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Abstract
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Within perturbation theory we present a microscopic approach to calcu-

late neutron trahsfer in the scattering of two BCS nuclei. The BCS Hamiltonian

of the two coupled BCS nuclei is constructed in terms of commuting field opera-

tors. Explicit expressions for the transfer cross sections for a single neutron

and for two neutrons are obtained. As‘an exsmple we consider the scattering

of two mercury ions below the Coulomb barrier. The limits of perturbation theory

are investigated.

*ork performed under the auspices of the U. S. Atomic Energy Commission.

Ton leave of absence from the Physik Department der Technischen Universitat

Minchen, Munich, West Germany.
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Neutron Transfer in Reactions Between Superfluid Nuclei

1. Introduction

In the near future séattéring experiments with heawy ions will be per-
f§rmed in a widevenergy fange. A large aﬁount of informafion will be obtained
and has already béen obtained;-z) by varying brojecfile,’target, and scattering
conditions. For bombarding energies beldw'thé Cbulomblbarfier the relative
motion between a héavy projectile and a heavy térget follows3-5).a claésical
Rutherford trajectbry except at backward scattering: This case excluded, the
de Broglie wave ;ength X of the relative motion is Sméll_compared to tﬁe nuclear
radii. Furthérmore, the gradient of * is small6).comparéd to.unity. For
enérgies abové ﬁhe Coulomb 5arrier the second statement is not met because of
strong nuclear absorption in the overlap'regioﬁ'between pfojectile and'target;
This leads7) to diffraction scattering and the gross struéturé of the angular
distribution shows é diffraction pattern, predominantly df Fresﬁel type.

A theoretical treatment of the transition regibn where the ihcident
energy is close to fhe Coulomb barrier should be accessiblé from both sides
although the approach from the low energy side seems to bé easier. Tréating
the nuclear distoftion between the two heavy ions in pertﬁrbétion theory one
still can use the coﬁcept of a Ruthérford trajeétory. -Nuélear distortion
'leadsb’s) to an optical potential which, of course, depends on the reactions
one has in mind. . The analysis8) of the optical potentialvis difficult if no
data on the elastic scattering are available. In this case one is forced to

start from the (model) Hamilﬁonian and to calculate explicitly the coupling
%
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of the two nuclei. 1In this paper we investigate the coupling of two supercon-
eucting nuclei where an enhanced transfer is expected beceuse of static pair
correlations. |

- When the nueleidapproachveach-other their wave functions begin to over-
lap and the two sets of their respective field operators commute no ionger.
One must construct new orthogonal states5’9) which depend on the relative dis-
tance and on the relative velocity. In section 2 we ShOW‘hQW the Hamiltonian
is expressed in‘terms of the new operators up to secoed order in the overlap
of the wave functions. Explicit expressions for the pairing force Hamiltonian.
are obtained. This model Hamiltonian is used in section 3 to calculate the
transfer amplitudes for a single neutron and for two neutrons. We also evaluete
the elastic channel, because, if elastic scattering turns out to be very diffe-
rent from the Rutherford cross section then nuclear distortion can no longer
be treated by ferturbation theory. In section 4 we consider the'varioﬁe
approximations for the evaluation of the transfer amplitudes. We also show
the results fof the scattering of two mercury ions. Section é contains a
discussion together with some remarks on the kinematics.

N

An important question is the interference‘between Coﬁlomb excitation
and transfer. In heavy ion reactions the Coulomb field is much too stronglo)
to allow Coulomb excitation to be treated in perturbation theory. There are,
however, indicetionsll) that Coulomb excitation cen £e rather small when the
transfer takes'place. This is possible because of the destructive interference

between nuclear forces and the Coulomb force. Nevertheless, the transfer into

' excited collective states can be .calculated only if Coulomb excitation is



he

taken into account. However, for transfer reactions into ground states or

into non;cdlleCtive excited states Coulomb'excitationjmay hot be_SOximportant.'

Having those states in mind we consider in the following the coupling of two

almost identical 3u§érconducting nuclei and we neglect Coulomb excitation.
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2. Orthonormal States'fOr'Neutroﬁs' 

The undisturbed eigenstates |©u ? of nucleus A are not orthogonal to
the states |x ) of nucleus B because the two sets of wave functions overlap.
Having transfer reactions in mlnd we conflne ourselves to states I@p ) near the
ferml levels. If the 1nternucleus distance r (see flg. l) is not too small
we can expand the correspondlng orthonormal states |5. ) and Ix ) in terms of

the overlap between the undlsturbed states

o ) =10 ) = S e . * Y -
l'u) | u> ,1/2 § ;:cu'xn) * 3/8 Z}\ 2 S |¢>\ _
" | (1)
l'iv) = IX ) = 1/225\))\|¢)\) +3/83 ¢ }\ v)\lx ) -
A | |
where
Evu = ( @ulxv )

~zIn the appendix we show that for identical nuclei the symmetric expansion (1) is

eqﬁivalent to the introduction of orthonormal StateS:which have a maximal locali- 7
zation. Furthermere, the symmetric expansion has the advantage of minimizing the
the renormalization in the elastic channel (see below). The summation indices 7¢
end A should be restricted to the valepce states in the heighborhood of the fermi

levels. An unrestricted summation would lead to overcounting because the two sets
{I@ 5} and {IX >} are both complete sets. The nucleon annihilation operator . P(r)

is expanded as

- T (r) S 2
Wr) = e 3 () +3 00 X (), | (2)
where the annihilation operators au and bv now commute. we insert this expression

in the Hamiltonian
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) -
= fa vi) (e Uy ) v |
| S | (3)
+ 1/2fd3r S () ¥ Wert) wx') ulz)
with K, UA and U denoting the operator for the kinetic enery and tﬁe potentlal

wells of the two nuclei, respectlvlely. W is the res:.dual nuclea.r interaction.

Assuming that’ |<I>u ) ana Ix\) ) are eigenfunctions of the potential wells -

(k) fo)
()

(k + UB) .va

]
ct
<
<><
~
“

one finds that up to second order in € the single particle component of H is

given .by
= 3, (e |
Hop = J &7 ¥H(x) (K + U, + Up) (r)
(5)
- +
Z}\ A ua'/\ +Ztv9r v By Z( AV uv | uvb\)au) ?
Where
- _ ‘ B *
5 = sucsu)‘ - 'l/8§(su+sl-2t\)) evu €
(5a)

tox " ‘tvavg, l/8§(tv+_t’-23u) €on &

are the renormalized sir_xgle-pa.rticle enei‘gies and where

Tav = 17242 [ U, + Uy |x,? | D (6)
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causes single particle tunneling. It is the symmetric expansion (1) which

keeps the renormalization small because the overlap € has its maximum

e*
v VA
approximately at §u+sk—2tv = 0. |

Assuming W to be a pairing force we evaluate the two-particle component

of H. Up to second order in € we find

Hy o = H-H_ =-1/4 20 5,,1 5 (GAaxaA a, *+@ bxb;\b b )
(7)

+1/16 3 [(Ge, £5,8 —+ G_€

)aabb +hc]
XL AT TA v ATV

B® uc Vg 7(A

As usual V is related to Vv by time‘reversal. In deriving'(7) we have dropped’

terms leading to éingle—particle tunneling. We further neglected the renormali-

A

the two-neutron tunneling part in Hint

zation of fhe pairihg sfrengths G, and GB. Note the repulsi#e character of

. ,Ohe.has to‘keep ig mind that the
relative phase of the operﬁtors a and b is arbitrary. The "repuision" is
changed into an ﬁattraction" if one makes the transformation é + a and b + ib.
The cross éectidn for the transfer is, of course, invariaht under this

transformation.
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3. Transition Probabilities

The Hamiltonian H can be split into a part Ho .'bel_on'ging to the unperturbed

system

23a+a +Ztvv\)
' . (8)
_1/)42 ﬂApV(Gafaa +GBbxb)\bb)

and into a part V(t) containing the overlap €

H=H +V(t) o | (9)
H  is not explicitly time dependent whereas v(t) depends on time via the over-

lap €. In the interaction representation the S-matrix is given by

s(t) = u? exp ;- .;,L-l-fdt' (t )f S - (10).

where

= J (=

Vi.nt(t) = exp (h Hot) V(t) exp (—_ -Hofc) : , o .(11)‘__
and where T denotes the time ordering.operator. " The ﬁndistﬁrbed greund state
is eigenstate of'Ho. This state is a product state which we assume to be given
by

|a; B) = |Bcs(a) ) @ |Bcs(B)) - | - (12)
where BCS means the BCS-state of nucleus A and nucleus B. In the following we 7 '

confine ourselves to spherical nuclei, each individual one having an even number

of neutrons.
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3.1. SINGLE-NEUTRON TRANSFER _

The probebility for the_transferlof&a single neutron'is'givqn by'

(compare. ref. 12) .

t . - o . _
Py = X IM,lT | | (13)
AV ' o ;
where
|Mw|_2’-' -fl;f A+1; B-1|v +(t")|AsB » 12 1(1)4) .
. 7 _ . |
reads up to second order in €
2
'k | fdtldtzuuvauv(tl) T (t,) N

- (15)

X exp [1(0 0E+Ep+Ev) (t tz)]

Here we'have introduced BCS states of the odd system defined by their matrix

elements

Caets Beilatbo|A; B) = | | 16
pv A+l; B llaAbﬂlA’ B) =u vvakuqnv o - (26)

2 .
The numbers.uﬁ-(vv) indicate as usual to what extent level u (v) of nucleus A (B).

is empty (filled):

2, 2
u+v. =1
oW

‘ Eu and EV are the single-particle energies of nucleus A and B when pairing is .
taken into account, i.e.
2]l/2

E, = .[(»s“.-cA)2 , | R (175
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where O and A denote chemlcal potentlal and gap, respectlvely. ‘The tunneling
amplitudes T (t) deflned in eq. (6) depend on time because they depend on the .
vector of relatlve distance r between the two centers of nucleus A and nucleus

13
B. Using the asymptotic expansion formulas of Buttle and Goldfarb ~) we find

J
v _ > A A _ u V)
”’ulUBI‘Xv) -\,h'rr NuAvJuJy( )
| , (18)
| (T v 1
co1/2(8 +8 =R) H v B (1)
x¥ (<) MY i1 ., (12, 7)(-) y ()
zg . 0 5-3 Mv Mu- Mv 2 M
(2+2u+2v=even)
‘We have used the notation of ref. 13
J’E = (23( + 1)1/2
~ L 2 2 -2 -1 ' : : ,
= v, b v : |
Vo (-) ANy GW ) . e (19)

Nuvis the normalization factor of the asymptotic solution of |¢y ) which is a

spherical hankel function.

i) (x) —> N h(l)

by <1«X)Y2M<“>, - - (20

U U

is defined in terms of the neutron binding energy Bu.

The matrix element ( °, U lx ) is obtained if one interchanges u and v
in eq. (18), replaces r by -r and takes the complex conjugate. We insert eq. (6)
together with eq. (18) in eq. (15) and summing over the'magnetic quantum numbers -

we obtain
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82 m 'n mn” 1 1
L. m.n ' 272

11

(2+2 +4_=even)
m n

ﬁtldté [ (c '0 BE, /+E ) .kt t2)]

with

o o -
Smn(tl t.) i <N Ah (ﬂmrl) + NnAth(knrl))
X (N.K*ﬁ (kr)+NAh(9rr)>

-and

~

(X) =i h(l)( )

angle between the vector ry

probability P

= r(tl) and the vector r

LBL-1293

(21)

5 n{tyst,) Py (x r2/rlr2)

(22)

(23)

"'béing'real. The argument y in the Legendre polynomial Pl(y) is the cosine of the
—.r(tg). The transition
1 is of course independent of an arbitrary phase factor in the

"normalization constants Nm. ‘In the case of spherical nuclei considered here,

normalization, single-particle energies, and occupation probabilities do not

depend on magnetic quantum numbers and the indices m and n stand for all single-

in eq. (21) has to be taken along the classical Coulomb trajectory, thus depending

'particle'quantum numbers except the magnetic quantum numbers. The integration

on the scattering angle 0. The differential cross-section for a single-neutron

transfer then reads

do
1_ "R
aQ -~ an Pl(‘e)

(24)
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where ch/dQ is the eIQSﬁic Rutherford crossvséction.‘ EQuation (2k4) only holds

if the prbbability for elastic scattering (see below) is not very different from

unity. _
. y | . o .
3.2. TIWO-NEUTRON TRANSFER FROM GROUND STATE TO GROUND STATE
- Up to fourth order in the overlap'e the probability for two neutrons
being transferred into the ground state of the system (A§2; B-2) is given by
_ o), w2)2 |
Pp =™+ ™%, - | - (29)
where Mél) is the contribution from the double singleeparticle'transfer and Méz)
denotes the direct pair transfer contained in Hint" Using the relation
( A+2; B—2|a+a+b b |AsB) =uvuvid$ - | - - '
? ATV XX U uXA VU c (26) .
we find
(1) _ =1 f , . af + + : -
My = = at,dt, Z T’)‘(tl) T o(ty) Av2; B-2|f 8 {0y (8, )a (£,)b (t,) |A;B)
- . “MN .
. . S AY - - o
- , 222018 n Yn :
= yuvuv 1338 JL_1 P - (27
fmn 2 2
(2+2m+in=even)
+00 L :
X - - .
/ dt,dt, exp [f; (0p-05) (£ +t,) - (B +E )|t tel] Sun(ty o) By (zyro/rir,) o
-00 .

T means the'time_prdering operator and a;(t) depends on time through
+ i + i '
ax(t) = exp (5 H°t> 8y exp (— i— Ho.t) . _ ‘ (28)

For the direct pair transfer we obtain
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| RN/ RE AN
Mé 81’1 Z(Au vn+ Bumvm) Indn* ot _ L1
2732
(£+2mi2n=even) (29)
- 2 2y12
2m .
detlf?[NAhg()l r) -NAhz(ﬂ r)] / r -a )| .
‘s ‘ . 13
In deriving eq. (29) we have used the relation )
_on Y s - |
(a' - )e\)11 =2 [( cbulvlev) ( q)ulvAlxv )] . (30)

. together with eq. (18). We also used the gap equation
= ‘ : 1 ;
AA GA L h , | , ‘ (3 )
ulo -

for nucleus A and for nucleus B.

3.3. ELASTIC CHANNEL

The elastic amplitude_M0 differs from unity because of inelastic processes.
There are two second order contributions. The first arises from the remormali-

zation of the single particle energies (eq. (5a)) and the second is due to the

diagonal part of the tunneling operator Tmnqu; Writing
M= ] - M(l;.) - M(2)
o o] o

we find



T ) |
I A 4
fa A af% “m n i
(l) Z(v -V ) (s -t ) LMY | 11
| 0z-%
(242 +2 =even) o - (32)
m n .
4o : S 1, .
fon2m i -
X fqt |h2 [N A hl(z r) N Anhz(amr_)J /o, i)l
and
' , J_J 2 |
(2) _ L . A A A m n
My ' =-2 Z Imdn® 1 1
Lmn 22/
(2+2#f2n=éven) - . | L (33)
+o0 | |
f at,dt, 5 (t t2) zm(t ot ) P, (r r2/rlr2) R

where Smn(tl’t2) is defined in eq. (22) gyd

zmn(__tlv,t\z) = exp [i (°A'°B) (t,t,) = 1 (Em+En')|t1f-t2I]

(36)
o
< (PRategmeg) + Eofbten) o ) -

The function 6(t) is the step function. We recall that summation index m refers

to nucleus A and index n to nucleus B. . The differential cross section for the

f
elastic scattering is given by

- 4o

dQ‘P dQl

- (3 - (o) - mP(0)|? R | ()

e
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4. Scattering of 196Hg'oh 2OOHgﬁBe;gy the Coulomb Barrier

For the numerical evaluation we uée the following approximatiohé:
a). The.normallzatlon constants N of thevasymptotlc wave functlons are calcu—
lated with Morlnlgo wave functlons ) -The effective nuclear.radlus R which
separates the nuclear interior from the asymtotic regioﬁ is chosen as
R = (1.2Ml/3 + 1;2) fm where M is the nuclear mass numbef.
5) The differerice quotient whlch appears in eqs. (29) and (32) is replaced

by the symmetrlzed dlfferentlal quotlent.

@(:M(zr)-“h(m))/(z-v?)
- (36)

. 2m+1 £n+l v :
= . + : .
Fﬁn ‘NnNm/{%m M (ﬂh 25)]
By numerical comparison with the exact expressions one'finds that thié'assump-
tion is reasonable. 1In order to simplify the integrals we consider only the

exponential behavior of the function ﬁi(ﬂr)
By (r()) ~ hybrr ) exp{z[ro-run}' N €

where r, is the.distance of closest approach, i.e. the classical turning point.
Within the same approximation we replace the arguments of the Legendre'polynémials

by 1, i.e. by their values at the turning point. In eq. (37) we expand the
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exponent up fo secdn& ordef in'the_time t and pérform all integrals apalytically.
In view of the rapid decreése:of hQGKr)'with iﬁcreasing.r tﬁeée approximatiohs
also seem to be Justifiedlh).
¢) The single-particle energies are taken.from ref. 15. .The configuration
space conéists of 13 levels ranging fromAthe lh9/2 level up to the 3§3/2 level.
We used the pairing rotational.modell6) to determine A and G ffom the two-neutron
separation energies in the mercury region. For 200Hg weﬁbbtain AA =.l MeV apd
| 196

Hg we find A, = 1.17 MeV and Gy = G . The

= 0.11 MeV, in the case of B A

GA'
chemicsl potential for BCS nuclei is defined by

o= - [s(2,0) +s(2,m2)] IR (38)

where S(2N) stands for the separation energy of two neutrons in a nucleus with

N neutrons. From this relation the values ¢, = =7.17 MeV and 0_ = =T7.85 MeV are

A B
deduced for 200Hg and 196Hg, respectively.

In fig. 2 we show the differential cross sections for the totsal oné-neutron

transfer in the reaction 200Hg(196 195Hg)201Hg and for the transfer of two
neutrons into the ground states of hHg and 202Hg in-the'reaction
200Hg(196Hg,19hHg)202Hg at E_ = 560 MeV. Using the radii for nucleus A and B

according to section 4a we find the Coulomb barrier at Ecb = 562 MeV. The ampli-

tudes for the two-neutron transfer in the reaction B(A,A+2)B-2 are equal in BCS

200 196 198 198

to those of B(A,A-~2)B+2. The cross section for the reaction Hg)

however, is symmetric around ecm = 90° because of the twc identical nuclei in the

Hg(

final configuration. Figure 1 also contains the function

FeP o+ P + By P +P, (39)

where Po is the probability for elastic scattering along the Coulomb trajectory
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as defined in eq. (35). The quantities P, and P, have been introduced in
section 3; they are the probabilities for the transfer of one or two neutrons

200 | _ ’ 196
to ~ “"Hg whereas P_l and P_2 denote the transfer of one or two neutrons to Hg.
A necessary condition for' perturbation theory to be valid is that F does not
deviate much from unity.

In fig.’_ 3 the enérgy dependence of the differential cross sections is

plotted for ecm = 120°. Again perturbation theory is limited to F = 1.
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5. Discussion
We first point out that our results should not'be'interpreted quanti-
tatively. There are considerable uncertainties coming from the single-particle

wave functions: If the normalization constants N, are changed by a factor 2

_xthen the absolute values for the cross sections for single-neutron and two-neutron

: 1
transfer are changed by a factor of 16 and 256, respectively. Also uncertainites

in the»BCS wave functions are not irrelevant. A truncation of the configuration
space would reducé tﬁe theoretical cross sections for thé two-neutron transfer
considerably. Therefore, our results should be compared'with.future e?periments
in terms of relative cross sections. |

The two-neutron transfer shows an interesting interference pattern
because of the fact that the imaéinary parts of the é@plitudes'for double
single-transfér and for pair transfer are opposite in sign. The shallow mini-
mum in the two-neutron transfer cross section belongs fo the node of the imagi-
nary part. The'break—up of a pair becomes more importaﬁt for shorter coupling
times becausevthen the oscillating behavidr.of the expoﬁent in eq. (27) is iess
relevant. . Shorter coupling time meéns higher energies or larger scatfering'
angles. Unfortuﬁately, perturbation theory fails to describe the details of
the second rise. The cross sectioq for a single neutron will also. deviate from
the exponential lawl7) when nuclear distortions invalididate perturbationv'
theory. Non-perturbative theories have been discussedla) in the literature
although they again are restricted to the assumption_thaf Coulomb ekcitation
does not couple too strongly to nucléar excitation. Qualitatively, Coulomb -
excitation leads to a damping of the elastic channel. For quantitative results
one has to treat both transfer ana Coulomb excitation in a quantum mechanical

10
way~ )
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We briefly consider some kinematical effects.‘_The o&eflap betﬁeen”the
single—partiéle wéve functions of the two nuclei generglly depénds on the velocity
of the relative motion. TFor sub—Coﬁlomb reaétions this dépendence can be
.ﬁeglectedlg),: Next, it is clear that heavy-ion transfef reactions are connected
with a transfer of angular momentum. .Theré are two contfibutions. First, the
angular momentum is changed because of the polafization éf the two cdres and,
secondly, the‘trahsferred particle itself carries along an‘angular momentum ih
iﬁs relative‘moﬁibn. For bombarding energies below the Coulomb barrier it is
difficult to célculate the optimum valuego) for the transferred angular momentum.

| Finally, we mention that recoii effects20) can bévneglected in the
scattering of two almost identical nuclei. This means that the.most favourable
Q-value for the neutron transfer is approximately zero, é rather well met pro-

perty of the reactions we discussed in this paper.'
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. Appendix | . |
We show that for identical nucléi ﬁhe symmetric expansion (i) in section
2 is equivalent tg the introduction of localized, orthonormal states. For
simplicity we assume that there is Qniy one stafe |¢ ) in nucleus A and one state
vIX > in nucleus B. Since the two nuclei are identical the two elgenstates of

the coupled system are

(2(14€))72 (Jo + [x)) S (a)

-

a-eNE (o) - X0y . (a2)

where € = { ¢|x ) is the overlap of the two wave functions (which we assume to .-
. + - - : .
be real). The two eigenstates Iw( ) ) and Iw( ) > are neither localized in
nucleus A nor in nucleus B. The combinations:
‘__. =1/2 + ) Y. ) . )
3> = 2712 ([p*) )y« )y | (a3)

and

2712 () y )y | U (aw)

X ?
are, however, localized. Using (Al) and (A2) we can éxpress IE') and Ii-)'by
the unperturbed states [¢ ? and |X?. We make a power series expansion in €

and get the expansion (1) of section 2

13 (J_'+-g-€2) 60 - Zelx) + ... | (A5)

Ix ) (1 + %’82) Ix? - %—e|¢ > o+ L., | (a6)

The generelization to identical nuclei with an arbitrary number of states is

straightforward.
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Figure Captions

Fig. 1. Schematic picture of two nuclear potential wells A and B separated by

the distance r. Horizontal lines denote the single particle levels near

the fermi levels.

Fig. 2. Differential cross sections for the total single-neutron (sn) trans-
fer 200}13(196 lgng)ZOng and for the gfpund state two-neutron (tn)
transfer 200 (196 202

Hg) Hg at Ecm-= 560 MeV. The function F, defined
in eq. (39) depends on eém and is a measure of the failure of perturbation
theory. '

Fig. 3. Differenfial cross sections at 6 = 120° as a function of the bom-
barding energy Ecm' The symbols sn, tn are defined in fig. 2. Again F,
depending now on ECm"is a measure of the failure of perturbation thedry.
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