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SUMMARY

Transcriptional and translational feedback loops in fungi and animals drive circadian rhythms in 

transcript levels that provide output from the clock, but post-transcriptional mechanisms also 

contribute. To determine the extent and underlying source of this regulation, we applied newly 

developed analytical tools to a long-duration, deeply sampled, circadian proteomics time course 

comprising half of the proteome. We found a quarter of expressed proteins are clock regulated, but 

>40% of these do not arise from clock-regulated transcripts, and our analysis predicts that these 

protein rhythms arise from oscillations in translational rates. Our data highlighted the impact of 
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the clock on metabolic regulation, with central carbon metabolism reflecting both transcriptional 

and post-transcriptional control and opposing metabolic pathways showing peak activities at 

different times of day. The transcription factor CSP-1 plays a role in this metabolic regulation, 

contributing to the rhythmicity and phase of clock-regulated proteins.

In Brief

Hurley et al. used new informatic tools and deep sampling to systematically investigate the 

proteomic and transcriptomic output of the circadian clock, uncovering broad posttranscriptional 

control of output, especially of metabolic pathways. The largest portion of circadian 

posttranscriptional regulation appears to be imparted at the level of translation, not degradation as 

previously believed, highlighting a generally unrecognized importance of translational control in 

the regulation of circadian output.

Graphical Abstract

INTRODUCTION

Many organisms that experience recurring day and night cycles have evolved a circadian 

clock to organize behavior and cellular physiology such that appropriate activities occur at 

biologically advantageous times, regulating everything from sleep to cellular metabolism 

(Eckel-Mahan and Sassone-Corsi, 2013). The regulatory architecture of the clock is 

conserved between fungi and animals; at its core is a transcription-translation negative 

feedback loop (TTFL) involving a heterodimeric transcription-factor complex that functions 

as the positive arm and a distinct protein complex, the negative arm, whose function is to 

inhibit the transcriptional activity of the positive arm (Figure 1A; Dunlap and Loros, 2018; 

Hurley et al., 2016).

In addition to the activation of the negative arm genes within the core feedback loop, the 

positive arm influences the expression of a host of genes that have no role in the core 
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timekeeping loop. These genes have been dubbed clock-controlled genes (ccgss; Figure 1A; 

Loros et al., 1989), and large-scale screens for rhythmic mRNAs and their drivers are viewed 

to explain clock control over cellular behavior (Bell-Pedersen et al., 2005; Partch et al., 

2014). However, recent evidence has revealed additional levels of circadian regulation, 

including potential metabolic feedback on the positive arm through CSP-1 (Figure 1A; 

Sancar et al., 2012). Also, previous circadian proteomic studies detected oscillating proteins 

without corresponding oscillating mRNAs, although technical and analytical limitations 

restricted this work to a small fraction of the proteome (Chiang et al., 2014; Reddy et al., 

2006; Robles et al., 2014; Wang et al., 2017a). Discordance between expressed mRNAs and 

translated protein levels is not a new observation. Previous research comparing mRNA and 

protein levels have identified correlations of 0.4 to 0.74, depending on growth conditions 

and the organism sampled (Vogel and Marcotte, 2012; Zhou et al., 2016). This leaves much 

of the variation in protein levels to be explained by other mechanisms, including post-

transcriptional, translational, or post-translational regulation, such as changes in production 

or degradation rates. The evidence therefore suggests that solely tracking changes in mRNA 

levels over the circadian day is not a viable proxy for understanding what the clock controls 

in the cell at the functional level; one must also measure protein levels directlys.

In this work, we utilized Neurospora crassa, a well-established circadian model system 

(Dunlap and Loros, 2018; Hurley et al., 2016), to quantify relative protein levels every 2 hr 

over 48 hr, in triplicate time series, using tandem mass tag mass spectrometry (TMT-MS) 

(Dayon and Sanchez, 2012; Fuller et al., 2014) in two genetic backgrounds (wild-type [WT] 

and a csp-1 knockout), to determine the impact of post-transcriptional regulation on the 

clock. Our sampling density, combined with computational tools developed to address issues 

of missing data and batch effects (Crowell et al., 2018), has allowed the identification of a 

significantly larger portion of the circadian proteome than previously achieved. Overall, the 

rhythmic proteome was highly enriched in metabolic functions, and rhythmically expressed 

enzymes seem to be coordinated, resulting in the generation of metabolic pathway “phases.” 

We found the correlation between rhythmic mRNA and rhythmic protein was only 60%, 

highlighting extensive post-transcriptional regulation. Our data support the importance of 

translation elongation factor eEF-2 activity, rather than rhythmic protein degradation, in the 

circadian regulation that results in an overall peak of rhythmic proteins at circadian dusk 

(Caster et al., 2016; Lück et al., 2014). Finally, we found that while the gene csp-1 played an 

important role in circadian metabolic regulation, especially within lipid, fatty acid, and 

nucleotide metabolism pathways, energy availability and translational regulation may be 

more important determinants of the circadian proteome.

RESULTS

Neurospora Circadian Proteomic Analysis Demonstrates Rhythmic Proteins Are Enriched 
in Metabolic Functions and Mainly Peak after Subjective Dusks

From triplicate time course samples, normal operation of the clock was confirmed by 

western blot analysis of the core clock protein FREQUENCY (FRQ) (Figures S1A and 

S1B). Total protein lysates were subsequently extracted from fungal mats and trypsin 

digested for TMT-MS analysis. Each set of peptide fragments from a given time point was 
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labeled with a unique isobaric mass tag; these labeled fragments were combined with 

taglabeled fragments from 7 other time point samples. As a control, tag-labeled fragments 

from two pooled control samples consisting of all 25 samples mixed together were also 

combined into the mix, creating a “ten-plex” sample. These “ten-plex” sample sets were 

then subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS), 

whereupon the second fragmentation allowed the relative quantification of identical peptides 

from different samples, via the differences in their isobaric mass tags (Figure S1C; also see 

STAR Methods).

Using TMT-MS analysis, a total of 52,251 peptides, representing 4,742 proteins (45% of the 

potential Neurospora proteome), were detected in >70% of all samples. This represented 

3,776 proteins that had peptides at every time point, and 976 proteins for which levels of 

some peptides missing <30% of time points were imputed using the K-nearest neighbors 

(KNN) algorithm within LIMBR (Crowell et al., 2018; see STAR Methods). The data were 

then subjected to modeling and removal of batch effects using a time-series-specific 

algorithm within LIMBR that improves rhythm recognition in the presence of mass 

spectrometric batch effects (Crowell et al., 2018; see STAR Methods). In brief, LIMBR 

modeled the replicate and time series correlations to produce a matrix of residuals 

containing the batch effects, which were then modeled to produce linearly independent bias 

trends. The bias trends that met our significance threshold were then removed.

We used eJTK_cycle, a non-parametric algorithm for detecting rhythmic components in 

genome-scale datasets, to determine which proteins were under circadian regulation (Hughes 

et al., 2010; Hutchison et al., 2018; Hutchison et al., 2015). Roughly 27% of the identified 

proteome (1,273 proteins) significantly cycled (p < 0.05) with a circadian period, hereafter 

referred to as “rhythmic” (Figure S2A). All the core clock genes were detected at both the 

RNA and protein levels, with the exception of FRQ, likely due to low expression (Figure 

S2B). To analyze how peak phases of rhythmic proteins changed over the circadian day, we 

created a heatmap of gene products, using the normalized proteomic values (Figure 1B) and 

a histogram of the number of rhythmic proteins reaching peak expression at a given time of 

day (Figure 1C). A very small peak in rhythmic protein expression occurs in the circadian 

time (CT) morning (CT22–CT6), whereas the predominant peak phase in rhythmic protein 

expression happens in the subjective afternoon and evening (CT7–CT21), strongly centered 

at “dusk” (CT12–CT14).

Compared to all the detected and imputed proteins, Functional Catalogue (FunCat) (Priebe 

et al., 2011) analysis identified enriched gene categories (p < 0.05) involved in metabolism 

and the regulation of metabolism for the subset of proteins considered rhythmic (Figures 1D 

and 1E; Table S1), especially for those that reach peak expression during the subjective 

afternoon and evening (CT7–CT21) (Table S2). Similarly, phase set enrichment analysis 

(PSEA) identified KEGG gene sets with significant temporal coordination involved with 

metabolic processes, clustered near CT12 (Figure S2C; Table S3) (Zhang et al., 2016).
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Comparison of WT Circadian Transcriptome and Proteome Suggests Widespread Post-
transcriptional Circadian Regulation of Protein Levels

Not all potential Neurospora proteins were identified in every sample by TMT-MS. 

Therefore, to determine the relationship between the circadianly regulated proteome and 

transcriptome, we used a restricted gene list limited only to those genes identified in both the 

RNA sequencing (RNA-seq) and TMT-MS datasets. Using the same SVA-based tool and 

eJTK_cycle analysis, we found that 40% of the transcriptome (3,858 transcripts) was 

significantly rhythmic, an approximately 2-fold increase from prior work (Figure S3A; 

Hurley et al., 2014). Roughly two-thirds (2,414/3,858) of the rhythmically expressed genes 

corresponded to proteins also identified by TMT-MS. This subset of rhythmic transcripts (n 

= 2,414) appears to be representative of the full set of rhythmic transcripts identified from 

RNA-seq (n = 3,858), when compared by both heatmap (Figure S3B versus Figure S3C) and 

FunCat analyses (Figure S3D versus Figure S3E; Table S4).

Comparing the eJTK p values describing protein versus transcript rhythmicity, we found that 

752 genes (59% of rhythmic proteins; Figures 2A, S4A, and S4B) were rhythmic both at the 

transcript and protein levels (p < 0.05). For this subset of genes rhythmic at both the 

transcript and protein levels (n = 752), phase delays between peak transcript and peak 

protein level ranged from 0 hr (77 or 10% of genes) to 22 hr, with a large average phase 

delay of 10.3 hr (Figure 2B).

We found many significantly rhythmic transcripts without associated significantly rhythmic 

proteins (1,662 or 69% of the rhythmic transcriptome identified in the TMT-MS analysis; 

Figure 2A, area highlighted only in orange; and Figures S4A and S4B). These are easily 

explained if the proteins are stable. Conversely, a large proportion of significantly rhythmic 

proteins did not arise from significantly rhythmic mRNAs (521 proteins or 41% of the 

rhythmic proteome; Figure 2A, area highlighted only in blue; Figures S4A and S4B). 

Importantly, while comparing the residuals of the fits of the two analyses, we noted that the 

proteome dataset does contain more noise than the transcriptome (Figure S4C), which could 

account for some of the discrepancies. However, for genes with protein rhythmicity p < 0.05, 

222 genes had mRNA values of 0.05 ≤ p ≤ 0.2, but another 298 genes had mRNA p > 0.2. 

To further show that there were indeed differences between mRNA and protein rhythmicity 

that were not due to the chosen p value cutoff, 1,140 genes had p < 0.1 at both the mRNA 

and protein level (66% of all proteins with p < 0.1 and 40% of all mRNA with p < 0.1), and 

1,731 genes had p < 0.2 at both the mRNA and protein level (73% of all proteins with p < 

0.2 and 51% of all mRNA with p < 0.2).

To look at overall phase distributions for these different groupings of genes (mRNA 

rhythmic only, rhythmic mRNA and protein, and protein rhythmic only), we plotted the peak 

phases of significantly rhythmic mRNA and/or significantly rhythmic protein on clock-style 

densitometry graphs (Figure 2C). In general, mRNA peak phases were bi-phasic, peaking at 

CT16 and CT22, compared to protein peak phases, which peaked near CT14. For the genes 

whose mRNA and protein were both significantly rhythmic, the main mRNA peak phase in 

the “morning” (CT22) preceded the main peak phase in protein levels in the “evening” 

(CT14) by at least 12 hr, which is reflected in the long phase delays that occurred in our 

dataset (Figure 2B).
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Rhythmic Protein Degradation Is Unlikely to Be the Primary Mechanism Underlying 
Circadian Posttranscriptional Regulation in Neurospora

Using previously published proteomics data from mouse livers (Mauvois in et al., 2014; 

Reddy et al., 2006; Robles et al., 2014), Lück et al. (2014) developed an elegant model in 

which protein turnover elicited by rhythmic E3 ubiquitin ligase activity (inferred from 

transcript cycles) could drive protein rhythms, resulting in the overall peak observed in the 

mouse circadian proteome. As our deeper sampling and more powerful analytical techniques 

allowed identification of >7-fold more significantly rhythmic proteins than available 

previously, we used our dataset to ask whether this turnover model could also explain the 

timing of the overall peak in our rhythmic Neurospora proteome.

As in Lück et al. (2014), we focused on E3 ubiquitin ligases as a main mode of protein 

degradation and found that 10 of the 27 identified E3 ubiquitin ligase genes (37%) in our 

data were significantly rhythmic at the transcript level (Table S5). When we averaged the 

normalized mRNA levels of the 10 significantly rhythmic E3 ligase transcripts, there was no 

overall peak time (Figure 3A). At the protein level, only 17 E3 ubiquitin ligases were 

detected, and just three of those were significantly rhythmic (UPL-1 or NCU07544, 

NCU09866, and NCU07996). Importantly, these three significantly rhythmic proteins did 

not arise from any of the 10 significantly rhythmic E3 ubiquitin ligase transcripts (Table S5). 

Again, the p value cutoff does not explain the lack of rhythmic E3 ubiquitin ligases, as only 

two of the other E3 ubiquitin ligases had 0.05 ≤ p ≤ 0.2 (CUL-4 and FWD-1; Table S5). 

When we averaged the relative protein levels for the three rhythmic E3 ubiquitin ligases (p < 

0.05; Figure 3B), there was a small potential peak around CT18, closely lagging the peak 

phase of significantly rhythmic proteins without corresponding significantly rhythmic 

mRNA (CT14) (Figure 2C) and near the peak phase in enrichment for degradation in the 

PSEA (Figure S2C). While this does not exclude the possibility that degradation contributes 

to some rhythmic protein timing, a potential peak in degradation at CT18 does not explain 

the circadian dusk peak timing of our significantly rhythmic proteins (Figure 2C) (Lück et 

al., 2014).

Global Rhythms in Biosynthesis May Play a Major Role in Circadian Post-transcriptional 
Regulation

Figures 2B and 2C document the broad distribution of phase delays between peak mRNA 

and peak protein amounts for rhythmic proteins translated from rhythmic transcripts. As 

previously seen by Robles et al. (2014), the average phase delay changed in a systematic 

fashion across the circadian day, ranging from as short as 7.5 hr at CT10 near circadian 

“dusk,” to as long as 13.9 hr at CT20 near “dawn” (Figure 3C). Underlying this pattern, we 

found that relative to peak mRNA time, the percentage of rhythmic mRNAs that produced 

rhythmic proteins with little or no (i.e., 0–2 hr) phase delay varied sharply with the time of 

day. Approaching subjective dusk (CT12–CT14), nearly half of transcripts were translated 

with little or no phase delay (47% of rhythmic mRNA that peaked at CT12 and 39% of 

rhythmic mRNA that peaked at CT14), whereas, at CT4 and CT20, nearly all transcripts 

showed significant delays between the peak phase of each mRNA and protein (Figure 3D).
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We posited that changes in translational activity could yield changes in phase delays. Recent 

work by Caster et al. (2016) reported that the circadian clock affected translation rates by 

regulating the phosphorylation of eukaryotic elongation factor eEF-2 (NCU07700). We 

noted the peak time for “protein-rhythmic only” proteins (CT12–CT14; Figure 2C) 

coincided with the time at which most transcripts were translated with little or no phase 

delay (Figure 3D), both corresponding to the peak of translational activity (Caster et al., 

2016). Similarly, the phase when the lowest proportion (6%) of rhythmic mRNAs were 

translated with little to no delay (CT4; Figure 3D) corresponds to the predicted slowest rate 

of translation elongation (Caster et al., 2016).

We identified additional rhythmic proteins involved in translation, including the initiation 

factors eIF-1 (NCU01981), eIF-3d (NCU07380), eIF-3f (NCU01021), and eIF-3g 

(NCU08046). Also, at CT14, a pre-mRNA splicing factor (PRP43 [NCU01612]), an RNA 

helicase involved in mRNA export from the nucleus (DBP-5 [NCU01160]), and a poly(A) 

binding protein (PAB-1 [NCU04799]) reached peak rhythmic protein levels (Tseng et al., 

1998). In addition, the delta subunit of eIF-2b (NCU01468), important in the formation of 

active eIF-2b that supports eIF2 activity, was significantly rhythmic at the protein level and 

peaked at CT14 (Jennings and Pavitt, 2014; Wortham et al., 2014). Finally, cpc-3 

(NCU01187), a functional homolog of yeast GCN2 (an eIF2 alpha kinase), which plays a 

role in the overall repression of translation in response to amino acid starvation, was 

rhythmic at the protein level, peaking ~CT16 (Harding et al. 2003; Sattlegger et al., 1998; 

Wek et al., 2006; Wortham et al., 2014).

Metabolic Pathway Mapping Demonstrates Extensive Circadian Regulation of Metabolism 
at the Protein Level

Our extensive FunCat analysis demonstrated a high level of coordinated post-transcriptional 

circadian regulation, including 156 proteins rhythmic at just the protein level that are 

specifically enriched in amino acid metabolism and respiration, i.e., proteins that are directly 

or indirectly involved in secondary metabolism (Table S6). To visualize the extent of 

circadian regulation within metabolic pathways, we used the Pathway Tools software within 

the BioCyc Pathway Genome Database (PGDB); in BioCyc, every step in metabolism is 

associated with the specific proteins required for its execution, providing a straightforward 

means for visualizing genome-wide changes in omics data (Caspi et al., 2016). We modeled 

the expression of all significantly rhythmic proteins (p < 0.05) as a standard cosine wave to 

eliminate biological noise (see STAR Methods) and then mapped peak expression times to 

each protein’s respective enzyme on the metabolic map. An overall map showing the peak 

time of each enzyme’s oscillation was created (Figure S5), highlighting extensive circadian 

regulation of metabolism. Rhythmic proteins were found in the majority of BioCyc 

metabolic pathways, including central metabolic pathways such as glycolysis and the TCA 

cycle. Moreover, there appeared to be intra-pathway coordination. For example, eJTK best-

fit phase and amplitudes for the rhythmic proteins within the pentose-phosphate pathway all 

peaked in the circadian morning. Conversely, in glycolysis and the TCA cycle, the rhythmic 

proteins peaked in the circadian evening (see Figure 4; Video S1).
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With our observation of rhythmic protein expression levels coordinated within and between 

metabolic pathways over the circadian day, we modeled the expression of rhythmic 

transcripts and then calculated the average level of rhythmic transcripts or proteins within 

each BioCyc pathway over the day (Figure 5). Comparing the modeled rhythmic 

transcriptome and proteome, peak timing of overall rhythmic mRNA averages was not well 

aligned with overall rhythmic protein averages in many metabolic pathways (Figures 5 and 

S6A–S6D). Additionally, when looking specifically at the proteome, proteins involved in 

other energy pathways (fermentation and aerobic respiration) also oscillate over the 

circadian day and peak near circadian “dusk,” in phase with glycolysis and the TCA cycle, 

but in antiphase to the rhythmic proteins involved in the pentose-phosphate pathway (Figure 

5A). Beyond energy, some catabolic and anabolic pathway pairs peaked anti-phase relative 

to each other, such as fatty acid and lipid degradation and biosynthesis (Figure 5B versus 

Figure 5C). Likewise, fatty acid and lipid biosynthesis peaked in phase with carbohydrate 

and carboxylate degradation, a logical arrangement as fatty acids and lipids are produced 

from the by-products of glycolytic pathways (Figure 5B versus Figure 5C) (Voet et al., 

2013).

Circadian Post-transcriptional Regulation Impacts Xylose Metabolism

The ability of filamentous fungi to deconstruct and metabolize plant cell walls is important 

for environmental carbon and other nutrient cycling, as well as numerous biotechnology 

applications such as the production of biofuels and bioproducts, like the production of 

ethanol from xylose derived from lignocellulosic substrates (Chen et al., 2010; Li et al., 

2014). The xylan-to-ethanol pathway showed clock regulation at each stage, but the first 

intracellular reaction, catalyzed by xylose reductase (XR; NCU08384), was regulated at only 

the proteomic level (p = 6.12E–05 for protein versus p = 0.302 for mRNA; Figures 6A, S6E, 

and S6F). To track in vivo XR protein levels, and validate our in vitro data, we fused a 

codon-optimized luciferase (LUC) gene (Gooch et al., 2008) to the 3′ end of the XR coding 

sequence and transformed this cassette into the native xr locus of wild-type Neurospora 
(FGSC2489). Using a CCD camera, we followed replicates of a pfrq(c-box)-luciferase 

fusion control strain (verifying clock function under our experimental conditions; Figures 

6B and S6G) and three transformants of the XR:LUC construct (Figures 6C and S6H). The 

XR:LUC fusion displayed circadian bioluminescence (Figure 6C) around an overall trend of 

exponential decay (Figure S6H). We confirmed by direct enzymatic assay (Yokoyama et al., 

1995) that XR activity also oscillates with peak enzyme activity mirroring peak XR 

abundance (via luciferase tag) at around 24 hr after the transition to constant darkness 

(DD24 or CT13.6; compare Figures 6C and S6H to Figure 6D).

CSP-1 Contributes to Circadian Regulation of Metabolic Proteins

The global circadian repressor CSP-1 modulates the expression of ~800 genes whose 

products are predominantly involved in metabolic output (Lambreghts et al., 2009; Sancar et 

al., 2011) and has been implicated in the metabolic compensation mechanism that isolates 

the core clock from changes in glucose metabolism (Sancar et al., 2012; see, however, 

Olivares-Yañez et al., 2016). To examine the role of CSP-1 in regulating the metabolic 

proteome, we sampled fungal mats from a Δcsp-1 strain and prepared samples for TMT-MS 

analysis as done for the wildtype strain. 4,742 proteins were detected and imputed in all 
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samples using LIMBR (see STAR Methods) (Crowell et al., 2018). Analysis of these data by 

eJTK_cycle identified 1,316 proteins (~28% of the identified Δcsp-1 proteome) as 

circadianly rhythmic with p < 0.05 (Hutchison et al., 2015), a proportion similar to the 

fraction of rhythmic wild-type proteins (1,273 or 27%). As in the WT strain, FunCat 

analysis of proteins cycling in the Δcsp-1 strain (Figure 7A and Table S7) showed them to be 

enriched (p < 0.05) in proteins with binding function, protein fate, and protein synthesis, as 

well as energy pathways, biogenesis, cell type differentiation, and cell fate. However, unlike 

the WT proteome, the overall metabolism category was not enriched in the rhythmic Δcsp-1 
proteome, even when FunCat analysis was done individually on the two peak phases of 

rhythmic Δcsp-1 proteins (Table S8).

Comparing the rhythmicity of proteins from the WT and Δcsp-1 strains, 502 proteins were 

significantly rhythmic (p < 0.05) in both strains (~38% of the rhythmic proteins; area shaded 

by both blue and green), while more, but similar, numbers of proteins were only 

significantly rhythmic in the WT strain (771, area shaded only in blue) or the Δcsp-1 strain 

(814, area shaded only in green) (Figures 7B, S7A, and S7B). To confirm that these 

differences in protein rhythmicity between the two strains were not just due to the chosen p 

value cutoff, a total of 811 proteins had p < 0.1 in both strains (48% of all WT proteins with 

p < 0.1 and 44% of all Δcsp-1 proteins with p < 0.1), and a total of 1,385 proteins had p < 

0.2 in both strains (55% of all WT proteins with p < 0.2 and 59% of all Δcsp-1s proteins 

with p < 0.2).

A heatmap (Figure 7C) shows the phase distribution of rhythmic proteins in the Δcsp-1 
strain. By overlaying a densitometry “clock” graph of the number of proteins peaking at a 

given time of day for WT and Δcsp-1 strains, it appears that the most significant difference 

in the peak phases of rhythmic proteins between the WT and Δcsp-1 strains is that the peak 

at CT0/CT24 is larger in the Δcsp-1 strain (Figure 7D), in line with the predicted function of 

CSP-1 as a morning transcriptional repressor (Sancar et al., 2011). However, when we 

plotted a histogram of the peak phases of significantly rhythmic proteins in the Δcsp-1 
strain, color coded by whether the peak protein phase was (1) maintained relative to the WT 

strain (“0–2 hr phase change”; n = 200), (2) changed relative to the WT strain (“>2 hr phase 

change”; n = 302), or (3) significantly rhythmic in the Δcsp-1 strain but not in WT (“Only 

rhythmic in Δcsp-1”; n = 814), it was apparent that there were overall changes in peak 

timing between the WT and Δcsp-1 strains (Figure 7E).

We used FunCat analysis to further investigate the differences between the WT and Δcsp-1 
rhythmic proteomes (Table S9). For proteins significantly rhythmic only in the WT strain 

(i.e., when csp-1 is present), a high degree of FunCat enrichment was noted in metabolism 

(p = 0.0004), with nucleotide metabolism uniquely enriched for this category (Table S9). 

Energy was enriched for significantly rhythmic proteins found just in the WT strain but 

highly enriched for the subcategory of oxidation of fatty acids (p = 0.00054; Table S9), 

suggesting that CSP-1 is involved in the rhythmicity of fatty acid oxidation genes. Average 

modeled rhythmic Δcsp-1 protein levels were also compared to those calculated for the WT 

strain within each BioCyc category, using the Pathway Tools software (Figures S7C–S7F); 

changes were evident in peak times of pathways also identified by FunCat analysis, such as 

nucleotide synthesis and degradation as well as fatty acid and lipid biosynthesis and 
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degradation. Finally, Energy pathways such as glycolysis and the pentose-phosphate 

pathway had overall peak phases that were shifted toward circadian morning in the Δcsp-1 
strain, suggesting an increase in energy available at this time, relative to WT (Figure S7F).

DISCUSSION

Models that suggest circadian output stems from the transcriptional control of the positive 

arm of the clock have been challenged by evidence that post-transcriptional regulation is 

important in observed circadian behavior, including previously published proteomics data 

(e.g., Chiang et al., 2014; Kojima et al., 2011; Mauvoisin et al., 2014; Reddy et al., 2006; 

Robles et al., 2014; Wang et al., 2017a). A potential caveat to this conclusion has been the 

small numbers of rhythmic proteins identified, often less than 1% of the proteome, reflecting 

technical and analytical issues. Our extensive replicate time course, use of recent 

technological advances (TMT-MS), and improved computational techniques (Crowell et al., 

2018) allowed analysis of a larger proportion of the predicted proteome in our organism 

(45%), from which we found 27% of detected proteins significantly cycled in abundance on 

a daily basis. Greater than 40% of the significantly rhythmic proteome was not associated 

with a corresponding significantly rhythmic transcript (Figures 2A, S4A, and S4B) and the 

long average phase-delay (~10-hour) between peak mRNA and protein abundance (Figure 

2B) both support the importance of circadian post-transcriptional regulation in not only 

controlling which proteins are rhythmic but also the time of day at which these rhythmic 

proteins peak (Schwanhäusser et al., 2011).

The difference between the rhythmic transcriptome and proteome, more extensive than 

previously estimated for Neurospora (Zhou et al., 2016), prompted us to find the underlying 

cause of this discordance. Unlike Lück et al. (2014), we failed to detect widespread 

rhythmicity of E3-ubiquitin ligases (Figures 3 A and 3B) and therefore no “effective” 

degradation phase to explain our global proteomic timing. There is the caveat that there are 

additional modes of regulation on E3 ligases, such as phosphorylation (Gallagher et al., 

2006); however, a lack of detailed studies on Neurospora E3 ubiquitin ligases limited our 

ability to include this potential factor. Rather than protein degradation, cycling protein 

production could give rise to protein rhythms from non-cycling transcripts. In Neurospora, 

peak translation elongation activity corresponds to our overall peak in protein levels and the 

time when the largest proportion of rhythmic mRNAs were translated without delay (Figures 

1C and 3D) (Caster et al., 2016). In addition to elongation, the rhythmic abundance of 

ribosomal and translation proteins that we identified, such as the delta subunit of eIF-2b 

(NCU01468), could play a role in protein rhythms (Table S6) (Jennings and Pavitt, 2014; 

Wortham et al., 2014).

The large numbers of oscillating mRNAs not giving rise to significantly oscillating proteins 

begs the question of why an organism would regulate mRNA in a circadian manner without 

continuing the regulation on the protein level. Based on our work, it appears that the clock 

subdivides the production of mRNAs and proteins into time-specific groups that may reflect 

differences in optimal times of day for the processes of transcription versus translation. The 

expression pattern of mRNA that shows a dip in peak phase times at CT20 could relate to 

circadianly regulated chromatin landscapes (Aguilar-Arnal and Sassone-Corsi, 2015; Koike 
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et al., 2012). Also, the Neurospora cell cycle is influenced by the circadian clock, and more 

cells undergo mitosis around CT20 when chromatin is likely less accessible (Figure 2C) 

(Hong et al., 2014). Given the timing of the Neurospora cell cycle, it seems plausible that 

rhythmic protein synthesis is timed for shortly after “dusk” as part of the preparation for cell 

division, with mitosis peaking later at night (Hong et al., 2014). Additionally, the circadian 

timing of peak protein synthesis may coincide with peak energy production in the evening 

due to the high energy demands of the translation process (e.g., Kafri et al., 2016).

While earlier proteomic studies in mice identified rhythmic metabolic enzymes (Chiang et 

al., 2014; Mauvoisin et al., 2014; Robles et al., 2014), our work demonstrates that the timing 

of rhythmic enzyme levels within pathways and at branch points in metabolic pathways may 

also be circadianly coordinated (Figure 4 and Video S1). We also found that 156 of the 

rhythmic metabolic proteins arose from non-cycling transcripts involved with functions such 

as secondary metabolism (Table S6); these would not previously have been detected as 

circadianly regulated. In all, the clock intensively regulates the timing of metabolic genes, 

presumably to ensure that the enzymes they encode are available at biologically 

advantageous times. An illustrative example is the post-transcriptional regulation of XR, an 

important enzyme for biofuel and industrial food production (Chen et al., 2010; Li et al., 

2014).

Our Δcsp-1 proteomics analysis suggests that the decrease in fatty acid and lipid 

biosynthesis rhythms (Figure S7D) may explain previously reported changes in the lipid 

composition of cell membranes in a Δcsp-1 strain (Sancar et al., 2011; Sancar et al., 2012). 

There is also the caveat that transcriptomic changes resulting from the deletion of csp-1 are 

not necessarily translated to the proteomic level, suggesting a more complex role for CSP-1 

in the regulation of the proteome (Figures S7B) (Sancar et al., 2015a). As the overall peak in 

rhythmic proteomic output occurred just after dusk in both the WT and Δcsp-1 strains 

(Figures 7D and 7E), energy availability and translational regulation may be more dominant 

than CSP-1 for metabolic regulation at the protein level.

Recent work has identified other factors impacting cross-talk between metabolic state and 

circadian transcription (e.g., RCO-1 and RCM-1) and metabolic genes (e.g., CRE-1) 

(Cupertino et al., 2015; Olivares-Yañez et al., 2016). CRE-1 (NCU08807) was significantly 

rhythmic at the RNA and protein (p = 0.0013) level, demonstrating a metabolic-responsive 

transcription factor also regulated by the clock. CPC-3 (NCU01187; functional homolog of 

yeast GCN2) is also significantly rhythmic at the protein level, peaking at CT16, just after 

the main peak in the rhythmic proteome (Figure 1C). This may provide a mechanism to 

repress global translation directly in response to low amino acid levels and further highlights 

how the clock regulates components to both anticipate and respond to its cellular 

environment (Harding et al., 2003; Sattlegger et al., 1998; Wek et al., 2006 ).

In summary, this deeply sampled dataset confirms the importance of the clock in regulating 

the metabolic output of an organism (Hurley et al., 2014; Sancar et al., 2015b), including 

post-transcriptional circadian regulation. Moreover, this work shows the importance of 

studying the output of the clock beyond the level of the transcriptome, as a significant 

amount of proteins appear to be rhythmic at the protein level only, meaning that their clock 
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regulation would be missed in a standard transcriptomic analysis. As this work supports the 

importance of circadian regulation of metabolism and the potential importance of translation 

in this process, it highlights the need for further research into circadian control over 

translation and the inter-relationships between the clock and metabolism.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Jennifer M. Hurley (hurlej2@rpi.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains—The Neurospora strains FGSC2489 (WT) and FGSC11348 (Δcsp-1) were used 

for all proteomic analyses and transformations were performed as previously described 

using Neurospora strains FGSC9718 and FGSC2489 (Bardiya and Shiu, 2007; Colot et al., 

2006) and screened using a MicroBeta TriLux liquid scintillation and luminescence counter 

(Perkin Elmer). For Neurospora proteomics time-course culture, conidia were inoculated 

into Bird medium (Metzenberg, 2004) containing 1.8% glucose. A separate time-course 

using Neurospora strain 536–1 (frhV5H6::bar+; ras-1bd), grown in Liquid Culture Medium 

(LCM) containing 1×Vogel’s, 0.5% arginine, and 50 ng/mL biotin with 2% glucose and 

0.001M QA (pH 5.75) was completed with sampling every 4 hrs. over 24 hrs, yielding tissue 

for the xylose reductase enzyme activity assay. Tissue was prepared for circadian time series 

analysis as previously described (Hurley et al., 2014; Loros et al., 1989).

METHOD DETAILS

Cellular Homogenization of Fungal Mats—For each fungal mat, 100 mg pressed, wet 

weight tissue ground in liquid nitrogen was transferred to an Eppendorf Safe-Lock tube and 

homogenized using a Qiagen TissueLyser II with a 2×24 adapter (chilled to −20°C) 

following the vendor suggested protocol for tissue samples, with modifications. Briefly, a 3-

mm stainless steel bead was added to each tube prior to processing twice in TissueLyser II 

for 5 min at 30 Hz. After confirming homogenization, the samples were again chilled to 

−20°C prior to transferring to a chilled Sorenson MμlTI™ SafeSeal™ microcentrifuge tube.

Chloroform-Methanol Extraction of Fungal Mats—To isolate the aqueous proteins, 

each homogenate was first mixed with a 1.2 mL of chilled 2:1 chloroform/methanol and then 

mixed with 0.24 mL chilled nanopure water (Deatherage Kaiser et al., 2013). The mixture 

was then incubated at −20°C for 20 min before separating the layers via centrifugation (12k 

× g, 15 min, 4°C). The protein interlayer was dried completely using a vacuum concentrator.

Tryptic Digestion—The protein interlayer was tryptically digested (Callister et al., 2006) 

after reconstituting into an 8M urea solution (in 50mM NH4HCO3, pH 8.0) and estimating 

the protein concentration using a BCA protein assay. Prior to digestion, the proteins were 

reduced in a thermomixer with 5mM dithiothreitol (60°C, 30 min), alkylated with 40mM 

iodoacetamide (37°C, 60 min), and diluted ten-fold with 50mM NH4HCO3, pH 8.0 before 

adding a final concentration of 1 mM CaCl2. For the digestion, enough trypsin (1 mg/mL in 
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5mM acetic acid, UBX) was added to result in an enzyme-to-protein ratio of 1:50. To 

quench the digestion, trifluoroacetic acid was added at a concentration of 0.1%. The 

peptides were subsequently desalted using Supelco DSC-18 solid phase extraction columns. 

A final concentration was measured using a BCA protein assay prior to normalizing the 

concentrations and isobaric labeling.

Isobaric Labeling of Peptides—For each peptide sample, 25μg was isobarically labeled 

using the TMT10plex Isobaric Mass Tag Labeling Reagents Sets (ThermoFisher) following 

the vendor protocol (Dayon et al., 2008; Thompson et al., 2003). Due to the quantity and 

complexity of samples for this experiment, two universal pooled samples were created to be 

used across each of the nineteen TMT10plex sets used. One pool was generated from 25μg 

from each of the wild type samples and the other from 25μg of the Δcsp-1 mutant. The 

individual time points for each cell type were then randomly distributed between the 

nineteen TMT10plex sets, such that for each time point both cell types were within the same 

set. After labeling and pooling individual labels into a single sample for each set, they were 

desalted as before using C-18 SPE, and then fractionated on an HPLC using high pH reverse 

phase chromatography (Wang et al., 2011). The resulting fraction sets were each pooled 

(using concatenation) into 12 total fractions per set.

LC-MS Processing of Proteins—These samples were analyzed by reverse phase LC-

MS/MS using a Waters NanoEquity UPLC system (Millford, MA) coupled with a 

QExactive-Plus (batch 4064) or an LTQ Velos Pro Orbitrap mass spectrometer (batch 4144), 

both from Thermo Fisher Scientific (San Jose, CA). Sample was loaded on a solid phase 

extraction (SPE) column followed by separation on a C18 analytical column. Analytical 

column was packed in-house by slurry packing 3-μm Jupiter C18 stationary phase 

(Phenomenex, Torrence, CA) into a 70-cm long, 360 μm OD × 75 μm ID fused silica 

capillary tubing (Polymicro Technologies, Phoenix, AZ). The SPE column (360 μm OD × 

150 μm ID) of 5cm length was similarly made with 3.6-μm Aries C18 particles. Mobile 

phases consisted of 0.1% formic acid in water (MP- A) and 0.1% formic acid in acetonitrile 

(MP- B). Samples were made at a concentration of ~0.1 μg/μL and 6 μL sample volume was 

injected on the SPE column via a 5μL sample loop for 30 min at a flow rate of 3μL per 

minute and then separated by the analytical column using a 110-minute gradient from 99% 

A to 5% A at a flow rate of 0.3μL per minute. Mass spectrometry analysis was started 15 

min after the sample was moved to the analytical column and mass spectra were recorded 

for 100 min. After the gradient was completed, column was washed with 100% MP- B first 

and then reconditioned with 99% MP- A for 30 min.

The effluents from the LC column were ionized by electrospray ionization and mass 

analyzed with a QExactive-Plus or an LTQ Velos Pro Orbitrap hybrid mass spectrometer 

operated in the data-dependent analysis mode. A voltage of 2.2 kV was used for electrospray 

ionization and inlet capillary to the mass spectrometer was maintained at a temperature of 

350°C for ion de-solvation. A primary survey scan was performed in the mass range of 400 

to 2000 Daltons at a resolution of 70,000 (QExactive Plus, defined at m/z 200) or 120,000 

resolution (Velos Pro) and automatic gain control (AGC) setting of 1e6 ions for both 

instruments. Top 10 highest intensity ions from the survey scan were selected for MS/MS 
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analysis. On QExactive-Plus, a quadrupole mass filter was used for the isolation of ions for 

high energy collision dissociation (HCD) in an octopole collision cell with nitrogen and 

mass analyzed by the Orbitrap at a resolution of 17,500. An isolation window of 2 Daltons 

was used for the isolation of ions for HCD at a normalized collision energy of 28% (a 

Thermo nomenclature for ion energy for dissociating ions by collision) was used for HCD 

with AGC setting of 1e5 ions. Mass spectra were recorded for 100 min by repeating this 

process with a dynamic exclusion of previously selected ions for 30 seconds. On the Velos 

Pro Orbitrap mass spectrometer, top 10 ions were isolated (isolation width of 2 m/z) by the 

linear ion trap in the higher vacuum region and transferred to the linear ion trap in the lower 

vacuum region for collision-induced dissociation by multiple collisions with helium gas 

present in the trap at a normalized collision energy of 35% and AGC setting at 1E4 ions. The 

resulting fragment ions and remaining parent ions were transferred back to the higher 

vacuum linear ion trap for their mass analysis and detection by a pair of conversion dynode/

electron multiplier placed on both sides of the linear trap. Mass spectra were recorded for 

100 min by repeating the above process with a dynamic exclusion of 30 seconds.

Western Blots—Protein lysates were prepared on a small scale with a protease inhibitor 

mixture (P9599; Sigma). For western blot analysis, 10 μg of total protein was loaded per 

lane. Anti-FRQ antibody was diluted 1:250 (Garceau et al., 1997) and the SuperSignal West 

Femto ECL (Pierce) was used for signal development.

Real-Time CCD Recording—An electronically cooled camera from Princeton 

Instruments (PIXIS 1024) was used to follow luminescence using the Lightfield program. 

Camera runs were completed at 25°C, with cultures grown in black, flat-bottomed 96-well 

plates from Eppendorf. Liquid suspensions of conidia (O.D. of 0.5 at 600nm) were plated 

onto QA medium (0.03% glucose, 0.05% arginine, 0.001 M QA, pH 5.75) containing 25mM 

luciferin and covered with a Breathe-Easy strip (USAScientific). Inoculated plates were then 

subjected to 48 h of 12:12 dark:light cycle conditions at 25°C:28°C before starting the 

camera trial in constant-dark and 25°C conditions. Signals were accumulated for 15 min 

every hour. A custom ImageJ Macro called “Toolset Image Analysis Larrondo’s Lab v. 1.0” 

was used to process the images (Larrondo et al., 2012) within FIJI v.2.0.0 (Schindelin et al., 

2012). Raw data arising from each time series was smoothed using a 3-point moving 

average, and then processed using custom-written software to detrend (by removing the 

exponential decay signal), rescale, and normalize amplitudes.

Xylose Reductase Enzyme Activity Assay—Ground tissue from each time point was 

lysed with 250 mM potassium phosphate buffer (pH 6.8) and a protease/phosphatase 

inhibitor (1861282; Thermo Scientific), vortexed and centrifuged at 14,000 rpm for 10 min. 

at 4°C. The total soluble protein fraction for each time point sample was measured using a 

Bradford Assay with BSA standards and extracted protein for each set of time course 

samples was standardized to 5 mg/ml total protein. Similar to Yokoyama et al. (Yokoyama et 

al., 1995), a paired kinetic time scan at 340nm was used to measure xylose reductase 

activity. A decrease in absorbance at 340 nm represents a decrease in NADPH levels, which 

is a co-factor used by XR in converting D-xylose to xylitol. Specifically, for each time point, 

a reference cuvette containing 600 μL of 250 mM potassium phosphate buffer (pH 6.8), 100 
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μL of 100 μM b-mercaptoethanol, 150 μL of distilled/deionized H2O, 50 μL of 3.4 mM 

NADPH (NADPH-RO; Sigma) and 100 μL of the standardized protein lysate from a given 

time point was mixed and kept on ice. Each matching experimental time point cuvette 

contained the same reagents as above, except the amount of distilled/deionized H2O was 

decreased to 50 μL so that a final volume of 1 mL was maintained in the final assay. Enzyme 

activity assays used a Hitachi U-2910 Spectrophotometer with the program UV Solutions 

2.2. Reference and experimental cuvettes were brought to room temperature for 10 min, 

before auto-zeroing and starting the kinetic time scan at 340 nm. After 5 sec., 100 μL of the 

substrate, 0.5 M D-xylose (Sigma #X1500–500G), was added to the experimental cuvette 

and the time scan completed. The slope of the initial velocity of enzyme activity (during the 

linear phase) was measured immediately after mixing (Dataset S3). Protein was extracted 

from two sets of time course samples, and a technical replicate of the enzyme assay 

completed on a different day, after storing the extracted protein samples at −20°C (except for 

one of the last time point samples, where only one round of the enzyme assay could be 

completed due to limited sample size).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Processing, eJTK and FunCat Analyses—Peptides for which fewer than 30% 

of observations were missing had those missing values imputed (inferred from observations 

of other non-missing peptides) by the K nearest neighbors method with K=10, within 

LIMBR ver. “pre-alpha” as of Oct. 3 2016 (Crowell et al., 2018). In this approach, a missing 

value of a peptide in a given sample is replaced by the average value in that sample of the K 

(10) other peptides which had the most similar expression across other samples for which 

the peptide with the missing value was observed; i.e. taking advantage of the fact that there 

were three replicates for each point. This method of imputation is well established and has 

been employed successfully across multiple bioinformatics data types recently showing top 

tier performance in the analysis of differential expression in MS data (Bastista and Monard, 

2003; Schmitt et al., 2015; Wang et al., 2017b). The imputed data for each sample is then 

divided by the corresponding pooled control to account for variability induced by the 

individual MS runs. Prior to learning batch effects, each sample is quantile normalized and 

then the abundances for each peptide are scaled to zero mean and unit variance. Batch 

effects were then removed with a time series specific algorithm within LIMBR (Crowell et 

al., 2018), based on Surrogate Variable Analysis (SVA). In brief, this method applies to the 

data a non-parametric LOWESS (Locally Weighted Scatterplot Smoothing) model, which 

captures the expected agreement of replicates, adjacent time points and time points with 

similar CTs. A singular value decomposition is applied to the residuals of this fit and the 

significance of the resulting components is determined by a permutation analysis (10,000 

permutations used). Components deemed significant are then removed from the data. Python 

code for LIMBR is available for download at https://github.com/aleccrowell/LIMBR and the 

package can be downloaded and installed with dependencies using ‘pip install limbr’.

Circadian rhythms were assessed by eJTK_cycle analysis (Hutchison et al., 2015), with 

updates as of Aug 3, 2016 (Hutchison et al., 2018; Hutchison et al., 2015). In this updated 

version of eJTK, instead of calculating empirical p values, computational time has been 

reduced by using a Gamma distribution to yield corrected p values for a given gene, termed 
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GammaP in the output and referred to in this paper as p values. While Benjamini-Hochberg 

adjustments are available in this version of eJTK, they are more conservative than true FDRs 

(Hutchison et al., 2015), therefore any protein with a (Gamma) p value <0.05 was 

considered a rhythmic protein in this study. For reference, in our datasets a p value of 0.05 

roughly corresponded to the overly conservative Benjamini-Hochberg-adjusted p value of 

0.19. Functional annotation of the differently regulated proteins was performed according to 

Functional Categories (FunCat) (Ashburner et al., 2000) and N. crassa Genome Database 

(Galagan et al., 2003) within the FungiFun Ver. 0.5 interface (Priebe et al., 2011) and a value 

of p<0.05 was used as a cut-off for significantly enriched terms, while p<0.001 was 

considered highly enriched.

Phase Set Enrichment Analysis (PSEA)—KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathways for Neurospora genes were downloaded from FunCat ver. 0.5 (KEGG, 

ver. Apr 26, 2011) and converted to gene matrix transpose (GMT) file format. Using the 

PSEA enrichment Java package (ver. 1.1) (Zhang et al., 2016), we input the converted 

Neurospora GMT file and a list of rhythmic WT proteins (n=1273) with their eJTK-

identified peak phases in CT. We required a minimum of 10 genes per gene set (n=89 gene 

sets met the criteria), utilized 10,000 simulations in the PSEA Kuiper test, and defined phase 

enrichment as q<0.05 (Benjamini-Hochberg adjusted p value). The Kuiper test is a non-

parametric aggregate score method that can be used on cyclic data (Kuiper, 1960). As 

implemented in PSEA, the Kuiper test evaluates how closely a cumulative probability 

distribution for the sample matches a given background distribution (Zhang et al., 2016). In 

this case, the phase enrichment was completed relative to a uniform background distribution, 

to summarize any overall synchronization of peak phases within gene sets.

Categorizing Noise Using Residual Variance—We normalized the proteomics data, 

in order for both the transcriptomics and proteomics data to be on the same scale. 

Proteomics expressions were normalized in the following manner:

zi j =
Xi j − μ j

σ j
,

where zi is the resulting normalized expression for time point i = 1,.,24 and gene j = 

1,.,4747, xijis the original proteome expression, μj is the mean expression, and σj is the 

standard deviation of expression for gene j.

We found the residuals, or the difference between the fitted and actual expression, for only 

significantly rhythmic (p<0.05) proteins or transcripts:

ri j = yi j − yi j,

where rij is the residual, yi jis the fitted expression from eJTK, and yij is the actual 

expression.
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We then calculated the variance for each expression’s residuals and used a two-sided F-test 

to determine whether the distributions of residual variances for the rhythmic transcriptome 

and the rhythmic proteome were significantly different, using a 0.05 cutoff.

Clock-Controlled Expression Simulation Based on Peak Phase for Pathway 
Mapping—Using the peak phase data, we simulated expression of each clock-controlled 

mRNA and protein over circadian time, starting at CT12. Expression was simulated using 

arbitrary amplitude units that vary between 0 and 2, with 2 being the “peak phase” (θ) 

according to the following function:

f(θ; t, T, A, D) = Acos (2π(t − θ)T) + D,

where the period T=24 circadian hours, the amplitude A and the offset D both equal 1. Time 

t is simulated every 2.13 circadian hours from CT12 to CT11.5.

Metabolic Overview Poster and Omics Dashboard Figures—The cellular overview 

poster of metabolic pathways was generated using the BioCyc program (ver. 21.5), as in 

Paley and Karp (2006) and omics dash board figures as in Paley et al., 2017.

DATA AND SOFTWARE AVAILABILITY

The accession number for the mass spectrometry proteomics data reported in this paper is 

ProteomeXchange Consortium: PXD009682, 10.6019/PXD009682 (Vizcaino et al., 2016). 

RNA-seq data from Hurley et al. (2014), was previously deposited in the National Center for 

Biotechnology Information Short Read Archive (SRA): SRP045821, SRP046458 (Hurley et 

al., 2014). Additionally, raw and processed TMT-MS and RNA-seq data used in this paper 

are available at Mendeley: [https://doi.org/10.17632/8mzwdr9sxc.1]. Genes sets used for 

FunCat analyses in this paper are accessible at Mendeley: [https://doi.org/10.17632/

r68j3rnxhw.1]. Finally, raw XR enzyme activity assay data reported in this paper are at 

Mendeley: [https://doi.org/10.17632/x3c66jk53m.1]. For software availability, please refer 

to the STAR Methods Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Circadian output is dominated by post-transcriptional regulation

• Circadian post-transcriptional regulation is broadly imparted by translational 

control

• Metabolic processes are highly impacted by circadian post-transcriptional 

regulation

• CSP-1 plays a complex role in the post-transcriptional regulation of circadian 

output
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Figure 1. Neurospora Circadian Proteomic Analysis Demonstrates Rhythmic Proteins Are 
Enriched in Metabolic Functions and Mainly Peak after Subjective Dusk
(A) Diagram of the positive (WC-1/WC-2) and negative (FRQ/FRH) arms of the core clock 

in Neurospora, showing transcriptional activation of downstream ccgs. One ancillary loop 

includes CSP-1, which represses WC-1 under high glucose conditions.

(B) Heatmap of rhythmic proteins showing normalized relative protein levels by circadian 

time of day (CT), with time points of low (blue) and high (yellow) protein levels, and 

proteins ordered by peak phase. By convention CT0 = subjective dawn and CT12 = 

subjective dusk.
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(C) Histogram depicting the number of rhythmic proteins that peak in their oscillation at a 

given CT.

(D and E) Breakdown of FunCat terms from (D) all WT proteins detected and imputed in 

our analysis or (E) those proteins that are designated rhythmic in the WT proteomic dataset. 

Refer to legend for FunCat gene categories. WC-1/WC-2, WHITE COLLAR 1/2; FRQ, 

FREQUENCY; FRH, FREQUENCY-INTERACTING RNA HELICASE; CSP-1, 

CONIDIAL SEPARATION 1; WT, wild-type; CT, Circadian Time. *, p < 0.05; **, p ≤ 

0.001.

Related to Figure S2 and Tables S1 and S2.
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Figure 2. Comparison of WT Circadian Transcriptome and Proteome Suggests Widespread Post-
Transcriptional Circadian Regulation of Protein Levels.
(A) For all genes detected at the mRNA and protein level, mRNA rhythmicity p values (x 

axis) are plotted against protein rhythmicity p values (y axis).

(B) For genes that are rhythmic at both the mRNA and protein levels, a histogram depicting 

the number of genes with a given phase delay (in hours) between their peak mRNA and peak 

protein levels.

(C) Clock-style densitometry graphs of peak phase timing (CT) of rhythmic mRNA and/or 

rhythmic protein, for the following gene categories: “Rhythmic mRNA only” genes (n = 
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1,662); “Rhythmic mRNA and protein” genes (n = 752); and “Rhythmic protein only” genes 

(n = 521). In all cases, mRNA is in orange, while protein is in blue. WT, wild-type; CT, 

circadian time.

Related to Figures S3 and S4 and Table S4.

Hurley et al. Page 26

Cell Syst. Author manuscript; available in PMC 2019 December 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Rhythmic Protein Degradation Is Unlikely to Be the Primary Mechanism Underlying 
Circadian Post-transcriptional Regulation in Neurospora.
(A) Average (SEM) expression levels of rhythmic E3 ubiquitin ligase transcripts from the 

RNA-seq data.

(B) Average (SEM) of protein levels of rhythmic E3 ubiquitin ligases from the TMT-MS 

data.

(C) Average (SEM) phase delays, by time of peak mRNA phase, for genes rhythmic at both 

levels.

(D) The percent of genes that are rhythmic at both the mRNA and protein levels at a given 

time point that have a 0–2 hr phase delay, shown by time of day at which the mRNA peaks 

in its oscillation. Note that percentages are calculated separately for each time point. WT, 

wild-type; CT, circadian time; SEM, standard error of the mean; TMT-MS, tandem mass tag 

mass spectrometry.

See also Table S5.
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Figure 4. Proteins that Are Rhythmic in the Pentose-Phosphate Pathway Peak in Anti-phase to 
Those in Glycolysis.
Enzymes and products within the pentose-phosphate pathway are shown along the left side, 

while enzymes and products within glycolysis are shown along the right side. Bolded and 

colored arrows and squares denote enzymes considered rhythmic in our analysis (p < 0.05), 

and the color denotes how many hours away it is from peak abundance or phase. For 

example, warm colors show that an enzyme is at a relatively high level at CT12, while cold 

colors show that an enzyme is at a low level near CT12. Inset panels show the eJTK 

rhythmic protein fit, with colored dots showing the time from peak protein level, by time of 

day (CT; see STAR Methods). CT, circadian time.

See also Video S1 and Figure S5.
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Figure 5. Average Modeled Rhythmic mRNA and Protein Levels within BioCyc Categories 
Suggest Post-transcriptional Regulation of Metabolic Pathways.
(A–C) A graphic representation of the average of modeled rhythmic mRNA or protein levels 

in a given BioCyc category over the circadian day (CT). Large dots and lines are the average 

of all modeled rhythmic levels within a BioCyc category, and shaded areas are the standard 

deviations around those averages. BioCyc pathways presented are (A) energy pathways, 

including the pentose phosphate pathway, glycolysis, the tricarboxylic acid cycle, 

fermentation, and aerobic respiration; (B) degradation pathways, including fatty acid and 

lipid degradation and carbohydrate and carboxylate degradation; and (C) biosynthesis 

pathways, including fatty acid and lipid biosynthesis. In all cases, mRNA is orange, and 

protein is blue; and the number of proteins and mRNAs that fall into each category are 

displayed on the graph.

See also Figure S6.
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Figure 6. Circadian Post-transcriptional Regulation Impacts Xylose Metabolism.
(A)A schematic of the D-xylose to ethanol pathway, with the enzymes predicted to carry out 

each reaction mapped onto the pathway. Enzymes were detected at both the mRNA and 

protein levels. Colored boxes represent enzyme rhythmicity peak timing at the WT mRNA 

or protein level (p < 0.05), according to the included legend. (B and C) Luciferase traces 

(measured in AU) tracking (B) frq promoter activation (n = 24 wells) and (C) XYLOSE 

REDUCTASE protein levels (n = 36 wells), after smoothing with a moving average, 

rescaling, exponential detrending, and normalizing.

(D) XYLOSE REDUCTASE mean enzyme activity (SEM) from two tissue samples at each 

time point (two technical replicates for each). The more negative the change in absorbance at 

340 nm, the higher the activity of this enzyme, which uses NADPH as a co-factor in 

converting D-xylose to xylitol. WT, wild-type; AU, arbitrary units; frq, Frequency; SEM, 

standard error of the mean.

See also Figure S6.
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Figure 7. CSP-1 Contributes to Circadian Regulation of Metabolic Proteins.
(A) Breakdown of FunCat terms from rhythmic proteins detected in the Δcsp-1 strain (refer 

to Figure 1 for FunCat gene categories).

(B) Rhythmicity p values of all detected proteins in the Δcsp-1 strain(x axis) are plotted 

against p values of matching proteins in the WT strain (y axis).

(C) Heatmaps of the 1,316 rhythmic Δcsp-1 proteins showing normalized relative protein 

levels by circadian time of day (CT), with time points of low (blue) and high (yellow) 

protein levels, and proteins ordered by peak phase.

(D) A clock-style graph depicting the number of proteins that are rhythmic and peak at a 

given CT in the Δcsp-1 strain, with an overlay of the same information for the WT strain.

(E) Histogram depicting the number of rhythmic Δcsp-1 proteins that peak at a given CT 

broken down into the following sub-categories: (1) “0–2 hr phase change” relative to WT 

strain (blue; n = 200), (2) “>2 hr phase change” relative to WT strain (dark green; n = 302), 

and (3) “Only rhythmic in Δcsp-1” (light green, n = 814). CSP-1, CONIDIAL 

SEPARATION 1; WT, wild-type; CT, circadian time. *, p < 0.05; **, p ≤ 0.001.
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See also Figure S7 and Tables S7, S8, and S9.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-FRQ (rabbit) Jay Dunlap 
(Garceau et al., 
1997)

N/A

Bacterial and Virus Strains

E.coli, DH5alpha, Electro-competent New England Bio C2989K

Chemicals, Peptides, and Recombinant Proteins

USB TPCK treated Trypsin Affymetrix 22725 250 MG

Protease Inhibitor Cocktail Sigma P9599

Protease Inhibitor Cocktail ThermoScientific 1861282

SuperSignal West Femto ECL (Pierce) ThermoFisher 34094

NADPH Tetrasodium salt (Roche) Sigma NADPH-RO

D-(+)-Xylose, ≥99% Sigma X1500–500G

Critical Commercial Assays

BCA protein quantification kit (Pierce) ThermoFisher 23225

TMT10plex Isobaric Mass Tag Labeling 
Reagents Sets

ThermoFisher 90406

Deposited Data

Mass spectrometry proteomics data: 
ProteomeXchange Consortium via the PRIDE 
partner repository

This paper PXD009682 and 10.6019/PXD009682

RNA-seq data: National Center for 
Biotechnology Information Short Read Archive 
(SRA)

Hurley et al. 
(2014)

SRP045821 and SRP046458

Mendeley dataset: Raw and processed TMT-MS 
and RNA-seq data.

This paper [https://doi.org/10.17632/8mzwdr9sxc.1]

Mendeley dataset: Genes sets used for FunCat 
analyses.

This paper [https://doi.org/10.17632/r68j3rnxhw.1]

Mendeley dataset: Raw XR enzyme activity 
assay data.

This paper [https://doi.org/10.17632/x3c66jk53m.1]

Experimental Models: Organisms/Strains

S. cerevisiae: FY834 Fungal Genetics 
Stock Left (Colot 
et al., 2006)

FGSC #9721

N. crassa: WT: 74-OR23–1VA Fungal Genetics 
Stock Left

FGSC #2489

N. crassa: Δcsp-1: delta csp-1::hph+ Fungal Genetics 
Stock Left

FGSC #11348

N. crassa: FGSC9718: delta mus-51::bar+ Fungal Genetics 
Stock Left

FGSC #9718
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REAGENT or RESOURCE SOURCE IDENTIFIER

N. crassa: 536–1: frhV5H6::bar+;ras-1bd Jen Hurley 
(Hurley et al., 
2013)

536

N. crassa: Pfrq:luc: Pfrq(c-box)::luc::hph+ Jay Dunlap WT-1

N. crassa: XR:LUC: XR::luc::hph+ This paper Clones #4, 5, 10

Oligonucleotides

Primer: pRS426 to NCU08384, -1000 bp from 
stop codon, forward: 
GTAACGCCAGGGTTTTCCCAGTCACGAC/ 
ATTTTAAGGACACGAGGAGCAG

This paper SFQ7

Primer: NCU08384 (end of ORF minus stop 
codon) to luciferase/hph,forward: 
GAGAACCTCTGGATTTTCGGT/ 
GGCGGAGGCGGCGGAGGCGG

This paper SFQ8

Primer: NCU08384 (end of ORF minus stop 
codon) to luciferase/hph,reverse: 
CCGCCTCCGCCGCCTCCGCC/ 
ACCGAAAATCCAGAGGTTCTC

This paper SFQ9

Primer: Luciferase/hph to NCU08384, just after 
stop codon, forward: 
GAAGTTATGGATCCGAGCTCG/ 
GTCAACCTTTTTCCGCAGCTTAG

This paper SFQ10

Primer: Luciferase/hph to NCU08384, just after 
stop codon, reverse: 
CTAAGCTGCGGAAAAAGGTTGAC/ 
CGAGCTCGGATCCATAACTTC

This paper SFQ11

Primer: NCU08384, +1000 bp from stop codon 
to pRS426, reverse: 
GCGGATAACAATTTCACACAGGAAACAGC/ 
GCCGGCATTGTATAGGAACAAG

This paper SFQ12

Recombinant DNA

Plasmid: pRS426: Yeast episomal vector with 
URA3 marker, and Ampicillin resistance

Fungal Genetics 
Stock Left (Colot 
et al., 2006)

pRS426

Software and Algorithms

LIMBR v. “pre-alpha”, Oct 3, 2016 Crowell et al. 
(2018)

https://github.com/aleccrowell/LIMBR

eJTK_cycle, v. Aug 3, 2016 Hutchison et al. 
(2015); 
Hutchison et al. 
(2018)

https://github.com/alanlhutchison/empirical-JTK_CYCLE-with-asymmetry

FunCat v. 8/12/2010, within FungiFun v. 0.5
Priebe et al. 
(2011) https://elbe.hki-jena.de/fungifun/

PSEA, v. 1.1 Zhang et al. 
(2016)

https://github.com/ranafi/PSEA

Pathway Tools software within the BioCyc 
Pathway/ Genome Database (PGDB), v. 21.5

Caspi et al. 
(2016)

https://biocyc.org/

Toolset Image Analysis Larrondo’s Lab v. 1.0, 
within FIJI (ImageJ) v. 2.0.0

Jen Hurley 
(Larrondo et al., 
2012; Schindelin 
et al., 2012)

https://fiji.sc/
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