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ABSTRACT OF THE DISSERTATION 

 

Case Diagnostics in Categorical Factor Analysis 

 

by 

 

Maxwell Armand Mansolf 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2019 

Professor Steven Reise, Chair 

 

Case diagnostics in categorical factor analysis include Mahalanobis distance-based statistics, 

which measure residual and leverage, and adaptations of existing influence diagnostics such as 

individual contribution to chi-square and generalized Cook’s distance which measure each case’s 

influence on statistical results. This dissertation uses two simulation studies to explore issues 

related to the use of case diagnostics in categorical factor analysis in order to assess the feasibility 

and utility of an iteratively reweighted least squares estimator for categorical factor analysis and 

structural equation modeling. In the first simulation, I used large data sets simulated according to 

a hypothesized model structure to examine the null distributions of Mahalanobis distance-based 

measures of residual and leverage in categorical factor analysis. Specifically, this study examined 

the validity of statistical cut-off values derived from continuous distributions in categorical factor 

analysis and assessed the differences between theoretical and empirical critical values in these 

models. In most conditions, the distributions of leverage and residual diagnostics in polytomous 
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data, and of leverage diagnostics in dichotomous data, were similar enough to those in continuous 

data that existing critical values can safely be used to identify high-leverage cases. In contrast, 

residual diagnostics in dichotomous data had severely truncated distributions, a result which 

complicates the choice of critical value for identifying high-residual cases in residual analysis or 

down-weighting cases in robust estimation. In the second simulation, I examined the relationships 

between leverage, residual, and influence in categorical and continuous factor analysis and 

compared those relationships across continuous, polytomous, and dichotomous test conditions. 

Results were largely consistent between continuous and polytomous data but differed markedly in 

dichotomous data with high variability across dichotomous test conditions. Together, these 

findings reveal that, while categorical case diagnostics are well-behaved in polytomous tests under 

ideal conditions, these diagnostics can behave unpredictably in dichotomous data, and thus caution 

should be used in interpreting their values directly in dichotomous tests, whether as a means for 

screening for outliers or for down-weighting cases in robust estimation.  
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Chapter 1 - Introduction 

Psychological measures are typically constructed under the assumption that item responses 

are manifestations of one or more unobserved or “latent” variables representing the construct(s) of 

interest which are related to the observed item responses through a common cause model (Bollen 

& Lennox, 1991). When item responses are ordered categorical, the data can be modeled using 

item response theory (IRT; van der Linden & Hambleton, 1997), also called item factor analysis 

(IFA; Bock, Gibbons, & Muraki, 1988), and factor analysis (FA; Mislevy, 1986) of polychoric 

correlation matrices (Muthén, 1984), which can be shown to be formally equivalent (Takane & De 

Leeuw, 1987). 

Typically, model fit is evaluated by using global fit indices (e.g., Hu & Bentler, 1999) to 

quantify the fit of the model to the entire dataset. However, especially within factor analysis, much 

less attention has been devoted to the other side of the data matrix, that is, how well the model 

accounts for an individual’s response pattern. Overall model fit does not guarantee that all 

individuals provide patterns of item response that are consistent with a given model1. 

Psychological theory, and common sense, suggest a multitude of reasons an individual may not 

respond as predicted by the hypothesized latent structure, including unmodeled  

multidimensionality (Waller and Reise, 1992), faking (Zickar and Drasgow, 1996; Ferrando & 

Anguiano-Carrasco, 2013), acquiescence (Curtis, 2004; Reise & Flannery, 1996), sabotage 

(Ferrando, 2012), and idiosyncratic use of response options (extreme/middling responding; 

Emons, 2009; Ferrando, 2010), to name just a few. All of these are examples of individuals 

responding in ways that are not due to the hypothesized latent variable(s). Factor analysis and item 

response theory models which explicitly incorporate “response styles” such as acquiescence and 

                                                           
1 In fact, model fit at the sample level in no way guarantees that the model applies to an individual or any subset of 
individuals (Borsboom, Mellenbergh, & van Heerden, 2003). 
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extreme/middling responding have recently been developed to account for these phenomena (Falk 

& Cai, 2016), although such models can only potentially identify  patterns of responding which 

are explicitly accounted for in the model specification. While not all individuals whose response 

process doesn’t match the hypothesized model structure produce model-inconsistent or “aberrant” 

response patterns, many do; such response patterns are said to exhibit poor “person-fit” and a 

variety of metrics are available for judging the credibility of a response pattern given a 

hypothesized model. It is well-known that if a response pattern has poor person-fit, then the 

precision of the associated latent trait estimate, and the estimate’s applicability to the individual, 

are questionable (Ferrando, 2015)2.  

Also well-known, but less understood in IRT and categorical FA, is that individuals with 

model-inconsistent response patterns can affect statistical inference by distorting model fit (Reise 

and Widaman, 1999) and parameter estimation (Pek and MacCallum, 2011). Levine and Drasgow 

(1983) observed that it is possible for a model to fit a dataset well, even in the presence of 

individuals whose response patterns cannot be well-explained by the model.  Moreover, Reise and 

Widaman (1999, Table 7) examined the distribution of individual contribution to chi-square 

(INDCHI) in observed and simulated data and found that a small subset of aberrant cases could 

have a relatively large impact on model fit. Although simulation studies have evaluated the 

robustness of polychoric correlations to distributional assumptions (Flora & Curran, 2004; Lee & 

Lam, 1988; Quiroga, 1992; Jin & Yang-Wallentin, 2017), a rigorous study of case diagnostics and 

influence in categorical SEM has not been conducted. 

Iteratively reweighted least squares (IRLS) estimators for SEM with continuous variables 

are well-known (e.g., Yuan and Bentler, 2000; Yuan and Zhong, 2008), but have not been extended 

                                                           
2 For this reason such indices have also been referred to as “test score appropriateness” indices. 
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to the categorical case. This study was designed to investigate potential issues with, and the 

potential utility of, IRLS for SEM in categorical data, specifically within the context of categorical 

factor analysis. Specifically, I am interested in whether categorical versions of Mahalanobis 

distance measures of leverage (df) and residual (dr) can be used to determine case weights in 

categorical IRLS and in the potential utility of categorical IRLS to appropriately down-weight 

influential cases. As the number of categories increases, categorical data approach the same quality 

of information as continuous data, but with fewer categories, categorical responses can differ 

substantially from continuous responses; thus, the conditions under which categorical data can be 

treated similarly to continuous data are critical in understanding the potential validity and utility 

of IRLS in categorical data. 

The two primary goals of this research are: 

1. To examine the distribution of Mahalanobis distance measures of leverage (df) and residual 

(dr) in categorical data in order to determine the conditions in which the cutoffs used in 

continuous data, based on the quantiles of theoretical distributions, will be appropriate for 

IRLS in categorical data.  

2. To characterize the relationship between leverage (df), residual (dr), and influence 

(generalized Cook’s distance, Δχ2) in categorical data under varying test conditions in order 

to determine the conditions in which leverage and residual function properly as proxies for 

influence in categorical IRLS, compared to well-known relationships in continuous data 

(Yuan and Zhong, 2008). Whether these relationships hold in categorical data, as modeled 

by the polychoric correlation matrix, will determine the potential efficacy of robust 

procedures which use leverage and residual measures to down-weight aberrant 

observations during estimation.  
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These distributional properties and relationships depend, of course, on the properties of the 

test; with many items and many well-placed thresholds, the differences are likely minimal, but 

performance is bound to be worse in less ideal conditions. Therefore, it is essential to investigate 

these issues under varying test conditions. In the following sections, I first review case diagnostics 

and IRLS in regression and their extensions to structural equation modeling. Then, I will review 

prior literature on the robustness of categorical factor analysis to violations of distributional 

assumptions, followed by the goals and research questions for this dissertation. I then discuss the 

case diagnostics used in this study, followed by two simulation studies examining these 

diagnostics. A General Discussion assessing the implications of the results of the simulation 

studies for the development of IRLS for categorical factor analysis and for practical use of 

categorical factor analysis concludes this dissertation. 

1.1. Case diagnostics and IRLS in regression 

In linear regression, it is well-known that individual observations that deviate substantially, 

and in the right ways, from the general trend of the data can distort or invalidate the results of an 

analysis (e.g., Rousseeuw & van Zomeren, 1990; Wilcox, 2001, pp. 218 –219) and diagnostic 

measures have been developed to identify such problematic cases (e.g., Belsley, Kuh, & Welsch, 

1980; Cohen, Cohen, West, & Aiken, 2003, Chapter 10; Cook & Weisberg, 1982; Rousseeuw & 

Leroy, 1987). In OLS regression, a case’s relationship to the general trend of the data, as 

represented by the regression line, can be quantified in terms of residual and leverage. Cases with 

large residuals lie far from the predicted values based on the regression line (i.e., extreme values 

of the outcome, conditional on the predictor set), while cases with high leverage have extreme 

values on the predictors. Additional indices have been developed to specifically measure case 

influence. In regression: DFBETA (Belsley, Kuh, & Welsch, 1980), quantifies the influence of 
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cases on individual regression coefficients; Cook’s distance (Cook, 1977, 1979) quantifies the 

influence of cases on the parameter estimates; DFFITS (Belsley, Kuh, & Welsch, 1980) quantifies 

the influence of cases on predicted values; likelihood distance (Cook and Weisberg, 1982) 

quantifies the influence of cases on the model (log)likelihood, and many other, often redundant, 

indices exist (see Belsley, Kuh, & Welsch, 1980; Fox, 1991). The relationships among these 

diagnostics have been well-known in regression for decades (e.g., Rousseeuw & van Zomeren, 

1990); specifically, so-called bad leverage points, which have both large residuals and extreme 

values of the predictors, can have catastrophic effects on a regression analysis, while good leverage 

points generally improve statistical power.  

The existence, and potentially disastrous consequences, of such influential cases have 

motivated the development of robust regression, which in this context refers to estimators that 

attempt to account for the presence of potentially problematic cases.  In linear and logistic 

regression, one widely used robust procedure is iteratively reweighted least squares (IRLS; Green, 

1984; Holland & Welsch, 1977; O’Leary, 1990). In IRLS regression, each case is assigned a case 

weight during estimation, wherein smaller case weights are assigned to cases that are poorly 

predicted by the hypothesized model (high residuals), such that cases with small case weights have 

a reduced impact on estimation. As a result, IRLS estimation yields (1) regression parameters that 

are less affected by the influence of outliers or unusual observations and (2) case weights that 

quantify the fit of the model to the individual case that can be used to identify unusual observations. 

One key advantage of these and similar robust estimators is that they arguably produce parameter 

estimates that are more replicable across studies – a chronic problem in psychological research in 

general (Bohannon, 2015; Yuan, Marshall, & Weston, 2002). 
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1.2. Case diagnostics and IRLS in structural equation modeling 

Considering that SEM is a multivariate extension of the regression model, it is no surprise 

that case diagnostics and influence within SEM have received an increasing amount of attention. 

It has long been known that outliers can distort assessments of model fit (Bentler, 1989, pp. 117-

124; Bollen & Arminger, 1991; Yuan & Zhong, 2008; Zhong & Yuan, 2011), while good leverage 

observations mainly impact the parameter estimates of a model, and bad leverage observations 

impact both fit and parameter estimates (Yuan & Zhong, 2008; Zhong & Yuan, 2011). Recently, 

SEM analogues of regression diagnostics have been studied more rigorously in parallel with the 

development of IRLS estimators for structural equation models (Yuan & Bentler, 1998, 2000; 

Yuan & Zhong, 2008). These case diagnostics generalize the concepts of residual and leverage to 

the structural equation modeling context and downweight cases with high values of these indices. 

The SEM case diagnostics used in IRLS in SEM take the form of Mahalanobis distance 

(M-distance) measures, also known as multivariate Z-scores. Two M-distances, dc and ds, are 

simply multivariate Z-scores using the saturated (dc) or model-implied (ds) mean and covariance 

matrix of all of the observed variables. Two additional M-distances are the factor-score-based M-

distance df, which uses Bartlett’s factor score estimates to calculate an M-distance for factor scores 

in latent variable models, and the residual-based M-distance dr, which uses Bartlett’s factor score 

estimates to calculate an M-distance for model residuals. Within the context of confirmatory factor 

analysis, in which the latent variables are predictors and the observed variables are outcomes, df 

quantifies multivariate leverage and dr quantifies multivariate residual (Yuan and Zhong, 2008; 

Zhong and Yuan, 2011; Yuan, Fung, & Reise, 2004). 
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1.3. Prior research on robustness of categorical factor analysis 

The aforementioned SEM case diagnostics and robust estimators assume that the observed 

data are continuous; however, the vast majority of self-report and clinical diagnostic measures in 

psychology use ordered categorical measurement. Both asymptotically distribution-free (ADF; 

Browne, 1984) and maximum likelihood (ML) estimation require the use of a covariance or 

correlation matrix, rendering both inappropriate for variables measured at an ordinal level. 

Although ADF estimation can theoretically accommodate distributional violations associated with 

ordinal item responses, large sample sizes are needed to achieve the desirable asymptotic 

properties of these estimators (Anderson & Gerbing, 1988). Categorical diagonally weighted least 

squares (DWLS; Muthén, du Toit, & Spisic, 1997) and categorical unweighted least squares (ULS; 

Browne, 1974) are widely considered to be ideal estimation approaches for SEM in ordinal item 

response data (Yang-Wallentin, Jöreskog, & Luo, 2010). Unlike ADF and ML, these approaches 

use a polychoric correlation matrix that properly accounts for the ordered categorical nature of the 

indicators by assuming that a latent continuous variable, called a response variable, is discretized 

according to thresholds to produce the observed ordinal responses. Based on this assumption, a 

model is estimated that accounts for the correlations among the unobserved response variables, 

rather than the observed ordinal variables. 

As with any statistical model, the accuracy of the results of an analysis of polychoric 

correlation depends on satisfying the assumption of normality for the underlying response 

variables. Several articles have investigated the robustness of the polychoric correlation to 

violations of this distributional assumption (Flora & Curran, 2004; Lee & Lam, 1988; Quiroga, 

1992; Jin & Yang-Wallentin, 2017). While Flora and Curran (2004), Lee and Lam (1988), and 

Quiroga (1992) found that the polychoric correlation estimates based on the normality assumption 
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were fairly robust against violations of this assumption, a more thorough investigation by Jin and 

Yang-Wallentin (2017) has cast doubt on these results. These authors studied the misspecification 

of the underlying distribution in a general sense, including models that assumed non-normal 

underlying distributions, and found that when the underlying distribution is skewed, assuming an 

underlying skew-normal distribution during polychoric estimation better recovers the true 

correlation between the latent response variables compared to the standard normal distribution, 

albeit with problems estimating the parameters of the underlying distribution. In general, Jin and 

Yang-Wallentin (2017) found that when the underlying distribution differed substantially from the 

distribution used to estimate the polychoric correlations, the resulting estimates could be severely 

biased; specifically, the skew-t(4) distribution (Azzalini & Capitanio, 2003) and the pareto 

distribution (Mardia, 1962) were the most problematic and introduced substantial bias in estimates 

of the polychoric correlations. While prior studies (Flora & Curran, 2004; Lee & Lam, 1988; 

Quiroga, 1992) concluded that polychoric correlations were generally robust to discrepancies 

between the underlying distribution and what was assumed during estimation, the Jin and Yang-

Wallentin (2017) study suggests that when the underlying distribution is very heavily kurtotic, as 

with the skew-t(4) distribution and the pareto distribution, the standard normality assumption for 

polychoric estimation can yield highly biased results. Considering that outliers also contribute to 

kurtosis, these results suggest that polychoric estimation may not be robust to outliers and potential 

influential cases. However, to my knowledge, no systematic study of the sensitivity of polychoric 

estimation, or categorical factor analysis or SEM, to aberrant cases has been performed. 

Furthermore, Flora and Curran (2004, Table 2) showed that the effects of misspecification of the 

underlying distribution varied depending on the number of categories and the magnitude of the 
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polychoric correlations; thus, I expect the potential for case influence to depend on characteristics 

of the items. 

1.4. This dissertation: Case diagnostics and influence in categorical factor analysis 

Over the last three years, I have been working on extending the case diagnostics in SEM 

from Yuan and Zhong (2008) and Yuan and Hayashi (2010), specificially df, the factor-score-based 

M-distance, and dr, the residual-based M-distance, to ordered categorical data (Mansolf & Reise, 

2018). As will be discussed in the Method Section, df* and dr* quantify leverage and residual, 

respectively, with respect to the unobserved latent response variables in the polychoric model 

based on the estimated thresholds and polychoric correlation matrix. This is done by treating the 

latent response variables as missing data and integrating the diagnostic functions over the expected 

conditional distribution of the latent response variables given an observed response pattern. While 

it would be straightforward to implement an IRLS algorithm for robust estimation in categorical 

factor analysis using these extensions of leverage and residual diagnostics, two questions remain 

as to the potential validity and utility of this algorithm. The goal of this dissertation is to address 

these two questions in order to motivate the development of categorical IRLS. 

First, it is not clear whether such an algorithm would achieve the desired goal of using 

leverage and residual to down-weight potentially influential cases. IRLS in continuous data, as 

implemented in the literature, uses Huber-type weights, which down-weight cases when values of 

df or dr exceed some a priori critical value based on their theoretical distributions. In categorical 

data, especially when the number of categories is low, these diagnostics can deviate substantially 

from their theoretical distributions in continuous data.  Should a priori critical values and 

weighting functions from continuous data be applied to categorical data, and does their utility 

depend on the characteristics of the test?  Practically speaking, this is a Type I error issue: in what 
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conditions do the a priori critical values give reasonable Type I error rates? In conditions in which 

they do not, alternative critical values or weighting schemes will need to be explored. 

Second, it is not obvious that leverage (df) and residual (dr) have the same relationships to 

influence (e.g., on model fit and parameter estimates) in continuous and categorical data. Yuan 

and Zhong (2008) found that, when no robust procedures are used, good leverage observations 

(high leverage, low residual) have a small effect on factor variances and covariances3, while 

outliers (low leverage, high residual) and especially bad leverage observations (high leverage, high 

residual) influence model fit as well as parameter estimates. The goal of IRLS estimation is to use 

leverage and residual to down-weight potentially influential cases, and the success of this goal 

depends on the existence of these relationships, as df and dr are used as proxies for potential 

influence in continuous IRLS. Do these relationships hold in categorical data, and how do they 

depend on the characteristics of the test? If, or when, they hold, the extension of IRLS to 

categorical data is justified, as df* and dr* would suitably serve their roles as proxies for potential 

influence. In addition, this would justify use of continuous critical values in categorical data in 

those conditions; if the df* and dr* in a given instrument never exceed these critical values, and 

case influence is similarly restricted, then the use of IRLS in such instruments would be not only 

ineffectual, but pointless in achieving the goal of IRLS. If there are conditions where these 

relationships are not comparable to those in continuous data, it is important to identify those 

conditions, as the statistical properties of categorical IRLS may differ in those conditions. 

Influence diagnostics, specifically case deletion diagnostics, already exist for SEM and can 

be adapted without modification to categorical SEM. Measures of residual and leverage in 

                                                           
3 In this work, all models were identified by standardizing the latent variable, and thus good leverage observations 
should, based on the findings of Yuan and Zhong (2008), influence factor loading estimates rather than factor 
variances and covariances. 
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categorical factor analysis have also been developed and will be introduced in detail in the next 

section. All of these diagnostics can be computed easily in R.  

In this dissertation, I will attempt to answer the two questions outlined above by examining 

the distributions of, and relationships between, leverage (df), residual (dr), and influence in 

continuous and categorical factor analysis under a variety of test conditions using simulation 

studies. The two objectives presented above will help to determine the conditions in which robust 

estimation for polytomous data is necessary and appropriate and how the characteristics of a test, 

specifically the number of items, number and placement of item thresholds, and factor loadings, 

affect these distributions and relationships. Ultimately, I aim to apply this program of research to 

the development of robust estimators for ordered categorical (dichotomous or polytomous) data, 

which will greatly expand the applicability of these robust procedures within psychology and the 

social sciences. This dissertation research will serve to motivate this larger program of research by 

identifying the conditions in which IRLS in categorical factor analysis would be fruitful. Just as 

research into regression diagnostics preceded the development of robust estimation in regression, 

this research precedes the development of robust estimation for categorical factor analysis. 

Additionally, the study of case diagnostics for categorical data will yield tangible results even 

without the associated robust estimation. Researchers should be informed of the potential for their 

analysis results to be distorted by aberrant observations and the statistical properties and limitations 

of the tools available for identifying such observations.  

The remainder of this dissertation will begin with a discussion of case diagnostics in 

categorical factor analysis. First, diagnostics for leverage and residual (df and dr) in continuous 

data will be reviewed, followed by the extension of these diagnostics to categorical data using the 

polychoric model and associated computational issues. Next, case influence diagnostics in SEM 
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applicable to categorical factor analysis will be reviewed. Next, two simulation studies will be 

presented. In the first simulation study, I determined empirical p-values and critical values for the 

categorical case diagnostics df* and dr* (Mansolf & Reise, 2018). In the second simulation study, 

I examined the relationships between these two diagnostics and two case influence diagnostics, 

Δχ2 and gCDλ, in categorical factor analysis and compared those relationships to those in 

continuous factor analysis. This dissertation concludes with a general discussion describing the 

implications of these results for future applied and methodological work in categorical factor 

analysis and item response theory.  
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Chapter 2 – Case Diagnostics 

2.1. Residual and Leverage: Four Mahalanobis Distance Measures in Continuous Data 

Yuan and Zhong (2008) describe four types of M-distances that can be defined for SEMs: 

𝑑௖, 𝑑௦, 𝑑௙, and 𝑑௥ (see also Yuan, Fung, & Reise, 2004). Although these M-distances tend to be 

correlated to varying degrees, each has a unique interpretation.  In general, an M-distance takes 

the form 

𝑑ଶ = (𝜶௜ − 𝜶ഥ)′𝚿ି𝟏(𝜶௜ − 𝜶ഥ) 

where (𝜶௜ − 𝜶ഥ) is some vector measuring discrepancy and  𝚿ି𝟏 is the inverse of the 

covariance matrix of (𝜶௜ − 𝜶ഥ). M-distances can be interpreted as multivariate Z-scores, where the 

minimum possible value is zero, the expected value is based on the degrees of freedom of (𝜶௜ −

𝜶ഥ), and higher values indicate increasing degrees of discrepancy. By condensing the information 

in the vector (𝜶௜ − 𝜶ഥ) into a scalar, M-distances allow an investigator to quickly identify highly 

discrepant cases. One can examine either the squared M-distances d2 or their square root d to 

determine case discrepancy; for simplicity, we provide formulas for d2 only, although our 

discussion and simulation will focus on d. 

 The most straightforward M-distance in structural equation modeling, 𝑑௖, is calculated 

using the sample mean and covariance matrix 𝒙ഥ and 𝑺, and measures the discrepancy between a 

case and the saturated model in SEM: 

𝑑௖௜
ଶ = (𝒙௜ − 𝒙ഥ)′𝑺ି𝟏(𝒙௜ − 𝒙ഥ). 

This M-distance is very similar to 𝑑௦, which simply exchanges the sample mean and covariance 

matrix with their model-implied counterparts based on an estimated model: 

𝑑௦௜
ଶ = ൫𝒙௜ − 𝝁(𝜽)൯

′
𝚺(𝜽)ିଵ൫𝒙௜ − 𝝁(𝜽)൯ 
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To the extent that the estimated (i.e., structured) and saturated models (i.e., sample mean and 

covariance matrix) agree, dc and ds will be very highly correlated, and a discrepancy between dc 

and ds likely indicates a major model misspecification. Both dc and ds are evaluated on p degrees 

of freedom for models with p observed variables. 

 While dc and ds are useful in that they quantify a case’s deviance from the bulk of the data 

in multivariate space, they are imperfect as measures of discrepancy between a case and 

predictions from an estimated model. Yuan and Hayashi (2010) identified that dc and ds in factor 

analysis are functions of both leverage, or how extreme a case is in the predictor space, and 

outlyingness, or how well (or poorly) a case is predicted by a model. For a typical structural 

equation model with a measurement portion consisting of confirmatory factor models and a 

structural portion containing regression paths among the factors, the two M-distances df and dr 

quantify leverage and outlyingness, respectively.  

The factor-score-based M-distance df quantifies how far a case is from the bulk of the data 

in the factor space, and is given by 

𝑑௙௜
ଶ = (𝒇௜)

′𝛀௙
ି𝟏(𝒇௜). 

where  

𝒇௜ = (𝚲்𝚯ିଵ𝚲)ିଵ𝚲்𝚯ିଵ൫𝒙௜ −  𝝁(𝜽)൯ 

is Bartlett’s factor score estimate for case i and 𝛀௙ is the covariance matrix of Bartlett’s factor 

score estimates (Lawley and Maxwell, 1971, pp. 106-112; Yuan & Hayashi, 2010). With p 

observed variables and q latent variables, 𝚲 is the p by q matrix of factor loadings in the 

measurement model and 𝚯 is the p by p matrix of residual variances and covariances for the 

observed variables, where latent variables are assumed to have unit variance. 
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While df quantifies leverage in the factor score space, dr quantifies outlyingness in the 

residual space. Residuals can be defined using Bartlett’s factor score estimates as 

𝒆௜ = ൣ𝐈 − 𝚲(𝚲்𝚯ିଵ𝚲)ିଵ𝚲்𝚯ିଵ](𝒙௜ −  𝝁(𝜽)൯. 

where I is the p by p identity matrix. The residual vector 𝒆௜ is of length p and its elements contain 

the residuals for the observed variables after controlling for the Bartlett factor score estimates. The 

covariance matrix of 𝒆௜ is given by (Bollen and Arminger. 1991, eq. 21) 

𝛀 = 𝚯 − 𝚲(𝚲୘𝚯ିଵ𝚲)ିଵ𝚲் . 

However, this covariance matrix is rank-deficient and cannot be inverted to calculate a M-distance 

directly using 𝒆௜. Let 𝐀 be a p by (p-q) matrix whose columns are orthogonal to 𝚯ିଵ𝚲; such a 

matrix can be defined using the eigenvectors of 𝛀 corresponding to the (p – q) nonzero eigenvalues 

as columns. Then a residual-based M-distance using 𝒆௜ can be calculated as (Yuan & Zhong, 2008) 

𝑑௥௜
ଶ = (𝐀்𝒆௜)

்(𝐀்𝛀𝐀)ିଵ(𝐀்𝒆௜). 

Thus dr measures the extent to which case i is an outlier. Cases with large df or large dr may be 

different from those with large dc or ds and will also differ depending on the measurement model 

because different measurement models imply different sets of predictors and thus different factor 

score estimates and residuals. Yuan and Hayashi (2010) propose using scatterplots of df and dr to 

identify cases with both high residuals and high leverage, which are most likely to be influential 

cases. 

 The Mahalanobis distance measures discussed above are based on normal distribution 

theory and are typically compared to critical values based on a chi-squared (d2) or equivalently a 

chi (d) distribution. Therefore, the validity of these measures must be questioned when data are 

ordered categorical, as often occurs in the social sciences with self-report and assessment data, as 

these data often substantially deviate from multivariate normality. 
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2.2. Mahalanobis Distance Measures in Ordered Categorical Data 

Let 𝐘௡,௣ denote a data matrix of dimension n by p, where n is the sample size and p is the 

number of observed variables, and let 𝒚௜ denote the p-vector of observations for case i. For 

simplicity, we assume that all variables in 𝐘௡,௣ are measured at the ordinal level and that each 

ordinal variable 𝑦௝ can take on values from 1 to 𝑚௝ , 𝑗 = 1, … , 𝑝. Extensions to combinations of 

ordinal and continuous variables are straightforward (Muthén, 1984). The standard statistical 

models for ordinal data in SEM assume that underlying each ordinal observation 𝒚௜ is an 

unobserved, continuous, multivariate normally distributed observation 𝒚௜
∗, called a response 

process vector, assumed to be multivariate normally distributed with components having mean 0 

and variance 1. Under the polychoric model, this latent response vector is discretized according to 

thresholds 𝝉 = ൛𝜏௝௟ൟ, 𝑗 = 1, … , 𝑝, 𝑙 = 1, … , 𝑚௝ − 1 such that 

ቐ

𝒚௜௝ = 1         𝑖𝑓 𝜏௝ଵ < 𝒚௜௝
∗ ≤  𝜏௝ଶ            

⋮
𝒚௜௝ = 𝑚௝       𝑖𝑓 𝜏௝௠ೕ

< 𝒚௜௝
∗ ≤  𝜏௝(௠ೕାଵ)

  

By default, 𝜏௝ଵ = −∞ and 𝜏௝(௠ೕାଵ) = ∞. When data generated from this model are collected, only 

the ordered categorical 𝒚௜௝ values are observed. 

 Under these assumptions, the correlations among the 𝒚௜
∗ variables can be estimated using 

only the observed responses 𝒚௜௝ via maximum likelihood using the p-way contingency table of the 

ordinal responses; these correlations are called polychoric correlations. For a dataset 𝐘௡,௣, all p(p-

1)/2 polychoric correlations 𝜌௝௞ , 𝑗 = 2, … , 𝑝, 𝑘 = 1, … , 𝑗 − 1 are estimated and are used to 

construct a polychoric correlation matrix 𝐒∗ with ones on the diagonal and the polychoric 

correlation between variables j and k at the [j,k] and [k,j] positions on the off-diagonal. A structural 
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equation model can then be estimated on the matrix of polychoric correlations, and the resulting 

model describes the relationships among the unobserved 𝒚௝
∗ variables. 

The calculation of M-distances requires a covariance matrix for the observations and 

implicitly assumes that the variables used are continuous; thus, when using ordinal data, M-

distances cannot be calculated. SEM with ordinal data involves modeling the underlying response 

process, which is assumed to have a normal distribution; therefore, we use the response process 

𝒚௜
∗ to calculate M-distances. This is done by estimating the expected M-distance for 𝒚௜

∗ based on 

the ordinal response vector 𝒚௜ by integrating over the region of the multivariate normal distribution 

defined by the ordinal response vector. Thus, for response vector 𝒚௜, an individual’s expected M-

distance for 𝒚௜
∗ is given by 

𝑑ଶ(𝒚௜
∗) = 𝑑∗ = න න … න 𝑓(𝒚௜

∗)𝑀𝐷(𝒚௜
∗)𝑑𝒚∗.

௠೤೔೛

௠೤೔೛షభ

௠೤೔మ

௠೤೔మషభ

 
௠೤೔భ

௠೤೔భషభ

 

where 𝑓(𝒚௜
∗) is the multivariate normal density function with mean zero and covariance matrix 𝐒∗ 

and 𝑀𝐷(𝒚௜
∗) is some M-distance measure on 𝒚௜

∗, such as 𝑑௖, 𝑑௦, 𝑑௙, or 𝑑௥. Monte Carlo integration, 

which permits the high-dimensional integration needed to determine M-distances for models with 

many ordinal items, is used to calculate the integral, although alternative integration techniques 

(e.g., quadrature, quasi-Monte Carlo) can be considered as well. In Monte Carlo integration, a 

large sample of observations is drawn from the region of the multivariate normal distribution 

bounded by the thresholds corresponding to the observed response pattern, as in the integral above. 

For each sampled observation, the quantity of interest, here the M-distance, is calculated, and the 

results are averaged across all sampled observation to yield the expected M-distance for the 

corresponding region. 
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 This procedure yields the ordinal M-distances 𝑑௖
∗, 𝑑௦

∗, 𝑑௙
∗, and 𝑑௥

∗, each found by integrating 

the corresponding M-distance measure over the region of the multivariate normal distribution 

defined by the thresholds that bound the item response. These indices have similar interpretations 

to the corresponding M-distances in continuous data; 𝑑௖
∗ identifies general multivariate outliers 

with respect to the saturated (polychoric) correlation matrix, 𝑑௦
∗ does the same with respect to the 

model-implied (polychoric) correlation matrix, 𝑑௙
∗ is a measure of leverage (extremity in the 

predictor space), and 𝑑௥
∗ is a measure of residual, or the discrepancy between observed and 

expected values based on estimated factor scores. 

If it is assumed that the observed item responses are generated according to the polychoric 

model, it is important to examine the extent to which M-distances calculated from ordinal data can 

identify observations that are aberrant or extreme with respect to the underlying response process 

variables. Clearly, much information is lost when continuous variables are discretized into 

categorical variables, and it is unrealistic to expect perfect correspondence between M-distances 

calculated before and after discretization. However, the extent of this correspondence can inform 

us on the power of M-distances based on categorical data to identify truly aberrant response 

patterns. For instance, with a small number of categories, and with thresholds values close to zero, 

it is unlikely that any categorical response pattern will be highly discrepant from a model, whereas 

with many varied thresholds, discrepant response patterns will be easier to detect. Indeed, the 

power to detect person-fit in item response theory is influenced by such factors as test length, the 

spread of item locations (here, category thresholds) and item discrimination (Ferrando, 2004; 

Molenaar & Hoijtink, 1990; Reise & Due, 1991). Thus, to the extent that the M-distance 𝑑௥
∗ 

functions as a person-fit index, the effects of such factors on M-distance recovery must be 

examined as well. 
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2.3. Computation Alternatives in M-distance Estimation 

 The Monte Carlo simulation required to calculate the M-distances in ordered categorical 

data represents a non-ignorable computation burden. As we will explain, there are several ways to 

compute these diagnostics, each with distinct advantages and disadvantages. 

The estimation of M-distances 𝑑௖
∗, 𝑑௦

∗, 𝑑௙
∗, and 𝑑௥

∗ in ordered categorical data can be viewed 

as a missing data problem: given observed categorical responses y, we use Monte Carlo techniques 

to integrate the M-distance functions over the expected conditional distribution of the unobserved 

continuous response vector y* to obtain the categorical M-distances for y* (full MC approach). An 

alternative estimation procedure involves estimating the latent response vector y* for each 

observation as the mean of the region of the multivariate normal distribution bounded by the 

thresholds, and then treating the estimate 𝒚ෝ∗ as a continuous response vector when calculating M-

distances (latent mean approach). The latent mean approach has the computational advantage of 

not requiring M-distances to be calculated for all Monte Carlo draws; however, the expected M-

distance will not be the same as the M-distance corresponding to the expected latent response 

vector, and thus the results of the two approaches can potentially differ. For the simulations below, 

we used the latent mean approach with separate factor score estimates for each Monte Carlo-

sampled latent response vector. 

For the residual-based M-distance dr*, one may also choose to integrate the residual vector 

with respect to the unconditional distribution of y* as described above (unconditional approach), 

or to integrate with respect to the conditional distribution of y* given fixed factor score estimates, 

where the factor score estimates are EAP estimates from the categorical factor model (conditional 

approach). These approaches differ little in computational burden; while using fixed factor scores 

reduces the burden of computing these factor scores for each Monte Carlo draw, it also requires 
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determining factor scores for the categorical factor analysis model using EAP estimation or some 

other technique, with a computational burden of its own. The parameters of the distribution used 

to integrate y* are fairly trivial to compute; for fixed factor score vector f, the conditional mean of 

y* is given by Λf’ and the conditional covariance matrix is given by Θ. Thus, the conditional 

approach requires only marginally less computation than the unconditional approach. In total, 

there are four unique ways to estimate M-distances in ordered categorical data: full MC or latent 

mean integration, with the conditional or unconditional distribution of y*. For this dissertation, the 

full MC with conditional y* will be used. 

2.4. Measures of Influence in Structural Equation Modeling 

Pek and MacCallum (2011) discuss several case deletion diagnostics that generalize 

regression-based influence measures to SEM. While some of the measures are directly drawn from 

regression, others are unique to SEM. Importantly, these measures generalize directly to 

categorical factor analysis, as they all simply involve estimating a model with and without a case 

included in the sample and examining the effect of case deletion on model statistics. These 

measures will be used in this dissertation to quantify case influence.  

A direct carry-over from regression is the likelihood distance (Cook, 1977, 1986; Cook & 

Weisberg, 1982): 

𝐿𝐷௜ = 2ൣ𝐿൫𝜽෡൯ − 𝐿൫𝜽෡(௜)൯ ൧ 

where 𝜽෡ and 𝜽෡(௜) denote the k by 1 vectors of estimated model parameters for the same 

model based on the original sample (𝜽෡) and the sample with the i'th case deleted (𝜽෡(௜)), i = 1, …, 

N. While this likelihood distance generalizes to the polychoric model, it does not relate to impact 

on model fit directly, as the model is generally evaluated using estimators other than direct 

maximum likelihood. Typically, the polychoric model is estimated using a three-stage procedure 
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(Lee, Poon, & Bentler, 1990; Muthén, 1984), in which thresholds are estimated based on univariate 

marginal proportions, then polychoric correlations are estimated based on bivariate marginal 

proportions, and finally the model is estimated using some variant of an ADF/GLS estimator (GLS; 

Browne, 1984; DWLS; Muthén, du Toit, & Spisic, 1997; ULS; Browne, 1974). These estimators 

attempt to find model parameters that minimize the following fit functions. Let 𝜽෡ again be the 

vector of model parameters, and for simplicity assume no mean or threshold structure is imposed, 

reducing the problem to estimating a covariance structure only. Let σ(𝜽෡) = vech(Σ(𝜽෡)) denote the 

vector containing the elements in the lower triangle of the polychoric correlation matrix (not 

including the diagonal, which is constrained to 1 for polychoric correlation matrices) implied by 

the model parameters 𝜽෡, and similarly let s=vech(S) denote the vector containing the elements in 

the lower triangle of the sample polychoric correlation matrix. Lastly, let W denote the asymptotic 

covariance matrix of the estimates of the polychoric correlations in s, and let Iq denote the q by q 

identity matrix, where for p observed variables, q = p(p-1)/2. Then the fit functions for GLS, 

DWLS, and ULS are given by 

𝐹 ௅ௌ = ቀ𝒔 − 𝛔൫𝜽෡൯ቁ
′
𝐖ି𝟏 ቀ𝒔 − 𝛔൫𝜽෡൯ቁ 

𝐹஽ௐ௅ௌ = ቀ𝒔 − 𝛔൫𝜽෡൯ቁ
′
൫diag(𝐖)൯

ି𝟏
ቀ𝒔 − 𝛔൫𝜽෡൯ቁ 

𝐹௎௅ௌ = ቀ𝒔 − 𝛔൫𝜽෡൯ቁ
′
𝐈୯ ቀ𝒔 − 𝛔൫𝜽෡൯ቁ 

Each of these functions attempts to minimize the (weighted) discrepancy between the observed 

and model-implied polychoric correlation matrix; in brief, FGLS uses the inverse of the full 

asymptotic covariance matrix, FDWLS uses only the diagonal of the full asymptotic covariance 

matrix, and FULS weights all polychoric correlations equally during estimation. In this dissertation, 

FDWLS was used for estimation. 



22 

Once the model is estimated, model fit is evaluated using the test statistic 

𝑇 = (𝑁 − 1) ∗ 𝐹෠. 

where 𝐹෠ is the fit function used to estimate the model evaluated at the parameter estimates 𝜽෡ which 

optimize the fit function. Of these fit functions, only FGLS approximates a chi-square distribution 

with (q - k) degrees of freedom, but only under asymptotic sample sizes (Flora & Curran, 2004; 

see also Browne, 1982, 1984). However, using any of these estimators, a “chi-square” distance4 

Δχ2 can be calculated as 

Δ𝜒2 = 𝑇(௜)
ଶ − 𝑇ଶ 

where 𝑇 and 𝑇(௜) denote test statistics for the same model based on the original sample (𝑇) and the 

sample with the i'th case deleted (𝑇(௜)) respectively, i = 1, …, N. Note that here, no correction (e.g., 

Satorra and Bentler, 2001, 2010) is made to these test statistics. 

 Generalized Cook’s distance (gCD; Cook, 1977, 1986) can be written for categorical factor 

analysis as follows: 

𝑔𝐶𝐷௜ = ൫𝜽෡ − 𝜽෡(௜)൯
′
𝑉𝐴𝑅෣൫𝜽෡(௜)൯

ିଵ
൫𝜽෡ − 𝜽෡(௜)൯ 

where 𝜽෡ and 𝜽෡(௜) are defined as above and 𝑉𝐴𝑅෣൫𝜽෡(௜)൯ is the estimated asymptotic variance-

covariance matrix of the parameter estimates obtained in the reduced sample (Pek and MacCallum, 

2011). Note that 𝑔𝐶𝐷௜ quantifies the total change in all parameter estimates; in this study, I will 

consider only generalized Cook’s distance for factor loadings, denoted gCDλ.   

                                                           
4 In this study, the resulting distance is not distributed as χ2 nor as a difference of χ2 variates; nevertheless, this 
notation is used to agree with prior literature (Pek and MacCallum, 2011; Pastore & Altoe, 2018). 
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Chapter 3 – Simulation Studies 

3.1. Common Simulation Details 

 To achieve the two research goals outlined above, two simulation studies were conducted. 

These simulation studies involved (1) simulating data from a continuous factor analysis model, (2) 

calculating case diagnostics (residual dr, leverage df, influence Δχ2, gCDλ) based on the continuous 

factor model (influence diagnostics in second simulation only), (3) categorizing the continuous 

data according to pre-specified thresholds to generate ordered categorical data consistent with the 

tetrachoric/polychoric model, and (4) calculating case diagnostics (residual dr*, leverage df*, 

influence Δχ2, gCDλ) based on the categorical factor model for cases in the simulated data set 

(influence diagnostics in second simulation only). The simulation conditions corresponded to 

characteristics of the simulated test and were as follows: number of items (p = 5, 20), factor 

loadings in the data-generating model (λ = .3, .7), and number and placement of thresholds, 

described below. 

There were three conditions for number and placement of thresholds: two for dichotomous 

data (“narrow” and “wide” threshold conditions), and one for polytomous data. In the “narrow” 

dichotomous data (one threshold) condition, the position of item thresholds varied across items, 

with the first item’s threshold at -0.5, the last (5th or 20th) item’s threshold at 0.5, and thresholds 

for intermediate items (2nd to 4th or 2nd to 19th) positioned in regular increments between -0.5 and 

0.5 (e.g., thresholds of -0.5 for Item 1, -0.25 for Item 2, 0 for Item 3, 0.25 for Item 4, 0.5 for Item 

5 for a five-item test). In the “wide” dichotomous data condition, thresholds were evenly spaced 

across items from -1.5 to 1.5 in a manner identical to the “narrow” dichotomous data condition. 

These dichotomous data conditions were intended to simulate a typical dichotomous test in which 

item threshold parameters, which are related to item difficulty parameters in item response theory 
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and determine the proportion of correct responses to each item, vary across items from “easy” 

items (negative threshold values) to “difficult” items (positive threshold values), In the polytomous 

condition, all items had the same four thresholds, set at τ = -1.5, -0.5, 0.5, and 1.5, resulting in five 

item categories; this condition mimics the “symmetric” threshold condition in Rhemtulla, 

Brosseau-Liard, and Savalei (2012). 

These conditions resulted in a 2 (number of items) by 2 (factor loadings) by 3 (number and 

placement of thresholds) design for a total of 12 conditions. These conditions were used in both 

simulation studies. 

3.2. Study 1 – Critical Values for df* and dr* and Their Relationship to Influence 

3.2.1. Method. 

In the first simulation, I estimated empirical p-values for leverage (continuous df; 

categorical df*) and residual (continuous dr; categorical dr*) and compared the empirical critical 

values of these indices to the theoretical continuous critical values. The purpose of this simulation 

was to characterize how these p-values and critical values change depending on the properties of 

the test.  

The simulation study proceeded as follows for each condition. First, a model-implied 

covariance matrix was generated according to the specified factor model. For simplicity, all factor 

loadings were equal and all observed variables were specified to have zero mean and unit variance 

in the data-generating model. I then simulated a large sample (n = 100,000) of multivariate normal 

cases from this population model. Note that, because of this large sample size, only a single 

simulated data set is needed to characterize empirical p-values and critical values. The data-

generating model was estimated using normal-theory maximum likelihood estimation, and the p-

value was extracted. The data were then categorized according to the threshold parameters in that 
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condition. In dichotomous conditions, categorization was done by recoding all values less than the 

threshold parameter for each item to 1 and all values greater than the threshold parameter to 2; see 

the previous section for a detailed description of threshold parameter specification in dichotomous 

tests. In the polytomous conditions, categorization was done by recoding all values less than the 

lowest threshold (τ = -1.5) to 1, all values between the two lowest thresholds (τ = -1.5 to τ = -0.5) 

to 2, and so on, with values greater than the highest threshold (τ = 1.5) recoded to 5. After 

categorization, the data-generating model was estimated on the categorical data using diagonally 

weighted least squares (DWLS) estimation with polychoric correlations, and the p-value was 

calculated. 

Two checks were performed to ensure the integrity of the simulated data. First, in order to 

ensure that all threshold values are estimated, datasets must have contained at least one response 

in each response category for all items, ensuring that the same number of threshold parameters 

would be estimated in all conditions. Second, in order to ensure that the simulated data suitably 

represents the hypothesized model structure, datasets must have had p-values of at least .5 in the 

estimated continuous and categorical models. If a dataset failed to meet these requirements, 

another continuous dataset was generated with the same conditions and the categorization and 

estimation were repeated until these two conditions were satisfied. This quality check was used to 

ensure that the simulated data conformed to the data-generating model, which was important 

because only one large data set was used in each condition. 

Once the data were simulated, df and dr were calculated for models estimated on continuous 

data and df* and dr* were calculated for models estimated in categorical data. Categorical case 

diagnostics df *and dr* were calculated using 100,000 Monte Carlo draws. Empirical critical values 

(95%, 99%) for continuous and categorical leverage and residual were calculated, along with 
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empirical p-values based on the 95% and 99% critical values of the appropriate chi distribution for 

each index. Degrees of freedom for df and df* were 1 and degrees of freedom for dr and dr* were 

(p – 1) (Yuan & Bentler, 1998, 2000). These p-values and critical values were examined to answer 

the first research question regarding the utility of the theoretical continuous cutoffs in categorical 

data and were compared across conditions to determine the effect of test characteristic on these 

distributional properties. 

3.2.2. Results and discussion. 

Figures 1 and 2 contain histograms of df in continuous (Figure 1, top panels), polytomous 

(Figure 1, remaining panels), and dichotomous data (Figure 2), while Figures 3 and 4 contain the 

corresponding histograms for dr and dr*. Unlike df in continuous data, the polytomous and 

dichotomous distributions of df* vary by test condition (Figure 1). While a smaller number of items 

(p = 5) leads to a multimodal distribution due to the limited number of possible response patterns, 

the distribution of df* in longer polytomous tests (p = 20) is nearly identical in shape to the 

distribution of df in continuous tests. The distributions of df* in dichotomous data (Figure 2) are 

similar to those in continuous data for longer tests (p = 20), but for shorter tests these distributions 

are highly multimodal, reflecting the limited number of possible latent trait values that can be 

calculated based on a short, dichotomous test. In Figure 3, as in Figure 1, the distribution of dr* in 

polytomous tests is similar to that of dr in continuous data; while the 5-item polytomous tests 

contain the same multimodality in dr* as observed in Figure 1, the distribution of dr* in 20-item 

polytomous tests is nearly identical in shape to that of dr in continuous tests. The distributions of 

dr* in dichotomous tests (Figure 4), however, differ markedly from the distribution of dr in 

continuous and polytomous data, most notably in the highly restricted range of dr* across all 

conditions.  
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Table 1 contains empirical p-values for categorical df* and dr*. Empirical p-values for 

continuous df and dr were within reasonable ranges for α = .05 (df: MEAN = .0499, MIN = .0491, 

MAX = .0508. dr: MEAN = .0499, MIN = .0489, MAX = .0510) and α = .01 (df: MEAN = .0100, 

MIN = .00959, MAX = .0104. dr: MEAN = .00995, MIN = .00970, MAX = .0103), did not appear 

to depend on the test conditions, and will not be discussed further as they approximate their 

theoretical expectations.   

In polytomous data, df* exhibited positively biased p-values, with bias decreasing as the 

number of items increased. These p-values were more biased when factor loadings were low (λ= 

.3); in contrast, when factor loadings were high (λ = .7) and the number of items was high (p = 20), 

empirical p-values were close to the theoretical continuous p-values (p = .056 for α = .05; p = .012 

for α = .01). More extreme values of df* result from low factor loadings because when factor 

loadings are low, there is necessarily more unique item variance in item responses; in polychoric 

and tetrachoric models, the sum of the variance explained by the factor and by the item uniqueness 

must equal one, and an increase in one entails a decrease in the other. In the presence of high 

unique item variance, a higher factor score is needed to yield response patterns that are uniformly 

in the highest or lowest response category than when unique item variance is low or, equivalently, 

factor loadings are high. Thus, when attempting to predict factor scores from item responses, low 

factor loadings lead to more extreme (read: further from the mean) factor score estimates for 

responses with uniformly extreme responses than high factor loadings. This phenomenon has also 

been observed in IRT (Embretson & Reise, 2000, p. 170). The biases in p-values for df* due to 

factor loading magnitude are also evident in Figures 1 and 2, with low factor loadings (λ = .3) 

leading to a larger proportion of cases falling past the 95% and 99% theoretical critical values 

compared to continuous df, especially in the 5-item test condition. 
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As in the polytomous conditions, empirical p-values for df* in the dichotomous conditions 

were greater when factor loadings were low (λ = .3) than when factor loadings were high (λ = .7). 

When -0.5 ≤ τ ≤ 0.5, p-values for df* were, in general, positively biased in dichotomous data when 

factor loadings were low and negatively biased when factor loadings were high. All empirical p-

values were zero for conditions with -0.5 ≤ τ ≤ 0.5, λ = .7 at α = .01, and at α = .05 for  0.5 ≤ τ ≤ 

0.5, λ = .7, indicating that no simulated cases yielded df* past the theoretical 95% critical value in 

these conditions. When -1.5 ≤ τ ≤ 1.5, p-values were all positively biased except for conditions 

with -1.5 ≤ τ ≤ 1.5, p = 5, λ = .7 at α = .01 (empirical p-value of zero) and -1.5 ≤ τ ≤ 1.5, p = 20, λ 

= .7 at α = .05 (empirical p-value of .037), with decreasing bias with increased test length. 

Empirical p-values for dr* were zero for all dichotomous conditions with narrow threshold 

values (-0.5 ≤ τ ≤ 0.5). If values of dr* are interpreted as measures of outlying-ness with respect to 

the latent response variables, and 95% or 99% theoretical critical values are treated as “objective” 

standards for identifying outlying-ness, these results indicate that it is nearly impossible to be an 

“outlier” in dichotomous data under these conditions; for conditions with empirical p-values 

estimated at zero, no cases out of samples of 100,000 could be categorized by these standards as 

“outliers”. A small number of cases passed the 95% critical values of dr* in dichotomous data 

when -1.5 ≤ τ ≤ 1.5, but no cases passed the 99% critical value. For polytomous tests, empirical p-

values for dr* were negatively biased (~0.25 for α = .05; ~.003 for α= .01); this bias did not appear 

to depend on test conditions. In these cases, it is possible to be considered an outlier, but it is more 

difficult to be considered so than if the underlying response variables were observed directly. 

This right-side truncation of the distribution of dr* is also evident in Figure 4. The left-side 

truncation in Figure 4 is due to the fact that, in calculating dr* in dichotomous data, dr is averaged 

over truncated distributions bounded on one side, in all dimensions, by negative or positive 
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infinity; in other words, it is possible that any of the underlying response variables was extremely 

large or small, depending on whether the item was “correct” (score of 2) or “incorrect” (score of 

1). Averaging over this possibility makes it essentially impossible to be abnormally “well-fitting” 

case (low dr*) in dichotomous data, just as it is very difficult to be an “outlier” (high dr*) according 

to the metrics considered here. 

Table 2 contains empirical critical values for df* and dr*. These critical values can be 

illuminating in demonstrating the magnitude of the discrepancy between empirical and theoretical 

critical values. To put these differences on a meaningful metric, I calculated the proportion of the 

theoretical χ distribution which falls below the corresponding empirical critical value for df* and 

dr* (Q in Table 2). These Q values can be interpreted as the percentile of the distribution of 

continuous df and dr that would be considered as “high-leverage” or “outliers”, respectively, if the 

empirical critical values for categorical df* and dr* were treated as the standards for identifying 

cases as such. 

For most conditions, the critical values and Q values are directly related to the empirical p-

values in Table 1, where higher p-values correspond to higher empirical critical values and higher 

Q values, and thus much of the information in Table 2 is redundant with Table 1. However, Q 

values for dr* for the large set of conditions for which empirical p-values were close to or exactly 

zero provide additional information on the severity of truncation in the distribution of dr when only 

categorical manifestations of continuous variables are observed (Figures 3 and 4). Specifically, for 

dichotomous items with -0.5 ≤ τ ≤ 0.5, Q values for dr* in Table 2 range from .65 to .75 for α = 

.05 and .70 to .84 for α = .01, indicating that observations which would be considered anomalous 

according to the empirical 95% critical value for dr* would score at the 65-91th percentile when 

judged according to the theoretical critical value. For -1.5 ≤ τ ≤ 1.5, dichotomous items again 
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exhibited low Q values (.74 to .81 for α = .05; .86 to .91 for α = .01), albeit not as low as when    -

0.5 ≤ τ ≤ 0.5, Polytomous items demonstrated reasonable Q values close to the corresponding χ 

quantiles.  

The low Q values observed for dr* bear on the decision of which critical value to use 

(theoretical or empirical) for identifying cases as “high-leverage” or “outliers” in assessing the 

magnitude of these diagnostics for exploratory purposes or for setting criteria for down-weighting 

in a robust estimation procedure for categorical factor analysis. First, quantitative and applied 

researchers should note that, if critical values with nominal Type I error rates are to be based on 

the distribution of the categorical case diagnostic (df* or dr*), this distribution needs to be 

simulated to determine this critical value empirically based on the test conditions, especially if the 

data are dichotomous. In contrast, if critical values are to be based on the theoretical distribution 

of the continuous case diagnostic (df or dr), these critical values will not yield nominal Type I error 

rates in all test conditions; in polytomous data, the differences in Type I error rates are minimal, 

but these differences are substantial in dichotomous data. In the dichotomous case with narrow 

threshold values, using the theoretical cutoffs as criteria for “outlying-ness” would render it 

impossible for a response pattern to be considered an “extreme” based on dr* unless the α level 

was set higher than .1. Depending on the researcher’s perspective on definitions of response 

aberrance and the reliability of these diagnostics to quantify response aberrance, this may lead to 

the conclusion that such dichotomous tests have no utility in identifying outlying response patterns 

or that robust estimation would be fruitless in such test conditions. This issue will be revisited in 

General Discussion at the end of this dissertation. 
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3.3. Study 2 – Relationships Between Leverage, Residual, and Influence 

3.3.1. Method. 

In the second simulation, I examined the relationships between leverage (df*), residual 

(dr*), and influence (Δχ2, gCDλ) in categorical data in order to compare these relationships between 

categorical and continuous data and, where these relationships differed, to characterize them in 

categorical data. Most importantly, the goal of this simulation is to characterize how these 

relationships change depending on the properties of the test. Data simulation, categorization, and 

quality checks were identical to the first simulation but with a smaller sample size (n = 2,500) per 

condition. 

Once the data were simulated, df, dr, Δχ2, and generalized Cook’s distance for factor 

loadings (gCDλ) were calculated for the models estimated in categorical and continuous data 

separately. As in the first simulation, categorical case diagnostics df *and dr* were calculated using 

100,000 Monte Carlo draws. The reduced sample size in Study 2 was due to the increased 

computational burden of calculating the influence diagnostics, which requires re-estimating the 

model n times in each condition.  

I then constructed diagnostic plots with dr* on the x-axis and df* on the y-axis separately 

for categorical and continuous data in each condition in order to assess the relationship between 

leverage, residual, and influence in categorical data. The size of the points in these plots was scaled 

according to each point’s influence as measured by each of the influence diagnostics (Δχ2, gCDλ), 

with separate plots for each influence diagnostic.  

Lastly, I estimated linear regression models to assess these results quantitatively, with df*, 

dr*, and their interaction as independent variables and each influence diagnostic as a separate 

dependent variable, comparing the resulting regression coefficients across conditions. To make the 
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resulting models comparable across conditions, the following standardizations were performed. 

The categorical M-distances df* and dr* were transformed to approximate a normal distribution 

using the L transformation defined in Canal (2005, p. 806). The influence diagnostics were 

standardized using a truncated mean and standard deviation, which were calculated using the set 

of all values of the corresponding influence diagnostic calculated in all conditions. The truncated 

mean and standard deviation were calculated by first removing any observations outside the range 

(Q1 – 1.5*IQR, Q3 + 1.5*IQR) for the corresponding influence diagnostic, where Q1 is the first 

quartile, Q3 is the third quartile, and IQR = Q3 – Q1, and then calculating the mean and standard 

deviation of the resulting set of influence diagnostics. This was done to remove the influence of 

severe outliers on the standardization. After these transformations, regression models were 

estimated using the L-transformed df, dr, df*, and dr* values (depending on whether the data were 

categorical or continuous) and their interaction as predictors and the standardized influence 

diagnostic as the outcome. In these models, severe outliers were included during estimation to aid 

in identifying conditions in which the relationship between leverage, residual, and influence would 

potentially be very strong. 

3.3.2. Results. 

The regression models predicting influence from leverage, residual, and their interaction 

are efficient summaries of the relationships between these quantities in continuous and categorical 

data. Parameter estimates for these models are presented in Table 3 (|Δχ2|) and Table 4 (gCDλ). 

While the plots of leverage, residual, and influence (Figures 5 to 15) contain much richer 

knowledge about these relationships, there are too many of such plots to be displayed efficiently 

in this dissertation. In this section, I will discuss each influence measure by first describing the 

relationships revealed in the corresponding regression models and then referring to only a small 
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subset of the resulting plots: one continuous example per index, to illustrate the relationships 

between leverage, residual, and each influence diagnostic in the continuous case; and at least one 

categorical example per index, to illustrate these relationships in the categorical case and to draw 

attention to specific interesting cases revealed by the set of regression models. See Supplemental 

Materials for the complete set of plots. Based on the discrepancies between theoretical and 

empirical critical values in categorical data (Study 1), regression models in categorical data were 

estimated separately with both indices centered at their theoretical critical values and with both 

indices centered at the empirical critical values, allowing the first-order effects of leverage and 

residual for theoretical and empirical critical values to be compared. 

3.3.2.1. Influence on model fit. 

 Inspection of graphs revealed that the magnitude of Δχ2 values, rather than their numerical 

values, depends on residual and leverage. Thus, the models presented here use the standardized 

(as described above) absolute value of Δχ2, denoted |Δχ2|, as the dependent variable. Models with 

Δχ2 as the dependent variable can be found in Supplemental Materials. 

 Table 3 contains regression coefficients for linear models predicting |Δχ2| from leverage, 

residual, and their interaction. In continuous data, |Δχ2| is primarily a function of residual dr, with 

higher dr values corresponding to higher influence on model fit and little effect of leverage df and 

little interaction. In short tests (p = 5), this effect is small (standardized b5 ≈ .3), while in long tests 

(p = 20), the effect is large (standardized b ≈ 1). The relationship between leverage and |Δχ2| in 

continuous data does depend on the number of items in the test, with more items yielding increased 

effects. Figure 5 displays an example of this effect for a 20-item test with λ = .3. In polytomous 

                                                           
5 Because each variable was not standardized according to its own distribution, the symbol β was not used. 
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data, the effects of residual and leverage on |Δχ2| are nearly identical to those in continuous data; 

Figure 6 illustrates these relationships in a 20-item polytomous test with λ = .3.  

 In dichotomous data, the relationships between leverage, residual, and |Δχ2| vary widely 

across conditions. As in continuous and polytomous data, residual dr* has a strong effect on 

influence on model fit in dichotomous data; however, unlike in continuous and polytomous data, 

this effect is still strong (standardized b ≈ 1.25) in 5-item dichotomous tests when -1.5 ≤ τ ≤ 1.5. 

Figure 7 illustrates this condition with λ = .7. The effect of residual dr* on |Δχ2| in long tests was 

also stronger in dichotomous than in polytomous data, with stronger effects for lower factor 

loadings. Figure 8 illustrates these effects for a 20-item dichotomous test with -0.5 ≤ τ ≤ 0.5, λ = 

.3. When thresholds are modest (-0.5 ≤ τ ≤ 0.5), small negative effects of df* were observed on 

|Δχ2| in some dichotomous conditions, indicating that influence on model fit decreased with 

increasing leverage in these conditions (Figure 8). Lastly, there were small interaction effects 

(standardized b ≈ .3) for dichotomous tests with high factor loadings. These effects were generally 

negative, indicating that increased df* decreased the influence of dr* on |Δχ2|; Figure 9 

demonstrates this interaction in a 20-item dichotomous test with -1.5 ≤ τ ≤ 1.5, λ = .7. One 

exception arose in 5-item dichotomous tests with -1.5 ≤ τ ≤ 1.5 and λ = .7, which had a positive 

interaction effect (Figure 7). 

 Lastly, across conditions, the first-order effects of leverage df* on |Δχ2| tended to be 

stronger at the theoretical critical value than at the empirical critical value, while the first-order 

effects of residual dr* on |Δχ2| were generally unaffected by the critical value used for centering. 

These differences appeared when the empirical critical value for dr* differed from the theoretical 

critical value, indicating that the effect of leverage on |Δχ2| is stronger at the more extreme 
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theoretical critical value for dr* than at the more modest empirical critical value. This difference 

is observed, in general, for the gCDλ as well. 

 3.3.2.2. Influence on factor loading estimates. 

Table 4 contains regression coefficients for linear models predicting gCDλ from leverage, 

residual, and their interaction. In continuous data, gCDλ is most strongly predicted by df, followed 

by dr and their interaction. All coefficients were positive, indicating that influence on factor 

loadings increases high leverage and/or residual with a small superadditive interaction. These 

relationships increased in magnitude with increased factor loadings and increased numbers of 

items, the latter of which is due to the larger number of parameters used in the calculation of gCDλ 

in long tests. Figure 10 illustrates these effects for a 20-item test with λ = .7. In polytomous tests, 

the same effects were observed, albeit smaller in magnitude; Figure 11 illustrates these effects for 

a 20-item polytomous tests with λ = .7. 

In dichotomous tests, the relationship between leverage, residual, and influence on factor 

loading estimates varied substantially with all independent variables. In tests with wide-ranging 

thresholds (-1.5 ≤ τ ≤ 1.5), these effects were similar to those in polytomous and continuous data, 

albeith with larger effects of residual dr* than leverage df*; in fact, for tests with a small number 

of items there was almost no effect of leverage df* and no interaction. Figures 12 and 13 show 

these effects in 5-item and 20-item dichotomous tests, respectively, with -1.5 ≤ τ ≤ 1.5 and λ = .7. 

The relationships between leverage, residual, and influence for 5-item dichotomous tests with 

narrow thresholds (-0.5 ≤ τ ≤ 0.5) were similar to those for 5-item dichotomous tests with wide-

ranging thresholds (-1.5 ≤ τ ≤ 1.5); however, the relationships for 20-item dichotomous tests with 

narrow thresholds (-0.5 ≤ τ ≤ 0.5) were unique to those conditions. In 20-item dichotomous tests 

with low (λ = .3) factor loadings, the effect of dr* and the interaction effect were negative, 
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indicating reduced influence on factor loading estimates with increased residual, an effect that 

increased with increasing leverage. Figure 14 illustrates these effects; note the curvilinear 

relationship between df* and dr*, which results in the highest-leverage points (which are the most 

influential) having the lowest residuals. In contrast, all coefficients were large and positive in 5-

item dichotomous tests with -0.5 ≤ τ ≤ 0.5 and λ = .7, with the effect of residual being the largest. 

Figure 15 illustrates these effects; note the restricted range of both df* and dr*, which makes these 

relatively small effects seem larger when quantified as regression coefficients. 

3.3.3. Discussion. 

 These results indicate that across a variety of test conditions, the relationships between 

leverage, residual, and influence in factor analysis differ between continuous and categorical data 

and that these relationships depend heavily on test conditions. In continuous data, these 

relationships are generally stable except for the variability in the sign of Δχ2; high-residual cases 

influence model fit, while cases with high leverage have the most influence on factor loading 

estimates, with high-residual cases exerting some influence as well. Leverage and residual have 

similar relationships to influence in polytomous tests as in continuous tests according to the 

diagnostics considered here, although the magnitude of these relationships tends to be slightly 

lower in polytomous data. In dichotomous data, especially when thresholds are far from the mean, 

the relationships between leverage, residual, and influence can differ dramatically, both from 

continuous/polytomous tests or from dichotomous tests with other test conditions. In real data, 

where items vary in their threshold parameters and factor loadings and when these values are 

sometimes unpredictable a priori, these effects are likely to be unpredictable but strong, an 

unfriendly combination for practitioners. 
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These findings have implications for detection of aberrant response patterns; in categorical 

factor analysis with dichotomous indicators, cases with high leverage, residual, or both can have a 

wide variety of sometimes unpredictable effects on model fit and parameter estimates. If a 

researcher’s goal is to remove cases with influence on particular model quantities in categorical 

factor analysis, he or she should use a targeted approach based on the case diagnostic specifically 

relevant to that influence goal, with the understanding that he or she is intentionally manipulating 

the data to achieve their desired statistical results, a practice which is generally frowned upon. If 

researchers instead wish to remove or down-weight cases with high residual or leverage, for 

example in a robust procedure, they should be aware that this approach may not yield the same 

effects in all test conditions and may not solve a given statistical problem, such as distorted 

parameter estimates or aberrant model fit results. Alternatives and recommendations are given in 

the General Discussion below. 
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Chapter 4 – General Discussion 

This dissertation examined the distributions of, and relationships between, case diagnostics 

in categorical factor analysis under a variety of test conditions to assess the potential utility and 

behavior of a case-robust categorical iteratively reweighted least squares (IRLS) estimator. Three 

types of case diagnostics were investigated: leverage diagnostics (df in continuous data, df* in 

categorical data), which quantify a case’s potential for influencing parameter estimates; residual 

diagnostics (dr in continuous data, dr* in categorical data), which quantify the difference between 

the observed and model-predicted response patterns; and leverage diagnostics which quantify a 

case’s influence on model fit (Δχ2) and factor loading estimates (gCDλ). Case diagnostics 

quantifying leverage and residual in categorical factor analysis are relatively new, and although it 

would be fairly easy to implement categorical IRLS by simply substituting categorical case 

diagnostics (Mansolf & Reise, 2018) and weighting operations (Asparouhov, 2005) into the IRLS 

estimation functions for continuous data (Yuan & Bentler, 2000), such an approach is ill-advised 

without first investigating the distributions of the categorical case diagnostics df* and dr* and their 

relationships to case influence. This dissertation represents that investigation. 

One concern with using categorical case diagnostics df* and dr* in robust estimation is 

determining how they might be used to down-weight “extreme” or “outlying” cases in an IRLS 

estimator. In continuous data, the statistics df and dr have known distributions under standard 

assumptions (multivariate normality, properly specified model), and thus one can simply 

determine the theoretical critical values of df and dr and down-weight cases that fall beyond those 

critical values. The first goal of this dissertation was to determine whether these same critical 
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values could be used to down-weight cases according to a given Type I error rate, and if not, how 

the critical values of df* and dr* differ based on test characteristics. 

To this end, I examined empirical p-values and critical values of the leverage index df and 

the residual index dr, as well as their categorical counterparts df* and dr*, in the first simulation 

study. While the empirical p-values and critical values of the continuous indices df and dr 

conformed well to their theoretical properties, the empirical p-values and critical values of 

categorical df* and dr* did not correspond to those of their continuous counterparts. The 

distribution of the leverage diagnostic df* differed considerably depending on test conditions and 

only approximated the distribution of df under a small number of combinations of test conditions. 

The empirical p-values and critical values of df* were, however, similar to those of df, and based 

on these results it is reasonable to judge values of df* by using the distribution of df as a reference 

distribution. In long polytomous tests dr* approaches the same distributional properties as dr, but 

in dichotomous tests and short polytomous tests very few simulated cases had dr* values past the 

95% theoretical critical value. In other words, in these conditions, it is very difficult to be an 

“outlier” according to these metrics. Empirical critical values for dr* were much lower than the 

theoretical values, corresponding to roughly the 65-90th percentile of the continuous distribution 

of dr, and the left-hand side of the distribution of dr* was similarly truncated, with very few cases 

having “low” residuals according to the distribution of dr. If one defines an “outlier” as a high-

residual case relative to the distributions of latent response variables, one would conclude that it 

is very difficult to be an outlier in dichotomous data. Alternatively, if one defines an “outlier” as a 

high-residual case relative to the distribution of other cases, or relative to the potential for cases to 

be outliers, one would conclude instead that critical values based on continuous data are not useful 

for identifying outliers in dichotomous data. 
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These simulation results suggest potential difficulties in developing a robust estimator for 

categorical factor analysis which down-weights potentially influential cases analogously to 

existing IRLS estimators in continuous structural equation models (Yuan & Bentler, 1998, 2000). 

Specifically, such estimators generally rely on a “cut point” in the distribution of measures of 

discrepancy from the estimated model, which is often the critical value (95%, 99%, or other) of df 

or dr. In categorical data, these cut-points depend on the properties of the test, raising the question 

of how to determine a measure of discrepancy to use in down-weighting cases. 

For instance, consider a situation in which one wishes to construct a categorical IRLS 

estimator which down-weights cases according to the residual index dr*. One option is to use the 

theoretical cut-points based on the known critical values of continuous dr, which would result in a 

mismatch between the theoretical and actual percentage of cases that would be down-weighted. 

The biggest potential discrepancy is in dichotomous data; in dichotomous test conditions 

considered here, nearly no cases would have been down-weighted by an IRLS estimator using dr* 

as the index for down-weighting and using the theoretical critical values of dr as the criteria for 

down-weighting (Table 1). Such an approach would render a categorical IRLS estimator 

essentially useless in dichotomous data under the test conditions considered here.  

Alternatively, one could use empirical critical values to determine the cut-points for 

identifying outliers. At the implementation level, this would require a real-data-based simulation 

study to determine the empirical critical values of dr* given the test properties of the data set of 

interest. To be most precise, such a simulation would be required at each iteration of the IRLS 

algorithm because item parameter estimates, which influence the critical values of dr*, change at 

each step of IRLS estimation. Another complication in implementing categorical IRLS is that, as 

shown in the second simulation, the relationships between leverage, residual, and influence vary 
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according to the test properties and the influence diagnostic used. In general, cases with high values 

of df* and/or dr* tended to be influential, but sometimes the reverse was true; see Figure 14, where 

cases with the lowest residuals were the most influential on factor loading estimates. Therefore, 

an IRLS estimator applied to dichotomous data which uses empirical critical values may not down-

weight the most influential cases as intended. 

The truncated distribution of dr* reflects similar distributional issues in item response 

theory, where researchers have used person-fit indices, corresponding roughly to the residual 

indices dr and dr*, to identify cases with response patterns that deviate from their expected values 

given an IRT model. Findings that the ostensibly standardized log-likelihood lz did not follow a 

normal distribution (Drasgow, Levine, & Williams, 1985; van Krimpen-Stoop & Meijer, 1999), 

prompted the development of increasingly well-standardized versions of the index (Snijders, 2001; 

Sinharay, 2016). Similar efforts to standardize dr* would require considerable computational labor 

considering the distributional (truncated distributions) and computational (high-dimensional 

integration) idiosyncrasies of the polychoric model. Such standardization may not be necessary in 

a pure measurement context considering the high correlation of dr* with lz (Mansolf & Reise, 

2018), as researchers who need a standardized index could simply use lz. However, the calculation 

of lz only involves a measurement model whereas dr* can be calculated using a full structural 

equation model, and there remains a place in the literature for well-standardized indices which 

incorporate both measurement and structural portions of an SEM.  

A second concern with using categorical case diagnostics df* and dr* in an iteratively 

reweighted estimator is that the effect of cases with high values of df* and dr* on statistical results 

(model fit, parameter estimates) need to be understood in order to predict the effects of applying 

such an estimator. Because the distributions of df* and dr* are truncated relative to continuous df* 
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and dr*, and because of the non-independence of these diagnostics in categorical data, it is not 

obvious that a case with high df* and high dr* would have the same effect on model results 

(worsened model fit, biased parameter estimates, “bad” leverage point) in categorical factor 

analysis as a case with high df and high dr in continuous factor analysis. In short, if a categorical 

estimator is to be used to down-weight cases with high values of df* and/or dr*, it is important to 

understand the potential effects of down-weighting those cases. 

To this end, in the second simulation study I examined the relationships between leverage, 

residual, and influence to determine the effect of down-weighting cases with high df* and/or dr* 

and compared these relationships to those in continuous data. In dichotomous tests, the bivariate 

relationship between df* and dr* was distorted relative to continuous and polytomous data, with a 

very narrow spread of dr* in those tests; in continuous data, df and dr are independent by 

construction (Yuan & Hayashi, 2010). More problematically, the characteristics of highly 

influential response patterns differed between test conditions in dichotomous data. Influence on 

model fit generally increased with residual across test conditions in dichotomous data, although 

strong effects of leverage were observed in some dichotomous conditions, sometimes in the 

absence of effects of residual. In addition, the influence of high-residual cases on model fit in 

dichotomous data was generally higher than that of high-leverage cases, and in one case (20-item 

test, widely-spaced thresholds, high factor loadings; see Figure 13) low-leverage cases had the 

most influence on factor loading estimates. These relationships deviate markedly from those 

presented in Yuan and Zhong (2008) and those in the corresponding continuous conditions. From 

these results, we can conclude that relationships between leverage, residual, and influence, as 

operationalized here, deviate from conventional wisdom and past research when calculated in 

dichotomous data, and that these deviations depend, sometimes heavily, on test conditions. 



43 

Therefore, a case-robust IRLS estimator using df* and/or dr* would have unpredictable behavior 

in dichotomous data. 

In contrast, the findings of Yuan and Zhong (2008) generally held in continuous and 

polytomous tests, and the relationships between leverage, residual, and influence were roughly 

comparable between continuous tests and the polytomous test conditions studied in this work. 

Cases with high leverage had the strongest effect on factor loading estimates in continuous and 

polytomous data, followed by residual and with a small positive interaction, results which are 

consistent with Yuan and Zhong (2008). Additionally, empirical critical values of df* and dr* in 

polytomous tests were close to the theoretical critical values of df and dr. Unlike in dichotomous 

data, a categorical IRLS estimator would likely have similar statistical properties to continuous 

IRLS when applied to polytomous data. 

These results should be taken with caution, however, because only a single polytomous 

item type (5 categories, symmetric and evenly spaced thresholds) was considered here. It is likely 

that case diagnostics for other polytomous item types would behave differently; for example, a test 

consisting of three-category items with thresholds of (1.25, 1.75) would likely behave nearly 

identically to a dichotomous test with a single threshold of 1.5; such test properties are rare, but 

do arise in clinical psychology when assessing psychiatric symptoms, for example in the 

Structured Clinical Interview for DSM-5 (SCID; First, 2014) which rates symptoms as “not 

present”, “unsure or equivocal”, or “present”. Additional research is needed to study the behavior 

of case diagnostics in irregular polytomous test conditions, and a well-behaved IRLS estimator 

which generalizes to dichotomous data would be necessary to accommodate such irregular 

polytomous tests. 
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The findings on case influence in this work add to the IRT literature assessing the effects 

of misfitting response patterns on model fit and parameter estimates. Consistent with the results 

presented here, other researchers have reported that contaminating data with careless or misfitting 

response patterns can lead to worse model fit (Hoijtink, 1987; Phillips, 1986), biased item 

parameter estimates (Clark, Gironda, & Young, 2003; Oshima, 1994; Wise, Kingsbury, 

Thomason, & Kong, 2004; van Barneveld, 2007) and biased latent trait estimates (De Alaya, Plake, 

& Imparta, 2001; Meijer & Sijtsma, 2001; Nering & Meijer, 1998). In a recent study using 40-

item tests with relatively wide location parameters (MEAN  = -0.11, SD = .90; Patton, Cheng, 

Hong, & Diao, 2019), an iterative procedure similar to categorical IRLS was used to remove 

misfitting response patterns from estimation, resulting in substantially reduced bias in item 

discrimination and location parameters in the two-parameter logistic IRT model. Although Patton 

et al. did not use a formalized IRLS estimator, which down-weights cases at each step of 

estimation, but simply iteratively removed cases with lz values below a critical value from fully 

estimated models, these results illustrate the promise of more formalized estimation procedures 

which down-weight aberrant cases in categorical measurement models. 

These results, and those referenced above, underscore the need to develop case-robust 

estimators for categorical factor analysis and structural equation modeling. At the moment, the 

only available option for practitioners interested in mitigating the effects of case influence in these 

models is to use case deletion diagnostics to assess the influence of each case on model results of 

interest. Unlike in regression, where some of these diagnostics can be determined analytically, in 

categorical factor analysis their calculation requires re-estimating the model of interest a number 

of times equal to the number of unique response patterns, each time removing one such unique 
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response pattern from the analysis. This presents a considerable computational burden for large 

data sets.  

In addition, SEM packages vary in their implementation of these diagnostics. For example, 

the R package influence.sem (Pastore & Altoe, 2018) can calculate Δχ2, generalized Cook’s 

distance, and likelihood distance, but cannot calculate COVRATIO or decompose generalized 

Cook’s distance by parameter type. The R package semdiag (Yuan & Zhang, 2012) interfaces with 

the program EQS (Bentler & Wu, 2005) to calculate leverage and residual values df and dr in 

continuous data only.  Mplus (Muthén & Muthén, 1988-2017) allows the user to save Cook’s 

distance, Mahalanobis distance dc (for continuous observed variables only) and likelihood 

distance, which can be used to calculate Δχ2, but cannot perform case-robust estimation.  If the 

model of interest is estimated using a software package which does not permit the straightforward 

calculation of the case diagnostic(s) of interest, some programming will be required to implement 

their calculation, presenting an additional burden to practitioners. Proliferation of software for 

calculating case diagnostics in SEM, many of which (importantly, case deletion diagnostics) 

generalize straightforwardly to categorical factor analysis, would aid researchers in understanding 

and mitigating the effects of influential cases until a reliable robust estimator is developed. 

Like person-fit indices in item response theory, the indices evaluated herein can, in 

principle, be useful for practitioners interested in evaluating the validity of individual response 

patterns or for detecting aberrant response processes such as cheating or guessing. While this goal 

remains a primary motivator for the development of person-fit indices, attempts to apply these 

indices in practice and understand their relationships with psychological variables have yielded 

mixed results (Reise & Waller, 1993; Reise & Flannery, 1996. For instance, Birenbaum (1986) 

studied the relationships between person-fit values and scores on an anxiety test, a lie scale, and a 
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general cognitive ability scale and found that, contrary to expectation, person-fit values were most 

strongly correlated with general ability (r ≈ .50), rather than with anxiety (r ≈ .14) or the lie scale 

(r ≈ .10). In contrast, Schmitt, Chan, Sacco, McFarland, and Jennings (1999) found that, in 

personality tests, test-taking motivation and conscientiousness correlated .26 and .34, respectively 

with the person-fit index lzm, with lower correlations for cognitive tests. The person-fit index dr* 

evaluated in this dissertation can be used for similar research where models are estimated and 

evaluated using categorical factor analysis rather than item response theory; however, such 

research must be undertaken with a clear understanding of what person-fit indices are supposed to 

measure from a psychological standpoint. Tellegen (1988) outlined a multitude of possible 

explanations for intraindividual inconsistency in item responses, and fruitful use of these indices 

in a pure measurement context requires the researcher to first understand the meaning of the indices 

with respect to the instrument-population combination under investigation. 

The indices df* and dr*, and the studies contained herein, augment this literature in two 

important ways. First, person misfit is operationalized here (dr*) in terms of geometric distance 

from expectation, rather than by a low conditional probability of endorsement given the estimated 

latent trait value(s) (lz and related indices). The simulations presented herein take advantage of the 

geometric interpretation of person-fit by enabling the comparison of the influence of misfitting 

cases to the influence of cases with high residuals in regression and structural equation modeling. 

This comparison adds an additional, highly practical utility to person-fit indices which had 

previously only been explored in principle: person-fit indices are diagnostic of a case’s influence 

on model results in a manner that, in some conditions, is predictable from their geometric 

properties. Thus, researchers should be interested in cases which deviate from model results not 

only when testing hypotheses about the relationship between intra-individual response 
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inconsistency and other behaviors of interest (cheating, guessing, etc.) but as a diagnostic tool to 

ensure the validity of all inferences drawn from the models. 

Second, these indices permit the evaluation of person-fit within the context of a full 

structural equation model, rather than simply a measurement model. A potentially fruitful future 

direction for person-fit research involves determining not only which individuals have aberrant 

response patterns, but also which individuals have latent trait values which do not predict external 

correlates well; in short, studying cases with high dr* calculated from a full structural equation 

model. For instance, an individual with aberrant responses due to “sleeping” (responding poorly 

to the first few items on an ability test, but improving in performance over the course of the test) 

could be identified by including their previous and subsequent test scores in a single model; this 

individual would have high residual dr* in a full structural equation model not only because their 

responses are inconsistent within a specific test, but because those responses are inconsistent with 

their behavior in other contexts. Likewise, the estimated latent trait values of cheaters, as predicted 

from responses to the exams on which they cheated, would not be expected to relate to other 

measures of studiousness (attendance, class participation, etc.) in the same way as with non-

cheaters. Combining residual analysis of test scores (person-fit) with residual analysis of other 

variables in a full structural model may lead to higher power to detect specific behaviors. This 

approach can be useful for overcoming the well-documented low power of person-fit indices to 

identify responses generated according to a particular deviant response model (Meijer & Sijtsma, 

2001; Meijer, 1996; Karabatsos, 2003). 

As with all simulation research, the results presented here generalize best to the test 

conditions used in the simulations. Other test conditions may yield different results; for instance, 

a very long test with a wider spread of item response thresholds may yield distributions of df* and 
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dr* which more closely approximate the theoretical distributions, or a test with threshold values 

far from the mean may yield empirical critical values that coincide better with the theoretical 

critical values based on continuous data. However, note that with long tests it becomes very 

computationally difficult to simulate from the small tail of the multivariate normal distribution 

bounded by the highest and/or lowest threshold values for each item. In previous versions of these 

simulations with threshold parameters of ±2, the Gibbs sampler often broke down when attempting 

to calculate dr* and df* for extreme response patterns in 20-item tests. Thus, it may be difficult to 

calculate these diagnostics when response thresholds are extreme and/or there are many items, 

exactly those conditions in which outliers and high-leverage cases are expected to arise.  

Furthermore, only a single polytomous item type, with four evenly spaced threshold 

parameters between -1.5 and 1.5, was examined here; skewed or asymmetrical threshold 

parameters may yield different results, as observed in Rhemtulla, Brosseau-Liard and Savalei 

(2012). More threshold parameters would also serve to “de-coarsify” the distributions of df* and 

dr*, although items with more than five categories can usually be safely treated as continuous 

(Rhemtulla, Brosseau-Liard, & Savalei, 2012). All simulated data in this study had an underlying 

normal distribution in the latent response variables underlying each item; considering that skew 

and kurtosis of this distribution can affect model estimation (e.g., Roscino & Pollice, 2006), results 

may differ if the underlying normal distribution assumption is violated, as is likely to happen in 

real data. 

In summary, three general observations about case diagnostics in categorical factor 

analysis can be made based on this research. First, leverage df* in these models is bounded, but 

can still take on large values. Second, residual dr* in these models can seldom take on large (or, in 

the dichotomous case, small) values, even when considered across a variety of test conditions. 
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Lastly, the relationships between leverage, residual, and influence, while largely similar in 

continuous and polytomous data (in the polytomous test conditions considered here), can vary 

substantially in dichotomous data depending on the test conditions. While these results suggest 

that IRLS estimation in polytomous factor analysis will have similar statistical properties to IRLS 

estimation in continuous factor analysis, these findings complicate the extension of IRLS 

estimation to dichotomous factor models in two ways. First, because there are large and 

meaningful differences between the distributions of df* and dr* in dichotomous data and the 

distributions of continuous df and dr, it is difficult to determine criteria for down-weighting in 

IRLS. Second, because the relationships between leverage, residual, and influence vary depending 

on test conditions, it is not clear whether a hypothetical dichotomous IRLS estimator with a stable 

down-weighting rule would successfully reduce the impact of potentially influential cases 

comparably to a continuous IRLS estimator. Regardless, this work has revealed that there is 

considerable potential for case influence in categorical factor analysis, and that researchers should 

be taking steps to mitigate the effects of influential cases, whether by examining case deletion 

diagnostics or by developing estimators robust to these effects. 
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Tables 

Simulation Conditions df* dr* 
τ m p λ α = .05 α = .01 α = .05 α = .01 

0.5 2 5 .3 .117 .085 .000 .000 
0.5 2 5 .7 .000 .000 .000 .000 
0.5 2 20 .3 .076 .013 .000 .000 
0.5 2 20 .7 .067 .000 .000 .000 
1.5 2 5 .3 .232 .020 .005 .000 
1.5 2 5 .7 .072 .000 .004 .000 
1.5 2 20 .3 .063 .011 .000 .000 
1.5 2 20 .7 .037 .011 .001 .000 
1.5 5 5 .3 .204 .100 .028 .003 
1.5 5 5 .7 .084 .019 .028 .004 
1.5 5 20 .3 .104 .031 .026 .002 
1.5 5 20 .7 .056 .012 .026 .003 

 

Table 1. Empirical p-values for categorical M-distances. m = number of item categories, p = 

number of items, λ = population factor loading. τ denotes the maximum threshold value for 

dichotomous and polytomous tests, and -τ denotes the minimum threshold value for dichotomous 

and polytomous tests. Cells are coded based on bias in p-value, where darker shades indicate 

increased bias (white indicates no bias), red indicates negative bias (darkest shade for zero) and 

green indicates positive bias (darkest shade for .1 for α = .05 or .02 for α = .01). 
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Simulation Conditions df 95% CV df 99% CV dr 95% CV dr 99% CV 
τ m p λ The. Emp. Q The. Emp. Q The. Emp. Q The. Emp. Q 

0.5 2 5 0.3 1.96 2.75 0.99 2.58 3.03 1.00 3.08 2.26 0.72 3.64 2.36 0.77 
0.5 2 5 0.7 1.96 1.62 0.89 2.58 1.62 0.89 3.08 2.32 0.75 3.64 2.56 0.84 
0.5 2 20 0.3 1.96 2.14 0.97 2.58 2.83 1.00 5.49 4.56 0.65 6.02 4.66 0.70 
0.5 2 20 0.7 1.96 2.09 0.96 2.58 2.12 0.97 5.49 4.61 0.68 6.02 4.74 0.74 
1.5 2 5 0.3 1.96 2.27 0.98 2.58 3.35 1.00 3.08 2.48 0.81 3.64 2.86 0.91 
1.5 2 5 0.7 1.96 2.09 0.96 2.58 2.10 0.96 3.08 2.31 0.74 3.64 2.76 0.89 
1.5 2 20 0.3 1.96 2.09 0.96 2.58 2.59 0.99 5.49 4.82 0.77 6.02 5.05 0.86 
1.5 2 20 0.7 1.96 1.92 0.94 2.58 2.64 0.99 5.49 4.83 0.78 6.02 5.11 0.87 
1.5 5 5 0.3 1.96 3.16 1.00 2.58 3.89 1.00 3.08 3.01 0.94 3.64 3.31 0.97 
1.5 5 5 0.7 1.96 2.06 0.96 2.58 2.78 0.99 3.08 2.85 0.91 3.64 3.31 0.97 
1.5 5 20 0.3 1.96 2.35 0.98 2.58 3.13 1.00 5.49 5.32 0.92 6.02 5.71 0.97 
1.5 5 20 0.7 1.96 1.99 0.95 2.58 2.67 0.99 5.49 5.27 0.91 6.02 5.72 0.97 

 

Table 2. Empirical critical values for categorical M-distances. m = number of item categories, p = 

number of items, λ = population factor loading, The. = theoretical critical value, Emp = empirical 

critical value, Q = quantile of χ distribution corresponding to empirical critical value. τ denotes the 

maximum threshold value for dichotomous and polytomous tests, and -τ denotes the minimum 

threshold value for dichotomous and polytomous tests. Columns of empirical critical values are 

color-coded based on bias in those values, where darker shades indicate increased bias (white 

indicates no bias), red indicates negative bias (darkest shade for one) and green indicates positive 

bias (darkest shade for ten). Columns of quantiles are color-coded based on bias in those values, 

where darker shades indicate increased bias (white indicates no bias), red indicates negative bias 

(darkest shade for .5) and green indicates positive bias (darkest shade for one). 
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    Continuous Categorical 
Simulation Conditions Theoretical CV Centered Theoretical CV Centered Empirical CV Centered 
τ m p λ df dr df*dr df dr df*dr df dr df*dr 

0.5 2 5 0.3 -0.05 0.29 -0.02 -0.32 0.45 -0.16 -0.15 0.29 -0.16 
0.5 2 5 0.7 0.04 0.26 0.01 -0.85 -0.24 -0.40 -0.47 -0.07 -0.40 
0.5 2 20 0.3 -0.02 1.09 -0.03 0.11 2.48 0.09 -0.01 2.50 0.09 
0.5 2 20 0.7 0.30 1.33 0.13 -1.08 1.89 -0.27 -0.76 1.87 -0.27 
1.5 2 5 0.3 0.00 0.21 0.00 0.37 1.18 0.20 0.22 1.24 0.20 
1.5 2 5 0.7 0.01 0.30 0.01 0.41 1.46 0.30 0.10 1.50 0.30 
1.5 2 20 0.3 0.22 1.27 0.07 0.19 3.06 0.11 0.09 3.07 0.11 
1.5 2 20 0.7 -0.18 0.94 -0.10 -0.50 2.61 -0.22 -0.30 2.62 -0.22 
1.5 5 5 0.3 0.02 0.37 0.01 -0.02 0.33 -0.01 -0.02 0.32 -0.01 
1.5 5 5 0.7 0.00 0.36 0.00 -0.03 0.14 -0.01 -0.03 0.14 -0.01 
1.5 5 20 0.3 -0.24 1.16 -0.11 -0.16 1.14 -0.06 -0.15 1.11 -0.06 
1.5 5 20 0.7 -0.14 1.12 -0.04 -0.04 0.76 0.03 -0.05 0.76 0.03 

 

Table 3. Regression coefficients predicting |Δχ2| from df, dr, and their interaction. m = number of 

item categories, p = number of items, λ = population factor loading. τ denotes the maximum 

threshold value for dichotomous and polytomous tests, and -τ denotes the minimum threshold 

value for dichotomous and polytomous tests. Regression coefficients with magnitude less than .2 

are presented in gray, coefficients with magnitude greater than .5 are presented in italics, and 

coefficients with magnitude greater than .8 are presented in boldface. 
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    Continuous Categorical 
Simulation Conditions Theoretical CV Centered Theoretical CV Centered Empirical CV Centered 
τ m p λ df dr df*dr df dr df*dr df dr df*dr 

0.5 2 5 0.3 0.98 0.83 0.22 1.18 1.59 0.24 0.93 1.83 0.24 
0.5 2 5 0.7 1.33 0.94 0.34 2.60 4.34 1.12 1.52 3.88 1.12 
0.5 2 20 0.3 4.50 2.18 0.82 0.15 -1.34 -1.30 1.76 -1.56 -1.30 
0.5 2 20 0.7 4.76 2.41 0.98 7.80 10.87 3.62 3.46 11.23 3.62 
1.5 2 5 0.3 0.95 0.76 0.20 0.06 2.19 -0.27 0.27 2.10 -0.27 
1.5 2 5 0.7 1.39 0.92 0.35 0.17 4.56 -0.07 0.24 4.55 -0.07 
1.5 2 20 0.3 4.46 1.97 0.74 4.64 5.07 1.22 3.54 5.18 1.22 
1.5 2 20 0.7 4.40 1.91 0.73 1.78 5.88 0.30 1.52 5.88 0.30 
1.5 5 5 0.3 1.03 0.88 0.25 0.63 0.71 0.14 0.61 0.91 0.14 
1.5 5 5 0.7 1.39 0.97 0.36 0.45 0.78 0.07 0.43 0.79 0.07 
1.5 5 20 0.3 4.09 1.80 0.63 3.67 1.93 0.68 3.47 2.22 0.68 
1.5 5 20 0.7 5.11 2.55 1.06 2.90 2.59 0.69 2.70 2.62 0.69 

 

Table 4. Regression coefficients predicting gCDλ from df, dr, and their interaction. m = number of 

item categories, p = number of items, λ = population factor loading. τ denotes the maximum 

threshold value for dichotomous and polytomous tests, and -τ denotes the minimum threshold 

value for dichotomous and polytomous tests. Regression coefficients with magnitude less than .2 

are presented in gray, coefficients with magnitude greater than .5 are presented in italics, and 

coefficients with magnitude greater than .8 are presented in boldface. 
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Figures 

 

Figure 1. Histograms of df in continuous tests and df* in polytomous tests. p = number of items, λ 

= population factor loading. τ denotes the maximum threshold value, and -τ denotes the minimum 

threshold value. Vertical lines correspond to the 95% and 99% critical values of df based on a χ 

distribution with 1 degree of freedom.  
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Figure 2. Histograms of df* in dichotomous tests. p = number of items, λ = population factor 

loading. τ denotes the maximum threshold value, and -τ denotes the minimum threshold value. 

Vertical lines correspond to the 95% and 99% critical values of df based on a χ distribution with 1 

degree of freedom.  
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Figure 3. Histograms of dr in continuous tests and dr* in polytomous tests. p = number of items, λ 

= population factor loading. τ denotes the maximum threshold value, and -τ denotes the minimum 

threshold value. Vertical lines correspond to the 95% and 99% critical values of dr based on a χ 

distribution with 4 (p = 5) or 19 (p = 20) degree of freedom.  
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Figure 4. Histograms of dr* in dichotomous tests. p = number of items, λ = population factor 

loading. τ denotes the maximum threshold value, and -τ denotes the minimum threshold value. 

Vertical lines correspond to the 95% and 99% critical values of dr based on a χ distribution with 4 

(p = 5) or 19 (p = 20) degree of freedom. 
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Figure 5. Scatterplot of df and dr in a continuous 20-item test with λ = .3. Positive values of Δχ2 

are marked with upward-pointing triangles, while negative values of Δχ2 are marked with 

downward-pointing triangles. The size of the triangles is scaled to the absolute value of Δχ2, where 

the largest size is given by the largest absolute value of Δχ2 across all conditions, determined after 

removing the ten highest and lowest values of Δχ2 ; see Supplemental Materials for the complete 

set of plots. 
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Figure 6. Scatterplot of df* and dr* in a 20-item polytomous test with λ = .3. Positive values of Δχ2 

are marked with upward-pointing triangles, while negative values of Δχ2 are marked with 

downward-pointing triangles. The size of the triangles is scaled to the absolute value of Δχ2, where 

the largest size is given by the largest absolute value of Δχ2 across all conditions, determined after 

removing the ten highest and lowest values of Δχ2; see Supplemental Materials for the complete 

set of plots. Values of Δχ2 which rank among the ten highest or lowest across all conditions are 

denoted by asterisks. 
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Figure 7. Scatterplot of df* and dr* in a 5-item dichotomous test with -1.5 ≤ τ ≤ 1.5 and λ = .7. 

Positive values of Δχ2 are marked with upward-pointing triangles, while negative values of Δχ2 are 

marked with downward-pointing triangles. The size of the triangles is scaled to the absolute value 

of Δχ2, where the largest size is given by the largest absolute value of Δχ2 across all conditions, 

determined after removing the ten highest and lowest values of Δχ2; see Supplemental Materials 

for the complete set of plots. 
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Figure 8. Scatterplot of df* and dr* in a 20-item dichotomous test with -0.5 ≤ τ ≤ 0.5, and λ = .3. 

Positive values of Δχ2 are marked with upward-facing triangles, while negative values of Δχ2 are 

marked with downward-facing triangles. The size of the triangles is scaled to the absolute value of 

Δχ2, where the largest size is given by the largest absolute value of Δχ2 across all conditions, 

determined after removing the ten highest and lowest values of Δχ2; see Supplemental Materials 

for the complete set of plots.  
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Figure 9. Scatterplot of df* and dr* in a 20-item dichotomous test with -1.5 ≤ τ ≤ 1.5, and λ = .7. 

Positive values of Δχ2 are marked with upward-facing triangles, while negative values of Δχ2 are 

marked with downward-facing triangles. The size of the triangles is scaled to the absolute value of 

Δχ2, where the largest size is given by the largest absolute value of Δχ2 across all conditions, 

determined after removing the ten highest and lowest values of Δχ2; see Supplemental Materials 

for the complete set of plots.  
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Figure 10. Scatterplot of df and dr in a continuous 20-item test with λ = .7. The size of the circles 

is scaled to gCDλ, where the largest size is given by the largest value of gCDλ across all conditions, 

determined after removing the ten highest values of gCDλ; see Supplemental Materials for the 

complete set of plots. Values of gCDλ which rank among the ten highest or lowest across all 

conditions are denoted by asterisks. 
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Figure 11. Scatterplot of df and dr in a 20-item polytomous test with λ = .7. The size of the circles 

is scaled to gCDλ, where the largest size is given by the largest value of gCDλ across all conditions, 

determined after removing the ten highest values of gCDλ; see Supplemental Materials for the 

complete set of plots. 
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Figure 12. Scatterplot of df and dr in a 5-item dichotomous test with -1.5 ≤ τ ≤ 1.5 and λ = .7. The 

size of the circles is scaled to gCDλ, where the largest size is given by the largest value of gCDλ 

across all conditions, determined after removing the ten highest values of gCDλ; see Supplemental 

Materials for the complete set of plots.  
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Figure 13. Scatterplot of df and dr in a 20-item dichotomous test with -1.5 ≤ τ ≤ 1.5 and λ = .7. The 

size of the circles is scaled to gCDλ, where the largest size is given by the largest value of gCDλ 

across all conditions, determined after removing the ten highest values of gCDλ; see Supplemental 

Materials for the complete set of plots. Values of gCDλ which rank among the ten highest or lowest 

across all conditions are denoted by asterisks. 
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Figure 14. Scatterplot of df and dr in a 20-item dichotomous test with -0.5 ≤ τ ≤ 0.5 and λ = .3. The 

size of the circles is scaled to gCDλ, where the largest size is given by the largest value of gCDλ 

across all conditions, determined after removing the ten highest values of gCDλ; see Supplemental 

Materials for the complete set of plots. 
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Figure 15. Scatterplot of df and dr in a 20-item dichotomous test with -0.5 ≤ τ ≤ 0.5 and λ = .7. The 

size of the circles is scaled to gCDλ, where the largest size is given by the largest value of gCDλ 

across all conditions, determined after removing the ten highest values of gCDλ; see Supplemental 

Materials for the complete set of plots. 
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