
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Auto-Awarding Points for Incremental Development in Programming Courses

Permalink
https://escholarship.org/uc/item/5317463w

Author
May, David Walter

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5317463w
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Auto-Awarding Points for Incremental Development in Programming Courses

A Thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

in

Computer Science

by

David Walter May

December 2022

Thesis Committee:

Dr. Frank Vahid, Chairperson

Dr. Mariam Salloum

Dr. Michalis Faloutsos

Copyright by

David Walter May

2022

The Thesis of David Walter May is approved:

 Committee Chairperson

University of California, Riverside

 iv

Table of Contents

Chapter 1. Introduction of Thesis 1

Chapter 2. Related Works 3

Chapter 3. Incremental Development 5

3.1 Logged student behavior 5

3.2 Incremental development scores 6

3.2.1 Depletion 7

3.2.2 Replenishment 9

3.2.3 IncDev heuristics 9

3.2.4 Incremental development trails 13

Chapter 4. Incremental Development Tool 15

4.1 IncDev tool overview 15

4.2 Running the application 16

4.3 Path of execution 17

4.4 Sample input and output files 19

Chapter 5. Efficacy of Incremental Development Heuristics and Scores 21

5.1 Manual grade comparison 21

5.2 Introducing IncDev scores in a CS1 course 26

5.2.1 Methodology 26

5.2.2 Results 27

5.2.3 Survey results 34

Chapter 6. Coding Trails 38

6.1 Coding timeline trail 38

6.2 Time between submissions trail 39

6.3 Lines of code trail 42

6.3.1 Visual compaction 43

6.4 Drastic change trail 44

Chapter 7. Conclusions 50

 v

List of Figures

Figure 1.1: An example of incremental development. 2

Figure 3.1: A simplified example of a zyBooks log file. 6

Figure 3.2: A graph of the score adjustment per run using Heuristic 1. 11

Figure 3.3: An example of Heuristic 1 applied to a series of runs. 12

Figure 3.4: A graph of the score adjustment per run using Heuristic 2. 12

Figure 3.5: An example of Heuristic 2 applied to a series of runs. 13

Figure 3.6: A sample IncDev trail. 14

Figure 3.7: A sample condensed IncDev trail. 15

Figure 4.1: An image of the terminal output during a run of the IncDev tool. 17

Figure 4.2: A graph of the execution path of the IncDev tool. 17

Figure 4.3: A code snippet from a main function of the IncDev tool. 18

Figure 4.4: A sample input file used by the IncDev tool. 19

Figure 4.5: A sample output file produced by the IncDev tool. 20

Figure 5.1: A subset of historic data used to analyze Heuristics 1 and 2. 22

Figure 5.2: An overview of student performance on a week 10 assignment. 28

Figure 5.3: Additional experiment statistics. 29

Figure 5.4: A comparison of the number of offenses made per student. 30

Figure 5.5: A comparison of the magnitude of offenses made in each class section. 31

Figure 5.6: A chart of the number of students who checked their IncDev scores. 32

Figure 5.7: The results of several multiple choice survey questions. 34

Figure 5.8: A subset of the free response feedback received. 35

Figure 6.1: A sample coding timeline trail. 39

Figure 6.2: Sample time between submissions trails. 40

Figure 6.3: A sample lines of code trail. 42

 vi

Figure 6.4: An example of the ‘Differ’ function used in drastic change detection. 46

Figure 6.5: A sample drastic change trail. 46

Figure 6.6: An example of numerous coding trails with multiple students. 47

1

Chapter 1. Introduction of Thesis

 When working on programming assignments some students tend to write large

portions of code prior to testing or even attempting to compile it. This behavior can lead

to an increased amount of bugs, and potentially interconnected bugs that add an

additional layer of complexity to the debugging process. This in turn can lead to greater

student frustration and increased time spent debugging. The process of incremental

development involves writing a small piece of code, running it to verify whether it is

functioning as expected, and then repeating this process until the program is complete.

Incremental development is especially important for students first learning to program

since they’re more likely to introduce bugs. This is a beneficial process to follow during

development because it can enable students to catch the bugs they introduce early on.

Incremental development can also reduce debugging time since the bugs can presumably

be found in the most recent 5-20 lines written. Figure 1.1 gives an example of

incremental development. The black arrows indicate a path of development that a student

working incrementally may take, where a few lines of code are added at a time and

testing is done at each increment to verify no bugs have been introduced. The red arrow

indicates the development path a student may take if they are not developing

incrementally, as they instead add a large chunk of code before performing any testing.

2

Figure 1.1: An example of incremental development.

 In this thesis we set out to award points to students for following an incremental

development process using an automated assessment tool. The rules used to generate this

incremental development score are given to the students so they know precisely what is

required for them to receive a full score. We use the data produced by a popular

commercial auto-grader, zyBooks, as input to our tool. The files downloaded from this

auto-grader are available to any instructors who use it. Using this tool we hope to

encourage students to follow good programming practices on their way to creating a

solution rather than trying to rush to a solution irrespective of how they get there.

3

Chapter 2. Related Works

Auto-grading systems have been shown to be beneficial for numerous reasons

including providing instant, objective, and consistent feedback to students, improving

overall student performance, and reducing the workload of instructors and teaching

assistants. A 2015 paper found that introducing automated grading in computer science

courses led to substantial resource savings [5]. Additionally, the authors found that

automated grading systems did not hinder performance and could actually positively

impact student performance and lead to an increase in their level of interest in computer

science. On the other hand, the authors also discussed how there are some drawbacks to

auto-grading. One drawback is that it can be excessively strict since these programs are

unable to grant leeway in the same way a human grader might. Another concern raised in

the paper is that some students “throw submissions at automated grading instead of

learning to debug or test their code themselves” [5]. This is a phenomenon that we have

also observed, and we make an attempt to make these cases easier to identify in Chapter

5.

 A 2021 review of some of the most recently and actively developed auto

assessment tools discussed how there has been a proliferation of these tools in the past

decade [3]. The authors of this review classified 30 tools based on the types of feedback

they produce, the analysis they perform, and many other aspects. They found that all 30

of these tools checked for compilation errors and tested the correctness of the code

through output comparison or unit testing. These seem to be the most common and

4

popular types of auto assessment tools, and most of the tools included in the review

provide limited insights beyond these two features.

 Most auto assessment tools do not take into account a student’s entire submission

history, and instead look only at individual submissions in their analysis. A wealth of

information can be gleaned from looking at not only a student’s solution, but also the

process that they used to arrive at that solution [4]. Only 5 of the 30 tools included in the

2021 review collected code snapshots to use in their analysis. These snapshots enable a

more in-depth type of analysis that considers the process a student used to arrive at their

solution. However, out of these 5, only a single tool used these snapshots to perform

advanced analysis. The authors define advanced analysis as “collecting and presenting

information to enable deeper insights about students’ behavior during solution

development” [3]. The advanced analysis that this particular tool performs is limited to

code size variation, compilation error timeline, and execution sequence analysis [1]. To

the best of our knowledge, there do not exist any widely accessible auto assessment tools

that perform advanced analyses for the purpose of encouraging a particular programming

process.

5

Chapter 3. Incremental Development

3.1 Logged student behavior

We use log files generated by the zyBooks auto-grading system as input to our

incremental development tool. We use these files because they can be easily downloaded

by instructors that use the system in their classes and because zyBooks is used widely

among introductory computer science courses [2]. Many instructors using zyBooks also

instruct their students to perform all of their development inside of the zyBooks platform.

This is beneficial for our purposes since the log files thus contain a full history of

students’ development process. In addition, the log file format is generic and log files

produced by other homework platforms could be converted with relative ease to the

necessary format provided that the platform stores the necessary information, such as

code snapshots from each submission. A simple script could be written to automate the

conversion to the expected format.

Each row in a log file denotes an individual run made by a student. All runs for

every student that worked on a programming assignment are included in the file. The

necessary columns given in the file include student id, run type, timestamp, score, and a

link to the location where the code submission can be downloaded from. The ‘run type’

field can either be a ‘0’ or a ‘1’ indicating that the run was a ‘develop’ run or a ‘submit’

run, respectively. A ‘develop’ run means that the student was testing their code manually

and observing the results. A ‘submit’ run is when a student submits their code for auto-

grading to be assigned with a score. The ‘score’ column is left blank on rows that pertain

to develop runs and contains the auto-grader score for submit rows.

6

Student ID, Run type, Timestamp, Score, Code

1010, 0, 8/5/21 09:34:25, , http://…

1010, 1, 8/5/21 09:36:10, 5, http://…

1050, 0, 8/5/21 09:36:42, , http://…

1010, 1, 8/5/21 09:38:50, 6, http://…

Figure 3.1: A simplified log file snippet.

Figure 3.1 shows a sample log file consisting of two students with id values of

1010 and 1050. The first two rows show that student 1010 did a develop run at 9:34am

and a submit run approximately two minutes later at 9:36am. The submit run resulted in

an auto-grader score of 5. Student 1050 also did a develop run at 9:36am. The last row

shows that student 1010 did a final submit run at 9:38am and received an improved auto-

grader score of 6. Each row also contains a link to the source code that the student

submitted in that run. Throughout this thesis we frequently refer to the number of lines of

code contained in each students’ code submissions. This information is not included in

the log file, so we instead have to download the code linked in the log file and determine

the lines of code from the downloaded entry. This process is done automatically by the

tool we’ve created. The submissions used herein were hosted on Amazon Web Services

(AWS), however any publicly accessible hosting service could be used in its place.

3.2 Incremental development scores

 Given the quantity of data provided by these log files, we set out to create a tool

that could analyze the files and automatically generate a score representing how well

students were incrementally developing with the goal of encouraging them to do so. Our

aim in developing this incremental development (IncDev) score was to enforce a

7

reasonable level of incremental process while remaining simple enough for students to

easily understand how it is calculated.

 We chose to create a heuristic that would generate a score from 0 to 1 for each

student working on a particular programming assignment. A score of 0 would mean that

the student did a terrible job developing incrementally, 0.5 would mean that the student

did a poor job, and 1 would mean the student did an exceptional job. This score could

then be used by an instructor to assign incremental development points to their students.

The score could also be scaled up to match any quantity of points an instructor wants to

assign simply by multiplying it.

3.2.1 Depletion

 The first step in defining the heuristic to generate IncDev scores is to determine

what should be considered an incremental development violation, and how the score

should be impacted by such a violation. We chose to define a violation as any run where

the number of lines of code (LOC) exceeds the directly preceding run’s lines of code by

more than 20. We refer to this as the addedLOC rule. With the addedLOC rule defined,

we next consider how it ought to impact the IncDev score.

A cursory way to assign IncDev scores using the addedLOC rule could be with an

‘all or nothing’ rule. If none of a student’s runs break the addedLOC rule, meaning they

never added more than 20 lines in a single run, they receive an IncDev score of 1. If any

of a student’s runs violate the addedLOC rule, they receive an IncDev score of 0. This is

a naive way to generate the scores because it does not have any nuance, and can only

generate 2 possible outcomes. The ‘all or nothing’ rule fails to adjust to the egregiousness

8

of the violations made. For instance, if one student violated the rule with addedLOC = 21

and another student violated the rule with addedLOC = 41, they would both receive the

same IncDev score of 0. Ideally, the student with the smaller violation should receive a

higher IncDev score. This approach also fails to adjust to the quantity of violations made.

If one student violates the rule once with addedLOC = 25 and another student violates the

rule three times, each with addedLOC = 25, they will again receive the same score under

the all or nothing rule. Ideally, the student with fewer violations should receive a higher

IncDev score. Therefore, we continue to refine our IncDev depletion approach with a

new goal of proportionality to both the egregiousness and quantity of addedLOC

violations.

To meet the goal of proportionality to the severity of addedLOC violations we

modified our algorithm to deduct a proportional quantity from the IncDev score for each

violation. We chose a linear deduction of 0.04 * (addedLOC - 20) that is applied when a

student violates the addedLOC rule. With this new deduction method, a student who

made a submission where addedLOC = 21 would only be deducted 0.04 * (21 - 20) =

0.04. On the other hand, a student who made a submission with addedLOC = 41 would

be deducted 0.04 * (41 - 20) = 0.84. If these were the first violations made by each

student, the less severe offense would result in an IncDev score of 1 - 0.04 = 0.96,

whereas the larger offense would result in a much lower IncDev score of 1 - 0.84 = 0.16.

 With violation severity accounted for, we can now consider the quantity of

offenses. To do this we can simply accumulate deductions. A single offense where

addedLOC = 25 will result in a deduction of 0.04 * (25 - 20) = 0.2. If a student

9

committed 3 offenses where addedLOC = 25, the total amount deducted will be a much

larger 0.2 + 0.2 + 0.2 = 0.6. Again, assuming that these are the first addedLOC offenses

committed by the students, their scores will be 0.8 and 0.4 respectively.

 Modifications could be made to these rules. One thought is that a constant other

than 0.4 could be used. Another idea is to use an exponential deduction in place of the

linear one so that excessive addedLOC violations are penalized even further. Both of

these changes would require only minute code revisions. These modifications are not

explored further in this thesis.

3.2.2 Replenishment

 Introducing the depletion rule alone could be discouraging to students. Typically,

a benefit of auto-grading is that students can submit their code and immediately see what

they did wrong, and then re-submit with the relevant code updates to achieve a higher

score. If the IncDev score could only go down, that would run contrary to this goal. For

this reason, we also introduce a way to replenish the IncDev score so students can earn

credit back. This prevents students from digging themselves ‘into a hole’ where they are

unable to replenish their score. A simple replenishment rule is to add back a constant

amount of credit any time that a run does not violate the addedLOC rule. For our

purposes, we used a replenishment amount of 0.1. Similarly to the depletion formula, the

0.1 constant could easily be modified if desired.

3.2.3 IncDev heuristics

 To summarize, for each student present in a log file their IncDev score is

determined by considering each run they made chronologically. The IncDev score is

10

initially set to 1. For each run the score will either deplete or replenish. The score

depletes when more than 20 new lines have been added since the previous run. The

quantity of this depletion is calculated by the formula 0.04 * (addedLOC - 20). If more

than 20 new lines have not been added since the previous run, the score will be

replenished by a constant 0.1.

 These values are configurable, however we found that these constants produced

desirable results as discussed in the Chapter 5. An instructor might determine that a larger

addedLOC threshold would be preferable, for instance if it was being applied to an

assignment with substantially longer solutions. This could be accomplished with a

minimal code change.

 Another factor we took into consideration was whether to temporarily allow the

IncDev score to go above 1 or below 0. This led us to two distinct heuristics we call

Heuristic 1 and Heuristic 2. Heuristic 1 enforces strict bounds, so the score remains

between 0 and 1 at all times. We attempted this approach because it is intuitive and

simple to understand.

11

Figure 3.2: The IncDev score adjustment using Heuristic 1.

Our analysis showed that Heuristic 1 performed poorly when egregious

addedLOC violations occur. Regardless of the size of the offense, it would only take a

maximum of 10 runs to raise the IncDev score back to 1. Figure 3.3 demonstrates this

issue. The student makes a large leap from 19 to 121 lines of code, followed by 7 more

runs that don’t break the addedLOC rule. Using Heuristic 1 they end with an IncDev

score of 0.7, whereas given the egregiousness of their violation a more appropriate score

may be in the 0-0.3 range.

12

LOC and IncDev score for each run: 19 (1), 19 (1), 121 (0), 123 (.1), 122

(.2), 130 (.3), 132 (.4), 132 (.5), 135 (.6), 136 (.7)

Figure 3.3: An example of how the IncDev score changes over several runs using Heuristic 1.

To counter this issue we developed Heuristic 2 which allows the IncDev score to

temporarily drop below 0, but still never above 1. We don’t allow the score to go above 1

so that students can’t excessively ‘pad’ their score since the replenishment amount is

already relatively generous. If the score ends up negative, we map it to 0. Heuristic 2

generally produced more desirable results as discussed in the Chapter 5.

Figure 3.4: The IncDev score adjustment using Heuristic 2.

13

Figure 3.5 shows how Heuristic 2 performs better than Heuristic 1 given the same

sequence of runs seen in Figure 3.3. When the student makes the jump from 19 to 121

lines their IncDev score drops to -2.28. The student would thus need to make 33 non-

offending runs to raise their score all the way back to 1, as opposed to only 10 non-

offending runs using Heuristic 1. This student only made 7 runs after the violation so they

finished with a score of -1.58, which would then be mapped to a final score of 0. We

found that Heuristic 2 provided a good balance between being fair, replenishable, and

accurate.

LOC and IncDev score for each run: 19 (1), 19 (1), 121 (-2.28), 123 (-2.18),

122 (-2.08), 130 (-1.98), 132 (-1.88), 132 (-1.78), 135 (-1.68), 136 (-1.58)

Figure 3.5: An example of how the IncDev score changes over several runs using Heuristic 2.

3.2.4 Incremental development trails

 One of the goals of auto-grading is to provide students with feedback while

they’re actively working on an assignment, rather than only after they make their final

submission. In line with this goal we came up with a way to display students’ IncDev

score histories, which we call the IncDev trail. The IncDev trail consists of the lines of

14

code in each run a student made, the IncDev score that resulted from each run, and ‘^’

characters denoting drastic change. The concept of drastic change will be covered in

detail in Chapter 6.

15 (1), 45 (0.6), 70 (0.4), ^75 (0.5), 75 (0.6), 77 (0.7)

Figure 3.6: A sample IncDev trail.

Figure 3.6 gives an example of an IncDev trail. The student first submits 15 lines

of code. The addedLOC rule is not violated by this run, so they maintain their starting

IncDev score of 1. This IncDev score is displayed in the parentheses directly after the

lines of code. Next they submit 45 lines of code which drops their IncDev score to 0.6.

They then submit 70 lines of code, again violating the addedLOC rule and resulting in an

IncDev score of 0.4. They then finish by making 3 runs that don’t violate the addedLOC

rule, each raising the IncDev score by 0.1. A drastic change also took place in the first of

these three runs, so a ‘^’ character is prepended to the lines of code. The student finishes

with a final score of 0.7.

 Some students will run their code in excess of a hundred times which can result in

very long and cumbersome IncDev trails. This is acceptable for the purpose of sharing

scores with students since each student only needs to look at a single trail. That being

said, this is not as beneficial for instructors trying to get a quick overall look at their

students’ behavior and performance. For this reason, we also created a more condensed

version of the IncDev trail which only displays the IncDev score portion of the trail when

an addedLOC violation has occurred, or when a student has fully replenished their

IncDev score back to 1. The IncDev score is always displayed for the first and last runs in

15

the trail. This is beneficial because it can substantially reduce the length of the trail,

especially when a student is not repeatedly making addedLOC violations or their score

has remained at 1 for long stretches of their submission history.

15 (1), 45 (0.6), 70 (0.4), ^75, 75, 77, 85, 90, 100 (1)

Figure 3.7: A sample condensed IncDev trail.

To reduce clutter in other trails we also introduced a concept that we call visual

compaction which uses a set of rules to replace consecutive less notable runs with ‘.’

characters. This will be discussed in further detail in Chapter 6.

Chapter 4. Incremental Development Tool

4.1 IncDev tool overview

 We developed a Python application to produce the incremental development

scores and the various coding trails presented in this thesis. One of our principal goals

during the development of this tool was to make it lightweight and easy to deploy so that

instructors and teaching assistants would not need to go through an extensive and error-

prone setup process. Initially we developed the incremental development tool as an

extension of an analysis tool created as part of a previous project. Plans were made to

publish the tool on either a university supported website or through Amazon Web

Services. These plans were later changed as a result of the prohibitive amount of time that

would be required to make it stable and secure, given the sensitivity of the student data

that it runs the analyses on. It was then decided that the incremental development tool

would become one of a suite of locally run, terminal-based analysis tools. This would

enable instructors and teaching assistants to use the tool with relative ease without taking

16

on any additional security risk, as they would not need to upload any student data to an

external server.

4.2 Running the application

The tool repository contains a readme.txt file that explains in detail how to run it.

In order to get started, the user needs to have Python 3 and the Python package manager

‘pip’ installed locally. Users who have worked with Python in the past are likely to

already have these installed, as pip is currently the most popular Python package manager

available. The remaining steps can be run on any standard terminal application such as

Windows Powershell or the native Mac or Linux terminals. Once inside the tool's folder,

the user should run the command pip install -r requirements.txt. This command installs

the 3 python libraries found inside the requirements.txt folder. These 3 common libraries

are pandas, requests, and datetime. The pandas and requests libraries are used in the file

main.py. Pandas is used to create dataframes, a more efficient and easy to wield data

structure for storing large quantities of data in a spreadsheet-like format. In our codebase,

pandas is used to store and process the contents of the input spreadsheet. We use the

requests library to download student code submissions from the remote server. We use

Amazon Web Services to host these code submission files, but any hosting service that

can be reached by the requests library can be used in its place. Finally, the datetime

module is used to create standardized datetime objects from the timestamps passed to it.

This allows us to support multiple different timestamp formats in the input file, as they

are internally adjusted to match the expected format. After these libraries have

successfully been installed the tool can be run with the command python3 main.py.

17

Figure 4.1: Example of terminal output during a typical run of the IncDev tool.

Upon running the user will be prompted for the name of the file they would like to

analyze. The input file must be placed inside the folder titled 'input' to be detected by the

tool. After the analysis is completed a success message is displayed and the output file is

generated in the folder titled 'output'. The name of the output file is the same as the input

file, but with 'output_' prepended to it.

4.3 Path of execution

Our tool consists of 815 lines of code spread across 5 files. Figure 4.2 shows

execution the path taken during a run of the tool.

Figure 4.2: The execution path of the IncDev application.

Execution begins in main.py where the data from the input file is read and stored

into a Pandas dataframe. The dataframe is then parsed row by row and a Python

dictionary named metadata is built and populated with the email and name values for

each student in the input file. The metadata dictionary is used later on when writing the

18

output spreadsheet. A nested dictionary named data is also created at this time. A

function called get_code is called for each row in the dataframe. The get_code function

takes in one parameter, a URL, downloads the code submission stored at that URL

location, and returns it as a string. At this point a submission object is created storing the

code string along with additional metadata about that submission such as the time it was

made, the score it received, and its type. Once the full list of submission objects have

been stored in the data dictionary for every student in the log file, execution moves to the

incdev.py file where the analysis will take place.

Figure 4.3: A snippet of the main function in the incdev.py file.

The main function of the incdev.py file is responsible for creating and populating

the incdev_data dictionary. This dictionary stores the results of all analysis that takes

place within the file. 6 other prominent functions are also housed in this file, 1 to generate

the incremental development scores and 5 to generate each of the unique coding trails.

These 6 functions are called for each user within the passed in data dictionary parameter.

Figure 4.3 shows the snippet of this file responsible for calling each of these functions for

every user.

19

Once the analysis results are returned from the incdev.py file, we begin the

process of generating the output file. Our output is in the form of a comma separated

values (CSV) file. This is a common form of file that can be imported into any standard

spreadsheet viewer such as Microsoft Excel or Google Sheets. We parse through the

dictionary of analysis results student by student, writing the CSV file one row at a time

using the standard python module 'csv'. The output file is generated in the folder titled

'Output'. If this folder doesn't already exist in the current directory, it will be

automatically created. Finally, the program prints a 'success' message and execution

terminates.

4.4 Sample input and output files

Figures 4.4 and 4.5 show sample input and output files that would be provided to

and generated by the incremental development tool, respectively. Several of the columns

in Figure 4.5 have not been explained yet, but they will be covered in detail in Chapter 6.

section user_id name date_submitted zip_location submission score

5.15 112 Student 1
2022-05-12

12:40:02
https://aws1... 0

5.15 112 Student 1
2022-05-12

13:20:05
https://aws2... 0

5.15 112 Student 1
2022-05-14

12:09:00
https://aws3... 1 4

5.15 205 Student 2
2022-05-14

23:35:42
https://aws4... 1 3

5.15 205 Student 2
2022-05-14

23:44:23
https://aws5... 1 5

Figure 4.4: An example of an input file provided to the tool.

20

User

ID
Name

IncDev

Score
IncDev Trail

LOC

Trail

Time

Between

Subs Trail

Coding

Timeline

Trail

Drastic

Change

Trail

112
Student

1
0.9

20 (1), ^45

(0.8), 60 (0.9)

20, ^45*,

60
- / -0

05/12 S --

M 4
2

205
Student

2
0.3

40 (0.2), 56

(0.3)
40*, 56 0,9

05/14 M

3,5

Figure 4.5: An example of an output file produced by the IncDev tool.

4.5 Future improvements

One of the most substantial quality of life improvements that could be made to the

tool would be to parallelize the code submission download process. Currently this

process takes substantially more execution time than the analysis itself because a

download request needs to be made for every run made by each student in sequence.

Another quality of life improvement would be to add support for including multiple

distinct programming assignments in the same input file. Most of the infrastructure that

would enable this feature has already been implemented, but it needs to be expanded on

and debugged before it can be used. At present, we chose to exclude support for multiple

assignments to favor the tool’s stability over feature density.

21

Chapter 5. Efficacy of Incremental Development Heuristics and Scores

5.1 Manual grade comparison

Our first experiment was carried out with the goal of comparing Heuristic 1 and

Heuristic 2. We ran the experiment on historical data generated from the final project lab

of a CS1 course offering in Spring 2021, consisting of 100 students. At the time of this

class the incremental development score had not been created yet so students were not

working with this in mind, however they were instructed to complete all development

within the zyBooks programming system. This instruction was given in part with the

purpose of ensuring students were writing their submissions themselves, rather than

copy-pasting a solution that someone else had written. As a result, the data should be a

complete record of all the students’ work on the assignment, and representative of typical

student development. Each student was required to complete a custom project, so their

solutions were unique. No template code was provided to students.

We generated Heuristic 1 and Heuristic 2 results for each student that submitted

the project, and visually scanned each student’s run history to pick a subset of 20 students

that appeared to be representative of the scope of different series of runs. We then

manually assigned each student in the subset with an incremental development grade

where ‘A’ meant they deserved full credit for consistently developing incrementally, ‘F’

meant they deserved no credit, and ‘B’, ‘C’, and ‘D’ fell in between. We assigned the

manual grades to get a sense of whether the heuristics were producing grades consistent

with our intuition.

22

S G H1 H2 LOC per run. To save space in this table, ... replaces 10 runs with no rule violations and all LOCs within those

on the left and right.

1 B 1 1 60, 60, 60, 60, 59, 58, 58, 54, ..., 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 68, 68, 67

2 B 1 1 100, 101, 101, 103, 103, 104, 105, 108, 108, 109, 109, 126, 126, 135, 135, 135, 138, 138, 138, 138,
233, ..., 242, 147, ..., 161, 161, 161, 163, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167

3 A 1 1 16, 15, 16, 16, 21, 21, 23, 24, ..., 27, ..., 26, 29, 29, 29, ..., 35, ..., 41, ..., 41, 41, ..., 43, 59, 66, 66,
67, 67, 67, 67, 67, 67, 67, ..., 75, ..., 92, ..., 95, ..., 101, ..., 102, 99, ..., 109, ..., 125, 127, ..., 121, ...,
131, ..., 131, ..., 140, ..., 140

4 B 1 1 48, 48, 48, 49, 70, ..., 71, ..., 70, 70, 77, 101, ..., 116, ..., 116, 130, ..., 129, 129, 117, 117, ..., 4, 134,
133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, ..., 145, 150, 151, 155, 155, 156, 156, 156,
156, 156, 156, 156

5 D .2 0 13, 13, 13, 13, 13, 13, ..., 16, 16, 17, 17, 17, 17, 17, 28, 28, 28, 54, 124, 154, 154, 156

6 B 1 1 47, 47, ..., 57, 72, 72, 36, ..., 36, 37, 37, 38, 38, ..., 43, 43, 43, 43, 44, 44, 44

7 B 1 0 42, 42, 43, 44, 44, 55, 55, 55, 61, 61, 74, 74, 74, 74, 78, 77, 79, 82, ..., 82, ..., 89, 89, 89, 89, 95, 95,
94, 94, 90, 90, 91, 91, 91, 140, 136, 138, ..., 141, ..., 153, 153, 1, 164, 176, 176, ..., 187, 186, 186,
186, ..., 218, 218, 218

8 F .8 0 205, 205, 205, 205, 205, 205, 205, 205, 205

9 A 1 1 23, 24, 24, ..., 49, 49, 49, 58, ..., 61, 61, ..., 61, 61, 62, 63, 63, 58, 58, 58, 58, 58, 58, 63, 71, 71, 80,
80, 80, 86, 86, 86, 86, 86, 86, 86, 86, 113, 85, 85, 85, 85, 86, 86, 86, 84, 86, 88, 88, 88, 88, 92, 93,
97, 97, 97, 97, 97, 97

10 B 1 1 20, 65, 65, 65, 66, 66, 66, 78, 78, 78, ..., 96, 95, 153, ..., 169, 180, 180, 181, 181, 184, 184, 213, ...,
232, ..., 243, 243, 244, 250, 252, ..., 262, ..., 280, 279, 279, 280, 283, 284, 285, 285, 285, 285, 284,
227, 235, 235, 260, 260, 260, 260, 275, 275, 275, ..., 274, 274, 274, 274, 274, 274, 268, 268, 268,
268, 268, 268

11 F .7 0 19, 19, 121,, 136

12 A 1 1 56, ..., 67, ..., 70, ..., 82, 82, 86, 96, ..., 99, 99, 130, 130, 130, 130, 130, 131, 131, 131, 131, 132, 133,
133, 133, 133, 133, 133, 135, 135, 135, 135, 137, 144, 156, 165, 165, 171, 171, 171, 182, 195, 185,
185, 189

13 B 0.4 0 28, 37, 37, 37, 37, 39, 39, 39, 37, 42, 43, 41, 41, 41, 58, ..., 65, 65, 64, 65, 65, 65, 67, 68, 68, 73, 70,
73, 73, 73, 72, 74, 64, 72, 72, 63, 63, 63, 62, 62, 47, 48, 47, 47, 49, 49, 47, 47, 48, 99, 48, 97, 97,
97, 98, 98

14 B .91 .91 34, 34, 34, 36, 36, 40, 40, 37, 37, 37, 37, 35, 36, 36, 36, 36, 36, 36, 34, 34, 34, 36, 36, 74, 76, 76,
76, 78, 78, 78, 78, 77, 77, 80, 80, 79, 78, 80, 80, 79, 79, 81, 81, 81, 81, 124, 124, 125, 127, 130, 141,
141

15 B 1 .98 10, 84, 84, 89, 89, 89, 93, 93, 93, 89, 89, 89, 89, 88, 88, 88, 91, 107

16 D .2 0 22, 25, 25, 25, 49, 49, 49, 50, 129, 130, 129

17 A 1 1 27, 30, 30, 35, 40, 40, 42, 42, 46, 47, 49, 49, 51, 53, 59, 61, 62, 62, 60, 66, 66, 67, 85, 92, ..., 98,
120, ..., 123, 123, 164, ..., 168, 168, 168, 168, 172, 172, 180, 181, 181, 170, 170, 170

18 D 1 0 114, 114, 114, 114, 114, 116, 117, 118, 118, 118, 116, 116, 116, 115, 115, 126, 127, 129

19 C .9 .64 21, 23, 42, 43, 43, 40, 45, 45, 51, 113, 113, 113, 113, 118, 118, 118, 118, 118, 118

20 C .9 .48 82, 82, 82, 84, 84, 84, 84, 85, 85, 83, 107, 107, 115, 115, 139, 140, 140, 150, 156, 157, 211, 211,
211, 211, 211, 211, 211, 211, 212, 212

Figure 5.1: An analysis of the heuristics using a subset of historic data.

Figure 5.1 shows the results of this experiment. The ‘G’ column contains the

grade that we manually assigned. The ‘H1’ and ‘H2’ columns contain the scores

produced by Heuristic 1 and Heuristic 2, respectively. The last column displays the lines

of code submitted in each run that a student made. AddedLOC offenses are highlighted in

23

yellow, and some repeated non-violating runs have been replaced with ‘.’ characters for

brevity.

Heuristic 1 did not perform well, as it assigned higher scores than our manual

grading suggested were deserved in a majority of cases. The reason for this is that the

IncDev score never dips below 0, regardless of the size of the violation. If a student

makes an egregious violation and their score drops to 0, they only need to make 10 non-

violating runs to replenish their score and receive full credit. Perhaps the clearest example

of this is student 8 who submitted 205 lines in their very first run, followed by 8 runs

where the lines of code did not change. This is clearly not an example of incremental

development, as nearly all development was done prior to submitting for the first time.

The student was assigned a grade of 0.8 by Heuristic 1, whereas the manually given

grade was an ‘F’. Students 11 and 18 similarly completed nearly all of their development

in a single run, making leaps of 102 and 114 lines respectively. Each student did make

some additional runs after the jumps however they did not add many more lines of code.

Heuristic 1 produced scores of 0.7 and 1 for these students, once again much higher than

the manually assigned grades of ‘F’ and ‘D’.

Heuristic 2 produced scores that were more in line with the manually assigned

grades. Since the score can temporarily become negative, the placement of addedLOC

violations within a students’ run history has less of an impact on the final score. That

being said, since the score still can’t go above 1, students can’t accumulate a large

positive score from repeated unoffending runs. Therefore, the placement of violations

relative to non-offending runs still have an impact on the final score. Students 8 and 11

24

who were referenced previously received Heuristic 2 scores of 0, which are consistent

with the manual grades we assigned them. Student 18 also received a Heuristic 2 score of

0. This is lower than the manual grade we gave them, but closer to what we’d expect

especially when compared to the full credit that Heuristic 1 produced. Heuristic 2 also

proved more capable of producing scores in the mid-range. Student 19 made a substantial

jump from 51 to 113 lines, a 62 line difference, but they also appeared to develop

incrementally prior to and after that. We gave them a manual grade of ‘C’ and Heuristic 2

gave them a score of 0.64, close to what we were expecting. Student 20 made several

jumps during their 30 runs, the largest of which was 54 lines. Heuristic 2 produced a

score of 0.48, again reasonably consistent with our assigned ‘C’ grade.

This was our first look at how the heuristics performed on a large set of real

student data. We found that there were some cases that would be difficult to account for

in an automated algorithm. One such case is seen in student 13 who submitted the series

of lines [48, 99, 48, 97] near the end of their development. This resulted in 2 separate

addedLOC violations that substantially lowered their score. Upon looking at the actual

code they submitted we found that the student had added some code, removed it, and then

added nearly the exact same code back during the final run listed. Heuristic 2 gave them a

score of 0 because of these penalties, however a manual grader would have been able to

identify what happened and likely wouldn’t punish them for the second violation. It

would be a much harder task to write an algorithm to catch niche cases such as this.

Another case where a student was penalized when a manual grader likely wouldn’t have

done so is in student 7. This student submitted the series of lines [153, 1, 164] during

25

their development. This appears to Heuristic 2 to be an egregious violation and was

single-handedly responsible for the student’s resulting score of 0 (they had earlier

violations, but their score had replenished to 1 by the time the listed runs took place).

Looking at their code revealed that the single line run contained the text, “//I'm making a

backup of my code just in case.” A grader could quickly identify atypical cases like this,

but it would again require a more complicated algorithm to identify and address them

automatically. In addition, since we aimed to make our heuristic easy to understand by

students and instructors, adding cases to catch niche situations like these would make it

difficult to easily understand the rules that govern the scores. On the other hand, these

students were also not aware of the IncDev heuristic while they were working on this

assignment. Students who know they are being graded in this way may develop more

carefully, let their instructor know if they accidentally made a submission that

dramatically dropped their score, or simply run their program a sufficient number of

times to fully replenish their score.

Another criticism of this approach could be that it is too easy for a student to get

full credit when they may not necessarily deserve it. A student trying to ‘game’ the

IncDev score could ignore the addedLOC rule while developing, and then repeatedly

submit their code once they have finished their assignment until their score has been fully

replenished. While this is true, the goal of the IncDev score is to encourage students to

use better process while working on their assignments. Although some students could

‘game’ the system in this way, the intention is that more students will take incremental

development into consideration and try to legitimately earn a good IncDev score.

26

Repeatedly submitting would also require additional time, especially with the use of

Heuristic 2 and depending on the extent to which the student was violating the addedLOC

rule. If this is not enough deterrent, changes could be made to the heuristic to prevent

rapid repeated submissions from improving their score, or perhaps even make this

behavior deplete the score by some amount. All in all, having an IncDev score that could

be ‘gamed’ with some effort still seems preferable to not encouraging incremental

development at all, as is the case currently. Additionally, simply by attaching a point

value to incremental development, students are reminded that it is an important aspect of

the programming process and they are more likely to work with it in mind. We also

would not want to disallow all replenishment as that could discourage students and lead

to further frustration. While not perfect, Heuristic 2 frequently outperformed Heuristic 1.

For this reason we used Heuristic 2 in the remainder of our research, and further

references to the IncDev algorithm can be assumed to use this heuristic.

5.2 Introducing IncDev scores in a CS1 course

5.2.1 Methodology

 We carried out experiments over the course of two separate weeks during week 8

and week 10 of the Spring 2022 quarter. The experiment involved 3 class sections of

sizes 101, 99, and 127 students. The 127 student section, which we will refer to as

‘section 3,’ was informed of the IncDev score and was given an instruction sheet

explaining how the score was calculated as well as a link to a Google Sheets spreadsheet

which would be filled with the students’ IncDev scores and IncDev trails over the course

of the experiment. The TA for this section went over both of these documents with the

27

students during a lab section and answered clarifying questions to ensure everyone

understood the purpose of the score, as well as how it would be calculated. It was also

explained to the students that their most up to date IncDev scores would be posted each

night during the week so that they could track their current scores and view a history of

how each run they had made impacted it. The other two sections were not made aware of

the scores. The week 8 assignment used in the experiment was a standardized lab,

meaning that all students were working on the same programming task rather than

creating unique projects. As a result, solutions were relatively similar among students. An

instructor solution had also been created which consisted of 47 lines of code. After

completing an analysis of the data collected during week 8, we found that effects of the

IncDev score were relatively indeterminate due to the limited solution size of the lab.

Given the outcome of our first experiment, we chose to carry out the same experiment in

week 10 of the quarter on a substantially larger programming assignment. The instructor

solution for this assignment was 247 lines of code, so it was expected that students’

submission histories would be much longer and incremental development would be more

relevant.

5.2.2 Results

 After the week 10 experiment was completed, we compiled the students’ IncDev

scores and score histories for analysis. We considered numerous aspects of their

development. There were several students in each class section that never submitted more

than 50 lines of code. Given that the instructor solution for the assignment was well over

200 lines long, we believe that these students likely never attempted to make substantial

28

progress on the assignment. As a result, we decided to do distinct analyses both with and

without these students included. In addition, not all of the students in each section

submitted the lab. This may have been due to students who dropped the course at some

point during the quarter, or who were planning to retake it at a later date and were no

longer submitting assignments. These students were not included in any analyses.

 Students Average LOC Average score (%) Avg. IncDev score

Section 1 64 155 67.79 0.9

Section 2 70 144 63.63 0.84

Section 3 87 157 71.97 0.95

Section 1* 60 163 72.31 0.89

Section 2* 63 157 70.7 0.84

Section 3* 82 165 76.36 0.95

Figure 5.2: An overview of student performance on the week 10 assignment. ‘*’ denotes rows where

students who submitted less than 50 lines were omitted from the calculations.

 Figure 5.2 shows the number of students in each section who worked on the

assignment, the average lines of code in their final submissions, the average auto-graded

score they received on the assignment, and the average IncDev score that they received

from our tool. The overall scores were higher in section 3, although this could be due to

any number of factors aside from the inclusion of the IncDev score. The average IncDev

scores were also highest in section 3, though not by a significant margin. Even though

there isn’t a great difference between the average IncDev scores, it seems reasonable to

suggest that informing the students of the score is the reason section 3 has higher scores.

Since sections 1 and 2 which were unaware of the IncDev scores already received very

high scores, the slight increase up to 0.95 in section 3 is more substantial. It is also

29

notable that the average IncDev scores were almost unaffected by the removal of students

who didn’t submit more than 50 lines with the exception of section 1 which dropped by a

negligible 0.01.

 Avg. # lines added per run Avg. line diff between first and

last runs

Section 1 6.59 111

Section 2 6.68 99

Section 3 6.01 120

Section 1* 6.56 117

Section 2* 6.66 109

Section 3* 5.97 126

Figure 5.3: Additional statistics from the experiment. For average lines added per run, consecutive runs of

the exact same length were not included in the calculation.

We also found that on average, students in section 3 added fewer lines per run.

This is consistent with what we’d expect if students were making an intentional effort to

develop incrementally. In our manual comparison from section 5.1 we saw that several

students completed a substantial portion of their program before running it for the first

time. To attempt to see whether introducing the IncDev score reduced this behavior, we

calculated the average difference in lines between students’ first and last runs. Students in

section 3 had slightly larger line differences, suggesting that they did relatively less

development prior to running and testing their code for the first time.

30

Figure 5.4: A comparison of the number of offenses made by each student.

 In comparing the quantity of addedLOC offenses made by each student we found

that section 3 had the most offenses and repeat offenders, although it had fewer students

who made more than 4 offenses. Section 3 may have the highest raw number of students

with at least one violation in part because this section had the most students. In sections 1

and 3, 94% of students made at least one violation, compared to 90% in section 2. So, it

seems that introducing the IncDev score did not have an impact on the overall number of

students who violated the addedLOC rule. One possible explanation for this is that since

students were able to track their IncDev score throughout the week, and since they knew

how to replenish their score, they were comfortable making a few replenishable offenses.

An alternative explanation could be that students were simply ignoring the IncDev

scores, although we will see that the magnitude of student offenses suggests this may not

be the case.

31

Figure 5.5: A comparison of the magnitudes of offenses made in each section.

 We found that students in section 3 committed substantially more minor

addedLOC offenses (0-20 lines over), around the same number of medium sized offenses

(21-60 lines over), and notably fewer large offenses (61-101+ lines over) when compared

to the other 2 sections. This analysis of the large offenses holds true both in raw numbers,

as well as the percentage relative to the total number of offenses. 7.4% and 11% of

offenses in sections 1 and 2, respectively, were large offenses. In comparison, only 2.4%

of offenses in section 3 were large. This may suggest that students in section 3 were

developing with the IncDev score in mind and took care not to make egregious violations

which could make their IncDev scores difficult to replenish. The higher number of minor

offenses in section 3 could partially be attributed to the larger number of students in the

section. An additional possibility is that students knew they could easily replenish their

scores as long as they didn’t make egregious violations of the addedLOC rule, and

32

therefore weren’t afraid to submit runs with small violations that they could replenish

within a few additional non-offending runs. In the context of incremental development,

minor addedLOC offenses are much more desirable than egregious offenses.

Figure 5.6: The number of students that checked their IncDev scores each day.

 The most up to date IncDev scores and IncDev trails were posted nightly while

students were working on the assignment so they could track their progress and see how

their runs throughout the day had impacted their score. We found that relatively few

students checked their scores each day. The most interactivity occurred on June 1st, a day

after the assignment was first given to students. 39 students opened the spreadsheet that

day, compared to the 87 students total that submitted the assignment during the course of

the experiment. The number of students opening the spreadsheet dropped off rapidly after

June 1st, with less than 20 students checking it in the following two days and less than 10

opening it in the remaining days that the assignment was available. We are unable to see

which particular students checked their scores each day, so it is unclear whether the same

33

students were returning each day or if there were new students checking their scores for

the first time. One possible theory as to why there wasn’t much student engagement with

the scores is that since it didn’t have much bearing on their grades, they simply didn’t

care to check them. A possible solution to this would be to attach the score to a slightly

larger piece of the assignment score, or to perhaps have the IncDev score impact the

assignment grade as a whole in some way. For instance, the assignment grade could be

capped at a certain amount proportional to a students’ IncDev score. Another potential

explanation may be that students forgot about the IncDev scores. This could explain why

there was such a drastic drop in viewers after June 1st, right around when students had

their lab section and were reminded of the scores. If this were the case, daily reminders in

class that the scores are being generated and posted may be enough to boost student

awareness and engagement.

 Our analysis suggests that the IncDev score may have promise, but the results

were inconclusive. On average students in section 3 submitted fewer new lines per run,

did less of their development prior to their first submission, and made smaller sized

addedLOC violations. Section 3 additionally had fewer students who committed more

than 4 offenses. That being said, the improvements in these areas were not by a wide

margin. We feel that more experimentation would need to be done to determine the

extent to which adding the IncDev score impacts student behavior. We discuss

suggestions for further experimentation in Chapter 7.

34

5.2.3 Survey results

 A survey was issued to students in section 3 following the experiment to gauge

whether they understood the IncDev score and to learn what their opinion of it was. The

survey included 3 multiple choice questions and one free response question. 55 responses

were received.

Figure 5.7: The results of the 3 multiple choice survey questions.

 The first question asked students whether they understood the IncDev score.

About 85% of students answered in the affirmative, with ‘strongly agree’ being selected

by 49.1% of the students. The next question was whether the students felt that the IncDev

score made them more aware of the importance of incremental development. Again, over

85% of students submitted affirmative answers. The final question asked whether

students felt the scores encouraged them to develop incrementally. Consistent with the

first two response sets, around 85% of students answered positively.

35

 A free response question was also included in the survey, asking students for any

general comments or feedback they wanted to provide about incremental development

and the IncDev score. We received a range of positive and negative responses.

Student 1 It is a good reminder and forces me to develop incrementally since I have a

habit of not doing so.

Student 2 The only struggle with the incremental development score was that I

couldn't tell if I was supposed to write the code incrementally AND submit

it incrementally or just write it incrementally. I ended up submitting it

individually with every new piece which felt a little pointless because I had

just run each little piece on its own and knew it worked.

Student 3 Incremental development is important but having the score and limiting the

lines we can submit means I sometimes can't get all my ideas down at once

which in the long run hurts my score.

Student 4 I didn't like it. Sometimes you need to run code that is 22 lines, when the

limit was 20. so losing points for that isn't helpful

Student 5 I appreciate the challenge to slow down when trying to figure out the

problems

Figure 5.8: A subset of student feedback from the free response survey question.

Figure 5.8 contains some of the feedback received on the free response survey

question. One insight gleaned from the responses to this question was that some students

felt limited by the addedLOC rule. Student 4, for example, expressed frustration about

losing points for minor addedLOC violations. Similarly, student 3 felt that limiting the

number of lines they could add before it would impact their IncDev score hindered their

ability to “get all [their] ideas down at once.” Other students expressed appreciation for

the score, with student 5 stating, “I appreciate the challenge to slow down” and student 1

claiming, “it is a good reminder and forces me to develop incrementally since I have a

habit of not doing so.” Finally, some students expressed that they did not understand the

36

theory behind the IncDev score, with one simply stating, “not really sure why we use

that.” Student 2 also expressed confusion writing, “...I couldn’t tell if I was supposed to

write the code incrementally AND submit it incrementally or just write it incrementally.”

The multiple choice questions indicate that overall students were able to grasp the

incremental development score, that it raised their awareness of the importance of

following this practice, and that it encouraged them to enact it. The free response

question revealed another facet of students’ reception of the score, which is that although

most students understood the score and its purpose some disliked it in practice. It’s

possible that those who felt limited by the IncDev score felt afraid of even temporarily

lowering their score despite the fact that they could replenish it quickly, and likely would

be able to do so in the course of their normal development. For instance, the example of

an unhelpful case given by student 4 was a submission with an addedLOC of 22. In

reality this would only lower their score by 0.08, an amount that would be replenished in

excess by just one additional non-offending run. This fear of having a temporarily

lowered IncDev score could potentially be combated in future quarters by stressing the

fact that the final score is the only one considered for grading, that it is reasonable to

occasionally submit slightly more lines than the established addedLOC limit, and that the

replenishment portion of the IncDev heuristic is intentionally designed such that students

can make some minor violations and still end up with full credit.

 The results of the multiple choice questions in the survey suggest that our score

did have the intended effect of raising students’ awareness of developing incrementally,

as well as encouraging them to actually implement this habit in their development. Some

37

of the free response feedback from students echoed this sentiment, however others also

expressed frustration at the limitations the score imposes and felt that it negatively

impacted their development.

38

Chapter 6. Coding Trails

 In Chapter 3 we detailed the incremental development trail which was developed

with the goal of showing students precisely how their IncDev scores were affected by

each run in their development history. Prior to creating the incremental development trail,

we also created several other coding trails with the purpose of giving instructors an

overview of numerous aspects of students’ development. Each trail uses a shorthand

notation that, once understood, is easily interpretable. These trails were included in the

same tool that generates the IncDev scores to produce a spreadsheet that provides

instructors with a cohesive look at each students’ behavior.

6.1 Coding timeline trail

 The coding timeline trail provides information about which days a student worked

on an assignment, how many days they worked on it, how many submit and develop runs

they made, and what auto-grader scores they received. Every coding timeline trail starts

with the date that a student started working on their assignment in the ‘MM/DD’ format,

followed by the day of the week that date represents. A single letter is used to represent

each day of the week. The first letter of the day is used except for Thursday which is

represented by an ‘R’ and Sunday which is represented by a ‘U’. Next, a series of

numbers and ‘-’ characters are listed to represent each run that a student made. ‘-’

characters represent develop runs where a student is independently working on their

program and running it to test their code manually. When a student makes a submit run,

where they submit their code to be auto-graded, the score that run receives is added to the

trail. If more than one consecutive submit runs are made their numbers are separated by

39

commas. If a student’s work spans more than one day, another letter is added to the trail

indicating the current day. If their work spans more than 7 days, the ‘MM/DD’ date will

be added again to indicate this.

01/30 W --6,7 F -8--- 02/07 R -10

Figure 6.1: A sample coding timeline trail.

 Figure 6.1 shows an example of a coding trail. The student begins their

development on January 30th, a Wednesday. They make two develop runs and two

submit runs, on which they get a score of 6 and then 7. They work again on Friday of the

same week when they make one develop run, a submit run that receives a score of 8, and

three more develop runs. They don’t run their code again until February 7th, 8 days after

the first day they worked on the assignment. On the 7th they do one more develop run and

a final submit run that gets an auto-grader score of 10.

This trail was inspired by a similar trail that is used in the online programming

system zyBooks. The zyBooks trail is updated each time a student runs their code so that

students and instructors can immediately view it. We chose to mirror this trail in our tool

since our tool is compatible with log files generated by other programming submission

systems, so instructors that aren’t using zyBooks could now have access to it. It is also

beneficial for instructors who do have access to zyBooks, as they don’t need to open a

separate window and match students up between the two outputs.

6.2 Time between submissions trail

 Students using auto-grading homework systems sometimes rapidly submit their

code to try and pass the particular test cases given to them. They will submit their code,

40

make a rushed change without putting much thought into it, and submit again to

essentially ‘guess and check’ their way to the correct solution. This is generally

undesirable as it could prevent students from thinking critically about and learning from

the debugging process. This can in turn negatively impact students later on once they’re

developing real world applications. We developed the time between submissions trail so

that instructors could see how frequently students are submitting their code to be auto-

graded, and to see whether students are manually testing their code in between

submissions. This is also in line with our more general goal of providing tools for

instructors to identify what type of programming processes students are following to get

to their assignment solutions.

Student 1: ----0,3---8

Student 2: 0,2,0,0,2,0,1 / 0,1

Figure 6.2: Two sample ‘time between submissions’ trails.

 Figure 6.2 gives two examples of time between submissions trails. Similar to the

coding timeline trail, ‘-’ characters represent develop runs and numbers denote submit

runs. In this trail, however, the numbers indicate how many minutes have passed since

the previous submission rather than the auto-grader score received. We also introduce a

new character, ‘/’, to represent something we call a ‘session break’. Student 1 in figure

6.2 made four develop runs and then two consecutive submit runs. The first submit run is

marked with a ‘0’ since there were no submit runs made before it, and the second submit

run is marked with a ‘3’ because it was made 3 minutes after the first submit run. The

student then does three more develop runs and a final submit run 8 minutes after the

second one. This is a good example of how we’d like to see a student developing, using

41

develop runs to manually test their code and occasional submit runs to see what progress

they have made towards passing the test cases. Student 2, on the other hand, appears to be

an example of a student spamming submit runs without doing any manual testing. This

student submits their code seven times with relatively little time in between them. The

time between submissions is rounded to the nearest minute, so repeated zeroes indicate

that the runs were submitted within less than 30 seconds of each other. After these seven

runs we insert a ‘/’ character indicating that a session break took place at that point.

Session breaks mean that the student has not made any develop or submit runs in the past

10 minutes, suggesting that they may have taken a break from their coding. Since one of

the goals of the time between submissions trail is to identify how frequently students are

running their code, we include these session breaks to bring attention to times when

students stopped developing. If a student made no runs for 2 hours, it would be

misleading to list ‘120’ in the trail since this would suggest that the student had been

coding for 120 minutes when they were likely not working at all. The first submit run

after a session break is again marked with a ‘0’ since we are presuming that they had not

been developing during the session break period. We found that the session break cutoff

of 10 minutes was performant for the labs that we looked at, particularly since they were

CS1 labs that didn’t require very large-scale solutions. If an instructor wanted to use a

larger cutoff value it would require only a trivial code change.

 The time between submissions trail allows instructors to quickly look over their

roster of students and pick out those who may be abusing the auto-grader system by

42

making rapid submissions. The inclusion of session breaks also allows them to see

approximately when students may have taken breaks in their development.

6.3 Lines of code trail

 The lines of code trail shows how many lines of code were included in each run

that a student made, and additionally marks runs where addedLOC violations and drastic

changes occurred. We developed this trail before the IncDev trail, though both trails have

some data in common.

17...16,^41*....37,27,27

Figure 6.3: A sample LOC trail.

The lines of code trail does not distinguish between ‘develop’ and ‘submit’ runs.

Each number and ‘.’ character represent a single run. We use a notion of ‘visual

compaction’ to determine which runs will have their lines of code listed, and which will

be replaced with a ‘.’ character. The rules we use to determine which runs will be

compacted are detailed in section 5.3.1. Commas are used to separate consecutive lines of

code. ‘*’ characters indicate that an addedLOC violation occurred in the run it is next to,

and ‘^’ characters denote runs that contain a drastic change. The process we use to dictate

which runs contain drastic changes is detailed in section 5.4. Figure 6.3 shows a sample

lines of code trail where the student made 13 runs total. The first and last runs always

have their lines of code listed. This students’ first run contained 17 lines of code. They

made 3 more runs before submitting the series [16, 41]. The run with 41 lines of code

exhibited both an addedLOC violation and a drastic change. For this reason, we list the

‘*’ and ‘^’ characters adjacent to it. The student then makes 4 more runs, the lines of

43

code for which are omitted. Their development history ends with three more runs with

the lines of code [37, 27, 27].

6.3.1 Visual compaction

One of our goals in developing these trails was to make them concise and quickly

interpretable. Toward this end, we created some rules to determine which runs would be

the most notable or informative. Some of the unnotable runs could then be replaced with

‘.’ characters to indicate that a run had indeed taken place, but that we omitted the

number of lines of code it contained to reduce visual clutter. We only omit runs that don’t

contain much useful information so the trail remains informative. We called this method

‘visual compaction.’

 To enable visual compaction, we start by generating a boolean list indicating

whether each run seems notable or not. We define notable runs as those that contain

either an IncDev violation, a drastic change, or where the lines of code have changed by

more than 10. We do not distinguish between an increase or decrease in lines of code, any

change greater than 10 is marked as notable.

After creating the notability list we pass through it again to specifically analyze

the subsequences of consecutive unnotable runs. For instance, if our list is [1, 0, 0, 0, 1, 0,

0, 0, 1], the subsequences are runs 2 to 4 and runs 6 to 8. Our goal here is to determine

whether the runs in the subsequence follow the trend of their endpoints. If the lines of

code of our first subsequence and its bordering runs are [20, 25, 19, 18, 15] we can see

that the trend of the endpoints is decreasing from 20 to 15, however the second run does

not follow this trend because it is larger than 20. Similarly, if we have the sequence [15,

44

16, 12, 18, 20] we see that the third value does not follow the increasing trend of the

endpoints from 15 to 20. In both cases, we would update the notability list so that these

outlier values are not omitted. This process is recursive. When one of the values in a

subsequence is updated, that value will become an endpoint for the new subsequence that

it now borders. This new subsequence will be subjected to the same endpoint trend check.

 The last step in finalizing the notability list is to check the length of each

unnotable subsequence. We chose to only omit those subsequences with length of at least

3. We feel that it would be more visually distracting to omit one or two runs than to

simply list their values. Additionally, we chose to never omit more than 10 runs in a row.

If a subsequence is longer than 10 runs we mark the 11th run as notable. We did this

because each individual unnotable run could still change by as much as 10 lines of code.

If a student made 20 submissions, adding 10 lines of code each time, there could be a 200

line difference between the notable run endpoints. Limiting consecutive unnotable runs to

10 prevents this from happening and limits the maximum number of lines added ‘behind

the scenes’ during an unnotable subsequence to 100. Once these modifications have been

made to the initial notability list it is used as a guide to generate the final lines of code

trail.

6.4 Drastic change trail

 The final trail we created is the drastic change trail. This simple trail lists the run

number of each run that exhibits a drastic change. While developing the incremental

development heuristic we realized that since it only considers the number of lines of

code, not the content of these lines, there were some important cases that it would not be

45

able to detect. For example, a student could make any number of changes to the code that

they had previously submitted without it being flagged, provided that the number of lines

of code did not change drastically between the two runs. To counter this we created a

formula for detecting drastic change that could identify runs where a student has altered a

substantial portion of their code, regardless of the number of lines added or removed.

There are also cases outside of incremental development where drastic change can be

beneficial. We have previously found that students sometimes attempt an assignment for

some time, then get frustrated if they’re unable to finish it and refer to online solutions

instead. Our drastic change metric can catch such cases where a student seems to be

developing normally and then suddenly replaces their code with a copy-pasted solution.

 Our method for detecting drastic change uses the python module ‘difflib.’ The

difflib module has a function called Differ which takes in two strings and returns a list of

changes made between the two. Each line in the Differ result starts with either a ‘+’ or ‘-’

character to indicate whether that line was added to or removed from the second string

passed in.

46

- using namespace std;

+ std::cout << "Hello World!";

- return 1;

+ return 0;

Figure 6.4: Two code blocks and the ‘Differ’ results they produce.

Red highlighting indicates code that was removed, and green indicates code that was added.

We then count the number of changes that were returned by Differ and divide this

count by the number of lines present in the earlier of the two code submissions. We do

this division so that the result is proportional to the size of the code that the student had

submitted. In this way, we can detect drastic changes in small programs as well as large

ones. In the future we may consider adding a minimum number of lines of code required

for a submission to be considered as a drastic change, as our current metric could result in

marking an excessive amount of very small code submissions. Finally, we compare the

result of this division against a constant. If the result is larger than the constant, we mark

the run as a drastic change. We chose to use a constant of 0.7 as this generally produced

the desired outcome when compared to a manual marking of drastic change runs on

historic assignment data. Similar to the session break constant in the time between

submissions trail, only a trivial code change is required to alter the drastic change cutoff

if desired.

12, 14, 20

Figure 6.5: A sample drastic change trail.

47

Figure 6.5 gives an example of a drastic change trail. The trail indicates that the

student’s code changed drastically on runs 12, 14, and 20. We created this trail because

the tool we developed doesn’t contain the students’ code submissions in its output.

Listing the run numbers of drastic change runs makes it easier to locate flagged

submissions in the system that the log file was downloaded from, such as zyBooks. An

instructor or TA could then do some manual analysis of the flagged runs depending on

their goal, such as detecting cheating.

6.5 Cohesive coding trails example

 Figure 6.6 gives a complete example of what the coding trail output could look

like for 3 distinct students.

Coding timeline

trail

Time between

submissions

trail

Incremental

development trail

Lines of code

trail

Drastic

change

trail

Student 1 10/12 W --2,2---5 --0,5---15
10 (1), 12, 27, 32,

37, 46, 53 (1)
10,12,^27...53 3

Student 2
10/11 T

0,0,1,0,1,2
0,0,1,1,0,2

45 (0), 50, 48, 50,

51, 53 (0.5)

45*,50,48,

50,51,53

Student 3 10/12 W - F 0,0,5 - / 0,3,4
15 (1), 15, 20,

^53 (0.48)
15,15,20,^53* 4

Figure 6.6: Sample coding trail output for three students.

 Based on the information given in the trails, student 1 appears to exemplify good

development habits. The coding timeline trail shows us that all of this students’ work was

done on 10/12, a Wednesday. They made numerous develop runs during the course of

their development, suggesting that they weren’t solely relying on the results of the auto-

graded test cases to guide their work. The student eventually received a full score of 5.

Student 1’s time between submissions trail further suggests that they were taking time to

48

make meaningful steps in their development rather than spamming submissions. The

student did not make any addedLOC violations, as reflected in their incremental

development trail. Their lines of code trail and drastic change trail shows that they made

one run which contained a drastic change. Given the fact that the code length of the

submission is relatively small, and since their lab score didn’t suddenly improve

uncharacteristically, this doesn’t necessarily raise any red flags.

 Student 2 in figure 6.5 exhibits some less desirable development behaviors. They

worked on their assignment a day earlier than student 1, but they were not able to receive

an assignment score above 2. In addition, they only made submit runs and failed to make

any develop runs. In combination with their time between submissions trail, which

reveals that the student never worked for more than 2 minutes between submissions, this

suggests that the student was spamming submit runs without much thought. The student

also did most of their development prior to submitting for the first time, submitting a 45

line submission which initially drops their incremental development score to 0. They

made 5 more submissions which did not reflect addedLOC violations, so they finished

with an incremental development score of 0.5.

 At first glance, student 3 appears to follow better practices during development

than student 2. They worked over the course of two days and ended up receiving a full 5

points on the assignment. The student also didn’t make rapid submissions, instead

appearing to work for about 3 and 4 minutes between them. That being said, the

incremental development trail reveals that they did not submit many lines of code until

their last submission where they make a jump from 20 to 53 lines, resulting in a final

49

incremental development score of 0.48. This same run is also flagged as a drastic change

in the lines of code and drastic change trail. This student’s trails represent a case that may

warrant further investigation. The suspect aspects of their development include the

sudden jump from 20 to 53 lines in tandem with the fact that there were only 4 minutes of

development between these two submissions. Additionally, the drastic change run

corresponds with a sudden leap from 0 points to full credit, 5 points. These trails are not

definitive proof of any wrongdoing, however they can help to direct an instructors’

attention to cases that may warrant further investigation.

50

Chapter 7. Conclusions

Several changes could be made in future work to potentially improve the impact

of the IncDev score. We found that there was limited interaction with the IncDev score as

most students did not check their score when it was updated each day, in addition to some

students who never checked their score even once. In future research more care may be

taken to remind students that their scores are available for viewing. This may increase

students’ mindfulness of incremental development while they are working on their

assignments. Ideally, the IncDev score would be integrated into the assignment

submission system being used so students could see their score in real time. A higher

point value could also be attached to the IncDev score. This would almost certainly

increase students’ attentiveness to it, since in general students are highly grade motivated.

Another possible consideration is that the IncDev score could be introduced earlier in the

semester so that students don’t develop poor incremental development habits before it is

incorporated into the course. One counter to this thought is that students learning to

program for the first time are often already overwhelmed and adding another process for

them to follow has the potential to introduce unnecessary stress.

Updates to the IncDev heuristic could also be considered to further improve its

accuracy. It may be more performant if an exponential penalty, rather than the linear

penalty we detailed in this paper, is used when IncDev violations occur. This would

further discourage students from making large IncDev violations. An additional

improvement could be to update the replenishment aspect of the IncDev heuristic to

prevent students from fully replenishing their score by rapidly submitting unaltered code.

51

This could be done by only allowing replenishment if a certain number of minutes have

passed since the previous run, or by only replenishing if some change has been made to

the code. In both cases students could still hypothetically ‘game’ the score, however it

would take an increased level of time and effort. We generally feel that having a lenient

replenishment policy is preferable to a strict one since the purpose of the IncDev score is

to encourage students to develop incrementally rather than to discourage and frustrate

them.

Our experiment was inconclusive, but showed that introducing the incremental

development score may reduce the number of students who make many repeated IncDev

violations, as well as reduce the number of major violations across a class section.

Additionally, based on student survey results, introducing the IncDev score generally

increased students’ awareness of the importance of incremental development and

encouraged them to be mindful of this process while they work on their programming

assignments. It seems that the IncDev score shows promise but would need to be

developed further or implemented into the class in a different way to improve its impact.

The numerous coding trails we developed as part of the IncDev tool provide a concise

and easy to comprehend overview of numerous aspects of student development. We feel

that instructors would benefit from these as they enable them to quickly identify which

students may be struggling, abusing auto-grading systems, or even cheating. This is of

increasing importance as class sizes continue to grow and more universities adopt online

programming systems for their early computer science courses.

52

References

[1] Das, Rajdeep, et al. “Prutor: A System for Tutoring CS1 and Collecting

Student Programs for Analysis.” ArXiv, 21 Aug. 2016, https://doi.org/

https://doi.org/10.48550/arXiv.1608.03828. Accessed 2022.

[2] Gordon, Chelsea L., et al. “The Rise of Program Auto-Grading in

Introductory CS Courses: A Case Study of Zylabs.” ASEE PEER Document

Repository, 26 July 2021, https://peer.asee.org/the-rise-of-program-auto-grading-in-

introductory-cs-courses-a-case-study-of-zylabs.

[3] Paiva, José Carlos, et al. “Automated Assessment in Computer Science

Education: A State-of-the-Art Review.” ACM Transactions on Computing

Education, vol. 22, no. 3, Sept. 2022, pp. 1–40., https://doi.org/10.1145/3513140.

[4] Piech, Chris, et al. “Modeling How Students Learn to Program.” SIGCSE

'12: Proceedings of the 43rd ACM Technical Symposium on Computer Science

Education, 29 Feb. 2012, pp. 153–160., https://doi.org/10.1145/2157136.2157182.

[5] Wilcox, Chris. “The Role of Automation in Undergraduate Computer

Science Education.” SIGCSE '15: Proceedings of the 46th ACM Technical

Symposium on Computer Science Education, 24 Feb. 2015, pp. 90–95.,

https://doi.org/10.1145/2676723.2677226.

