88% 87% 71% 89% 70% 75%   
Overall accuracy=78.6%. Kappa coefficient=0.76. 
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3.3.5 SJV 2007 crop mapping 

 For the entire SJV, a pixel-wise accuracy assessment of the 2007 crop 
classification is performed using the preprocessed CDL, which is the only state-wide 
reference dataset. The overall accuracy is 74.6%, which is acceptable for a large area. 
The confusion matrix (Table 3.3) is similar to the matrices of the PBC approach in the 
two counties. The classification map by PBC is compared to the CDL in 2007 (Figure 3.6). 
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Figure 3.6. PBC crop map versus CDL of the San Joaquin Valley, 2007. 
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Table 3.3. Confusion matrix for the phenology-based classification in the San Joaquin Valley, 
2007. 

Mapped classes Ground truths Total User’s 
accuracy 

  Gr Ct Af T Am O V GCC    
Unclassified 1292 535 1807 233 1939 258 1736 2689 10489  
Grain (Gr) 9055 82 1381 25 380 15 113 834 11885 76% 
Cotton (Ct) 306 22811 777 185 470 1 382 659 25591 89% 
Alfalfa (Af) 492 436 24911 91 386 27 183 799 27325 91% 
Tomatoes (T) 195 512 348 2065 257 3 379 1052 4811 43% 
Almonds (Am) 510 161 1144 89 19215 142 602 583 22446 86% 
Oranges (O) 134 24 454 7 1290 1973 283 266 4431 45% 
Vineyards (V) 272 576 1342 168 2156 77 13493 715 18799 72% 
Grain & Corn or Corn (GCC) 1138 566 1130 334 750 3 363 13711 17995 76% 
Total 13394 25703 33294 3197 26843 2499 17534 21308 143772  
Producer’s accuracy 68% 89% 75% 65% 72% 79% 77% 64%   
Overall accuracy=74.6%. Kappa coefficient=0.70. 
 
 

3.4 Discussion 

 The PBC approach developed in this paper is compared to the traditional MLC 
approach focusing on advantages and disadvantages of the new approach. Accuracies of 
all the classifications performed in this study are summarized in Table 3.4. The best map 
produced by the MLC has a slightly higher accuracy than the map by the PBC approach, 
which suggests that the new PBC approach makes few improvements when available 
ground truth points are sufficient. However, when the size of the training set is limited 
by the amount of ground truth reference data, the two approaches behaves differently. 
With a training set smaller than approximately 10% of the study area, the MLC approach 
could not achieve an acceptable accuracy. In contrast, the PBC approach has few 
requirements on the size of training set, because this approach relies mostly on the 
knowledge of crop calendar and phenological transitions and only a very small set of 
ground truth reference points (in this study, only about 10 pixels for each crop type) are 
used to interpret typical NDVI profiles. Therefore, compared to the traditional MLC, the 
PBC approach developed in this study shows greater capacity in crop identification when 
using a minimum of ground truth reference data. This capacity could highly reduce the 
cost and the time of crop mapping, providing great potential for timely agricultural 
monitoring and management based on free remotely sensed data. 
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Table 3.4. Classification accuracies (in percentage) for different combinations of approaches 
and study areas. 

 PBC MLC 

 All pixels Classified pixels only 10:90 20:80 50:50 
ME 2002 70.1 82.9 66.8 75.6 80.1 
KN 2006 75.0 88.7 58.5 72.4 81.4 
SJV 2007 74.6     
KN 2008 78.6  52.7 60.7 64.1 

 
 The confusion matrices generated by the two approaches are examined in the 
evaluation of the classification performance. The two approaches generate distinct 
confusion matrices even when the overall accuracies are comparable. The confusion 
matrices of the PBC contain a considerable proportion of unclassified pixels, while the 
confusion matrices of the MLC have mostly inter-class confusion. By visual observation it 
is found that mixed pixels on parcel edges tend to be unclassified in the PBC. However, 
in the MLC, the probability threshold could be set to a low value and so these mixed 
pixels could be classified though the chance of commission error is increased. As a 
feature of the MLC, the adjustable probability threshold provides great flexibility in 
producing output maps with a desirable proportion of classified pixels. In comparison, 
the PBC always has strict criteria in recognizing crop types, which reduces the risk of 
misclassification as well as increasing the number of unclassified pixels. 
 Compared to MLC, the PBC approach shows great performance in the 
classification of some specific crop types. As discussed above, the annual NDVI profile of 
alfalfa is clearly characterized by multiple short growing periods resulting from frequent 
cuts. However, the timing of cuts is highly flexible based on our experience. As a result, 
the NDVI peak of an alfalfa pixel may temporally coincide with the valley of another 
alfalfa pixel (Figure 3.7). In this case, the assumption of central tendency, which is the 
base of MLC, is likely to fail. The average NDVI profile of alfalfa employed in MLC had 
much less variation than individual alfalfa profiles (Figure 3.7) and thus a considerable 
number of pixels with high average NDVI and low variation are misclassified as alfalfa. 
By contrast, the PBC approach gets rid of this problem by capturing the pattern of 
individual alfalfa NDVI profiles. The PBC approach is also advantageous for recognizing 
crop types with normal NDVI profiles because phenological metrics instead of the 
original NDVI values are employed to account for the seasonal variation. In the study 
area, corn pixels generally have two typical NDVI profiles: one starts growing at DOY of 
~110 and the other as late as ~150 (Figure 3.8). The difference results from varied 
practices, for example, the existence of rotational grain ahead of corn growth in some 
parcels may delay the corn season. During the period between the two different starting 
DOYs the NDVI value for corn is either very high or very low, which causes the 
assumption of central tendency to fail. In PBC, the difference is just considered as a shift 
of the growing season NDVI profile that could be easily represented by the ranges of the 
phenological metrics used in the decision trees. Therefore, the PBC approach possesses 
great advantages in identifying crop types with varied NDVI profiles. 
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Figure 3.7. NDVI profiles of three individual alfalfa pixels (diamonds connected with solid lines 
in red, green and blue respectively) and average NDVI profile of all alfalfa pixels (thick black 
line). Differences in temporal NDVI variation could be observed among the three profiles. The 
average profile shows low seasonal variation, which is significantly different from individual 
profiles. 

 
Figure 3.8. NDVI profiles of two pixels with corn growth represented by diamonds connected 
with dashed lines. The solid lines are curves fitted to NDVI profiles in the growing season(s). 
The red profile belongs to a pixel with only corn grown in the year. The blue profile shows that 
in the other pixel grain is planted ahead of corn which delays the corn season. 
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 The PBC approach maintains high classification accuracies across the entire study 
area and all years using the same setting of decision trees. Because only metrics related 
to phenology and plant vigor are used and effects of other factors are excluded in the 
classification, this approach is temporally stable given that the inter-annual phenological 
differences of the crop types fall within a reasonable range. In contrast, the MLC of the 
KN 2008 imagery using parameters trained from the 2006 ground truth reference data 
yields unacceptable accuracy. The parameters trained by the 2006 ground truth 
reference data represent all the surface characteristics displayed by the imagery, some 
of which are irrelevant to crop types, so the 2008 classification tends to be adversely 
affected by the inclusion of the year-specific factors such as precipitation and off-season 
land use. While the MLC of crop types is limited by the use of parameters trained with 
data of another year, the PBC approach is able to overcome this shortcoming by 
isolating the crop-specific surface characteristics. In addition, in the case of considerable 
change in phenological response or the inclusion of new interested crop type, the PBC 
approach could easily accommodate the new situation by adjusting the relevant nodes 
of the decision tree without altering the remaining invariant parts. 
 

3.5 Summary 

 This study attempts to produce low cost annual cropland map of major specific 
crop types in SJV (south part of the Central Valley), California. MODIS data product 
MOD09Q1 proves to be a suitable data source to capture the NDVI profile 
characteristics of major crop types. The PBC classification approach proposed in this 
study, which uses phenological metrics derived by curve fitting of NDVI profiles as the 
data input and decision tree created mainly based on the local crop calendar as the 
classifier, provides us with reliable annual crop maps of major crop types. Cropping 
patterns are well portrayed by these crop maps. The PBC approach achieves high 
accuracy as well as reduces the requirement for large training datasets. Given 
knowledge of the crop calendar, agriculture practices and regional and climate variation, 
the PBC approach can be hopefully applied to the entire Central Valley, California. The 
250 m spatial resolution of MODIS data still limits the further improvement of 
classification accuracy due to the effects of mixed pixels on parcel edges. Efforts in pixel 
unmixing could be made to extend the use of PBC approach to small parcels. 
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Chapter 4. Improved phenology based classification approach for 
agricultural water use estimate in high heterogeneity cropland 

4.1 Background 

 The phenology based classification (PBC) approach is advantageous for its 
flexibility to adapt to various weather and agricultural conditions. The small parcel size 
of some counties’ cropland is the most limiting factor of PBC application in the entire 
Central Valley. The replacement of MODIS 250 m imagery with finer spatial resolution 
data is unavoidable in the mapping of patchy fields. In addition, as more specific crops 
are considered when the study area is extended, the usage of spectral characteristics is 
necessary in the identification of crops with similar growing seasons. Spectral signatures 
traditionally employed are associated with dates of imaging, which are absent in PBC. 
Incorporating spectral metrics in the PBC approach becomes a challenging task. 
 The objective of the study in this chapter is to develop an effective and efficient 
method to identify major crop types in the Stanislaus County, California and create crop 
maps on an annual basis. Efforts in Chapter 3 have established a framework of MODIS 
inputs and a phenology-based classifier. According to the local conditions and the need 
for efficiency, several improvements have been made. 1) Landsat 5 TM and Landsat 7 
ETM+ imagery is used to replace MODIS as the input to the classification algorithm. 
Landsat imagery is at a much finer spatial resolution (30 m, compared to MODIS’ 250 m 
resolution), which enables detailed crop mapping for smaller agricultural land parcels. 2) 
Metrics related to spectral information are incorporated. Previously only NDVI time 
series calculated from the red and near-infrared bands is utilized to derive phenological 
metrics. In the improved method, NDVI is replaced with enhanced vegetation index (EVI), 
which requires an additional blue band containing soil information. Reflectance of 
certain spectrum at certain growth stages is used in addition to previous phenological 
metrics to enhance the identification of some crop types. 3) The techniques of image 
segmentation and object based classification are utilized to reduce computational time 
and improve map quality. The method is summarized in the following section with a 
focus on new features of the algorithm.  
 

4.2 Materials and methods 

4.2.1 Study area 

 This study is focused on the total agricultural area of the Stanislaus County, 
California, which is in the middle of the Central Valley (center coordinates are 
approximately 37.5°N, 121°W). This area has vast flat terrain, deep soil, and a 
Mediterranean climate with hot dry summers and cool rainy winters. Annual 
precipitation is ~330 mm and is concentrated in the period of November to March. Both 
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the crop area and the economic value of agricultural products maintain a steady 
increasing trend during recent years. The area of Stanislaus County is 392,300 ha, and 
the total harvested area in year 2010 exceeds 420,000 ha as a result of multiple 
cropping. Similar to other areas in the Central Valley, crop types and growing pattern in 
Stanislaus County are diverse. Major crop types in Stanislaus County include (in order of 
total crop area): almond, corn, alfalfa, winter grain (wheat, oat and other winter grain 
forage), irrigated pasture, tomato, walnut, dry beans (including black-eyes, baby limas 
and large limas), and vineyard. These crop types comprise ~ 88% of the agricultural land. 
Rangeland is not included in the statistics and the classification because actual water 
use of rangeland is usually much lower than ideal water demand and calculated using 
other means. 
 
 

4.2.2 Data 

4.2.2.1 Landsat imagery 

 Stanislaus County is entirely enclosed in a Landsat tile (path 43, row 34). Two 
years, 2004 and 2010, are selected as study years to make use of the available field 
survey data. Landsat 5 TM and Landsat 7 ETM+ imagery are acquired from US Geological 
Survey (http://glovis.usgs.gov/). To capture the growth activity of both winter and 
summer crops, the time range of images used in crop mapping is set to an extended 
year instead of the calendar year. The beginning date is the day of year (DOY) 300 in the 
year prior to the target year. The end date is at the beginning of the following year, and 
the exact DOY depended on image quality. In year 2004 a total of 18 TM images and 21 
ETM+ images are acquired and processed. In year 2010, 17 TM images and only 16 
ETM+ images are available (Figure 4.1). Images are selected as long as part of Stanislaus’ 
cropland is cloud-free no matter how large the cloud-free area was. Although most of 
the images are geo-corrected, some images have insufficient ground control points due 
to partial cloud cover so manual geo-referencing is done. Radiometric calibration and 
atmospheric correction for cloud and aerosol effects are performed using Landsat 
Ecosystem Disturbance Adaptive Processing System by the US National Aeronautics and 
Space Administration (NASA) (Masek et al., 2006). Even though the use of Landsat 
imagery is maximized, some gaps between available images are still wide and affect the 
capacity to detect key phenological transitions. In this case, MODIS surface reflectance 
images are downscaled to 30 m resolution to fill gaps in the input dataset.  
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Figure 4.1 DOYs of images used in 2004 and 2010 Stanislaus crop mapping. Bars above the 
time line represent Landsat 5 TM images while bars below represent Landsat 7 ETM+ images. 
Black arrows indicate the time of the downscaled MODIS image used to fill the temporal gap 
of Landsat imagery. 

 

4.2.2.2 MODIS reflectance (MOD09) imagery 

 MODIS 250 m and 500 m daily surface reflectance imagery are acquired from 
NASA’s Earth Observation System Warehouse Inventory Search Tool (discontinued, 
updated data sources are at https://lpdaac.usgs.gov/). The 250 m surface reflectance 
product (MOD09GQ) includes red and near-infrared bands and the 500 m surface 
reflectance product (MOD09GA) provides multispectral data ranging from optical to 
shortwave infrared bands. The wavelength of the MODIS bands are comparable to the 
corresponding Landsat bands, which makes the data fusion possible. MODIS images are 
corrected for the effects of atmosphere, dynamic aerosol and cirrus clouds before 
acquisition. The entire Stanislaus County is covered by one scene of MODIS imagery 
(row 05 and path 08). Low cloud cover images around the target dates are selected 
based on the quality assessment flags embedded in the MODIS products. Operations of 
image subset, format conversion and reprojection are completed using the MODIS 
Reprojection Tool (https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool). Data 
fusion between Landsat and MODIS imagery is performed by the Spatial and Temporal 
Adaptive Reflectance Fusion Model based on the assumption that the correlation 
between these two datasets was constant within a certain period (Gao et al., 2006). The 
“pseudo” images created from the downscaled MODIS data at the Landsat resolution 
are also labeled in the time axis of Figure 4.1. 
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4.2.2.3 Land use field data 

 The land use program of the California Department of Water Resources (CDWR) 
provides the agricultural land use data for all counties in California. Details of the land 
use program and data are given in Section 2.2.2.2. Land use survey data of Stanislaus 
County is available for years 2004 and 2010. Over half of the cropland parcels are 
smaller than a MODIS pixel at the maximum resolution of 250 m. Validation is 
performed using the land use survey data as ground references. 
 Other documents and materials are also employed as additional information on 
ground reality. Annual crop reports from the Stanislaus County Agricultural 
Commissioner provide basic statistics of all crop types such as planted acreage and 
economic values (http://www.stanag.org/crop-reports.shtm). USDA NASS weekly Crop 
Progress & Condition Report includes crop growing progress along with weather 
conditions as an information source for crop phenology 
(http://www.nass.usda.gov/Statistics_by_State/California/Publications/Crop_Progress_
&_Condition/). Although not used directly, USDA CDL is considered as a reference for 
some crop types. Part of the study area is also visited to acquire high reliability field data. 
 

4.2.3 Method 

4.2.3.1 Image segmentation 

 Cropland of the study area is first segmented into multi-pixel objects using the 
software Berkeley Image Segmentation (Clinton et al., 2010). With proper 
parameterization, homogeneous objects identified by the software resemble the actual 
field boundaries. To reduce the computation time, three images at key seasons are 
stacked as the input to the segmentation algorithm for each year: early spring, early 
summer and late summer, and exact dates depend on image quality. Multiple 
combinations of three parameters, threshold, shape and compactness, are tested to 
achieve the optimum result. Detailed description of the segmentation procedure and 
parameters are provided at the software website (http://www.imageseg.com). The 
combination finally selected is 5, 0.3, and 0.6 for threshold, shape, and compactness 
respectively. The value of threshold, which represents the number of segmentation 
iterations, is relatively low to adapt for small fields. As a result, large fields tended to be 
split into multiple parts which are inconsistent with the actual field boundary. This is not 
problematic since the objective of this study is classification instead of boundary 
delineation. 
 With additional efforts of digitalizing high resolution images, actual field 
boundaries might be already available ahead of the classification process. The possibility 
of utilizing existing field boundaries to segment images and improve crop mapping 
accuracy is also explored. Two polygon datasets, the image segmentation result and 
actual field boundaries (referred later as “segmentation” and “boundary” respectively), 
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are input individually to compare the classification results with and without prior 
digitalization efforts. 
 

4.2.3.2 Time series generation 

 Landsat and fused images are converted into time series for each individual 
object using input polygons. Cloud-covered and other low quality pixels are first masked 
out using the quality flags generated by the LEDAPS algorithm. The median value of 
pixels within an object is assigned to the entire object, and a blank value is assigned if no 
high quality pixels are available. All image bands at all dates are processed in this way to 
produce multi-band time series of objects with various lengths. Although previous 
studies commonly found false values in the time series (Pettorelli et al., 2005), based on 
my observation the time series which are produced are consistent and reliable so no 
additional treatment or smoothing is applied.  
 Time series of three indices are derived from multi-spectral reflectance: 
enhanced vegetation index (EVI), normalized differential senescent vegetation index 
(NDSVI), and normalized difference tillage index (NDTI). EVI is designed for MODIS data 
to retrieve biomass signal while reducing background soil signals. Compared to the 
simpler normalized difference vegetation index (NDVI), which is used as the main index 
representing vegetation vigor in previous PBC trials in Chapter 3, EVI is less likely to be 
affected by problems of saturation in high vegetation cover regions and atmospheric 
effects (Huete et al., 2002). EVI is computed with Landsat multi-spectral surface 
reflectance bands as: 
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where B1, B3, and B4 are Landsat surface reflectance of blue, red and near infrared bands 
respectively, L is the canopy background adjustment, C1, C2 are the coefficients of 
aerosol resistance term, and G is the gain factor. Values of 1, 6, 7.5 and 2.5 are used for 
L, C1, C2, and G respectively (Huete et al., 1997). EVI time series, considered as the 
seasonal profile of crop growth, is the only input to derive phenological metrics. NDSVI 
and NDTI correlate to residue cover which represents crop-specific responses to water 
content (Pena-Barragan et al., 2011, Van Deventer et al., 1997). NDSVI and NDTI are 
calculated following the equations: 
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where B5 and B7 are surface reflectance of two Landsat shortwave infrared bands, band 
5 and band 7. These two indices offer more possibility of identifying crops based on 
reflective characteristics of the short-wave infrared wavelength region. 
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4.2.3.3 Derivation of metrics for classification 

4.2.3.3.1 Phenological metrics 
 In PBC, time series formed by surface reflectance values are utilized to compute 
“phenological metrics” related to dates of crop growing progress, and a classifier is 
developed to work on phenological and other derived metrics to identify specific crop 
types. This is the major difference from traditional multi-temporal classification 
algorithms, which directly focus on the distribution of surface reflectance or vegetation 
indices. Phenological metrics are derived by fitting double asymmetric sigmoid functions 
(Equation (1)) to EVI profiles of multi-pixel objects. The entire EVI profile of an object is 
first recognized as one or more “increasing and decreasing” growth patterns (Zhong et 
al., 2011). An asymmetric double sigmoid function is fitted to each growth pattern with 
a non-linear least square method using the Gauss-Newton algorithm. Phenological 
metrics are computed based on the function parameters if the curve-fitting is successful. 
 Phenological metrics extracted from the time series are built to represent 
various biophysical meanings related to phenological phases and transitions. The 
classification capacity of each metric or combination of metrics is evaluated for each 
specific crop type according to the well recognized crop calendars and agricultural 
practices in the study areas. Since most crop types usually have specific crop calendars, 
the dates of the phenological phases are relatively fixed. Di and Dd in Equation (1) are 
the inflection (steepest) points on the double sigmoid curves, or the maximum and the 
minimum points of the first derivative, respectively. Di is considered as the date when 
most leaves are likely to emerge. This date is temporally stable for various canopy 
densities. In addition, because Di is constrained by the entire shape of the phenology, it 
is less affected by noises (Fisher & Mustard, 2007). Similarly, Dd is the date with the 
most rapid decrease of leaf content. Generally Dd has the same advantages as Di, 
especially for field crops that are cultivated in a short time. Comparatively, Dd is more 
uncertain for trees because defoliation is gradual and the rate depends on weather 
conditions and water availability.  
 Some useful phenological metrics are not directly available as function 
parameters. EVI profiles of some crops have multiple modes (growing cycles), and the 
number of modes (n) is indicative of the crop type. For example, crop rotation between 
wheat and corn usually has n=2. Another example is alfalfa, a major pasture in the study 
area which is characterized by multiple same-year planting/cultivation and short 
growing seasons (~2.5 months). The sowing dates are highly uncertain, distributing 
randomly within most of a year. Curve-fitting is not effective as a result of the short 
growing periods. While metrics derived from curve-fitting are not available, the value of 
n greater than 4 or 5 became a reliable criterion to identify alfalfa. 
 Crops with stable crop calendars tend to maintain a high level of EVI for a certain 
period within the growing season. The difference (Dd - Di), which is the length of high EVI 
period (LHVP), is a good indicator of the length of growing season of different crops. LHVP 
is of great importance in recognizing crops with distinct lengths of growing season. 
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Higher order derivatives of the EVI profile also have the potential in representing 
phenological phases (Soudani et al., 2008). The four DOYs when the second derivative of 
the EVI profile reaches extrema are named with subscripts from 1 to 4 and listed in the 
following equations: 
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All terms are defined previously. The first point, D1, was selected as an indicator of the 
onset of greenness and the fourth point, D4, was selected as an indicator of the onset of 
dormancy/fallow. The time between D1 and D4, (D4-D1), was defined as the length of the 
growing season (LGS) (Figure 1.1). These metrics were used in crop mapping when they 
have higher accuracy in characterizing crop growth than Di, Dd and LHVP. 
 

4.2.3.3.2 Spectral metrics 
 The improved PBC approach also employs multi-spectral metrics to identify most 
crop types. The major difference from traditional method is that all spectral metrics are 
related to specific phenological stages. In traditional studies, multi-spectral signatures of 
various crop types are only compared within one image at one time. The same crop at 
different growing stages might show distinct multi-spectral signatures and result in 
intra-class variability. Our PBC approach first creates time series of multi-spectral 
surface reflectance, NDSVI and NDTI. At DOYs indicated by phenological metrics, 
interpolated values of the time series are used as the spectral metrics at certain 
phenological stages. Spectral metrics with phenology are more comparable among crop 
types, because a crop type tends to have stable and consistent multi-spectral signatures 
at the same growing stage rather than at the same imaging date. In this way the impact 
of growing season variation on classification is potentially eliminated and crop-specific 
spectral information is isolated from temporal information. Spectral metrics tested in 
this study include red band reflectance (R), near infrared band reflectance (N), EVI (V), 
NDSVI (S), and NDTI (T), and subscripts from 1 to 4 are associated to indicate 
corresponding phenological stages from D1 to D4. Figure 4.2 is an example for the 
generation and use of spectral metrics. Spectral metrics possess the potential to classify 
crops with very similar crop calendars, for example, summer crop types including corn, 
dry beans and tomato. 
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Figure 4.2. An example of two crop types’ spectral metric profiles shows the advantage of PBC. 
The x-axis is DOY with two imaging dates marked with dotted lines. The y-axis is EVI. Two 
profiles of vineyard with a shift in green-up time (named vineyard 1 and vineyard 2 
respectively) are drawn with dashed lines and one profile of walnut is drawn with a solid line. 
If the EVI of the two imaging dates are clustered to classify the three profiles, walnut is likely 
to be confused with vineyard 2. In PBC, the EVI of three profiles at D1 (marked with solid 
circles) are compared and the two types can be distinguished based on the EVI at the specific 
growth stage, which is V1. 

 

4.2.3.4 Decision tree classifier 

 All the derived phenological and spectral metrics could be linked to crop 
calendar and physiological characteristics. A decision tree is established to classify crop 
types using rules on two sets of metrics. Thresholds of decision tree nodes are 
determined mainly based on previous decision trees built for neighboring areas with 
similar crop calendars and agricultural practices (Zhong et al., 2011). For spectral metrics 
newly added to PBC, multi-spectral time series are interpreted visually to find the 
approximate ranges of these metrics for crop types. An identical decision tree is applied 
to object metrics in both years 2004 and 2010 because no noticeable difference is 
observed from the USDA Crop Progress & Condition Reports. One problem with this 
approach is that the accuracy assessment tends to be slightly biased because the entire 
land use survey dataset is used as the test set, but part of the ground truth data is 
already used to determine threshold values of spectral metrics. However, this effect is 
trivial because the small number of ground truth points used for decision tree 
construction can be neglected. 
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 The final decision tree is designed in a hierarchical manner. EVI profiles are split 
into individual growth modes. Temporal lengths of the growth modes are estimated by 
the starting and end DOYs. Alfalfa is identified according to the number of short growth 
modes in the profile. For other objects each growing mode is assigned to three general 
crop categories using the time range of growing seasons indicated by phenological 
metrics. The three crop categories include: winter crops, summer crops and tree crops & 
pasture. A pool of phenological and spectral metrics is tested to find proper threshold 
values to identify crop types according to the physical background of metrics. 
 

4.2.3.5 Calculation of ETc for crop types 

 The FAO 56 method is used to calculate the crop evapotranspiration (ETc) rate 
for each crop type (Allen et al., 2005, Allen et al., 1998). The ETc rate at ideal condition 
without water stress is computed as the product of reference evapotranspiration rate 
(ETo) and crop coefficient (Kc). For the purpose of water planning, water demand should 
always be met so the maximum possible ETc under ideal irrigation and growth 
conditions is assumed to be the planned water use. The units for evapotranspiration 
rate and evapotranspiration (water use) volume are millimeter and hectare-meter 
respectively by default. In reality instantaneous ETc is influenced by irrigation (schedule 
and equipment type) and precipitation and Kc profiles may show spikes and valleys. 
These effects are neglected in the estimate of ideal ETc rate, and seasonal Kc is modeled 
by smooth curves only depending on season and crop type (Allen et al., 1998). Daily ETo 
of California at a 2 km resolution is provided by the California Irrigation Management 
Information System of CDWR as a spatial product interpolated from a network of 
weather stations, where ETo is calculated using the Penman-Monteith equation 
(http://wwwcimis.water.ca.gov/). The spatial resolution of 2 km is sufficient for the 
study area as a result of flat valley floor terrain and homogeneous weather conditions. 
The volume of ETc is calculated by multiplying ETc rate and area. The time range of 
monthly ETc calculation is set using the concept of water year, which is from October in 
the previous calendar year to September in the current calendar year (October 2003 to 
September 2004 and October 2009 to September 2010 for this study). Water years are 
commonly used in water planning and consistent with the growing seasons of crops 
mapped in the Central Valley. 
 

4.2.3.6 Accuracy assessment 

 ETc calculated using the classified and true crop types is compared to evaluate 
the effect of classification error on the estimate of crop water use. The comparison 
between monthly ETc of classified types on the crop map (Em) and ETc of true crop types 
(Et) includes three quantitative measurements of model accuracy: root-mean-square 
error (RMSE), slope and r-square of regression. The equation of RMSE is: 
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where n is the total number of image objects or land parcels. RMSE is a widely used 
measure to compare differences between model predictions and observed data and has 
the same unit as original data. To estimate Et with Em, the regression relationship of Et = 
bEm is assumed where b is the slope. The intercept is set to 0 because no systematic bias 
should be involved in such a comparison. Both b and the r-square value (r2) are 
computed with the least square method. Values of b and r2 are supposed to approach 
one if Em is close to Et. Annual ETc as the total of monthly ETc in a water year is 
compared in the same manner. 
 

4.3 Results 

4.3.1 Decision tree modeling 

 In the final decision tree constructed manually through a trial-and-error process, 
alfalfa is first identified using the criteria of more than four short growth cycles (length > 
60 days). For remaining single growth modes, the crop category is identified using 
phenological metrics and further divided into specific crop types with a selection of 
phenological or spectral metrics and proper cutting thresholds (Figure 4.3). 
 Grain is the only winter crop and it is easily distinguished from other types. There 
is no need to separate specific winter grain types due to their similar water uses. Three 
summer crop types, corn, tomato and dry bean have very similar crop calendars and one 
branch of the decision tree effectively classifies these crops. Based on our observation, 
tomato has higher red band reflectance at the mature stage than corn and dry bean. 
Because the absolute value of red band reflectance is small (<0.1) and likely to be 
affected by noise, the relative magnitude of red band reflectance compared to blue 
band reflectance is employed to reduce the noise effect and improve the robustness. A 
new spectral metric IGS was developed as the maximum interval between red and blue 
band reflectance during the growing season from D1 to D4. Dry bean is characterized by 
high base VI levels and corn tends to show high NDSVI during early season. Thus, the 
metrics IGS, Vb and S2 are mainly used to classify the three summer crop types. The 
category trees & pasture includes all types maintaining high level EVI for most time of 
the year. EVI of irrigated pasture starts increasing in early spring when tree crops are 
still in dormancy. Slight differences exist among the green-up dates of tree crops. 
Walnut and vineyard have similar calendars so EVI, NDTI and reflectance at certain 
stages are used to distinguish these two types. Crop classification maps of year 2004 
and 2010 are presented in Figure 4.4 and Figure 4.5 respectively. 
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Figure 4.3. The decision tree used to classify individual growth modes. “T” means true and “F” 
means false. 
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Figure 4.4. Stanislaus crop classification map in 2004. 
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Figure 4.5. Stanislaus crop classification map in 2010. 

4.3.2 Accuracy assessment 

 Accuracy assessment of the imagery classification mapping is performed based 
on the confusion matrix. For each of the four combinations of study years (2004 or 2010) 
and vector inputs (“segmentation” or “boundary”), two confusion matrices are created 
for the assessments by the number of polygons and by area respectively. Patterns of 
confusion matrices are similar and the combination of 2010 segmentation is given as an 
example (Table 4.1 and  
Table 4.2). Overall accuracies of all combinations are summarized along with the three 
quantitative measurements from the comparison between two ETc datasets (Table 4.3). 
If field boundaries are available, the area-based accuracy is consistently higher than 
classification using the segmentation result as the vector input. With existing field 
boundaries the chance of incorrectly classifying large fields is reduced. 
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Table 4.1. Polygon-based confusion matrix of year 2010 classification using segmentation 
result as vector input. 

User 
classes 

Ground-truth classes 

 Total 
User’s 
accuracy 

 Summer crops Trees & pasture  

1 2 3 4 5 6 7 8 9 
Unclassified 315 166 155 108 2448 405 215 176 561 4549  
Grain(1) 1487 455 68 13 351 118 26 220 545 3283 45.3% 
Corn(2) 616 6451 469 130 131 51 54 137 709 8748 73.7% 
Dry bean(3) 30 85 477 184 2 3  4 22 807 59.1% 
Tomato(4) 39 136 255 709 86 50 54 9 75 1413 50.2% 
Almond(5) 21 32 3 2 5897 165 17 117 48 6302 93.6% 
Walnut(6)  5   238 1105 37 7 8 1400 78.9% 
Vineyard(7) 6 23 4 16 417 607 364 20 21 1478 24.6% 
Pasture(8)  3   26 2  563 23 617 91.2% 
Alfalfa(9) 11 25   10  1 41 1754 1842 95.2% 
Total 2525 7381 1431 1162 9606 2506 768 1292.7 3766 30438  
Producer’s 
Accuracy 58.9% 87.4% 33.3% 61.0% 61.4% 44.1% 47.4% 43.6% 46.6%   
Overall accuracy=61.8%. Numbers in the matrix are polygon counts. Bold values correspond to number of polygons 
correctly identified. 

 

Table 4.2. Area-based confusion matrix of year 2010 classification using segmentation result 
as vector input. 

User classes Ground-truth classes 

 Total 
User’s 
accuracy 

 Summer crops Trees & pasture  

1 2 3 4 5 6 7 8 9 

Unclassified 971 441 489 294 9867 1326 1052 467 1267 16174  

Grain(1) 4378 1096 176 15 1443 485 171 562 1487 9813 44.6% 

Corn(2) 1749 18290 1804 477 416 167 182 338 1885 25308 72.3% 

Dry bean(3) 86 259 2340 813 14 4  8 56 3580 65.4% 

Tomato(4) 107 346 831 2871 315 130 233 16 159 5008 57.3% 

Almond(5) 44 75 3 3 28994 557 89 308 141 30214 96.0% 

Walnut(6)  10   933 3847 135 14 17 4956 77.6% 

Vineyard(7) 20 55 7 44 1525 2126 1565 39 36 5417 28.9% 

Pasture(8)  3   96 12  1567 43 1721 91.1% 

Alfalfa(9) 24 37   32  1 128 5698 5920 96.3% 

Total 7379 20612 5650 4517 43635 8654 3428 3447 10789 108111  
Producer’s 
Accuracy 59.3% 88.7% 41.4% 63.6% 66.4% 44.5% 45.7% 45.5% 52.8%   
Overall accuracy=64.3%. The unit in the matrix is Hectare. Bold values correspond to area of polygons correctly 
identified. 
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Table 4.3. Summary of four combinations of classification and ETc comparison 

Year Vector input 
Overall Map 

accuracy ETc comparison 

  
Polygon-
based 

Area-
based  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Annual 

2004 

Boundary 64.7% 69.7% 
b 0.99 0.95 0.89 0.76 0.68 0.80 0.89 0.98 0.99 0.99 0.99 0.99 1.01 

r2 0.91 0.78 0.67 0.72 0.65 0.77 0.88 0.94 0.93 0.94 0.87 0.88 0.97 

RMSE 0.43 0.24 0.16 0.15 0.33 0.67 0.72 0.66 0.98 1.01 1.18 0.82 3.70 

Segmentation 58.5% 61.4% 
b 1.01 1.00 0.89 0.63 0.52 0.80 0.91 1.00 0.99 0.99 0.99 1.00 1.02 

r2 0.86 0.77 0.56 0.59 0.50 0.79 0.91 0.94 0.88 0.89 0.85 0.85 0.95 

RMSE 0.31 0.14 0.09 0.09 0.20 0.35 0.34 0.38 0.71 0.74 0.72 0.54 2.76 

2010 

Boundary 66.4% 70.4% 
b 1.00 0.97 0.86 0.78 0.70 0.91 0.96 1.00 0.99 0.98 1.00 1.00 1.02 

r2 0.90 0.78 0.61 0.71 0.66 0.86 0.93 0.95 0.93 0.93 0.91 0.90 0.96 

RMSE 0.45 0.23 0.14 0.12 0.25 0.49 0.51 0.59 1.00 1.06 1.01 0.78 3.94 

Segmentation 61.8% 64.3% 
b 1.01 0.97 0.87 0.76 0.67 0.89 0.96 1.00 0.99 0.98 0.99 1.01 1.03 

r2 0.89 0.72 0.52 0.67 0.63 0.83 0.93 0.95 0.92 0.92 0.89 0.89 0.96 

RMSE 0.16 0.08 0.05 0.04 0.08 0.17 0.16 0.19 0.33 0.34 0.34 0.26 1.31 
The unit of RMSE is Hectare-meter. 

 

4.4 Discussion 

 Confusions are found in the confusion matrices as shown by low user’s or 
producer’s accuracy less than 60%. Major confusions are analyzed one by one and 
possible reasons are explored. 
 1) Tree crops classified incorrectly or unclassified. According to our field visits, 
planting cover crops for orchard trees is a common agricultural practice especially for 
young trees. Cover crops are field crops grown between tree intervals in order to 
improve soil health and fertility, increase water retention, etc. The growing season of 
cover crops is from the rain period in later winter or early spring to the date before tree 
green-up when cover crops are usually plowed to increase water availability for trees, 
which coincides with the growing season of winter grain. The species and planting 
manners of cover crops are highly diverse so it is impossible to model cover crops in the 
decision tree. Young trees are hard to identify due to low EVI, and only cover crops 
contribute to the seasonal profiles of these fields. During recent years the area of 
orchard trees has been increasing significantly due to economic factors, and young tree 
fields keep emerging. Some of the young tree fields are recorded in the survey and 
excluded from the ground reference dataset, however, the record is not complete and 
only includes very young trees. The other special condition is very old trees, which are 
no longer irrigated for production. Although usually removed, these old trees can be left 
in fields and have an incomplete growing signal that is easily confused with summer 
crops. 
 2) Irrigated pasture classified incorrectly or unclassified. Although fields of 
irrigated pasture are available from the land use survey, irrigated pasture is not a crop 
type strictly defined. This type includes a vast variety of pasture species, among which 
the majority maintains high EVI level during most of the year while some species may 
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show totally distinct growing patterns. The situation is further complicated by the fact 
that pasture fields often contain a mixture of two or more plants including alfalfa, silage 
corn, sudan grass, winter grain, etc. Some fields are irrigated well while others show 
considerable water stress. Due to these factors there is a high chance to confuse 
irrigated pasture with other types. More detailed field information is required to 
improve the identification of irrigated pasture. 
  3) Alfalfa classified as winter grain or summer corn. Alfalfa is classified using the 
characteristics of multiple short growing cycles. Exceptions occasionally occur when 
alfalfa fields are not harvested periodically. As a result, the longer growing season is 
similar to winter or summer field crops. So far alfalfa cannot be identified using spectral 
metrics because the spectral signature of alfalfa keeps changing with its rapid growth 
and the growing stage at the imaging date could not be possibly known. 
 4) Corn classified as winter grain. Double cropping of winter wheat or other grain 
crops and summer corn is very common around the study area. A majority of the corn 
fields have grain planted in winter, and these fields are still classified as corn because 
corn water use in summer is more crucial for water planning than winter water 
consumption of grain. The growing season length of corn is relatively fixed, however, 
early harvest for silage may also happen. If corn growth is not identified due to the short 
season, the field is classified as grain according to the winter crop cover. 
 Although these confusions largely reduce the accuracy of image classification, 
the incorrectly classified or unclassified fields are not likely to bias the water use 
estimate. Unclassified fields reflect various special conditions (young/old trees, water 
stress, early cut, etc.) under which crop water consumption is much lower than the ideal 
level. In this case, crop types from PBC are even better representatives of the actual 
situation than the land use survey data. Some incorrect classification occurs when the 
actual seasonal growth as well as the water use of a crop field resembles another crop 
type. Most of the confusions not discussed above exist within crop categories, for 
example, tomato identified as dry bean, or walnut identified as almond. Such confusions 
will not significantly affect the water use estimate because crops within the same 
category have similar seasonal Kc. 
 All three measurements (b, r2, and RMSE) indicate that the difference in water 
use between classified and true crop types is much less than suggested by the 
classification accuracy (Table 4.3) largely because of similar water use between crops in 
the major categories. b and r2 are close to one especially during the rainless period from 
April to September when irrigation and water allocation are applied. From November to 
March, the regression relationship is not as good possibly because of rainfall. However, 
crop water use during this period is usually directly from precipitation and has less 
meaning for water planning. Both the absolute magnitude of ETc and RMSE are low due 
to cold weather. Thus, it is believed that the crop map produced by the PBC approach 
could allow us to make reasonable estimates of both monthly and annual crop water 
use. Classification error is unlikely to result in significant deviation of ETc for the reason 
mentioned. 
 ETc rate is computed as the product of the reference evapotranspiration rate 
(ETo) and Kc. Since the ETo calculation is independent of crop types, the effect of 
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classification error on ETc is analyzed by examining the seasonal Kc determined from 
classified and true crop types. Figure 4.6 gives an example of the comparison of year 
2004 using bubble plots. It shows all bubble plots of year 2010 with the collected field 
data as the vector input because the selection of the field dataset is of higher reliability 
than the exhaustive land use survey. The centers of the circles are set according to Kc of 
classified and true crop types. The sizes of the circles represent the number of fields 
with the corresponding classified and true Kc. On the bubble plots all the large circles 
are close to the diagonal, suggesting closeness of the two sets of Kc. This figure shows 
that most misclassification of the crop types using PBC does not have a major effect on 
the estimate of Kc and also ETc. 
 

 
Figure 4.6. Bubble plots of Kc from classified and true crop types for three selected months in 
2004. 
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Figure 4.7. Bubble plots of Kc from classified and true crop types for water year 2010. 
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 The PBC approach in this study is robust and is not likely to be affected by 
abnormal values in one or a few images. Regular use of this approach to annually 
estimate crop water use is feasible because the entire procedure relies on free imagery 
and requires no ground reference data. Cutting thresholds in the decision tree might 
need minor adjustments according to the Crop Progress & Condition Report under 
extreme weather conditions. For years when high resolution images are available, the 
input of field boundaries from digitalization is likely to improve the classification 
accuracy, though not required. 
 

4.5 Summary 

 This study attempts to use the PBC approach to produce a low cost annual 
cropland map of specific crop types in Stanislaus County, California using free Landsat 
and MODIS imagery. The PBC approach is improved to represent growing season with 
phenological metrics and employs spectral metrics associated with phenological stages 
to extract stable spectral characteristics of crops. The PBC approach provides the 
possibility of regularly mapping crop types and estimating water use without collecting 
additional ground reference data for training. Given our knowledge of the crop calendar, 
agriculture practices and regional and climate variation, the PBC approach can be 
hopefully applied to the entire Central Valley, California. Crop water use computed 
using crop types and weather variables has high accuracy. Confusions in the PBC only 
have trivial effects on the estimate of water use because classification error only occurs 
between crop types with similar seasonal water use or actual water use of unclassified 
fields is much lower than the ideal level.  
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Chapter 5. Conclusion 
 Classification accuracy is essential in evaluating the performance of a classifier. 
Traditional maximum likelihood classification is able to yield high accuracies when there 
is a large ground truth dataset for training. Such a dataset requires extensive field work 
and is only available for a certain area during limited periods. A hybrid classification 
approach is recommended which applies the maximum likelihood classifier when 
training data is sufficient and the phenology based classifier when ground truths are 
unavailable. The accuracies of PBC are slightly lower than the maximum accuracy 
achieved by the maximum likelihood classification. However, PBC consistently produces 
crop maps with acceptable accuracies even when the field knowledge is very limited. In 
addition to the mapping accuracy, the uncertainty in water use estimate is another 
measurement of concern in this study. Errors in the estimate of crop water use are not 
sensitive to mis-classification in PBC. This is because most confusion occurs among crop 
types with similar seasonal patterns of water consumption which only results in 
negligible errors in the estimate of agricultural water use. Unclassified fields by the PBC 
are generally caused by special crop conditions including young age, very sparse 
coverage and water stress, which actually reflect the reality of low water use. In general, 
the quality and the reliability of crop maps created by the classification approach used in 
this study are adequate for water planning as well as other purposes. 
 Objectives of this study are examined to check if the development of the PBC 
approach proposed in Chapter 1 successfully meets project goals for accuracy, cost, 
computation time and minimization of field data collection. The cost of the entire 
classification process is controlled to a very low level. There is little expense on imagery 
purchase because the two major image sources, MODIS and Landsat TM/ETM+, are 
available for free. For the time of data processing, each county’s crop map can be 
produced in a few hours, which is acceptable. Most processing time is attributed to 
Landsat imagery correction and curve-fitting, and further optimization is suggested in 
future studies. Computational time of other procedures is negligible thanks to the high 
performance of the image segmentation algorithm and decision trees. Cost of labor is 
highly reduced as the entire crop mapping process is semi-automatic. The most 
remarkable improvement on efficiency is that there is no need to collect a large set of 
ground truth data, which usually takes considerable resources and several months’ time. 
Even for a new area, only a few field visits are sufficient to gain a basic understanding on 
the local cropland. Instead of field data collection, efforts are required to obtain current 
year’s planting and harvest calendars of major crop types. Information on crop progress, 
which is usually available from regular publications and documents provided by 
government agencies and consulting business, is the major source of crop calendars. 
Crop calendars tend to be stable only except for some years with extreme weather 
conditions. Based on the experience from applications in the Central Valley, once the 
crop calendars are known for an area, it is rarely necessary to make adjustments. 
Communication with local agricultural experts could provide supplemental information 
if required. In general, the cost of the PBC has been greatly reduced by eliminating the 
need of extensive field data collection. 
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 For the purpose of transferability, the studies show that classification algorithm 
built for an area in a year could be easily “re-used” in another area or another year. The 
Central Valley has a flat terrain and a homogeneous climate pattern. Most of major crop 
types in the Central Valley distribute along a vast area, so the corresponding parts in the 
decision trees are almost universally usable. For example, almond, which is a common 
tree crop found in the entire Central Valley, could be treated with the same structure of 
nodes in the decision tree. Threshold values might be slightly different for a part of the 
criteria due to spatial heterogeneity. The Central Valley is a narrow area with a north-
south direction, and thus temperature, which controls appropriate crop types, shows 
great spatial variance. The start of growing season (green-up dates of tree crops or 
planting dates of field crops) tends to be late in north and early in south, and the length 
of the growing season is usually shorter in the southern area due to sufficient heat. All 
these factors need to be handled by decision trees by applying various parameters to 
sub-areas separately. Hopefully with the inclusion of more universal metrics such as 
accumulated temperature, some crop types within the entire Central Valley could be 
identified using a uniform set of criteria (Zhang et al., 2009). However, at present 
adjustments to the decision trees are still necessary to accommodate the longitudinal 
variation in the valley area. The inter-annual transfer of classification algorithms and 
parameters is similar in which inter-annual variation is mostly caused by differences in 
temperature. The length of the rainy season (from late autumn to early spring) may also 
affect crop calendars. As long as the climate pattern and the manner of agricultural 
operation are well understood, the PBC could be applied to a large area for multiple 
years with few additional efforts. 
 In order to avoid the loss of phenological and other information which occurs in 
the selective use of remotely sensed images in previous efforts, a “take-all” strategy is 
taken to include all available images in the classification even for images with 
considerable cloud cover. This strategy is uncommon in other studies because two 
problems may be caused: unacceptable high dimensionality and long computational 
time. In the exploration of this study, the problem of high dimensionality is solved by 
the curve-fitting technique, which is considered as a transformation approach with 
physical meanings. The curve-fitting technique also helps to reduce the time of 
calculation, along with the use of image segmentation and object-based classification. 
All these means enable PBC to take all available data as inputs without any negative 
effects. In addition, the usage of spectral information has been maximized by 
developing spectral metrics associated with phenological stages. Spectral signatures of 
crops tend to be stable at certain growing periods. Useless noise is removed by isolating 
crops’ spectral characteristics from image-specific signals. In this way, during the 
process of data assembling no image or useful metric is omitted and meanwhile it is 
ensured that all extracted metrics are related to crop types without over-fitting. 
 Based on the evaluation above, the PBC successfully meets the need of large 
area annual crop mapping in the Central Valley with high efficiency and low cost. In 
order to extend the approach to the entire Central Valley or even the entire California, 
more knowledge should be gained regarding the agricultural customs to fully recognize 
the crop types. Attentions should be paid to three crop types or categories. i) Crops with 
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very flexible calendars (for example, carrots and onions) are not mapped in current PBC. 
Spectral metrics instead of phenological metrics may play an important role in the 
identification of such crop types. Hopefully by testing more spectral measurements or 
indices, proper metrics with the distinguishing capacity could be found. ii) Some crop 
types need to be re-defined or split to reduce the intra-class variation and improve the 
classification accuracy. For example, the type of mixed pasture contains various sub-
types which need to be treated separately according to the pasture species, planting 
manner and irrigation condition. Another example is that different varieties of a crop 
type may display distinct phenological characteristics. Ideally a classification scheme is 
to be built to facilitate both crop identification and water use estimate. iii) A large 
number of specific crop types need to be handled when the crop mapping is extended 
to a larger area or to a more detailed level. Adding new crop types to existing decision 
trees is simple without altering original tree structures. Most efforts will be spent on 
examining new crop types’ crop calendars, common agricultural practices and spectral 
signatures. Future efforts will focus on the solutions of identifying these crop types or 
categories when crop mapping is extended to a larger extent and a finer scale. 
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