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ABSTRACT

The purpose of this report is to demonstrate how the coupling of a finite
element model and a nonlinear optimization model léads to a new compound
model, the structural optimization model. In addition, this report is the con-
ceptual and logical base for the creation of a general purpose structural optimi-
zation and repetitive analysis program, which has been partially developed
parallel to this report.

It is shown that the applied optimization method has to be generally appli-
cable. Otherwise, a large number of modifications would be necessary to adjust
the finite element method to a special optimization problem and vice versa.
However, such modifications can be extremeley expensive and would be hardly
justifiable. Therefore, narrowly based optimization techniques are not appropri- -
ate for the practical optimization of structural systems represented by finite ele-
ment models.

It is demonstrated that, at present, the family of evolution strategies
seems to be the best optimization technique available. These strategies
represent a reasonable compromise between global convergence, convergence .
rates, reliability and numerical effort. Since optimization means that the
optimal solution has to be found iteratively the structural analysis has to be
repeatedly performed. This re-analysis process regularly causes- an extraordi-’
nary increase of computational effort. Subsequently, the re-analysis formula-
tion of the finite element equations forms an important interface between
optimization and finite element model.

Within the scope of this contribution, only discrete linear elastlc structural
systems are considered. The structural optimization model worked. out, how-
ever, encompasses geometrical as well as structural optimization variables while
most of the contributions in this field only deal with structural variables.

July 4, 1984

* Professor Dr.-Ing.; at present, visiting scholar in Structurai Engineering and Structural Mechanics, Depart-
ment of Civil Engineering, University of* California, Berkeley, U.S.A., with support from the Alexander-von-
Humboldt-Foundation. -



ACKNOWLEDGEMENT

This report has been prepared durmg a stay as visiting scholar in Structural Engmeermg and
Structural Mechanics at the University of California, Berkeley.

The author wishes to express his sincere appreciation for the generous support and fellowship
awarded by the Alexander-von-Humboldt-Foundation, which enabled him to perform a
research project entitled " Structural Optimization of Finite Element Models ". Portions of this
research project form a constituent part of the present report.

Thanks are also due to the Department of Civil Engineering, University of California, Berkeley,
for supporting the research project by providing computer facilities. ‘

The author wishes to gratefully acknowledge Prof. G.H. Powell, Department of C1v1l Engmeer-
ing, University of California, Berkeley, for his co-operation.

Dietrich Hartmann
Berkeley, U.S.A., June 1984 - . .



TABLE OF CONTENTS

Introduction

Design problem

General comments on optimization models
Fundamentals of the formulation of optimization problems
Formulation of the structural optimization model
Selection criteria for optimization techniques
Description of the applied optimization technique

( evolution strategies )

General comments

Convergence behaviour

Theoretical concept of the evolution strategies
Generation process

(1+41)-strategy

Multimembered (u+\) and (u,\)-strategies

Selection process

(1+1)-strategy

(w,\ )-strategy

Adjustment of the optimization process

(1+1)-strategy

( @,\ )-strategy

Convergence and termination critefia

(1+1)-strategy

( w,\ )-strategy

Re-analysis formulation of the finite element model
Necessity

Numerical effort of the total structural optimization model
Approximation schemes at overall structural system level
Linear finite element equations

Eigenvalue problems )

Relationships at element and optimization-variable level
Conclusions _

Overlook on future expansions and improvements
References

— O\ L L0 R e

11
12
13
13
17
18
18
19
20
20
22
24
24
25
26
26
26
28
29
34
35
38
38
39



1. Introduction

Both the method of numerical optimization of structures and the finite element approach
were introduced at exactly the same time. At the second ASCE conference on Electronic Com-
putation, held at Pittsburg 1960, CLOUGH [1] presented a paper on the finite element
approach using the term finite element for the first time, and SCHMITT [2] gave a lecture on
structural optimization. Both contributions have had a lasting influence on the field of engineer-
ing research.

Undoubtedly, the finite element method has emerged as a powerful method in structural
analysis. One of its most important advantages is its general applicability for different types of
structures.

Structural optimization, however, still has to struggle for recognition. To the author’s
viewpoint, this has to do with the lack of a general underlying concept. As a consequence of
this deficiency, innumerable different solution methods have been developed for a large
number of special optimization problems. Although individual solution techniques may be
justified from the viewpoint of numerical efficiency in special cases, a more general basis is
urgently needed to facilitate the coupling of the finite element method and numerical optimiza-
tion towards a structural optimization model.

By linking both models every design problem can be formulated as an optimization prob-
lem, which then can be numerically solved. Consequently, the numerical optimization of struc-
tural systems associated with an appropriate finite element model can be regarded as a natural
base for solving design problems in a computer-oriented manner. Structural optimization,
therefore, provides a powerful computer-aided design tool which facilitates and enhances the
decision making process in the field of engineering.

2. Design problem

In order to explain the difference between a conventional and a structural-optimization-
aided design procedure let us consider an example. To design a multi-storey building usually
involves finding a structural solution that fits all requirements and demands given, such as
economical, technical and constructional ones. Therefore, many different aspects must be con-
sidered to find an appropriate solution for the current problem. ‘

In the conventional design process an initial trial of the structural design is made. To
predict the performance-of the structure during and after construction a computational model is
choosen. A suitable model is the finite element model. This model provides some insight into
the structural behaviour. Having obtained a solution the results must be checked. If the solu-
tion is not adequate the input data for the model must be modified. If large scale structures are
considered the expense to re-prepare the input data due to changes desired can be considerable.
Additional effort has to be made to control re-runs of the finite element program. Moreover,
the output results have to be checked and interpreted after each modification: Therefore, pre-
and post-processors have recently been developed to support the engineer’s work. Although
both types of processors provide valuable help, they are, however, not capable of automatizing
all the essential parts of the design process. The control of repeated standard data-preparation
and finite element re-runs, as well as the standard verfication of results is still incumbent on the
engineer, even if pre- and postprecessors are available, -

On the contrary, using a structural optimization model makes p0351ble the computenza«
tion of most parts of the design process. The complete re-analysis process and evaluation of
the output results of the finite element program, as well as the evaluation of the structural qual-
ity can be automatically accomplished. In effect, the structural optimization model itself acts
not only as a processor but does so in a more comprehensive manner than the already known
pre- and postprocessors do.

The advantage of an automatized demgn procedure is quite obvious. The engmeer is pro-
vided with optimal solutions for structures without the necessity of repeatmg standard input-
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data-preparation and evaluation of output results. Thus, structural optimization saves valuable
manpower and enables the engineer to design more improved structures more rapidly.

3. General comments on optimization models
The structural optimization model essentially depends on four fundamental features,

(1) the formulation of the optimization model in terms of the optimization variables ( or
design variables ), the objective function or optimization criterion and the constraints;

(2) the numerical behaviour of the applied optimization strategy and its range of applicability;
(3) the compatibility between the finite element model and the numerical optimization model;

(4) the re-analysis process formulated by means of finite element equations and controlled
thr  h the optimization routine.

These four points are discussed in more detail in the subsequent chapters. To improve
the understanding of the reader, the general philosophy taken as a basis is pointed out in
advance. Therefore, some general comments are made to elucidate the formal concept of the
choosen philosophy.

As previously mentioned, the structural optimization model consists of two sub-models.
The first is the optimization model, the second is the finite element model. However, both
models are very closely related to another. Hence, the formulation of the optimization model
directly affects the finite element model and vice versa. Recently, several papers were pub-
lished in which both models were coupled. In most cases, "only" two different software pack-
ages were linked together. What is needed, however , is a more sophisticated approach based
on theoretical contemplations. For this reason, in the present report an attempt is made to ela-
borate a logical and natural base for the coupling of both models.

In this context, it should be pointed out that the term coupling precisely means the
enbedding of the finite element model into the numerical optimization model. Hence, the struc-
tural analysis process represented by a finite element model only forms a small, however, an
important part of the total structural optimization model. Consequently, the structural optimi-
zation model must be regarded-as a model of higher rank, being more comprehensive and of
"superior” significance than the finite element model. Therefore, it makes sense that the optimi-
zation model must be at least as generally applicable as the finite element model.

Correspondingly, it seems unreasonable to enbed the finite element model into a narrowly
based optimization model which, for example, is perhaps only applicable to a linear or quadratic
optimization problem. Then, the effort required to make the finite element model an integral
and compatible part of the total structural optimization model would not be justified. Since
technical optimization problems are regularly non-linear and non-quadratic all the special
modifications necessarily incorporated to save storage and computer-time would be futile if the
optimization problem is of higher order than linear or quadratic. Unfortunately, practical prob-
lems do not take care of defined mathematical categories of nonlinear problems and often result
in intricate situations, especially, if geometrical optimization variables are considered. In that
case, -objective functions with multiple "peaks" and disconnected feasible domains, which
perhaps contain local optima, can frequently occur. A typical and representative example is
worked out by HOEFLER [3] . He could show that, already in the simple case of geometrical
optimization of statically determined trusses, the objective function has infinite barriers dividing
the feasible region into several individual subdomains with potential local optima. Further prob-
lems which are in fact more complicated have been worked out by the present author [4], [5],
[6], [7]. Accordingly, it is postulated that the optimization model must be capable of covering
a wide range of potential problern_s] of different degree of complicacy.

The optimization model has to control and to evaluate the results obtained from the finite
element model with respect to the optimization criterion and the current constraints. In addi-
tion, it has to determine if re-analysis is necessary or not. QObviously, the re-analysis process
represents an important interface between both models because of its feedback character and its
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effects on the computational effort. Actually, even medium-sized design problems require
many re-analysis cycles. Hence, it is crucial that the re-analysis formulation represented by
finite element equations use computer resources economically. As we know, the analysis of
structural systems with a major degree of freedom can already be very time and memory-
consuming if a conventional finite element analysis is performed. Numerical optimization algo-
rithms, however, demand the values of the optimization criterion and constraints, conditionally,
hundreds of times before an optimal solution is found. Since each evaluation of the contraints
or the optimization criterion may be associated with a complete or incomplete re- analysis pro-
cess, the dilemma encountered is obvious. If we couple both the finite element and the optimi-
zation model, conditionally, an extraordinary time and memory-consuming problem can arise
due to the multiple re-analysis problem. .

According to the comments outlined above, the conclusion can be drawn that two key
issues are substantial for more advanced optimization models

(a) general applicable optimization methods,
(b) suitable re-analysis formulations.

4. Fundamentals of the formulation of optimization problemsl

If we want to establish structural optimization models which are distinguished by general
applicability, we have to formulate the optimization problem differently from conventional for-
mulations.

Usually, the nonlinear optimization problem is defined - without restricting generahty as
a minimum problem using the following formulation :

S enxa, o 0,x,) — Minimum 4.1
subject to the constraints '
gj(xl,xz, - ,x,l) =0
1o “2)
where the real-valued functions f and g are the objectxve function and the constraints, respec- ]
tively. Both types of functions depend on the optimization or design variables x;,x,, . . . L X

These variables are formally concentrated in the design vector X representlng pomts in the n -
dimensional Euclidian space £", where

- ‘ }
X = { X1,X2 « o vy X, ] ' (4.3)
If we also consider problerns which 51mu1taneously contain mequahty constramts )
g;(x) = 0 and equality constraints A, (x) = 0, k = 1,2,....], we have
f(x) — Minimum V ' (4.45

subject to the augmented set of constraints

g(x) 20 and A (x) =0 . -
./‘ = 1’25“'1”1 o (45)
k =1,2,...,/ :

If we use a more compact minimization formulation and write the functlons g (x) and hy (x) in
matrix form we obtain
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min g(x) =20
x€s” [f(X) | h(x) =0 } (4.6)

The above relationship indicates that the minimum of the real-valued function f (x) is sought
within a feasible domain S”, which is a subset or subspace of the Euclidian space £" and
defined by means of the constraints g(x). Additionally, the vector x in the feasible domain
must satisfy the equations h(x).

Within conventional nonlinear optimization, which is mainly based on mathematical-
oriented techniques, it is demanded that the vector x, the function f(x) and the constraints
g (x) must fulfill specified requirements in order to be able to apply to special types of numeri-
cal optimization routines. To meet such requirements assumptions are established. Some of
these assumptions frequently made are for example:

(a) the function f (x) has to be linear or convex, and/or differentiable;

(b) the constraints g(x) and h(x) also have to be linear or convex, and differentiable for each
xeS",

(c) the optimization problem must have, by definition, one and only one minimum within the
feasible domain S”;

(d) the feasible domain S” must be a simple connected domain with sufficiently regular boun-
dary.

In particular, the assumption of differentiability is made because a large number of numerical
solution techniques need first, and conditionally second derivatives or approximations of the
derivatives of the functions f(x), g(x) and h(x). But, general engineering optimization often
involves problems with nondifferentiable quantities, and also convexity or linearity is confined
to special cases. Thus, in most cases practical problems lead to noncategorizable relationships
for the objective function f (x) and some of the constraints g(x). As stated above, the simple
optimization of statically determined trusses with variable geometry already yields a tremen-
dously intricated problem. Therefore, many of the conventional mathematical assumptions usu-
ally made are not true of real world problems.

Consequently, the assumptions of differentiability, convexity and unimodality ( existence
of only one optimum ) should be dropped because these assumptions prevent the development
of advanced structural optimization models. For that reason, a more general definition of the
problem (4.6) will be employed

min alg—g(x) =20
-0 4.7

x€s” l alg=/ ) | p(x)

where alg—f (x) and alg—g (x) indicate that algorithmical formulations of f(x) and g(x) are
allowed. The problem (4.7) is called an algorthmically nonlinear problem. The term "alg" has
the meaning of an operator and demonstrates that the functions f (x) and g(x) must not neces-
sarily belong to the C! or C? class. ( This means that they must not necessarily be differentiable
). The symbol "—" denotes that the operator "alg" represented by an appropriate algorithm acts
on the term "f (x)" following the symbel "—". »

There are also some further numerical aspects which imply that methods based on deriva-
tives ought not to be applied. As shown by CARPENTER and SMITH (8] a large numerical
effort is necessary to obtain derivatives of the objective function or augmented objected func-
tion. First derivates are computationally expensive and second ones even more so. Further-
more, in most cases derivatives can not directly be calculated by hand since that would be too
cumbersome. Therefore, derivatives have-to be found from finite difference formulae. How-
ever, it can be observed that this procedure easily leads to ill conditioning and divergence due
to truncation and cancellation errors ( see LIPSON and GWIN [9] ).
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A further crucial disadvantage is the fact that all well known numerical optimization
methods based on derivatives have to face difficulties if multiple local optima occur. The rea-
son for this is that all these methods make use of the a-priori-assumption that one and only one
optimum exists. However, this assumption is not true in a lot of practical cases.

5. Formulation of the structural optimization model

Now, let us extend the "pure" optimization model (4.7) to a structural model by incor-
porating the finite element model. This can be accomplished by replacing the formal equality
constraints h(x) by the governing finite element matrix equations. Of course, these equations
depend on the type of structure and its structural behaviour. In this contribution only discrete
systems with linear behaviour are taken into consideration. However, an analagous assignment
to more complicated structures is possible using the same logic.

In the case of discrete systems with linear structural behaviour we have

alg—g(x) = 0
alg=f(x) | Kx) ux) =P(x) (5.1)
K(x) vix) = A(x) M) v(x)

min
xeSs”

As it can be seen, in the relationship (4.7) the equation system h(x)=0 is replaced by two dis-
tinct equation systems. The first one represents the governing linear finite element equations
of the form ’ :

K(x) u(x) = P(x) o (5.2)
where
K(x) = global stiffness matrix of the structural system depending on the optimization vector
x -
u(x) = structural response expressed in terms of the generalized displacements, also -

depending on the vector x

P(x) = generalized load vector depending on the vector x if the load can change with
respect to variations of the vector x.

The second one represents an eigenvalue problem which may be involved'if critical values (
e.g. critical loads ) have to be calculated within the optimization process. The corresponding
eigenvalue problem can be described in its generalized form such as

Kx) v(x) =2 (x) M(x) v(x) (5.3
where ‘ '
A(x) = eigenvalues depending on the bptm‘uzaﬂon vector x
v(x) = eigenvectors representing the appropriate structural response and. dependmg on the
vector x
M(x) = real valued matrix depending also on the vector x.

For example, in vibration analysis the matrices K and M are stiffness and mass matrices

whereas the eigenvalues represent the square of frequencies; if critical buckling loads are to be

calculated, the matrices K and M can be thought of as first order terms of the (-mechanically )

nonlinear stiffness matrix whereas A are the critical values of the buckling load. ‘Mathemati-

cally, solving the eigenvalue problem is equivalent to calculating the roots of the polynomial
p(A) , which has order equal to that one of the matrices K and M.
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Obviously, the equation systems (5.2) and (5.3) represent a re-analysis problem because
the responses u and v depend on the vector of the optimization variables ( design vector ) x,
which must be continuously updated, according to the logic of the applied optimization algo-
rithm. On the other hand, a major number of the constraints alg—g(x), of course, depend on
the structural response u, v and A ( e.g. stress, displacement , stability or frequency constraints
). To be more thorough, therefore, the relationship (5.1) must be re-written, and then we
obtain the structural optimization model in its general form

min alg—g(x,u,v,A) 2 0
<ES" alg—f(x) | K(x) ulx) =P (5.4)
K v(x) = A(x) M) v(x)

The advantage of the applied formulation (5.4) is that the total optimization model is displayed
within a single relationship , and the interdependencies of the associated sub-models are indi-
cated at first glance.

It should be emphasized that the scalar A, the vectors u and v as well as the matrices K
and M are implicit functions of the design vector x which accounts for a design change (
change in geometry or the structural data ). In order to determine whether a current solution x
is feasible or not all structural equations must be previously solved, completely or approxima-
tively.

The re-analysis problem represented by Egs. (5.2) and (5.3) forms the already mentioned
interface between both the numerical optimization model { see relationship (4.6) , (4.7) } and
the finite element model in its standard form

Ku="P (5.5)
and
Kv=\AMy (5.6)

where all the elements of the corresponding matrices are constant real values and not functions
depending on x vectors.

In conventional nonlinear programming it is assumed that the constraints depend
explictly on the optimization variables, and that this dependency is known. Unfortunately, this
is not the case with structural optimization problems because of the implicit nature of the finite
element equations representing the re-analysis process. As a consequence, also the structural
constraints ( e.g. constraints for stresses, displacements, forces, etc. ) are implicit relationships.
The implicit form of these constraints is rather a vexing problem and forms a severe obstacle.
The time-consuming calculation of implicit constraints can only be reduced if the number or
the computational effort of the re-analysis processes is reduced. Reduction schemes approxi-
mating the corresponding finite element equatlons (5.2) and/or (5.3) , respectively, are dis-
cussed in chapter 8.

First, however, we will be discussing criteria to select an appropriate-optimization strategy
capable of solving problems of the general form (5.4). Then in chapter 7, based on these cri-
teria, the evolution strategies will be mtroduced which are a powerful optlmxzatlon method for
structural optimization.

6. Selection criteria for optimization techniques

The computational efficiency of an optimization method, to some extent, depends on the
personal point of view. Consequently, there are always several competitive methods, and it is
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questionable if there will ever be solely one strategy capable of solving all potential problems
with the same maximum degree of efficiency. So far it has been advisable to employ a special
category of solution techniques if a given problem falls into such a category, and must be
solved most efficiently. However, general structural design problems differ considerably from
conventional optimization problems because we cannot categorize the majority of them. As re-
peatedly emphasized, in this field general applicability is one of the most important criteria,
among others, for two main reasons which are once more summarized

(1) real world structures lead to optimization problems for which conventional idealizations ,
such as convexity, differentiability, unimodality, are not valid in most cases.

(2) modifications of the finite element model, and vice versa, measures to adapt the optimiza-
tion model to the finite element formulation are only worthwhile if the optimization
model covers a wide range of problems.

If we consider the feature "géneral applicability" as crucial we can omit from our selection
all methods using derivatives, and focus on derivative-free methods. To decide which of these
methods is the best, further criteria have to be considered. The dilemma, however, is that it is
difficult to compare all potential methods because a regrettable lack of uniformity in the presen-
tation of numerical optimization results exists. To give some examples, in most cases the
numerical accuracy required is not published; in some cases the execution time is omitted or
the used computer is not indicated.

An outstanding evaluation of competitive derivative-free methods was recently- pubhshed
by SCHWEFEL [10]. To the author’s knowledge this is the only publication which forms a rea-
sonable basis of comparison because all the usual imponderabilities are excluded. .All compared
algorithms (14 popular methods) were programmed using the same logic ,and the following
numerically significant criteria were evaluated:

-computational effort

-storage demand

-convergence rate

-global convergence with respect to multiple opti@a
-numerical reliability

In this context, it should be outlined why the quantity numerical effort is not as crucial as
usually assumed. If the simpliest case of nonlinearity, a simple quadratic problem without con-
straints, is considered it can be shown that the order of the numerical effort of all popular.
optimization techniques cannot be less than § italic O ( n sup 3 ) $ where $ n $ denotes the -
number of the optimization variables. The following table ( Fig. 6-1 ) illustrates the individual
coherences in more detail, comparing the three main categories of optimization stratemes (
Newton methods, gradient methods and derivative-free methods ).



Opt. no. of operations per iteration step
method iterations calc. of calc. of calc. of element.
obj. funct. | gradients | Hesse matrix operat.
Newton n%* 0 n° n° n?
nl
Gradient n'! n° n° 0 or n?
resp.
Deriv. Free n? n® 0 0 n!
Welghtlng no I’ll ’12 J.
factors '
* ( nO = ] )

Fig. 6-1: Computational effort

In table Fig. 6-1, first Newton methods are considered. As it can be seen the optimum solution
is found within one iteration step (#n). On the other hand, the evaluation of the gradient vec-

2
tor'jS and the Hesse matrix —g—é is necessary. That means that 2 n (n+1) second partial
X

ox

derivatives are needed. The most expensive numerical operation, however , is the inversion of
the Hesse matrix which demands a computational effort of the order O (n?). Secondly, gra-
dient methods need » linear one-dimensional searches. For each search the calculation of the
gradient method is to be performed, additionally, the objective function is to be calculated per
each iteration step. The number of elementary arithmetic operations is of the order O (n) or
O (n?), depending on the applied alternative, because of the multiplication of the correspond-
ing matrices and vectors. Thirdly, derivative free methods are considered. These methods need
a greater number of iteration steps because they do not utilize information based on derivatives
to determine search directions. However, the number of elementary operations per iteration
step is only of the order of O (n), and no gradients have to be calculated.

To compare the individual categories of the methods mentioned above, we need a meas-
ure of comparison. Following a proposal made by FLETCHER [11] we equate the calculation
of a Hesse matrix to n calculations of a gradient, and to n? calculations of the objective func-
tion. Thus

2
F:—gﬁ:—g;j-;v\—no:nl:nz (6.1)

Therefore, the total effort for solving a given optimization problem is at least of the order
O (n*™F4K) where the term FAK represents the numerical effort to evaluate the current objec-
tive function. ( Newton : n’*+n%=n?, Gradient : n'+n'=n? Derivative Free: n%+n?=n?). In
the assumed simple quadratically nonlinear case, we can estimate the factor FAK to be equal to
"1"; ( e.g., if a more general quadratic function of the form x” A x with a fully populated
matrix A occurs the term FAK would be exactly equal to "2" ). Hence, we obtain for the
minimum computational effort . )



N
T ~ n2+I’AK> n2+1 - ,13 (62)

where the term T denotes the execution time of the computer program; the symbol "~" labels
that the time T is proportional to the order of the subsequent arithmetical expression. In other
words, the computational effort of all known optimization methods increases at least as the
cube of the number # of the optimization variables.

If the computational effort for all known methods, however, is approximately of the same
order this feature is not sufficient , and the selection of the best method must be based on
other reasons. A more realistic quantity is the product of numerical effort and main- storage-
demand ( main-storage-demand due to the length of the optimization modul and the used
storage locations ). This quantity ( measured in Kilo-Bytes times sec = KBsec ) is of particular
significance if large scale structures are to be optimized. In such cases, often the finite element
analysis already reaches the physical limits of the computer with the consequence that special
analysis techniques ( out-of-core equation solver, databased management routines, partitioning, -
substructuring, etc. ) must be used. If the applied optimization method also demands a very
large number of storage locations, these limits are reached even earlier , and some of the spe-
cial methods mentioned above are needed still earlier. That , however, would degrade the
efficiency of the total structural optimization model because of the low speed of out-of-core
operations performed.

Reliability of an optimization method is also a very important feature. This quantity
depends on robustness in operation , numerical stability and error propagation associated with
the solution technique. The more a method is based on elementary numerical operations, the
more robust and reliable it is. Reliability is especially important if a large umber of optimiza-
tion variables is involved, and the topology of the feasible optimization space is complicated.

The most significant criterion, however, is the ease with which a technique can be
modified and adjusted to changing needs, such as changes in the nature of problems (multi-
criterion optimization) and computers (multi-processor systems). The most popular optimiza-
tion methods presently applied are sequentially organized methods. However, recently, coni-
puters with parallel processors, sharing the same main memory, have been develbped These”
computers can perform several distinct tasks or calculation steps parallelly and simulitaneously.
Therefore, they can run programs based on parallelly organized solution techniques that will
have further impacts on future optimization and finite element calculations. Parallel codes can -
tremendously reduce the total run-time and will lead to more advanced numerical methods.
Therefore, it should be checked if a selected method provides vectorizable program-codes that
will fit the parallel concept of modern computers. -

The ability to adjust to changing needs has to do with artificial intelligence. Using the
definitions of artificial intelligence, also allows .us to evaluate the quality of an optimization
method, which - as already stated - acts as an intelligent processor. The degree of intelligence
of such a processor can be judged with respect to its ability to adjust to new problems and tech-
nology , and to extract and store information which can be referred to on future ‘occasions to
improve its ability to adjust. Six principal built-in-mechanismi can be idenfified to make a ver-
satile and highly intelligent processor. These mechanismi described in table Flf, 6 2 should be
also used for selecting a suitable OptlledthH method. -
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Built-in-

.. Definition
mechanismi

Data capture ability | ability to extract information from a problem

Data storage ability | ability to store information which can be referred to on future occa-
sions

Processing speed speed with which the input information can be processed

Software flexibility ability to modify the software due to changing needs

Software efficiency logic in which software is structured and organized

Software range ability to cover a wide range of problems

Fig. 6-2 : Definitions of artificial intelligence

With regard to the above considerations the selection of an appropriate optimization tech-
nique was carried out. The .result obtained was that the family of evolution strategies,
described in the next chapter, represents the best compromise between general applicability,
global convergence, reliability and convergence rate for complicated problems. This result
could be verified by the present author and several others [31, [4], [5], [6], [12], [13], [14],
[15] for a variety of different engineering optimization problems.

From the above discussion it should be clear that structural optimization is an
application-oriented subject. Therefore, the selected optimization strategy should also aim at an
interactive dialog between the optimization algorithm and the engineer. Since a good engineer
is an intuitive optimizer, as we can immediately see from real world problems solved in the last
decades, his knowledge and experience must be integrated into an optimization process. How-
ever, to avoid confusion it should be.emphasized that there is no alternative than numerical op-
timization if the optimization model encompasses more than, say, three or four optimization
variables, and if the experience of the engineer with a particular problem is relatively small.
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7. Description of the applied optimization technique (evolution strategies)

7.1. General comments

The family of evolution strategies allows the solution of general restrained optimization
problems with highly nonlinear objective criteria and constraints. Both the objective criterion
and the constraints may even have an arbitrarily algorithmical nature, and both may depend on
a large number of optimization variables. Therefore, the family of evolution strategies can be
regarded as a general purpose solution method within the field of engineering optimization.
The individual alternative algorithms of this family of methods are all based on the same logical
concept. According to the complicacy of the present optimization problem, the single strategies
can be applied individually and/or in combination with each other.

Each of the individual strategies represent a direct solution technique through which
potential optima can be iteratively found by means of a sophisticated random process. The con-
straints permitted must be formulated as inequality constraints where, without restricting gen- -
erality, feasibility is assumed if the right hand side of the constraints is greater than or equal to
0. However, if equality constraints have to be regarded because they can not eliminated by vir-
tue of separate calculations, such equality constraints can be transferred into inequality con-
straints by using so called slip - variables or Langrangian or penalty formulations.

In the case of structural optimization, we assume that the only equation constraints incor-
porated are represented by finite element matrix equations , and that these equations can be
solved separately from the optimization process. This assumption is advantageous because
matured finite element codes are already available which can be efficiently applied to the solu-
tion of structural equation systems. Also, we can take advantage of the ex1st1ng input and out-
put data - bases of the finite element program . -

7.2. Convergence behaviour

Convergence of an iterative process ensures sufficiently accurate and rapid results and,
therefore, is a very substantial feature. As we know, in the field of structural optimization
exceptionally complicated problems may occur. The feasible domain may be a highly dimen-
sional space with an intricate topology and multiple local optima. Hence, nonlinéar optimiza- -
tion problems are different from other nonlinear problems, for example, nonlinear problems in
the structural analysis field where the nonlinear nature of the problem can be more accurately
anticipated. Particularly, the quantity "convergence rate", which represents the speed of itera-
tion and is usually considered as the most essential quantity, only characterizes one aspect
among further ones if we have to decide on the quality of optimization strategies.

The philosphy of the evolution strategies is to provide numerical methods which are as _
generally applicable and flexible as possible , and which have reasonable convergence
behaviour. However, the features "reliability”, "robustness in operation" and "global conver-
gence" are higher ranked than "convergence rate". With regard to convergence rate, the evolu-
tion strategies may possibly yield poor convergence rates in special problems,particularly, if
linear or quadratic problems have to be solved. It must also be outlined , however, that in the
engineering field linear or quadratic optimization problems are the exception. Insofar, it is-
questionable whether these types of problems are representative at all. - .

The evolution strategies show a linear or superlinear convergence behaviuor depending on
the nature of the given problem. That means that the sequence of iteratively calculated desxgn'
vectors x'% converges linearly or superlmearly towards the corresponding optimum-solution x
where the superscript £ denotes a given k-th iteration step. We can mathemdtxcally express the
convergence process by using the followmg relationship -

lim || x<k>—~x*|| —0

ko0

(7.1)
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where the term || x"—x || represents an error norm ( Euclidian norm ). If the errors of sub-
sequent iteration cycles are proportionally reduced such that

et )_*
Ix™=x 1 _ . | (7.2)

Ix®@— N

where ¢j;, stands for a constant proportional factor, the convergence is said to be linear. This
means that the number of accurate digits is constantly improved within the iteration steps. A
quadratic convergence would be achieved if the number of accurate digits were doubled per
iteration step. Hence, superlinear convergence is represented by a reduction of the error which
lies between the linear and the quadratic convergence.

Although, quadratic convergence seems to be very attractive this type of convergence can
be exclusively obtained by means of first and second partial derivatives of the objective func-
tion and the constraints ( Newton methods, conjugate gradient methods and special variable
metric methods ). Despite the fact that the evaluation of derivatives is complicated and time-
consuming, divergence difficulties are encountered if the optimization problem is not quadratic
or not quasi-quadratic.

Consequently, if we demand to permit all potential types of nonlinearity, we have to relin-
quish methods which are confined to special categories of problems. For this reason, only
methods with linear or superlinear convergence are of interest. Within the category of such
methods, the evolution strategies are preferred to other popular methods because they are dis-
tinguished by the following essential features which are already mentioned above:

-improved reliability in complicated cases

-appropriate robustness in operation in the multidimensional case
-sufficient probability to also find global optima

-reasonable convergence rates

-insignificant storage demands

-advanced flexibility with changing problems

7.3. Theoretical concept of the evolution strategies
The evolution strategies can be divided into two main categories:

-two-membered (1+1)-strategy
-multi-membered (u+\) or (u,A)-strategies

Herein, the expression "members" means that competitive design vectors x are simultaneously
stored and compared with respect to the given constraints and optimization criterion. The
essential computational steps of the these strategies are to be described in the next four
chapters. The individual steps are similar in all popular optimization techniques and can be
summuarized as follows:

generation of new competitive design vectors
selection of improved feasible vectors

adjustment of the optimization parameters

check upon the convergence and termination criteria.

t

The discussion of the theoretical concept has.the purpose of providing the necessary informa-
tion on the logic of the optimization process. ( see also: [4],[5],[6],[101,[15],[16]). Along with
the discussion, several further possible extensions of the theory will be outlined in order to
demonstrate that the method can still be enhanced.
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7.3.1. Generation process

7.3.1.1. (1-+1)-strategy

In the case of the two-membered strategy two distinct vectors are considered, the
currently best vector x'¢ and a new vector x generated from the vector x(’*) both by means of
a random process. Therefore, the self-explanatory notation (1+1) is used where each figure
stands for a vector which competes with the other . The superscript (g) denotes the
corresponding iteration cycle. The hat-symbol indicates that a check still has to be carried out
to show whether an improved and feasible vector x was obtained or not. The generation of a
new vector x is of crucial significance because the convergence behaviour is substantially
affected by the logic of the generation. In general, we can state that the more powerful the
variation mechanismi of the generation process are, the more efficient the convergence
behaviour is. In the (1+1)-strategy the generation of new design vectors is governed by the
simple vector equation

x=x®476 = xR @ (7.3)
where the vector z'¥ is a random vector in which each of the n components z; () s i=1,2,.

represents a Gauss-distributed step-length in the d1rect10n of the correspondmg varlable xl
These step-lengths are generated by the random process

(g)

29=R 5@ (7.4)
where R is a diagonal matrix called probability matrix,
Ry 0O 0
0 Ry O 0
R=|. 0 Ryuo 0 (7.5)
. . 0
0 0 O O O R,,,,

and the vector s'¢’ denotes the standard deviations of the step-length vec’torAz(é’) .. The standard
deviations represent the changes of the step-lenths and constitute important entities because )
they mainly influence the convergence rate of the iteration process.

To ensure a minimum of variation of the single variables x,, i=1,2,...,n , and to ensure
that the last digit of an optimization variable has at least been varied, the followmg bounds are
established: .

si¥2€as =1,2,3,,n , : (7.6a)
and » ,
5192 € 0| x,9) _ ) (7. 65)
where €., and €, connotes the absolute and relative computer accuracy (€ 45520 and
I+€,,21). : -

Each of the components R, i=1,2,...,n is different and a standardized normally distri- -
buted parameter for which the Gauss dlstrlbutlon function f(r) is valid. This function, written -
in terms of the general stochastic variable r, is deﬁned by the following expressmn

Sl = \[2—7; e ) 7 ’A A

The corresponding distribution function f(r) is a bell-shaped function and is shown in Fig. 7-1.
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Fig.7-1: Standard normal distribution

It is important to note that the applied distribution function f(r) generates great values of the
parameter r less frequently, whereas small values of r are more probable. (This fact will have
advantages if we want to approximate finite element equations during a potential re-analysis
process to save computational effort. Due to the frequently small changes, we can approximate
the corresponding finite element equations by Taylor-series expansions, without making major
numerical errors.)

The Gauss normal distribution has been choosen because the generation of new points is
considered as a mathematical simulation of the biological evolution process in which changes
are also governed by normal distributions. -Undoubtedly, the optimization mechanismi of the
evolution process are very powerful and ,therefore , worth being simulated analagously within a
mathematical optimization technique.

If we multiply the random parameter R, for which the function f(r) is valid, with the
scalar s,»(g), according to the rules of statistic, we obtain a Gauss distributed parameter z'® hav-
ing the mean value 0 and the standard deviation s;¢’. The corresponding distribution function

is given by
LLg) 2
IRV
1 st
e

£ Si(g)) — f(zi(‘?)) = (R, Si(g)) - —
‘ - - A/ 277' S g

(7.8)
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The next figure ( Fig. 7-2 ) provides a graphical presentation of the bell-shaped Gauss distribu-
tions created.

EQUAL MEANS
BUT DIFFERENT _
STANDARD DEVIATIONS

- 2'(9)

Fig.7-2: Gauss distribution

The product R 5% represents the step-length in the direction of the design variable x; It can
be seen that the individual steps z,-(g) are all random and stochastically independent from each
other because the matrix R is a diagonal matrix. Owing to this, the individual standard devia-

tion s,»(g) only affects the step-lengths z,»(g), having the same index i, but not the other ones. Of

course, we could also use a non-diagonal probability matrix which would correlate all or some

of the step-lengths. However, the probabilistic model then involved would be inherently much -
more complex. Up till now, no appropriate theoretical solution could be found. Nevertheless,

such a correlation would represent a further improvement of the optimization mechanism. -

To illustrate the generation of X vectors, for a two- dlmensmnal case, a graphlcal impres--
sion of the vector equation (7.3) is given in Fig. 7-3 . . S
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Fig.7-3: Random generation process

Due to the assumed stochastic independence of the individual step-lengths, we obtain a distri-
bution function for the step-length vector which can be written as follows:

1 =1 $;

e
i=n ] i - )
w@®) =] wz®) = ———— ¢ ' (7.9)
! Qm) 2 ITs'
i=1

By way of example, we can now calculate a first approximation for the mean value of the total
length of the vector z'®. For the sake of 31mp1101ty, let us assume that all standard deviations
are equal to each other such that

59 = 5@ =123,.,n (7.10)
This gives:

mean(]z(gﬂ) = s Vn = 5@ p* (10)

Accordingly, the most probable value for.the total tength of the vector z¢) increases with

respect to the square root of the dimension of the optimization problem. Vice versa, this result
allows a very rough but useful estimation of the initial standard deviation s;,,. If we replace the
term mean|z g)I by the expected distance Ax between the startmg vector and the (unknown)
optimum, we obtain

. ,=A§_

init _\/',;
This value can be used as a first approx1mat10n of the initial standard dev1at10ns In addition,
the variance can be calculated as well.  We obtain:

(7.12)

‘ 1 : 7
var |z =259t (7.12a)

Equation (7.9) also indicates that the geometrical location of points which have the same proba-
bility is represented by a n-dimensional hyper-ellipsoid. This can be seen by evaluating the
expression
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Z[_(g)

2z

which obviously constitutes the equation of a n-dimensional hyper-ellipsoid.

(g)

2
] = const. (7.13)
Si

Compared with other popular deterministic optimization techniques, the variation
mechanism of the (1+1)-strategy is distinguished by the following characteristics:

-all directions in the n-dimensional space are equally probable,
whereas the deterministic methods use fixed

directions;

-the search step-lengths are Gauss distributed values which are
characterized by small changes in the average, . ’
whereas deterministic methods are using search steps of arbxtrary
magnitude.

7.3.1.2. Multimembered (u-+X\) and (u,\)-strategies .
In the case of multimembered methods a vector pool or set of new design vectors X is
generated. The governing equation can be written analogously to that of the (1+1)-strategy:
Xop = XF+2lf) = x+R 58 (7.14)

where the subscript a=1,2,...,u designates the vector x# which serves as one of the current
basic vectors of the generation process. The subscript 8=1,2,...,v indicates the current number
of the new vector generated from the basic vector x(g Again, the superscript (g) is the itera-
tion cycle counter, and the hat-symbol has the same connotatlon as descr1bed above.

The vector equation for the vector pool can also be written by using only one subscript:

;(7 = x\&+2.¢ - ' (7.15)
where
y=12, v+l v+2,. 20,204+ 2042, - - - uw (7.16)
and . i . ’ . o
pmy=X\ : ) (7.1

In the following we will réfer to the notation which only rieeds one subscript.

Two sub- categorles of multimembered strategies can be classified: If we consider both the
basic points x, ¢) and the new points x,g or x,, resp. , as potential competitors for the next
iteration step (g+1) , a (u+\) - strategy can be develkoped. The (u+\)-notation désignates the
fact that u+\ vectors are grouped into the vector pool . To express this feature more-precisely, -
let us introduce a new matrix X such that ' - -

X=Ix-% ,..., x| x{® x¢ ..., <& (7.18)

where the matrix X represents the vector pool and is ,therefore, called a "pool matrix".- (Note

that the components of the matrix X are vectors ). However, we will limit the selection of -
points only to new points generated, even if basic points may représent better constellations.
This decision has to do with the fact that we are trying to simulate the biological evolution pro-
cess. The restriction of using only new points-is to simulate the lethality mechanism in the bio-.
logical evolution process. Hence,we will be considering only vector pools of the following type:

- -
~ ~ -~ A

X = ;{1 X2 X3 ,..., X, -":b (719)

As can be seen, the vector pool exactly contains A vectors which are generated from a vector
set of u vectors. To express this, the notation ( w,A )-strategy is used where the comma is to
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indicate that the w basic vectors are not members of the vector pool X. The decision to per-
petually reject basic points is based on numerical research. It can namely be proved that the
convergence rate is not affected by basic vectors being better than succeeding ones if the
number A is a value greater than 5 w .

The pool concept applied in the ( w,A )- strategy couples the advantages of two different
types of optimization strategies, sequential and simultaneous methods, by minimizing the disad-
vantages. Simultaneous methods ( enumeration, Monto-Carlo-methods, etc. ) improve the glo-
bal convergence, however, they are time and memory consuming. Sequential methods ( New-
ton, gradient and search methods ) attempt to maximize the convergence rates, however, they
are not reliable in multidimensional problems associated with multiple optima.

7.3.2. Selection process

7.3.2.1. (141)-strategy

In the (1-+1)-strategy only one new design vector ;iy exists. Also, only one basic vector
xofg) is used. Thus, y=1 and a=1, and we can relinquish the subscripts. The new design vector
is only accepted as successor of the vector xcﬁg) if it represents an improved value or at least an
identical value of the optimization criterion and, of course, if it is admissible. This principle of
rejection can be easily encoded.

In order to have a consistent formal notation for both types of strategies, a matrix formu-
lation is to be used. According to the (u+\) or (u,\)-notation, we obtain a pool matrix into
which only two vectors are grouped.

X = [x | x‘g)] (7.20)

(g+1)

The vector x of the next iteration cycle can be understood as the result of a matrix multi-

plication such that
x&t = x B b, (7.21)

where B is a Boolean matrix and by is a unit Vector With respect to the feasible region S” the
matrix B is defined as follows

~

10 - -
B = [0 1], if O/ xx¥es (7.22)
or

To1]l .
B— [1 OI if (> £ (7.23)

The vector by is a vector in which the first component is equal to 1, while the second is O.
Thus

1
by = [O} - (7.24)

If.the first Boolean matrix holds, the new vector X is accepted as the successor. If not the old
vector x'# is taken. Since the matrix multiplication only has a formal significance, the evalua-
tion is not necessary. - Rather, the rejection principle, being more rapid than a time consuming
matrix multiplication, can be encoded by a fundamental condition statement.
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7.3.2.2. (u,\ )-strategy

In the (u,A)-strategy, we have a pool matrix which contains A vectors. In order to obtain
a code which can be easily programmed ,and to avoid a code which is too memory consuming,
we decide on how many of the vectors of the pool are to be selected as basis vectors during the
next iteration cycle (g+1). We demand the selection of the u best vectors of a total of wr=A
potential vectors. This restriction allows us to make repetitve use of the vector generation-
equation described above. Such a proceeding results in a constant number of basic vectors
X, , @=1,2,....u. (constant population size). Of course, a variable number of basic vectors
would also be possible ( e.g. during a phase of weak convergence to improve the convergence
rate ) ,however, that would lead to a more complex approach. (Development in progress.)

The selection of the u best vectors can be also described by the following matrix equation
X=XB _ (7.25)

where B is a Boolean matrix of type ( A,u ). In this matrix all elements are 0 except those ele-
ments which have the value of 1, and whose row and column.numbers represent the position
number of one of the u best vectors x, in the pool matrix X. To elucidate the selection in
more detail, let us consider the following example -

u=2 v=3 A=pur=6 (7.26)

Thus, the pool matrix would be

~ ~ ~ ~ ~

X=|x X X3 X4 Xs x6] (7.27)

Providing that the vectors ;(3 and ;(4 represent the best.competitors within the. pool, the position
numbers are 3 and 4 , respectively. As a consequence, the Boolean matrix B must be written
as o T -

00
00

R 10 ,

B=|y | (7.28) -
00 ]
00 -

Hence, ) )
X=XxB=|[x W o g9

The individual basic vectors can be derived from the matrix X by post-multiplication with
Boolean vectors b, , @=1,2,...,,u. The subscript a indicates the row in WhICh the element has -
the value of 1. All other elements are 0 by definition. .

For our example mentioned above we would obtain

1 . o )
or, respectively ) _ ' -
0 -
b; = 1 ) o (7.30p)

Hence . .
X =X by = x3; x# TV =X by = x4 S (73D
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Consequently, we can describe the selection process in accordance with the formulation already
applied in the (14+1) - strategy. (See equation (7.21)).

x &V = X B b, (7.32)

Again, it should be emphasized that the applied Boolean matrices have only formal
significance and are not needed in the computer program creation because they can be replaced
by more efficient and elementary statements having the same effect.

In comparision with the (1+41)-strategy the (u,\)-strategy gives improved and enhanced
mechanismi which provide an improved reliability. The run-time, by contrast, must be
expected to increase due to the multiple vector set. However, it is essential to note that the
numerical effort does not proportionally increase with respect to the number of vectors per set,
as one could perhaps expect. The reason for that lies in the more powerful optimization
mechanismi incorporated which improve the convergence. In addition, it should be mentioned
that computer time will be tremendously reduced if one can make use of advanced computer
facilities, like modern parallel or pipeline processors. Due to the parallel logic of the ( u,A )-
stategy, the corrsponding algorithms are well suited for implementation with respect to such
types of computers. Therefore, the multimembered strategy constitutes a numerical method
which has a further significant potential, not yet numerically materialized.

7.3.3. Adjustment of the optimization process

7.3.3.1. (1+1)-strategy

In order to achieve a rapid convergence it is obvious that the step-lengths, or their
corresponding standard deviations, must have the appropriate size. The next figure ( Fig. 7-4 )
illustrates this demand for a two-dimensional situation with the design variables x| and x; and a
smooth function representing a gradually ascending ridge .

)XI : >X|

Fig.7-4: Effect of step-sizes

For the sake of simplicity, let us assume that all random step-lengths z'¢) may be generated on
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a cycle with the radius A. If £ is too great the effectiveness of the search is poor, because
although one success leads to a great advance , relatively few trials will be successful. ( see dot-
ted portion of the cycle ). On the other hand, if 4 is too small the effectiveness is also low,
because although a higher proportion of trials will be successful, the absolute movement will be
small. Obviously , there must be an optimal values for # that guarantuees an optimal
efficiency.

In order to find such an optimal step-length during the optimization, the ratio of number
of successes to total number of trials may be used as a measure Qf convergence. This ratio
represents the probability of effectiveness and can be called success probability.

number of successful trials i
, = - S (7.33)
total numbers of trials
At first glance, it seems impossible to specify a value for w, which may lead to convergence for
every arbitary optimization criterion. However, it can be proved that this ratio is almost
independent of the nature of the objective criterion. By regarding two special functions, both
of which represent diametrically opposite optimization functions within a wide range of poten-
tial functions,it could be shown that the optlmum value of w,, guaranteeing the best adjusted

step-lengths, varies only between 3%- and 5—4— Therefore, an approximate value 1/5 was

choosen. That means, if

We = — (7.34)

the step-lengths are optimal and the assumed standard deviations are correctly dimensioned. If
the ratio w, is less than 1/5 the step-vector z‘¢’ is to be reduced if w, is .greater than 1/5
the vector is to be increased. ~ -

The magnitude of the reduction or increment is based on a theoretical approach for the
special function that constitutes the inferior case. Theoretical calculations resulted in the fact

that all standard deviations must be reduced with the factor 112 if w, is less than 1/ 5,

must be increased with the factor 1.2 if w, is greater than 1/5 . It should be mentioned that
the 1/5 -rule used in the (1+1)-strategy makes no assertion about the relative proportions of
the single standard deviations. Thus all elements of the vector z(g) are reduced or incremented
at the same time. In the multimembered strategies improved in-built mechanismi provide the -
possibility to adjust the relations of the individual elements as well.

To measure the success probability the average value of w, through several tralls is to be
calculated. For numerical purposes, the evaluation of the 1/5 - rule is performed such that, -
after a number of 107 trails, the number of successes is checked. Then, it is checked how
many successes have been encountered during the last 10n . Obviously,an amount of success-

ful trials less than 2# corresponds to a value of w, which is less than —1‘710——% In this case, the ~

step-lengths must be reduced. If the amount is greater than 2#n the step-lengths must be
increased. : )

One particular difficulty is to be mentioned : The 1/5 -rule assumes that there is always a
combination of standard deviations by which, on an average , at least one improvement of the )
optimization criterion within 5 trials is to be expected. However, constellations are conceivable
at which this condition is not fulfilled at all times. Such a pathological case may occur on cer-
tain parts of the boundary where several constraints may be active, with the consequence that
the success probability is contmously overestimated. Therefore a premature halt not desired
could take place. .

This type of phenonema is demonstrated in the following example ( see Fig‘. 7-—5_ ).
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Fig.7-5: Pathological constellation

Using the 1/5 - rule,this example would result in a rapid reduction of the step-lenth because it
is impossible to obtain 1 success within 5 trials, in the average. The reason for this is that there
is only a very small domain of success (filled-in sector of the cycle ). The present case is
inherently much more sensitive than the general case represented by the 1/5 - rule. There-
fore, it is a good idea to modify the general 1/5 -rule in such a way that a greater value than 5
is used. (In the corresponding subroutine this can be accomplished by increasing the default
value of a special control parameter.)

Such types of numerical instability are problem dependent, and not a pecularity of the
numerical.. optimzation routine applied. Actually, in other popular methods numerical
difficulties are also encountered: (They are, however, neither mentioned nor are there possibil-
ities to handle such instabilities.) To overcome such instabilities, one could replace the current
optimization criterion by an augmented objective criterion, using a Lagrangian or penalty for-
mulation. ( The active constraints are temporarily implemented into the augmented optimzation
criterion and ,therefore, inactivated ). A further way is to employ multimembered evolution
strategies which are more powerful in pathological cases.

7.3.3.2. (u,\ )-strategy

The (1,1)-strategy provides an adjustment of step-lengths which is similar to that of the
popular deterministic optimization strategies. By contrast, the ( u,\ )-strategy provides an
adjustment-mechanism essentially different. Adjustments are performed analogously to the bio-
logical evolution process. :

To achieve maximal convergence rates, the standard deviations are additionally incor-
porated into the random variationr and selection process, just as well as the design or optimiza-
tion variables. That is to say that a design constellation is represented not only by its design
variables but also by its standard deviations. Of course, the decision of whether a new design
vector x will beaccepted as a basis of the next iteration cycle (g+1) solely depends on the
design variables, and not on the values of the standard deviations. However, the magnitude
and nature of the succeeding changes of the design variables is influenced by the random
nature of the standard deviations associated with these design variables. Basically, the design or
optimization variables constitute object parameters whereas variable standard deviations can be
understood as strategy parameters. Both types of parameters are subjected to the random con-
trol mechanism. Therefore, the 1/5-success-rule used in the (1,1)-strategy is no longer
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necessary because the (u,\)-logic contains a natural success-rule enbodied in it.

However, the 1/5 -rule is replaced by a new rule which requires that the ratio of the
number of the basic vectors u and the number of new vectors A generated from them must
have the right proportion, namely such that :

Asss (7.35)

m
While the —}\——rule is fullfilled, eventually better basic design vectors x,ig) ,a=1,2.3,... u, have

m
no effect on the convergence. Therefore, we prefer the (u,\)-strategy to the (u+7\)-strategy
because we can save memory storage. (To a certain extend, that decision already constitutes a
portion of the adjustment principle). ' :

Along with the random generation of new basic vectors x(f") the standard deviations are
also randomly generated. This random generation is governed by the following vector equation:

saftl =7 5% | (1.36)
where st designates the vector of the standard deviations of the u best design vectors x(g“)

within the next generation (g+1). The matrix Z is a diagonal matrix containing random diago-
nal elements. Thus -

Zy 0 0
0 Z»n O 0

Z=| . 0 Zy O 0 . (1.37)
0

0 0 000 Zy| o )

The single elements Z;, ii=1,2,3,...,n are logarithmically normally distributed parameters.
This type of distribution function is required because the random values. of Z; must have the

mean value 1, due to the multiplication process, and increments and reductions. Also, incre-

ments and reductions generated need to be equally probable, and additionally, great changes of
Z; values are to be less frequently than small ones. The distribution function satisfying these
three requirements is a logarithmic normal distribution which can be writien in terms of the
general variable { as follows: ‘

- =lA 1—1_1_5*}2 -
ﬂU=f@ﬂ=7%:%e” (7.38)
TwTa

where o is an unknown parameter which represents the changes of the standard deviations (
standard deviation of the standard deviation ). Although it would be possible to consider indi-

vidual & parameters for each of the subscripts i, i=1,2,3,....n , up till now predictions of con-
vergence can only be made for the particular case of one parameter & which is common for all

subscripts /.. In this elementary case, based on the theory of probability, an appropriate estima-
tion of & could be found. ( In general, the parameter & depends on the number A and the

current topology of the optimization space). Let s consider a representative example: it is a

good idea to set the unknown parameter o equal to 1 for a (10,100)-strategy, and to increment -
this value sublinearly. The generation of { or Z;-values, respectively, can-be readily encoded
by using (0,5) normally distributed parameters, say &, and by evaluating the exponenudl

expression o Thus .

Zmt=é . am

Using a vector pool provides another exceptionally powerful optimization mechanism
called scaling or recombination of the-individual optimization parameters. Recombination or
scaling means the generation of new design vectors through combination of the individual -
design variables x;, i=1,2,3,...,n which are associated with the basic vectors
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xa(g) ,a=1,23 ... w. The recombination mechanism for a particular variable, say ;c,-, can be
mathematically described by means of a scalar product of two vectors. The first vector ( row
vector ) contains all those elements of the basic vector x,,fg) having the same subscript /. If this
vector is denoted X,-Twe have:

X =1x{¥ 1 x5¢ .., xlf{*’,-) (7.40)
The second vector ( column vector ), denoted b,, is a Boolean vector with w-elements all of
which are "0", except for one which has the value "1". The position number  of the value "1"

is randomly determined, where all positions k=1,2,3,...,u are equally probable. Hence, a partic-
ular optimization variable x; recombined can be written as

% =Xb, (7.41a)

If the above scalar product is carried out for all subscripts i, i=1,2,3,...,n, a new recombined
vector X, is created.

X1
X2

Xo=1.(:a=123,.,u (7.41b)

Xy

Each recombined vector is then subjected to the regular random generation process already pre-
viously described. In the same fashion the standard deviations can be recombined. Accord-
ingly, we obtain

s,=S/b, (7.41¢)
and
51
151 -
Sa=1.1;a=1,23,...u (7.41d)
5

Finally, it should be emphasized that the recombination process is of substantial
significance with respect to global convergence and reliability. Solely by means of the recombi-
nation -process, appropriately adjusted step-lengths can be achieved, especially in problems with
an intricate topology. However, even though the (u,\)-strategy incorporates advanced mechan-
ismi,-nonlinear optimization problems with very intricate topologies must be carefully treated.
One always has to check the obtained results with regard to plausibility.

7.3.4. Convergence and termination criteria

The optimization is terminated if the CPU-time has elapsed, or if the the optimum is
found with respect to the required convergence tolerances.

7.3.4.1. (1+1)-strategy

Convergence is assumed if one of the two required tolerances is achieved
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f(x(g*Ag>)_f(X(g))<Eabs (7.42)

where € ., is the absolute tolerance and Ag indicates the intervall in which the convergence is
to be checked. The relative convergence is checked by means of the criterion

F&ED)— £ (x¥) e | £ (x D) - ae)

where €, denotes the relative convergence tolerance desired. The retarded check upon the
convergence accuracy results in a damping effect with the purpose of avoiding a premature halt
in cases where the step-lengths have to be rapidly changed. In the computer program creation
it is assumed that '

Ag=20n S (7.44)
to secure sufficient increments or reductions of the step-lenths within the current A g-intervall.

(The corresponding subroutine also provides the possibility to change the Ag-intervall after
which a check of the convergence is carried out.)

7.3.4.2. (u,\ )-strategy

The criteria of the (1+1)-strategy are slightly modified. Convergence is assumed if the
values of the optimization criteria associated with the vectors _xég) are close to one another with
regard to the absolute and the relative accuracy, € 4, and €, ,respectively. This demand can be
mathematically described by means of the difference between the best and the worst value of
the optimization criterion within the current set of basic vectors considered. Thus

Min [ FixSe) ]—Max[ F(xfe) ]=Mm f—Max f<e€ - (7.45)
where
a=1,2.3,...u : _ (7.46)

The relative convergence €, is checked by way of the corresponding relative criterion as fol-
lows : , . :

R
I

€ ref -
Ko

rFixlehy (7.47)

Min f—Max f<
- 1

For further details it is referred to the report {16]. In this report the computer implementation of the evalu- -
tion strategies, and selected numerical examples are dealt with.
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8. Re-analysis formulation of the finite element model

8.1. Necessity

During the optimization process, data of the structural response are perpetually needed for
repetitive evaluation of the structural constraints and, conditionally, for calculation of the objec-
tive criterion. To update these data with respect to optimization variables, actually, a complete
re-run of the finite element program is required. As we know, however , the cost for complete
re-runs can be considerable. In particular, if systems with a major number of mechanical
degrees of freedom are to be optimized, the multiple re-analysis process can be time consuming
in such a degree that the complete analysis must be approximated, otherwise, the structural
optimization can become prohibitive.

8.2. Numerical effort of the total structural optimization model

Despite the category of the applied optimization algorithm, the total numerical effort of a
given structural optimization problem of n optimization variables x;, i=1,2,3,...,n can be
estimated by the following relationship

Eror = n* (Eopr+Econ+ Erent Eerc) (8.1

which can be readily derived from the expression in equation (6.2). There, it was shown that
the computational effort of all optimization procedures currently available is at least governed
by numerical operations of order O(n**#4X). Herein, the portion O(nfK) represented the
average effort needed to evaluate the objective function. In structural optimization problems,
this portion must be replaced by the term (Egg/+ Econ+ Ereat Egig) where

Eop; = numerical effort to evaluate the present objective criterion, according to relationship
5.1

Econ = numerical effort to evaluate the set of m constraints, according to relation ship
(5.1), provided that the numerical effort for the finite element analysis is completely
represented by the term Ergy

Ereve = numerical effort to analyse the structural response and all quantities required for the
structural design ( e.g. stresses, forces, etc. ), according to relationships (5.1) and
(5.2), respectively

Eric = numerical effort to solve the involved eigenvalue problem, according to relationships
(5.1) and (5.3), respectively

For the present estimation of effort, -however, we will only focuse on the conventional
equilibrium field problem represented by the equation set (5.2), and the denotations "analysis”
and "re-analysis" are exclusively related to that category of problems. In other words, until
further notice, the repetitive solution of eigenproblems is not considered. Rather it is assumed
that eigenproblems may be solved through more elementary approaches. Such a simplification
often leads to reasonable results unless very complex structural systems ( spatial frames or
mixed types of elements ) are to bé-optimized. Therefore, the assumption is made that the
numerical effort Egg is represented along with the effort Eqcony needed to calculate constraints.
Based on that assumption some very important conclusions can be drawn from equation (8.1) :

(1) Due to the term n? every savings within the finite element analysis as well as the evalua-
tion of the constraints and objective criterion improves the effectivity of the overall prob-
lem ) :

(2) The optimization process is dominated by the finite element analysis if ,
Erem 2 EoprtEcon (8.2)
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(3) The evaluation of the constraints is more time-consuming than the evaluation of the
objective function if

Econ 2 Eopy, 4 8.3)

Even though the evaluation of structural constraints is directly coupled with the repetitive finite
element analysis, for the sake of an easier definition, we consider the effort for the finite ele-
ment analysis and the structural constraints as decoupled entities. The advantage of such a
decoupling is that we can approximate the three above quantities Epps , Ecoy and Erpp in
terms of the main characteristic parameters of the individual computational models associated
with the structural optimization process. As far as the numerical optimization is concerned,
these parameters are the total number n and m of the optimization variables and constraints,
respectively. As far as the finite element analysis is concerned these parameters are the total
number of degrees of freedom Ny, and the mean bandwidth of the global stiffness matrix
B neans supposing that the structure is subjected to only one loading.

With regard to the comments already made in paragraph 6, the first term Egpy in equation -
(8.1) can be expressed by the following formula:

FAK,

EOBJ = n (84)

where

FAK, = factor which represents the effort needed to calculate the value of the objective cri-
terion, in elementary cases we can set FAK; approximately equal to values not
greater than 1.

The mean effort needed to evaluate the individual constraints, can be expected to be not
greater than that required to calculate the objective criterion. Hence, the second term in equa-
tion (8.1), which is the effort for evaluating all m constraints, is represented by

ECON =_m n '; FAKZ\ FAK1 - ) (85)

where

FAK, = factor which represents the average effort to calculate one of the m constramts usu-
ally, FAKj; varies in the range between 1/2 and'1.

The third term Ergyy, which represents the numerical effort of a complete ﬁmte element ;
analysis, depends on the effectivity of the

- input

- assemblage

- load vector generation .

- triangularization ( provxded that ehmmatlon methods are applied )
- back-substitution ( provided that elimination methods are applied )
- calculation of subsequent structural quantities

- output. -

For our purposes, however, it is sufficient to make use-of a very rough approxnmanon which is
exclusively based on the phase of the solution of stiffness equations. ( triangularization and -
back-substitution ). Through this simplification the total effort of a complete finite element
analysis Erpgy can approximately be predicted. Providing that highly efficient equation solvers
are applied (like those devoloped by WILSON et al. [17],[18]) we can estimate the term Erzy
as follows: . . )

N, dof Br%:eaﬁ

3 ) (8.6)

Erpp=3

where
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Naor total number of degrees of freedom

Bean mean bandwidth of the global stiffness matrix

3 approximation facztor by means of which the partial effort needed for the solution
phase (z-—]\lﬂf——B—m‘fgl ) must be multiplied to approximate the effort - Erg,s.

2
Since we are only considering linear elastic and discrete structures, additionally, the mean
bandwidth B,.., can be roughly approximated by

2

Bmean Ndof (87)

Consequently, if the finite element analysis is completely carried out, the optimization would be
dominated by the finite element phase when

i L
Ny > (100) (a0 p 1K) 3 (8.8)

To give a numerical example let us assume that
n=100; m=100; FAK;=~1; FAKf:;— (8.9)

Consequently, if the number of degrees of freedom already has a value of

Naos 2 (100)3 (n+mf)3~27 (8.10)

the finite element analysis would dominate the optimization process. Also, the evaluation of
the constraints would need more effort than that of the ojective criterion because, according to
equation (8.3),

m2n K7 =10 (8.11)

Obviously, the above numerical example demonstrates that

(a) the finite element analysis dominates the numerical effort during the optimization process
if structures with already minor degrees of freedom occur.

(b) great numbers of constraints have an essential effect on the numerical effort.

8.3. Approximation schemes at overall system level

Within the last, years several methods for avoiding complete re-analysis after a design
change have been proposed. In most cases these methods are based on power series expansions
[19], [20], [21]. More recently, methods based on rational approximation [22] have been
reported. :

It can be observed that methods based on power series expansions may suffer from major
convergence difficulties when a larger change of the optimization or design variables
x;, i=1,2,3,...,n is created through the applied optimization algorithm. On the contrary, these
methods are very effective for small design changes. This property occurs because the domain
of convergence of a given power series may be restricted to a circular region of finite radius.
As a consequence, a bound on the size of possible design changes is established.

For that reason rational approximants have been proposed, which are not subjected to
such particular limitations. Therefore, rational approximants may be more generally applicable
than approximations based on power series expansions. However, although they may be very
promising, some substantial difficulties and questions still remain at present:

(a) since the method is theoretically cabable of handling divergence sequences of solutions,
numerical overflows may often occur, '
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(b) experience with respect to a major number of optimization variables is missed.

By contrast, the latter difficulties are not encountered if approximants based on power
series expansions are used. In addition, the divergence behaviour observed in the case of major
changes of the optimization variables can be compensated if power series are associated with
evolution strategies. As stated in chapter 7.3 ( generation process of new design vectors ), the
evolution strategies are mainly distinguished by small changes of the optimization variables due
to Gauss-distributed search step-lengths. Therefore, the approximation error made by using
power series expansions is vastly minimized. That is to say that the evolution strategies obvi-
ously represent optimization strategies appropriate with respect to re-analysis based on power
series. Hence, in the following, power series expansions ( Taylor serxes ) will be applied as
approximants.

Using Taylor series permits to transform the orlglnally implicit re-analysis problem,
according to equations (5.1), (5.2), (5.3) and (5.4), into an explicit formulation. In particular,
the structural displacement response can be expressed as an explicit function in terms of the
optimization vector x. However, explicit expressions can be only acquired at the expense of
additional iterations to be performed within the iterative optimization process. The computa-
tion of explicit functions is a straightforward procedure, and will be illustrated in the followings.

8.3.1. Linear finite element equations

Let us assume that, in general, the current stage of the optimization process may be
represented by the optimization vector x‘¢). (Also, see equations (7.3) and (7.14) by which
current vectors are generated). For example this vector might be based on previous experi-
ence with similar structures, or might be a feasible solution created during the opumxzatlon pro-
cess. Provided that no eigenvalue problem is involved, we-have to solve the followmg system :
of linear equations:

K(x=x¢) @ u(x=x9) = P(x=x®) . (8.12)
or shorter ’
Keug=P, “ : (8.13)

where the subscript g identifies the situation at x=x®: Subsequently, if the design vector x(¢ 9
is modified with respect to a change Ax , a new stiffness matrix K(x(g)+Ax) ( stiffness
modification ) ought to be created. If we would apply the termmology of the evolution stra-
tegies, the change Ax would be identical to the terms z‘¢ and zaﬁ respectxvely ( see eqn. .
(7.3) and (7.14)). :

However, to avoid solving the corresponding_response u(x(g)+Ax), in

K(x¥9+Ax) eu(x®+Ax) = P(x®+Ax) o (8.14)
or shorter ) ' 7 ’ O
KR eu(x) =Ku=P=P(x) , o _(8.15)

we make use of the re-analysis technique, where the hat- -symbol- identifies the s1tuat10n at
x9+Ax. Since the elements of the matrix K , and the vectors u and P are regarded as con-
tinuously differentiable, we can expand all quantities as matrix or vector-valued power series
around the current design vector x® Thus, using Taylors’s. theorem and neglecting cubic
terms and higher ones, we can approximate the global stiffness matrix of the updated demgn as
follows: o
K = K +AK ~ Kg+%}iA x+TAx Taa é‘ SR Sy -’-=-Kg+aKg+%a2Kg +00 (8.16)
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where
AK = contribution to the global stiffness matrix due to the current design change Ax.

Correspondingly, we can expand the displacement respone u by Taylor series

U= u tAu= ug+§l‘-Ax+ Lax r 9

1
x > Tx o A%t ugHdu gt 3%, + 8.17)

where
Au = contribution to the overall displacement vector due to the design change Ax.
Furthermore, for the load vector we have
" oP 1,.r 8% 1.2
- = -— - e ceemm =5P s 8.18
P =P, +AP = P+ 9% Ax+ 5 Ax % 5% Ax + P +8P o+ 8P, + (8.18)

where
AP = contribution to the overall load vector due to the design change Ax.

All above contributions AX , Au and AP are represented by first and second order terms of the
Taylor series expansion. Of course, all partial derivatives have to be taken at the current design

point respresented by x‘®,

Note that the first partial derivative is defined as a row vec-

Ox
tor such that
9(..) 8(.) 8.0 a8(C.) 9(.)
9x [ 8x; ' dxy Ox3’ 7 adx, } (8.19)

where the abbreviation (...) substitutes for the corresponding matrices and vectors, respectively.
The vector Ax denotes a column vector. Thus its transposed vector can be written as

AxT=‘{Ax,, Axy, Axy -, Ax,,] (8.20)

2

0% 0% can be uﬁderstood as the Hesse matrix applied to the gen-

The second partial derivative

eral term (...):

92D 8% 92(..)
6x1 le ax1 axz ) 6x1 ax,,
82.)  9%.) 82(..)
dx20x1 8x208x2 ~ 9x20x,

31‘5”—. . L 8.21)

9%.)  8%.) 8%(.)
0x,0x1 O0x,9x2 ~ 0x,0x,

By way of these definitions the first and second variations 8(..) and 82(...) can be analytically
calculated in a similar fashion as we. establish catalogs for individual finite elements.

Depending on the category of the structural optimization problem several simplifications
are possible. In theory, the structural optimization could be applied to optimize all potential
types of structural parameters, like geometrical optimization variables, structural entities,
dimensions etc.. In practice, however, such a procedure is avoided due to the computational
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effort needed to solve large-order nonlinear optimization problems. Additionally, it is not
necessary to include all potential optimization variables because , due to his experience, the
structural engineer is easily capable of pre-assigning a lot of eventually possible variables, and
reducing the dimension »n of a given problem. Rather, the designer usually modifies the struc-
ture to be optimized, locally, whereby the performance of the structural optimization can be
substantially improved. Therefore, a major number of the terms of the power series can be
zeroed. Furthermore, a first order Taylor expansion to linearize the approximation may be per-
mitted in many cases. On the contrary, second order Taylor expansnon may be mandatory if
more complex and highly nonlinear problems occur.

In order to find a general formulation for the re-analysis problem, we only have to con-
sider the overall system equations, and the overall contributions AK , Au and AP defined at the
global level of the structural system. Instead of solving the snﬂ'ness problem (8.15) created
due to current design changes Ax

Ku=P |
we take advantage of the information derived from the previous designs. Therefore, we replace '

the matrix K by K,+AK and the vectors u as well as P by u,+Au and P AP, respectlvely
Hence, we obtain

(K +AK) (u+Au) = (P +AP) (8.22)
Multiplying and re-arranging yields
K, Au= AP-AK (u,+Au) (8.23)

In the above equation the matrix K, and the vector u, are known from the previous analysis
step, whereas the contributions AP and AK are approx1mated through ﬁrst and, conditionally,
second order terms of the Taylor series expansion such that

0K

raK . : -
A~ A+ Fax7 o K i« o (8.23a)
and
aP=3P A Layr 0P Ak - (8.23b)

-9x 2 9x dx

Again, note that the derivatives have to be evaluated at the current design pomt x(g) The con-
ceivably simpliest instarice would be that one in which -

(a) a linearization for the matrix AK is permitted . ,
(b) no load variation AP due to geometrical variation of the structural system occurs.
In this very special case, we obtain : ' -

9K . AP =0 . 823

AK 6
It should be emphasized that with the aid of power series expansion the original implicit formu~
lation of the structural response has been transferred towards an explicit one. Therefore, the
structural response can be written as-an exphcxt function of the optlmxzatxon variables, and , of
course, the structural contraints, which directly depend on the respanse vector; can be written
in an explicit fashion. As a result, we have finally attained a form for constraints which are
assumed to be standard or, at least, favored in nonlinear mathematical prograrnrmng problems
( see also comments after equation (5.6) ). -

In equation (8.23), the only unknown quantity is the vector Au which roprese‘nts the vari-
ation of the the response u, with respect to the change Ax . Since the unknown. vector Au
appears on the left-and right hand side of equation (8.23), we have to write this equation as an
iteration statement if we want to find a solution for Au: :

K, Au® = AP-AK (u+Au®") ' 7(8.24)
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where
(w) = iteration counter of the iteration for the re-analysis problem.

Through this formulation, we are capable of performing the finite element analysis at any
updated design without the need to resolve the complete updated stiffness equation. The term
Au'“~? is known from the previous iteration step. Initially, we make the guess that

Au®@ =0 (8.24a)

Therefore, the right handside of the equation (8.24) is always known and can be understood as
a pseudo-load vector. Hence,

K, Au® = AP@ (8.25)
with )
AP® = AP-AK(u,~Au“"V) (8.25a)

where
AP = pseudo-load vector due to the design change Ax

The iteration statement (8.25) represents linear stiffness equations due to the current
design change Ax. We have to re-iterate until succesive Au‘ values are identical with respect
to a given tolerance. All popular equation solvers can be applied. However, we have to ensure
that the solution is efficiently carried out because its.numerical affort makes up the majority of
the total effort needed within the individual iteration steps (g) of the optimization process.

An appropriate solution technique is the well known skyline or active column solution
method developed by WILSON [18]. The method is based on the Gauss elimination approach
but particularly takes advantage of the sparsity and the special nature of matrices involved in
structural analysis problems. The first part of: the solution is a factorization of the global
stiffness matrix, in our case of the matrix K, , such that

K, Au“ =L,D,LJAu“ = AP@ (8.26)

Smce the stiffness matrix K, is not affected by design changes, only the pseudo-load vector
AP has to be modified. It should be mentioned that the matrix AK needs never be wholly
formed since this matrix consist of a number of isolated submatrices which can be directly used
to calculate the pseudo-load vector AP@. This property of AK permits the automatic creation
of a valuable cut-off operation. ' Hence, only the backsubstitution, which is the second phase of
the overall solution, must be performed, and the factorization has not to be repeated. Further-
more, the backsubstitution can be started at that portion of the linear equation system on and
after which the first change of the pseudo-load vector occurs (so-called pertubation point). The
advantage of being able to start from the pertubation point. upwards represents a further
significant cut-off operation and reduces the re-solution time, substantially. If the changes of
the displacements are once calculated, the approximated displacements u of the updated sys-
tem, which are needed in structural constraints, can be evaluated by simple summation

0 =y +Au@ 8.27)

For the purpose of a more general discussion we additionally establish a general matrix
relationship for the structural respones u in which all matrices involved can be identified at one
glance. Substitution of the term Au = u—u, into equation (8.23) yields

K, u=X, u+AP-AK u ‘ (8.28)
or )
- u=u+K;! (AP-AK w) (8.282)
For the special case , AP=0 , we obtain
u=-K;'AKu (8.28b)



-33.

It should be mentioned that the above relationships are not appropriate for the iterative re-
analysis approach because the matrix inversion and the matrix multiplication incorporated are
less efficient in computer programs than the elimination process. On the other hand, they are
useful for expressing the interdependencies between the original or current design u, , the
response of the updated design u and active mechanical degrees of freedom associated with par-
ticular optimization variables, in an abstract manner. We will be taking advantage of this pro-
perty when we have to discuss the approximation concept applied at the element level of the
structural system. Active degrees of freedom are mechanical unknowns which are directly
affected by optimization variables. To give an example, if node J of 'a structural system is asso-
ciated with the unknown displacements u;, v;, w; and if the co-ordinates of node J are varied,the
node displacements are directly affected by this change and, therefore; active. Active degrees
of freedom can facilitate the insight into the structural optimization problem because the struc-
tural equations can be written in a more condensed form.

After a specified number of structural approximations of the finite element equations the
approximation is replaced by a complete re-analysis. This complete analysis is to compensate
eventually unfeasible approximation errors which might be encountered through continuos
linearizations and quadratures used within the power series expansion. Consequently, a com-
plete re-analysis is performed after Ag re-analysis approximations.( re-fresh cycle ). At the
stage X, .3, the complete stiffness equations tan be written in-the form

K(Xg+A§) ® u(xg+A§) = P(xg,..A:,) (829)
or shorter
Kooz Uoraz = Pyraz _ : 4 (8‘30?

For solution, two distinct solution methods are acceptable: Again, the skyline or active
column solver discussed previously is appropriate. However, since the global stiffness matrix
K ¢+az NOW also contains contributions due to design changes, the factorization has to be
repeated starting with the first row in which a modiﬁcation of the matrix K, occurs.

A further method most recently propagated by NOUR-OMID and SIMON [23] is the -
preconditioning method. For the time being, it is unsettled which of both methods would be
more advantageous for which types of optimization problems. The preconditioning algorithm
links the well known conjugate gradient method with a special partitioning of the current global -
stiffness matrix. According to the logic of conjugate gradient methods, the residual norm of
the equation system is minimized. The partitioning of the global stiffness matrix K g+AF 1S per-
formed in such a manner that : - : ‘

) ) 7 ) ,
A Kg+A§=. Kg+A§+ K;-*—A? V ) (8.31)
where : : - "
K :Mf dense part of the original matrix whose elements are concentrated within an
appropriate band around the diagonal : ;
Kia7 remainder of the original matrix whose elements contain the contributions outside

the band of the dense part; ( so-called fill-ins ). - :
Then, the conjugate gradient process is applied to the equation system -

K.gd+A§ ug+A§ = Pg+A§ . (832)

whereas the residual norm is calculated from the original system (8.30). Using the 'previ_oué
solution u, as an initial guess leads to a rapid convergence towards the solution Uoing .
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8.3.2. Eigenvalue problems

As previously outlined, in the case of structural optimization of linear discrete systems the
solution of eigenvalue problems can be often avoided. Since this type of structural system fre-
quently permits the application of conventional formulas of classic structural analysis a great
deal of numerical effort can be saved. Two simple examples are to be mentioned. If trusses are
subjected to static-loading the critical load needed for admissible bounds of the structural con-
straints can be easily derived from Euler‘s buckling load. Similarly, the critical load for frames
can be often approximately calculated by using appropriate substitute-systems. In both cases no
solution of an eigenvalue problem is necessary. On the other hand, of course, we have to
accept a certain loss of general applicability. That is to say that the structural constraints based
on such an elementary approach are considerably dependent on the structural system to be
optimized. Hence, if the topology of the structural system changes, a new formulation of the
constraints may be required. .

Although we have assumed , up till now, that generalized eigenvalue problems of the
form (5.3) and (5.4) can be replaced by more elementary relationships, for completeness, the
link between structural optimization and eigenvalue problems involved is to be discussed, in
general. Similarly to the re-analysis of conventional finite element equations, the crux of the
matter is that-all quantities involved in the eigenvalue ‘problem become nonlinear and explicit
functions of the optimization variables. Also; the eigenvalues must be repeatedly calculated
during the optimization process. Therefore we have to employ methods equivalent to those
applied to the re-analysis of the finite element equations (8.12) until (8.15).

The design vector x8 agam denotes the current design stage. Then, the generalized
eigenvalue problem associated with this vector can be written in the form

K(x=x®) o y(x=x¥) = A (x=x'9) o M(x=x'?)) @ v(x=x®) (8.33)
or, according to the notation already used in (8.13), we obtain the short form
K,vp=X,M;v, (8.34)
If the design vector x® is modified from x® to x@+Ax we have
K&x@+Ax) o v(x®+Ax) = Ax@+Ax) Mx®+Ax) ® v(x'¥+Ax) (8.35)
or shorter )
Kv=AM7v (8.36)

However, instead of solving the complete updated problem (8.36), we solve the less costly
problem

(K +AK)- (v +AV) = (A +AN) (M +AM) (v, +Av) (8.37)

This problem is less costly because the assemblage is exactly restricted to only those contribu-
tions which result from design modifications. In equation (8.37), we approximate the two con-
tributions AK and AM, respectively, by Taylor power series expansion, analogously to the re-
analysis of conventional finite element equations.. Thus, along with the approximation of the
matrix AK ( see equation (8.16) ), we have to expand the contribution AM.
aM T i) M 1 2

Laxr OM A M teM, + - (8.38)
ax AXt A S e 30 M,
Since the terms K, , M, and A, are also known from the previous solution at the stage x=x
, only the term AA is unknown ( The eigenvectors v, and Av are not of interest for the
evaluation of structural constraints). Then , we have to solve

CENTE (MgimM)] (v +AY) = AN (M +AM) (v,+AV) (8.39)

AM =AM = M,+22
(g)

Using the abbreviations

AK "= [ (K +AK)-A, (M +AMD) (8.40)
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Av =(v +Av) (8.4
and
AM'=(M,+AM) : (8.42)
we can establish a modified eigenvalue problem which can be written as follows
AK Av'= AN AM  Av’ : (8.43)

After having calculated the eigenvalues A\ the actual eigenvalues )\ can be found by simple
summation

A=Ag+A)\ - . (8.44)

Again, to eliminate undesirable approximation errors after a certain number of approximations
a complete solution of the eigenproblem ought to be carried out (re-fresh cycie).

The problems (8.34), (8.36) and (8.43) define symmetric generalized eigenvalue problems
because of the nature of the matrices derived from structural analysis problems. In the major-
ity of cases these matrices are also positive definite. If structural systems with a major number
of degrees of freedom are considered, in addition, sparse matrices occur.

With respect to structural optimization problems we are -only interested in the lowest or ,
if dynamical loadings might be encountered, in the first lowest eigenvalues. For this specral
category of problems three solution algorithms are acceptable. If we want to calculate the
lowest eigenvalue ( e.g. if the lowest critical buckling load is sought ) an appropriate method is

(a) the vector iteration sufficiently known [24].

If we have to calculate more eigenvalues than the lowest one
(b) the subspace iteration technique [24] B
(c) the Lanczos algorithm [25], [26]

are preferrable. In particular the last method has recently become very attractive because this
method takes advantage of the sparsity of the involved matrices. Additionally, its speed is -
reported to be more than one order of magnitude faster than other popular competitors. Both
properties are exceptionally significantin the context of structural optimization problems, for
which an efficient structural analysis is always very crucial. - :

8.4. Relationships at element and optimization-variable level

Global matrices defined at the overall system level can be separately  evaluated either at
the element level or at the level of individual optimization variables. The single contributions
can be calculated at each of both levels and, then, successively assembled into the correspond-
ing matrix defined at the global system level. That means that the assemblage pattern applied -
to structural optimization models is vastly analogous to that of finite element models, provrded
that linear elastic structures are considered.

Within the scope of this report and with regard to the comments made in the precedmg
paragraph, we will be exclusively dealing with equilibrium field problems. Subsequently, exgen-
value problems are suspended. )

Referring to equations (8.24) and (8.28) we have to estabhsh the two matrix-
contributions AP and AK. Neglecting dead loads we can assume that the term AP vanishes,
and we have only to consider those modifications represented by the matrix AK. It should.be
pointed out that, by no means, is such a simplification purely: academic. In practice, loaded
nodes and the loading to which these nodes are subjected are fixed in the majority -of instances,
and so the simplification made is reasonable. ( Within the general optimization of continuous
structures, of course, a more complex situation arrses due to the more comprehensrve disereti-
zation process ).
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With regard to vanishing AP - terms, the assemblage of the pseudo-load vector is pri-
marily dominated by the assemblage of the global matrix AK. Let us start with the element
related approach. We can form the matrix AK by addition of element related terms, element
by element, so that

e=N e=N .
AK = ZAKe = ZAKe(xe) (8.45)
gmm] gl
where
e current element number ; e=1,23,....N
N total number of elements ( or members, respectively )
AK, contribution of the element e associated with optimization variables concentrated in
the vector x,.
X, optimization vector specificly mtroduced for the element e ; X, CX | X, X€S".

Following the second line, we can assemble the AK - matrix from the base of the isolated
optimization variable by utilizing the subscript i instead of e. While the first approach permits
us to follow the organisation of the finite element model, the second is optimization-model-
oriented. However, both approaches must yield the same resulit.

Using the individual optimization variable x; of the general design vector x leads to the
following assemblage statement:

i=n i
AK = ZAK,' - EAK;(x,-) (8.46)
-1 =51
where
AK, contribution to the global (stiffness) matrix AK due to the optimization variable x;.

The second approach was at first proposed by WANG and PILKEY [27], and can be regarded as
an efficient parameterization method for re-analysis formulations. Equating the two equations
(8.45) and (8.46) yields

i=-n

ZAK = EAK = AK (8.47)

o | em]
which permits mapping of the two distirict groups of submatrices AK; and AK,. Such a map-
ping may be important for computer program realisations if one wishes to make use of a given
finite element data base. The mapping is represented by the following assignment statement:

jmp € ewn =D,
» EAK -z T AK, = AK (8.47)
jm] e=aq; < el =g,

where the subscript-pairs of the second sum ( a@;, b;) or ( a., b, ) , respectively, are the ini-
tial and limit values depending on the current subscripts of the first sum i or e, respectively.

We proceed by condensing the system of equations already described in equation (8.28)
which , for convenience, may be once more repeated. We have

a=u, +K;!' (AP-AK W) = u,— K;'AK 0 (8.48)
because of the assumption that AP = 0,
In order to be capable of making use of the parametrization approach we now define

u; structural response vector of the active degrees of freedom associated with optimiza-
tion variable ‘x;

and S

Nocr,i number of the active degrees of freedom associated with optimization variable x;.

where the vector u; contains N, ; components. - Also, we define
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Kﬁi condensed contribution matrix of the AK,; - matrix associated with the optimization
variable x; , having the order O(Ny, ;X Ny, ).

The condensed matrix AK i is identical to the original matrix AK, however, all rows and

columns containing zeros are deleted. This property can be abstractly described by the Boolean

matrix B;, where the positions of the values 0 and 1 create the desired condensation effect so

that

AK,=B/AK, B, ‘ (8.49)

Note that, in practice, the Boolean matrix only involves the selection of the proper rows and
columns as when assembling conventional global stiffness matnces That means that products
involving Boolean matrices need not be carried out.

Substituting AK, according to equation (8.40), and AK into equation (8.48) leads to

i=u, - K;! E:AK ] (8.50)
or '
o=, - K-lzl B/AK B, u] | (8.51)
- .
We can also write
0=, - K;! :[B.TK}‘{,.][B,&] (852
where the symbol 2 acts on both expressions enclosed in parentheses. Note that
w=Ba ®.53)
Therefore, we obtain » v
u=u, - K;! ETB ‘Tﬁ-u'] | (8.54) - |

Furthermore, the. particulars AK can be expanded as Taylor power series,- correspondmgly, to
equation (8.13). Due to the chain rule, we have -

AK,- A[B7R,B)=AB/K,B+B/AK, B+B/K,AB, - (859

However, since the derivatives of Boolean matrices must vanish o ' o '
AB/=AB,;=0 o . (8.56)

we know that ) “ v : :
AK,=BAK, B, ‘ @®.57)

Since the matrices AK; only -depend on individual optimization varlables, the Taylor power
series expansion can be simplified by the following expression
2

K,
‘Zx Ax? . - . (8.58)

dK;
AK,; = -—C;x—Ax,'+‘/z

where the der1vat1ves are to be taken at the current design stage x@), Therefore, the relation- -
ship -

| K, 7R, ) : :
AK,=Bf|—Ax]|BA+% B/ —Ax?| B, - (8.59)
dxi dxi - . i _ .
must be valid. Now, after re-arranging, we can write

~ fmnt dﬁ,‘ dzii
u=u, — K;’ EB,-T ?Ax#’/z —‘-i—xTAxiz] u; ‘ (8.60)

i1
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Equation (8.60) is a relationship between the modified system response u , the original
response u, , the active degrees of freedom associated with the indivudual optimization vari-
ables x;, and these variables themselves. Obviously, all main entities and quantities of the dis-
tinct levels of both the structural and the optimization model are incorporated in the same
equation. Therefore, the above equation is specified by a particular name, and is designated as
* interface equation of the structural optimization model ".

9. Conclusion

The present report forms the conceptional and abstract base for a comprehensive solution
of structural optimization problems associated with multiple finite element analysis. It may
contribute to a better understanding and wider use of coupled problems in the new field of
numerical optimization and repetitive finite element applications. The computer implementa-
tion of the elaborated concept is currently under investigation and appears very promising.

10. Outlook on future expansions and improvements

A final note should be made on potential improvements and expansions which are to be
accomplished in the nearest future. With regard to evolution strategies the following aims will
be pursued:

(a) development of an interactive computer aided and computer graphic design tool to pro-
vide better information for controlling the optimization process

(b) automatic elimination of active constraints by means of automaticly augmented optimiza-
tion- criteria- ( expressed in the terminolgy of the evolution theory : changing quality of
environment )

(c) enbedding of additional optimization mechanismi as already suggested

(d) creation of vectorizable codes in order to take advantage of the parallel organisation of the
(u,\ ) - strategy.

As far as the structural analysis line is concerned, the following issues will be investigated:

(e) - comparison of the efficiency of acceptable equation solvers with respect to the particular
requirements of structural optimization problems

(f) implementation of the numerical solution of general eigenproblems to automatize the
establishment of structural constraints.
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