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Abstract 

Daily life often makes us decide between two goals: 
maximizing immediate rewards (exploitation) and learning 
about the environment so as to improve our options for future 
rewards (exploration). An adaptive organism therefore should 
place value on information independent of immediate reward, 
and affective states may signal such value (e.g., curiosity vs. 
boredom: Hill & Perkins, 1985; Eastwood et al. 2012).  This 
tradeoff has been well studied in “bandit” tasks involving 
choice among a fixed number of options, but is equally 
pertinent in situations such as foraging, hunting, or job search, 
where one encounters a series of new options sequentially. 
Here, we augment the classic serial foraging scenario to more 
explicitly reward the development of knowledge. We develop 
a formal model that quantifies the value of information in this 
setting and how it should impact decision making, paralleling 
the treatment of reward by the marginal value theorem (MVT) 
in the foraging literature. We then present the results of an 
experiment designed to provide an initial test of this model, 
and discuss the implications of this information-foraging 
framework on boredom and task disengagement.  

Keywords: exploration, explore-exploit tradeoff, 
information-seeking, decision making. 

Introduction 

All organisms face the frequent need to decide between 

persisting with one behavior (and the known rewards it 

brings), or switching to another. This tradeoff is well 

documented in the literature: stay-or-switch behavior has 

been studied in humans (Behrens et al., 2007) and non-

human animals such as primates (Pearson et al. 2009), birds 

(Krebs, Kacelnik & Taylor 1978), rodents, and even non-

vertebrates (Gallistel 1990) including the extent to which 

this follows optimal sampling strategies (Goldstone & 

Ashpole, 2004; Daw et al. 2006). When examining such 

decisions, it is helpful to distinguish between at least two 

types of circumstances under which an organism might 

choose to persist in or change its behavior: one involves 

situations in which  rewards are which rewards are known 

up to stochasticity but either changing (as when foraging 

from a depleting patch) or varying in quality across options 

(as in encountering a series of candidate prey), so the 

decision whether to switch to other alternatives is a way to 

maximize current reward rate. The other involves situations 

in which the options’ values are imperfectly known (as in 

bandit tasks) so that switching behavior may not yield 

immediate benefit, but may provide new information that 

can support learning and improvements in reward-rate over 

the longer term. 

The first scenario has been extensively studied in the 

foraging literature. When choosing among behaviors with 

different reward opportunities (e.g. foraging patches) that 

are progressively depleting, or in circumstances in which  

(estimable) changes can happen outside the local 

environment, it is optimal to switch behavior when it is 

estimated that the value of the current behavior falls below 

the mean expected value of the available alternatives (Krebs 

& Inman, 1992). This policy can be shown to optimize 

immediate reward rate, as described by the marginal value 

theorem (MVT, Charnov, 1976), and numerous studies have 

found that animals’ foraging behavior approximates this 

(Krebs, Kacelnik & Taylor 1978).  

Most foraging scenarios of this type occur in 

environments with well-specified rewards, in which 

uncertainty usually stems from stable variance or hazard 

rates (risk), so it is possible to incorporate it into reward 

expectations through estimates of expected utility and the 

switching policy given by the MVT is optimal 

asymptotically (following all possible learning). However, 

in many circumstances reward opportunities may not only 

be stochastic, but the properties of this stochasticity may be 

unknown (Payzan-LeNestour et al., 2013). That is, 

uncertainty may stem from ambiguity rather than risk.  In 

such circumstances, sampling the environment can provide 

information that, even if it is associated with immediate 

sacrifices in predictable reward rate, can be used to learn 

about the environment and improve reward rate over the 

longer term. We refer to such information-seeking as 

“exploration," to distinguish it from foraging choices that 

we define as the pursuit of alternative behaviors based on 

decisions involving reward opportunities with known 

distributional properties (e.g., mean and variance)
1
. 

The drive toward exploration has been well-documented 

in both human and animal literatures (e.g., Cohen, McClure 

& Yu, 2007), and there is rich evidence that under many 

scenarios, organisms will choose to sample the environment 

for useful information even at the cost of current or 

predictable reward (Wilson et al., 2014). This is the case, for 

instance, when we choose to try out the new special at a 

restaurant instead of sticking with our favorite dish, or when 

                                                           
1
 We make this qualitative distinction largely for the 

purpose of clarity, and to guide formal treatment, fully 

recognizing that real-world circumstances almost certainly 

fall along a continuum between these extremes and involve 

a mix of these two type of decisions. 
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we choose to watch a new show instead of rewatching an 

episode of an old favorite. In this way, exploration is 

different from foraging: though both involve the choice 

between persisting with the current action or switching 

away to something else, exploration is geared toward 

acquiring new information, while foraging is geared toward 

acquiring predictable sources of reward.  

However, exploration of this sort has been studied largely 

in the context of “bandit” tasks – choice among a fixed set 

of options, whose properties must be learned from sampling 

– and not in the serial switching scenarios modeled by the 

MVT. Here, we propose a formal model for exploration that 

parallels the formulation of the MVT for reward, but applies 

it to maximizing information alongside reward. In 

particular, we augment the patch foraging scenario to more 

explicitly reward information gathering – this models, for 

instance, development of expertise when encountering a 

series of options, for instance, learning a trade over 

successive jobs or improving one’s dating skills – and study 

the behavior of optimal agents. We then present the results 

of an experiment designed to provide an initial test of this 

model, and discuss the implications of this information-

foraging framework on boredom and task disengagement. 

A Normative Model of Exploration 

Paralleling circumstances to which the MVT has been 

applied, we model an environment consisting of local 

reward patches that offer different reward rates, with the 

model agent free to either stay within a patch to reap reward 

(exploit), or switch away to search for other patches, in this 

case with only partially or unknown characteristics 

(explore). Each patch is comprised of an environment in 

which the agent can earn rewards by making accurate 

predictions of the outcome of a stable stochastic process.    

Upon "entering" a patch, the agent does not know the 

parameters of the stochastic process, but these can be 

learned by sampling. On each time step spent within a 

patch, the agent makes a prediction, and receives a reward 

proportional to the accuracy of the prediction. The longer an 

agent spends learning about a patch, the better its estimates 

of the underlying structure can become, and higher the 

reward it can receive. This distinguishes this task 

environment from the environment assumed in most studies 

of foraging: here, the patch becomes more rewarding with 

the passage of time (and sampling), rather than depleting.  

    An additional important assumption is that the properties 

of patches are not independent of one another, but rather  

reflect properties of a global environment from which they 

are drawn. Thus, within limits, sampling a local patch can 

provide information that is relevant to other patches. This is 

a property of many real-life environments, in which humans 

sequentially sampling different “patches” learn about the 

local structure while simultaneously learning about an 

overarching global structure (Diuk et al 2013). For instance, 

when going apple-picking, we learn about the quality and 

availability of fruit in each individual tree (so we could 

choose to move from a smaller, poorer tree to a better one), 

but at the same time we are also learning about the overall 

qualities of the orchard, so next time we go apple-picking 

me might choose an altogether different orchard.  

    Under this framework, exploiting a local patch obtained 

increasing local reward (fig. 1A), but exploring many local 

patches helps the agent learn the global structure faster, 

which would in turn allow it to make better choices earlier 

in the local patches. Depending on goals, therefore, it could 

be optimal to quit a local patch (even if it was yielding a 

high reward) and move to another patch, at the potential cost 

of a lower reward, for the sake of learning about the global 

environment that could improve returns in the future.  

    This local/global structure allowed us to model an 

environment with a distribution of available information 

paralleling the distribution of available reward in standard 

foraging environments. In other words, each patch held not 

only reward (which increased with time spent in patch), but 

also information (which decreased with time spent in patch). 

This generated a canonical explore-exploit decision 

tradeoff:  maximize known rewards by staying within a 

patch (exploitation), or switch patches to acquire 

information (exploration).  We constructed a model of this 

process, and used it to compare performance with a pure 

exploitation strategy, a strict foraging model, and human 

behavior in an empirical version of the task. 

Model Assumptions 

Each patch represented a stochastic environment in which 

the agent could earn rewards by making accurate 

predictions. Each patch had a hidden distribution with mean 

𝜇𝑖 and standard deviation σ (which was the same between 

patches). On each time step spent inside the patch, the agent 

had to make a prediction relating to this distribution. The 

agent’s reward 𝑟𝑡,𝑖  was proportional to the accuracy of the 

prediction (for a similar task design, see Nassar et al.’s 

(2010) “estimation task”), according to 

𝑟𝑡,𝑖 = 𝜌 − 𝑃𝐸𝑡,                         (1) 

where ρ represented the maximum amount of reward that an 

agent could earn (if its predictions were fully accurate), and 

𝑃𝐸𝑡 represented the prediction error, computed as the 

difference between the agent’s prediction Pr and the actual 

number generated in the patch on time step t:  

                        𝑃𝐸𝑡 = 𝑃𝑟𝑡 − 𝑁(𝜇𝑖, σ)               (2) 

Figure 1A shows the increase in reward with time spent in 

patch. An agent could spend as long as it wanted exploiting 

a patch, but each patch had a fixed chance of termination λ, 

meaning that on every time step the patch would end with 

probability λ, and continue with probability (1 – λ).  
As explained in the previous section, all patches were 

connected under a higher-level, global structure. In other 

words, the underlying patch distribution parameter 𝜇𝑖 came 

from a global distribution with a (fixed) grand mean M and 

standard deviation S. Exploiting a local patch obtained 
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increasing local reward (fig. 1A), but decreasing 

information (fig. 1B), while exploring more local patches 

helps the agent learn the global structure faster. There was 

also a global reward R associated with learning the global 

mean M. Our model tracked several quantities of interest as 

an agent exploited a patch with the above structure; for 

simplicity, we approximate the hierarchical estimation 

problem with nested error-driven updates. First, at each time 

step it computed an estimate of the local mean for patch i at 

time t, , as the average of all data points 𝑥𝑖,𝑡 observed in 

that patch up to the current time: 

𝜇𝑖,𝑡 =  
∑ 𝑥𝑖,𝑡𝑡

𝑛
                   (3)      

which can also be written in terms of the prediction error PE 

and a learning rate of 1/n, as  

𝜇𝑖,𝑡 =  𝜇𝑖,𝑡−1 +
1

𝑛
∗ 𝑃𝐸𝑡    (4) 

(Given the structure of the task, the optimal prediction at 

any time step was the current estimate of the mean,  , 

and our model assumed that the agent would always predict 

that mean). In addition to tracking the mean estimate for the 

patch, the model also used error-driven updating to estimate 

the variance of the local patch,  

𝜎𝑖,𝑡
2 = 𝜎𝑖,𝑡−1

2 +
1

𝑛
(

(𝑛−1)∗𝑃𝐸2

𝑛
− 𝜎𝑖,𝑡−1

2 )    (5) 

which allowed computation of how informative each new 

data point was, in terms of how much it could reduce 

variance about the local patch. As the above equation 

shows, the informativeness of each new data point 

decreased proportionally to 1/n (see fig 1B). The model also 

tracked an estimate of the global mean, in terms of the 

history of visited patches. Each final mean estimate, 𝜇𝑖, for 

the distribution within a patch served as an additional data 

point for inferring the grand mean M , in the same way that 

each within-patch data point served to estimate 𝜇𝑖.  

    Crucially, the model assumed that upon first entering a 

new patch, the initial prediction regarding the distribution of 

that patch (essentially, the prior, before any data points from 

that patch were observed) was set to the current estimate of 

the global mean M. This provided a way to quantify the 

value of information in each patch, in terms of expected 

reward, as the estimated improvement in initial predictions 

on future patches. That is, the better the estimate of the 

global mean, the better the agent could do, on average, when 

entering a new patch.  This is because the mean for each 

patch was drawn from a distribution centered on the global 

mean, and thus the optimal initial guess (prior) for a given 

patch was the global mean.  Thus, at each time step t, the 

value of acquiring one extra data point in the current patch i 

could be estimated in terms of how much it improved future 

predictions (i.e. how much closer it moved them to M), 

relative to how much sampling a new patch would improve 

future predictions. Accordingly, we approximated the 

information value of staying in a patch with 

𝑉𝑠𝑡𝑎𝑦 =
1

(𝑁−1)(𝑛−1)
𝑃𝐸𝑖,𝑡                           (6) 

 

while the value of leaving the patch was  

𝑉𝑠𝑤𝑖𝑡𝑐ℎ =
1

(𝑁−1)
𝑃𝐸𝑖+1,𝑡                           (7) 

 

where N was the current number of patches exploited so far, 

n the current data points observed in the current patch, 𝑃𝐸𝑖,𝑡 

the next estimated prediction error within the current patch, 

and 𝑃𝐸𝑖+1,𝑡 the next estimated prediction error assuming 

that the agent explored a new patch. This relative value 

between staying (exploiting) and switching (exploring) 

depended therefore on the current position within the game 

(n), the current position within the patch (N), and the two 

variance estimates for the patch mean (𝜎2)  and the global 

mean (𝑆2), as those variance estimates were used to 

compute the two prediction errors of interest in the above 

equation. Given a fixed number of available timesteps, the 

assumption that the agent could not return to a patch once it 

switched away, and values for the rewards ρ, R and the 

termination probability λ, we used dynamic programming to 

compute the value of staying or going at every time step 

(combining the immediate rewards for estimation within a 

patch with the approximate future value of learning the 

global mean, V), as a function of how well both the local 

patch and the global mean were known.  

 
Figure 1: Model results. A. Reward increases with time 

spent in a game (dotted line), and average reward in a game 

increases as more patches are explored (solid black line). B. 

The amount of information obtained from each new sample 

decreases with trials spent in a game (i.e. patch). C. 

Information-foraging agent that leaves patches early (blue) 

learns the global structure parameters earlier than an agent 

that exploits a patch for all its reward (red). D. Model 

predicts later patch leaving times as a function of how well 

the world is known (i.e. how many patches have already 

been explored). 

Results 

Figure 1 shows model results (5000 simulations of twenty-

five games each, with a maximum of twenty-five trials per 

game). As per the task structure, reward increases with time 

in game (fig. 1A, dotted line); furthermore the reward 
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increases across games as global structure is learned (solid 

line). The change in prediction error (PE) as well as the 

reduction in uncertainty from each new data point decrease 

with time spent in game (fig 1B). Compared to an agent that 

exhausts all available trials in a patch, our “information-

foraging” agent that leaves a patch depending on the relative 

informativeness of an extra data point within the patch 

versus a data point in a new patch showed faster learning of 

the global mean (i.e., learned it both in a shorter number of 

trials, and approached it faster across games, fig. 1C). Under 

certain model parameters, it also earned more average 

reward when compared to a model that only takes into 

account local reward (i.e. current prediction error). Looking 

at model predictions for the optimal time to switch away 

from a patch, as a function of both mean estimated variance 

of the global mean and, and as a function of time in game 

(though the two measures are somewhat correlated), the 

model predicted longer dwell times later in the game, when 

the uncertainty about the global mean had been significantly 

reduced (figure 1D).  

Experiment 1 

The following experiment was designed to test model 

predictions from our information-foraging model. The main 

prediction from the model, given the task structure 

presented to the subjects, was that they would quit high-

reward, low-information patches early when the value of 

gaining information from new patches was higher (i.e., near 

the beginning of the task, when they had not learned much 

about the global environment), but spend longer and longer 

in patches as the usefulness of new information decreased.   

Methods 

Participants Twenty-five participants were recruited 

from the Princeton community. They gave informed 

consent, and were compensated for their time at a rate of 

$12/hour, plus a bonus of up to $5 for performance.  

 

Task Participants played a game in which they controlled 

a virtual archer that made his way through enemy territory 

toward a castle (fig 2A, below). The goal was to defeat an 

“evil overlord,” and the ability to do so could be enhanced 

by facing waves of “minions” trained by the overlord, and 

learning about their behavior as an indicator of his. Minions 

appeared sequentially on the screen, the archer had to fire an 

arrow to hit the minion, and doing so earned one point. A hit 

and miss counter was available on the bottom left of the 

screen, indicating to participants how well they were doing. 

Participants were informed that the archer had to confront 

seven waves of minions before facing the overlord. Each 

wave consisted of a maximum of thirty-five minions, 

appearing one by one, from the right of the screen (fig 1A), 

at a variable location. Participants could adjust the archer’s 

firing position on each trial, to best anticipate where the next 

minion would appear. At the end of seven waves, the archer 

confronted the overlord, and had only one shot to either 

defeat it (i.e., aim the arrow accurately enough to hit it), or 

be defeated by it (i.e. miss). A reward of 30 points was 

available for defeating the overlord.  

Participants were informed that each wave of minions was 

trained by a different commander, and that all of the 

commanders had been trained by the overlord.  

Commanders shared, but did not perfectly imitate the 

overlord's preference for location of appearance.  Similarly. 

minions shared, but did not perfectly imitate their 

commander’s location of appearance.  These instructions 

reflected the generative properties of the environment to be 

learned:  the location of appearance of each minion within a 

wave was drawn from a distribution with a fixed mean and 

variance, and the means for each wave were drawn from a 

distribution with the same variance and a mean equal to the 

preferred location of the overlord.   

Before encountering each minion in a wave, participants 

had two options: They could choose to stay and confront 

that minion, or choose to “run away” by pressing the large 

“RUN” button at the top left of the screen. If they chose to 

run, that wave of minions would end, a screen appeared 

announcing a new wave (with a new distribution of 

locations, and they would then have the same two options 

for each minion in the new wave. Given this task structure, 

sampling within a wave could lead to progressive 

improvement in performance (and reward) for a given wave.  

However, learning the preference of the overlord (associated 

with a much larger reward) required an appropriate balance 

of sampling within and across waves, as the informativeness 

of each data point decreased (see fig. 1B) within a wave, 

and other waves provided additional information. 

Importantly, participants were told that they had only one 

hundred and fifty arrows to use on the minions – this 

operationalized the finite number of steps in our model – so 

they would have to decide how to use those arrows in a way 

that would give them the best shot of defeating the overlord. 

The model predicted that they should use fewer arrows 

(confront fewer minions) in earlier waves, switching waves 

(i.e., exploring) to maximize information about average 

locations of the waves (as a predictor of the overlord).  At 

the same time, the model predicted that, as information 

accrued, and future opportunities to do so diminished (i.e., 

task horizon shortened), they should use arrows more 

liberally to earn points within each wave (i.e., exploit).   

 

Results Twenty-five Participants learned the task, as 

evidenced both by their increasing accuracy in targeting the 

minions, within a wave (figure 2B) and by the increasingly 

accurate first location estimate – i.e., change of hitting the 

first minion – in later waves compared earlier waves 

(significant linear trend, F(1,6) = 9.42, p = 0.02, figure 2C). 

No participants attempted to defeat all minions in a wave. 

However, participants’ average number of minions 

attempted within a wave increased in later waves compared 

to earlier waves (figure 2C). This equates to earlier quitting 

times earlier in the game. Average likelihood to “run” (i.e. 

quit the current wave and move on to the next one) 

increased, for all participants, as a function of the number of 
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minions they had confronted in the current wave (i.e the 

number of time steps they had spent there, fig. 2D). 

 

  
Figure 2: A. The archer task: participants adjust the position 

of the archer using the mouse, then release the arrow. The 

minion then comes from the right of the screen. B. 

Participants’ chances of hitting a minion increase with time 

spent in a minion wave, as they learn to predict the locations 

of the minions better. C. Leaving times (i.e. the number of 

minions attempted) increase in later waves compared to 

earlier waves. D. The chance of hitting the first minion in a 

wave (i.e. the first sample of that particular wave’s location) 

increases across the game. E. Participants are more likely to 

run after facing more minions (black line) and after hitting 

more minions (blue line). 

Likelihood to run also increased with the number of 

minions actually defeated in the current wave (fig. 2E, blue 

line), which is well-correlated with how well the 

participants had learned that particular wave; comparatively, 

the likelihood to run was slower to increase as a function of 

faced minions (black line). Finally, in line with optimal 

performance, participants’ accuracy in later waves improved 

on the first trial of a wave (before they got any data from the 

current minion wave), indicating that they generalized the 

knowledge about the structure of previous games to make 

better predictions in the current one (Fig. 2B). 

Discussion 

Building on ideas from optimal foraging theory and 

reinforcement learning, we proposed a normative model of 

adaptive exploration.  The model is based on a variant of the 

Marginal Value Theorem (MVT; Charnov, 1976), in which 

explore-exploit decisions are driven by estimates of the 

relative information (rather than reward) associated with 

each option.  The model balances the goals of learning about 

the properties of the local and global environments, and we 

showed that in doing so it is capable of optimizing overall 

reward rate.  We tested, and found support for qualitative 

predictions of the model in an empirical study:  human 

participants exhibited behavior consistent with information-

seeking, and stay-leave (explore-exploit) decisions that were 

sensitive to estimates not only of current reward, but also 

current information, and that these were integrated into their 

decision to stay or leave. 

    The model predictions are consistent with theories of 

intrinsic motivation stating that the drive to explore arises 

from an innate need to interact efficiently with the 

environment (Deci & Ryan, 1985; White, 1959), as well as 

with the notion of “flow” and the optimal arousal theory of 

motivation, according to which organisms seek to balance 

an internal need for optimal levels of information and 

stimulation (Carrol, Zuckerman & Voegel, 1982; 

Csizentmihalyi, 2000). Furthermore, results here show that 

quitting a current high-reward but low-information patch 

can in fact still lead to higher overall reward than staying in 

the uninformative patch. This is consistent with model 

findings that average within-game reward increases across 

games, as the global structure is learned (Fig 1A). Similar 

findings have been presented previously in the machine 

learning literature, in studies showing that artificial agents 

capable of penalizing a too-well-known option’s value can 

learn a complex grid environment faster and earn higher 

overall reward (Simsek & Barto, 2006). Ecological models 

of optimal foraging have also mentioned the “penalty of 

ignorance”, i.e. the benefits that a forager could lose by not 

improving its information about the world over time (Olsson 

& Brown, 2006). However, to our knowledge, the model we 

present here is the first to cast exploration in terms that 

parallel the role of reward in optimal foraging theory.  In 

this respect, the model provides a bridge between the 

closely-related literatures on foraging and exploration, and a 

path toward theoretical integration.  

    Along similar lines, our model provides a mechanistic, 

and potentially normative account of the phenomenology 

associated with boredom. The link between exploratory 

behavior and boredom has been suggested many times in 

both human and animal literature (Fowler 1959; Cohen, 

McClure & Yu, 2007; Meagher & Mason 2012; Kurzban, 

2013).  Our model formalizes this idea, suggesting that 

boredom might be considered as signaling the value of 

exploration;  that is, that information provided by the 

current behavior is below what can be expected from 

alternatives, and therefore that a switch in behavior is 

warranted.   

Consistent with this suggestion, we have found in a separate 

set of experiments that boredom is negatively correlated 

with the rate of information acquisition (learning) in the 

1797



 

 

current task, is influenced by context, and that participants 

are willing to sacrifice reward in order to avoid boredom 

and increase the rate of information acquisition and 

learning. These observations are consistent with ones from 

the study reported here.  At least initially, participants chose 

to switch away from a given wave of minions, even as their 

performance improved, reflecting a valuation of information 

and learning (and the diminution of “boredom”) over 

immediate reward.  This echoes a pervasive pattern of 

behavior in video games, and explains the need for “levels” 

to maintain gamers’ interest — a phenomenon that is 

consistent with the current model.  Interestingly, however, 

participants in our experiment chose to stay with a wave of 

minions longer as the task progressed; that is, they appear to 

have become less “bored” as overall time-on-task increased.  

This seemingly counterintuitive effect was predicted by the 

theory:  as the task horizon shortened, the worth of 

information diminished relative to immediate reward, thus 

driving participants to persist (exploit) as the task neared an 

end. 

It is important to note that, from the vantage of the model 

proposed, the value of exploration is dependent on the 

structure of the environment (e.g., the amount of time 

available, as well as the difficulty of the learning problem) 

and on how well the agent has learned the environment. Our 

findings apply to the pre-asymptotic phase(s) of learning, 

when gaining information from exploration can contribute 

to forming better representations of the environment and 

ultimately to better strategies for gaining reward. If the 

world were fully known, the same findings would not hold; 

however, given the complexity of the real world, it seems 

likely that organisms spend a considerable fraction of their 

time in pre-asymptotic phases of learning.  That certainly 

appears to be the case for our collective understanding of 

how natural agents learn about their environment, and along 

similar lines, we hope that the work we describe here offers 

a useful new path for exploring this domain of 

understanding. 
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