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Chapter 1. Introduction of Thesis 

 When working on programming assignments some students tend to write large 

portions of code prior to testing or even attempting to compile it. This behavior can lead 

to an increased amount of bugs, and potentially interconnected bugs that add an 

additional layer of complexity to the debugging process. This in turn can lead to greater 

student frustration and increased time spent debugging. The process of incremental 

development involves writing a small piece of code, running it to verify whether it is 

functioning as expected, and then repeating this process until the program is complete. 

Incremental development is especially important for students first learning to program 

since they’re more likely to introduce bugs. This is a beneficial process to follow during 

development because it can enable students to catch the bugs they introduce early on. 

Incremental development can also reduce debugging time since the bugs can presumably 

be found in the most recent 5-20 lines written. Figure 1.1 gives an example of 

incremental development. The black arrows indicate a path of development that a student 

working incrementally may take, where a few lines of code are added at a time and 

testing is done at each increment to verify no bugs have been introduced. The red arrow 

indicates the development path a student may take if they are not developing 

incrementally, as they instead add a large chunk of code before performing any testing. 
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Figure 1.1: An example of incremental development. 

 In this thesis we set out to award points to students for following an incremental 

development process using an automated assessment tool. The rules used to generate this 

incremental development score are given to the students so they know precisely what is 

required for them to receive a full score. We use the data produced by a popular 

commercial auto-grader, zyBooks, as input to our tool. The files downloaded from this 

auto-grader are available to any instructors who use it. Using this tool we hope to 

encourage students to follow good programming practices on their way to creating a 

solution rather than trying to rush to a solution irrespective of how they get there. 
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Chapter 2. Related Works 

Auto-grading systems have been shown to be beneficial for numerous reasons 

including providing instant, objective, and consistent feedback to students, improving 

overall student performance, and reducing the workload of instructors and teaching 

assistants. A 2015 paper found that introducing automated grading in computer science 

courses led to substantial resource savings [5]. Additionally, the authors found that 

automated grading systems did not hinder performance and could actually positively 

impact student performance and lead to an increase in their level of interest in computer 

science. On the other hand, the authors also discussed how there are some drawbacks to 

auto-grading. One drawback is that it can be excessively strict since these programs are 

unable to grant leeway in the same way a human grader might. Another concern raised in 

the paper is that some students “throw submissions at automated grading instead of 

learning to debug or test their code themselves” [5]. This is a phenomenon that we have 

also observed, and we make an attempt to make these cases easier to identify in Chapter 

5.  

 A 2021 review of some of the most recently and actively developed auto 

assessment tools discussed how there has been a proliferation of these tools in the past 

decade [3]. The authors of this review classified 30 tools based on the types of feedback 

they produce, the analysis they perform, and many other aspects. They found that all 30 

of these tools checked for compilation errors and tested the correctness of the code 

through output comparison or unit testing. These seem to be the most common and 
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popular types of auto assessment tools, and most of the tools included in the review 

provide limited insights beyond these two features.  

 Most auto assessment tools do not take into account a student’s entire submission 

history, and instead look only at individual submissions in their analysis. A wealth of 

information can be gleaned from looking at not only a student’s solution, but also the 

process that they used to arrive at that solution [4]. Only 5 of the 30 tools included in the 

2021 review collected code snapshots to use in their analysis. These snapshots enable a 

more in-depth type of analysis that considers the process a student used to arrive at their 

solution. However, out of these 5, only a single tool used these snapshots to perform 

advanced analysis. The authors define advanced analysis as “collecting and presenting 

information to enable deeper insights about students’ behavior during solution 

development” [3]. The advanced analysis that this particular tool performs is limited to 

code size variation, compilation error timeline, and execution sequence analysis [1]. To 

the best of our knowledge, there do not exist any widely accessible auto assessment tools 

that perform advanced analyses for the purpose of encouraging a particular programming 

process. 
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Chapter 3. Incremental Development 

3.1 Logged student behavior 

We use log files generated by the zyBooks auto-grading system as input to our 

incremental development tool. We use these files because they can be easily downloaded 

by instructors that use the system in their classes and because zyBooks is used widely 

among introductory computer science courses [2]. Many instructors using zyBooks also 

instruct their students to perform all of their development inside of the zyBooks platform. 

This is beneficial for our purposes since the log files thus contain a full history of 

students’ development process. In addition, the log file format is generic and log files 

produced by other homework platforms could be converted with relative ease to the 

necessary format provided that the platform stores the necessary information, such as 

code snapshots from each submission. A simple script could be written to automate the 

conversion to the expected format.  

Each row in a log file denotes an individual run made by a student. All runs for 

every student that worked on a programming assignment are included in the file. The 

necessary columns given in the file include student id, run type, timestamp, score, and a 

link to the location where the code submission can be downloaded from. The ‘run type’ 

field can either be a ‘0’ or a ‘1’ indicating that the run was a ‘develop’ run or a ‘submit’ 

run, respectively. A ‘develop’ run means that the student was testing their code manually 

and observing the results. A ‘submit’ run is when a student submits their code for auto-

grading to be assigned with a score. The ‘score’ column is left blank on rows that pertain 

to develop runs and contains the auto-grader score for submit rows.  
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Student ID, Run type, Timestamp, Score, Code 

1010, 0, 8/5/21 09:34:25, , http://…  

1010, 1, 8/5/21 09:36:10, 5, http://…  

1050, 0, 8/5/21 09:36:42, , http://…  

1010, 1, 8/5/21 09:38:50, 6, http://…  

Figure 3.1: A simplified log file snippet.  

Figure 3.1 shows a sample log file consisting of two students with id values of 

1010 and 1050. The first two rows show that student 1010 did a develop run at 9:34am 

and a submit run approximately two minutes later at 9:36am. The submit run resulted in 

an auto-grader score of 5. Student 1050 also did a develop run at 9:36am. The last row 

shows that student 1010 did a final submit run at 9:38am and received an improved auto-

grader score of 6. Each row also contains a link to the source code that the student 

submitted in that run. Throughout this thesis we frequently refer to the number of lines of 

code contained in each students’ code submissions. This information is not included in 

the log file, so we instead have to download the code linked in the log file and determine 

the lines of code from the downloaded entry. This process is done automatically by the 

tool we’ve created. The submissions used herein were hosted on Amazon Web Services 

(AWS), however any publicly accessible hosting service could be used in its place. 

3.2 Incremental development scores 

 Given the quantity of data provided by these log files, we set out to create a tool 

that could analyze the files and automatically generate a score representing how well 

students were incrementally developing with the goal of encouraging them to do so. Our 

aim in developing this incremental development (IncDev) score was to enforce a 
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reasonable level of incremental process while remaining simple enough for students to 

easily understand how it is calculated.  

 We chose to create a heuristic that would generate a score from 0 to 1 for each 

student working on a particular programming assignment. A score of 0 would mean that 

the student did a terrible job developing incrementally, 0.5 would mean that the student 

did a poor job, and 1 would mean the student did an exceptional job. This score could 

then be used by an instructor to assign incremental development points to their students. 

The score could also be scaled up to match any quantity of points an instructor wants to 

assign simply by multiplying it.  

3.2.1 Depletion 

 The first step in defining the heuristic to generate IncDev scores is to determine 

what should be considered an incremental development violation, and how the score 

should be impacted by such a violation. We chose to define a violation as any run where 

the number of lines of code (LOC) exceeds the directly preceding run’s lines of code by 

more than 20. We refer to this as the addedLOC rule. With the addedLOC rule defined, 

we next consider how it ought to impact the IncDev score.  

A cursory way to assign IncDev scores using the addedLOC rule could be with an 

‘all or nothing’ rule. If none of a student’s runs break the addedLOC rule, meaning they 

never added more than 20 lines in a single run, they receive an IncDev score of 1. If any 

of a student’s runs violate the addedLOC rule, they receive an IncDev score of 0. This is 

a naive way to generate the scores because it does not have any nuance, and can only 

generate 2 possible outcomes. The ‘all or nothing’ rule fails to adjust to the egregiousness 
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of the violations made. For instance, if one student violated the rule with addedLOC = 21 

and another student violated the rule with addedLOC = 41, they would both receive the 

same IncDev score of 0. Ideally, the student with the smaller violation should receive a 

higher IncDev score. This approach also fails to adjust to the quantity of violations made. 

If one student violates the rule once with addedLOC = 25 and another student violates the 

rule three times, each with addedLOC = 25, they will again receive the same score under 

the all or nothing rule. Ideally, the student with fewer violations should receive a higher 

IncDev score. Therefore, we continue to refine our IncDev depletion approach with a 

new goal of proportionality to both the egregiousness and quantity of addedLOC 

violations. 

To meet the goal of proportionality to the severity of addedLOC violations we 

modified our algorithm to deduct a proportional quantity from the IncDev score for each 

violation. We chose a linear deduction of 0.04 * (addedLOC - 20) that is applied when a 

student violates the addedLOC rule. With this new deduction method, a student who 

made a submission where addedLOC = 21 would only be deducted 0.04 * (21 - 20) = 

0.04. On the other hand, a student who made a submission with addedLOC = 41 would 

be deducted 0.04 * (41 - 20) = 0.84. If these were the first violations made by each 

student, the less severe offense would result in an IncDev score of 1 - 0.04 = 0.96, 

whereas the larger offense would result in a much lower IncDev score of 1 - 0.84 = 0.16. 

 With violation severity accounted for, we can now consider the quantity of 

offenses. To do this we can simply accumulate deductions. A single offense where 

addedLOC = 25 will result in a deduction of 0.04 * (25 - 20) = 0.2. If a student 
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committed 3 offenses where addedLOC = 25, the total amount deducted will be a much 

larger 0.2 + 0.2 + 0.2 = 0.6. Again, assuming that these are the first addedLOC offenses 

committed by the students, their scores will be 0.8 and 0.4 respectively. 

 Modifications could be made to these rules. One thought is that a constant other 

than 0.4 could be used. Another idea is to use an exponential deduction in place of the 

linear one so that excessive addedLOC violations are penalized even further. Both of 

these changes would require only minute code revisions. These modifications are not 

explored further in this thesis. 

3.2.2 Replenishment 

 Introducing the depletion rule alone could be discouraging to students. Typically, 

a benefit of auto-grading is that students can submit their code and immediately see what 

they did wrong, and then re-submit with the relevant code updates to achieve a higher 

score. If the IncDev score could only go down, that would run contrary to this goal. For 

this reason, we also introduce a way to replenish the IncDev score so students can earn 

credit back. This prevents students from digging themselves ‘into a hole’ where they are 

unable to replenish their score. A simple replenishment rule is to add back a constant 

amount of credit any time that a run does not violate the addedLOC rule. For our 

purposes, we used a replenishment amount of 0.1. Similarly to the depletion formula, the 

0.1 constant could easily be modified if desired. 

3.2.3 IncDev heuristics 

 To summarize, for each student present in a log file their IncDev score is 

determined by considering each run they made chronologically. The IncDev score is 
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initially set to 1. For each run the score will either deplete or replenish. The score 

depletes when more than 20 new lines have been added since the previous run. The 

quantity of this depletion is calculated by the formula 0.04 * (addedLOC - 20). If more 

than 20 new lines have not been added since the previous run, the score will be 

replenished by a constant 0.1.  

 These values are configurable, however we found that these constants produced 

desirable results as discussed in the Chapter 5. An instructor might determine that a larger 

addedLOC threshold would be preferable, for instance if it was being applied to an 

assignment with substantially longer solutions. This could be accomplished with a 

minimal code change. 

 Another factor we took into consideration was whether to temporarily allow the 

IncDev score to go above 1 or below 0. This led us to two distinct heuristics we call 

Heuristic 1 and Heuristic 2. Heuristic 1 enforces strict bounds, so the score remains 

between 0 and 1 at all times. We attempted this approach because it is intuitive and 

simple to understand.  



11 

 
Figure 3.2: The IncDev score adjustment using Heuristic 1. 

Our analysis showed that Heuristic 1 performed poorly when egregious 

addedLOC violations occur. Regardless of the size of the offense, it would only take a 

maximum of 10 runs to raise the IncDev score back to 1. Figure 3.3 demonstrates this 

issue. The student makes a large leap from 19 to 121 lines of code, followed by 7 more 

runs that don’t break the addedLOC rule. Using Heuristic 1 they end with an IncDev 

score of 0.7, whereas given the egregiousness of their violation a more appropriate score 

may be in the 0-0.3 range. 
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LOC and IncDev score for each run: 19 (1), 19 (1), 121 (0), 123 (.1), 122 

(.2), 130 (.3), 132 (.4), 132 (.5), 135 (.6), 136 (.7) 

Figure 3.3: An example of how the IncDev score changes over several runs using Heuristic 1. 

 

To counter this issue we developed Heuristic 2 which allows the IncDev score to 

temporarily drop below 0, but still never above 1. We don’t allow the score to go above 1 

so that students can’t excessively ‘pad’ their score since the replenishment amount is 

already relatively generous. If the score ends up negative, we map it to 0. Heuristic 2 

generally produced more desirable results as discussed in the Chapter 5.  

 
Figure 3.4: The IncDev score adjustment using Heuristic 2. 
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Figure 3.5 shows how Heuristic 2 performs better than Heuristic 1 given the same 

sequence of runs seen in Figure 3.3. When the student makes the jump from 19 to 121 

lines their IncDev score drops to -2.28. The student would thus need to make 33 non-

offending runs to raise their score all the way back to 1, as opposed to only 10 non-

offending runs using Heuristic 1. This student only made 7 runs after the violation so they 

finished with a score of -1.58, which would then be mapped to a final score of 0. We 

found that Heuristic 2 provided a good balance between being fair, replenishable, and 

accurate. 

 

LOC and IncDev score for each run: 19 (1), 19 (1), 121 (-2.28), 123 (-2.18), 

122 (-2.08), 130 (-1.98), 132 (-1.88), 132 (-1.78), 135 (-1.68), 136 (-1.58) 

Figure 3.5: An example of how the IncDev score changes over several runs using Heuristic 2. 

3.2.4 Incremental development trails 

 One of the goals of auto-grading is to provide students with feedback while 

they’re actively working on an assignment, rather than only after they make their final 

submission. In line with this goal we came up with a way to display students’ IncDev 

score histories, which we call the IncDev trail. The IncDev trail consists of the lines of 
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code in each run a student made, the IncDev score that resulted from each run, and ‘^’ 

characters denoting drastic change. The concept of drastic change will be covered in 

detail in Chapter 6. 

15 (1), 45 (0.6), 70 (0.4), ^75 (0.5), 75 (0.6), 77 (0.7) 

Figure 3.6: A sample IncDev trail.  

Figure 3.6 gives an example of an IncDev trail. The student first submits 15 lines 

of code. The addedLOC rule is not violated by this run, so they maintain their starting 

IncDev score of 1. This IncDev score is displayed in the parentheses directly after the 

lines of code. Next they submit 45 lines of code which drops their IncDev score to 0.6. 

They then submit 70 lines of code, again violating the addedLOC rule and resulting in an 

IncDev score of 0.4. They then finish by making 3 runs that don’t violate the addedLOC 

rule, each raising the IncDev score by 0.1. A drastic change also took place in the first of 

these three runs, so a ‘^’ character is prepended to the lines of code. The student finishes 

with a final score of 0.7. 

 Some students will run their code in excess of a hundred times which can result in 

very long and cumbersome IncDev trails. This is acceptable for the purpose of sharing 

scores with students since each student only needs to look at a single trail. That being 

said, this is not as beneficial for instructors trying to get a quick overall look at their 

students’ behavior and performance. For this reason, we also created a more condensed 

version of the IncDev trail which only displays the IncDev score portion of the trail when 

an addedLOC violation has occurred, or when a student has fully replenished their 

IncDev score back to 1. The IncDev score is always displayed for the first and last runs in 
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the trail. This is beneficial because it can substantially reduce the length of the trail, 

especially when a student is not repeatedly making addedLOC violations or their score 

has remained at 1 for long stretches of their submission history.  

15 (1), 45 (0.6), 70 (0.4), ^75, 75, 77, 85, 90, 100 (1) 

Figure 3.7: A sample condensed IncDev trail.  

To reduce clutter in other trails we also introduced a concept that we call visual 

compaction which uses a set of rules to replace consecutive less notable runs with ‘.’ 

characters. This will be discussed in further detail in Chapter 6. 

Chapter 4. Incremental Development Tool 

4.1 IncDev tool overview 

 We developed a Python application to produce the incremental development 

scores and the various coding trails presented in this thesis. One of our principal goals 

during the development of this tool was to make it lightweight and easy to deploy so that 

instructors and teaching assistants would not need to go through an extensive and error-

prone setup process. Initially we developed the incremental development tool as an 

extension of an analysis tool created as part of a previous project. Plans were made to 

publish the tool on either a university supported website or through Amazon Web 

Services. These plans were later changed as a result of the prohibitive amount of time that 

would be required to make it stable and secure, given the sensitivity of the student data 

that it runs the analyses on. It was then decided that the incremental development tool 

would become one of a suite of locally run, terminal-based analysis tools. This would 

enable instructors and teaching assistants to use the tool with relative ease without taking 
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on any additional security risk, as they would not need to upload any student data to an 

external server. 

4.2 Running the application 

The tool repository contains a readme.txt file that explains in detail how to run it. 

In order to get started, the user needs to have Python 3 and the Python package manager 

‘pip’ installed locally. Users who have worked with Python in the past are likely to 

already have these installed, as pip is currently the most popular Python package manager 

available. The remaining steps can be run on any standard terminal application such as 

Windows Powershell or the native Mac or Linux terminals. Once inside the tool's folder, 

the user should run the command pip install -r requirements.txt. This command installs 

the 3 python libraries found inside the requirements.txt folder. These 3 common libraries 

are pandas, requests, and datetime. The pandas and requests libraries are used in the file 

main.py. Pandas is used to create dataframes, a more efficient and easy to wield data 

structure for storing large quantities of data in a spreadsheet-like format. In our codebase, 

pandas is used to store and process the contents of the input spreadsheet. We use the 

requests library to download student code submissions from the remote server. We use 

Amazon Web Services to host these code submission files, but any hosting service that 

can be reached by the requests library can be used in its place. Finally, the datetime 

module is used to create standardized datetime objects from the timestamps passed to it. 

This allows us to support multiple different timestamp formats in the input file, as they 

are internally adjusted to match the expected format. After these libraries have 

successfully been installed the tool can be run with the command python3 main.py.  
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Figure 4.1: Example of terminal output during a typical run of the IncDev tool. 

Upon running the user will be prompted for the name of the file they would like to 

analyze. The input file must be placed inside the folder titled 'input' to be detected by the 

tool. After the analysis is completed a success message is displayed and the output file is  

generated in the folder titled 'output'. The name of the output file is the same as the input 

file, but with 'output_' prepended to it. 

4.3 Path of execution 

Our tool consists of 815 lines of code spread across 5 files. Figure 4.2 shows 

execution the path taken during a run of the tool.  

 
Figure 4.2: The execution path of the IncDev application. 

Execution begins in main.py where the data from the input file is read and stored 

into a Pandas dataframe. The dataframe is then parsed row by row and a Python 

dictionary named metadata is built and populated with the email and name values for 

each student in the input file. The metadata dictionary is used later on when writing the 
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output spreadsheet. A nested dictionary named data is also created at this time. A 

function called get_code is called for each row in the dataframe. The get_code function 

takes in one parameter, a URL, downloads the code submission stored at that URL 

location, and returns it as a string. At this point a submission object is created storing the 

code string along with additional metadata about that submission such as the time it was 

made, the score it received, and its type. Once the full list of submission objects have 

been stored in the data dictionary for every student in the log file, execution moves to the 

incdev.py file where the analysis will take place. 

 
Figure 4.3: A snippet of the main function in the incdev.py file. 

The main function of the incdev.py file is responsible for creating and populating 

the incdev_data dictionary. This dictionary stores the results of all analysis that takes 

place within the file. 6 other prominent functions are also housed in this file, 1 to generate 

the incremental development scores and 5 to generate each of the unique coding trails. 

These 6 functions are called for each user within the passed in data dictionary parameter. 

Figure 4.3 shows the snippet of this file responsible for calling each of these functions for 

every user. 
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Once the analysis results are returned from the incdev.py file, we begin the 

process of generating the output file. Our output is in the form of a comma separated 

values (CSV) file. This is a common form of file that can be imported into any standard 

spreadsheet viewer such as Microsoft Excel or Google Sheets. We parse through the 

dictionary of analysis results student by student, writing the CSV file one row at a time 

using the standard python module 'csv'. The output file is generated in the folder titled 

'Output'. If this folder doesn't already exist in the current directory, it will be 

automatically created. Finally, the program prints a 'success' message and execution 

terminates. 

4.4 Sample input and output files 

Figures 4.4 and 4.5 show sample input and output files that would be provided to 

and generated by the incremental development tool, respectively. Several of the columns 

in Figure 4.5 have not been explained yet, but they will be covered in detail in Chapter 6. 

section user_id name date_submitted zip_location submission score 

5.15 112 Student 1 
2022-05-12 

12:40:02 
https://aws1... 0  

5.15 112 Student 1 
2022-05-12 

13:20:05 
https://aws2... 0  

5.15 112 Student 1 
2022-05-14 

12:09:00 
https://aws3... 1 4 

5.15 205 Student 2 
2022-05-14 

23:35:42 
https://aws4... 1 3 

5.15 205 Student 2 
2022-05-14 

23:44:23 
https://aws5... 1 5 

Figure 4.4: An example of an input file provided to the tool. 
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User 

ID 
Name 

IncDev 

Score 
IncDev Trail 

LOC 

Trail 

Time 

Between 

Subs Trail 

Coding 

Timeline 

Trail 

Drastic 

Change 

Trail 

112 
Student 

1 
0.9 

20 (1), ^45 

(0.8), 60 (0.9) 

20, ^45*, 

60 
- / -0 

05/12 S -- 

M 4 
2 

205 
Student 

2 
0.3 

40 (0.2), 56 

(0.3) 
40*, 56 0,9 

05/14 M 

3,5 
 

Figure 4.5: An example of an output file produced by the IncDev tool. 

4.5 Future improvements 

One of the most substantial quality of life improvements that could be made to the 

tool would be to parallelize the code submission download process. Currently this 

process takes substantially more execution time than the analysis itself because a 

download request needs to be made for every run made by each student in sequence. 

Another quality of life improvement would be to add support for including multiple 

distinct programming assignments in the same input file. Most of the infrastructure that 

would enable this feature has already been implemented, but it needs to be expanded on 

and debugged before it can be used. At present, we chose to exclude support for multiple 

assignments to favor the tool’s stability over feature density. 
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Chapter 5. Efficacy of Incremental Development Heuristics and Scores 

5.1 Manual grade comparison 

Our first experiment was carried out with the goal of comparing Heuristic 1 and 

Heuristic 2. We ran the experiment on historical data generated from the final project lab 

of a CS1 course offering in Spring 2021, consisting of 100 students. At the time of this 

class the incremental development score had not been created yet so students were not 

working with this in mind, however they were instructed to complete all development 

within the zyBooks programming system. This instruction was given in part with the 

purpose of ensuring students were writing their submissions themselves, rather than 

copy-pasting a solution that someone else had written. As a result, the data should be a 

complete record of all the students’ work on the assignment, and representative of typical 

student development. Each student was required to complete a custom project, so their 

solutions were unique. No template code was provided to students.  

We generated Heuristic 1 and Heuristic 2 results for each student that submitted 

the project, and visually scanned each student’s run history to pick a subset of 20 students 

that appeared to be representative of the scope of different series of runs. We then 

manually assigned each student in the subset with an incremental development grade 

where ‘A’ meant they deserved full credit for consistently developing incrementally, ‘F’ 

meant they deserved no credit, and ‘B’, ‘C’, and ‘D’ fell in between. We assigned the 

manual grades to get a sense of whether the heuristics were producing grades consistent 

with our intuition.  
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S G H1 H2 LOC per run. To save space in this table,  ... replaces 10 runs with no rule violations and all LOCs within those 

on the left and right. 

1 B 1 1 60, 60, 60, 60, 59, 58, 58, 54, ..., 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 68, 68, 67 

2 B 1 1 100, 101, 101, 103, 103, 104, 105, 108, 108, 109, 109, 126, 126, 135, 135, 135, 138, 138, 138, 138, 
233, ..., 242, 147, ..., 161, 161, 161, 163, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167 

3 A 1 1 16, 15, 16, 16, 21, 21, 23, 24, ..., 27, ..., 26, 29, 29, 29, ..., 35, ..., 41, ..., 41, 41, ..., 43, 59, 66, 66, 
67, 67, 67, 67, 67, 67, 67, ..., 75, ..., 92, ..., 95, ..., 101, ..., 102, 99, ..., 109, ..., 125, 127, ..., 121, ..., 
131, ..., 131, ..., 140, ..., 140 

4 B 1 1 48, 48, 48, 49, 70, ..., 71, ..., 70, 70, 77, 101, ..., 116, ..., 116, 130, ..., 129, 129, 117, 117, ..., 4, 134, 
133, 133, 133, 133, 133, 133, 133, 133, 133, 133, 133, ..., 145, 150, 151, 155, 155, 156, 156, 156, 
156, 156, 156, 156 

5 D .2 0 13, 13, 13, 13, 13, 13, ..., 16, 16, 17, 17, 17, 17, 17, 28, 28, 28, 54, 124, 154, 154, 156 

6 B 1 1 47, 47, ..., 57, 72, 72, 36, ..., 36, 37, 37, 38, 38, ..., 43, 43, 43, 43, 44, 44, 44 

7 B 1 0 42, 42, 43, 44, 44, 55, 55, 55, 61, 61, 74, 74, 74, 74, 78, 77, 79, 82, ..., 82, ..., 89, 89, 89, 89, 95, 95, 
94, 94, 90, 90, 91, 91, 91, 140, 136, 138, ..., 141, ..., 153, 153, 1, 164, 176, 176, ..., 187, 186, 186, 
186, ..., 218, 218, 218 

8 F .8 0 205, 205, 205, 205, 205, 205, 205, 205, 205 

9 A 1 1 23, 24, 24, ..., 49, 49, 49, 58, ..., 61, 61, ..., 61, 61, 62, 63, 63, 58, 58, 58, 58, 58, 58, 63, 71, 71, 80, 
80, 80, 86, 86, 86, 86, 86, 86, 86, 86, 113, 85, 85, 85, 85, 86, 86, 86, 84, 86, 88, 88, 88, 88, 92, 93, 
97, 97, 97, 97, 97, 97 

10 B 1 1 20, 65, 65, 65, 66, 66, 66, 78, 78, 78, ..., 96, 95, 153, ..., 169, 180, 180, 181, 181, 184, 184, 213, ..., 
232, ..., 243, 243, 244, 250, 252, ..., 262, ..., 280, 279, 279, 280, 283, 284, 285, 285, 285, 285, 284, 
227, 235, 235, 260, 260, 260, 260, 275, 275, 275, ..., 274, 274, 274, 274, 274, 274, 268, 268, 268, 
268, 268, 268 

11 F .7 0 19, 19, 121, ......, 136 

12 A 1 1 56, ..., 67, ..., 70, ..., 82, 82, 86, 96, ..., 99, 99, 130, 130, 130, 130, 130, 131, 131, 131, 131, 132, 133, 
133, 133, 133, 133, 133, 135, 135, 135, 135, 137, 144, 156, 165, 165, 171, 171, 171, 182, 195, 185, 
185, 189 

13 B 0.4 0 28, 37, 37, 37, 37, 39, 39, 39, 37, 42, 43, 41, 41, 41, 58, ..., 65, 65, 64, 65, 65, 65, 67, 68, 68, 73, 70, 
73, 73, 73, 72, 74, 64, 72, 72, 63, 63, 63, 62, 62, 47, 48, 47, 47, 49, 49, 47, 47, 48, 99, 48, 97, 97, 
97, 98, 98 

14 B .91 .91 34, 34, 34, 36, 36, 40, 40, 37, 37, 37, 37, 35, 36, 36, 36, 36, 36, 36, 34, 34, 34, 36, 36, 74, 76, 76, 
76, 78, 78, 78, 78, 77, 77, 80, 80, 79, 78, 80, 80, 79, 79, 81, 81, 81, 81, 124, 124, 125, 127, 130, 141, 
141 

15 B 1 .98 10, 84, 84, 89, 89, 89, 93, 93, 93, 89, 89, 89, 89, 88, 88, 88, 91, 107 

16 D .2 0 22, 25, 25, 25, 49, 49, 49, 50, 129, 130, 129 

17 A 1 1 27, 30, 30, 35, 40, 40, 42, 42, 46, 47, 49, 49, 51, 53, 59, 61, 62, 62, 60, 66, 66, 67, 85, 92, ..., 98, 
120, ..., 123, 123, 164, ..., 168, 168, 168, 168, 172, 172, 180, 181, 181, 170, 170, 170 

18 D 1 0 114, 114, 114, 114, 114, 116, 117, 118, 118, 118, 116, 116, 116, 115, 115, 126, 127, 129 

19 C .9 .64 21, 23, 42, 43, 43, 40, 45, 45, 51, 113, 113, 113, 113, 118, 118, 118, 118, 118, 118 

20 C .9 .48 82, 82, 82, 84, 84, 84, 84, 85, 85, 83, 107, 107, 115, 115, 139, 140, 140, 150, 156, 157, 211, 211, 
211, 211, 211, 211, 211, 211, 212, 212 

Figure 5.1: An analysis of the heuristics using a subset of historic data. 

Figure 5.1 shows the results of this experiment. The ‘G’ column contains the 

grade that we manually assigned. The ‘H1’ and ‘H2’ columns contain the scores 

produced by Heuristic 1 and Heuristic 2, respectively. The last column displays the lines 

of code submitted in each run that a student made. AddedLOC offenses are highlighted in 
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yellow, and some repeated non-violating runs have been replaced with ‘.’ characters for 

brevity. 

Heuristic 1 did not perform well, as it assigned higher scores than our manual 

grading suggested were deserved in a majority of cases. The reason for this is that the 

IncDev score never dips below 0, regardless of the size of the violation. If a student 

makes an egregious violation and their score drops to 0, they only need to make 10 non-

violating runs to replenish their score and receive full credit. Perhaps the clearest example 

of this is student 8 who submitted 205 lines in their very first run, followed by 8 runs 

where the lines of code did not change. This is clearly not an example of incremental 

development, as nearly all development was done prior to submitting for the first time. 

The student was assigned a grade of 0.8 by Heuristic 1, whereas the manually given 

grade was an ‘F’. Students 11 and 18 similarly completed nearly all of their development 

in a single run, making leaps of 102 and 114 lines respectively. Each student did make 

some additional runs after the jumps however they did not add many more lines of code. 

Heuristic 1 produced scores of 0.7 and 1 for these students, once again much higher than 

the manually assigned grades of ‘F’ and ‘D’. 

Heuristic 2 produced scores that were more in line with the manually assigned 

grades. Since the score can temporarily become negative, the placement of addedLOC 

violations within a students’ run history has less of an impact on the final score. That 

being said, since the score still can’t go above 1, students can’t accumulate a large 

positive score from repeated unoffending runs. Therefore, the placement of violations 

relative to non-offending runs still have an impact on the final score. Students 8 and 11 
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who were referenced previously received Heuristic 2 scores of 0, which are consistent 

with the manual grades we assigned them. Student 18 also received a Heuristic 2 score of 

0. This is lower than the manual grade we gave them, but closer to what we’d expect 

especially when compared to the full credit that Heuristic 1 produced. Heuristic 2 also 

proved more capable of producing scores in the mid-range. Student 19 made a substantial 

jump from 51 to 113 lines, a 62 line difference, but they also appeared to develop 

incrementally prior to and after that. We gave them a manual grade of ‘C’ and Heuristic 2 

gave them a score of 0.64, close to what we were expecting. Student 20 made several 

jumps during their 30 runs, the largest of which was 54 lines. Heuristic 2 produced a 

score of 0.48, again reasonably consistent with our assigned ‘C’ grade. 

This was our first look at how the heuristics performed on a large set of real 

student data. We found that there were some cases that would be difficult to account for 

in an automated algorithm. One such case is seen in student 13 who submitted the series 

of lines [48, 99, 48, 97] near the end of their development. This resulted in 2 separate 

addedLOC violations that substantially lowered their score. Upon looking at the actual 

code they submitted we found that the student had added some code, removed it, and then 

added nearly the exact same code back during the final run listed. Heuristic 2 gave them a 

score of 0 because of these penalties, however a manual grader would have been able to 

identify what happened and likely wouldn’t punish them for the second violation. It 

would be a much harder task to write an algorithm to catch niche cases such as this. 

Another case where a student was penalized when a manual grader likely wouldn’t have 

done so is in student 7. This student submitted the series of lines [153, 1, 164] during 
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their development. This appears to Heuristic 2 to be an egregious violation and was 

single-handedly responsible for the student’s resulting score of 0 (they had earlier 

violations, but their score had replenished to 1 by the time the listed runs took place). 

Looking at their code revealed that the single line run contained the text, “//I'm making a 

backup of my code just in case.” A grader could quickly identify atypical cases like this, 

but it would again require a more complicated algorithm to identify and address them 

automatically. In addition, since we aimed to make our heuristic easy to understand by 

students and instructors, adding cases to catch niche situations like these would make it 

difficult to easily understand the rules that govern the scores. On the other hand, these 

students were also not aware of the IncDev heuristic while they were working on this 

assignment. Students who know they are being graded in this way may develop more 

carefully, let their instructor know if they accidentally made a submission that 

dramatically dropped their score, or simply run their program a sufficient number of 

times to fully replenish their score. 

Another criticism of this approach could be that it is too easy for a student to get 

full credit when they may not necessarily deserve it. A student trying to ‘game’ the 

IncDev score could ignore the addedLOC rule while developing, and then repeatedly 

submit their code once they have finished their assignment until their score has been fully 

replenished. While this is true, the goal of the IncDev score is to encourage students to 

use better process while working on their assignments. Although some students could 

‘game’ the system in this way, the intention is that more students will take incremental 

development into consideration and try to legitimately earn a good IncDev score. 
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Repeatedly submitting would also require additional time, especially with the use of 

Heuristic 2 and depending on the extent to which the student was violating the addedLOC 

rule. If this is not enough deterrent, changes could be made to the heuristic to prevent 

rapid repeated submissions from improving their score, or perhaps even make this 

behavior deplete the score by some amount. All in all, having an IncDev score that could 

be ‘gamed’ with some effort still seems preferable to not encouraging incremental 

development at all, as is the case currently. Additionally, simply by attaching a point 

value to incremental development, students are reminded that it is an important aspect of 

the programming process and they are more likely to work with it in mind. We also 

would not want to disallow all replenishment as that could discourage students and lead 

to further frustration. While not perfect, Heuristic 2 frequently outperformed Heuristic 1. 

For this reason we used Heuristic 2 in the remainder of our research, and further 

references to the IncDev algorithm can be assumed to use this heuristic. 

5.2 Introducing IncDev scores in a CS1 course 

5.2.1 Methodology 

 We carried out experiments over the course of two separate weeks during week 8 

and week 10 of the Spring 2022 quarter. The experiment involved 3 class sections of 

sizes 101, 99, and 127 students. The 127 student section, which we will refer to as 

‘section 3,’ was informed of the IncDev score and was given an instruction sheet 

explaining how the score was calculated as well as a link to a Google Sheets spreadsheet 

which would be filled with the students’ IncDev scores and IncDev trails over the course 

of the experiment. The TA for this section went over both of these documents with the 
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students during a lab section and answered clarifying questions to ensure everyone 

understood the purpose of the score, as well as how it would be calculated. It was also 

explained to the students that their most up to date IncDev scores would be posted each 

night during the week so that they could track their current scores and view a history of 

how each run they had made impacted it. The other two sections were not made aware of 

the scores. The week 8 assignment used in the experiment was a standardized lab, 

meaning that all students were working on the same programming task rather than 

creating unique projects. As a result, solutions were relatively similar among students. An 

instructor solution had also been created which consisted of 47 lines of code. After 

completing an analysis of the data collected during week 8, we found that effects of the 

IncDev score were relatively indeterminate due to the limited solution size of the lab. 

Given the outcome of our first experiment, we chose to carry out the same experiment in 

week 10 of the quarter on a substantially larger programming assignment. The instructor 

solution for this assignment was 247 lines of code, so it was expected that students’ 

submission histories would be much longer and incremental development would be more 

relevant. 

5.2.2 Results 

 After the week 10 experiment was completed, we compiled the students’ IncDev 

scores and score histories for analysis. We considered numerous aspects of their 

development. There were several students in each class section that never submitted more 

than 50 lines of code. Given that the instructor solution for the assignment was well over 

200 lines long, we believe that these students likely never attempted to make substantial 
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progress on the assignment. As a result, we decided to do distinct analyses both with and 

without these students included. In addition, not all of the students in each section 

submitted the lab. This may have been due to students who dropped the course at some 

point during the quarter, or who were planning to retake it at a later date and were no 

longer submitting assignments. These students were not included in any analyses. 

 Students Average LOC Average score (%) Avg. IncDev score 

Section 1 64 155 67.79 0.9 

Section 2 70 144 63.63 0.84 

Section 3 87 157 71.97 0.95 

Section 1* 60 163 72.31 0.89 

Section 2* 63 157 70.7 0.84 

Section 3* 82 165 76.36 0.95 

Figure 5.2: An overview of student performance on the week 10 assignment. ‘*’ denotes rows where 

students who submitted less than 50 lines were omitted from the calculations. 

            Figure 5.2 shows the number of students in each section who worked on the 

assignment, the average lines of code in their final submissions, the average auto-graded 

score they received on the assignment, and the average IncDev score that they received 

from our tool. The overall scores were higher in section 3, although this could be due to 

any number of factors aside from the inclusion of the IncDev score. The average IncDev 

scores were also highest in section 3, though not by a significant margin. Even though 

there isn’t a great difference between the average IncDev scores, it seems reasonable to 

suggest that informing the students of the score is the reason section 3 has higher scores. 

Since sections 1 and 2 which were unaware of the IncDev scores already received very 

high scores, the slight increase up to 0.95 in section 3 is more substantial.  It is also 
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notable that the average IncDev scores were almost unaffected by the removal of students 

who didn’t submit more than 50 lines with the exception of section 1 which dropped by a 

negligible 0.01.  

 Avg. # lines added per run Avg. line diff between first and 

last runs 

Section 1 6.59 111 

Section 2 6.68 99 

Section 3 6.01 120 

Section 1* 6.56 117 

Section 2* 6.66 109 

Section 3* 5.97 126 

Figure 5.3: Additional statistics from the experiment. For average lines added per run, consecutive runs of 

the exact same length were not included in the calculation. 

 

We also found that on average, students in section 3 added fewer lines per run. 

This is consistent with what we’d expect if students were making an intentional effort to 

develop incrementally. In our manual comparison from section 5.1 we saw that several 

students completed a substantial portion of their program before running it for the first 

time. To attempt to see whether introducing the IncDev score reduced this behavior, we 

calculated the average difference in lines between students’ first and last runs. Students in 

section 3 had slightly larger line differences, suggesting that they did relatively less 

development prior to running and testing their code for the first time. 
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Figure 5.4: A comparison of the number of offenses made by each student. 

 In comparing the quantity of addedLOC offenses made by each student we found 

that section 3 had the most offenses and repeat offenders, although it had fewer students 

who made more than 4 offenses. Section 3 may have the highest raw number of students 

with at least one violation in part because this section had the most students. In sections 1 

and 3, 94% of students made at least one violation, compared to 90% in section 2. So, it 

seems that introducing the IncDev score did not have an impact on the overall number of 

students who violated the addedLOC rule. One possible explanation for this is that since 

students were able to track their IncDev score throughout the week, and since they knew 

how to replenish their score, they were comfortable making a few replenishable offenses. 

An alternative explanation could be that students were simply ignoring the IncDev 

scores, although we will see that the magnitude of student offenses suggests this may not 

be the case. 
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Figure 5.5: A comparison of the magnitudes of offenses made in each section. 

 We found that students in section 3 committed substantially more minor 

addedLOC offenses (0-20 lines over), around the same number of medium sized offenses 

(21-60 lines over), and notably fewer large offenses (61-101+ lines over) when compared 

to the other 2 sections. This analysis of the large offenses holds true both in raw numbers, 

as well as the percentage relative to the total number of offenses. 7.4% and 11% of 

offenses in sections 1 and 2, respectively, were large offenses. In comparison, only 2.4% 

of offenses in section 3 were large. This may suggest that students in section 3 were 

developing with the IncDev score in mind and took care not to make egregious violations 

which could make their IncDev scores difficult to replenish. The higher number of minor 

offenses in section 3 could partially be attributed to the larger number of students in the 

section. An additional possibility is that students knew they could easily replenish their 

scores as long as they didn’t make egregious violations of the addedLOC rule, and 
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therefore weren’t afraid to submit runs with small violations that they could replenish 

within a few additional non-offending runs. In the context of incremental development, 

minor addedLOC offenses are much more desirable than egregious offenses. 

 
Figure 5.6: The number of students that checked their IncDev scores each day. 

 The most up to date IncDev scores and IncDev trails were posted nightly while 

students were working on the assignment so they could track their progress and see how 

their runs throughout the day had impacted their score. We found that relatively few 

students checked their scores each day. The most interactivity occurred on June 1st, a day 

after the assignment was first given to students. 39 students opened the spreadsheet that 

day, compared to the 87 students total that submitted the assignment during the course of 

the experiment. The number of students opening the spreadsheet dropped off rapidly after 

June 1st, with less than 20 students checking it in the following two days and less than 10 

opening it in the remaining days that the assignment was available. We are unable to see 

which particular students checked their scores each day, so it is unclear whether the same 
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students were returning each day or if there were new students checking their scores for 

the first time. One possible theory as to why there wasn’t much student engagement with 

the scores is that since it didn’t have much bearing on their grades, they simply didn’t 

care to check them. A possible solution to this would be to attach the score to a slightly 

larger piece of the assignment score, or to perhaps have the IncDev score impact the 

assignment grade as a whole in some way. For instance, the assignment grade could be 

capped at a certain amount proportional to a students’ IncDev score. Another potential 

explanation may be that students forgot about the IncDev scores. This could explain why 

there was such a drastic drop in viewers after June 1st, right around when students had 

their lab section and were reminded of the scores. If this were the case, daily reminders in 

class that the scores are being generated and posted may be enough to boost student 

awareness and engagement. 

 Our analysis suggests that the IncDev score may have promise, but the results 

were inconclusive. On average students in section 3 submitted fewer new lines per run, 

did less of their development prior to their first submission, and made smaller sized 

addedLOC violations. Section 3 additionally had fewer students who committed more 

than 4 offenses. That being said, the improvements in these areas were not by a wide 

margin. We feel that more experimentation would need to be done to determine the 

extent to which adding the IncDev score impacts student behavior. We discuss 

suggestions for further experimentation in Chapter 7. 



34 

5.2.3 Survey results 

 A survey was issued to students in section 3 following the experiment to gauge 

whether they understood the IncDev score and to learn what their opinion of it was. The 

survey included 3 multiple choice questions and one free response question. 55 responses 

were received. 

 

 
Figure 5.7: The results of the 3 multiple choice survey questions. 

 The first question asked students whether they understood the IncDev score. 

About 85% of students answered in the affirmative, with ‘strongly agree’ being selected 

by 49.1% of the students. The next question was whether the students felt that the IncDev 

score made them more aware of the importance of incremental development. Again, over 

85% of students submitted affirmative answers. The final question asked whether 

students felt the scores encouraged them to develop incrementally. Consistent with the 

first two response sets, around 85% of students answered positively.  
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 A free response question was also included in the survey, asking students for any 

general comments or feedback they wanted to provide about incremental development 

and the IncDev score. We received a range of positive and negative responses.  

Student 1 It is a good reminder and forces me to develop incrementally since I have a 

habit of not doing so. 

Student 2 The only struggle with the incremental development score was that I 

couldn't tell if I was supposed to write the code incrementally AND submit 

it incrementally or just write it incrementally. I ended up submitting it 

individually with every new piece which felt a little pointless because I had 

just run each little piece on its own and knew it worked. 

Student 3 Incremental development is important but having the score and limiting the 

lines we can submit means I sometimes can't get all my ideas down at once 

which in the long run hurts my score. 

Student 4 I didn't like it. Sometimes you need to run code that is 22 lines, when the 

limit was 20. so losing points for that isn't helpful 

Student 5 I appreciate the challenge to slow down when trying to figure out the 

problems 

Figure 5.8: A subset of student feedback from the free response survey question. 

Figure 5.8 contains some of the feedback received on the free response survey 

question. One insight gleaned from the responses to this question was that some students 

felt limited by the addedLOC rule. Student 4, for example, expressed frustration about 

losing points for minor addedLOC violations. Similarly, student 3 felt that limiting the 

number of lines they could add before it would impact their IncDev score hindered their 

ability to “get all [their] ideas down at once.” Other students expressed appreciation for 

the score, with student 5 stating, “I appreciate the challenge to slow down” and student 1 

claiming, “it is a good reminder and forces me to develop incrementally since I have a 

habit of not doing so.” Finally, some students expressed that they did not understand the 



36 

theory behind the IncDev score, with one simply stating, “not really sure why we use 

that.” Student 2 also expressed confusion writing, “...I couldn’t tell if I was supposed to 

write the code incrementally AND submit it incrementally or just write it incrementally.” 

The multiple choice questions indicate that overall students were able to grasp the 

incremental development score, that it raised their awareness of the importance of 

following this practice, and that it encouraged them to enact it. The free response 

question revealed another facet of students’ reception of the score, which is that although 

most students understood the score and its purpose some disliked it in practice. It’s 

possible that those who felt limited by the IncDev score felt afraid of even temporarily 

lowering their score despite the fact that they could replenish it quickly, and likely would 

be able to do so in the course of their normal development. For instance, the example of 

an unhelpful case given by student 4 was a submission with an addedLOC of 22. In 

reality this would only lower their score by 0.08, an amount that would be replenished in 

excess by just one additional non-offending run. This fear of having a temporarily 

lowered IncDev score could potentially be combated in future quarters by stressing the 

fact that the final score is the only one considered for grading, that it is reasonable to 

occasionally submit slightly more lines than the established addedLOC limit, and that the 

replenishment portion of the IncDev heuristic is intentionally designed such that students 

can make some minor violations and still end up with full credit. 

 The results of the multiple choice questions in the survey suggest that our score 

did have the intended effect of raising students’ awareness of developing incrementally, 

as well as encouraging them to actually implement this habit in their development. Some 
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of the free response feedback from students echoed this sentiment, however others also 

expressed frustration at the limitations the score imposes and felt that it negatively 

impacted their development.  
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Chapter 6. Coding Trails 

 In Chapter 3 we detailed the incremental development trail which was developed 

with the goal of showing students precisely how their IncDev scores were affected by 

each run in their development history. Prior to creating the incremental development trail, 

we also created several other coding trails with the purpose of giving instructors an 

overview of numerous aspects of students’ development. Each trail uses a shorthand 

notation that, once understood, is easily interpretable. These trails were included in the 

same tool that generates the IncDev scores to produce a spreadsheet that provides 

instructors with a cohesive look at each students’ behavior. 

6.1 Coding timeline trail 

 The coding timeline trail provides information about which days a student worked 

on an assignment, how many days they worked on it, how many submit and develop runs 

they made, and what auto-grader scores they received. Every coding timeline trail starts 

with the date that a student started working on their assignment in the ‘MM/DD’ format, 

followed by the day of the week that date represents. A single letter is used to represent 

each day of the week. The first letter of the day is used except for Thursday which is 

represented by an ‘R’ and Sunday which is represented by a ‘U’. Next, a series of 

numbers and ‘-’ characters are listed to represent each run that a student made. ‘-’ 

characters represent develop runs where a student is independently working on their 

program and running it to test their code manually. When a student makes a submit run, 

where they submit their code to be auto-graded, the score that run receives is added to the 

trail. If more than one consecutive submit runs are made their numbers are separated by 
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commas. If a student’s work spans more than one day, another letter is added to the trail 

indicating the current day. If their work spans more than 7 days, the ‘MM/DD’ date will 

be added again to indicate this. 

01/30 W --6,7 F -8--- 02/07 R -10 

Figure 6.1: A sample coding timeline trail. 

 Figure 6.1 shows an example of a coding trail. The student begins their 

development on January 30th, a Wednesday. They make two develop runs and two 

submit runs, on which they get a score of 6 and then 7. They work again on Friday of the 

same week when they make one develop run, a submit run that receives a score of 8, and 

three more develop runs. They don’t run their code again until February 7th, 8 days after 

the first day they worked on the assignment. On the 7th they do one more develop run and 

a final submit run that gets an auto-grader score of 10.  

This trail was inspired by a similar trail that is used in the online programming 

system zyBooks. The zyBooks trail is updated each time a student runs their code so that 

students and instructors can immediately view it. We chose to mirror this trail in our tool 

since our tool is compatible with log files generated by other programming submission 

systems, so instructors that aren’t using zyBooks could now have access to it. It is also 

beneficial for instructors who do have access to zyBooks, as they don’t need to open a 

separate window and match students up between the two outputs. 

6.2 Time between submissions trail 

 Students using auto-grading homework systems sometimes rapidly submit their 

code to try and pass the particular test cases given to them. They will submit their code, 
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make a rushed change without putting much thought into it, and submit again to 

essentially ‘guess and check’ their way to the correct solution. This is generally 

undesirable as it could prevent students from thinking critically about and learning from 

the debugging process. This can in turn negatively impact students later on once they’re 

developing real world applications. We developed the time between submissions trail so 

that instructors could see how frequently students are submitting their code to be auto-

graded, and to see whether students are manually testing their code in between 

submissions. This is also in line with our more general goal of providing tools for 

instructors to identify what type of programming processes students are following to get 

to their assignment solutions. 

Student 1: ----0,3---8 

Student 2: 0,2,0,0,2,0,1 / 0,1 

Figure 6.2: Two sample ‘time between submissions’ trails. 

 Figure 6.2 gives two examples of time between submissions trails. Similar to the 

coding timeline trail, ‘-’ characters represent develop runs and numbers denote submit 

runs. In this trail, however, the numbers indicate how many minutes have passed since 

the previous submission rather than the auto-grader score received. We also introduce a 

new character, ‘/’, to represent something we call a ‘session break’. Student 1 in figure 

6.2 made four develop runs and then two consecutive submit runs. The first submit run is 

marked with a ‘0’ since there were no submit runs made before it, and the second submit 

run is marked with a ‘3’ because it was made 3 minutes after the first submit run. The 

student then does three more develop runs and a final submit run 8 minutes after the 

second one. This is a good example of how we’d like to see a student developing, using 
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develop runs to manually test their code and occasional submit runs to see what progress 

they have made towards passing the test cases. Student 2, on the other hand, appears to be 

an example of a student spamming submit runs without doing any manual testing. This 

student submits their code seven times with relatively little time in between them. The 

time between submissions is rounded to the nearest minute, so repeated zeroes indicate 

that the runs were submitted within less than 30 seconds of each other. After these seven 

runs we insert a ‘/’ character indicating that a session break took place at that point. 

Session breaks mean that the student has not made any develop or submit runs in the past 

10 minutes, suggesting that they may have taken a break from their coding. Since one of 

the goals of the time between submissions trail is to identify how frequently students are 

running their code, we include these session breaks to bring attention to times when 

students stopped developing. If a student made no runs for 2 hours, it would be 

misleading to list ‘120’ in the trail since this would suggest that the student had been 

coding for 120 minutes when they were likely not working at all. The first submit run 

after a session break is again marked with a ‘0’ since we are presuming that they had not 

been developing during the session break period. We found that the session break cutoff 

of 10 minutes was performant for the labs that we looked at, particularly since they were 

CS1 labs that didn’t require very large-scale solutions. If an instructor wanted to use a 

larger cutoff value it would require only a trivial code change.  

 The time between submissions trail allows instructors to quickly look over their 

roster of students and pick out those who may be abusing the auto-grader system by 
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making rapid submissions. The inclusion of session breaks also allows them to see 

approximately when students may have taken breaks in their development. 

6.3 Lines of code trail 

 The lines of code trail shows how many lines of code were included in each run 

that a student made, and additionally marks runs where addedLOC violations and drastic 

changes occurred. We developed this trail before the IncDev trail, though both trails have 

some data in common. 

17...16,^41*....37,27,27 

Figure 6.3: A sample LOC trail. 

The lines of code trail does not distinguish between ‘develop’ and ‘submit’ runs. 

Each number and ‘.’ character represent a single run. We use a notion of ‘visual 

compaction’ to determine which runs will have their lines of code listed, and which will 

be replaced with a ‘.’ character. The rules we use to determine which runs will be 

compacted are detailed in section 5.3.1. Commas are used to separate consecutive lines of 

code. ‘*’ characters indicate that an addedLOC violation occurred in the run it is next to, 

and ‘^’ characters denote runs that contain a drastic change. The process we use to dictate  

which runs contain drastic changes is detailed in section 5.4. Figure 6.3 shows a sample 

lines of code trail where the student made 13 runs total. The first and last runs always 

have their lines of code listed. This students’ first run contained 17 lines of code. They 

made 3 more runs before submitting the series [16, 41]. The run with 41 lines of code 

exhibited both an addedLOC violation and a drastic change. For this reason, we list the 

‘*’ and ‘^’ characters adjacent to it. The student then makes 4 more runs, the lines of 
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code for which are omitted. Their development history ends with three more runs with 

the lines of code [37, 27, 27]. 

6.3.1 Visual compaction 

One of our goals in developing these trails was to make them concise and quickly 

interpretable. Toward this end, we created some rules to determine which runs would be 

the most notable or informative. Some of the unnotable runs could then be replaced with 

‘.’ characters to indicate that a run had indeed taken place, but that we omitted the 

number of lines of code it contained to reduce visual clutter. We only omit runs that don’t 

contain much useful information so the trail remains informative. We called this method 

‘visual compaction.’ 

 To enable visual compaction, we start by generating a boolean list indicating 

whether each run seems notable or not. We define notable runs as those that contain 

either an IncDev violation, a drastic change, or where the lines of code have changed by 

more than 10. We do not distinguish between an increase or decrease in lines of code, any 

change greater than 10 is marked as notable.  

After creating the notability list we pass through it again to specifically analyze 

the subsequences of consecutive unnotable runs. For instance, if our list is [1, 0, 0, 0, 1, 0, 

0, 0, 1], the subsequences are runs 2 to 4 and runs 6 to 8. Our goal here is to determine 

whether the runs in the subsequence follow the trend of their endpoints. If the lines of 

code of our first subsequence and its bordering runs are [20, 25, 19, 18, 15] we can see 

that the trend of the endpoints is decreasing from 20 to 15, however the second run does 

not follow this trend because it is larger than 20. Similarly, if we have the sequence [15, 
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16, 12, 18, 20] we see that the third value does not follow the increasing trend of the 

endpoints from 15 to 20. In both cases, we would update the notability list so that these 

outlier values are not omitted. This process is recursive. When one of the values in a 

subsequence is updated, that value will become an endpoint for the new subsequence that 

it now borders. This new subsequence will be subjected to the same endpoint trend check. 

 The last step in finalizing the notability list is to check the length of each 

unnotable subsequence. We chose to only omit those subsequences with length of at least 

3. We feel that it would be more visually distracting to omit one or two runs than to 

simply list their values. Additionally, we chose to never omit more than 10 runs in a row. 

If a subsequence is longer than 10 runs we mark the 11th run as notable. We did this 

because each individual unnotable run could still change by as much as 10 lines of code. 

If a student made 20 submissions, adding 10 lines of code each time, there could be a 200 

line difference between the notable run endpoints. Limiting consecutive unnotable runs to 

10 prevents this from happening and limits the maximum number of lines added ‘behind 

the scenes’ during an unnotable subsequence to 100. Once these modifications have been 

made to the initial notability list it is used as a guide to generate the final lines of code 

trail.  

6.4 Drastic change trail 

 The final trail we created is the drastic change trail. This simple trail lists the run 

number of each run that exhibits a drastic change. While developing the incremental 

development heuristic we realized that since it only considers the number of lines of 

code, not the content of these lines, there were some important cases that it would not be 
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able to detect. For example, a student could make any number of changes to the code that 

they had previously submitted without it being flagged, provided that the number of lines 

of code did not change drastically between the two runs. To counter this we created a 

formula for detecting drastic change that could identify runs where a student has altered a 

substantial portion of their code, regardless of the number of lines added or removed. 

There are also cases outside of incremental development where drastic change can be 

beneficial. We have previously found that students sometimes attempt an assignment for 

some time, then get frustrated if they’re unable to finish it and refer to online solutions 

instead. Our drastic change metric can catch such cases where a student seems to be 

developing normally and then suddenly replaces their code with a copy-pasted solution.  

 Our method for detecting drastic change uses the python module ‘difflib.’ The 

difflib module has a function called Differ which takes in two strings and returns a list of 

changes made between the two. Each line in the Differ result starts with either a ‘+’ or ‘-’ 

character to indicate whether that line was added to or removed from the second string 

passed in. 
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- using namespace std; 

+ std::cout << "Hello World!"; 

- return 1; 

+ return 0; 

Figure 6.4: Two code blocks and the ‘Differ’ results they produce.  

Red highlighting indicates code that was removed, and green indicates code that was added. 

We then count the number of changes that were returned by Differ and divide this 

count by the number of lines present in the earlier of the two code submissions. We do 

this division so that the result is proportional to the size of the code that the student had 

submitted. In this way, we can detect drastic changes in small programs as well as large 

ones. In the future we may consider adding a minimum number of lines of code required 

for a submission to be considered as a drastic change, as our current metric could result in 

marking an excessive amount of very small code submissions. Finally, we compare the 

result of this division against a constant. If the result is larger than the constant, we mark 

the run as a drastic change. We chose to use a constant of 0.7 as this generally produced 

the desired outcome when compared to a manual marking of drastic change runs on 

historic assignment data. Similar to the session break constant in the time between 

submissions trail, only a trivial code change is required to alter the drastic change cutoff 

if desired.  

12, 14, 20 

Figure 6.5: A sample drastic change trail. 
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Figure 6.5 gives an example of a drastic change trail. The trail indicates that the 

student’s code changed drastically on runs 12, 14, and 20. We created this trail because 

the tool we developed doesn’t contain the students’ code submissions in its output. 

Listing the run numbers of drastic change runs makes it easier to locate flagged 

submissions in the system that the log file was downloaded from, such as zyBooks. An 

instructor or TA could then do some manual analysis of the flagged runs depending on 

their goal, such as detecting cheating.  

6.5 Cohesive coding trails example 

 Figure 6.6 gives a complete example of what the coding trail output could look 

like for 3 distinct students. 

 
Coding timeline 

trail 

Time between 

submissions 

trail  

Incremental 

development trail 

Lines of code 

trail 

Drastic 

change 

trail 

Student 1 10/12 W --2,2---5 --0,5---15 
10 (1), 12, 27, 32, 

37, 46, 53 (1) 
10,12,^27...53 3 

Student 2 
10/11 T 

0,0,1,0,1,2 
0,0,1,1,0,2 

45 (0), 50, 48, 50, 

51, 53 (0.5) 

45*,50,48, 

50,51,53 
 

Student 3 10/12 W - F 0,0,5 - / 0,3,4 
15 (1), 15, 20, 

^53 (0.48) 
15,15,20,^53* 4 

Figure 6.6: Sample coding trail output for three students. 

 Based on the information given in the trails, student 1 appears to exemplify good 

development habits. The coding timeline trail shows us that all of this students’ work was 

done on 10/12, a Wednesday. They made numerous develop runs during the course of 

their development, suggesting that they weren’t solely relying on the results of the auto-

graded test cases to guide their work. The student eventually received a full score of 5. 

Student 1’s time between submissions trail further suggests that they were taking time to 
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make meaningful steps in their development rather than spamming submissions. The 

student did not make any addedLOC violations, as reflected in their incremental 

development trail. Their lines of code trail and drastic change trail shows that they made 

one run which contained a drastic change. Given the fact that the code length of the 

submission is relatively small, and since their lab score didn’t suddenly improve 

uncharacteristically, this doesn’t necessarily raise any red flags.  

 Student 2 in figure 6.5 exhibits some less desirable development behaviors. They 

worked on their assignment a day earlier than student 1, but they were not able to receive 

an assignment score above 2. In addition, they only made submit runs and failed to make 

any develop runs. In combination with their time between submissions trail, which 

reveals that the student never worked for more than 2 minutes between submissions, this 

suggests that the student was spamming submit runs without much thought. The student 

also did most of their development prior to submitting for the first time, submitting a 45 

line submission which initially drops their incremental development score to 0. They 

made 5 more submissions which did not reflect addedLOC violations, so they finished 

with an incremental development score of 0.5.  

 At first glance, student 3 appears to follow better practices during development 

than student 2. They worked over the course of two days and ended up receiving a full 5 

points on the assignment. The student also didn’t make rapid submissions, instead 

appearing to work for about 3 and 4 minutes between them. That being said, the 

incremental development trail reveals that they did not submit many lines of code until 

their last submission where they make a jump from 20 to 53 lines, resulting in a final 
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incremental development score of 0.48. This same run is also flagged as a drastic change 

in the lines of code and drastic change trail. This student’s trails represent a case that may 

warrant further investigation. The suspect aspects of their development include the 

sudden jump from 20 to 53 lines in tandem with the fact that there were only 4 minutes of 

development between these two submissions. Additionally, the drastic change run 

corresponds with a sudden leap from 0 points to full credit, 5 points. These trails are not 

definitive proof of any wrongdoing, however they can help to direct an instructors’ 

attention to cases that may warrant further investigation. 
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Chapter 7. Conclusions 

Several changes could be made in future work to potentially improve the impact 

of the IncDev score. We found that there was limited interaction with the IncDev score as 

most students did not check their score when it was updated each day, in addition to some 

students who never checked their score even once. In future research more care may be 

taken to remind students that their scores are available for viewing. This may increase 

students’ mindfulness of incremental development while they are working on their 

assignments. Ideally, the IncDev score would be integrated into the assignment 

submission system being used so students could see their score in real time. A higher 

point value could also be attached to the IncDev score. This would almost certainly 

increase students’ attentiveness to it, since in general students are highly grade motivated. 

Another possible consideration is that the IncDev score could be introduced earlier in the 

semester so that students don’t develop poor incremental development habits before it is 

incorporated into the course. One counter to this thought is that students learning to 

program for the first time are often already overwhelmed and adding another process for 

them to follow has the potential to introduce unnecessary stress.  

Updates to the IncDev heuristic could also be considered to further improve its 

accuracy. It may be more performant if an exponential penalty, rather than the linear 

penalty we detailed in this paper, is used when IncDev violations occur. This would 

further discourage students from making large IncDev violations. An additional 

improvement could be to update the replenishment aspect of the IncDev heuristic to 

prevent students from fully replenishing their score by rapidly submitting unaltered code. 
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This could be done by only allowing replenishment if a certain number of minutes have 

passed since the previous run, or by only replenishing if some change has been made to 

the code. In both cases students could still hypothetically ‘game’ the score, however it 

would take an increased level of time and effort. We generally feel that having a lenient 

replenishment policy is preferable to a strict one since the purpose of the IncDev score is 

to encourage students to develop incrementally rather than to discourage and frustrate 

them. 

Our experiment was inconclusive, but showed that introducing the incremental 

development score may reduce the number of students who make many repeated IncDev 

violations, as well as reduce the number of major violations across a class section. 

Additionally, based on student survey results, introducing the IncDev score generally 

increased students’ awareness of the importance of incremental development and 

encouraged them to be mindful of this process while they work on their programming 

assignments. It seems that the IncDev score shows promise but would need to be 

developed further or implemented into the class in a different way to improve its impact. 

The numerous coding trails we developed as part of the IncDev tool provide a concise 

and easy to comprehend overview of numerous aspects of student development. We feel 

that instructors would benefit from these as they enable them to quickly identify which 

students may be struggling, abusing auto-grading systems, or even cheating. This is of 

increasing importance as class sizes continue to grow and more universities adopt online 

programming systems for their early computer science courses. 

  



52 

References 

[1]   Das, Rajdeep, et al. “Prutor: A System for Tutoring CS1 and Collecting 

Student Programs for Analysis.” ArXiv, 21 Aug. 2016, https://doi.org/ 

https://doi.org/10.48550/arXiv.1608.03828. Accessed 2022. 

[2] Gordon, Chelsea L., et al. “The Rise of Program Auto-Grading in 

Introductory CS Courses: A Case Study of Zylabs.” ASEE PEER Document 

Repository, 26 July 2021, https://peer.asee.org/the-rise-of-program-auto-grading-in-

introductory-cs-courses-a-case-study-of-zylabs. 

[3]  Paiva, José Carlos, et al. “Automated Assessment in Computer Science 

Education: A State-of-the-Art Review.” ACM Transactions on Computing 

Education, vol. 22, no. 3, Sept. 2022, pp. 1–40., https://doi.org/10.1145/3513140. 

[4] Piech, Chris, et al. “Modeling How Students Learn to Program.” SIGCSE 

'12: Proceedings of the 43rd ACM Technical Symposium on Computer Science 

Education, 29 Feb. 2012, pp. 153–160., https://doi.org/10.1145/2157136.2157182. 

[5]  Wilcox, Chris. “The Role of Automation in Undergraduate Computer 

Science Education.” SIGCSE '15: Proceedings of the 46th ACM Technical 

Symposium on Computer Science Education, 24 Feb. 2015, pp. 90–95., 

https://doi.org/10.1145/2676723.2677226.  

 




