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FOREWORD

Constraint-based reasoning (CBR) is a paradigm that unifies many traditional areas in Ar- -
tificial Intelligence. Simply stated, CBR encourages the formulation of knowledge in terms
of a set of constraints on some entities, without specifying methods for satisfying such con-
straints. Many techniques for finding partial or complete solutions to constraint expressions
have been developed, and have been successfully applied to tasks such as design, diagnosis,
truth maintenance, scheduling, spatio-temporal reasoning, and user interface. '

The symposium brought together a diverse group of researchers, and the work presented
spanned many topics, from basic research and theoretical foundation to practical applications
in industrial settings. It became apparent that from a mathematical viewpoint, the field has
reached a certain level of maturity; algorithmic breakthroughs were not reported nor were
they expected. On the other hand, most of the talks focused on strengthening CBR with new
implementation tools or eztending the technology to new areas of application.

The symposium opened with Alan Mackworth’s overview of the interplay between con-
straint-based reasoning and various logical frameworks. It stressed the point that although
constraint satisfaction problems can be expressed in other logical frameworks, the relational

language provides a convenient means of encoding knowledge which often invites unique
~ opportunities for efficient processing techniques.

The discussions that followed fell into four major categories: 1. Extensions to com-
monsense reasoning (default, causal, qualitative, temporal). 2. Parallel and distributed ap-
proaches, 3. Constraint-logic-programming languages, and 4. New application areas (layout
design, natural languages, DNA analysis, mechanical design).

1. The session on commonsense-reasoning centered around issues in temporal reasoning.
In particular, two approaches for combining quantitative temporal specification (e.g., metric
networks) and qualitative specification (e.g., Allen’s interval algebra) were presented and
compared. Meiri (UCLA) treats points and interval as temporal objects of equal status,
admitting both qualitative or quantitative relationships. Ladkin (ICSI) and Kautz (Bell
Labs) maintain the qualitative and quantitative components in two separate subsystems, and

- provide sound rules for transforming information between the two.

In the area of default reasoning, Ben-Eliyahu (UCLA) and Dechter presented a new
tractable class of default theories based on CBR mapping, and Freuder (UNH) discussed an
extension of the constraint language that expresses imprecise knowledge. In qualitative rea-
soning, Kuipers (UT) reviewed issues in qualitative simulation and the role of constraint pro- -

" cessing. This area concluded with Pearl’s (UCLA) presentation of causal constraint networks—

a new tractable class of constraint problem that utilizes the efficiency and modulanty inherent
to causal organizations.

2. Distributed and neural architectures for constraint processing received much a.ttentlon »
Kasif (John Hopkins) opened this discussion by surveying the theoretical aspects of parallel
computations. We learned that constraint-satisfaction, and even a.rc-cons1stency are “non-
parallelisable” (unless the network has no cycles), meaning that it is unlikely to be solved
by polynomial number of processors in polylogarithmic time. However, linear speedup or




good average parallel time are still feasible. Following this survey, several distributed models
were presented, all addressing the basic questions of whether constraint satisfaction can be
" achieved with neural-like computations, that is, whether constraints can be expressed as
global minima of neural networks and whether these global minima can be approached by
local computations.

‘We heard answers to some of these questions: Pinkas (Washington University) showed that
any set of constraints, binary or non-binary, can be described as a Hopfield net, such that
its global minima coincide with the set of solutions. Collin (Technion) and Dechter showed
that even if we upgrade the computation power of the neurons to finite state automata, the
constraint problem can be solved only by making one processor distinguished (an almost
- uniform model), or if the topology is a tree. Guesgen (German National Research Center)
concluded this topic by presenting a uniform neural network algorithm that achieves a global
solution at the expense of increasing memory requirement.

3. Two sessions were devoted to constraint logic programming (CLP). These languages
integrate constraint satisfaction and operations research techniques within the logic program-
ming paradigm. Jaffar (IBM) opened the discussion on this topic by describing the manage-
ment of hard constraints in CLP systems. The idea is to delay the evaluation of non-linear
constraints until (and if) they become linear, at which point they can be solved by efficient
algorithms designed for this task. We heard from a group at West Advanced Technology
(Abdullah, Epstein, Lim, and Freeman) how non-linear constraints can be managed using
available packages like MATHEMATICA. Van Hentenryck (Brown) described improvements

to arc-consistency algorithms for functional or monotone constraints, and discussed their rel-

evance to the CHIP programming language. Wilson, Borning, and Freeman-Benson (UW)
showed how solutions to CLPs can be obtained using hierarchical weighing of constraints and
introduced control knowledge via imperative constraint programming.

4. Application domains were presented throughout the symposium. In the area of natural
language processing, Haddock (Hewlett-Packard, U.K) described the use of consistency algo-
rithms to solve noun phrase reference. A group at Schlumberger (Kramer, Pabon, Keirouz,
and Young) developed a polynomial algorithm for solving geometric constraint satisfaction
problems. Baykan and Fox (CMU) introduced disjunctive constraints that can conveniently
deal with applications of job shop scheduling and floor plan layout, and Yap (IBM) showed
how the restriction site mapping in molecular biology can be expressed as dynamic constraint
satisfaction.

A central issue that was ralsed repeatedly was the need for having a standard set of large,
representative, real life benchmarks for evaluating different constraint processing techniques.

Rina Dechter
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Finite Constraint Satisfaction
Problems in Logical Frameworks

[1 Can FCSP be posed in logical frameworks?

[] Can standard logical methods be used to solve FCSP‘?

[0 Can properties of FCSP be explmted to get better algorithms?
(] Are there tractable classes of FCSP?

[1 Do old results fall out?

[1 Can the logical FCSP approaches be generalized to CSP?

[0 Do we get new results & systems?

- - -
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An FCSP: The Canadian Flag Problem

Colour the Canadian flag. Only two colours, red and white, should
be used, each region should be a different colour from its neighbours,
and the maple leaf should be red. |




FCS as Theorem Provmg in FOPC

FCSP decision problem: Constraints - Query?
where Query: 3:1813:1:2...Ela:nQMatria:(xl,':vz,;..xn)

Az13xs . . . 300 Py (1) A Pry(z2) A ... A Py, (0)
A Py z, (21, x2)' A Pppl(x1,23) A ...
A Pa;]_m2x3(£v1, 9, :123) N ...

A Pwlwéxg a:n($17 L2y L3y« 73;n)

Constraints is a set of positive ground hterals specifying the
extensions of the predicates:

Constraints = {Pxi1$i2,,,mim,(ci1, Cigy - -+ 3 Cip)|1 Lt < g1 < n}




FFCSP Decision Problem

‘A Finite Constraint Satisfaction Problem: (Constraints, Query). |

The decision problem — solution can be shown to exist or not:
Constraints = Query, or Constraints ¥ Query.

b o . B B
[T *
W L P
3 l

Proof: :
The Herbrand universe of the theory C’onstmznts | = Query is:

H={c|P(.. ) € C’onst'raznts}

H is finite.

|
|
~ Proposition: Any FCSP (Constraints, Qy;éry) is decidable.



FCSP Decision Algorithm

Decision Algorithm DA :
Success «— No
For each (z1,29,...,2,) € H"

If Constraints - QMatriz (x1,...) then Success « Yes
Report Success. |

End DA

- where Constraints - QMatriz (x1, .. .)
if YAtom € QMatriz (x1,...) Atom € Constraints .

DA always terminates (in O(|H|")time).

The algorithm reports Yes iff Constraints Query. It reports No
iff Constraints ¥ Query.



Completing the constraints

Consider the completion of Constraints with respect to Query. Each
predicate can be completed (Clark,’78) in the following sense:

~ completion(Constraints) = |
| Constraints U {=Px(c1,¢2,...)|c; € H,Px(c1,cp,...) & Constraints}

In other words, the complete extension of each predicate over the
Herbrand Universe is specified in completion(Constraints).

< Constraints - Query iff completion(Constraints) - Query.
 Constraints ¥ Query iff completion(Constraints) b —~Query.

Hence DA reports Yes iff completion(Constraints) - Query and
No iff completion(Constraints) = —Query. .

Thus, we may choose to interpret the answer from DA in the original
sense or under the assumption that the Constraints have been
completed. Both are correct. -




The Flag FCSP in FOPC

~ Using the FCSP formalism presented above we can formulate the flag
problem as follows.




Query : | | ?
wIzIy3zP(w) A Q(z) A R(y) A S(2) AN(w,z) A N(z,y) AN(z,2) 1

Constraints :

{P(a), P(b), Q(a), Q(b), R(a), R(b), 5(b), N(a, b), N (b, a)}

- H={a,b}  astands for White, b for Red;‘
H* = {(a,0a,a,a),(a,a,a,b),...,(b,b,b,b)}

On the FCSP (Query, C’onstmints)u algorithm DA returns “Yes”
succeeding on {w =b,z =a,y =b,z = b}.






Logical Representation Systems

N N EE N N BN BN NN W N NN BR M MR N e e e e
Faced with a problem, spectrum of logical representation systems.
Descriptive and procedural adequacy criteria — in conflict.

\ KISS principle: choose the simplest system.

\ | |

* FCS equivalent to theorem-proving in a very restricted form of FOPC.
\

[1 Horn FOPC restricts FOPC in only allowing Horn clauses, with at
most one positive literal.

[J Horn Logic Programs (HLP), with pred1cate completion, restrict
Horn FOPC by allowing only one negative clause.

11

[1 Datalog restricts HLP by not allowing function symbols.
[0 FCS restricts Datalog by not allowing rules.
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" First Order Predicate Calculus

N

'Func_tion Free FOPC Horn FOPC Constraint Logic Programs

N

Hom Logic Programs

Propositional Calculus

Datalog Constraint Satisfaction

Finite Constraint Satisfaction

SN
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FCS as Theorem Proving
in Propositional Calculus

DA implements FCS as theorem proving in the propositional calculus.
Query is a theorem? |
Constraints | ~Query leads to a contradiction?
-Query : =3z;3zs . .. Iz, QMatriz(zxy, . . .)

Vo Vzy .. Ve,~QMatriz(zy,. .. Tn)
Constraints| ) ~Query has no (Herbrand) models?
No V’s in Query and so no I’s in Constraints | ~Query.
Hence no Skolem functions in clausal form. |
Herbrand universe is finite. |

Replace V’s by the conjunction of the —QMatriz(z1, T2, ..,Tn)
clauses instantiated over H™. |



{P(a), P(b), Q(a), Q(b), R(a), R(b), S(b), N(a, b), N(b, a)}
U .

{~P(a) V-~Q(a) vV ~R(a) V~5(a) V -N(a,a) v - N(a,a)V —N(a,a),
-~P(a) vV -Q(a) V ~R(a) V ~S(b) V ~N(a,a) V ~N(a,a) V ~N(a,b),

~P(B)V ~Q(a) V ~B(5)V ~S(b) V ~N(,0) v ~N(a, ) V ~N(a,b), ]

71

. P(5) V =Q(b) V ~R(b) V ~S(b) V ~N(b,b) V ~N(b,b) V ~N(b,b), }

Propositional formula in CNF has a particular form: only unit positive
clauses (arising from the constramts) and negative clauses (from the
query). Horn.

Unsatisfiable iff the FCSP has a solution.

HomSAT — linear time but |H|" negative clauses.



Unit resolution alone 1s complete. Repeated unit resolution
| on [#] reduces it to L[], corresponding to the solution

{w=bx=a,y=0b,z=>b}.

The HornSAT algorithm exactly mimics the algorithm DA.

The propositional variable each unit positive literal is set to T and
each negative clause is checked: if any clause has each (negative)

- literal required to be F then the formula is unsatlsﬁable otherwise it
i1s satisfiable.

Q1



FCS as Theorem Proving in Horn FOPC

None so far serious candidates for actually solving a CSP: clarify the
semantics and methods of the serious candidates.

Prolog interpreter: SLD-resolution 1s a sound, complete and somewhat
~ efficient solution method.

\ sprolog
| ?2— [user].

91

yes

| 72— p(W),q(X),r(Y),s(Z),n(W,X),n(X,Y),n(X2).
W=Y=2 =D, ~

X = a ;

Nno



Checks every posmble set of bindings for W, X, Y and Z.

By permuting the query one may reduce the size of the search space a
partially completed set of bindings can be rejected by a single failure.
. e.g. for the query: |
| p(W),q(X),n(W,X),r(Y),n(X,Y),s(z),n(X,2)

Heuristics, such as instantiating the most constrained variable next,
can be used to re-order the query but, on realistic problems, this tactic
is doomed.

L1

In general, no variable ordering can avoid thrashing by repeatedly
rediscovering incompatible variable bindings.



L FCS in Constraint Networks

" Drawbacks of the SLD-resolution approach lead to FCS 1n constraint
networks. - ‘ .

A constraint network represents each variable in the query as a vertex.
The unary constraint P(x) establishes the domain of x, and each

binary constraint Pyy(x,y) is represented as the edge (,y), composed
of arc (z,y) and arc (y,z).

8T



61

{b)

Constraint Network for the Flag Problem

An arc (x,y) is consistent it
YuP,(u) — Fv[Py(v) A Pry(u,v)]
A network is arc consistent if all its arcs are consistent.

An arc (z,y) may be made consistent.




. 0T

{b}

" Arc Consistent - Network for the Flag Problem

'Arc consistency linear time.

If constraint graph a tree then arc consistency alone a decision
procedure for FCSP (Mackworth & Freuder, °85).

Various other graph theoretic properties of the constraint network can
\ be used to characterize and solve FCSPs (Freuder, *90; Dechter, "91).



An Arc Consistency Interpreter for FCSP

Given
Query :
FwIzTyAzP(w) A Q(z) A R(y) A S(z) A N(w,z) AN(z,y)ANN(z,z)
Represent Constraints as: |
Plw)=w=aVw=b
Q(z)=x=aVz=0
Rlyy=y=aVy=>
S(z)=z="b
| N(s,t)=(s=aAt=b)V(s=bAt=aqa)
Rewrite Constraints using the AC rewrite rule:
Py(u) <= Py(u) A Fo[Py(v) A Pry(u, v)]

12

\ Here:
Q(x)
= Q(z) NIz[S(# z) A N(z, z)]
(:z::a\/:z:—-b)/\ﬂz[z—b/\(:c—a/\z—b\/:c—b/\z—a)]

~<:(:1:::a,)'



Iterating the AC rewrite rule reduces the constraints to a fixpoint:

Plw)=w=">
RQz)=z=a
R(y)=y=b
S(z)=z=1b

N(s,t)=(s=aAt=b)V(s=bAt=a)
In general, the interpreter must interleave the AC relaxation with some
non-deterministic choice (Mackworth, *77). CHIP (Van Hentenryck,
'87). | .
Connection Graphs (Kowalski, ’75) with SLD-resolution on FCSP
queries.

(44



[F]CS and CLP(®)
The FCS constraint form is a special case of the CLP(®) rule form:
P(z,y,...) <Ci(z,y,...) NCo(z,y,...) A ...
i | /\Pl(:r:,y,‘...)-/\Pz(:v,y,...)/\...
In Horn Logic Programming ® = H and the C; constraints are
‘\ equalities on terms.
CS fits the CLP(®©D) scheme e.g. CLP(ER)
Plz)— (1<) (x<3)
Qly) — (0 <y) A (y<2)
R(z,y) —x <y
Refine: -
P(z) « (1 <z)A(z < 2)
Qly) — 1<y A (y<2)

N
w



IF'CS as Model Finding in Propositional Logic
A radically different framework for FCS is as model finding in
propositional logic (Reiter & Mackworth, ’87; de Kleer, '39).

A formula F' in propositional logic is constructed for the FCSP.
Each model of F' corresponds to a solution of the FCSP.

Each proposition in F' represents a possible binding of a variable to a
value. w : a means that variable w takes the value a.

F may be in CNF with a set of clauses representing:

e

« the fact that each variable must take a value (e.g. w:aV w : b)
« the fact that the values are pairwise exclusive (e.g. ~w : aV ~w : b)
. the constraints on related variables.




| l\- EE I BN B BN SN BN B BN BN BN BN B B B BE Be E.
" The constraints may be encoded as clauses in any suitable fashion. A
negative encoding (de Kleer, ’89) represents only the forbidden tuples

of the constraints (e.g. ~w : aV =T : a).

F={w:aVw:bzx:aVz:by:aVy:bz:b,
~w:aV-w:bz:aV-ozr:b-oy:aV-y:b,
~w:aV-z:a,w:bV-x:b,x:aVy:a,
—z:bV -y b-ﬂ:c bV —z:b}

SAT problem again. -

In the propositional proof-finding framework the FCSP has a solution
iff the formula has no models.

174

Under the model-finding framework each solution corresponds to a
model of F. |

" Davis-Putnam? But SAT problem has the same spemal form again:
no mixed clauses in this encoding.

‘Simplify the formula before deciding if there are any models._ _,



Use two inference rules: negative hyperresolution, Hs, and unit
resolution, U. |

Hy: pVgVrVv...Vu
—pV w
—nq'V—-u'U
=7V v

—uV v

-
U: pVqgVrV...Vu
pVrVv...Vu
Subsumption rules: S, and S5y.

9T

Given two positive clauses C; and Cy where all the literals in C}
appear in C» then S, deletes Co.

AC-resolution strategy: (Hz Sp U Sp)*

v




wi:aVw:b w b
z:aVx:b | z:a

y'aVy:b | | | y:b
~w:iaV-w:b

—z:iaV-oz:b

CyraVoyib o

—wiaVoxa wao

mw bV -z b | |

—nx:‘av-ﬂy':a . : o oTya

LT

—x:bV-y:b -
—'nx:bv-ﬂz:b'_ -z . b
The 31mp11ﬁed formula 1S:
={w:b,z:a,y: bz b,~w:a,~x:b,-y:a}

Exactly one model.



AC-resolution has the following properties:

1. The set of models of F is invariant.

2. No mixed clauses are generated so the division into positive and

negative clauses i1s mvariant.

. Total number and length of clauses decreases monotonically.

4. O(e). | |

5. ‘Incomplete’ — must be interleaved with search (e.g. assigning a
truth value to a proposition) to decide the satisfiability of F.

6. AC-resolution, used here for model-finding, mimics behaviour of
AC interpreter on FCSP (& Connection Graph theorem prover).
Each proposition reifies possible substitutions for a variable.

oy

8¢

This framework shows the relevance of planar SAT results (Seidel,
\ ’81) and 2SAT (only 2 values/variable — linear time) (Dechter).

N.B. Other encodings are possible. Directed constraint networks
(Dechter and Pearl, ’90) give Horn clauses for the constraints and
hence HornSAT (linear time) if the input variables are given specific
values. | |




Conclusions

[] Can FCSP be posed in loglcal frameworks?

[1 Can standard loglcal methods be used to solve FCSP"

[1 Can propertles of FCSP be explmted to get better algorlthms?
[1 Are there tractable classes of FCSP?

[ Do old results fall out?

[0 Can the logical FCSP approaches be generalized to CSP?

N
o

[0 Do we get new results & systems?
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Constraint-Based Knowledge Acquisition
Extended Abstract

Eugene C. Freuder
Computer Science Department
University of New Hampshire

Durham, NH 03824 USA
ecf@cs.unh.edu

Introduction

Constraint networks have begun to take their place as an Al knowledge representation
paradigm alongside rules, frames, etc. [Guesgen, Junker, Voss, 87], and, in particular, as
knowledge structures for knowledge-based systems [Havens and Rehfuss, 89). This raises
the issue of knowledge acquisition, which has been extensively studied in the context of
other knowledge representation schemes and especially for rule-based expert systems.

I will discuss three projects that I have been involved with that explore problems and
opportunities that arise in addressing knowledge acquisition issues in a constraint-based
context. The first, carried out with Sue Huard [Huard, 90], assists an expert in debugging
a constraint network knowledge base, in the spirit of Teiresias [Davis, 82]. The second,
carried out with Suresh Subramanian [Subramanian and Freuder, 90], implements the
compilation of rules from the observation of constraint-based problem solving, in the spirit
of ACT [Anderson, 83]. The third project [Freuder, 86] proposes induction of constraint

“hetworks from examples in the spirit of ARCH [Winston, 75].

Debugging
There are several dimensions along which the debugging prdblem can be categorized:

1. The problem exhibited: erroneous solutions, missing solutions. _
2. The nature of the bug: missing constraints elements, erroneous constraint

elements. . ‘
3. User contribution: supply parts of missing solutions, identify erroneous

solutions, recognize correct solutions, verify proposed missing or erroneous
constraint elements.

* We have primarily explored a single, simple point in this space of debugging contexts:

1. There is a single missing constraint element (specifying that a single pair of

values is consistent).
2. This leads to a missing solution. o
" 3. The user can supply a single value from the missing solution ("I know
there is a solution where variable X has value a"), and can verify or reject solutions
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proposed by the debugger.

This debugging context was explored for the ri-queens problem, a very specific,' but
oft-studied CSP domain. The debugging problem was viewed as a partial constraint

_ satisfaction problem [Freuder 1989]. Partial CSP algorithms were brought to bear.

Heuristics were developed and compared for improving performance in two areas:

1. Program effort, using the usual measure of constraint checks, with the aim

of providing quick feedback to the user.
2. User effort, measured by the number of questions asked of the user.

Compilhtion

We have developed a prototype system to compile rule-based knowledge from
constraint-based problem solving experience. (For another form of CSP learning from
experience see [Dechter, 86].) A simple constraint-based expert system solves problems.
Its experience motivates the automated formation of rules, which can then be employed by
a simple rule-based expert system. The rule-based system can function as a preprocessor to
promote efficiency, or ultimately as a stand-alone system. There are two particularly
interesting ways of viewing this process: : _

L. The constraint network implicitly contains many rules. By extracting
“previously successful reasoning steps in the form of explicit rules we provide a
mechanism for offering heuristic guidance, learned from experience, to a brute
force relaxation process.
2. We can attempt to compile out different specialized, efficient rule-based
systems from a large knowledge base that is conveniently expressed initially in
declarative, constraint-based terms.

These ideas have been tested on a knowledge basetof New Hampshire birds, compiled
with the assistance of a local wildlife biologist.

Induction

One of the most heavily studied forms of leaming involves generalizing from examples.
A well-known instance is Winston's ARCH program for leaming structural descriptions of
objects. Winston's program buiit semantic network descriptions. Using constraint
networks instead we can take advantage of constraint-based contextual knowledge to
leverage the leaming behavior through constraint-based inference. ‘

A simple example will illustrate. Winston's program learns that a wedge-shaped block
supported by a brick-shaped block is a "house" structure. A "counterexample” showing the
wedge and brick side by side teaches the program that the support relationship is required.
Later another counterexample, showing one wedge on top of another, teaches the program
that the bottom object cannot be a wedge. But is the second counterexample really
necessary? (Indeed it seems a little odd; it could not be constructed physically.) If we view
the support relationship as a constraint, a form of constraint-based reasoning (arc
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consistency) allows a program to infer that the bottom object cannot be a wedge: wedges
do not support bricks. This added intelligence on the part of the "pupil" lessens the burden
on the "teacher” and speeds the learning process.

Acknowledgements: This material is based in part upon work supported by the
National Science Foundation under Grant No. IRI-8913040. The Government has certain
rights in this material. The author is currently a Visiting Scientist at the MIT Artificial
Intelligence Laboratory.
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Abstract

We present a mapping from a class of default theories to sentences in propositional
logic, such that each model of the latter corresponds to an extension of the former.
Using this mapping we show that many properties of default theories can be determined
by solving propositional satisfiability. In particular, we show how CSP techniques can
be used to identify, analyze and solve tractable subsets of Reiter’s default logic.
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1 Introduction

Since the introduction of Reiter’s default logic ([Rei80]), many researchers have elaborated
its semantics ([Eth87}, [Kon88], [BF88]) and have developed inference algorithms for various
default theories ( [Eth87]),[KS89], [Sti90]). As it was clear from the beginning, most of those
computations are formidable (not even semi-decidable), and research in the last few years,
has focused on restricted classes of the language, searching for tractable subclasses of default
theories. Unfortunately, many simplified sublanguages still remained intractable ([KS89],
[Sti90]). ( _

Since Reiter’s logic is an important formalism for nonmonotonic reasoning, it is worth
exploring new dimensions along which tractable classes can be identified. The approach
we propose here examines the structural features of the knowledge base, and leads to a
topological characterization of non-monotonic theories.

One language that has received a thorough topological analysis is constraint networks. This
propositional language, based on multi-valued variables and relational constraints is also
intractable, but many of its tractable subclasses have been identified by topological analysis.
A constraint network is a graph (or hypergraph) in which nodes represent variables and arcs
represent pairs (or sets) of variables that are included in a common constraint. The topology
of such a network uncovers opportunities for problem decomposition techniques and provides
estimates of the problem complexity prior to actual processing. Graphical parameters such
as the width and the cycle-cutset, were identified as crucially related the problems’ difficulty,
and lead to effective solution strategies ([Fre82]), [MF84], (DP89]).

Our approach is to identify tractable classes of default theories by mapping them into
tractable classes of constraint networks. Specifically, we reformulate a default theory within
the constraint network language and, use the latter to induce the appropriate solution strate-
gies. .

Rather than attempting a direct translation to constraint network, this paper describes an
intermediate translation of a class default theories into propositional logic. Since, proposi-

" tional logic can be translated into constraint networks (and vice versa (dK89)), this yields a

mapping to constraint networks. The intermediate translation into propositional logic may
point to additional tractable classes and can shed new light on the semantics of defaults
theories. R a

The bulk of this paper is devoted to the analysis of such transformation. We show that
any disjunction-free propositional default theory with semi-normal rules can be translated,
in polynomial time, to a set of propositional sentences , and, moreover, all the interesting
properties of the default theory can be computed by solving the satisfiability of the latter.
We then show how constraint networks can be utilized to identify tractable classes of default
theories. , '

The paper is organized as follows. Sections 2 and 3 describe Reiter’s default logic and
some preliminaries. Section 4 presents our transformation and describes how tasks in de-
fault theory are mapped into equivalent tasks in propositional logic. Section 5 discusses the
merits of acyclic theories, section 6 presents new procedures for query processing and iden-
tifies tractable classes using constraint networks techniques. Section 7 provides concluding
remarks. Due to space considerations all proofs are omitted. For more details see [BED91).
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2 Reiter’s Default Logic

Following is a brief introduction to Reiter’s default logic [Rei80]. Let L be a first order
language. A default theory is a pair (D, W), where D is a set of defaults and W is a.set of

" closed wifs (well formed formulas) in £. A default is a rule of the form a : 31, ..., Bn/v , where

a, 1, ...0, and v are formulas in £. The intuition behind a default can be: If I believe in a
and I have no reason to believe that one of the 3; is false, then I can believe v. A default
a: [/~ is normalif v = 8. A default is semi-normal if it is in the form a : S A v/~. A
default theory is closed if all the first order formulas in D and W are closed.

The set of defaults D induces an eztension on W. Intuitively, an extension is a maximal
set of formulas that can be deduced from W using the defaults in D. Let Th(E) denote the
logical closure of E in £. We use the following definition of an extension:

Definition 2.1 ([Rei80],theorem 2.1 ) Let E C L be a set of closed wffs, and let (D, W) be
a closed default theory. Define .

o Eo=W

e Fori>0 E;p; = Th(E)U {7|a: br,...,0n/7 € D where a € E; and =f,...m(3, ¢ E}
E i3 an extension for (D, W) iff for some ordering E = U2y E;. (Note the appearance of E
in the formula for E;y,). '

Most tasks on a default theory (D, W) can be formulated using one of the following queries: -

Existence : Does (D, W) have an extension ? If so, find one.
Set-Membership : Given a set of formulas S, Is S contained in some extension of (D, W)? .

Set-Entailment : Given a set of formulas S, Is S contained in every extension of (D, 1")?

In this paper we restrict our attention to Propositional, Disjunction-free, Semi-normal
Default theories, denoted PDSD, (where formulas in D and W are disjunction-free). This
is the same subclass studied by Kautz and Selman ([KS89]). We can assume, w.l.g., that
W is consistent and that no default has a contradiction as a justification, since when W is
inconsistent, only one extension exists and a rule having contradictory justification can be

- eliminated by inspection.

3 Definitions and Preliminaries |
We denote propositional symbols by upper case letters P, Q, R..., propositional literals (i.e.
P,—P) by lower case letters p,g,r... and conjunctions of literals by , 3.... The operator ~
over literals is defined as follows: pr =-Q,~p=Q,fp=Q then ~p=-Q.lfbd=a: 3]y
is a default, we define pre(§) = a, just(§) = B and concl(4) =

We denote by S* the logical closure of a set of formulas S a.nd call S a logzcal kernel of
§*. Clearly, when dealing with PDSDs, every extension E* has a logical kernel consisting of
literals only. We assume, w.l.g. that the consequent in each rule is a single literal.

We say that a set of literals E satisfies the preconditions of § if pre(6) € E and for each g €
just(6) ~q ¢ E !. We say that E satisfies the rule § if it does not satisfy the preconditions
of § or else, it satxsﬁa both its preconditions and its conclusion.

INote that since we are dealing with PDSDs, if o is not a contradiction, the negation of one of its conjuncts
is in the extension iff the negation of a is there too.
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A proof of a literal p, w.r.t. a given set of literals Eand a given PDSD (D, W) is a
sequence of rules &, ...,d, such that the following three conditions hold : 1. concl(é,) = p
2. Foralll £i < n and for each ¢ € just(6;), g ¢ E 3. Foralll <i < n pre(&) C
WU{concl(é), ...,concl(6i1)}. -

The following lemma is instrumental throughout the paper. It can be viewed as the
declarative counterpart of lemma 1 in [KS89].

Lemma 3.1 E*is an eztension of a PDSD (D,W) iff E*is a log:cal closure of a set of
literals E that satisfies :

1. WCE
2. E satisfies each rule in D.
8. For eachp € E, there is a probf ofpim E. O

We define the dependency graph G(pw), of a PDSD (D, W), to be a directed graph con-
structed as follows: Each literal p appearing in D or in W is associated with a node, and an
edge is directed from p to r if there is a default rule where p appears in its prerequisite and
r is its consequent and r ¢ W. An acyclic PDSD is one whose dependency graph is acyclic,
a property that can be tested linearly (see [Tar72]).

4 Expressing PDSD in propositional logic

Our aim is to transform a given a PDSD (D, W), to a set of propositional sentences P( D.W)
such that P( D, W) has a model iff (D, W) has an extension, and vice-versa, every model
of P D, W) has a corresponding extension for (D, W). Since the transformation of acyclic

PDSDs is simpler, (both in terms of exposition and in terms of complexlty) we present it
separately, and later extend it to the cyclic case.

4.1 The acyclic Case

The reason acyclic PDSD are simpler is that their extensions can be expressed (and can
also be generated) in a more relaxed fashion. This is demonstrated through Lemma 4.1, a
relaxed version of the general Lemma 3.1. We can show that (note the change in item 3) :

Lemma 4.1 E* is an eztension of an acyclic PDSD (D W) iff E*t3 a logical closure of a
set of literals E that satisfies :

1. WCE
2. E satisfies each rule in D.

3. for ea.ch pEE —Wthereiséd € D such that concl(&) p and E satisfies the
preconditions of §. O

Expressing the above conditions in propositional logic, results in a propositional theory
whose models coincide with the extensions of the acyclic default theory. Let £ be the
underlying propositional language of (D, W). For each propositional symbol in £, we define
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two propositional symbols, Ip and I.p yielding a new set of symbols: £’ = {Ip,I.p|P € L}.
Intuitively, Ip stands for “P is in the extension” while I.p stands for - P is in the extension".
To simplify notations we use the notions of in(a) and cons(a) that stand for “a is in
the extension”, and “« is consistent with the extension”, respectively. Formally, in(a) and
cons(a) are defined as functions from conjuncts in £ to conjuncts in £’ as follows :

e if a = P then in(a) = Ip, cons(a) = ~I_p.
e if = —P then in(a) = I.p, cons(a) = ~Ip.
o if a = A A+ then in(a) = [in(B)] A [fn(v)], cons(a) = [cons(B)] A [cons(v)].

The following procedure.translate-1, translates an acyclic PDSD (D, W), to a set of
sentences 'P( D, W) in propositional logic as follows:

translate-1((D, W))
1. fof each p € W, put I, into p(D,W)'
2. for each a: 8/v € D, if y ¢ W, add in(a) A cons(8)—in(7) into P(D w):

3. Let S, = {[in(a) A cons(8)}|36 € D such that § = a : 3/p}.
For each p ¢ W, if S, # @ then add to 'P(D w) the formula I,—([Vqaes,a].

else, (If p¢ W and S, = 0), add to p(D,W) the formula —J,. O

We claim that:
Theorem 4.2 Procedure translate-1 transforms an acyclic PDSD (D, W) into propositional
sentence, P(D, W) such that 0 is a model for ’P(D W) iff {p|0(I,) = true}” is an eztension
for (D,W). O :

Algorithm translate-1 is time and space linear in |D + W| (assuming W is sorted).
Example 4.3 (This ezample is based on Reiter’s ezample 2.5)
Counsider the following acyclic PDSD : D = {A: P/P,: A/A, ~A/-A}, W = 0.

p(D,W) = { (remains empty after step 1),
(following step 2:) Iq A ~I.p—Ip, ~I-p— 14, ~I4— 1.4,
(following step 3:). Ip—Io A ~I-p, In—-I.4, I.a—-I4, - ~P}

P(D, W) has only 2 models : {I4 = true, I.4 = false, I.p = false, Ip = true}, that corresponds
to the extension {A, P}, and { I, = false, I.4 = true, Ip = false, Ip = false}, that corresponds
to the extension {-A}. O

4.2 The Cyclic Case |

Since procedure translate-1 assumes acyclic PDSD, it was not careful to eliminate the pos-
sibilities of unfounded proofs. If applied to cyclic PDSD, the resulting transformation will
possess models that corresponds to illegal extensions, i.e., ones that are generated by cyclic
proofs [BED91]. Thus, an extended translation is needed.
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The common approach for building an extension,(used by Etherington ([Eth87]), Kautz
and Selman ([KS89]), and others), is to increment W using rules from D. By formulating
the default theory as a set of constraints on the set of its extensions, we make a declarative
account of such process, thus allowing all the general techniques of constraint satisfaction
and propositional satisfiability to be used. This frees us from worrying about orderness.
however it requires adding a constraint guaranteeing that if a formula is in the extension.
there is a series of defaults deriving it from W.

In the acyclic case, this was achieved by the third constraint in Lemma 4.1 implemented
by step 4 of procedure translate-1. However, in cyclic PDSDs we must add the constraint
that if a literal, not in W, belongs to the extension, then the prerequisite of at least one
of its rules should be in the extension on its own rights, namely, not as a consequence of a
circular proof. One way to avoid circular proofs is to impose indexing on literals such that
for every literal in the extension there exist a proof with literals having lower indices.

To implement this idea, originally mentioned at [Dis89], we associate an indez variable
with each literal in the transformed language, and require that, p is in the extension, only
if it is the consequent of a rule whose prerequisite’s indexes are smaller. Let #p stand for
the “index associated with p”, and let k be its number of values. These new multi-valued
variables can be expressed in propositional logic using additional O(k?) clauses and literals
(see [BED91]). For simplicity, however, we will use the multi-variable notations, viewing
them as abbreviations to their propositional counterparts.

Let £" be the language L'U{#plp € £ }, where L' is the set {I,,I.p|P € L} defined
earlier. Procedure translate-2 transforms any PDSD (cyclic or a.cychc) over L to a set of
propositional sentences over L"as follows :

procedure translate-2(D, W)
1. for each p € W put I, into 'P(D W)

2. for each a : 3/y € D, add in(a) A cons(ﬂ)—»m(‘y) to ‘P(D w):

3. Let Cp = {[in(q1 A g2... A gn) A cons(B)] Al#q < #pIA ... A[#4n < #p] |36 € D such that
§=qAq..Ag:B/p}
For each p ¢ W, if C,, is not empty then, add to 'P( D,W) the formula I,—(Vaec, .

Else, (If p ¢ W and Cp = 8) add I, to P(p ).

The complexity of this translation requires adding n index variables, n being the number
of literals in £, each having at most n values. Since expressing an inequality in proposi-
tional logic, requires O(nz) clauses, and since there are at most n possible inequalities per
default, the resulting size of this tra.nsformatxon is bounded by O(|W| + |Din?) proposmonal
sentences. :

The followmg theorems summarize the properties of our transformation. In all of them,
'P( D,W) is the set of sentences resulting from translating a given PDSD (D, W) using
translate-2 (or translate-1 when the theory is acyclic).

Theorem 4.4 Let (D,W) be ¢ PDSD. If ’P( D, W) is satisfiable and if 0 is a model for

P(p,w) then {p|8(I,) = true}” is an eztension for (D, W). O
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Theorem 4.5 If E*is an eztension for (D, W) then there is a model 8 for ’P(D W) such
that §(in(p)) = true iff pe E*. O ’

Corollary 4.6 A PDSD (D,W) has an eztension iff ‘P(D W) i3 satisfiable. O

Corollary 4.7 A set of literals, S, is contained in an eztension of (D, W) iff there is a
model for P(D W) which satisfies the set {I,|p€ S}. O

Corollary 4.8 A literal p is in every eztension of a PDSD (D, W) iff there is no model for
P(D W) which satisfies =I,. O

The above theorems suggest that we can first translate a given PDSD (D, W) to P( D, W)

and.then answer queries as follows: to test if (D, W) has an extension, we test satisfiability
of P p W) to see if a set S of literals is a member in some extension, we test satisfiability
'

of ’p( DI, W)U{Iplp € S} and to see if S is included in every extension, we test if for every
peES, P(D W) U —1 is not satisfiable.

4.3 An improved translation

A closer look at procedure translate-2 reveals that it can be further improved. If a prereq-
uisite of a rule is not on a cycle with its consequent, we do not need to index them. nor
to enforce the partial order among their variables. Thus, we need indexes only for literals
which reside on cycles in the dependency graph. Furthermore, since we will never have to -
solve cyclicity between two literals that do not share a cycle, the range of the index variables
is bounded by the maximum number of literals that share a common cycle. Actually , we
show that the index variable’s range can be bounded by the maximal length of an acyclic
path in any strongly connected component in G(p,w)(see [BED91]). The strongly-connected
components of a directed graph is a partition of its set of nodes such that for each subset C
in the partition, and for each z,y € C, there is a directed path from z to y and from y to z
in G. The strongly connected components can be identified in linear time [Tar72].

Procedure translate-3 incorporates these observations by revising step 4 of translate-2. The
procedure assaciates index variables only with literals that are part of a non-tmnal cycle (i.e.
cycle with at least two nodes).

procedure translate-3((D,W))-step 4

4.a Identify the strongly connectéd components of G(p w).

4.b Let Cp = {[in(q1 A ga..- A gn) A cons(B)] Al#q1 < #p] A ... A[#gr < #p] |36 € D such that
§=qAq...Aga: B/p, and q,...,q- (r < n) arein ps component } (if p’s components

contains only p, Cp = 0.)

Let A, = {[in(a) A cons(B)]| Exists § € D such that § = a : §/p and no literal in a is in the
same component as p}.

Let Sp = ApUUC)p.

For each p ¢ W add I,—[Vags,a] to p(D,W)‘

pr¢Wa.nd Sp=03dd '1Ip to p(D,W) o
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Procedure translate-3 will behave exactly as procedure translate-1 when the input is an
acyclic PDSD. The number of index variables produced by translate-3, is bounded by Min{k=
c,n}, where k is the size of a largest component of G(p,w), ¢ is the number of non-trivial
components and n the number of literals in the language. The range of the index variable
is bounded by ! - the length of the longest acyclic path in any component (I < k). Since
in each rule we have at most k literals in the prerequisite that share a component with its
consequence, the resulting propositional transformation is bounded by additional O(|W| +
| D|ki?) sentences, giving an explicit connection between the complexity of the transformation
and its cyclicity level, as reflected by k and I. Theorems 4.4 through 4.8 hold for procedure
translate-3 as well. '

5 Acyclicity and orderness

We saw that acyclic PDSDs allow a smoother transformation. We next present a nondeter-
ministic algorithm for finding an extension of an acyclic PDSD. It is justified by lemma 4.1

and it is simpler than the algorithm presented by Kautz and Selman ([KS89]) for a general

PDSD.

Acyclic-find extension input : an acyclic PDSD (D, W) .
1. Let V = {p| there is a rule in D with p as a consequent }.
2. Guess E C (V|UW) such that E is a superset of W.

3. Check that conditions 2 and 3 of lemma 4.1 are satisfied by E. If so, E* is an extension of
(D,W). 0O

While we distinguish between cyclic and acyclic PDSDs, Etherington ([Eth87]) has distin-
guished between ordered and unordered default theories. He has defined an order induced by
the defaults in D on the set of literals, and showed that if a semi-normal theory is ordered.
than it has at least one extension.

To understand the relationship between these two categories we define a generalized de-
pendency graph of a PDSD, to be a directed graph with blue and white arrows. Each literal
is associated with a node in the graph, and for every § = a : #/p in D, every q € a, and
every r € 3, there is a blue edge from ¢ to p and a white edge from ~r to p. A PDSD is
unordered iff its generalized dependency graph has a cycle having at least one white edge.
A PDSD is cyclic iff its generalized dependency graph has a blue cycle (i.e. a cycle with no
white edges). Note that a set of default rules which is ordered is not necessarily acyclic and
vice versa. The following set of rules {P : Q/Q, Q : P/P} is ordered but cyclic while the set
{P:Q/Q, S:-QA P/P} is acyclic but not ordered .

Clearly, the expressive power of the ordered and the acyclic subsets of PDSD is limited
([KS89]). Cyclic theories are needed, in particular, for characterizing two properties which
are highly correlated. For example, to express the belief that usually people who smoke
drink and vice versa, we need the defaults Drink : Smoke /Smoke, Smoke : Drink / Drink.
yielding a cyclic default theory. The characterization of default theories presented in the
following section may be viewed as a generalization of both acyclicity and orderness.
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6 More tractable subsets for default logic

What do we gain from the above transformation in terms of the complexity of processing the
default logic? Although we aimed at introducing topological considerations, we have looked
at syntactical features as well.

[t is easy to characterize the syntax of the propositional sentences generated by our trans-
formation. Since this translation is time and space polynomial (in the size of the default
theory), when its resulting output belongs to a tractable propositional subclass, all processing
tasks of existence, set-membership and set-entailment, can be performed efficiently.

One such subset, already identified by [KS89] and [Sti90], is the “Prerequisite free normal
unary” (a PDSD with normal rules having no prerequisite ). This subset is translated
to sentences in 2-SAT, a subclass containing disjunctions of at most two literals, whose
linear satisfiability ([EIS76]) induces a linear time algorithm for the default theory tasks. In
contrast, Kautz and Selman presented a quadratic algorithm (for deciding “membership in
all extensions”) applicable to a broader class of PDSDs (called “normal unary”) where the
prerequisite of each (normal) rule consists of a single positive literal.

Since propositional satisfiability can be regarded as a constraint satisfaction problem, we
use techniques borrowed from that field to solve satisfiability. We next outline the gen-
eral prospects involved in using constraint networks techniques and will demonstrate their
utilities. However, for a full account of this approach see [BED91].

In general, constraint satisfaction techniques exploit the structure of the problem through
the notion of a “constraint graph”. For propositional sentences, the constraint graph (also
called a “primal constraint graph”) associates a node with each propositional letter and
connects any two nodes whose associated letters appear in the same propositional sentence.
Various graph parameters were shown as crucially related to solving the satisfiability prob-
lem. These include the induced width, ,w*, the size of the cycle-cutset, the depth of a
depth-first-search spanning tree of this graph and the size of the non-separable components
([Fre85]),[DP88]). It can be shown that the worse-case complexity of deciding consistency is
polynomially bounded by any one of these parameters.

Since, these parameters can be bounded easily by simple processing of the given graph,
they can be used for assessing tractability ahead of time. For instance, when the constraint
graph is a tree, satisfiability can be answered in linear time. In the sequel we will demon-
strate the potential of this approach using one specific technique, called Tree-Clustering
[DP89], customized for solving propositional satisfiability, and emphasize its effectiveness for
maintaining a default data-base.

The Tree-Clustering scheme has a tree-building phase, and a query processing phase. The
complexity of the former is exponentially dependent on the sparseness of the constraint
graph, while the complexity of the latter is always linear in the size of the data-base gen-
erated by the tree-building preprocessing phase. Consequently, even when building the tree
is computationally expensive it may be justified when many queries on the same PDSD are
expected. The algorithm is summarized below (for details see [DP89]).

Propositional- Tree-Clustering (tree-building)
input: a set of propositional sentences S and its constraint graph.

1. Use the triangulation algorithm to generate a chordal constraint graph.
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A graph is chordal if every cycle of length at least four has a chord.

The triangulation algorithm [TY84] transforms any graph into a chordal graph by adding
edges to it. It consists of two steps: .

(a) Select an ordering for the nodes, (various heuristics for good orderings are avail-
able).

(b) Fill in edges recursively between any two nonadjacent nodes that are connected via
nodes higher up in the ordering.

2. Identify all the mazimal cligues in the graph. Let Cy,...,C; be all such cliques indexed by
the rank of their highest nodes.

3. Connect each C; to an ancestor C; (j < i) with whom it shares the largest set of letters. The
resulting graph is called a join tree.

4. Compute M, the set of models over C; that satisfy S;, where S; be the set of all sentences
composed only of letters in C;. '

5. For each C; and for each C; adjacent to C; in the join tree, delete from M, every model
M that has no model in M; that agrees with it on the set of their common letters. This
amounts to performing arc consistency on the join tree. O

Since the most costly operation within the tree-building algorithm is generating all the
submodels of each clique (step 5), the time and space complexity of this preliminary phase
is O(n = 2i€1), where |C| is the size of the largest clique and n is the number of letters used
in § . It can be shown that |[C| = w® + 1, where w* is the width ? of the ordered chordal
graph (also called induced width [DP89]. As a result, for problem classes having a bounded
induced width, this method is tractable.

Once the tree is built it always allows an efficient query processing. This procedure is
described within the following general scenario. (n stands for the number of letters in the
original PDSD, m, bounds the number of submodels for each clique.) 2

1. Translate the PDSD to propositional logic (generates O(|W| + |Din?) sentences)

2. Build a default data-base from the propositional sentences using the Tree-building
method (takes O(n? » exp(w*® + 1))).

3. Answer queries on the default theory using the produced tree:

¢ To answer whether there is an extension, test if there is an empty clique. If so,
no extension exists. (bounded by O(n?) steps).

o To find an extension, solve the tree in a backtrack-free manner:
In order to find a satisfying model we pick an arbitrary node C; in the join tree,
select a model M; from M;, select, from each of its neighbors C;, a model M;

2The width of a node in an ordered graph is the number of edges connecting it to nodes lower in the
ordering. The width of an ordering is the maximum width of nodes in that ordering, and the width of a
graph is the minimal width of all its orderings

3Note that the number of letters in the propositional sentences is O(n?) if the PDSD is cyclic, and O(n)
if it is acyclic, and that m is not larger than the total number of extensions.
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that agrees with M; on common letters, unite all these models and continue to
the neighbors’ neighbors, and so on. The set of all models can be generated by
exhausting all combinations of submodels that agree on their common letters.
(finding one model is bounded by O(n? * m) steps) _

e To answer whether there is an extension that satisfy a set of literals A, check if
there is a model satisfying {I,|p € A}. (This takes O(n? x m » logm) steps).

e To answer whether a literal p is included in all the extensions, check whether there
is a solution that satisfies ~I,, (bounded by O(n?*m) steps).

Note that we could translate the PDSD directly to a set of constraints and then use the
above techniques, thus getting less variables by representing the index variables as multi-
valued variable. However, since the first part of the paper was devoted to show a translation
from PDSD to propositional logic, we chose to continue with this la.ngua.ge '

Following is an example demonstrating our a.pproa.ch
Example 6.1 Consider the following PDSD :

Dumbo : Elephant A Fly  Elephanta-Fly:~-Dumbo

={ Elephant ~Dumbo
Elephant : ~Fly Dumbo:Fly
Elephant : ~Circus Duxnbo:ElephantACircus}
-~Circus - . Circus

W = {Dumbo, Elephant}

The propositional letter “Dumbo™ represents here a special kind of elephants that can fly. These
defaults state that normally, Dumbos, assuming they fly, are elephants, if an elephant does not fly
we do not believe that it is a Dumbo. Elephants usually do not ﬂy, while Dumbos usually ﬂy Most
elephants are not living in a circus while Dumbos usually live in a circus.

This is an acyclic default theory, thus algorithm translate-1 when applied produces the followi ing
set of sentences (each proposition is abbreviated by its initial letter):

Sentences generated in step 2 of translate-1: Ip, Ig.

step 3 :
Ig AI.g A=Ip—I.p, Ig A-Ip—I.p, Ip A ~I.p—Ip, Ig A ~Ic—I-c,
IpA-IgA=Ic—Ic. B ‘

step 4 : : 4
I.p—Ig A I A =Ip, I.p—Ig A I, Ir—Ip A -1, I.c—Ig A I,
Ic—Ip A=I-g A-Ic, ~I-E ,

The primal graph of this set is shown in figure 1. It is already chordal and the ordering
Ig, I-p, Ip, I-p, Ic, Ic, IF, I.g suggests that for this particular problem, w* < 3. Thus,
using the tree-Clustering method we can answer queries about extension, set- membership and
set-entailment in polynomial time (bounded by exp(4)). Note that this PDSD is unordered

and not unary, therefore, the complexity of answering queries for such PDSD is NP- hard

[KS89).
We conclude this section with a chara.ctenza.tlon of the tractability of DSPD theories as
a function of the induced width, w*, of their interaction graph. The interaction graph is an

undirected graph, where each literal in W or D is associated with a node and, for every
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Figure 1: Constraints graph for example 6.1

6 =a:f/pin D, every q € a and every ~r such that r € 3, there are arcs connecting all of
them into one clique with p. (this graph can be extracted from the generalized dependency
graph, by connecting all the parents of every node, disregarding colors and directionality).

Theorem 8.2 A PDSD (D, W)whose interaction graph has an induced width w* can deczde

ezistence, membership and entailment in 0(2“’ +1) when the theory is acyclic and O( w+y

when the theory is cyclic. O

7 Summary and Conclusions

This paper presents a transformation of a disjunction-free semi-normal default theory into
sentences in propositional logic such that the set of models of the latter coincides with the
set of extensions of the former. Questions of existence, membership and entailment posed on
the default theory are thus transformed into equivalent satisfiability problems. This mapping
can be further formulated as consistency of constraint networks.

These mappings are valuable as they bring problems in non-monotonic reasoning into-
the familiar arenas of propositional satisfiability and constraint satisfaction problems. Pre-

viously, computational issues of non-monotonic theories were addressed by mapping them
into truth-maintenance systems (TMS) or ATMS ([RDB89], [JK90], [E1k90],[dK86]). Our

' tansformation, take us one step further, since propositional logic and constraint networks
. accumulated a large body of theoretical understanding.

Using our transformation, we showed that default theories whose interaction graph has
a bounded w* are tractable, and can be solved in time and space bounded by O(n“"+!)
steps. This permits us to predict worse-case performance prior to processing, since w*
can be bounded in time quadratic in the number of literals. Moreover, the tree-clustering
procedure, associated with the w* analysis, provides an effective preprocessing strategy for
maintaining the knowledge; once applied, all incoming queries can be answered swiftly and
changes to the knowledge can often be incorporated in linear time. -

In the full paper we show how additional tractable classes can be 1dent1ﬁed using other
CSP techniques , including cycle-cutset , non-separable component, backjumping and others
[BED91]. We conjecture that our transformation can be carried over to default theories
having disjunctive sentences, thus permitting topological characterization of disjunctive semi-
normal default theories as well.
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Abstract

Connectionist networks with symmetric weights (like Hopfield networks and Boltzman Machines)
use gradient descent to find a minimum for quadratic energy functions. They can be seen as performing
constraint satisfaction when soft or hard constraints are encoded in the energy function. We show an
equivalence between the problem of satisfiability in propositional calculus and the problem of minimiz-
ing those energy functions. The equivalence is in the sense that for any satisfiable Well Formed Formula
(WFF) we can find a quadratic function that describes it, such that the set of solutions that minimize
the function is equal to the set of truth assignments that satisfy the WFF. We also show that in the
same sense every quadratic energy function describes some satisfiable WFF. Algorithms are given to
transform any propositional WFF into an energy function that describes it and vice versa.

High-order models that use Sigma-Pi units are shown to be equivalent to the standard quadratic models
with additional hidden units. Algorithms are given to convert high-order networks to low-order ones
and vice versa.

We extend propositional calculus by augmenting beliefs with penalties (positive real numbers). The ex-
tended calculus is useful in expressing default knowledge, preference between arguments, and reliability
of assumptions coming from unreliable redundant source(s) of knowledge.

We show a proof theory and semantics for reasoning from such inconsistent set of beliefs. The proof
procedure (F) is based on entailment from all preferred maximal consistent subsets of beliefs, while the
semantics ([=) is based on satisfaction by all preferred models (soundness and completeness is shown).
We give an algorithm to translate any inconsistent set of propositional beliefs into a network that
searches for a preferred model of the set. Another algorithm is given that translates any network to a
set of penalized beliefs whose preferred models the net is searching. Finally we sketch a connectionist
inference engine for the above theory.

1. Introduction

Finding minima for quadratic functions is the essence of symmetric connectionist models used for
constraint satisfaction [Hopfield 82] [Hinton, Sejnowski 86] [Hinton89]. They are characterized by a
recurrent network architecture, a symmetric weight matrix (with zero diagonal) and a quadratic energy
function that should be minimized. Each unit asynchronously computes the gradient of the function
and adjusts its activation value, so that energy decreases monotonically. The network eventually reaches
equilibrium, settling on either alocal or a global minimum. [Hopfield, Tank85] demonstrated that certain
complex optimization problems can be stated as constraints expressed in quadratic energy functions

and be approximated by these kind of networks.

There is a direct mapping between these models and quadratic energy functions. Every quadratic
energy function can be translated into a corresponding network and vice versa. Most of the time we
will not distinguish between the function and the network that minimizes it.

In this paper we first show an equivalence between the satisfiability search problem and the problem
of connectionist energy minimization. For every WFF we can find a quadratic energy function such that
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the values of the variables of the function at the minimum can be translated into a truth assignment
that satisfies the original WFF and vice versa. Also, any quadratic energy minimization problem may
be described as a satisfiable WFF that is satisfied for the same assignments that minimize the function.
More details and formal proofs can be found in [Pinkas 90a] and [Pinkas 90b].

We then show that any set of propositional constraints (possibly augmented with weights) can
be translated into a quadratic energy function whose minima correspond to preferred models of the
set. We shall demonstrate that symmetric networks are natural platforms for propositional defeasible
reasoning and for noisy knowledge bases. In fact we shall show that every such network can be seen as
encapsulating a body of knowledge and as performing a search for a satisfying model of that knowledge.

Finally we sketch a connectionist inference engine capable of reasoning from incomplete and incon-
sistent knowledge.

2. Satisfiability and models of propositional formulas

A WFF is an expression that combines atomic propositione (variables) and connectives (VAo —,(,))- ‘

A model (truth assignment) is a vector of binary values that assigns 1 (“true”) or 0 (“false”) to each of
the variables. A WFF ¢ is satisfied by a model z 1f its characteristic function Hy, evaluates to “one”
given the vector Z.

The characteristic function is defined to be H,, : 2* — {0, 1} such that:
eH  (21,...,20) = %;
oH(,¢)(zl, “e ,‘z,.) =1- H¢(21, ey .’Bn)
'H(‘,DlV‘Pz)(zl’ yZn) = Hpy(21,...,20) + Hpy(z1, - S Zn) — H¢1(zl, 1 Zn) X Hpo(21,...,2n)
*Hip1ap)(Z1s- -1 Zn) = Hepy (21, Za) X H«pz(zx, -1Zn) | A |
*Hipy—pa) (%1, -- ""'") = H(*‘Plvﬁpz)(’"h

The satlsﬁa.blhty search problem for a WFF ¢ is to find an Z (1f one exlsta) such that H‘p(g) =1

3. Equivalence between WFFs

We call the atomic propositions that are of interest for a certain application “visible variables” (denoted
by Z). We can add additional atomic propositions called “hidden variables® (denoted by ) without
changing the set of relevant models that satisfy the WFF. The set of models that satisfy ¢ projected
onto the visible variables is then called “the visible satisfying models” ({Z | (If)H(2,?) = 1}).

Two WFFs are equivalent lf the set of visible satisfying models of one is equal to the set of visible
satisfying models of the other. : .

A WFF ¢ is in Conjunction of Triples Form (CTF) lf p= /\:';1 @; and every y; is a sub-formula of
at most three variables. ! '

Every WFF can be converted into an equivalent WFF in CTF by adding hidden variables. Intu-

itively, we generate a new hidden variable for every binary connective (eg: V,—) except for the top
most one, and we “name” the binary logical opera.tlon with a new hxdden variable using the connective

(=)

1CTF differs from the familiar Conjunctive Normal Form (CNF). The ¢;’s are WFFs of up to 3 variables that may

include any logical connective and are not necessarily a disjunction of literals as in CNF. To put a bidirectional CTF - -

clause into a CNF we would have to generate two clauses, thus (Ac—oB) becoma (~AVB)A(AV-B).
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EXAMPLE 3.1 Converting ¢ = ((~((=A4) A B)) = ((~C) — D)) into CTF:

From (—~((—A) A B)) we generate: ((~((—4) A B))«~T;) by adding a new hidden variable T3,
from ((~C) — D) we generate: (((~C) — D)~T3) by adding a new hidden variable T3,

for the top most connective (—) we generate: (T} — T3).

The conjunction of these sub-formulas is :

((~((~A) A B))~T1) A(((-C) — D)~T2) A (T = T3). It is in CTF and is equivalent to ¢.

4. Energy functions

A k-order energy function is a function E : {0,1}" — R that can be expressed in a sum of products
form with product terms of up to k variables: EX(z1,...,20) = :

. , S 1
Z ’ wil,‘..,i.zil '_; '2.'. + E wl';,...,l'.-;zl'l oy zi._| + bl + Z Wi T + w
1<i1 iz <---<ialn 1<6iH1 < <1 €0 . 1<i<n’

. Quadratic energy functions are special cases:

Z w;; Tiz; + Z wiz; + w.
1<i<ign i<n '
We can arbitrarily divide the variables of an energy function into two sets: visible variables and hidden
variables. ' :
We call the set of minimizing vectors projected onto the visible variables, “The visible solutions” of
the minimization problem. (u(E) = {z | (F)E(z,T) = ming z{E(,2)}}):

We can always translate back and forth [Hopfield 82] between a quadratic energy function and a
network with symmetric weights that minimize it (see figure 1). Further, we can use high-order networks
[Sejnowski 86] to minimize high-order energy functions. In the high-order model each node is assigned
a Sigma-Pi unit that updates its activation value using: ’

= F( z = Wiy, iy i H zi;)

ceefoebi . 1<i<k,iji

Like in the quadratic case, there is a translation back and forth between k-order energy functions and
symmetric high-order models with k-order Sigma-Pi units (see figure 2).
For every energy function E(Z,7) with ¢ hidden variables, we define Erankg(%) = ming{Z, 7}.

The Erankg function defines the energy value of all visible states (when the visible units are clamped
and the hidden units are free to settle to a minimum), and in this sense it strongly characterizes the

network’s behavior.

5. The equivalence between high-order models and low-order models

We call two energy functions strongly equivalent, if their corresponding Erank functions are equal up
to a constant difference; i.e: Erankg, = ErankE, +e. -

Any high-order energy function can be converted into a strongly equivalent low-order one with -
additional hidden variables. In addition, any energy function with hidden variables can be converted

" into a strongly equivalent, (possibly) higher one by eliminating some or all of the hidden variables.

These algorithms allow us to trade the computational power of Sigma-Pi units for additional simple
units and vice versa. '
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Figure 1: A symmetric network that represents the function £ = —2NT — 25T - 2WT + 5T+ NS+
RN — WN + W, describing the WFF: (NAS — W)A(R — (=N))A(N v (=W)). T is a hidden unit.

Theorem 1 e Any k-order term (w H,_l z;), with NEGATIVE coefficient w, can be replaced by the

quadratic terms: E =1 2wX;T — (2k — 1)wT generating a 3trongly equivalent energy function with
one additional hidden variable T'.

o Any lc-order term (w H‘_l z;), with POSITIVE coefficient w, can be replaced by the terms:

wH ) zi— (2,_1 2wX;T)+2wX; T+(2k—3)wT, generating a strongly equivalent energy function
of order k — 1 with one addstional hidden variable T.

- EXAMPLE 5.1 The cubic function E = —NSW + NS + RN — WN + W is strongly equivalent to
—2NT -25T - 2WT + 5T+ NS+ RN — WN + W, (introducing T). The corresponding high-order
network appears in figure 2 while the equivalent quadratic one in figure 1.

The symmetric transformation, from low-order into high-order functions by eliminating any sub-
set of the variables, is also possible (of course we are interesting in elumna,tmg only hidden vari-
ables) To eliminate T, bring the energy function to the form: E = E' + oldterm, where oldterm =

(Z:]:l wj Hl:l XJ-')T' .
Consider all assignments S for the variables ( X = z;, --- z;,) in oldterm (not including T'), such that
k 1; : :

Bs = ;=1 wi [IiL1 25 < 0. )

Each negative s represents an energy state of the variables in X that pushes T to become “one” and
decreases the total energy by | fs |. States with positive 85 cause T to become zero, do not reduce the
total energy, and therefore can be ignored. Therefore, the only states that matter are those that reduce
the energy; i.e fs is negative.

o= | S =1

“I- X,y #S(X)=0 it is the expression “X;” or “(1 — X;)” depending whether
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Figure 2: A cubic network that represents E = —NSW + NS+ RN -WN+W using Sigma-Pi units
and a c1_1bic hyper-arc. (Its is equivalent to the network of figure 1 without hidden units)

the variable is assigned 1 or 0 in S.
The expression I'[;-=1 L% therefore determines the state S, and the expression

l
newterm = Z Bs H Lf;-
S such that s < 0 j=t

represents the disjunction of all the states that cause a reduct;ion in the total energy.
The new function E + newterm, is therefore equivalent to E' + oldterm and does not include T'.

With this technique, we can convert any network with hidden units into a strongly equivalent network
without any such units.

6. Describing WFF's using penalty functions

An energy function E describes a WFF ¢ if the set of visible satisfying models of ¢ is equal to the set
of visible solutions of the minimization of E. :

The penalty function E, of a WFF ¢ is a function E, : {0,1}* — N, that penalizes sub-formulas
of the WFF that are not satisfied. It computes the characteristic of the negation of every sub-formula
; in the upper level of the WFF’s conjunctive structure.

If o = AiZ; ¥; then, .
m m

Ep=Y (H-p,) =) (1-Hp)

. i=1 i=1 .

If all the sub-formulas are satisfied, Ey gets the value zero; otherwise, the function computes how mz_iny

are unsatisfied.
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It is easy to see that ¢ is satisfied by Z iff E,, is minimized by z (the global minima have a value of
zero). Therefore, every satisfiable WFF ¢ has a function Ey such that E, describes o.

EXAMPLE 6.1

E(NAS)=~W)A(R=(~-NDANY(=W)) = Ho((NAS)=w) + H(R— () + H-(viv(-w))
= Hyasa(-w) + Hran + H-nyaw '
=(NS(1-W))+ (RN)+((1 - N)W)
=_NSW+NS+RN-WN+W

The corresponding network appears in figure 2.

Theorem 2 Every WFF is described by some quadratic energy function.

The following algorithm transforms a WFF into a quadratic energy function that describes it, -

generating O(length(y)) hidden variables:

e Convert into CTF (section 3). A
o Convert CTF into a cubic energy function and simplify it to a sum of products form (seét.ion 6).

e Convert cubic terms into quadratic terms. Each of the triples generates only one new variable.
(section 5). '

“The algorithm generates a network whose size is linear in the number of binary connectives of the
original WFF. The fan-out of the hidden units is_bpunded by a constant.

7. Every energy function describes some satisfiable WFF.

In section 5 we saw that we can convert any energy function to contain no hidden variables. 'We show
now that for any such function E with no hidden variables there exist a satisfiable WFF ¢ such that E

describes ¢.
The procedure is first to find the set u(E) of minimum energy states (the vectors that minimize E).

"For each such state create an n-way conjunctive formula of the variables or their negations depending

whether the variable is assigned 1 or 0 in that state. Each such conjunction Al_, L% where Ly =
{ “Xg» if S(X;) =1

Xy i S(X)=0 . :
taking the disjunction of all the conjunctions: ¢ =V en( E)( Ni=1 Ls). The satisfying truth assignments
of ¢ correspond directly to the energy states of the net. , «

represents a minimum energy state. Finally the WFF is constructed by

We therefore conclude:

Theorem 3 Every energy function describes some WFF.

8. Reasoning from inconsistency and pehalty calculus

We now extend propositional calculus by augmenting assumptions with penalties (like in [Derthick 88]).
The extended calculus is able to deal with an inconsistent knowledge base (due to noise, errors in
observations, unreliable sources, efc...) and can also be used as a framework for defeasible reasoning.

A Penalty Logic WFF (PLOFF) ¢ is a finite set of pairs. Each pair is composed of a real positive
number, called penalty, and a standard propositional WFF, called assumption ; i.e., ¥ = {< pi, ¥; >|
pi ER* ¢, isa WFF, i= l..n}. B _
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8.1. A proof-theory and semantics for penalty calculus

8.1.1. Proof theory. T is a sub-theory of a PLOFF ¢ if T is a consistent subset (in the classical
sense) of the assumptions in ¢; ie., T C {y; [< pi,; >€ ¥} = Uy, (note that Uy may be inconsistent).

The penalty of a sub-theory T' of ¢ is the sum of the penalties of the assumptions in ¢ that are
not included in T;; i.e., penaltyy(T) = Z(p. €Wy-T) Pi and is called the penalty function of ¥. -

A Minimum Penally sub-theory (MP-theory) of ¢ is a sub-theory T' that minimizes the penﬂty function
of ¥; ie., penaltyy(T) = MINs{penaltyy(S) | S is a sub-theory of ¥}.

Let Ty = {T;} the set of all MP-theories of ¢, and let T = {T}’} the set of all MP-theories of .
We say the 9 entails @ (¥t¢) iff all MP-theories of v entail (classical sense) the disjunction of all

MP-theories of ¢; i.e: \V TiFV T;. :
Note that when ¢ contains a consistent set of beliefs then, Yk iff all MP-theories of ¢ entail .

8.1.2. Model theory:. The violation-rank of a PLOFF ¢ is the function (Vrank,) that assigns a
real-valued rank to each of the truth assignments. The Vranky function is computed by summing the
penalties for the assumptions of ¥ that are violated by the assignment; ie., Vranky (%) = 3, piH-p (%)
The models that minimize the function are called satisfying models or preferred models. : :

We say that ¢ semantically entails ¢ (Yi=p) iff the satisfying models of ¢ also satisfy ¢; i.e: |

p(Vranky) C p(Vranky) where p is the set of minimizing vectors.

Theorem 4 The prbbf procedure is sound and complete; i.e., Y=y iff Yho.

8.2. Penalty calculus and energy functions

We say that a PLOFF ¢ is strongly equivalent to an energy function E iff (VZ)Vranky(Z) = Erankg(Z)+
c. ' . :

Theorem 5 For every PLOFF ¢ = {< pi,p; >|i=1...n} there ezists a strongly equivalent quadratic
energy function E(Z,1). '

 We can construct E from ¢ using the following procedure:

1. “Name” all g;’s using new hidden atomic propositions T; and construct the set {< 00, Ti—¢; >}.
The high penalty guarantees that these WFFs will always be satisfiable.

2. Construct ¢’ = {< 00, T;+p; >} U {< pi, T; >} so that the T:’s compete with each other.

3. Construct the energy function Y_; BET,p, — 2_; pjTj, where f is chosen to be sufficiently large
(practically 0o), and Ey is the function generated by the algorithm of section 6.

The network that is generated can be seen as performing a search for a satisfying model of ¥. It
can also be seen as searching for a MP-theory of 9 (at global minimum, the T;’s are activated for the

@;’s that are included in the MP-theory found).

Theorem 6 Every energy function E is strongly equivalent to some PLOFF ¢;
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The following algoriihm generates a strongly equivalent PLOFF from an energy function:

1. Eliminate hidden variables (if any) from the energy function using the algorithm of section 5.

2. The energy function (with no hidden variables) is now brought into a sum-of-products form and
is converted into a PLOFF in the following way:
Let E(£) = S, w; [, i, be the energy function.
We construct a PLOFF ¢ = {< —w.-,/\:'.;1 z;, >l wi <0}u{< un,--/\,k,‘__.l z;, >| wr > 0}.

9. A sketch of a connectionist inference engine

Let 1 and ¢ be PLOFFs. We would like to construct a connectionist network to answer one of the pos-

sible three answers: 1) Yl=¢p; 2) Yl=(—p); or 3) both ¢ =y and ¢ K(—p) (“unknown”). For simplicity
let us first assume that ¢ is an atomic proposition. Later we’ll describe a general solution.

Intuitively, our connectionist engine is built out of two sub-networks, -each that is trying to find a
satisfying model for 1. The first sub-network is biased to search for a model which satisfies also ¢,
whereas the second sub-network is biased to search for a model which satisfies ~. If two such models

exist then we conclude that ¢ is “unknown”. If no model of ¥ also satisfies o, we conclude that Y=,

and if no model of ¥ satisfies =, we conclude that yl=¢.

To implement this intuition we first need to duplicate our background knowledge 1 and create
its copy ¥’ by naming all the atomic propositions A using A’. For each atomic proposition Q that
might participate in a query, we then add two more propositions: “QU ERYQ” and “‘UNKNOW Ng”.

QUERYq is used to initiate a query about Q: it will be externally clamped by the user, when he or

she inquires about Q. UNKNOW N4 represents the answer of the system. It will be set to TRUE if
we can conclude neither that ¥ entails ¢ nor that ¢ entails . '

Our inference engine can be therefore described (using the high-level language of penalty logic) by:

¢ searches for a model that satisfies also Q

Uy’ : . searches for a model that satisfies also =Q

U{< ¢,(QUERYg—Q) >} ~ bias ¢ to search for a model that satisfies @
U{< ¢,(QUERYg—(-Q")) >} - bias 9’ to search for a model that satisfies (—Q")

U{< ¢,(QA-Q)~UNKNOWNq >} if two satisfying models exist that do not agree on @,
: we conclude “UNKNOWN?” : :
U{< 6,(Q~Q’)~+(-UNKNOWNg) >} if despite the bias we are unable to find two such
o satisfying models we conclude “~-UNKNOWNg"
Using the algorithm of Theorem 5, we generate the corresponding network. :

The network tries to find models that satisfy also the bias rules. If it succeeds, we conclude “UN-
KNOWN?, otherwise we conclude that all the satisfying models agree on the same truth value for the
query. The “UNKNOWN?” proposition is then set to “false” and the answer whether ¢}=¢ or whether
¥=—¢ can be found in the proposition Q. If Q is “true” then the answer is Y=y since Q holds in all
satisfying models. Similarly, if Q is false, we conclude that Y=y o : .

The network converges to the correct answer if it mana.gés to find a global minimum. An annealing‘

schedule like in [Hinton, Sejnowski 86] may be used for such search. A slow enough annealing is certain
to find a global minimum and therefore the correct answer, but it might take exponential time. Since the
problem is NP-hard, we will probably not find an algorithm that will give us always the correct answer
in polynomial time. Traditionally in Al, knowledge representation systems traded the expressiveness of
the language they use with the time complexity they allow [Levesque 84]. The accuracy of the answer

‘is usually not sacrificed. In our system we trade the time with the accuracy of the answer. We are given

54




SATISFIABILITY AND REASONING USING ENERGY MINIMIZATION

limited time and we stop the search when this limit is reached. The annealing schedule can be planned
to fit the time limitation and an answer is given at the end of the process. Although the answer may
be incorrect, the system is able to improve its guess as more time is given.

10. Related work

Derthick [Derthick 88] observed that weighted logical constraints (which he called. “certainties”) can be
used for non-monotonic connectionist reasoning. We follow his direction and there are many similarities
and differences that will be discussed in the longer version of this paper. There are however, two basic
differences: 1) Derthick’s “Mundane” reasoning is based on finding a single most likely model that
satisfies a WFF; his system is never skeptical; 2) Our system can be implemented using standard low- |
order units, and we can use models like Hopfield nets or Boltzman machines that were relatively well .
studied (e.g., learning algorithms exist).

[Shastri 85] is a connectionist non-monotonic system for inheritance nets that uses evidential rea-
soning based on maximum likelihood. Our approach is different; we use low-level units and we are not
restricted to inheritance networks. Shastri’s system is guaranteed to always give the correct answer,
whereas we trade the correctness with the time. :

Our world rank functions (like Vranky or Erankg) have a lot in. common with ranked models
semantics [Shoham 88], [Geffner 89], [Lehmann 89]. Lehmann’s results about the relationship between
rational consequence relations and ranked models can be applied to our paradigm; yielding a rather
strong conclusion: for every conditional knowledge base we can build a ranked model (for the rational
closure of the knowledge base) and implement it as an Erank using a symmetric neural net. Also, any
symmetric neural net is implementing some ranked model and therefore induces a rational consequence
relation.

11. Conclusions

We have shown an equivalence between the search problem of satisfiability and the problem of minimiz-
ing connectionist energy functions. Any satisfiable WFF can be described by an n-order energy function
with no hidden variables, or by a quadratic function with O(length(W FF)) hidden variables. Using

" the algorithms described we can efficiently determine the topology and the weights of a connectionist
network that represents and approximates a given satisfiability problem. '

Several equivalent high-level languages can be used to describe symmetric neural networks: 1)
quadratic energy functions [Hopfield 82}; 2) high-order energy functions with no hidden units [Pinkas 90al;
3) propositional logic, and finally 4) penalty logic. All these languages are expressive enough to describe
any symmetric network and every sentence of such languages is translatable into a network. '

We have developed a calculus based on beliefs augmented by penalties that fits very naturally in
the symmetric models’ paradigm. This calculus can be used as a platform for defeasible reasoning and
inconsistency handling. Some non-monotonic systems can be mapped to this paradigm and therefore
suggest settings of the penalties. When the right penalties are given (for example using algorithms
like in [Brewka 89) that are based on specificity), our networks features a non-monotonic behavior that
(usually) matches our intuition. Penalties do not necessarily have to come from a syntactic analysis of a
symbolic language; since those networks can learn, they are capable of adjusting their Erank functions |
and develop their own intuition and knowledge. :

We sketched a connectionist inference engine for penalty calculus. When a query is clamped, the
global minima of such network correspond exactly to the correct answer. Using massively parallel
hardware convergence should be very fast, although the worse case for correct answer is still exponential.

The mechanism however trades the correctness of the answer with the time given to solve the problem. - |
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ABSTRACT
We identify a class of constraint satisfaction problems v?hich we call disjunctive CSPs. In many
domains, such as spatial and temporal reasoning, there exists disjunctive constraints among the
variables. A disjunctive constraint is a disjunctive combination of atomic constraints. - Disjunctive
constraints pose a problem, because the standard arc consistency algorithms can not deal with
disjuncts. When the constraints are in the form of compatibility constraints, it is possible to
transform a disjunctive constraint into one without disjuncts. This can not be done if constraints are
in any other form. We define disjunctive constraints and disjunctive CSPs, give a path consistency

algorithm, and discuss how heuristic measures called textures are used to increase efficiency.
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1. Introduction
We identify a class of constraint satisfaction problems (CSP) which we call disjunctive CSPs. In
many domains, such as spatial and témpqral reasoning, there exists disjunctive constraints among

the variables.

e In spatial layout, topological relations can be expressed as disjuncts of algebraic
constraints on lines of the objects [Pfeffercorn 71, Eastman 73, Flemming 78, Baykan &
Fox 871.

oIn job shop scheduling, multiple orderings of the operations in. the process plan,
alternative operations, and alternative resources for performing an operation lead to
disjuncts {Fox83, Fox90].

e In circuit analysis, the behavior of non-linear devices, such as transistors, can be
represented by disjuncts of linear constraints [Stallman & Sussman 77].

o In design, goals can be expressed as disjuncts of lower level constraints [Finger, et al.
91].

Disjunctive constraints pose a problem, because the standard arc consistency algorithms can not
deal with disjunctive constraints except when it is possible to combine all disjuncts to form an
equivalent conjunctive constraint [Mackworth & Freuder 85]. We define disjunctive constraint
satisfaction problems, give a path consistency algorithm, and discuss how they can be solved
efficiently by using measures of the topology of the constraint graph called textures to order the

disjunctive constraints.

2. Definitions
A CSP is made up of variables, values and constraints. The goal is to find all assignments of the

values to the variables, such that all constraints are simultaneously satisfied.

There is a set of variables V = {vy, vy, ..U}, each with an associated domain of values. Domains
can be discrete: v; = (1, 2, 3) or continuous: v ;= [-200, 350]; the domain of continuous variable v ; may

be a closed interval, defined by a minimum and a maximum value.

A constraint is a relation between some subset of the vari_ables which identifies compatible values
_ of the variables. Constraints can be defined by explicitly iisting the compatible values, térmed
cbmpatibilfty constraints; ;= {1, 1 (1, 2) (1, 3)_ 2,22 3 (3 3} 6r by equations or inequalities,
termed algebraic constraints: ¢; U; < Vj, OF Cppyl Up + Upy = Upe Compatibility constraints can be
defined on variables with finite and discrete domains. 'Alge‘braic constraints can be defined on

numerical variables with discrete, continuous or interval domains. We will call these compatibility
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and algebraic constraints atomic constraints, to distinguish them from disjunctive constraints

defined below.!

A disjunctive constraint is a disjunctive combination of one or more atomic constraints, such as:

+1,2,3 2 4 . s . . 2,3 . .. .
ijfmm: (cilj Cmn cfs) or C; (cij). The disjunctive constraint Cizj,ifm is the combination of the atomic -
constraints: ¢, ¢ and cfs; and is satisfied when any one of its three atomic constraints are

v C
i) “mn
satisfied. According to this definition, an atomic constraint is a special type of disjunétive constraint.
For example, the disjunctive constraint C‘; is composed of only cg-. Disjunctive constraints may
involve arbitrary combinations of disjuncts and conjuncts of atomic constraints, but the canonical

form is defined to be disjunctive normal, i.e., C‘.ijl’f:'s: (N ciI c‘?j) (A c‘: cf,m) cﬁ). The top level

elements in the domain of a disjunctive constraint in its canonical, disjmict.ive normal form are
o e s ., 1,2,3,4,5 . 1 2 3 4
called its disjuncts. The disjuncts of Cijmnp are the three top level elements: (A ¢; cij), (e, c,
and c5 .
P’ .

A CSP which contains disjunctive constraints is called a disjunctive CSP. Figure 2-1 shows a

disjunctive CSP made of discrete variables and compatibility constraints.

3. Where/How Do Disjunctive Constraints Arise?

The questions this section attempts to answer aré: Where do disjunctive constraints originate, and
how is search controlled to explore this space of alternatives? We will look at two approaches:
reductionist approaches as used in constraint satisfaction, and constructive approaches as used in

planning.

In the classical CSP formulation, there are no disjunctive constraints [Mackworth 77]. Later
extensions to interval constraints required the introduction of disjunctions. Allen’s formulation
reasons about time intervals and temporal constraints by maintaining a disjunctive set of relations
between two time intervals. Propagation eliminates relations from this set as new nodes are added
and some relations are removed. The propagation algorithm results in 3-consistency—but not path

consistency. Propagation is driven by a transitivity table which lists compatible relations for paths

of length 2.

1An atomic constraint can be given in arbifrary form (equations, inequalities, tables, logical expressions, or procedures) as
long as it can be implemented as a subroutine allowing the checking of whether a set of values satisfies the constraint. The
method defined in this paper applies to atomic constraints given in any form.
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Ul = (1, 2, 3)
v,=(1,2,3)
v3=(1,2,3)

ciz ={(1,2) (1,3 (2, 3)
c23 ={(1,2) (1,3) (2, 3)
3= 102, 1) (3, 1) (3, 2)
ct= 1)
¢ = {1}
i’ 1 ((n ez 3 (n 1z €19 (n 33 c19)

s (] )
Assign values to v,v,, v; subject to Ciz’zss, C12

Figure 2-1: A discrete disjunctive CSP

In spatial reasoning, temporal relations are replaced by topological relations, and instead of a

single dimension of time, there are two or possibly three dimensions. The objects are deﬁned by

~ intervals in every dimension, instead of being single mtervals. Restricting the set of obJects to

rectangles simplifies this. The relations we want to express, such as adjacency or non-overlap, lead
to disjunctions when formulated in terms of algebraic relations between the endpoints of the

intervals.

In both temporal and spatial domains, generating a cbnsistent labeling requires that a subset of

the disjuncts be selected in order to perform arc-consistency and assign a label.

In the constructive approach, the process of constructing a séarch path implicitly selects a subset
of constraints. Consider the problem spacé model of problem solving. It assumes that the space of
alternatives is too large to be searched. Therefore knowledge in the form of evaluation functions,
operator preconditions, etc. is used to limit the paths explored. One of the earlier explicit uses of
constraints in heuristic search can-be found in the MOLGEN experiment planning system [Stefik
81]. The space of alternative experimént plans is explored hierarchically by first generating an
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abstract skeletal plan, -then by refining it. During the refinement process, for each plan, constraints
are "gathered” and values that satisfy the constraints are identified. Therefore, each plan "selects” a
subset of constraints that are relevant to the plan. The ISIS system extended the use of constraints
in planning by formalizing the communication between planning levels and the knov-vledge used to
guide search as constraints [Fox 87]. In both cases, there exists a set of constraints, but the subset

chosen to satisfy is the byproduct of the plan construction process.

A constructive problem solver is equivalent to the disjunctive CSP formulation described above.
In the disjunctive CSP all constraints are given explicitly at the outset, whereas in the constructive

approach they are implicit in other decisions.

4. Need for a New Method
The problem is to assign values to all the variables such that all dls_]unctwe constraints are

satisfied. A disjunctive constraint is satisfied when one of its disjuncts is satisfied.

A disjunctive constraint composed of compatibility constraints can be transformed into an atomic

constraint as follows:
1. Take the union of all the variables of the atomic constraints in the disjunctive
~ constraint. The equivalent atomic constraint will span this set of variables.

2. For each atomic constraint involved, extend each compatibility tuple to include dashes
for the new variables.

3. The new compatibility constraint is the union of the compatlblhty tuples introduced in
step two.

For example, let Cm (c 12 €1 3) where c12 and c13 are as defined in figure 2-1.
1. The new atomic constraint, 0123' = C123 is going to cover v, v, and v3
2. Extend the compatibility tuples to cover v, v, and v5:
chy=Cpyr= (1,2, (1,3, (2,8, )
6%3 5_0123"' = {(2: = 1) (3: - 1) (3: = 2)} -
3. Cp3 =(Cyg3~ Y Cyp3)= {(1,2,9(1,3 0238 92,1616 - 2)
Thus, it is possible replace a disjunctive constraint with an equivalent atomic constraint, when the
disjunctive constraint is composed of comp_atibility constraints. The disjuﬁcts can be removed from
the problem given in figure 2-1 using the above nmethod, resulting in
Ci2233 =¢yp5 0 (1,2, 3)(2, 3, 1), 1, 2)) and C12 = ¢50((1, )(— 1). Then, we can solve it as a regular

CSP.
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When the atomic constraints are algebraic, we can not remove disjunctions by simplification: i.e.,
Ciz = V,<v,, c§4 =4Sy, and C}2'234: (c}2 c§4) = (v, £v, v vy <vy). When the domains of variables are
discrete, we can transform algebraic constraints into equivalent compatibility constraints. Thus, we
can first change continuous variables to discrete, then replace algebraic constraints with

compatibility constraints, and remove disjuncts. The drawbacks to this are:

e Sizes of domains can become enormous, depending on the granularity. In a discrete
CSP, the complexity of arc-consistency is O(ea® [Mohr & Henderson 86], where a is the
number of values in the domain of a variable and e is the number of constraints. In an
interval CSP, the complexity of arc-consistency is O(nE) where n is the number of
variables, and E is the sum of the lengths of all constraints, where the length of a
constraint is defined as the number of variables it connects [Davis 87). It is better to use
interval CSPs rather than discrete ones from a complexity viewpoint. .

o A coarse grain discretization reduces domain size @, reducing complexity, but it may also
eliminate many and in some cases all valid solutions. In scheduling, minutes, hours,
days, or weeks can be taken as the smallest grain of time. Using larger units reduces
complexity but it may eliminate all solutions. ‘ ‘

e For interval variables, node and and arc-consistency is equal to path consistency when
there are no loops in the constraint graph [Davis 87]. The complexity of path-
consistency is cheaper for continuous CSPs compared to discrete CSPs. The complexity
of path consistency for discrete CSPs is O(n®a®) where n is the number of variables, and
a is the domain size.

When using continuous variables and algebraic constraints, the problem becomes idehtifying path-
consistent cofnbinationé of disjuncts that satisfy all disjunctive constraints. Every such combination
defines an equivalence class of solutions. Is solving such CSPs problematic? Yes, because
preprocessing does not help. Arc-consistency may not significantly reduce the domains of variables
when there are disjunctive constraints. Consider arc-consistency given the continuous disjunctive

CSP in figure 4-1. The disjunct ciz reduces the domain of v, = (50, 100], leaves v, unchanged, and

vy =[1, 50]
0}2 = vl < 02
’ Cgs = vz < 03

12
Cya3 (€13 €29

" Figure 4-1: A continuous disjunctive CSP

does not affect v, because it does not span that variable. The disjunct c§3 reduces the domain of
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v, = [1, 50], leaves v, unchanged, and does not span v,. Every value of v, has supporting values in

either v, or v3. Arc-consistency with respect to C}% can not remove any values from the domains of

vy, Uy and v,

How do we find a feasible solution? We can replace a disjunctive constraint by one of its disjuncts,
and use the atomic constraints to revise the domains of variables. This must be carried out for all

disjunctive constraints. Each combination of disjuncts is another CSP.

Assume that the there are n disjunctive constraints, each containing b disjuricts. The number of
possible combinations containing all disjunctive constraints, i.e., candidate solutions, is b%. Partial
solutions can be composed of any combination of the 1...n disjunctive constraints. The number of
partial solutions containing m disjuncts is (n//(n-m)!m))b™. The number of all combinations,
containing any number of disjunctive constraiﬁts from 1 to n is Z"ml (n!/(n—m)!m)b™. When
propagating at partial solutions, adding a new disjunct to an alterhative changes not only the
variables covered by the disjunct but may change all the variables connected together by the set of

disjuncts due to constraint propagation.
e A problem solver which enumerates candidate solutions, and evaluates only complete
solutions will evaluate b alternatives. ' :

e An ATMS searches through the space of partial solutions in breadth first fashion,
looking at all combinations of 1, then all combinations of 2, 3, ..., n disjunctive
constraints [de¢ Kleer 86]. It identifies minimal sets of inconsistent combinations, and
avoids repeating these in larger sets.

o Backtracking tries one ordering of the disjunctive constraints in each path. This is
possible because the order in which disjunctive constraints are considered does not
change the set of solutions, although it affects search efficiency. A dynamic ordering
scheme may try a different order in different branches of the search tree.

» Backtracking can be combined with an ATMS. Such a system can either evaluate only
complete solutions as in the assumption based DDB, and in each candidate solution
consider every possible combination of I, ..., n disjuncts [de Kleer & Williams 86]; or
evaluate all partial solutions along the search path as in EL [Stallman & Sussman 77].
In both cases, the ATMS keeps track of every propagation step to identify the minimal
set of disjuncts causing an inconsistency, and avoids repeating the same propagation
steps in different branches of the search tree by indexing them.

What are the trade offs between the four appfoaches given above, when we want all solutions to a
disjunctive CSP? Both backtracking and ATMS approaches are better than c_oinﬁlete enumeration,
because they use a failing partial solution to eliminate all complete solutions derived from it. The
ATMS does extra work by searchin.g_ a mucﬁ larger space than backtracking, _and searching parts of
it which are not reached by backtracking [de Kleer & Williams 86]. Backtracking does extra work
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due to thrashing, where the same inconsistency is detected many times in different search paths
Mackworth 77]. Ordering disjunctive constraints may reduce thrashing, but is not guaranteed to
eliminate it. Combining ATMS with backtracking eliminates thrashing and repeating the same
inferences in different search paths. Its efficiency depends upon the efficiency of the backtracking

algorithm which controls it.

The backtracking algorithm given below can be combined with an ATMS, which changes it from
sequential to dependency-directed backtracking.

5. Solution Method

The method we propose uses CSP formulation recursively, and combines search and arc-
consistency. There exists interesting heuristics and. machinery for selecting variables and values,
which we can use to solve regular CSPs. The method we propose is only reasqnable if there exists
good heuristics for ordering disjunctive constraints. In the rest of this section, we describe this

perspective and the heuristics which guide search.

In order to solve a disjunctive CSP, each disjunctive constraint is treated as a variable. Their
domains consist of the disjuncts, which are atomic constraints in disjunctive normal form, as defined
in section 2. This can be thought of as constructing the dual of the disjunctive CSP that is not
disjunctive. The steps for solving the disjunctive CSP are as follows:

1. Select a search state to expand. If there are no active states, stop.

2. Select a disjunctive constraint. If there are no active disjunctive constraints in state,
the state is a solution, go to step 1.

3. For every d1SJunct in the domain of the selected d1s3unct1ve constraint, create a new
search state. In each new state do:

4. Achieve node and arc consistency with respect to the disjunct(s) by mcremental
constraint satisfaction. : .

5. If the domain of a variable becomes empty, ehmmate state. The disjunct(s) added last
is inconsistent with the previous ones. :

6. Check the active disjuncts in the domains of future disjunctive constraints, and remove
those that are inconsistent with the previous ones, or those that are violated due to the
reduced domains of the variables.

7.If all d153uncts are removed from the domain of a future disjunctive constraint, the
constraint is violated. Eliminate the state, or use violated constraint to rate state.

8. If some future disjunctive constraints have only one active disjunct left in their
domains, select them and go to step 4. '
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9. Go to step 1.
In the disjunctive CSP algorithm given above, selecting a disjunctive constraint (step 2) corresponds
to variable selection in solving CSPs by backtrack, and the disjuncts in its domain correspond to the
values of the variable. When wé want all solutions, all disjuncts must be tried, thus disjunct
selection is not an issue. The loop consisting of steps 4—8 corresponds to forward checking in a
regular CSP. Step 4 of the élgorithm uses the procedure Waltz, modified to handle the addition of
the disjuncts selected in each state [Davis 87;p.286-287]. Step 5 eliminates the current state from
further consideration, if the domain of a variable becomes empty during propagation. In disjunctive
CSP with variables that have interval domains and no loops in the constraint graph, step 5 does not
occur because inconsistent disjuncts are removed in step 6 of the previous state. Step 6 checks the
active disjuncts in the domains of future disjunctive constraints to ﬁﬁd_out whether any of them are
satisfied or violated as a result of reducing the domains of variables in step 4. Step 6 can be thought
of as an extension of propagation: selecting a disjunct changes the constraint graph in that state, and
reduces the domains of variablés, this in turn may cause future disjuncts to be satisfied or violated. ‘
Since one of the disjuncts of every disjunctive constraint must.be satisfied, step 7 eliminates a state
where all disjuncts in a disjunctive constraint are violated. Step 8 satisfies any disjunct that is the
only active one remaining in the domain of a future disjunctive constraint. Steps 7 and 8 are applied
recursively in every state to reduce search. This algorithm combines search and arc-consistency.
Search tries combinations of disjuncts. Arc-consistency eliminates values from domains of variables
and disjuncts from the domains of disjunctive constraints. Each solution state is a combinatioﬁ of
disjuncts; it defines an equivalence class of solutions. Individual solutions can be found by selecting

a unique value from the domain of every interval variable.

Figure 5-1 shows the steps of the disjunctive CSP algorithm, when it is used to solve the problem
given in figure 2-1. The numbers on the left of each line show the steps of the algorithm, and the

rest of the line shows the operations carried out in that step. The problein is solved in two states.

. Search efficiency can be measured in terms of:

e total time,

o total number of propagation operations (in step 4 of the algorithm) and the total number
of tests (in step 6 of the algorithm), "

e number of search states expanded.
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Figure 5-1: Steps of the disjunctive CSP algonthm
for solving the disjunctive CSP in figure 2-1.

Search efficiency depends on the choice of a dls_]unctlve constraint in step 1. The order states are
expanded does not matter if we are satisficing and looking for all solutions to the problem. Since we
can not use disjunctive constraints directly to reduce the domains of variables, we try each of their
disjuncts separately. This gives rise to a combinatorial explosion which must be controlled. The

operation of the algorithm consists of two phases: divide and simplify.

The leftmost diagram in figure 5-2 shows the problem space labeled P, and the solution space

labeled R. For the purposes of the following discussion, assume that the disjuncts in the domain of a
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Figure 5-2: Problem space and the divide and simplify operations
disjunctive constraint are mutually exclusive. Selecting a disjﬁnctive constraint D; in step 2 of the
algorithm, and trying each of its disjuncts in a different search state partitions the problem space
into n disjoint parts, where n is the number of active disjuncts in the domain of C; This is the
divide step, seen in the middle of figure 5-2. In each state, the disjunct that is selected reduces the
problem space by constraint propagation, carried out in steps 3—7 of the algorithm in a least
commitment mode. Propagation reduces the-domains of variables, and then testing and subsequent
steps reduces the domains of disjunctive constraints. This 'mode of operation is shown at the right in

figure 5-2.

Given that the algorithm operates as described above, how can we make the algorithm operate

efficiently? We can identify two types of division of the problem space. A heterogeneous division

Pl R

NG

Pl P2 P2

Figure 5-3: Homogeneous and heterogeneous divisions of the problem space
partitions the problem space into portions that all contain some solutions, whereas a hémogeneous
divider partitions the search space into a region which contains all solutions and other regions that
contain none. Thrashing behavior occurs while searching in regions that contain no solutions. We
can avoid looking at such portions, because the disjuncts defining empty regions may be eliminated

as a result of selecting heterogeneous dividers and achieving arc-consistency. Also, disjuncts which

"eliminate large portions of the problem space are more useful. Disjuncts which extend the constraint

graph to span new variables are more useful, as are disjunctive constraints with fewer active

disjuncts.
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| We use problem textures [Fox, et al. 89] which are measures of problem topology to help focus
| search in a way that it is solved more efficiently. Textures are used for selecting a disjunctive

constraint in step 1 of the algorithm given ﬁbove. Textures can be on variables, atomic constraints

e T1: This texture is a measure of disjunctiveness. It's value is the number of active
disjuncts remaining in the domain of a disjunctive constraint. It selects a constraint
that has fewer disjuncts. .

e T2: This texture is a measure of the overlap of atomic constraints among disjunctive

_constraints. An atomic constraint may appear in more than one disjunctive constraint.
When that is the case, satisfying it will satisfy multiple disjunctive constraints. T2 picks
a disjunctive constraint sharing the largest number of atomic constraints with others.2

e T3: measures the looseness of disjunctive constraints. It looks at the resulting domain
sizes of the variables of an atomic constraint. T3 selects a disjunctive constraint that is
composed of atomic constraints that severely limit the domains of their variables.

o T4: measures the looseness of variables. It looks at the number of atomic constraints on
a variable. It selects a disjunctive constraint that is on variables having a large number
of constraints.

and disjunctive constraints. The textures we have been using are:

There are two problems that must be resolved in using textures to select a disjunctive constraint.

The first is that textures on variables and atomic constraints must be combined to result in a value
} for each texture on a disjunctive constraint. The second is how to use the four textures on each

disjunctive constraint to select among different disjunctive constraints.

Lexicographic ordering of the textures is used for selecting a disjunctive constraint. Each texture
“eliminates some disjunctive constraints. If more than one remains after the application of a texture,
the next texture is used. If multiple disjunctive constraints remain after applying all textures, one is

selected at random. We have been experimenting with different orderings of the textures.
If we want only the first solution, then ordering the disjuncts also affects efficiency. T2, T3 and T4

can be used to order the disjuncts. This corresponds to value selection heuristics in regular CSPs.

2Some atomic constraints may be relaxations of others, or satisfy other atomic constraints due to transitivity. It is
computationally more expensive to detect these cases.
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6. Experimental Results

We have formulated spatial layout as a disjunctive CSP and disjunctive COP, and solved problems
involving the laydut of work stations and work centers in a manufacturing facilify, rooms in a house,
appliances and cabinets in a kitchen, and bin packing problems with rectangular blocks [Baykan &
Fox 89, Baykan & Fox 87]. A

Textures reduce search. Compared to random selection of variables, using combinations of
textures reduced search states by 70% in kitchen problems and 84% in blocks problems. Figure 6-1
shows the number of search states required for finding all solutions to five kitchen layout problems,

under different combinations of texture measures. The combinations tested are:

e method 0: select a constraint at random,

» method 1: T4,

e method 2: T1,

e method 3: T4 and T1,

o method 4:' T4, T1 and T3.
When a combination of measures is used, they. are applied in the order: T4, T1, T3. Each measure
eliminates some constraints from consideration. If more than one constraint remains after applying
the texture measure(s), specified by the method, a constraint is selected at random. The number of
states given for each problem-method combination is the éverage of three runs. In the second
problem, method 4 reduces search by more than 80% compared to method 0, and in the third

problem by 35%. These results were reported in [Fox, et al. 89, Baykan & Fox 89]. The order of

# of states

100 -
methpd 0 \
75
) \ ’ method 1 -
metHod 1 ) ,’

50 e
N 4 methed 0
methpbd 2 \\ ]
method 2

o5 | metibd 3 ”~

methpd 4 , method 3 method 4

D s @ =1
0
1 2 3 4 5 Problems

Figure 6-1: Effectiveness of texture measures in reducing search
applying the textures has a significant effect on search efficiency. We are experimenting with new

textures, application orders, and combinations of textures.
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7. Role of ATMS

We are exploring with Reid Simmons, using the Quantity Lattice program combined with an
ATMS [Simmons 86], how an ATMS would solve this problem; and hope to have experimental data
by the time of the workshop.

8. Conclusion

We identify a class of constraint satisfaction problems called disjunctive CSPs, and give an
algdrithm which is especially useful when the problem has continuous variables and algebraic
constraints. This is a backtracking algorithm which uses two special heuristics: it satisfies a
disjunctive constraint that’has a single alternative left, and it eliminates a state when a disjunctive
constraint has no possibility of being satisfied. It relies on ordering the disjunctive constraints for
efficient backtrackiné. We define the characteristics leading to an efficient order, and give a set of
textures, which are simple heuristic measures for dynamically ordering the constraints. This
algorithm can also be combined with an ATMS to do dependency-directed backtracking. The
performance of textures have been reported elsewhere. We are collecting more data about the
performance of textures both with the sequential backtracking algorithm given, and with a
dependency-directéd backtracking algorithm that results when an ATMS is combined with the

backtracking algorithm given.
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Abstract

This paper investigates a problem of natural language processing from the perspective of AI
work on constraint satisfaction. We argue that for a class of referring expression the task of
noun phrase reference evaluation corresponds to an “easy” constraint satisfaction problem,
and can thus be performed by low-power network consistency techniques. To illustrate, we
introduce a linguistic fragment which provably generates tree-like constraint problems. This
enables us to infer that strong arc consistency is sufficient to resolve this class of expres-
sion. The paper concludes by pointing to semantic phenomena in English which determine
constraint problems with a more complex connective structure.

1 Introduction

This paper addresses a problem in computational linguistics from the perspective of AI work
on constraint satisfaction. We are interested in the process of evaluating singular noun phrases
which refer to known entities in a context. Suppose that during a discourse, a speaker instructs
a hearer to
(1) Get me the green apple on the table

In order to fulfill this instruction, the hearer must eva.lua.te, or “resolve”, the reference of
the noun phrase the green apple on the table to some specific entity known to him or her.
The present paper reviews how the task of resolving reference may be cast as a constraint
satisfaction problem, and goes on to explore the use of network comsistency techniques for
processing such reference-oriented constraint problems. These techniques are generally less
powerful than search procedures like backtracking, but have a number of desirable properties,
including efficiency. The main purpose of the paper is to show that an extremely limited
set of network consistency operations is sufficient to resolve the reference of an illustrative,
generatively defined class of definite noun phrase.

2 Reference as a Const;raint Satisfaction Problem

Mackworth (1977a) defines a constraint satisfaction problem (CSP) as a set of variables, each
of which must be instantiated in a particular domain of values, and a set of constraints which
the values of the variables must simultaneously satlsfy A CSP can be schematised as the
formula in (2)

(2) (321)(322) ces (Bz,,)(zl € Dl)(22 € Dg) cee (:c,, € Dﬂ)P(zl, T2yeeey a‘:,.)
in which each variable z; is associated with a domain D;, and where P(z1,2Z2,...,%n) ab-
breviates a conjunction of constraints on subsets of the variables. A solution to a CSP is an
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assignment of values < a1,az,...,8n >€ D1 X D3 X ... Dn to the variables < z1,22,...,Zn >
which simultaneously satisfies all the constraints. ’

In order to characterise the problem of contextual reference, we must first elaborate on
the notion of context. We regard a contezt as consisting of those entities and relations which
have been made salient in the hearer’s mind, through either linguistic or non-linguistic means.
For our purposes it is adequate to represent the hearer’s contextual knowledge as a finite set
of first-order predications, such as the following: :

(3) {man(manl), man(man2), town(townl), town(town2), town(town3),
river(riverl), river(river2), near(townl,riverl), near(town2,riverl),
visit(man1,townl), visit(manl,town2), visit(man2,town3)}
For example, this indicates that there are two men, two rivers and three towns, that manl
visits townl, and so on. :

Consider the problem of determining the contextual entities involved in the reference of
the following noun phrase (assuming that the prepositional phrase near a river relates to the
town, rather than the man or the visiting event, and ignoring tense):

(4) the man who visited a town near a river
The use of the definite article the in (4)is appropriate if (a) there is a man who visits a town
near a river, and (b) there is only one such man in the context. The first criterion can be
succinctly expressed as a CSP in the style of (2):

(5) (3z1,%2,23)(z1 € D1)(z2 € D;)(z3 € Di)man(z:) A visit(z1,72) A town(zz) A

near(z2,z3) A river(z3)

In words, there exists an z,, z2, and z3, in specified doma.ins, such that z; is a man, z; is a
town and z3 is a river, and z; visits z2, and z; is near z3. We will assume that all variables
in our reference-oriented CSPs start out with the same value domain, namely the set of all
entities in the context. So, in the context of (3), :

Dy = D; = D3 = {manl,man2,townl,town?2, town3,river1,river2}.
Satisfaction of the formula in (5) will involve assigning z,, z2 and z3 values from this set, and
seeing whether the instantiated constraints coincide with the formulae in the context. The
second criterion involved in establishing the reference of a definite noun phrase (NP) concerns
uniqueness in the context. For (5), this can be seen as a meta-level check that all solutions
to the CSP instantiate z; to the same entity.

3 Network Consistency

There are a variety of procedures available to solve or partially solve CSPs. Our interest is
in the role of a class of network consistency algorithms discussed extensively in the literature
(Mackworth, 1987). These algorithms view the CSP as an annotated graph known as a
constraint network. Given this representation, Montanari (1974), Mackworth (1977a), Freuder
(1978), Dechter and Pearl (1988) and others have defined various states of consistency in a
constraint network, including node consistency, arc consistency, and path consistency. Here,
we will say that a constraint network is strongly arc consistent iff it is node and arc consistent.
Similarly, a constraint network is strongly path consistent iff it is node, arc and path consistent.

Node and arc consistency can be enforced by a progressive operation of domain refinement..
Assuming the context of (3), the network for (5) could be made could be made strongly
arc consistent by an algorithm such as Mackworth’s (1977a) AC-3. This would return the
following refined domains:

= {manl}, D, = {townl,town2}, D3 = {riverl}
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4 The Adequacy of Network Consistency for Reference Eval-
uation '

Network consistency techniques are often used to reduce the search space posed by a CSP
before the invocation of a search procedure like backtracking. In the case of the above example,
the strongly arc consistent network allows us to infer that the set of solutions is some subset
of the cross-product of the refined domains. But an interesting characteristic of the reference
problem is that the felicity of a definite NP can be determined without computing the actual

tuples of values which solve its constraint problem. All we require is that the procedure for -

reference evaluation is capable of associating each variable in the constraint problem with a
set of entities, such that every entity in each variable’s set participates in some solution to
the problem. The referential uniqueness of a variable in a CSP can then be confirmed by a
simple, meta-level check that its domain is a singleton set. In view of this requirement, we
borrow the following definition from Dechter et al. (1989):

Definition 1 A value a in a domain D; is feasible if there exists a solution to the constraint
problem in which the variable z; is 1nsta.ntxated to a. The set of feasible values of a variable
is its minimal domain.

Under what circumstances does network consistency guarantee minimal domains? Domain
minimality can be shown to follow from Freuder’s (1982) condition for backtrack-free search,
which relates the degree of network consistency to the connective structure of the constraint
graph. Here we enumerate three special cases which follow from Freuder’s theorem:

Corollary 1 The domains of a constraint graph are minimal if:
(a) the constraint graph has width 0, and it is node consistent;
(b) the constraint graph has width 1, and it is strongly arc consistent;
(c) the constraint graph has width 2, and it is strongly path consistent.

Following Freuder (1982), a constraint graph has width < 1 iff it is a forest. There is a high
premium on a CSP having a tree-structured constraint graph, since strong arc consistency
can be achieved in O(nk?), where n is the number of variables, and k is the size of each value
domain (Dechter and Pearl, 1988). Moreover, unlike higher degrees of consistency, node and
arc consistency can be achieved without changing the width of the constraint graph. Hence,
the application of a strong arc consistency algorithm to a tree-structured network will a.lwa.ys
yield minimal domains.

It is envisaged that much of the semantic structure of English is tree-structured Simple
nouns, and intersective adjectives such as red, translate into unary constraints; prepositions
correspond to binary constraints, and verbs to n-ary constraints, where n > 1. Moreover, in
the deep structure of the language, these semantic predicates tend to be strung together in
a linear, sparse fashion. By way of re-inforcing this point, the following section introduces
a linguistic fragment which provably generates only tree-structured semantic forms. The
subsequent section discusses semantic phenomena which take us beyond tree-structure.

5 A Tree-Structured Fragment

In common with many natural language systems, our fragment will adopt an essentially
compositional style of analysis, in which the semantic translation of a linguistic constituent
is a simple combination of the semantic translations of its subconstituents (Schubert and
Pelletier, 1982). We also assume that this compositional process of semantic translation is
driven by the application of syntactic rules to the input string.
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All constituents are associated with a four-part representation, comprising (1) a syntactic
category, (2) a semantic variable, or tuple of variables, (3) a list of constraints (the constraint
list), and (4) a list of meta-level conditions on the cardinalities of specified domains (the
cardmahty list). For example, the lexicon contains the following entry for lake:

' (6) lake := N : [lake(z)] : []
This entry defines (“:=") lake as a noun (N) associated with the semantic variable z, notated
as a subscript. The word is associated with the single constraint lake(z), and does not
introduce any cardinality conditions. Square brackets are used to indicate lists, as in Prolog,
and a list of more than one constraint should be read as a conjunction of constraints. All
variables in a constraint list are assumed to be existentially quantified, and, moreover, all
variables appearing in the representation of a constituent are local to that constituent.

A preposition is defined in a similar manner:

(7) near := Pz : [near(z,y)] : []

Thus, the preposition (P) near introduces the binary constraint near(z,y) and, again, no
cardinality conditions. However, in contrast to (6), the constituent is relational. We therefore
attach the tuple < z,y > to its syntactic category, where z associates with the prepositional
subject and y with the prepositional object.

In order to illustrate a syntactic-semantic rule, assume that the rule set has already
analysed the definite NP the lake as follows:

(8) the lake := NP : [lake(z)] : [|Dz| = 1]

Hence, the lake has been analysed as an NP associated with the variable z, the constraint
lake(z), and the cardinality condition that the domain of z should be a singleton, |D,| = 1.
The PP near the lake can now be analysed by the following augmented phrase-structure
rule: _ _

(9) PPL:(C1+C2):(514+82) — Pgzy>:C1:51 NP,:C2:S2 where {y =2z}
The rule in (9) combines a preposition with an NP on its right to form a PP. The constraint list
of the PP constituent is formed by appending the constraint lists of its two subconstituents,
C; and C,; we notate this opera.txon as C; + Cy. The same operation is performed on the
subconstituents’ cardinality lists, $; and Sa.

The rule above can thus be seen as conjoining two separa.te CSPs to form a larger,
composite CSP. By itself this operation will produce no variable-connections between the
component CSPs. The responsibility for connective structure depends solely on the manner
in which the rule manipulates the semantic variables subscripted on syntactic categories. In
(9), the rule unifies the variable associated with the prepositional object with the variable
associated with the NP. For clarity, we extract all such variable unifications to the right, in
the form of a where-clause.! Hence, the application of (9)to the constituents defined in (7)
and (8) yields the following representation for the PP,

(10) near the lake := PP, : [near(z,y),lake(y)] : [|Dy| = 1]
in which the variable y from (7) has been unified with the variable z from (8), and is now
named y.

A full version of this paper (Ha.ddock 1991) presents the complete set of augmented
phrase-structure rules and lexical entries, NPG1, which treats simple examples of adjectival
modification, and complex NPs involving relative clauses and PPs. Two example NP analyses
are given below (ignoring tense):? :

! A more common practice is to encode such term unifications directly into the rule (Pereira and Shieber,
1987). ‘However, in the present circumstances this would be somewhat opaque.

3Note first that this model gives any uniqueness condition “wide-scope” over the entire CSP of the noun
phrase. This is not an essential feature of the system, and other strategies for the discharge of the condition
are possible, such as the “narrow-scope” interpretation implemented by Pereira and Pollack (forthcoming).
Second, although our model has been devised mainly for the purposes of this paper, Haddock (1988) shows
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(11) a the man who bought a book
NP : [man(z), buy(z,y), book(y)] : [| Dz| = 1]
b the green cup on the table

NP : [green(z), cup(z), on(z, y), table(y)} : [| Dz| = 1,|Dy| = 1]
The fact that our fragment NPG1 generates only CSPs with tree-like constraint graphs
hinges on the nature of the unifications performed in the where-clauses. First, we observe a
fact which can be informally stated as follows:

Lemma 1 If G’ and G" are trees, then the graph which results from unifying a single vertex
u € V(G') with a single vertez v € V(G") is also a tree.

This follows straightforwardly from the fact that a tree is a connected graph with n — 1 edges,
where 7 is the number of vertices. We can then state our theorem about NPG1:

Theorem 1 The constraint lists generated by the linguistic fragment NPG1 are tree-like.

Theorem 1 can be shown to be proven from the following observations: (a) all lexical entries
have tree-like constraint lists; (b) semantic variables are local to each lexical entry, and to
each rule; and (c) each rule unifies at most one variable from its left-hand daughter with one
variable from its right-hand daughter.

Once the NP has been analysed, its constraint list can be transformed into a network
and subjected to strong arc comsistency. Once the network is consistent, the cardinality
conditions are evaluated with respect to the refined domains. If either of these phases should
fail, the NP is rejected as infelicitous, an action which can help resolve structural ambiguities
encountered by the syntactic parser (Crain and Steedman, 1985). We conclude this section
with an obvious corollary of Corollary 1, Theorem 1 and the aforementioned results on the
complexity of strong arc consistency. Given that it is easy to establish whether a set is a
singleton, the following holds for the kind of reference evaluation investigated in this paper:

Corollary 2 Once NPG1 has derived the semantic translation for an NP in the input string,
the reference of that NP can be resolved in O(nk?) steps.

6 Beyond Tree Structure

This section briefly illustrates semantic phenomena which introduce cycles in the constraint

" graph. Cycles may be introduced on at least three distinct levels of semantic interpretation.
Here we give one example at each level, although these are not the only instances. However,
it is hypothesised that such cyclic expressions are in the minority.

Lexical semantics It is common to decompose lexical predicates into finer-grained predi-
cates which correspond to the underlying knowledge representation. At least in prin-
ciple, these sub-linguistic constraints may have an arbitrary connective structure. To
take a simple example, the lexical constraint over(z,y) may map into above(z,y) A
-contact(z,y), which is cyclic (albeit simple to eliminate).

Structural semantics Certain syntactic-semantic rules can induce a kind of “double-binding”
in the semantic translations. This occurs in the noun phrase in (12a), for example, which
contains what Engdahl (1983) calls a “parasitic gap”. The CSP for (12a) is shown in
(12b).

how a similar scheme of semantics may be incrementally evaluated by network consistency during categorial
grammar parsing.
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(12) a an apple which a man ate without peeling |
b (3z1,z2,z3)(z1 € D1)(z2 € D2)(z3 € D3)event(z,) /\ man(z2) A apple(z3) A
eat(z,, 23, z3) A withoutpeeling(zy,z3)
So there exists an event z; in which a man z, eats an apple z3-and, furthermore, the
event z; is carried out without peeling the apple z3. It is not difficult to devise contexts
for this CSP which would thwart an appropriate strong arc consistency algorithm, such
as Mackworth’s (1977b) algorithm for n-ary constraints. '

Anaphoric semantics Consider the indefinite NP in (13a):
(13) a a man who visits a town near his birth-place
b (3z1,2z2,2z3)(z1 € D1)(z2 € D3)(z3 € D3)man(z1) A visit(z1,z2) A town(zz) A
near(z3,z3) A birthplace(zs,z;)
On the assumption that (13a) refers non-specifically to some man known to the hearer,
and depending on the state of the discourse, the possessive pronoun his may refer
either to some male entity salient in the hearer’s discourse model or be bound to the
reference of the entire complex noun phrase in which it is embedded. In the latter case
it becomes an instance of what Partee (1978) and others have called “bound-variable
anaphora”. To see why, consider the CSP-style semantic translation for the bound-
variable interpretation of (13a), in (13b). Here, a man z; visits a town 2, which is near
the birthplace z3 of the man z;, whoever he is; the variable representing the reference of
the male person whose birthplace it is has been bound to the variable representing the
reference of @ man who visits .... The CSP in (13b) corresponds to a complete width-2
constraint graph, and thus path consistency is necessary (and sufficient) to evaluate its
reference.

7 Related Work and Conclusion

Network consistency techniques. have been applied to a variety of problems in natural lan-
guage processing, including morphological analysis (Barton, Berwick and Ristad, 1987; Bar-
ton, 1986), form-class disambiguation (Duffy, 1986), parsing (Maruyama, 1990), word-sense
disambiguation (Winston, 1984), and natural language generation (Dale and Haddock, forth-
coming). Mellish (1985), Rich, Wittenburg, Barnett and Wroblewski (1987), and Haddock
(1988, 1989) have used network consistency to tackle various aspects of reference evaluation.

The published accounts of these investigations rarely discuss the issue of the sufficiency of
network consistency for the task in hand. However, Mellish and Barton do raise the question of
adequacy, and both make the empirical observation that their network consistency algorithm
seems to be adequate in their problem arena (in both cases, approximate forms of strong arc
consistency are used). Barton further hypothesises that natural-language problems may have
a special modular, separable nature which makes them amenable to such techniques, but in
neither case is the discussion related to a formal notion of adequacy, such as that provided |
by Freuder (1982). |

Aga.mst this background, the main developments reported in this paper are (1) the speci-
fication of a linguistic fragment which provably generates tree-like CSPs, and (2) the observa-
tion that minimal domains are a sufficient interface to the results of reference evaluation for a
class of definite NP. Taken together, these enable us to conclude that strong arc consistency
is adequate to evaluate this class of referring expression.

The model NPG1, and the assumed evaluation procedure of network consxstency, is re-
stricted in certain respects from a linguistic point of view. One issue deserves to be singled-out:
quantified sentences such as Each woman gave at least two talks abound in natural language.
To provide an adequate semantic account of quantification might require an extension to .
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the form of the semantic translation rules, such as the ability to nest quantified expressions
within one another. This would, in turn, necessitate a layer of interpretation between the
semantic translations and the existing definition of a CSP in (2). An alternative approach
might be to retain the direct correspondence between semantic translations and the specified
form of a CSP, and instead enhance the underlying process of network consistency so that it
is sensitive to different quantificational restrictions on semantic variables. Which of these, or

other routes (such as Mellish (1985)), will be more profitable remains an open research topic, -

and one which will be influenced by future developments in both constraint-based reasoning
and computational linguistics. '

These issues are apparently orthogonal to the question of the connective structure of
English semantics. Here there is a strong possibility that the tree-like form we have demon-
strated of certain classes of semantic expression, represents a general tendency in the language
as a whole. This line of thinking, together with Barton’s earlier observations, suggests that
the structures which have evolved in natural language may be a surface manifestation of an
underlying reasoning system which is most effective with sparse, linearly connected problems.
If this is true, then network consistency algorithms are a promising initial characterisation of
that system. '
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Abstract

This paper presents a general model for temporal reasoning, capable of handling
both qualitative and quantitative information. This model allows the representation
and processing of all types of constraints considered in the literature so far, includ-
ing metric constraints (restricting the distance between time points), and qualitative,
disjunctive, constraints (specifying the relative position between temporal objects).
Reasoning tasks in this unified framework are formulated as comstraint satisfaction
problems, and are solved by traditional constraint satisfaction techniques, such as
backtracking and path consistency. A new class of tractable problems is characterized,
involving qualitative networks augmented by quantitative domain constraints, some of
which can be solved in polynomial time using arc and path consistency.
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1 Introduction

In recent years, several constraint-based formalisms have been proposed for temporal reason-
ing, most notably, Allen’s interval algebra (IA) [1], Vilain and Kautz’s point algebra (PA)

[14], Dean and McDermott’s time map (3], and metric networks (Dechter, Meiri and Pearl

[5]). In these formalisms, temporal reasoning tasks are formulated as constraint satisfaction
problems, where the variables are temporal objects such as points and intervals, and tem-
poral statements are viewed as constraints on the location of these objects along the time
line. Unfortunately, none of the existing formalisms can conveniently handle all forms of
temporal knowledge. Qualitative approaches such as Allen’s interval algebra and Vilain and
Kautz’s point algebra face difficulties in representing and reasoning about metric, numerical
information, while the quantitative approaches exhibit limited expressweness when it comes
to qualitative information [5]. -

In this paper we offer a general, network-based computational model for temporal rea-
soning, capable of handling both qualitative and quantitative information. In this model,
variables represent both points and intervals (as opposed to existing formalisms, where one
has to commit to a single type of objects), and constraints may be either metric, between
points, or qualitative disjunctive relations between objects. The unique feature of this frame-
work is that it allows the representation and processing of all types of constraints considered
in the literature so far.

The main contribution of this paper lies in providing a formal unifying framework for
temporal reasoning, generalizing the interval algebra, the point algebra, and metric networks.
In this framework, we are able to utilize constraint satisfaction techniques in solving several
reasoning tasks. Specifically:

1. General networks can be solved by decomposition into singleton labelings, each solv-
able in polynomial time. This decomposition scheme can be improved by traditional
constraint satisfaction techniques such as variants of backtrack search.

2. The input can be effectively encoded in a minimal network representation, which pro-
vides answers to many queries.

- 3. Path consistency algorithms can be used in preprdcessing the input network to improve
search efficiency, or to compute an approximation to the minimal network.

4. We were able to identify two classes of tractable problems, solvable in polynomxal
time. The first consists of augmented qualitative networks, composed of qualitative
constraints between points and quantitative domain constraints, which can be solved
using arc and path consistency. The second class consists of networks for which path
consistency algorithms are exact. ' ’

We also show that our model compares favorably with an alternative apprdach for com-
bining quantitative and qualitative constraints, proposed by Ladkin [6], from both conceptual

and computational points of view.
The paper is organized as follows. Section 2 formally defines the constraint types under

consideration. The definitions of the new model are given in Section 3. Section 4 reviews

81



and extends the hierarchy of qualitative networks. Section 5 discusses augmented qualitative
networks—qualitative networks augmented by domain constraints. Section 6 presents two
methods for solving general networks: a decomposition scheme and path consistency, and
identifies a class of networks for which path consistency is exact. Section 7 provides summary
and concluding remarks, including a comparison to Ladkin’s model. Proofs of theorems can
be found in the extended version of this paper [10]. '

2 The Representation Language

Consider a typical temporal reasoning problem. We are given the following information.

Example 1. John and Fred work for a company in LA. They usually work at the
local office, in which case it takes John less than 20 minutes and Fred between 15-20
minutes to get to work. Twice a week John works at the mdin' office; in which case he
commutes at least 60 minutes to work. Today John left home between 7:05-7:10, and
Fred arrived at work between 7:50-7:55. We also know that Fred and John met at a
traffic light on their way to work.

-We wish to represent and reason about such knowledge. We wish to answer queries such as:
“is the information in this story consistent?,” “who was the first to arrive at work?,” “what
are the possible times at which John arrived at work?,” and so on.
We consider two types of temporal objects: points and intervals. Intervals correspond to
time periods during which events occur or propositions hold, and points represent beginning

. and ending points of some events, as well as neutral points of time. For example, in our story,

we have two meaningful events: “John was going to work” and “Fred was going to work.”
These events are associated with intervals J = [P, P,], and F = [P, Py}, respectively. The
extreme points of these intervals, Py, ..., Py, represent the times in which Fred and John
left home and arrived at work. We also introduce a neutral point, Py, to represent the
“beginning of the world” in our story. One possible choice for Py is 7:00 a.m. Temporal
statements in the story are treated as constraints on the location of objects (such as intervals
J and F, and points P,,...,P,) along the time line. There are two types of constraints:
qualitative and quantitative. Qualitative constraints specify the relative position of pairs of
objects. For instance, the fact that John and Fred met at a traffic light, forces intervals J
"and F to overlap. Quantitative constraints place absolute bounds or restrict the temporal
distance between points. For example, the information on Fred’s commuting time constrains
the length of interval F, i.e., the distance between P3 and P;. In the rest of this section
we formally define qua.hta.twe and quantitative constraints, and the relationships between
them. -

2.1 Qualitative Constraints

A qualitative constraint between two objects O; and O;, each may be a point or an interval,
is a disjunction of the form .

(0iry 0)V---V(0; r 0j), (1)
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where each one of the r;’s is. a basic relation that may exist between the two objects. There
are three types of basic relations.

e Basic Interval-Interval (II) relations that can hold between a pair of intervals [1], before.

meets, starts, during, finishes, overlaps, their inverses, and the equality relation, a total .

of 13 rela.tions, denoted by the set {b,m,s,d, f,o0, bi,mi, si, di, fi,o0i,=}.

e Basic Point-Point (PP) relations that can hold between a pair of points {14], denoted
by the set {<,=,>}.

e Basic Point-Interval (PI) relations that can hold between a point and an interval,
and basic Interval-Point (IP) relations that can hold between an interval and a point.
These relations are defined in Table 1.

Relation Symbol Inverse Relations on Endpoints
p before I b bi p<I”

p starts I F] B p=1I"

p during I d di I"<p<It

p finishes I f fi p=1It

p after I a ai Cop> It

Table 1: The basic relations between a point p and an Interval I = [I~, I*].

A subset of basic relations (of the same type) corresponds to an ambiguous, disjunc-
tive, relationship between objects. For example, Equation (1) may also be written as
O; {r1,...,m} Oj; alternatively, we say that the constraint between O; and O is the relation
set {ry,...,7c}. One qualitative constraint given in Example 1 reflects the fact that John
and Fred met at a traffic light. It is expressed by an II relation specifying that intervals J
and F are not disjoint: .

J {s,st,d,di, f, fi,o,0i,=} F.

To facilitate the processing of qualitative constraints, we define a qualitative algebra(QA),
whose elements are all legal constraints (all subsets of basic relations of the same type)-—2'3
II Relations, 2® PP relations, 2% PI relations, and 2° IP relations. Two binary operations are
defined on these elements: intersection and composition. The intersection of two qualitative

constraints, R' and R”, denoted by R’ ® R", is the set-theoretic intersection R' N R". The -

composition of two constraints, R’ between objects O; and O;, and R" between objects O;
and O, is a new relation between objects O; and Oy, induced by R’ and R”. Formally, the

composition of R’ and R”, denoted by R' ® R”, is the composition of the constituent basic -

relations, namely
. RI ®R” - {T’@T"IT‘ e Rl,r” E RII}.

Composition of two basic relations r' and r”, is defined by a transitivity table shown in

Table 2. Six transitivity tables, Ty, ..., T4, Tpa, T4, are required; each defining a composition

of basic relations of a certain type. For example, composition of a basic PP relation and a
basic PI relation is defined in table T;. Two important subsets of QA are Allen’s Interval
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Algebra (IA), the restriction of QA to II relations, and Vilain and Kautz’s Point Algebra
(PA), its restriction to PP relations. The corresponding transitivity tables are given in {1] and
[14], and appear in Table 2 as T4 and Tpy, respectively. The rest of the tables, T,:.., T},

are given in the extended version of this paper [10]. Illegal combinations in Table 2 are
denoted by 0.

PP__PI_IP 11
PP [ [Tpa] [Ti] (8] (0]
PI| [0 [0 [To] [T
IP | () [T @ [0
IT| [0 [0 [T [T}

Table 2: A full transitivity table.

2.2 Quantitative}Constraints

Quantitative constraints refer to absolute location or the distance between points [5]. There
are two types of quantitative constraints:

e A unary constraint, on point P;, restricts the location of P; to a given set of intervals

(Penh)V---V(P, € I).

e A binary constraint, between points P; and P;, constrains the permissible values for
the distance P; — P;:

(P; — P E»II)V----V(P,'—EEII:).

In both cases the constraint is represented by a set of intervals {I,...,It}; each interva.l.

may be open or closed in either side. For example, one binary constraint given in our story

‘specifies the duration of interval J (the event “John was going to work)”:

P, — P, € {(0,20), (60, 0)}.

The fact that John left home between 7:05-7:10 is translated into a unary constra.mt on

P, P, € {(5, 10)}, or 5 < P; < 10 (note that all times are relative to Py, i.e. 7:00 a.m.).
Sometimes it is easier to treat a unary constraint on P; as a binary constraint between P,
and P,, having the same interval representation. For example, the above unary constraint is
equivalent to the binary constraint, P, — P, € {(5,10)}.

The intersection and composition operations for quantitative constraints assume the fol-

~ lowing form. Let C’ and C” be quantitative constraints, represented by interval sets [ " and

I", respectively. Then, the intersection of C’ and C” is defined as:
c’'eC'={LnIjLelIeI"}.
The composxtxon of C' and C" is a new interval set deﬁned by
C'®C"={z]3zel'\ye I” r+y =z}
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2.3 Relationships between Qualitative and Quantitative Con-
straints : '

The existence of a constraint of one type sometimes implies the existence of an implicit
constraint of the other type. This can only occur when the constraint involves two points.
Consider a pair of points P; and P;. If a quantitative constraint, C, between P; and P; is
given (by an interval set {I,...,[;}), then the implied qualitative constraint, QUAL(C). is
defined as follows (see also Ladkin [6]).

o f0 € {L,...,Ii}}, then “=" € QUAL(C).
o If there exists a value v > 0 such fhat v € {h,...,It}, then “<” € QUAL(C).
o If there exists a value v < 0 such that v € {I;,.. . ,Ix}, then “>” € QUAL(C).

Similarly, If a qua.lita.tivé constraint, C, between P, and P; is given (by a relation set R),
then the implied quantitative constraint, QUAN(C), is defined as follows.

e If “<” € R, then (0,00) € QUAN(C).
e If “=" € R, then [0] € QUAN(C).
o If “>” € R, then (—00,0) € QUAN(C).

The intersection and composition operations can be extended to cases where the operands
are constraints of different types. If C’ is a quantitative constraint and C” is qualitative,
then intersection is defined as quantitative intersection: - :

C'® C" = C' ® QUAN(C"). 2)
Composition, on the other hand, depends o the type of c". '

e If C” is a PP relation, then composition (and consequently the resulting constraint) is
quantitative '

C'® C" = C' ® QUAN(C").
o If C” is a PI relation, then composition is qualitative

C'®C" = QUAL(C") @ C".

3 General Temporal Constraint Networks

We now present a network-based model which facilitates the processing of all constraints

- described in the previous section. The definitions of the new model follow closely those

developed for discrete constraint networks [11], and for metric networks [5].

1We use the convention that v € {I1,...,Ii} is equivalent to v E-Il or...orvEl;
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A general temporal constraint network involves a set of variables {Xi,...,Xn}, each
representing a temporal object (a point or an interval), and a set of unary and binary
constraints. When a variable represents a time point its domain is the set of real numbers
R: when a variable represents a temporal interval, its domain is the set of ordered pairs of
real numbers, i.e. {(a,bd)|a,b € R,a < b}. Constraints may be quantitative or qualitative.
Each qualitative constraint is represented by a relation set R. Each quantitative constraint is
represented by an interval set J. Constraints between variables representing points are always
maintained in their quantitative form. We also assume that unary quantitative constraints
are represented by equivalent binary constraints, as shown in the previous section. A set
of internal constraints relates each interval I = [I~, I*] to its endpoints, I~ {starts} I, and
It {finishes} I. ' .

A constraint network is associated with a directed constraint graph, where nodes represent
variables, and an arc ¢ — j indicates that a constraint C;;, between variables X; and X,
is specified. The arc is labeled by an interval set (when the constraint is quantitative) or
by a QA element (when it is qualitative). The constraint graph of Example 1 is shown in

Figure 1.

{(0, 20), (60, c0)} {(15,20)}

{0,8)) ~  {(50,55)}
Figure 1: The constraint graph of Example 1.

A tuple X = (z1,...,%n) is called a solution if the assignment {X; = z1,...,Xn = Tn}
satisfies all the constraints (note that the value assigned to a variable which represents an
interval is a pair of real numbers). The network is consistent if at least one solution exists.
A value v is a feasible value for variable X;, if there exists a solution in which X; = v. The
set of all feasible values of a variable is called its minimal domain. .

We define a partial order, C, among binary constraints of the same type. A constraint
C' is tighter than constraint C”, denoted by C’' C C”, if every pair of values allowed by C"
is also allowed by C”. If C’ and C” are qualitative, represented by relation sets R’ and R".
respectively, then C' C C” if and only if R' € R". If C’ and C" are quantitative, represented
by interval sets I’ and I”, respectively, then C' C C" if and only if for every value v € I',
we have also v € I”. This partial order can be extended to networks in the usual way.
A network N’ is tighter than network N”, if the partial order C is satisfied for all the
corresponding constraints. Two networks are equivalent if they possess the same solution
set. A network may have many equivalent representations; in particular, there is a unique
equivalent network, M, which is minimal with respect to C, called the minimal network (the
minimal network is unique because equivalent networks are closed under intersection). The
arc constraints specified by M are called the minimal constraints. -
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The minimal network is an effective, more explicit, encoding of the given knowledge.
Consider for example the minimal network of Example 1. The minimal constraint between
J and F is {di}, the minimal constraint between P, and P, is {(60,00)}, and the minimal
constraint between Py and P; is {(30,40)}. From this minimal network representation, we
can infer that today John was working in the main office; he arrived at work after 8:00 a.m..
while Fred arrived at work between 7:30-7:40.

Given a network N, the first interesting task is to determine its comsistency. If the
network is consistent, we are interested in other reasoning tasks, such as finding a solution to
N, computing the minimal domain of a given variable X;, computing the minimal constraint
between a given pair of variables X; and Xj, and computing the full mlmmal network The
rest of the paper is concerned with solving these tasks.

4 The Hierarchy of Qualitative Networks

Before we present solution techniques for general networks, we briefly describe the hierarchy
of qualitative networks. :

Consider a network having only qualitative constraints. If all constraints are II rela.txons
(namely IA elements), or PP relations (PA elements), then the network is called an [A
network, or a PA network, respectively [12]. If all constraints are PI and IP relations, then
the network is called an IPA network (for Interval-Point Algebra?). A special case of a PA
network, where the relations are convex (taken only from {<, <,=, >, >}, namely excluding
#), is called a convez PA network (CPA network).

It can be easily shown that any qualitative network can be represented by an IA network.
On the other hand, there are some qualitative networks that cannot be represented by a PA

_ network. For example (see [14]),.a network consisting of two intervals, I and J, and a single

constraint between them, I {before,after} J. Forma.lly, the following relationship can be
established among qualitative networks.

Proposition 1 Let QN be the set of all qualitative networks. Let net(CPA), net(P4),
net(IPA), and net(IA) denote the set of qualitative networks which can be represented by
CPA networks, PA networks, IPA networks, and IA networks, respectively. Then,

net(CPA) C net(PA) C net(IPA) C net(IA) =

By climbing up in this hierarchy from CPA networks towards IA networks we gain ex-
pressiveness, but at the same time lose tractability. For example, deciding consistency of a
PA network can be done in time O(n?) [13, 9], but it becomes NP-complete for IA networks
[14], or even for IPA networks, as stated in the following theorem.

Theorem 2 Deciding consistency of an IPA network is NP-hard.

Theorem 2 suggests that the border between tractable and 1ntra.cta.ble qua.htatwe net-
works lies somewhere between PA networks and IPA networks :

2We use this name to comply with the names IA and PA, although technically these relations, together
with the intersection and composition operations, do not constitute an“afgebra, because they are not closed
under composmon
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5 Augmented Qualitative Networks

We now return to solving general networks. First, we observe that even the simplest task
of deciding consistency of a general network is NP-hard. This follows trivially from the
fact that deciding consistency for either metric networks or IA networks is NP-hard |2, 5,
14). Therefore, it is unlikely that there exists a general polynomial algorithm for deciding
consistency of a network. In this section we take another approach, and pursue “islands of
tractability”—special classes of networks which admit polynomial solution. In particular,
we consider the simplest type of network which contains both qualitative and quantitative
constraints, called an augmented qualitative network, a qualitative network augmented by
unray constraints on its domains.

We may view qualitative networks as a special case of augmented qualitative networks,
where the domains are unlimited. For example, PA networks can be regarded as augmented
qualitative networks with domains (—o0, o0). It follows that in our quest for tractability. we
can only augment tractable qualitative networks such as CPA and PA networks.

In this section, we consider CPA and PA networks over three domain classes which carry -

significant 1mporta.nce in temporal reasoning applications:

1. Discrete domains, where each variable may assume only a finite number of va.lues (for
instance, when we settle for crude timing of events such as the day or year in which
they occurred).

2. Single-interval domains, where we have only an upper and/or a lower bound on the
timing of events. -

3. Multiple-intervals domains, which subsumes the two previous cases®.

A CPA network over multiple-intervals domains is depicted in Figure 2a, where each variable
is labeled by its domain intervals. Note that in this example, and also throughout the 1est
of this section, we express the domain constraints as unary constraints.

(1,2)
(3:4)

Figure 2: (a) A CPA network over multiple-intervals domains. (b) An equivalent arc-
consistent and path-consistent form. :

We next show that for a.ugmented CPA networks and for some augmented PA networks
all interesting reasoning tasks can be solved in polynomxa.l time, by enforcing arc consxstency
(AC) and path consistency (PC). :

3Note that a discrete domain {vy,..., v} is asent.lally a multlple-mtervals domain {[vy, vl], [vk. )}
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1. Q « {i = jli > j € E}
2. while Q # 0 do
3. select and delete any arc £ —+ m from Q
4. if REVISE((k, m)) then
5. Q—QuU{i—kji+keE,i#m}
6. end
Figure 3: AC-3—an arc consistency algorithm.
L Q — {(h k)i < ), (k #6,0)}
2. whileQ #0do -
3. select and delete any triplet (i, %, 7) from Q@
4. if REVISE((¢,k,7)) then
5. Q ~ Q URELATED-PATHS((i, ¥, 7))
6. end :

Figure 4: PC-2—a path consistency algorithm.

Theorem 8 Let G = (V, E) be an augmented PA network. Let n and e be the number of
nodes and the number of edges, respectively. Then, the timing of algorithm AC-$ is bounded
as follows.

o If the domains are discrete, then AC-3 takes O(eklog k) time, where k is the mazimum
domain size. '

e If the domains consist of single intervals, then AC-3 takes O(en) time.

o If the domains consist of multiple intervals, then AC-3 takes O(enK log K) time, where .

K is the mazimum number of intervals in any domain.

A network can be converted into an equivalent path-consistent form by applying any
path consistency algorithm to the underlying qualitative network (7, 14, 12]. Path consistency
algorithms impose local consistency among triplets of variables, (i, k, 7), by using a relaxation

operation
Cij — Cij ® Cix ® Ci;. - (3)

Relaxation operations are applied until a fixed point is reached, or until some constraint
becomes empty indicating an inconsistent network. One efficient path consistency algorithm
is PC-2 [7], shown in Figure 4, where the relaxation operation of Equation (3) is performed
by the function REVISE((¢, k, j)). Algorithm PC-2 runs to completion in O(n®) time [8].

Table 3 summarizes the complexity of determining consistency in augmented qualitative
networks. Note that when both arc and path consistency are required, we first need to

establish path consistency, which results in a complete graph, namely e = n2. Algorithms
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for assembling a solution to augmented qualitative networks are given in the extended version
of this paper [10]. Their complexity is bounded by the time needed to decide consistency.

Discrete Single interval | Multiple intervals
CPA networks AC AC 4+ PC AC + PC
_ O(eklogk) 0o(n3) O(n*Klog K)
PA networks | NP-complete AC + PC NP-complete
A O(n?) '
IPA networks | NP-complete | NP-complete NP-complete

Table 3: Complexity of deciding consistency in augmented qualitative networks.

6 Solving General Networks

In this section we focus on solving general networks. First, we describe an exponential brute-
force algorithm, and then we investigate the applicability of path consistency algorithms.

Let N be a given network. A basic label of arc i — j, is a selection of a single interval
from the interval set (if C;; is quantitative) or a basic relation from the QA element (if C;;
is qualitative). A network whose arcs are labeled by basic labels of N is called a singleton
labeling of N. We may solve N by generating all its singleton labelings, solve each one of
them independently, and then combine the results. Specifically, N is consistent if and only if
there exists a consistent singleton labeling of N, and the minimal network can be computed
by taking the union over the minimal networks of all the singleton labelings.

Each qualitative constraint in a singleton labeling can be translated into a set of up to
four linear inequalities on points. For example, a constraint I {during} J, can be trans-
lated into linear inequalities on the endpoints of I and J, I > J=, I < J +, It > J", and
I* < J*. Using the QUAN translation, these inequalities can be translated into quantitative
constraints. It follows, that a singleton labeling is equivalent to an STP network—a metric
network whose constraints are labeled by single intervals [5]. An STP network can be solved
in O(n®) time [5]; thus, the overall complexity of this decomposition scheme is O(n’k¢),
where n is the number of variables, € is the number of arcs in the constraint graph, and k is
the maximum number of basic labels on any arc. ’ A

This brute-force enumeration can be pruned significantly by running a backtracking al-
gorithm on a meta-CSP whose variables are the network arcs, and their domains are the
possible basic labels. Backtrack assigns a basic label to an arc, as long as the corresponding
STP network is consistent and, if no such assignment is possible, it backtracks.

Imposing local consistency among subsets of variables may serve as a preprocessing step
to improve backtrack. This strategy has been proven successful (see (4]), as enforcing local
consistency can be achieved in polynomial time, while it may substantially reduce the number
of dead-ends encountered in the search phase itself. In particular, experimental evaluation
shows that enforcing a low consistency level, such as arc or path consistency, gives the best
results [4]. Following this rationale, we next show that path consistency, which in general
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networks amounts to the least amount of preprocessing, can be enforced in polynomial time.

To assess the complexity of PC-2 in the context of general networks, we introduce the
notion of a range of a network [5]. The range of a quantitative constraint C, represented
by an interval set {I,,..., Ik}, is sup(l) — inf(I;). The range of a network is the maximum
range over all its quantitative constraints. The next theorem shows that the timing of PC-2
is bounded by O(n®R3), where R is the range of the network (expressed in terms of the
coarsest possible time units).

Theorem 9 Let G = (V, E) be a given network. Algorithm PC-2 performs no more than
O(n3R) relazation steps, and its timing is bounded by O(n3R3), where R is the range of G.

Path consistency can also be regarded as an alternative approach to exhaustive enumer-
ation, serving as an approximation scheme which often yields the minimal network. For
example, applying path consistency to the network of Figure 1 produces the minimal net--
work. Although, in general, a path consistent network is not necessarily minimal, in some
cases, path consistency is guaranteed to compute the minimal network, as stated in the
following theorem.

Theorem 10 Let G = (V, E) be a path-consistent network. If the qualitative subnetwork of
G i3in net(CPA), and the quantitative subnetwork constzt'utes an STP network, then G is
minimal.

Corollary 11 Any path-consistent singleton labeling is minimal.

We feel that some more temporal problems can be solved by path consistency algorithms;
further investigation may reveal new classes for which these algorithms are exact.

7 Conclusions

We described a general network-based model for temporal reasoning capable of handling
both qualitative and quantitative information. It facilitates the processing of quantitative
constraints on points, and all qualitative constraints between temporal objects. We used
constraints satisfaction techniques in solving reasoning tasks in this model. In particular,
general networks can be solved by a backtracking algorithm, or by path consistency, which
computes an approximation to the minimal network.

Ladkin [6] has introduced an alternative model for temporal reasoning. It consists of two
components: a metric network and an IA network. These two networks, however, are not
connected via internal constraints, rather, they are kept separately, and the inter-component
relationships are-managed by means of external control. To solve reasoning tasks in this
model, Ladkin proposed an algorithm which solves each component independently, and then

circulates information between the two parts, using the QUAL and QUAN translations, until .

a fixed point is reached. Our model has two advantages over Ladkin’s model:

1. It is conceptually clearer, as all information is stored in a single network, and constraint -

propagation takes place in the knowledge level itself.
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2. From computational point of view, it saves much of the redundant work done by cir-

culating information between the two components. For example, in order to convert

a given network into an equivalent path-consistent form, Ladkin’s algorithm may re-

quire O(n?) informations transferences, resulting in an overall complexity of O(n SR3),
compared to O(n3R3) in our model.

Using our integrated model we were able to identify two new classes of tractable net-
works. The first class is obtained by augmenting PA and CPA networks with various do-
main constraints. We showed that some of these networks can be solved using arc and path
consistency. The second class consists of networks which can be solved by path consistency
algorithms, for example, singleton labelings.

Future research should enrich the representation language to facilitate modehng of more
involved reasoning tasks; in particular, we should mcorpora.te non-binary constramts in our

. model.
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abstract

Research in Artificial Intelligence on constraint-based representations for
temporal reasoning has largely concentrated on two kinds of formalisms: sys-
tems of simple linear inequalities to encode metric relations between time
points, and systems of binary constraints in Allen’s temporal calculus to en-
code qualitative relations between time intervals. Each formalism has certain
advantages. Linear inequalities can represent dates, durations, and other quan-
titive information; Allen’s qualitative calculus can express relations between
time intervals, such as disjointedness, that are useful for constraint-based ap-
proaches to planning. :

In this paper we demonstrate how metric and Allen- style constraint net-
works be integrated in a constraint-based reasoning system. The highlights of

“ the work include a simple but powerful logical language for expressing both

quantitative and qualitative information; translation algorithms between the
metric and Allen sublanguages that entail minimal loss of information; and a

constraint-propagation procedure for problems expressed in a combination of

metric and Allen constraints.
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1 Introduction

Research in Artificial Intelligence on constraint-based representations for tem-
poral reasoning has largely concentrated on two kinds of formalisms: systems
of simple linear inequalities [Malik and T.O., 1983, Valdes-Perez, 1986, Dechter
et al., 1989] to encode metric relations between time points, and systems of
binary constraints in Allen’s temporal calculus [Allen, 1983, Vilain et al., 1989,
Ladkin and Madux, 1987, van Beek and Cohen, 1989] to encode qualitative re-
lations between time intervals. Each formalism has certain advantages. Linear
inequalities can represent dates, durations, and other quantitive information
that appears in real-world planning and scheduling problems. Allen’s qualita-
tive calculus can express certain crucial relations between time intervals, such
. as disjointedness, that cannot be expressed by any collection of simple lin-
ear inequalities (without specifying which interval is before the other). Such
disjointedness constraints form the basis for constraint-based approaches to
planning [Allen, 1991]. '

In this paper we demonstrate how metric and qualitative knowledge can
be integrated in a constraint-based reasoning system. One approach to this
problem (as used, for example, in the “time map” system of Dean and McDer-
mott [87]) is to directly attach rules that enforce disjointedness constraints to
a network of linear inequalities. One limitation of such an approach is that
some natural -qualitative inferences are not performed: for example, the facts
that interval i is during j and j is disjoint from k are not combined to reach
the conclusion that i is disjoint from k. Another disadvantage is that it is often
more convenient for the user to enter assertions in a qualitative language, even
if they can be represented numerically. ‘

Instead of try to augment a single reasoning system, we will take an ap-

_proach briefly suggested by Dechter, Meiri, and Pearl [89] (henceforth “DMP”),
and combine a metric reasoning system with a full Allen-style constraint net-
work. The contributions of our research include the following: ’

1. A simplebut powerful logical language £ for expressing both quantitative
and qualitative information. The language subsumes both networks of
two-variable difference inequalities (called L) and networks of binary
Allen constraints (called £4), but is much more powerful than either.
The axioms of Allen’s temporal calculus are theorems of L.

2. An extension of DMP’s algorithms for networks of non-strict inequalities
to handle both the strict and the non-strict inequalities that appear in
L.
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3. Optimal translations between L and L£4. As we noted, the two for-
malisms have orthogonal expressive power, so an exact translation is
impossible; we say that a translation is optimal when it entails a min-
imal loss of information. Formally, f : £; — L, is optimal iff for any

‘a € L, and B € L3, then a |= 8 iff f(a) E .

4. A constraint-propagation procedure for the combined constraint lan-
guage Lpr U L4, which is based on the translation algorithms. The user
of the system is able to enter information in terms of point difference
inequalities or qualitative interval constraints, whichever is necessary or
most convenient. ' :

The system we describe in this paper is completely implemented in Com-
mon Lisp, and is available from the first author. '

2 A Universal Temporal Language

Consider the following model of time: time is linear, and time points can be
identified with the rationals under the usual ordering <. The difference of
any two time points is likewise a rational number. An interval is a pair of
points (n,m), where n < m. Two intervals stand in a particular qualitative
relationship such as “overlaps” just when their endpoints stand in a particular
configuration — in this case, when the starting point of the first falls before
the starting point of the second, and the final point of the first falls between
the two points of the second.

‘ The following language £ lets us say everything we’d like to about this
model. It is typed predicate calculus with the following types and symbols:

\
\
I i

types are Rational and Interval.
functions are
L, R : Interval => Rational
Intuitively, i, is the starting (left) endpomt of i,
and ip is the final (right) endpoint.
— (subtraction): Rational x Rational =>Rational
Functions to construct rational numerals. (We use ordlna.ry
decimal notation in this paper.)
Rational numerals.
predicates are
<, <, = : Rational x Rational
Allen Predicates : Interval x Interval
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P(recedes), M(eets), O(verlaps), S(tarts), D(uring),
F(inishes), =, and the inverses P~, M~, O~, §~, D™, F~.

The language does not include constants to name specific intervals; instead,
we use unbound variables to name intervals, with the understanding that any
particular model provides an interpretation for free variables.

It is useful to distinguish two special syntactic forms. Formulas of the form

i(T‘l)j V... V ’1.(1‘")]

where the ¢ and j are intervals and the r; are Allen predica.tés are called simple
Allen constraints, and are abbreviated as

i(r o+ )i

The sublanguage of such formulas is called £ 4. Formulas of the following two
forms :

ir—je<n tF—jc<n

where F,G € {L, R} and n is a numeral are called simple metric constraints.
The sublanguage of such formulas is called Lp. Note, however, that £ is much
richer than the union of £ps and L£4. For example, the formulas in Table 1 are
part of £, but appear in neither £4 nor L. -

The following axioms capture the intended model of time.

o Arithmetic axioms for — (subtraction), <, <, and numerals. |
o Vi.ip <ip

o Meaning postulates for each Allen predicate. The axioms for the non-
inverted predicates appear in Table 1.

We write Cl=,D to mean that D holds in all of models of C' that satisfy these

axioms.
The original presentation of the Allen calculus described the predicates by

a set of transitivity azioms such as

Vi, g, k. i(M)j Aj(D)k D i(D + S+ O)k

All of these formulas are theorems of AC., rather than axioms [Kautz and La.dkiﬁ,
1991]. : .
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V. i=3 = wuw—Jy <0 =i <0 A 1g—jr<0
. : A jJrR—ir<0

Vi,j. uP)j = tr—Jjr <0

Vi,j. t(M)j = ig—jr <0 A j1—1r<0

Vi, 7 . 2(0)_] = 11 —-J<0 A jr—tp<0 A ip—3Jr<0

Yi,5. #(S)j] = it—Jj<0 A jr—iL <0 A 1p—3Jr<0

V1,7 . __;(D)j = jp—-t <0 A ip—3Jr<0 ' |

Vi,j. #(F)j] = jo—i<0 A ip—jr<0 A jr—ir<0

Table 1: Meaning postulates for Allen predicates.

Since L is just first-order logic, we could solve problems that involve both
metric and Allen assertions by employing a complete and general inference

‘method, such as resolution. This is almost certain to be impractically slow.

On the other hand, it appears that we do not need the full power of £ .to
express many interesting temporal reasoning problems. The sublanguage Ly
can express constraints on the duration of an interval (e.g., i —ir < —3); on
the elapsed time between intervals (e.g., tr — jr < 5); and between an interval
and an absolute date, which we handle by introducing a “dummy” interval
which is taken to begin at time number 0 (e.g., i, — dayl; < —14). But Ly
by itself is not adequate for many problems. For example, in the sublanguage
L 4 one can assert that intervals ¢ and j are disjoint by the formula ¢(P + M +
M~ + P~)j, but there is no equivalent formula in £ps. Such a disjointedness
constraint is useful in planning; for example, if +"is a time during which a
robot holds a block, and j is a time during which the robot’s hand is empty, a

. planning system might want to make the assertion that i(P+ M+ M~ + P7);.

Another useful expression in £4 is i(S+ F)j, which means that interval ¢ starts
or finishes j; for example, in scheduling a conference you might want to assert
that a certain talk begins or ends the conference.

So L U L4 appears to be a good candidate for a practical temporal lan-

" guage. In order to develop an inference procedure for this language, let us

examine the constraint satlsfactlon procedures that are known for Las and L4
individually. :

3 Constraint Networks

Ly and L4 can each express certain binary constraint satisfaction problems
(CSP) [Montanari, 74]. A binary CSP is simply a set (also called a network)
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of quantifier-free assertions in some language, each containing two variables.

One possible task is to find a particular assignment of values to the variables
that simultaneously satisfies all the constraints in the network: that is, to find
a model of the network. (Henceforth in this paper we will always talk in terms

of models rather than variable assignments.) Another important task is to

compute the minimal network representation of the problem, which is defined
as follows:

Definition: Minimal Network Representation

Suppose G is a consistent .network of binary constraints in some 1anguage
Then a binary constraint network G’ in that language is a minimal network
representation of G iff the following all hold:

1. G' is logically equivalent to G.

2. For every pair of variables in G there is a constraint containing those

variables in G'.

3. For any model M of a single constraint in G, there is a model M’ for
all of G’ which agrees with M on the interpretation of the variables that
appear in that constraint.

Hence from the minimal network representation one can “read off” the pos51ble
values that can be assigned to any variable.

L is very similar to what DMP called simple temporal constraint satis-
faction problems (STCSP). They considered sets (or networks) of formulas of
the form '

n<{z—y)<m

where z and y are variables and n and m are numbers. Their representatlon
differs from Lps in the following ways: (1) They abbreviated two inequalities
in one formula, which is, of course, unimportant. (2) They use simple variables
like z for time points, where £ys uses terms like iz, and ¢p. Again this difference
is not significant, because the interpretation of an interval ¢ is simply the pair
consisting of the interpretations of ¢y, and igr. So we can treat i and g as
“variables” in the CSP formulation. (3) Forfnu’las in EM include strict (<) as
well as non-strict (<) inequalities. .
DMP proved that an’all-pairs shortest- path algorithm [Aho et al., 1976,
page 198] can compute the minimal network representation of a STCSP One
can modify the algorithm to handle the two kinds of inequalities as follows.

We represent a formula M from Ly by a graph, where the nodes are the
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terms that appear in M (that is, iy, and ig for each interval variable 7), and
the directed arc from ir to jg is labeled with the pair (n,1) if

iF—jagSn
appears in M, and labeled (n,0) if

iF—Jjg<n
appears in M. Next we add the constraints from £ that state that the left
point of an interval is before its right point; that is, we add an arc ¢1,(0,0)ir

for each 7. Finally we compute the shortest distance between all nodes in the
graph using the following definitions for comparison and addition:

(myzy< (n,y) =Em<nV(m=nAz<y)

(m,z) + (n,y) = (m + n, min(z,y))
The result is the minimal network representation of M. An arc appears be-
tween every pair of nodes in the graph, and the inequalities corresponding to
the arcs are the strongest such inequalities implied by M. This procedure
takes O(n®) time.

Binary CSP’s based on the qualitative language £4 have been studied
extensively [Allen, 1983, Ladkin and Madux, 1987, Vilain et al., 1989, van
Beek and Cohen, 1989]. Computing the minimal network representation of a
set of such constraints is NP-Hard. In practice, however, one can approximate
the minimal network by a weaker notion, called n-consistency. While we do not
have space here to discuss the details of n-consistency, we note that the original
presentation of £4 by Allen [83] included an algorithm that computes “3-
consistency” in O(n®) time, and VanBeek [89] studied the improvements to the
approximation likely to be found by computing higher degrees of consistency.
For any fized n, n-consistency can be computed in polynomial time.

Thus we have an efficient and complete algorithm for inference in Ly,
and a number of efficient approximation algorithms for £4. Figure 3 presents
a constraint satisfaction algorithm for the union of the two languages. The
method is to separately compite the minimal network representation of the
metric and Allen constraints; derive new Allen constraints from the metric
network and add these to the Allen network; derive new metric constraints
from the Allen network and add these to the metric network; and repeat this
process until no new statements can be derived. The system answers any query
in L U L4 by examining the appropriate network. The procedure is clearly
correct; but now we must see how to translate Lar to £4 and vice-versa.
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function combined-metric-Allen(M, A) =
input: simple metric network M and simple Allen network A
output: minimal networks M', A’ implied by M U A
repeat
A’ := metric-to-Allen(M)U A
M’ := Allen-to-metric(A") UM
M =M; A=A
until A=A"and M = M’
return M’, A’
end combined-metric-Allen

Figure 1: Inference procedure for Lar U L4.

4 'Translating and Combining Metric and Allen Con-
straints

This section presents the optimal translations between the metric and Allen
constraint languages, and a complexity analysis of the combined inference
algorithm. We begin with the translation from Las to L4. At first impression,
one might think that it is sufficient to convert each metric constraint to the
Allen constraint it implies. For example, from the meaning postulates one can
deduce that '
iL—JL<0DiP+M+O+F~+D7)j

So, if the metric network M contains i1, — j < —3 (which implies the an-
tecedent of the formula), the translation includes i(P + M + O 4+ F™~ + D™7)j.

This approach is correct, but fails to capture all implications in Lps. For
example, suppose M is the following network:

iL—iR < -3
JR—JL <2

The minimal network representation of M has only trivial constraints between
i and j (such as i, — jr < o0), so the approach just outlined fails to infer that
i caunot be during j, because 7 has longer duration than j.

Therefore an optimal translation must consider several metric constraints
at a time; but how many? One might imagine that the problem required an
exponential procedure that checked consistency of every possible Allen con-
straint between two intervals with all of M. Fortunately, this is not necessary:
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function metric-to-Allen(M) =
input: a simple metric constraint network M.
output: the strongest set of simple Allen constraints implied by M.

let M’ be the minimal network representation of M
if M’ is inconsistent then return any inconsistent Allen network
Ay =10
for each pair of intervals ¢, j do
let S be the {ir,ir,JjL,jr} subnet of M’
R:=10
for each primitive Allen relation r do
S':= S U {m|misasimple metric constraint
in the meaning postulate for ¢(r)j }
if S’ is consistent then R := RU {r}
end do
Ay = Ay U {Z(R)]}
enddo
return Ay
end metric-to-Allen

Figure 2: Converting simple metric constraints to simple Allen constraints.

we can compute the strongest set of implied Allen constraints by considering
constraints between just four points (that is, two intervals) at a time. The
algorithm metric-to-Allen appears in Figure 2, and the following theorem
formally states that it is optimal.

Theorem 1 The algorithm metric-to-Allen is correct and entails minimal
loss of information: For any M € Ly and A € Ly, it’s the case that M}=_.A
iff metric-to-Allen(M)|=.A. The algorithm runs in O(n?) time, where n 1s
the number of intervals.

Proof: By theorem 2 of [Dechter et al., 1989}, any consistent and minimal simple metric
network is decomposable. This means that any assignment of values to a set of terms that
satisfies the subnet containing those terms can be extended to a satisfying assignment for
the entire net. Another way of saying this is that if such a subnet has a model, then the net
has a model that agrees with the subnet’s model on the interpretation of the terms in the
subnet.

Note that if two models agree on the interpretations of the terms ir,iR,jL,Jr then
they assign the same truth value to the expression i(r)j where r is any primitive Allen
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relation. From the construction of S’ it is therefore the case that S’ is consistent iff S’ has
a model iff S has a model in which i(r)j holds iff M’ has a model in which i(r); holds.
Since M and M’ are logically equivalent, we see that for any pair of intervals 7 and j,
i(R)j € metric-to-Allen(M) iff for all r € R and no r ¢ R, M has some model in which
i(r)j holds.

To show that the algorithm is correct, suppose that i{(R)j € metric-to-Allen(M).
If this clause were not implied by M, then there would be some model of M in which i
and j stand in an Allen relation not in R. But that is impossible, as stated above. So
M metric-to-Allen(M), and metric-to-Allen(M )=, A implies M=, A.

To show that the algorithm entails minimal loss of information, suppose that M, A.
Because A is a conjunction of statements of the form i(R)j, we can assume without loss of
generality that it is a single such statement. From the operation of the algorithm we see that
there is some R’ such that i(R')j € metric-to-Allen(M). We claim that R’ C R. Suppose
not; then there would be an r € R’ such that r ¢ R. But the former means that there is a
model of M in which i(r)j holds, and the latter means that there is no such model, since in
any particular model only a single Allen relation holds between a pair of intervals. So since
R’ C R means that i(R')j implies i(R)j, it follows that metric-to-Allen(M )k .i(R)j.

The complexity O(n?) follows immediately from the iteration of the outer loop; every-
thing inside takes constant time. =

Next we consider the translation from L4 to Lp. It is not sufficient to
simply replace each Allen predicate with its definition according to the meaning
postulates, because the resulting formula is not necessarily in Lpr. Indeed, we
can show that the problem is inherently intractable:

Theorem 2 Computing the strongest set of simple metric constraints equiva-
lent to a set of simple Allen constraints is NP-Hard.

Proof: Checking the consistency of a set of formulas in £, is NP-Complete, but checking
consistency of formulas in Lps is polynomial. Since the best translation must preserve
consistency, the translation itself must be NP-Hard. =

Suppose, however, we wish to compute the minimal network representation
of a set of simple Allen constraints for other reasons. We can then quickly
compute the strongest set of simple metric constraints implied by that network,
by computing the metric constraints one Allen constraint at a time. Figure
4 presents the algorithm Allen-to-metric that performs this calculation; the
following theorem states that this algorithm is optimal.

Theorem 3 The algorithm Allen-to-met ¢ is correc: :d entails mi~imal
loss of information: For any A € La, M iy, it’s the :se that A, . iff
Allen-to-metric(A)l=.M. The algorithm runs in O(e +n?) time, where e is
the time needed to compute the minimal network representation of the input,
and n is the number of intervals.
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function Allen-to-metric(4) =

input: a simple Allen constraint network A

output: the strongest set of simple metric constraints
implied by A.

let A’ be the minimal network representatlon of A
if A’ is inconsistent then return any inconsistent metric network
- MA = 0
for each pair of intervals 7, 7 do
let R be the (complex) Allen relation such that z(R)] appears in A’
S:={m|misoftheformz~-y<0orz—y<0
and T,y € {iLaiRajLajR} }
for each primitive Allen relation.r in R do
S := 85N {m| mis asimple metric constraint
implied by i(r)j }
end do
. Mg :=MaUS
end do
returnM 4
end Allen-to-metric

* Figure 3: Converting simple Allen constraints to simple metric constraints.

Proof: At the end of the inner loop, it is clear that m € S iff m is a metric constraint
implied by each i(r)j for each r € R; that is, m € S iff m is implied by #(R)j. Since
A, A'k=.i(R)j for each such i(R)j that appears in M, it follows that
Al= LAllen -to-metric(A). Therefore the algorithm is correct: if Allen-to-metric(A)l: M,
then AR .M

To show tha.t the algorithm entails minimal loss of mformatlon suppose that A= M
Because M is conjunction of simple metric ‘constraints, without loss of generality we can
assume it is a single such constraint: ¢ —y < n or z — y < n, where z,y € {iL,ir, jr,jR}
Furthermore, because A is equivalent (using the meaning postulates) to a boolean combi-
nation of difference inequalities containing only the number 0, it is plain that n cannot be
negative; and furthermore, if n is positive, A must also imply the constraint z —y < 0. So
without loss of generality we can also assume that M is of the formz -y < 0 orz—y<0.

At the start of the loop in which the algorithm selects the pair of intervals (7, j) the
variable S contains M, and we claim that S must still contain M at the conclusion of the
inner loop. Suppose not; then there is some r € R such that i(r)j has a model M in which
M does not hold. But because i(R)j € A’ and A’ is the minimal network representation of
A, it must be the case the A has a model that agrees with M on the interpretations of #
and j. Therefore A has a model that falsifies M, so A cannot imply M after all.
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The complexity O(e + n?) follows immediately from the iteration of the outer loop;
everything inside takes constant time. m

Finally we turn to an analysis of the algorithm combined-metric-Allen.
What is its computational complexity? The answer depends on how many
times the algorithm iterates between the two networks. Because each iteration
must strengthen at least one simple Allen constraint (which can only be done
13 times per constraint), in the worst case the number is linear in the maximum
size of the Allen network (or O(n?) in the number of intervals). In fact, this
is its lower bound, as well: we have discovered a class of temporal reasoning
problems that shows that the maximum number of iterations does indeed grow
with the size of the constraint set [Kautz and Ladkin, 1991].

Theorem 4 The algorithm combined-metric-Allen is correct: :

M U Ak, combined-metric-Allen(M, A).. The algorithm terminates in
O(n?(e 4 n®)) time, where n is the number of intervals that appear in M U A,
and e is the time required to compute the minimum network representation of

A.

The question of whether combined-metric-Allen is a complete inference
procedure for the language Lar'U L4 remains open. We are currently investi-
gating whether the algorithm detects all inconsistent networks, and whether
it always computes the minimal network representation in Lps U L4.

5 Conclusions

The framework presented in this paper unifies the great body of research in
Al on metric and qualitative temporal reasoning. We demonstrated that both
STCSP’s and Allen’s temporal. calculus can be viewed as sublanguages of a
simple yet powerful temporal logic. We provided algorithms that translate
between the languages with a minimal loss of information. Along the way
we generalized known techniques for dealing with non-strict linear inequalities
to handle strict inequalities as well. Finally, we showed how the translations
can be used to combine two well-understood constraint-satisfaction procedures
into one for the union of the two languages.
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Problems in temporal constraint satisfaction arise in a system with interacting elements, where tem-
poral constraints exist (1) between distinct events, (2) on the truth or falsehood of states or partial
states, and (3) on responses to external inputs in terms of deadlines. The availability of a causal model
or a model-based representation for such a system can provide significant aid in understanding its
dynamic behavior and in formulating the mathematical forms of associated temporal constraint satis-
faction problems. This is particularly so when the causal model can also serve as a system specifica-
tion in which logical and temporal properties of systems can be verified formally. A “hierarchical
multi-state (HMS) machine” consists of a high-level automaton that is integrated with a temporal
interval logic called TIL to provide a unified framework for specification, verification and reasoning
for real-time systems. In this paper, an overview of the methodology for addressing very general
temporal constraint satisfaction problems arising from the use of HMS machines as causal models of
dynamic systems is presented. Specifically, a symbolic execution method is presented for creating
schedules for sequential or partially-ordered plans to satisfy complex sets of temporal constraints.
Given the HMS machine model of a system and a plan, the method derives the set of mathematical
inequalities that potential schedules for the plan must satisfy.

4

1. Introduction

An executable formal specification of a real-time system can serve as a causal model in which various
problems relating to verification of logical and temporal properties can be investigated. Such formal
specifications are usually deterministic structures in which responses to all actions are defined pre-
cisely. Nondeterministic actions in specifications merely denote alternative actions, all of which are
acceptable. Temporal constraint satisfaction, on the other hand, arises in situations where a system is
underspecified, while its global behavior is constrained in terms of a set of temporal constraints. Thus,
in order to apply a causal model to problems of temporal constraint satisfaction, a truly nondeter-
ministic model of behavior is required, in which not all behaviors are necessarily acceptable.

The concept of “hierarchical multi-state (HMS) machine” provides a unified framework for specifica-
tion, verification and reasoning for real-time systems based on the integration of high-level automata
and a temporal logic [5], [4], [6], [3], [2], [7] and [8]. The underlying automaton model of HMS ma-
chines reduces the state space by orders of magnitude compared totraditional automata, with explicit
. modeling of concurrency at different granularities of time. This offers a rich formalism for defining
conditional behavior and causal interactions among events and states in both the forward and back-
ward direction. In the forward direction, the past and the present determine the current set of actions.
In the backward direction, the future determines the course of present actions. The latter situation
can arise in modeling intentionality or in incomplete causal models in which details are omitted.

¥ This work was supported in part by the Office of Naval Research under Contract N00014-89-C-0022.
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In HMS machines, nondeterminism is used as a key method for modeling abstraction and gerieraliza-

- tion. A nondeterministic HMS machine defines a “class” of behaviors. These are instantiated and

constrained in terms of higher-level “policy” HMS machines that define dynamic goals and heuristic
guidelines for achieving them. Within this framework, planning is accomplished by searching through
nondeterministic transitions to determine paths that satisfy both high-level and low-level constraints.
A “schedule” for a plan is then defined in terms of delays between adjacent sets of parallei actions.
Our purpose here is to indicate how, given such a representation scheme, very general temporal con-
straint satisfaction problems can be solved by the analysis of HMS-based causal models of real-time
systems. ‘

In relating to previous work on temporal constraint satisfaction, we note two differences with [1].
First, in [1] it is assumed that the mathematical formulation of temporal constraints is given and the
emphasis is on the development of efficient solution techniques. In contrast, we address the comple-
mentary issue of deniving the necessary mathematical constraints from the underlying model of the
system under consideration. Secondly, only sets of constraints of the form

(a1 < X-Xij< by)v..v(an <XXi < bp)
are considered in [1]. In our formulation, much more general types of constraints can be derived.

In Section 2 we provide a very brief overview of HMS machines and in Section 3 we present the outline
of our scheduling method for temporal constraint satisfaction. Details can be found in the references.

2. Overview of HMS Machines

Both in real-time systems theory and in artificial intelligence studies, various formalisms for specifi-
cation and modeling of real-time systems have been proposed. However, since the goal of systems
theory and Al are rather different, very little effort has been made in integrating such efforts. Hierar-
chical multi-state (HMS) machines provide a rich framework for specification, verification and rea-
soning for real-time systems that can be a vehicle for bridging this gap. In the simplest version, an
HMS machine is an automaton in which (1) a state can be hierarchically or recursively expanded into
an HMS machine itself, (2) multiple states can be active, (3) multiple transitions can fire simultaneous-
ly, and (3) transitions are controlled by predicates in a propositional temporal interval logic called
TIL. This provides a formal and visual formalism for representing causal interactions among the ele-
ments of a complex real-time system in a natural manner. In addition, it overcomes the inability of
pure propositional temporal logic in expressing some simple regular properties such as “state A willbe
true every 5 moments in the future.”

HMS machines can be used to define the dynamic behavior of complex real-time systems at various
levels of abstraction. Such a representation can be verified for correctness using either correctness-
preserving transformation techniques [2] or model checking [7], [4]. Using probabilistic extensions,
planning and situation understanding can also be studied under a wide set of uncertainty conditions.
Other extensions of HMS machines include algebraic machines in which multiple entities (agents, re-
sources, etc.) can be modeled explicitly, continuous time machines and asynchronous composition of
machines with different clock rates.
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3. Temporal Constraint Satisfaction of HMS Plans

Problems of temporal constraint satisfaction arise in a nondeterministic HMS machine in attempting
to search for a “plan” that satisfies both a global goal and all the local logical and temporal constraints
defined on transitions in the language TIL. A sequential planp = g; g; ... gn in our formalism consists
of a sequence of sets of transitions, where each set g; of transitions is assumed to be fired simultaneous-
ly. Anexample ofa partially ordered planis p = (g1 ((2223) | | (2485 &))), Where g1 can be considered
as the root of a tree with two branches, one containing the sequential plan g; g3 and the other contain-
ing the sequential plan g4 g5 g6.

In our approach, we assume a separation between planning and scheduling, with planning being con-
cerned with deriving a plan of non-empty sets of transitions that, ignoring local constraints, can lead a
machine from an initial set of states to a desired set of states. Scheduling, on the other hand, is con-
cerned with defining delays between adjacent steps of a plan that allow local constraints to be satisfied.
We illustrate our method by considering a simple sequential plan for the HMS machine of Figure 3.1.
In this figure, rectangles represent states, dark arrows represent transitions (with * indicating nonde-
terminism) and thin arrows from states to transitions define “controls” on transitions, with temporal
constraints indicated next to encircled T’s. Thus, there are no constraints on the transition y, while
there are three constraints on the transitionx: (1) state A must have been true in the interval [-2, 0], C
must have been true in [-3, -2], and (3) D must have been true in [-1, 0]. Here we assume a discrete
model of time with 0 indicating the current moment and for each interval the end-points are included.
Assuming that the state A and C were true originally, we wish to find a plan consisting of a sequence of
transitions and delays that will cause the state B to be true. Note that in TIL [t3, t3] and <ty, t;> are
interval-based generalizations of the temporal logic operators O (“always”) and ¢ (“sometime”).

[-2, 0}

Figure 3.1. A Simple HMS Machine Example for Temporal Constraint Satisfaction

Formally, we represent by p’ = yx the “potential plan” for achieving our goal. This could be derived by
a search process or using heuristic knowledge. To determine the schedule for p’ to satisfy the local
constraints, we define the following “variable delay plan”

p=o¢ydix

where ¢ stands for a no action or “wait,” so that the plan p consists of waiting i moments, firing the
nondeterministic transition y, waiting j moments and finally firing the nondeterministic transition x.
Our goal is to find a solution to the parametric delays in p that satisfies the three temporal constraints
onx. Our solution method is based on a symbolic execution of the plan p to determine parametric facts
that must be true during the execution of p. Thus, e.g., after waiting i moments and firing y, we can
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assert [-i-1, 0JA A [-i-1,-1]JC AD A -C. Continuing in this manner, we derive the parametric facts that
will be true just before executing the transition x. By comparing with the controls that x must satisfy, we
derive the following set of inequalities: '

-l g2, -l <-3, Sl -2, AL
By solving these inequalities, we obtain the generic solution
p = ¢l >0 y ¢ X.

Thus, to accomplish our goal, we can wait one or more moments, execute y, wait exactly one more
moment and then execute x. Such a sequence will satisfy all the local temporal constraints and achieve
the global objective of reaching state B. A larger example with details of the method appears in [6].

Our temporal constraint satisfaction has been generalized both to partially ordered plans and to the
continuous time case. Thus, a very general model-based framework is provided for defining causal
models of complex real-time systems through which temporal constraint satisfaction problems can be
investigated in a systematic manner. ,
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1. INTRODUCTION

This paper describes research leading to a modification of the constraint propagation algorithm
for applications involving qualitative reasoning about temporal intervals, as defined by James
Allen [1]. The work is part of a plan to formally represent the idea of events whose occurrences
contain gaps in time. The basic representation mechanism involves countenancing the notion of
a collection of (union of [4]) convex (gapless) intervals. The need for an efficient representation
of binary temporal relations between these structured objects has led to introducing matrices
of binary convex temporal relations. The values of these matrices depict relations among the
subintervals of the collections of intervals. The result is a system for solving constraint satisfaction
problems involving unions of convex intervals and matrix-valued binary relations between them.
An evaluation of the complexity of a constraint propagation algorithm for a network of matrix-
valued binary relations shows an expected increase in runtime; however, the benefits of the matrix
approach include a more structured knowledge base, which ma.y improve the performance of the
constraint problem solving mechanism.

2. BACKGROUND

James Allen’s interval-based representation of time has been an influential approach to repre-
senting qualitative temporal information. The atoms of this calculus is a set of thirteen primitive
binary temporal relations on convex intervals, consisting of during (d), precedes (p), starts (s),
finishes (f), overlaps (o), meets (m), equals (=), and their converses, preceded by (), etc. (The
“converse” of a relation R between i and j is the corresponding temporal relation between j and
i; thus “after” is the converse of “before”, etc.) A “composition table” (Allen, (1], not reprinted
here), allows for the deduction of relations between arbitrary pairs of intervals x and 2z, based
on known relations between x and another interval y, and between y and z. This inferencing is
commonly known as “composing” two relations.

Allen’s system is amenable to constraint satisfaction techniques for finding solutions to plan-
ning and scheduling problems (Mackworth,[7], Mackworth and Freuder, [8], Dechter and Pearl,
[2]). In temporal reasoning applications, the nodes of interval constraint networks contain tempo-
ral interval values, and the arcs consist of vectors (sets) of binary temporal relations between the
nodes. The temporal constraint satisfaction algorithm used by Allen [1] (Figure 1) operates on a
network of convex intervals and their relations by propagating the effects of updating the tempo-
ral knowledge (binary relations) between two convex intervals to the entire network. Knowledge
is updated by reducing the set of possible temporal relations between two intervals. Updating
is performed by indexing the transitivity table to find the set S of constraints between X and
Z, given the X-Y and Y-Z constraints, and then intersecting S with the old value for the set of
constraints between X and Z (if one exists). If the intersection contains one element, then the
temporal relation between X and Z has been uniquely determined; if the intersection is empty,
the network has been shown to be inconsistent.
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Procedure Propagate(l,;)
begin
for each 1nterva1 k in Intervals do
begin
temp := Tablel[i,k] + (Tableli, j1 = Tablelj, k])
if Temp = {} then Signal Contradiction; ,
if Table[i,k] <> Temp then Place pair <i,k> on Queue;
Table[i,k] := Temp;
Temp := Tablel[k,j] + (Tablel[k,il * Table[i, j])-
If Temp = {} then Signal Contradiction;
If Tablel[k,j] <> Temp then Place pair <k,j> on Queue,
Table[k,j] := Temp;
end; .
end;

V Figure 1. Constraint Propagation Algorithm

It has been shown (Villain et. al.,[14]) that this propagation algorithm runs in cubic time. As
the number of intervals in the network grows, this speed becomes intolerable. Furthermore, as
Allen himself noted, the algorithm is incomplete; i.e., it does not always find all the constraints
implied by a given network. Complete versions of this algorithm run in exponential time, leading
to a proof (Villain et. al, [14]) that the problem of computing network closure is NP-complete.

A number of attempts have been made by Allen and others to improve this situation in
various ways (e.g., [3]). For example, restructuring the constraint knowledge base to make it
more hierarchical makes its navigation more efficient. The work presented here is in the spirit of
these attempts at making networks more navigable. Later, we discuss informally how the use of
matrices could lead to efficient techniques to determine constraint network consistency.

3. UNIONS OF CONVEX INTERVALS '

A number of researchers have recently recognized the need for defining a reference structure
for non-convex intervals [4], [6]. In particular, Peter Ladkin (Ladkin, [4]) has defined a taxonomy
of binary relations between intervals with gaps. Intervals with gaps are useful in two distinct
referring contexts. First, these to describe tasks and events which correspond to a recurring time
period, such as described by the the referring expressions Mondays, Weekly Faculty Meetings, etc.
Secondly, collections of convex intervals seem to be involved when referring to a single event that
is interrupted or suspended in time, and later resumed, e.g., as suggested by the meaning of the
sentence “My trip to Orlando was interrupted three times”.

In visual terms, such contexts suggest extending the domain of discourse to 1nc1ude not just
convex intervals, e.g.:

with endpoints ts and te, but also to allow for bundles of convex intervals containing “gaps”:

113



Our claim is that removing the convexity constraint from the characterization of intervals results
in a useful way of representing certain types of temporal information that is d1fﬁcu1t or impossible
to represent assuming convexity. -

More formally, in a convex interval-based approach, an interval is represented by an ordered
pair (7, j) of time units such that i < j. What we call, after Ladkin, a union of convez intervals, is
a special kind of set of convex intervals, viz. a set where the m th j element is less than the m+1
th ith element: {{im,jm):1 < m < k&(Vn)(1 £ n <k — j, < tp41}. where “<” and “<” denote
temporal precedence. Actually, unions of convex intervals are sequences of convex intervals, in
that it is assumed that there are functions which extract the first, last, and, in general, the ith
subinterval of the collection.

Unions of convex intervals possess an internal structure that is not present in convex intervals.
This internal structure allows for a distinction between two kinds of relation that hold between
pairs of them, which we designate as ezternal and internal relations. The following example
illustrates each of them. _ _

Let S1 and S2 be two unions of convex intervals defined as follows :

----- I P B B s IRTT T Bl
bl el b2 e2 b3 ed bn en

51

32

Informally, the external relation between S1 and S2 is the relation between the two convex intervals
< bl,en > and < Bl,Em >. The external relation is important when the interest iz strictly
on the boundary relations between two unions of convex intervals (e.g., it may be of interest
only that S1 is started by S2). By contrast, an internal binary relation is a binary relation
between a convex subinterval in S1 and a convex subinterval in S2 or visa versa. Obviously, if
S1 has n subintervals and S2 has m, then there are 2nm internal relations between S1 and S2.
Elsewhere [11] we have shown how to extract the external binary relations between unions of
convex intervals by considering their “boundary subinterval relations”, e.g., the relations between
subintervals < b1,el > of S1 and < Bl1,Fl1 > of S2, and similarly between < bn,en > and
< Bm, Em >.

The internal and external binary relations among intervals i and j with gaps are to be found
by a pair-wise examination »f all the binary relations among i’'s and j’s subintervals. To bind
these pairwise relations together in a common data structure, a matrix notation can be used.
The rows of the matrix are the subintervals of i and the columns the subintervals of j. Let My,
be the internal relation between subinterval k of i and 1 of j, for each pair of subintervals of i and
j. For example, consider the following pair of intervals:
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The matrix of internal relations between I1 and I2 is the following:

§ m p
p d p
M.=~~~
p o f
p P D

Thus, for example, the relation between the third subinterval of I1 in the figure above and the
second subinterval of 12 is found by referencing M3, = 6.

This representation can be viewed as analogous to the use of matrices of numbers to depict
the coefficients of terms in a set of linear equations. In this case, the corresponding expression
of which the matrix is a representation is a first-order predicate calculus expression of the form:
Py (21, 1), Pra(®1,¥2)s s Paa (2 1), -y Prm(Tn, Ym), Where each P;; represents a set of binary
relations among Allen’s thirteen atoms, and for each pair z;, Tiy1 (¥j, Yj+1), 1 < %( 7) < m(n), the
relation between these pairs is precedes. Each matrix is, thus, a constraint network, but one of a
special kind, characteristic of relations among collections of convex intervals which are (possibly
gapped) subintervals of larger intervals. ,

4. CONSTRAINT REASONING WITH UNIONS OF CONVEX INTERVALS

As noted earlier, there are two distinct reasons for offering an extension to Allen‘s convex
interval calculus to include collections of convex intervals. First, it seems to provide a more
natural representation of the referring mechanism for temporal intervals, and second it seems to
fit into the spirit of recent attempts to improve the cubic time and quadratic space requirements
of Allen’s original approach. In particular, combining convex intervals together into a union of
convex intervals captures much of the content of the concept of a reference interval [1], since a
union of convex interval is a collection of semantically related subintervals. Unlike Allen’s reference
interval idea, our approach allows for an explicit representation, in terms of matrices, of binary
relations between collections of subintervals within a constraint network. In this repreSentation,,
there is a reduction of the space requirements (since the order of the subintervals are represented
by the position of the subinterval in the matrix, and not by an arc), without a loss of information.

We have extended Allen’s definition of relation composition to accommodate the new matrix
representation of binary relations. This extension allows for an application of the constraint

4 propagation techniques described earlier in this paper to a network of gapped intervals and binary

relations between them.
The composition method we propose is a generalization of the method of composition proposed

by Allen for convex intervals. Given two interval matrices P™™ and R™* of dimensions n*m and
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m * k respectively, represented as follows:

Pl,l P1,2 P13 le

L}

P2,1 P2'2 P23 P2m

P — : " 9y H
Pn,l Pn,z Pn,3 Pn,m
Rl ,1 Rl ;2 Rl 3 e Rl &
R _ R2,1 R2,2 R2,3 eee Rg'k

R-m,l Rm,2 Rm,B Rm,k
the composition operation results in a matrix Po R comprising the following;:

Qui Qi Qs . Qu

Q=POR= Q2,l, Q2,2 Q2,3 Q2,k

Q;l,l Qn,Z Q.n,3 Qn,k

where Q;; = N2, Piy o Ri ;. (This composition operation is similar the operation defined in the
binary constraint networks of Ladkin (Ladkin and Maddux, [5]) for solving CSPs (also Maddux,
[9])). The resulting matrix contains vectors (sets) of atomic binary relations representing con-
straints between pairs of subintervals of the two unions of convex intervals. As before, composing
two matrices represents a single act of qualitative reasoning about intervals; the only difference
is that the intervals are allowed to contain gaps.

As mentioned, this definition of composition leads directly to a modlﬁca.tlon of the constraint
propagation technique for reasoning with collections of intervals. Recall that binary constraints
are depicted as vectors of relations between convex intervals. Given two matrices, M*! and M?,
we define M + M? as follows: let M, be the vector of binary relations between subintervals i
and j of two unions of convex 1ntervals T and J constrained by M™. Then M! + M? is the matrix
which results from performing vector additions M}; + M?;, for all i, and j in M* and M?. (Matrix
addition is always between 2 matrices of the same dimensions, and the result is a matrix formed
by intersecting the corresponding values at each position). Matrix multlphcatmn corresponds to
the matrix composition operation defined above.

With these operations defined, we can now apply the constraint propagation algorithm (Figure
1) directly to a network of unions of convex intzcvals. In this case, Table[i,j] will consist of a matrix
of binary relations between unions of convex intervals i and j. For example, consider the following
constraint network:

A |B |C
A | MO | M1 | M2
B | M4 | MO | M3
C | M5 | M6 | MO
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where MO is the matrix where all its elements are the equality relation, and the other values are
defined as follows: o

M4 = INV M1
M5 = INV M2
M6 = INV M3

The inverse of a matrix M of dimension m * n, INV M., = M/, where for each element m; ; in
M', m; = ni;;, m;;in M. Again, each of the Mi represents constraints between pairs of unions of
convex intervals from a network of three unions of convex intervals, A, B and C. For example, M2
represents the matrix of constraints between unions of convex intervals A and C, each containing
two convex subintervals. M2 says that subinterval 1 of A must either be preceded by or met by
subinterval 1 of C, and must either overlap, precede, or meet subinterval 2 of C (and so on for
each of the other values of M2). _ -

_ Suppose now that the constraint network is updated by adding a binary constraint between
A and C, expressed as the following matrix: '

The effects of revising the constraint network based upon this addition can be summarized as
follows:

A B C
A | MO | M1 | M2’
B | M4’ | MO | M3’
C | M5 | M6 | MO
where

Mll_ fjﬁl o p
p pom o
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p dos
df p
M3=|p o
p d
M4’ = INV M1’
M5 = INV M2’
M6’ = INV M3

5. PERFORMANCE AND IMPROVEMENTS

Although the propagation algorithm, as modified to perform updates on matrix-valued con-
straints, becomes more complex, the network on which it operates becomes smaller than it would
have been if all the subintervals of a union of convex intervals had been depicted as s=parate
nodes. Instead, qualitative temporal information about gapped reference intervals is compressed
within the matrix.

Assuming, for the sake of simplicity, that the constraint matrices are all square (m * m) in
size, and that the network contains k unions of convex intervals, it can be shown that the runtime
of the algorithm is still in polynomial range, specifically, O(k3(m?)). The reasoning is as follows
[13]. The procedure propagate is called O(k?) times to compute closure. That is, a total of O(k?)
pairs of unions of convex intervals (i, j) can appear on Queue. Each value of the constraint matrix
can change at most 13 times, and there are m? of these; hence, each pair (¢, ;) can appear at
most O(13m?) times on Queue. For each Queue element, the amount of processing required for
the constraint network is O(k(m? + m3)). Thus, the total cost to obtain closure for a network of
gapped intervals and matrix relations is O(k?(13m?)k(m? + m3)), which is O(k3(m?®)).

An advantage of the compressed network of unions of convex intervals over the full network of
convex intervals is in the ability to efficiently examine the matrices to discern patterns of relations
which any consistent matrix must exemplify. Fast algorithms for verifying matrix consistency can
be employed as a preprocessing stage in the solving of constraint reasoning problems. For example,
let us consider the case of a completely determined matrix (one we shall call an atomic matrix),
which is one all of whose values consist of a single element from one of Allen’s thirteen atoms
(this set we call U). We can say that, in general, a consistent matrix will contain rows each one of
which will consist of 0 or more instances of the relation p followed by 0 or more occurrences of any
relation in the set U — {p, p} followed by 0 or more occurrences of p. Furthermore, the number
of occurrences of p in each row cannot decrease as the row index increases. Correspondingly,
the number of occurrence of § cannot increase as the row index increases. Consequently, rules
regarding the patterns of a consistent matrix can be defined as being comprised of three regions
of binary relations: the left triangular p region, the middle U — {p, p} region, and the right p
region. More graphically, each matrix must have the following pattern:
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p \ U-{p, p} \ “p |
region \ region \ region |

Future research will include the development and formulation of a complete collection of rules
for consistent matrices of binary temporal relations, which can be used in the construction of
improved algorithms for solving constraint problems. In addition, it should be possible to find a
way of “reducing” matrices into more space efficient formats based on the canonical patterns for
consistent matrices just described. :

6. SUMMARY
This paper has introduced an approach to constraint temporal reasoning based on unions of

convex intervals and binary constraints between them, implemented as matrices of convex binary
relations. Such an extension to James Allen‘s framework can be viewed as an implementation of
his notion of a reference interval. A constraint propagation algorithm for networks of matrices of
temporal relations was described. Finally, an informal discussion of ways of improving the runtime
performance of propagation was presented, based on rules for identifying consistent matrices of
temporal relations.
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1 Overview

ACP is a fully implemented constraint propagation sys-
tem that computes numeric intervals for variables [Davis,
1987] along with an ATMS label [de Kleer, 1986a] for
each such interval. The system is built within a “fo-
cused” ATMS architecture [de Kleer and Williams, 1986,
Forbus and de Kleer, 1988, Dressler and Farquhar, 1989)
and incorporates the following ideas to improve effi-
ciency:

e Since variable values are intervals, some derived
variable values may subsume more specific (super-
set) interval values. Variable values that are sub-
sumed are marked as inactive via a simple and
general extension to ATMS justifications. Other
systems that maintain dependencies while inferring
interval labels either use non-monotonic reasoning
[Simmons, 1986, Williams, 1989] or incorporate the
semantics of numeric intervals into the ATMS itself
[Dague et al., 1990).

¢ Solving a constraint for a variable already solved for
can cause redundant computation of variable bind-
ings and unnecessary dependencies [Sussman and
Steele, 1980, de Kleer, 1986b]. ACP deals with this
problem by caching with each variable binding not
only its ATMS label, but also the variable bindings
that must also be present in any supporting envi-
ronment. .

o The user of the constraint system may know that
certain solution paths for deriving variable bindings
are uninteresting. A unary “protect” operator is
incorporated into the constraint language to allow
the user to advise ACP to prune such derivation
paths.

2 Motivation

ACP is part of the model-based financial reasoning sys-
tem CROSBY [Hamscher, 1990]. Financial reasoning
has long been recognized as an appropriate domain
for constraint-based representation and reasoning ap-
proaches [Bouwman, 1983, Reboh and Risch, 1986, Apte
and Hong, 1986, Lassez et al., 1987, Dhar et al., 1988,
Dhar and Croker, 1988, Peters, 1989]. For the most
part CROSBY uses ACP in the traditional way: to de-
termine the consistency of sets of variable bindings, and

to compute values for unknown variables. For example,
CROSBY might have a constraint such as

"~ Days.Sales.in.Inventory =

30x Monthly.Cost.of.Goods.Sold
Average.Inventory

Given the values Average.Inventory € (199,201) and
Cost.of.Goods.Sold € (19,21), ACP would compute
Days.Sales.in.Inventory € (2.84,3.02). Had the fact
that Days.Sales.in.Inventory € (3.5,3.75) been previ-
ously recorded, a conflict would now be recorded.

For the purposes of this paper, all the reader need
know about CROSBY is that it must construct, manip-
ulate, and compare dozens to hundreds of combinations
of underlying assumptions about the ranges of variables!
This motivates the need for recording the combinations
of underlying assumptions on which each variable value
depends, which in turn motivates the use of an ATMS ar-
chitecture to record such information. Although there is;
extensive literature on the interval propagation aspects
of the problem, little of the work addresses the difficul!
ties that arise when dependencies must be recorded for
the many intermediate results. The poor performance of
the obvious implementation strategy motivates the ideas
discussed below.

3 Syntax and Semantics

ACP uses standard notation as reviewed here: [1,2) de-
notes {z : 1 < z < 2}, (—00,0) denotes {z : z < 0}, and
[42, +00) denotes {z:42 < z}. The symbols +oco and
—o0 are used only to denote the absence of upper and
lower bounds; they cannot themselves be represented
as intervals. Intervals may not appear as lower or up-
per bounds of other intervals, that is, [0, (10,20)] is ill
formed. (,) denotes the empty set.

All standard binary arithmetic operators are sup-
ported, with the result of evaluation being the small-
est interval that contains all possible results of apply-
ing the operator pointwise [Davis, 1987]. For example,
[1,2) + (1,2] evaluates to (2,4). (1,2)/[0,1) evaluates
to (1;400), with the semicolon replacing the comma to
denote an interval that includes the undefined result of
division by zero.

All binary relations r evaluate to one of the constant
symbols T ot F, obeying the following rule for intervals
I, and I»:

Lrhedny:zryAzeliAyel
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Corollary special cases include Vz z r (=00, +00),
which evaluates to T, and Vz : z r
to F.

Interval-valued variables can appear in expressions
and hence in the result of evaluations, for example, evalu-
ating the expression ([1,2] = [2,4] +c¢) yields ¢ = [-3,0].
Appealing to the above rule for binary relations, ¢ =
[—3,0] can be understood to mean ¢ € [-3,0].

ACP has a unary “protect” operator, denoted
Hence in the expression (a = !(b + ¢)) with a, b, and
¢ being variables, b and ¢ are said to be protected. The
effect of protection is that evaluating any expression, all
of whose variables are protected, yields T. For example,
evaluating ([1,2] = [2,4]+!c) yields T. The benefit of
this operator is that the ACP user can advise the system
not to ever waste effort trying to solve for certain vari-
ables. For example, CROSBY constructs linear regres-
sion equations of the form y = apzo + ... + anzn + B,
with a; and @ denoting constants. In this context it
makes no sense to try to use the dependent variable y
to solve for any of the n independent z; variables. Pro-
tecting the z; variables is a simple, local, modular way
to prevent ACP from doing so, as will be seen below.

“'”

4 Recording Dependencies

Recording dependencies and managing multiple contexts
complicates interval propagation considerably, because
what appear to be intermediate results must be stored
permanently, but should not always be used to trigger
further inferences. To illustrate this,.consider the follow-
ing example. Node ng expresses the relation (a = b+c¢),
true in the empty ATMS environment {}:

ng: (a=b+c) {}

Nodes n; and ny bind the variables b and ¢, respectively,
under the assumptions named B and C'

ni: (b=(6,9)  {B}
ny: (c =(10,11)) {C}

- Constraint propagation yields a value for a, creating
node ng3, justified by justification ji:

n3 < Ng, M, N

i
nz: (a=(16, 20)) {B,C}

(In a naive implementation, the system might at this
point try to derive values for b or ¢ using the new value
of a; this is an instance of “reflection” and ACP’s method
for preventing it will be discussed in the next section.)

A query for the value of @ in the environment {B,C}
would now return node n3. Suppose we get a new value
for a under assumption A, denoted by node ng:

ny: (a=(17,19)) {A}

Since this value of a is a subset of the mterval for a
derived earlier, a new justification is required for ng, with
a resulting change to the label of nj:

ng — N4

11: (a =(16,20)) {B,C}{A} Label update

Note that the less specific interval (16,20) for a will al-
ways need to be kept around. A query for the value of

(,) which evaluates .

a in the environment {B,C} would still return node ns,
but a query in environment {A} should only return node
n4, even though ng is true as well. “Shadowing” justifi-
cations are introduced to provide this functionality.

A shadowing justification obeys the normal (horn
clause) semantics, that is, the consequent is true in any
environment in which all its antecedents are true. This
criterion results in updates to the environment labels,
with only minimal environments being stored in any
node label L(N) [de Kleer, 1986a). However, all nodes
also have a “shadow label.” Any node supported by
a shadowing justification in environment E also has F
added to its shadow label S(N), obeying the usual min-
imality convention. ACP distinguishes between nodes
being true in an environment, and active in an environ-
ment with respect to queries a.nd with respect to making
inferences:

Nistruein £ ~ 3IE, GL(N) E,.CE

N is activein E —~ 3E, € L(N) :En CE
A-3E, € S(N):E,CE

- Intuitively, shadowing environments make the node in-

visible in all their superset environments. A node shad-
owed in the empty environment {} would be true in all
environments, but no inferences would be made from it.
In the example above, j2 would be a shadowing jus-
tification, since in any environment in which ny is true,
n3 should be ignored. Shadowing justifications will be
"denoted by < and the shadow label as that label ap-
pearing to the right of a “\” character. Note that any
environment appearing in the shadow label must also
be a superset of some environment in the normal label.
However, for compactness of notation in this paper, en-
vironments that appear in both the normal and shadow
label will only be shown to the right of the “\” charac-
ter. In the example below, the reader should understand
that the normal label of nj is actually {B,C} {A}:

Jo: nz<ng
ng: (a= (16 20)) {B,C}\{A} Label update

Since any number of different interval values for a vari-
‘able can be created in any order, it is in principle possible
for O(n?) shadowing Justlﬁcamons to be installed for a
variable with n bindings. However, no node ever need be

. supported by more than one shadowing justification, so

some of these shadowing justifications could be deleted.

" For example, suppose three nodes nq1, n102, and n103
are created. The sequence of new _]ustlﬁcatlons and envi-
ronment propagations illustrates that after jjo2 and jio3
are created, ji1o; can be deleted:

‘N1 T= [0, 10] {X].}
nz: T = [4,6]  {X2}
Jiol © Mio1 < No2

nior: z=[0,10] {X 13\ {X2} Label update

ni3: T= [2 ] { 3} New node
RO '
Nioz: = [4 6] {XS} \ {X2} Label update

Jros:
npr: == [0 10] {Xl} \ {X2}{X3} Label update
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ACP attempts to minimize the number of justifications
created by deleting each shadowing justification that is
no longer needed. Although deleting justifications is not
a normal operation for an ATMS since it can lead to
incorrect labelings, this special case guarantees that all
environment labels remain the same as if the deletion had
not taken place. Since the justifications were redundant,
an efficiency advantage accrues from not recomputing
the labels as more environments are added.

Having defined the distinction between nodes being
true versus being active, we now turn to methods for
controlling propagation inferences.

5 Propagation

ACP propagates interval values for variables using “con- '

sumers” [de Kleer, 1986b]. A consumer is essentially a
closure stored with a set of nodes; it runs exactly once
with those nodes as its arguments the first time they
all become true. Normally, a consumer creates a new
node and justification whose antecedents are the nodes
whose activation triggered it. ACP is built using a fo-
cused ATMS that maintains a single consistent focus en-
vironment and only activates consumers to run on nodes
that are true in that focus environment. ACP takes this
a focusing notion step further, running consumers only
on nodes that are active.

The propagation mechanism of ACP distinguishes be-
tween constraints and bindings. A binding is type of
constraint in which only one variable and one interval
or constant appears. For example, ng : (a = b+c) is
a constraint and n; : (b = (6,9)) and na : (@ = 2)
are bindings. Propagation of a constraint node works as
shown in the procedure below. For simplicity, the exam-
ple below shows variables bound only to integers, rather
than to intervals as would be done in ACP:

1. When a constraint node becomes active, install con-
sumers to trigger propagation on each of the vari-
ables that appear in the constraint. For example,
when ng : (@ = b+ ¢) becomes active, consumers
will be installed for variables a, b, and c.

2. When a binding node for a variable becomes active,
run each of its consumers; each consumer will sub-
stitute the current binding into the constraint and
evaluate it. For example, when n; : b = (6,9) be-
comes active, the constraint ng : (@ = b+ ¢) will
be evaluated given n;, to produce a new constraint

a=(6,9)+c.

3. The result of the evaluation in step 2 will fall into
one of four cases:

(a) The constant F. For example, if (a *b = 7)
and a = 0, evaluation returns F. Create a jus-
tification for the distinguished node L from the
current antecedent nodes, which will result in
an ATMS conflict.

(b) The constant 7. For example, if (a*b = 0) and
a = 0 then the evaluation will return T. Do
nothing.

(For another example, if a =2 and a = !(b+c¢)

the evaluation returns T', because all the vari-
ables in 2 = (b + ¢) are protected.)

(c) A binding. For example, if a = 2 and a .=
b+ 2 then evaluation returns the binding b = 0.
Create a new node containing the binding and
justify it with the current antecedents.

(d) A constraint. For example, if a = 2 and a =
b+ ¢ then evaluation returns 2 = b+c. Go back
to step 1 above for the new constraint.

5.1 Solution Trees

The propagation procedure above is straightforward but
would in general result in unnecessary work. For one
thing, the system is trying to bind all the variables in
a = b + ¢ simultaneously, and given b = 2 and ¢ = 2,
would derive a = 4 in two different ways. The variables
should only be bound in some global strict order (alpha-
betic, for example) to prevent this. On the other hand,
any subexpression that contains operators with idempo-
tent elements does not always require all its variables to
be bound before being reduce to a binding; for example,
the constraint @ = b * ¢, evaluated with ¢ = 0, should
immediately yield a = 0, instead of waiting for a value
for b. Finally, since some variables are protected, we can
guarantee that certain sequences of bindings and evalu-
ations will never yield any new bindings. Although rela-
tively minor from a purely constraint processing point of
view, these are all genuine concerns in ACP because the
computational overhead of creating new nodes, justifica-
tions, and consumers far outweighs the work involved in
actually evaluating the constraints and performing the
associated arithmetic operations.

Whenever a new constraint node is created, ACP per-
forms a static analysis to find all the legal sequences in
which its variables could be bound. The result of this
analysis is represented as a directed tree whose edges
each correspond to a variable in the constraint. This
is called the solution tree. Each path starting from the
root represents a legal sequence. The recursive algorithm
for generating this tree simply adds a new arc for each
variable appearing in the current expression, from the
current root to a new tree formed from the expression
derived by deleting that variable. For example, the root
of the tree for (a = b+ c) has three branches: one for
a leading to a subtree that is the tree for (b + c); one
for b leading to a subtree that is the tree for (a = c);
one for ¢ leading to a subtree for (a = b). In this exam-
ple the ¢ branch can be pruned, because ¢ (alphabeti-
cally) precedes neither a nor b. Had the expression been
(a = b *¢), the branch could not be pruned, because ¢
could be bound to 0 to produce the binding a = 0. On
the other hand, had the expression been (la = b + ¢),
the b branch could have been pruned because the tree
for the subexpression (la = ¢) consists only of a single
branch a, which does not precede b.

The propagator computes the solution tree once and
caches it, then step 1 of the propagation procedure pre-
sented in the previous section need only install con-
sumers on variables corresponding to branches emanat-
ing from the corresponding position in the tree. This
additional complexity is worthwhile; it is not unusual in
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CROSBY for variables to acquire many different bind-
ings, and it would be wasteful for ACP to repeatedly
rediscover worthless sequences of variable bindings.

In an example shown earlier, recall that we had the
nodes:

np: (a=b+¢)

n;: (b=(6,9)) B
ny: (e=(10,11)) {C}
nzg: (a=(16,20)) {B,C}

The solution tree ensures that the ng and n; would have
been combined to get (a = (6,9) + ¢), which would then
have been combined with ns to get n3, without deriving
the result in the symmetric (and redundant) fashion.

5.2 Reflection

As mentioned earlier, nodes np and n3 might in principle
be combined and evaluated to yield ((16,20) = b + ¢c),
“reflecting” back through the no constraint to derive
new values of b and c. In general, there is little point
in attempting to derive values for a variable z using
constraints or bindings that themselves depend on some
binding of z (the exception occurs when the constraints
can be solved by iterative relaxation; ACP does not at-
tempt to solve such cases).

The straightforward and complete method for check-
ing this is to search each of the directed acyclic graphs
(DAGS) of justifications supporting any binding about to
be combined with a given constraint and propagated. If
that constraint appears in every DAG, inhibit propaga-
tion. Although it sounds expensive, empirical tests with
ACP show that this. method is actually worth its cost:

.comprormise strategies — such as searching the DAGs only

to a limited depth - often fail to detect reflections be-
cause nodes can be supported via arbitrarily long chains
of shadowing justifications, and when reflections go un-
detected, many extra nodes and justifications get cre-
ated. Depth first traversals of justification trees are fast
relative to the costs associated with creating unnecessary
bindings.

This strategy can be improved by caching with each
node its essential support set, and testing that before
searching the DAG. The essential support set of a node
is that set of nodes that must appear in a justification
DAG for any set of supporting assumptions. For exam-
ple, ng, n1 and ng all have empty essential support sets;
node n3 has the essential support set {ng,n;,n2}. ACP
tests essential support sets to see whether they contain a
binding node for the variable about to be propagated; if

so the propagation is inhibited; if not the full DAG search

is performed. In the example above, node n3z does not
combine with ng : (@ = b+c) because ng is in its essential
support set. Essential support sets can be easily com-
puted locally and incrementally each time a justification

is installed, and they have the useful property that once .

created, they can subsequently only get smaller as prop-

agation proceeds. For example, if some new justification -

ng «— ngp; were added, nodes ng, n;, and nz could be
deleted from the essentla.l support set of n3. In that case
n3 would then appropriately continue to propagate with
constraint ng.

Essential support sets essentially cache the result of
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searching the support DAG (the basic strategy) ignoring
ATMS labels. As compared to the complete and cor-

_rect strategy, which is to search the DAG, the essential

support set strategy can err only by not detecting re-
flections. In practice the caching of essential support
sets is cheap and fast enough to represent a worthwhile
preliminary test.

With this additional propagation machinery in place
we can now follow ACP as it continues to propagate in
focus environment {4, B, C} from n,4 as shown below.

ng: (a=(17,19))

ja: ny — ng,na,ny

ni: (b=(6,9)) {BHAC}
- Jai M5 e Mg, Ny Ny

ns: (¢=(8,13)) {A,B}

Js: ns&<ng

ng : (c = (8, 13)) {A,B}\ {C} Label update
ACP creates the new node ns : (¢ = (8,13)), active only
in {A, B}. Hence, querying ACP for the value of ¢ yields
the following results in each of the following environ-

ments:
{3 {A} {B}: (-—o0,+)
A,B}: (8,13) ns
{C},{A,C},{B,C},{4,B,C}: (10,11)  m

5.3 Overlapping Intervals .

Finally, ACP needs to deal with cases in which a vari-
able is assigned intervals which have nonempty intersec-
tions but do not subsets of one another; these are called
overlapping intervals. ACP uses shadowing justifications
to control the number of overlapping intervals created.
Suppose that nodes nag; and nag2 are created with over-
lapping values (1, 10) and (5,20). A third node n2o3 is
created to represent their intersection (5,10), and this
node in turn shadows the two nodes that support it.
ngpy ¢ (z = (1,10)) {X1}

noo2 ¢ (:r = (5 20)) {X?}

J200 : M203 — M201,
Na03 - (Z = (5 10))
J201 ¢ T201 <= M203

New node
Label update

New node

{Xl, X2} New node

{Xl} \ {Xl, X2} Label update

Jao2 :  M202 < 203
n202 - (z = (5 20)) {X2} \ {Xl X2} Label update

Querying ACP for the value of z yields a different result

'in each of the following environments:

{} : (—00, +°°)
{X1}: (1;10) 7201
{XQ} (5 20) Nn202 .
{Xl X2} (5 10) 203

Although in the worst case n interval a551gnments to a

variable could result in O(n?) overla.ps, in practice the
number of intervals actually created is acceptable. In-
tuitively speaking, the reason for this is that the prop-
agation strategy ensures that overlapping intervals are
only derived from the most restrictive intervals already

"present ini the current focus environment. Furthermore,

whenever a new overlapping interval is created, the two
intervals that it was created from become shadowed and
no more inferences will be drawn from them in the cur-
rent focus environment. '



6 Conclusion

ACP integrates constraint propagation over intervals
with assumption-based truth maintenance, contributing
the following novel inference control techniques:

e Variable values that are subsumed are marked as in-
active via an extension to ATMS justifications, with-
out any need for recourse to non-monotonic reason-
ing.

e ACP augments its reflection test by caching with
each variable binding not only its ATMS label, but

also the variable bindings that must be present in

any supporting environment.

¢ A new operator is incorporated into the constraint
language to allow the user to advise ACP to prune
useless derivation paths.

ACP is implemented in 5500 lines of “Future Com-
mon Lisp” on a Symbolics lisp machine. Roughly one
half is devoted to the expression evaluator, one third is
the focused ATMS, and ACP-specific code comprises the
remainder.
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- Abstract

In constraint logic'programming (CLP) systems,
the standard technique for dealing with -hard con-
straints is to delay solving them until additional
constraints reduce them to a simpler form. For
example, the CLP(R) system delays the solving of
nonlinear equations until they become linear, when
certain variables become ground. In a naive imple-
mentation, the overhead of delaying and awakening
constraints could render a CLP system impractical.

In this paper, a framework is developed for the
specification of wakeup degrees which indicate how

far a hard constraint is from being awoken. This

framework is then used to specify a runtime struc-
ture for the delaying and awakening of hard con-
straints. The primary implementation problem is
the timely awakening of delayed constraints in the
context of temporal backtracking, which requires
changes to internal data structures be reversible.
This problem is resolved efficiently in our struc-
ture.

Spiro Michaylov
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Roland Yap
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1 Introduction

The Constraint Logic Programming scheme [7] pre-
scribes the use of a constraint solver, over a spe-
cific structure, for determining the solvability of
constraints. In practice, it is difficult to construct
efficient solvers for most useful structures. A stan-
dard compromise approach has been to design a
partial solver, that is, one that solves only a sub-
class of constraints, the directly solvable ones. The
remaining constraints, the hard ones, are simply
delayed from consideration when they are first en-
countered; a hard constraint is reconsidered only
when the constraint store contains sufficient infor-
mation to reduce it into a directly solvable form.
In the real-arithmetic-based CLP(R) system [8, 9],
for example, nonlinear arithmetic constraints are
classified as hard constraints, and they are delayed
until they become linear.

The key implementation issue is how to effi-
ciently process just those delayed constraints that
are affected as a result of a new input constraint.
Specifically, the cost of processing a change to the
current collection of delayed constraints should be
related to the delayed constraints affected by the
change, and not to all the delayed constraints. The
following two items seem necessary to achieve this
end. “

First is a notion which indicates how far a
delayed constraint is from being awoken. For
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example, it is useful to distinguish the delayed
CLP(R) constraint X = maz(Y, Z), which awaits
the grounding of Y and Z, from the constraint
X = maz(5, Z), which awaits the grounding of Z.
This is because, in general, a delayed constraint
is awoken by not one but a conjunction of several
input constraints. When a subset of such input
constraints has already been encountered, the run-
time structure should relate the delayed constraint
to just the remaining kind of constraints which will
awaken it.

The other item is some data structure, call it the :

access structure, which allows immediate access to
just the delayed constraints affected as the result
of a new input constraint. The main challenge is

how to maintain such a structure in the presence of -

backtracking. For example, if changes to the struc-

ture were trailed using some adaptation of PRO-

LOG techniques [14], then a cost proportional to

the number of entries can be incurred even though
no delayed constraints are affected.

There are two main elements in this paper. First
is a framework for the specification of wakeup de-
grees which indicate how far a hard constraint is
from being awoken. Such a formalism makes ex-
plicit the various steps a CLP system takes in
reducing a hard constraint into = directly solv-
able one. The second element is z runtime struc-

ture which involves a global stack representing the
~ delayed constraints. This stack also contains all
changes made to each delayed constraint when a
new input constraint makes progress towards the
awakening of the delayed constraint. A secondary
data structure is the access structure. Dealing
with backtracking is straightforward in the case of
the global structure simply because it is a stack.
For the access structure, no trailing/saving of en-

tries is performed; instead, they are reconstructed

upon backtracking. Such reconstruction requires a
significant amount of interconnection between the
global stack and access structure. In this runtime
structure, the overhead cost of managing an op-
" eration on the delayed constraints is proportional
to the size of the delayed constraints affected by
the operation, as opposed to all the delayed con-
straints.

2 Background and - Related

Work

In this section we first review some early ideas of
dataflow and local propagation, and the notion of
flexible atom selection rules in logic programming
systems. We then briefly review the basics of CLP,
discuss the issue of delaying constraints in CLP,
and mention some delay mechanisms in various
CLP systems.

2.1 Data Flow and Local Propagation

The idea of dataflow computation, see e.g. [1], is
perhaps the simplest form of a delay mechanism
since program cperations can be seen as directional

constraints with fixed inputs and outputs. In its -

pure form, a dataflow graph is a specification of
the data dependencies required by such an oper-
ation before it can proceed. Extensions, such as
the I-structures of (2], are used to provide a de-
lay mecharism for lazy functions and complex data
structures such as arrays in the context of dataflow.

In local propagation, see e.g. [11], the solving of
a constraint is delayed until enough of its variables
have knowr values in order that the remaining val-
ues can be directly computed. Solving a constraint
can then cause other constraints to have their val-
ues locally propagated, etc. The concept and its
implementation are logical extensions of data flow
- in essence, a data flow graph is one possible local
propagation path through a constraint network. In
other words, directionality is eliminated.

2.2 Delay Mechanisms in PROLOG

In PROLOG, the notion of delaying has been
mainly applied to goals (procedure calls), and im-
‘plemented by the use of a dynamically changeable
atom selection rule. The main uses of delaying were
to handle safe negation [10], and also to attempt to
regain some of the completeness lost due to PRO-
LOG’s depth first search. There are similarities
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between implementing delay in PROLOG and im-
plementing a data flow system, except in one fun-
damental aspect: temporal backtracking!. Further
complications are related to the saving of machine
states while a woken goal is being executed.

Some PROLOGS allow the user to specify delay
annotations. One kind is used on subgoals. For
example, the annotation freeze(X, G) in PROLOG-
II [4] defers the execution of the goal G until X is
instantiated. Another kind of annotation is applied
to relations. For example, the wait declarations of
MU-PROLOG [10] and the when declarations of
NU-PROLOG [13] cause all calls to a procedure to
delay until some instantiation condition is met.

Carlsson [3] describes an implementation tech-
nique for freeze(X, G). While an implementation
of freeze can be used to implement more sophisti-
cated annotations like wait and when, this will be
at the expense of efficiency. This is mainly because
the annotations can involve complicated conjunc-
tive and disjunctive conditions. Since freeze takes
just one variable as an argument, it is used in a
complicated manner in order to simulate the be-
havior of a more complex wakeup condition.

In general, the present implementation tech- v

niques used for PROLOG systems have some com-
mon features:

¢ The delay mechanism relies on a modification
of the unification algorithm [3]. This entails
a minimal change to the underlying PROLOG
engine. In CLP systems, this approach is not
directly applicable since there is, in general,
no notion of unification.

¢ Goals are woken by variable bindings. Each
binding is easily detectable (during unifica-

tion). In CLP systems, however, detecting

. when a delayed constraint should awaken is
far more complicated in general. In this pa-
per, this problem is addressed using wakeup
degrees, described in the next section.

!Committed choice logic programming languages [12] use
delaying for process synchronization. However there is no
backtracking here.

e The number of delayed goals is not large in
general. This can render acceptable, imple-
mentations in which the cost of awakening a
goal is related to the number of delayed goals
[3], as opposed to the number of awakened
goals. In a CLP system, the number of delayed
constraints can be very large, and so such a
cost is unacceptable. '

2.3 Delaying Hard Constraints in CLP

Before describing the notion of delaying con-
straints, we briefly recall some main elements of
CLP. At the heart of a CLP language is a structure
D which specifies the underlying domain of compu-
tation, the constant, function and constraint sym-
bols, and the corresponding constants, functions
and constraints. Terms are constructed using the
constant and function symbols, and a constraint is
constructed using a constraint symbol whose argu-
ments are terms. An atom is a term of the form
p(t1,...,1,) where p is a predicate symbol and the
t; are terms. A CLP program is a finite collection
of rules, each of which is of the form

Ap:— aj,09,...,0%

where each a;, 1 < ¢ < k, is either a constraint or

an atom, that is, a term of the form p(t1,...,tn)

where p is a user-defined predicate symbol and the '
t; are terms. The language CLP(R) for example,

involves arithmetic terms, e.g. X +3*Y + Z and

constraints,eg. X +3*xY +Z > 0.

The essence of the CLP operational model is that
it starts with an empty collection CSp of constraints
as its constraint store, and successively augments
this store with a new input constraint. That is,
each primitive step in the operational model ob-
tains a new store CS;4+; by adding an input con-
straint to the previous store CS;, ¢ > 0. The con-
junction of the constraints in each store is satis-
fiable. If every attempt to generate a collection
CSi+1 from CS; results in an unsatisfiable collec-
tion, then the store may be reset to some previous
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store CS;, j < i, that is, backtracking occurs. The
full details of the operational model, not needed in
this paper, can be obtained from {7].

In principle, a CLP system requires a decision
procedure for determining whether a satisfiable
constraint store can be augmented with an input
constraint such that the resulting store is also sat-
isfiable. In practice, this procedure can be pro-
hibitively expensive. An incomplete system, but
which is often still very useful, can be obtained by
partitioning the class of constraints into the directly
solvable ones, and the hard ones. Upon encounter-
ing a hard constraint, the system simply defers the
consideration of this constraint until the store con-
tains enough information to reduce the hard con-
straint into a directly solvable form?.

There are a number of CLP systems with delayed
constraints. One is PROLOG-II [4] where the hard
constraints are disequations over terms, and these
constraints awaken when their arguments become
sufficiently instantiated. In CLP(R), the hard
constraints are the nonlinear arithmetic ones, and
these delay until they become linear. In CHIP (6],
hard constraints include those over natural num-
bers, and these awaken when both an upper and
lower bound is known for at least all but one of
the variables. In PROLOG-III 5], some hard con-
straints are word equations and these awaken when
the lengths of all but the rightmost variables in the
two constituent expressions become known.

3 Wakeup Systems

Presented here is a conceptual framework for the
specification of operations for the delaying and
awakening of constraints. We note that the formal-
ism below is not designed just for logic program-
ming systems. '

Let the meta-constants be a new class of sym-

a (regular) constant. Define that a meta-constraint
is just like a constraint except that meta-constants
may be written in place of constants. A meta-
constraint is used as a template for a (regular) con-
straint.

To indicate how far a hard constraint is from be-
ing awoken, associate with each constraint symbol
¥ a finite number of wakeup degrees. Such a de-
gree D is a template representing a collection of
V-constraints®. It is defined® to be either the spe-

" cial symbol woken, or a pair (t,C) where

bols, and hereafter, these symbols are denoted by

a and 5. A meta-constant is used as a template for

21t is possible that hard constraints remained indefinitely -

deferred.
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e i is a term of the form ¥(¢;,...,%,) where
each t; is either a variable, constant or meta-
constant, and

e C, is a conjunction of meta-constraints
"which contain no variables and whose meta-
constants, if any, appear in t.

Let 6 be a mapping from variables into variables
and meta-constants into constants. An instance of
a wakeup degree D = (¢,C) is the constraint ob-
tained by applying to t such a mapping # which
evaluates C into true. The instance is denoted
Dd. In CLP(R)for example, a subset of the
constraints involving the constraint symbol pow
(where pow(X,Y,Z) means X = Y?Z) may be
represented by the degree pow(A4, B,a), a # 0.
This subset contains all the constraints of the form
pow(X,Y,c) where X and Y are not necessarily
distinct variables and ¢ is a nonzero real number.

Associated with each wakeup degree D is a col-

lection of pairs, each of which contains a generic
wakeup condition and a wakeup degree called the
new degree. Each wakeup condition is a con-
junction of meta-constraints all of whose meta-
constants appear in D. Any variable in a wakeup
condition which does not appear the in associated
degree is called ezistential. An instance W@ of
a generic wakeup condition W is the constraint

3These are constraints written using the symbol ¥.

4 This specific definition is but one way to represent a set ~

of expressions. It may be adapted without affecting what
follows. :




obtained by applying the mapping # which maps
non-existential variables into variables and meta-
constants into consta.nts.

Like wakeup degrees, a wakeup condition rep-
resents a collection of constraints. Intuitively, a
wakeup condition specifies when a hard constraint
changes degree to the new degree. More precisely,
suppose that D is a wakeup degree and that W is
one of its wakeup conditions with the new degree
D'. Let C be a hard constraint in D, that is, C
is an instance D@ of D. Further suppose that the
constraint store implies the corresponding instance
of W, that is, the store implies

3X; ... X (W)

where the X; denote the existential variables of
W. Let C’ denote a constraint equivalent to C A
3X;...Xn(W8). We then say the constraint C re-
duces to the constraint C’ via W.

Consider once again the CLP(R) constraints in-
volving pow. These constraints may be parti-
tioned into classes represented by:the wakeup de-
grees pow(A, B, C)a pow(a, B, C)) pO‘UJ(A, a, C)’
pow(A,B,a) and woken. . For the degree
pow(A, B,C), which represents constraints of the
form pow(X,Y, Z) where X, Y and Z are variables,
an example wakeup condition is C = a. This in-
dicates that when a constraint, e.g. Z = 4, is en-
tailed by the constraint store, a delayed constraint
such as pow(X,Y,Z) is reduced to pow(X,Y,4).
This reduced constraint may have the new degree

pow(A, B, a). Another example wakeup condition -

is A = 1, indicating that when a constraint such
as X = 1 is entailed, a delayed constraint of the
form pow(X,Y, Z) can be reduced to pow(1,Y, Z).
This reduced constraint, which is in fact equivalent
to the directly solvable constraint Y =1 vV (Y #
0A Z = 0), may be in the degree woken. We exem-
plify some other uses of wakeup conditions below.

A wakeup system for a constraint symbol ¥ is a
finite collection S of wakeup degrees for ¥ satisy-

ing:

e S contains the special degree called woken
which represents a subset of all the directly
solvable ¥-constraints. '

e No two degrees in S contain the same ¥-
constraint.

e Let the ¥-constraint C have a degree D which
has a wakeup condition W and new degree D’.
Then every reduced constraint C’ of C via W
is contained in D’.

The illustration in figure 1 contains an example
wakeup system for the CLP(R) constraint symbol
pow. A wakeup degree is represented by a node, a
wakeup condition is represented by an edge label,
and the new degree of a reduced constraint is repre-
sented by the target node of the edge labelled with
the wakeup condition which caused the reduction.

Generic wakeup conditions can be used to spec-
ify the operation of many existing systems which

. delay constraints. In PROLOG-like systems whose

constraints are over terms, awaiting the instantia-
tion of a variable X to a ground term can be rep-
resented by the wakeup condition X = a. Await-
ing the instantiation of X to a term of the form
f(...), on the other hand, can be represented by
X = f(Y) where Y is an existential variable. We
now give some examples on arithmetic constraints.
In PROLOG-III, for example, the wakeup condi-
tion X < a could specify that the length of word
must be bounded from above before further pro-
cessing of the word equation at hand. For CHIP,
where combinatorial problems are the primary ap-
plication, an example wakeup condition could be
a< X AX <P ApPB—-a <4 which requires that X
be bounded within a small range. For CLP(R) , an
example wakeup condition could be X = a*Y +3,
which requires that a linear relationship  hold be-
tween X and Y.

Summarizing, each constraint symbol in a CLP

"system which gives rise to hard constraints can be

associated with a finite collection of wakeup degrees
each of which indicate how far the constituent con-
straints are from being awoken. These degrees can
be organized into a wakeup system, that is, a graph
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WOKEN

)

wi2

w13

D2

Do

w6
D0 : pow(A, B,C)

D2: pow(A,a,C),a #
. w :A=0 wy:A=1
Legend: wi-B:O w§:3=1
wy:C=0 wg:C=1
wg:B=a w;;:C=a
wiz:C=a wig: A=a

Figure 1: Wakeup degrees for pow/3

whose nodes represent degrees and whose edges are
represent the wakeup condition/new degree rela-
tion between two degrees. Such a wakeup system
can be viewed as a deterministic transition system,
and can be used to specify the organization of a
constraint solver: the degrees discriminate among
constraints so that the solver is able to treat them
differently, while the wakeup conditions specify de-
gree transitions of hard constraints with respect to
new input constraints.

An important design criterion is that the entailed
constraints corresponding to the wakeup conditions
be efficiently recognizable by the constraint solver.
This problem, being dependent on a specific solver,

is not addressed in this paper. It is difficult in -

general®. In CLP(R) , for example, it is relatively
inexpensive to perform a check if an equation like

*In PROLOG, this problem reduces to the easy check of
whether a variable is bound.

X = 5 is entailed whenever the constraint storé is

changed. The situation for an inequality like X < 5
is quite different.

4 The Runtime Structure

Here we present an implementational framework in

_ the context of a given wakeup system. There are

three major operations with hard constraints which

correspond to the actions of delaying, awakening
and backtracking:

1. adding a hard constraint to. the collection of
delayed constraints;

. 2. awakening delayed constraints as the result of

inputting a directly solvable constraint, and
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3. restoring the entire runtime structure to a pre-
vious state, that is, restoring the collection of
delayed constraints to some earlier collection,
and restoring all auxiliary structures accord-

ingly.

The first of our two major structures.is a stack®
containing the delayed constraints. Thus imple-
menting operation 1, delaying a hard constraint,
simply requires a push on this stack. Additionally,
the stack contains hard constraints which are re-
duced forms of constraints deeper in the stack. For
example, if the hard constraint pow(X,Y, Z) were
in the stack, and if the input constraint ¥ = 3
were encountered, then the new hard constraint

pow(X,3,Z) would be pushed, together with a

pointer from the latter constraint to the former.
In general, the collection of delayed constraints
contained in the system is described by the sub-
collection of stacked constraints which have no in-
bound pointers. '

Figure 2 illustrates the stack after storing
the hard constraint pow(X,Y,Z), then storing
pow(Y,X,Y), and then encountering the entailed
constraint X = 5. Note that this one equation
caused the pushing of two more elements, these
being the reduced forms of the original two. The
top two constraints now represent the current col-
lection of delayed constraints.

The stack operations can be more precisely de-
scribed in terms of the degrees of the hard con-
straint at hand. This description is given during
the definition of the access structure below.

Now consider operation 2. In order to implement
this efficiently, it is necessary to have some access
structure mapping an entailed constraint C to just
those delayed constraints affected by C. Since there
are in general an infinite number of entailed con-
straints, a finite classification of them is required.
We define this classification below, but we assume
that the constraint solver, having detected an en-
tailed constraint, can provide access to precisely
the classes of delayed constraints which change de-

®Hereafter, the term stack refers to this structure.

pow(5,Y,Z)

pow(Y,5Y) I~ — 71

pow(Y,X,Y)

pow(X,Y,Z)

Figure 2: The stack

gree.

A dynamic wakeup condition is an instance of a
generic wakeup condition W obtained by (a) re-
naming all the non-existential variables in W into
runtime variables’, and (b) instantiating any num-
ber of the meta-constants in W into constants. An
instance of a dynamic wakeup condition is obtained
by mapping all its meta-constants into constants.

A dynamic wakeup condition is used as a
template for describing the collection of entailed
constraints (its instances) which affect the same
sub-collection of delayed constraints. For exam-
ple, suppose that the only delayed constraint is
pow(5,Y,Z) whose degree is pow(a,B,C) with
generic wakeup conditions B = a and C = a. Then
only two dynamic wakeup conditions need be con-
sidered: Y = a and Z = . In general, only the
dynamic wakeup conditions whose non-existential
variables appear in the stack need be considered.

We now specify an access structure which maps
a dynamic wakeup condition into a doubly linked
list of nodes. Each node contains a pointer to

"These are the variables the CLP system may encounter.
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a stack element containing a delayed constraint®.
Corresponding to each occurrence node is a re-
verse pointer from the stack element to the occur-
rence node. Call the list associated with a dynamic
wakeup condition DW a DW-list, and call each
node in the list a DW-occurrence node.

Initially the access structure is empty. The fol-

lowing specifies what is done for the basic oper-
ations. It is assumed, without loss of general-
ity, that the variables in the wakeup system are
disjoint from runtime variables, and that no exis-
tential variable appears in more than one generic
wakeup condition. ‘

4.1 Delaying a new hard constraint

To delay a new hard constraint C, first push a new
stack element for C. Let D denote its wakeup de-
gree and W), ..., W, denote the generic wakeup
conditions of D. Thus C is D8 for some 8. Then:

e For each W;, compute the dynamic wakeup
condition DW; corresponding to C and W;,
that is, DW; is W,8. :

o For each DW;, insert into the DW,-list of the
access structure a new occurrence node point-
ing to the stack element C.

o Set up reverse pointers from C to the new oc-
currence nodes.

4.2 Processing an Entailed Constraint

Suppose there is a new entailed constraint, say X =
5. Then:

¢ Obtain the dynamic wakeup conditions in the
access structure whose instances are implied
by X = 5. If no such conditions exist (i.e. no

delayed constraint is affected by X = 5 being

entailed), nothing more needs to be done.

8The total number of occurrence nodes is generally larger
than the number of delayed constraints.

o Consider the lists L associated with the above
conditions. Then consider in turn each delayed
constraint pointed to by the occurrence nodes
in L. For each such constraint C, perform the
following.

o Delete all occurrence nodes pointed to by
C.

o  Construct the reduced form C’ of C by re-
placing all occurrences of X by 5. (Recall
that in general, C’ is obtained by conjoin-
ing C with the entailed constraint.) Now
push C’ onto the stack, set up a pointer
from C’ to C, and then perform the mod-
ifications to the access structure as de-
scribed above when a new delayed con-
straint is pushed.

Figure 3 illustrates the entire runtime structure
after the two hard constraints pow(X,Y,Z) and
pow(Y, X,Y) were stored, in this order. Figure 4il-
lustrates the structure after a new input constraint
makes X = 5 entailed.

4.3 Backtracking

Restoring the stack during backtracking is easy be-
cause it only requires a series of pops. Restoring
the access structure, however, is not so straightfor-
ward because no trailing/saving of the changes was
performed. In more detail, the primitive operation
of backtracking is the following:

e Pop the stack, and let C denote the constraint
just popped. ,

¢. Delete all occurrence nodes pointed to by C.

e If there is no pointer from C (and so it was
a hard constraint that was newly delayed) to
another constraint deeper in the stack, then
nothing more need be done.

o If there is a pointer from C to another con-
straint C’ (and so C is the reduced form of
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Figure 3: The access structure
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C"), then perform the modifications to the ac-
cess structure as though C’ were being pushed
onto the stack. These modifications, described
above, involve computing the dynamic wakeup
conditions pertinent to C’, inserting occur-
rence nodes, and setting up reverse pointers.

Note that the access structure obtained in back-
tracking may not be structurally the same as that
of the previous state. What is important, however,
is that it depicts the same logical structure as that
of the previous state.

4.4 Optimizations

Additional efficiency can be obtained by not creat-
ing a new stack element for a reduced constraint if
there is no choice point (backtrack point) between
the changed degrees in question. This saves space,
saves pops, and makes updates to the access struc-
ture more efficient.

Another optimization is to save the sublist of oc-
currence nodes deleted as a result of changing the
degree of a constraint. Upon backtracking, such
sublists can be inserted into the access structure in
constant time. This optimization, however, sacri-
fices space for time. '

A third optimization is to merge DW-lists. Let
there be lists corresponding to the dynamic wakeup
conditions DW,, ..., DW,. These lists can be
merged into one list with the condition DW if

o the push of any delayed constraint C results in
either (a) no change in any of the n lists, or (b)
every list has a new occurrence node pointing
to C;

o for every constraint C and for every mapping
6 of meta-constants into constants, C implies
DW4 iff C implies DW;6 for some 1 < i < n.

In the example of figure 3, the three lists involving
X can be merged into one list which is associated
with the dynamic wakeup conditions X = a. Sim-
ilarly for Y and Z.

4.5 Summary of the Runtime Structure

A stack is used to store delayed constraints and
their reduced forms. An access structure maps a
finite number of dynamic wakeup constraints to
lists of delayed constraints. The constraint solver
is assumed to identify those conditions for which
an entailed constraint is an instance. The basic
operations are then implemented as follows.
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1. Adding a new constraint C simply involves a
push on the stack, creating new occurrence
nodes corresponding to C and the setting of
pointers between the new stack and occurrence
nodes. The cost here is bounded by the num-
ber of generic wakeup conditions associated
with (the degree of) C.

‘2. Changing the degree of a constraint C involves
a push of a new constraint C’, deleting and in-
serting a number of occurrence nodes. Since
the occurrence nodes are doubly-linked, each
such insertion and deletion can be done in con-
stant time. Therefore the total cost here is
bounded by the number of generic wakeup con-
ditions associated with C and C’.

3. Similarly, the cost in backtracking of popping
a node C, which may be the reduced form of
another constraint C’, involves deleting and in-
serting a number of occurrence nodes. The
cost here is again bounded by the number of
generic wakeup conditions associated with C
and C'.

In short, the cost of one primitive operation on de-
layed constraints (delaying a new hard constraint,

upgrading the degree of one delayed constraint, in-
cluding awakening the constraint, and undoing the
delay/upgrade of one hard constraint) is bounded
by the (fixed) size of the underlying wakeup system.
The total cost of an operation (delaying a new hard
constraint, processing an entailed constraint, back-
tracking) on delayed constraints is proportional to
the size of the delayed constraints affected by the
operation.

5 Concluding Discussion

A framework of wakeup degrees is developed to
specify the organization of a constraint solver.
These degrees represent the various different cases
of a delayed constraint which should be treated
differently for efficiency reasons. Associated with
each degree is a number of wakeup conditions which
specify when an input constraint changes the de-
gree of a hard constraint. What is intended is that
the wakeup conditions represent all the situations

- in which the constraint solver can efficiently up-

date its knowledge about how far each delayed con-
straint is from being fully awoken.
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The second part of this paper described a run-
time structure for managing delayed constraints.
A stack is used to represent the current collection
of delayed constraints. It is organized so that it
also records the chronological order of all changes
made to this collection. These changes appear in
the form of inserting a new delayed comstraint,
as well as changing the degree of an existing de-
layed constraint. An access structure is designed
to quickly locate all delayed constraints affected
by an entailed constraint. By an appropriate in-
terconnection of pointers between the stack and
the table, there is no need to save/trail changes
made in the structure. Instead, a simple process

of inserting or deleting nodes, and of redirecting
pointers, is all that is required in the event of back-
tracking. By adopting this technique of performing
minimal trailing, the speed of forward execution is
enhanced, and space is saved, at the expense of
some reconstruction in the event of backtracking.
Even so, the overall overhead cost of the runtime
structure for managing an operation to the delayed
constraints is, in some sense, minimal.

Finally we remark that the implementa-
tion technique described has been used in the
CLP(R) system for delaying hard constraints such
as multiply and pow.
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1 Introduction

Hierarchical Constraint Logic Programming (HCLP) is an extension of Constraint Logic Programming (CLP)
that allows a programmer to specify defaults and preferences, as well as required constraints. HCLP defines
a family of languages that are parameterized both by the domain D over which the constraints are defined,
and by the method, or comparaior, that is used to select among potential solutions to the non-required
constraints. In this paper, after a summary of the language, we describe various different comparators.
We present a number of examples of using HCLP for scheduling and document formatting, and show how
different comparators yield different solutions, with one comparator being more appropriate for one sort of
problem, another comparator for another.

HCLP is based on the Constraint Logic Programming scheme [2, 9]. Several CLP languages have now been
implemented, including CLP(R) (7, 10], Prolog III {3], CHIP [4, 8]; and CLP(Z*) [11]. In our own papers
on HCLP [1, 13], .we present some of the theory of such languages, an algorithm for executing them, and
a discussion of some of their nonmonotonic properties. To test our ideas, we also implemented two HCLP
interpreters—the first one in CLP(R), and the second one in CoOMMON LisP. Recently, we have submitted
a paper giving both a proof-theoretic and fixed point characterization of HCLP languages [12].

2 HCLP Programs

Rules in HCLP are of the form

p(t) :— q1(t),. .., gm(t), s101(L),. .., s,,c,,(t).'

where t denotes a list of terms, p, q;, ..., ¢, are predicate symbols, ¢, ..., c, are constraints, and s; indicates
the strength of the corresponding constraint ¢;. Symbolic names are given to the different strengths of
constraints.

Operationally, goals are executed as in CLP, temporarily ignoring the non-required constraints, except to
accumulate them. After a goal has been successfully reduced, there may still be non-ground variables in the
solution. The accumulated hierarchy of non-required constraints is solved, using a method determined by
the comparator, thus further refining the values of these variables. Additional answers may be produced by
backtracking. As with CLP, constraints can be used multi-directionally, and the scheme can accommodate
collections of constraints that cannot be solved by simple forward propagation methods.
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Here is a sample HCLP(R) program that determines when an advisor and a student can meet. We strongly
prefer that the advisor be free for at least the length of time of the meeting. This is not required, however,
because other resources, such as a meeting room, may be more valuable than the professor’s time. In addition,
we prefer that the student have nothing else scheduled for that time, but given the normal pecking order,
this preference is weaker than our desire that the advisor be available. (A post-revolutionary program, in
which such class distinctions have been abolished, appears in Section 5.1.)

/* set up symbolic names for constraint streng‘t:ha */
levels([required, strong,preferl).

free(alan,9,11).
free(molly,10,12).

can.meet(StartTime,EndTime, Advisor,Student) : -
free(Advisor,StartAdvisor,EndAdvisor),
strong StartAdvisor < StartTime,
strong EndAdvisor > EndTime,.
free(Student,StartStudent,EndStudent),
prefer StartStudent < StartTime,
prefer EndStudent > EndTime.

To find an hour’s meeting time for all Alan and Molly, we use the goal:
?- canmeet(S,E,alan,molly), required E ~ S = 1.

whi(;h succeeds with S = 10 and E = 1t.

3 Comparing Solutions

A constraint hierarchy is a multiset of labelled constraints. Given a constraint hierarchy H, Hg denotes the
required constraints in H with their labels removed. In the same way, we define Hy, Hs,..., H, for levels
1,2,...,n. We also define H = @ for k > n. A solution to a constraint hierarchy is a valuation for the free
variables in the hierarchy, i.e., a function that maps the free variables of the constraints to elements in the
domain D over which the constraints are defined. In the definition of a solution, we compare all valuations
satisfying the required constraints, and reject those such that a “better” valuation exists.

The error function e(c#) is used to indicate how nearly constraint ¢ is satisfied for a valuation 8. This function
returns a non-negative real number and must have the property that e(cf#) = 0 if and only if ¢ holds. (cf
denotes the result of applying the valuation 8 to ¢.) For any domain D, we can use the trivial error function
that returns 0 if the constraint is satisfied and 1 if it is not. A comparator that uses this error function is
a predicate-only comparator. For a domain that is a metric space, we can use its metric in computing the
error instead of the trivial error function. (For example, the error for X = Y would be the distance between
X and Y.) Such a comparator is a metric comparator. '

The error function e(C#8) is a generalization of e to a list of constraints C. This error function returns a
vector of individual constraint errors, one for each constraint in C.

Let g be a function that is applied to real-valued vectors and that returns some value that can be compared
using <> and <. Then we can define the set of solutions to a constraint hierarchy H using the comparator
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defined by g, <>,, and <, as follows:

So
S

{6 | Ye € Hg e(ch) = 0}
{8|0€Ss A Vo€ So-ﬂ(g(e(Hla))., ..o g(e(Hno)) <4 g(e(H19)), ..., g9(e(Hn8)))}

The <, relation for the error vectors in the above definition is defined in a manner similar to lexicographic
order:

g9(z1,.. ., 2n) <g9(¥1,..»¥n) = 3k 21 suchthat Viel...k—1z;<>,00 A e <; 1

We now define g, <>,4, and <, for various comparators. (More intuitive descriptions of these comparators,
in addition to the formal definitions, are given in [1, 6].) The weight for each constraint is denoted by w;,
where if v; is the error for the ith constraint in a list, then w; is the weight for that constraint. Each weight
is a positive real number. For weighted-sum-better, worst-case-better, and least-squares-better g(v) returns a
real number; for locally-better and regionally-better it returns a vector of real numbers.

For weighted-sum-better:

IVl
g(v) = Y wivi
i=1
v<>;u = v=u
v<gu = v<uy
For worst-case-better:
9(v) = max{wiv;|1<i< |v]}
v<>,u = v=1u
V<, = v<u
For least-squares-better:
]
gv) = Y wiv}
i=1
v<>,u = v=u
v<gu = v<u
For locally-better:
glv) = v
v<>,u = Viv;=wy .
v<gu = Vivy; <w; A 3Ijsuch that v; < w;
For regionally-better:
o) = v
v<>,u = (v<yu) A v(u<gyv)
v<gu = Vi v, <w; A 3Jjsuch that v; < w;
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4 DeltaStar

The current HCLP(R) interpreter (the one written in COMMONLISP) uses an incremental constraint sat-
isfaction algorithm called DELTASTAR[6, 5]. In HCLP, there are two situations in which an incremental
algorithm can save computation. If backtracking occurs in the normal course of executing an HCLP pro-
gram that contains multiple definitions of a predicate, the constraints arising from the old definition of the
predicate must be retracted, and ones from the new definition added, but all other constraints are unaffected.
An incremental algorithm allows solutions to be incrementally modified in this situation.

An incremental algorithm is also important for efficiency in connection with interactive graphics applications.
where answers must be produced before a goal is completely reduced—we cannot wait until all of the input
events are known before computing display information. Instead, at appropriate points in program execution
we need to solve the constraint hierarchy as generated up to that time. Again we’d prefer not to start from
scratch in finding further solutions. The key in both of these situations is to develop algorithms that remove
as few variable bindings as possible in attempting to resatisfy the hierarchy.

DELTASTAR is an algorithm for incrementally solving constraint hierarchies, but not for solving the con-
straints themselves. Rather, DELTASTAR is built above a flat incremental constraint solver which provides
the actual constraint solving techniques (numeric, symbolic, iterative, local-propagation, etc.). Thus DELTA-
STAR is adaptable to many different constraint solving algorithms. The version of DELTASTAR that has been
implemented in the current HCLP(R) interpreter uses variants of the Simplex algorithm to solve linear equal-
ity and inequality constraints. These variants provide the actual means of comparing solutions, but they
know nothing about the hierarchy; this information is encapsulated in the DELTASTAR routine. This clean
separation between the constraint solver and the hierarchy has allowed us to implement different comparators
in HCLP(R) relatively quickly. By simply setting a variable, users can choose among the weighted-sum-better,
worst-case-better, locally-error-betier, and regionally-error-better comparators.

5 Applications and Ekamples

Having various comparators readily available has allowed us to begin experimenting with their suitability
for certain domains, as well as for certain problems within a single domain. In this section, we present
some examples that demonstrate the behavior of the different comparators, and make some preliminary
observations on which ones are preferable for different classes of problems.

5.1 Scheduling

In Section 2 we presented a simple scheduling problem. Suppose we add the fact free(bjorn,7,10). to
the earlier program and pose the query:

?7- canmeet(S,E,alan,bjorn), canmeet(S,E,alan,molly), required E - S = 1.

If we are using the locally-predicate-better comparator, this query will succeed with two solutions: 5=10,E=11
and S=9,E=10. Both solutions satisfy Alan’s preferences, whereas the first satisfies Molly’s preferences while
overriding Bjorn’s and the second satisfies Bjorn’s at the expense of Molly’s. (In this example, muitiple solu-
tions arise not because of standard backtracking, but because there are multiple solutions to the constraint
hierarchy that is created to satisfy the goal.)

If we apply the locally-error-better comparator, on the other hand, the solutions to the query are all hour-
long intervals between 9 and 11. Weighted-sum-better and regionally-error-better also give these solutions.
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Worsi-case-better and least-squares-better, however, will select the hour between 9:30 and 10:30 as the best
solution.

Now suppose that people’s schedules change. The students also protest the professor’s preferential status
and change the meeting rule.

free(alan,7,8).
free(bjorn,8,9).
free(molly,11,12).

can_meet(StartTime,EndTime, Advisor,Student): -
free(Advisor,StartAdvisor,EndAdvisor),
prefer StartAdvisor < StartTime,
prefer EndAdvisor > EndTime,
free(Student,StartStudent,EndStudent),
prefer StartStudent < StartTime,
prefer EndStudent > EndTime.

If we again try to find a mutually acceptable meeting time for Alan, Bjorn, and Molly we find that locally-
predicate-better yields three solutions — meeting for an hour starting at 7, 8, or 11. Locally-error-better
yields an infinite number of solutions constrained to be any hour between 7 and 12. For this program, the
regional comparators return the same solutions as their local counterparts. However, if we add a weaker
constraint, for example one that weakly prefers meetings close to lunch time, the regional answers may be
further refined and some of these solutions may be rejected. (For the local comparators, the set of solutions
wouldn’t be affected by this change.) '

Weighted-sum-betler selects the single meeting time at 8 in an attempt to “make the most people happy”.
Worst-case-better selects the single hour starting at 9 so that “no one person will be too put out”.

We can conceive of scenarios where each of these solutions is most desirable. Normally, we might prefer
to use a predicate comparator for scheduling meetings, so that we don’t find ourselves meeting at strange
" times that are no good for anyone. Yet in some situations, such as deciding what time of year to meet, it is
important to take exact error into account.

5.2 Document Formatting

The following is an example from the domain of document formatting. We want to lay out a table on a page
in the most visually satisfying manner. We achieve this by allowing the white space between rows to be an
elastic length. It must be greater than zero (or else the rows would merge together), yet we strongly prefer
that it be less than 10 (because too much space between rows is visually unappealing). We do not want this
latter constraint to be required, however, since there are some applications that may need this much blank
space between lines of the table. We prefer that the table fit on a single page of 30 lines. Finally there is
a default constraint that the white space be 5, that is if it is possible without violating any of the other
constraints, and there is another constraint specifying the default type size.

levels([required,strong prefer,prefer,default]).

table(PageLength, TypeSize,NumRow,WhiteSpace):-
required (WhiteSpace + TypeSize) * NumRow = PageLength,
required WhiteSpace > O, :
strong prefer WhiteSpace < 10,
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prefer PageLength < 30,
default WhiteSpace = §
default TypeSize = 11

If we use a predicate comparator, then if the prefer constraint cannot be satisfied and the table takes up
more than one page, the default constraint will be satisfied, resulting in HhiteSpace = 6. However, if we
use a metric comparator, spacing between the rows will be as small as posmble to minimize the error in the
PageLength constraint at the prefer level.

We can avoid this behavior by demoting the prefer constraint to a default so that the size of the type,
the white space between rows, and the number of pages all interact at the same level in the hierarchy.
Weighted-sum-better will characteristically choose the solution that minimizes the error for the majority of
the constraints, while worst-case-better finds the middle ground.

6 Conclusion

We have shown how different comparators yield different solutions to sample Hierarchical Constraint Logic
Programs for scheduling and page layout applications, and have argued that having this range of comparators
is useful, since some solutions are more appropriate under some circumstances, other solutions under different
circumstances. In the future we hope to investigate this point further using additional examples from finance
and interactive graphics. In the financial examples, we would have preferential constraints regarding profit,
risk, diversification, and so forth; as before, different comparators would select different solutions. In the
interactive graphical examples, we would have preferences regarding window layout and dimensions, which
again could be traded off in different ways by choosing different comparators.

Acknowledgements

This work was supported in part by the National Science Founda.tic;n under Grant No. IRI-8803294, by a
gift from Apple Computer, and by a grant from the Washington Technology Center.

References

(1] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint Hierarchies and Logic
Programming. In Proceedings of the Sizth International Conference on Logic Programming, pages 149-
164, Lisbon, June 1989.

[2] Jacques Cohen. Constraint Logic Programming Languages. Communications of the ACM, pages 5268,
July 1990.

[3] Alain Colmerauer. An Introduction to Prolog III. Communications of the ACM pages 69-90, July
1990.

[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Bertheir. The Constraint
Logic Programming Language CHIP. In Proceedings FGCS-88, 1988.

[5] Bjorn Freeman-Benson and Molly Wilson. DeltaStar: A General Algorithm for Incremental Satisfaction
of Constraint Hierarchies, October 1990. Submitted to the Eighth International Conference on Logic
Programrmng

143



(6] Bjorn Freeman-Benson and Molly Wilson. DeltaStar, How I Wonder What You Are: A General Algo-
rithm for Incremental Satisfaction of Constraint Hierarchies. Technical Report 90-05-02, Department
of Computer Science and Engineering, University of Washington, May 1990.

(7] N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Programmer’s Manual.
Technical report, Computer Science Dept, Monash University, 1987.

(8] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge, MA,
1989.

(9] J. Jaffar and J-L. Lassez. Constraint Logic Programming. In Proceedings of the 14th ACM Principles
of Programming Languages Conference, Munich, January 1987.

[10] J. Jaffar and S. Michaylov. Methodology and Implementation of a CLP System. In Proceedings of the
Fourth International Conference on Logic Programming, pages 196218, Melbourne, May 1987.

(11] Clifford Walinsky. CLP(X*): Constraint Logic Programming with Regular Sets. In Proceedings of the
Sizth International Conference on Logic Programming, pages 181-196, Lisbon, June 1989.

[12] Molly Wilson. The Semantics of Hierarchical Constraint Logic Programming, October 1990. Submitted
to the Eighth International Conference on Logic Programming.

[13] Molly Wilson and Alan Borning. Extending Hierarchical Constraint Logic Programming: Nonmono-
tonicity and Inter-Hierarchy Comparison. In Proceedings of the North American Conference on Logic
Programming, Cleveland, October 1989.

144



Coping With Nonlinearities in Constraint Logic
Programming: Preliminary Results with CLPS(M)

Naim Abdullah? Michael L. Epstein, Pierre Lim'and Edward H. Freeman
' U S WEST Advanced Technologies
1545 Walnut Street
Boulder, CO 80302

naim@eecs.nwu.edu mepstein@uswest.com plim@uswest.com freeman@uswest.com

Extended Abstract

1 Introduction

Many “real world” problems require a mixture of nu-
meric computation and symbolic reasoning. Constraint
logic programming languages [1} have become recog-
nized as a powerful tool in dealing with these problems.
These languages provide symbolic reasoning capabili-
ties via logical inferencing and numeric computation
through an integrated constraint solver. Existing con-
straint logic programming languages such as CLP(%®)
[2] and Prolog III [3] do not adequately address opti-
mization problems nor do they try to solve nonlinear
constraints. )

Previously, we have reported on the integration of

- linear optimization with constraint logic programming

in the design of the language CLPS(M) [4]. CLPS(M)
allows natural specification of mixed integer linear op-
timization problems. Here we report on how CLPS(M)
copes with nonlinear constraints. Since variables sat-
isfying nonlinear constraints can be bound to complex
numbers, CLPS(M) has the ability to deal with com-
plex numbers as first class objects.

CLPS(M) is implemented as an instance of the Con-
straint Logic Programming Shell, CLPS [5]. CLPS is a
domain independent constraint logic programming sys-
tem that supports the connection of various domain
specific “solvers”. Within the CLPS framework, each
solver is responsible for determining the satisfiability of
the domain constraints encountered in the derivation
path. If possible, the solver satisfies the system of con-
straints and obtains the bindings for as many of the

*Graduate student at the Department of Computer Science,
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tStudent Associate — Intern in Science and Technology and
a graduate student in the Department of Computer Science,
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variables in the constraints as it can. The solver also
implements and exports the builtin predicates over the
domain.

In the prototype for CLPS(M), we used a solver that
utilizes Mathematica® [6] as the backehd for satisfic-
ing some of the nonlinear constraints3that are passed

to it. Since Mathematica can solve a wide variety of

nonlinear equations, CLPS(M) can solve many prob-
lems which the existing constraint logic languages are
unable to solve. Section 2 gives some examples of the
additional power available by having the ability to solve
nonlinear constraints. Section 3 discusses in more de-
tail how satisficing.and optimization can be done in the
presence of nonlinear constraints. Section 4 describes
some of the open research issues raised by this work
and section 5 gives our conclusions.

2. Examples

In this section, we illustrate through examples, the ad-
ditional power available by having the ability to solve
nonlinear constraints. As the examples show, the non-
linearities occur naturally in some problems, so having
nonlinear constraint solving capabilities is important
for these problems.

2.1 Circle

In Cohen’s survey of constraint logic programming lan-
guages (7], the following is given as an example of the
limitations of existing constraint logic languages:

on_circle(p(X, Y), c(A, B, (X'- M2 + (Y - B)"2)).

The on_circle predicate states that a point p(X, Y)
lies on the circumference of a circle centered at (A, B)
with the square of the radius of the circle being (X -
A)~2 + (Y - B)~2 . The query,




7- on_circle(p(7, 1), C), on_circle(p(0, 2), ©).

specifies the family of circles C, passing through (7, 1)
and (0, 2). The CLP(R) interpreter is unable to solve
this query and merely reformulates the constraints as:

Rsq = (7T -A) * (7T -4 +(1=-B) * (1-B5)
Rsq - -A* -A=(2-B) = (2-B)

and answers Maybe (Rsq denotes the anonymous vari-
able used by CLP(R) to represent the square of the
radius of the circles in the family).

The same query in CLPS(M) returns:

Rsq = 625 - 350 » A + 50 * A " 2,
B=-23+7%A

i

This is the result obtained by actually solving the
nonlinear constraints that are generated rather than
simply rearranging them. Cohen mentions a meta-
interpreter at Brandeis University that is able to get the
same result for this problem, but because we were con-
cerned about performance on real world problems we
decided to build a compiler-based system rather than
pursue a meta-interpretation approach.

2.2 Complex Multiplication

One of the often repeated examples of the virtues of
constraint logic programming languages is the com-
plex multiplication program [8]. In CLPS(M), complex
raultiplication can be done by the builtin ‘#’ predicate.
We will discuss the program below for the insights it
provides in nonlinear constraint solving:

zmul(c(R1, T1), c(R2, I2), c(R3, I3)) :-
R3 = Rt * R2 - Ii  I2,
I3 = R1 # 12 + R2 » I1.

It can be used for complex multiplication, if the
first two arguments are instantiated as in the follow-
ing query:

?- zmul(c(1, 1), c(2, 2), 2).

It can be used for complex division, if the third argu-
ment and either of the first two arguments are instan-
tiated as in the following queries:

?- zmii(c(1, 1), Y, c(0, 4)).
?7- zmul (X, c(2, 2), (0, 4)).

Unfortunately, the constraint solvers of existing con-
straint logic programming languages are not powerful
enough to permit this program to be used for finding
the square roots of a complex number, as in the follow-
ing query which attempts to find the square roots of
8i:

?7- zmul(c(X,Y), <(X,Y), c(0,8)).

As is usual with nonlinearities, CLP(R) answers
Maybe and rearranges the constraints to:

XeX=YsY
8-X*Y=XsY

Given the same program, and this last query,
CLPS(M) actually solves the system of nonlinear con-
straints to give a disjunction of all the possible solu-
tions:

7- zml(c(X,¥V), c(X,V), <(0,8)).

X=2,Y=2

or

X=-2»%3i, Y=2=#i
or

X=-2, Y=-2

or

X=22ei, Y=-2si

The second solution is in fact equivalent to the third
solution and the fourth solution is equivalent to the first
solution. It as at this point that we realize that the pro-
gram as given above for complex multiplication is defi-
cient in that it fails to specify the constraints that in the
complex number X +1iY, X and Y are constrained to be
real numbers. We use the builtin predicate real/1 to
enforce the constraint that a variable must be bound
to a real value. This predicate succeeds if the argu-
ment is bound to a real value and fails if it is bound to
something other than a real number. It delays if it is
unbound. The program now becomes:

zmul(c(R1, I1), c(R2, I2), c(R3, I3)) :-
R3 = R1 = R2 - I1 = I2, :
I3 = Ri1 = I2 + R2 = I,
real(R1), real(R2), real(R3),
real(I1), real(I2), real(I3).

Now with the same query, CLPS(M) finds all the
valid roots of 8i:

7= zmul(e(X, 1), <(X,Y), c(0,8)).

X=2,Y=2 or X=-2, Y=-2.

This example introduces the importance of having
adequate capabilities in the language (such as the pred-
icate real/1) in order to utilize the full power of the
solver.
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2.3 Circuits

Another example given in the CLP(R) electrical engi-
neering paper [8] is one of a simple circuit involving two
parallel resistors. '

resistor(V, I, R) :-
V=1=+R.

circuit(V, I1, I2, Rt, R2, It) :-
resistor(V, I1, R1),
resistor(V, 12, R2),
It = I1 + I2.

The resistor definition constrains a resistor to be-
have according to Ohm’s law. The circuit definition
places two resistors in parallel and constrains the to-
tal current in the circuit to be the sum of the currents
passing through each. In many queries the pattern of
instantiation of the variables permits CLP(R) to find
groundings for all the variables despite the fact that
the constraint in resistor/3 is nonlinear. For exam-
ple

7- circuit(Vv, I1, 12, 10, 20, 50).

Vv = 333.333
I1 = 33.3333
I2 = 16.6667

sk Yeg #%#

Unfortunately, there are many situations when
CLP(R) must return with a Maybe and a set of con-
straints, when in fact the system is solvable. Consider
how CLP(R) copes with the query

7- circuit(V, 10, 50, It/R2, R2, It).

V = 50=R2
It = 60
It = 5«R2 = R2

*+% Maybe ###%

Now in CLPS(M) we once again extend the program
to enforce the constraint that all resistances are posi-
tive:

circuit(Vv, I1, I2, R1, R2, It) :-
resistor(V, I1, R1),
resistor(V, I2, R2),
It = 11 + I2,
R1 > 0,
R2 > 0.

Now the query

7- circuit(v, 10, 50, It/R2, R2, It).

o

It = 60.,

R2 = 3.46...,

vV =173.20...,
R1 = 17.32...

returns a grounding for all of the variables.

3 The CLPS(M) Solver

3.1 Architecture of the solver

An important design goal of CLPS(M) is that the
new features that we are proposing like optimization
and solving nonlinear constraints should not penal-
ize the performance of those programs that do not
use them. These programs should exhibit perfor-
mance comparable to CLP(R). Consequently, the pro-
totype CLPS(M) solver contains a Gaussian subsolver,
a Simplex subsolver and a nonlinear subsolver. The
nonlinear subsolver is connected to Mathematica via
4.3 BSD UNIXTM gockets. Programs that do not need
the power of Mathematica need not pay the communi-
cation overhead of using it.

The nonlinear subsolver packages constraints as
ASCII strings inside the Mathematica function
Reducel ] and ships them to Mathematica. The an-
swers are parsed by CLPS(M). Mathematica can re-
turn results that may be integer, rational, real or com-
plex numbers. The parser in the nonlinear subsolver
recognizes these four data types and converts them to
real or complex numbers using a precision controllable
by the programmer. The nonlinear subsolver eliminates
multiple solutions that are redundant (for example, the
two solutions to X "2 + 4 * X + 4 = 0 are reduced
to one solution).

The bindings calculated by the subsolvers after pro-
cessing a given constraint set are stored internally in
solver data structures and variables are bound to these
values by storing pointers in the value field of variable
cells on the heap. After elimination of the redundant
solutions, the solutions that remain are put in a “solver"
choicepoint”[5]. The solutions in a particular solver
choicepoint are ordered in an arbitrary manner. The
variables participating in the collected constraint set
are bound to the first solution in the solver choicepoint.
When a failure occurs later in the execution and the
WAM backtracks to the current point, it is handed the
next solution in the solver choicepoint.

The solver exports the predicates real/i and
complex/1 which succeed if their argument is bound
to a real or a complex number respectively. The predi-
cates fail if the arguments are bound to something other
than a real or a complex number and they delay if the
arguments are unbound. The solver also exports the
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predicates real/1 and complex/1. The arguments of
these two predicates are bidirectional. The real and
imaginary parts of a complex valued variable may be
extracted by supplying the first argument. Or, a com-
plex number may be determined by supplying the sec-
ond argument to both the predicates.

3.2 Subsolver Selection Procedure

The constraint set passed to the solver will consist of a
system of equations and/or a system of inequalities. If
an objective function is present the solver will need to
maximize or minimize the objective function subject to
the constraints imposed by the system of equations and
the inequalities. The coefficients of any of the variables
in the objective function and in the system of equations
and inequalities may be complex.

The Simplex algorithm works for real valued vari-
ables and objective functions. We do not know of any
work in extending the Simplex algorithm to the com-
plex domain. We conjecture that it will continue to
work provided that certain precedences are observed
amongst the variables in the objective function. We
are working on proving this conjecture, but meanwhile
our solver cannot solve constraint sets which would re-
quire Simplex to work on the complex domain. Systems
of equations with complex coefficients are solved with
the Gaussian subsolver.

When our solver is unable to solve a set of nonlinear
c.nstraints, it delays them until the instantiation of
some variable participating in them. Then it considers
%1em again to see if it can solve them given the ad-
ditional information. This is analogous to the CLP(R)
sirategy of delaying nonlinear constraints until they be-
come linear. However, our strategy is more powerful in
the sense that we do not wait for a constraint to become
linear before trying to solve it again.

The programmer can perform optimization on a non-
linear collected constraint set by calling either of the
following two predicates:

optMin(0ObjFn?, ObjVal", VarList?, SolnVect™)
optMax(ObjFn?, ObjVal, VarList?, SolnVect~)

where 7 refers to an input variable and = refers to an
cutput variable.

The objective function and a list of variables ap-
pearing in it for which we want to find the bindings
at the optimal solution, are passed in and the objec-
tive value and the solution vector are returned. Our
solver does not yet have the capability to perform op-
timization when the objective function is nonlinear at
the time of ezecution. Note that the objective function
may initially be nonlinear and could become linear by

the time it is encountered in the derivation path due to
the instantiation of some variables appearing in it.

If the inequalities in the system of comstraints are
nonlinear our current prototype cannot perform opti-
mization. This could actually be done by introducing

_slack variables and converting the nonlinear inequali-

ties to nonlinear equations. Solving the resulting non-
linear system of equations would yield values for the
slack variables. The values of the slack variables will
indicate whether the original nonlinear inequalities are
satisfiable. We have not implemented this in the pro-
totype because we have not yet decided if the benefits
are worth the costs.

The system of equations in the collected constraint
set can include some nonlinear equations. In these cases
the solver will consult Mathematica for the solutions
to the nonlinear equations. Some of the solutions of
the nonlinear equations may be complex (with nonzero

imaginary parts). It will then repeatedly substitute '

the solutions in the system of equations and derive a
set of of linear systems. Simplex is then run on the
linear systems having real coefficients and the best val-
ues amongst them for the objective functions is chosen.
The (real) linear system giving the best value for the
objective function is then stacked with the complex lin-
ear systems on a solver choicepoint. The solver gives
back the best value for the objective function found
amongst the real linear systems, and upon backtrack-
ing hands out the complex linear systems of constraints
(on the solver choicepoint) along with a Maybe answer.

A detailed algorithm is given below for the subsolver
selection done by the solver:

if it is an optimization problem with a
nonlinear_objective_function then
/* Special purpose algorithms needed which are
not yet implemented. */
return Maybe
else if any nonlinear_inequalities in
constraint set then
/* Could introduce slack variables but not
yet implemented. %/
remove the nonlinear_inequalities from the
constraint set and delay them, restart the
subsolver selection procedure with the
modified constraint set
else if have objective_function/inequalities with
complex coeffs or (have objective_function/
inequalities with real coeffs and the systenm
of equations has at least one complex coeff) then
/* Note: A constant appearing alome is also
considered a ‘‘coeff’’. Need complex Simplex
for this which is not yet implemented. */
return Maybe
else if linear system of equations with no
objective_function and no inequalities then
/* Sys of equations may have complex coeffs
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80 can’t use Simplex. */
run Gaussian subsolver
else if constraints are linear then
/+ Everything real and have linear equations
and/or linear inequalities and/or
an objective function. %/
run Simplex .
else if it is an optimization problem then
/* Sys of equations is nonlinear with real
coeffs. The inequalities, if present, are
real and linear. The objective_function is
real and linear. */
solve the subset of nonlinear equations in the
system of equations by Mathematica
if Mathematica cannot solve them then
return Maybe
end if
/* run Simplex on all the real branches of the
solutions and get the best value */
for all the real branches in the solution
from Mathematica
substitute the current solution in the
rest of the equations
run Simplex on the linear system
constructed, and calculate the value
of the objective function
update the best value found so far for the
objective function
end for
stack the best value found in the real branches

with the complex branches found by Mathematica

in a solver choicepoint
aige

complex coeffs. »/
solve the system of equations by Mathematica
if Mathematica cannot solve them then

remove the subset of nonlinear equations from

the constraint set and delay them, restart
the subsolver selection procedure with the
modified constraint set
end if
arbitrarily order the solutions and push them
in a solver choicepoint '
end if

4 Future Research

Many interesting research issues are raised in the con-
text of this work. As mentioned earlier, a Simplex al-
gorithm working in the complex domain would make
our solver more powerful. Such an algorithm would be
useful in it’s own right and would find applications in
Electrical Engineering where currents are modeled as
complex quantities.

We also need to resolve the issue of whether it is al-
ways useful to solve a nonlinearity immediately versus

/* System of equations is nonlinear with poseibly

delaying it for sometime. The conditions under which
it is beneficial to delay nonlinearities should be investi-
gated.-

The order in which the nonlinearities are solved and
the order in which the solutions of a nonlinear equation
are put in the solver choicepoint, also needs a more
detailed examination.

5 Conclusion

Nonlinear constraints occur naturally in many prob-
lems. These problems are difficult or impossible for ex-
isting constraint logic programming languages. By hav-
ing nonlinear constraint solving abilities in the solver,
CLPS(M) has widened the scope of problems that can
be attacked by constraint logic programming languages
without compromising on performance for those prob-
lems that do not need these features.
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Abstract

Constraint-based reasoning and logic programming have been recently joined in the new field of constraint logic
programming (CLP). There is keen research interest and new CLP languages are emerging. intelligent
backtracking techniques have also been extensively explored and adapted to logic programming. As well,
object-oriented knowledge structures have been incorporated into the logic programming paradigm. All three of
these capabilities are important for model-based hypothetical reasoning systems. We have been developing a
new CLP language called Echidna which supports model-based reasoning using object-oriented knowledge
structures: a clausal reasoner based on SLD-resolution; constraint reasoning for discrete, integer and real
variables; and complete dependency backtracking using a justification-type reason maintenance system (RMS).
In this short paper, we describe the integration of dependency backtracking into Echidna. We note some
difficulties encountered with implementing dependency backtracking in CLP languages especially with
persistent object variables. A new methodology called dataflow dependency backtracking is developed which
overcomes these problems.

1. Introduction

Rapid developments are being made in the new field of constraint logic programming (CLP) as
characterized by Jaffar and Lassez [21]. CLP inherits the methodologies of logic programming and
constraint reasoning, replacing unification driven search with constraint propagation and constraint
solving whenever possible. New CLP languages incorporating various constraint reasoning techniques
continue to appear including PrologIII [4], CHIP [26] and recently Echidna [18].

Research in constraint reasoning methods for solving constraint satisfaction problems (CSPs) has a
long history including [28, 22, 10]. Consistency techniques can be used to enhance backtrack search via

look-ahead schemes [13, 26] and look-back schemes [24, 6]. The backjumping method of [11]is a -

look-back scheme central to intelligent backtracking.

Intelligent or dependency backtracking [25] is being actively explored for logic programming. Given
a particular failure, dependency backtracking attempts to identify the actual goal (called the culprirt)
which caused the failure. Backtracking to the culprit is potentially much more efficient than blind
chronological backtracking. Static data dependency analysis can identify the possible causes of a failure
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[2, 20]. Unification analysis can pinpoint the culprit more accurately but with an associated execution
time overhead [1, 9, 27]. The latter approach usually involves a reason maintenance system! (RMS)
[7, 8] to record which goal choices have led to the failure. One of these choices (usually the most recent
to maintain completeness) is identified as the culprit for backtracking. If the RMS retains the set of
choices known to fail (called a nogood) in a nogood database, then that particular goal environment
need never be attempted again. Two major types of RMSs are employed: the justification-type [8]
maintains a single reasoning context which is explored sequentially; while assumption-based systems [7]
manage multiple consistent environments. The simpler justification RMS is appropriate for dependency

backtracking in logic programming languages [9] and can be _extended to CLP reasoners as well.

Structured object-centered knowledge representations are important for model-based reasoning
systems [5, 12, 23, 17]. Current Horn clause programming languages provide no significant knowledge
structuring capabilities. To remedy this situation, object-oriented principles are being extended to logic
programming [30, 3].

We have been developing a new CLP language called Echidna which supports model-based
reasoning using object-oriented knowledge structures; a clausal reasoner based on SLD-resolution;
constraint reasohing for discrete, integer and real variables; and complete dependency backtracking using
a justification-type RMS. The goal of our research is a synthesis of these techniques into a simple
coherent reasoning architecture. A major research issue has been incorporation of intelligent backtracking
into the underlying CLP language. This problem is exacerbated by the inclusion of persistent logical
variables associated with objects. We have overcome the problem by introducing a technique we call
dataflow dependency backtracking. |

~ Echidna is most similar to CHIP [26] for discrete and integer variables but with an integral object-
oriented knowledge representation and an efficient dependency backtracking control structure. The
architecture is based on the logical dataflow of hypothetical information among unified clauses and
objects. Extensions in Echidna include dependency backtracking applied to clause unification, constraint
propagation and object message passing. Like Drakos[9], we discard dependency information on failure
thereby limiting the size of the nogood database. Furthermore, we reuse existing clauses in the proof
tree whenever possible thereby significantly improving the efficiency of the backtrack search. A long
paper describing these optimizations is in preparation {14]. '

The Echidna language is intended as a next generation expert systems programming environment for
application to real-time, model-based reasoning tasks. A preliminary version of Echidna has been
successfully implemented and is being applied to intelligent process control [15], automobile diagnosis
[16] and intelligent CAD. A commercial version of the software and programming environment is under
development [19]. A :

In this short papef, we describe some problems of intelligent backtracking in CLP languages and the
additional problems introduced by persistent logical variables. We introduce the notion of hypothetical
dataflow of information among unified clauses and objects. Finally, we describe the dependency

backtracking scheme.

1Also known as truth maintenance systems.
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2. Intelligent Backtracking

This section examines some of the issues in dependency backtracking. Some of the assumptions
appropriate for logic programming are less viable for CLP. When persistent logical variables are
introduced, the problems get worse. We conclude that a new view of dependency backtracking is
required. '

2.1 Reuse of Existing Subgoals

How realistic are the assumptions behind dependency backtracking? Is the additional overhead
required for correctly identifying the culprit on failure worth it? Empirical results suggest maybe [9, 27,
1]. We argue that for CLP languages, it is both more difficult and worth it. Consider the following
examples. We assume Prolog's left-to-right computation rule. Given the goal clause (1) below, suppose
that p; and p, succeed on particular values for their arguments X and Y, but p3 fails on this value for Y:

1) < p1(Y), p2(X), p3(Y).

What is the backtrack point? Chronological backtracking assumes that every previous goal
instantiation may have caused the failure thereby choosing po(X) as the culprit. Unfortunately, goal p;
has no possible influence on variable Y so inevitably p3 will generate the identical failure again. What is
worse, all of the possible solutions for p, will be eventually tried, each causing p3 to again generate the
same repeated failure (called thrashing [22]). Dependency backtracking will correctly identify p;(Y) as
the proper culprit. Goal p; has most recently (in the chronological order) had a possible effect on Y.
Then all succeeding goals (in the ordering) are undone and the culprit retried for a different instantiation
for Y. The method maintains completeness because no instantiation of p(X) in the conjunctive
subexpression of (1):

@ P20, p3(Y)

can succeed (as argued above). Consequently, the search tree for these two goals can be deleted from
consideration in toto without missing any possible solutions of the original goal (1).
However, the method is not optimal. Further significant improvements in dependency backiracking
are possible. Consider again expression (1). It is clear that goal py(X) cannot be the culprit for the
failure of p3(Y) but it should also be obvious that neither can py(Y) be a future culprit for any failure of
po(X). They shace no common variables being independent subgoals in the expression. Consequently,
it makes no sense to undo the current instantiation of p, when p; is identified as the proper culprit for
dependency backtracking (as above). Clearly the instantiation for pp(X) is already correct. It need not
be undone and retried from scratch for all possible clauses which could satisfy its goal. In particular,
every instantiation for X which has already been rejected by p; would also be rejected if the goal were
restarted. As well, every future possible instantiation for X which has not been explored would not yet
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be explored if p, were restarted. Inevitably, p; would return to the exact state it attained at the time of
the backtracking failure of ps. : '

We conclude for the common occurrence of independent subgoals that dependency backtracking
should differentiate between identifying the culprit and selecting which subsequent subgoals need to be
undone. They are separate issues.

Having separated the identification of the culprit from the necessary undoing of dependent subgoals,
we can further improve the efficiency of dependency backtracking. Consider a more complex version of
the goal of (1) which shares variables between the culprit p; and subgoals p, and ps3 as goal (3) below:

Now both p; and p, are mutually dependent subgoals because they share a common logical variable
X. Likewise, so are p; and p3 which share variable Y. If we evaluate (3) from left to right, then the
instantiation of p, can depend (but not necessarily2) on the particular instantiation chosen for pl.
However, we can still improve dependency backtracking even when subgoals are not independent.

Consider the simplest case. After backtracking to pj(X, Y) for another instantiation, suppose it
succeeds with a new value for Y but the value for X remains unchanged. The issue is whether the
dependent subgoal p, need be undone and restarted with the new instantiation for py. Of course, it need
not because its argument X has not changed. So the existing instantiation of p, is known to be correct
even though p; and p, are mutually dependent subgoals. No doubt other implementations of
dependency backtracking do not incorporate this improvement because it necessitates a more complex
storage allocation scheme than the popular WAM [29] architecture provides. However, we must
abandon the strict stack architecture of WAM anyway (as is argued in §2.4 below).

2.2 Bidirectional Dataflow

CLP introduces new complications for dependency backtracking. Information can propagate in both
directions within a clause in CLP languages. Logical data can flow from any instantiated goal to all other
goals in a conjunct whatever their particular textual or chronological order. Constraint propagation
among related goals sharing common variables is bidirectional by nature. Whenever a variable is refined
by one goal, all sister goals sharing that variable must incorporate the updated information.

Consider the following definite clause:

@ X, Y) - pg(X, Y), ps(X), pX, Y).
where X and Y are both domain variables[26] and the gbals, P4, P5 and pg, are all constraints.3 »
Domain variables.are refined under constraint propagation by reducing their domains monotonically. We

denote a change to domain variable X as X' and write conveniently X' & X to mean that the domain Dy

2Static data dependency analysis would not be able to distinguish this situation whereas unification analysis
could.

-3Constraints in Echidna include primitive constraints and definite clauses with embedded constraints.
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of variable X has been refined to D'x such that D'y & Dx. The binding of a domain variable is its
currently associated domain. -

Suppose constraint ps has been applied to X yielding a refinement X' which needs to be prdpagated
to constraints p4 and pg which share variable X. There may be some values in variable Y which are no
longer consistent with the new X'. So X' must be propagated in both directions as indicated in Figure 1
below. If either p4 or pg refine variable Y to Y', then consistency must also be propagated along the
dataflow path for Y to the other constraint.

o

q(xl Y) - p4(xl Y)/ pS(X)p p6(X; Y)-

«— Y-

Figure 1: Bidirectional Dataflow in Definite Clauses

The bidirectional flow of data in CLP languages complicates the implementation of efficient
dependency backtracking. Data can flow both ways in clauses during backtracking as well as during
constraint propagation. In contrast, stack-based Prolog architectures [29] make a number of simplifying
assumptions which are not appropriate here:

« Every node in the proof tree preceding the culprit (in chronological order of elaboration) is unaffected
by the retraction of the culprit goal. Only clauses which can successfully unify with the existing
variable bindings of these nodes will be tried for the culprit goal. This is not true for dependency
backtracking in CLP reasoners since constraints can have been propagated in both directions.
Retrying the culprit goal with another clause which unifies with the preceding variable environment
may still require constraints to be propagated into this environment.

. EVery node in the proof tree following and including the culprit goal is to be undone and retried from
scratch. This strategy is easy to implement in a stack discipline but is very inefficient. As argued
previously, there may be significant proof subtrees following the culprit node which either: 1) do not
share any variables with the culprit goal; or 2) if they do share common variables, their new bindings
are consistent with the current instantiations for these nodes. A forward-looking data dependency
analysis [2, 20] could detect the first case but a dynamic dataflow analysis is required for the latter.

For example, please reconsider the expression of (4) and the dataflow diagram of Figure 1. Suppose
the culprit is identified as p5(X) and a new instantiation for the goal is attempted producing a new
binding X'. We note that X and X' may have any arbitrary relationship. Consequently, the backtracking
of ps introduces a bidirectional dataflow propagation of X' which is monotonic to p4 but may be
nonmonotonic to pg. In the case of py, it is necessary to apply constraint propagation to the updated
value X'. For a nonmonotonic case on pg, we must attempt to reunify its current clausal instantiation
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- goals to the schema which generatively construct a constraint network representing the relation.

with the new goal pg(X', Y). If pg is realized as a definite clause, then it may be necessary to repeat the
dataflow of nonmonotonic information into the goals of its body. By so doing, we can determine which
branches of the existing proof tree for pg(X, Y) can be reused for pg(X', Y) and which branches need to
be undone and their goals restarted. Other schemes for dependency backtracking would always undo
pe(X, Y) and restart pg(X', Y) anew regardless of how much of their derivation is common.#

2.3 Nonlocal Data Dependencies

We return to the important issue of the nonlocal side-effects of logical variable propagation in CLP
languages. Unlike chronological backtracking, the culprit goal may occur anywhere in the proof tree and
consequently backtracking propagated arbitrarily far in the derivation. In the definite clause of (4),
suppose again that p5(X) is backtracked yielding a new binding X'. Besides propagating this new
information to nodes p4 and pg inside the clause as described above, we must also propagate X' outside
the clause to the variable U of goal q(U, V) which was unified with (4), to every sister goal of q(U, V)
which shares variable U, and if q(U, V) appears in the body of a definite clause whose arguments
include U, then the dataflow backtracking must be propagated outside that clause, and so on. Figure 1
illustrates the dataflow paths within the clause. -

2.4 Persistent Object Variables :

Persistent object variables present additional difficulties. A schema in Echidna is a representation
for a class of obJects in the normal object-oriented tradition. Schemata contain persistent object variables
called parameters and collections of logical methods for manipulating these variables. A schema instance
is a valid term in the logic which may be created, bound to a variable, unified with other instances as
well as be sent messages. From the logic programming perspective, the schema is a generative
representation for a relation over its parameters. The logical methods defined within the schema are
definite clauses whiich manipulate these variables. A particular relation is obtained by sending message
5

The variables of a schema instance reside within that instance and hence persist beyond the
elaboration of any particular clause defined as a method within the schema. This property is essential for
recording object state within the instance. Consequently, the RMS must keep track for each persistent
variable the history of derivations which have influenced its binding. These derivations may be the
result of the multiple and distinct goal elaborations. Any of the goals involved may be the proper culprit
for dependency backtracking.

Figure 2a contains an Echidna definition of a schema called foo. The schema has two persistent
logical variables (parameters). The parameter X is a real variable while the parameter Y has a discrete
domain of colours. There is also a third persistent Herbrand locaf'variable Z. Within the schema there
are three logical methods defined: r(Z), q(X, Y) and colour(Y). These methods are accessed by sending

logical messages to the schema using the send operator below:

4We present more details of reusing existing proof subtrees in [Havens91].
SMore details of object programming in Echidna can be found in [HavSide90].
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S:m(X, ...)

where S is the receiving schema; m is the message; and (X, ...) are the message arguments. For
example, to assign the colour of some instance F1 of foo, we could send the message,

F1:colour(red).

«~7Z >

- 1(2) = p7(Z,X).

«— X'>

schema foo '
real X. I | | |
{red, blue, green} Y. qX, Y):- p4(X,Y), p5(X), p6(X,Y).
{1(2) :- p7(Z, X). : I | I

q(X, Y) :- p4(X, Y), p5(X), p6(X, Y).

colour(Y). Y-

} colour(Y).

(@) ' . (b)

Figure 2: Dataflow over Persistent Object Variables.

The dataflow diagram for foo is drawn in Figure 2b. The persistent variables serve to link clause
instances across different proof trees. Indeed the clauses do not even have to be associated with the
same query. The complications for realizing dependency backtracking are serious. We are forced not
only to propagate constraints across multiple proof trees but also to backtrack across this same structure.
Given a particular culprit in the proof network, we can no longer afford to undo every subsequent goal
in the chronological ordering. Standard dependency backtracking will not suffice. It would require
undoing every message sent to any schema subsequent to the message which contains the culprit. For

interactive reasoning tasks, this would be intolerable. We must attempt instead to analyze the dataflow

of backtracking information throughout the proof network thereby retaining as much of the work as
possible. ‘ '

3. Hypothetical Dataflow

The difficulties in augmenting CLP with dependency backtracking noted above lead towards a notion
of hypothetical dataflow. We visualize the CLP reasoning engine as systematically constructing
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hypotheses by making nondeterministic goal choices then propagating the logical consequences of these
choices over the clauses constructed to represent the proof tree(s). The nodes in a proof tree correspond
to goals and constraints. For each goal, the reasoning engine makes a free choice of a prbgréxm clause
among the candidate set for that predicate. The chosen clause is unified with the goal. On success, the
unification establishes new identity constraints between the corresponding terms in the goal and the
clause. By the addition of these new constraints, hypothetical information is propagated along the
logical variables on both sides, potentially in both directions. Persistent object variables allow
hypothetical information to pass between proof trees established for different queries. Hypothetical
information is propagated along variables but through constraints, predicates and across the identity
constraints linking clauses. When it is propagated from one variable to another, it is transformed by the
constraint or clause into a different form but it inherits the underlying hypotheses which created it.

In this section, we describe the nature of this hypothetical information and how it can be used in a -

CLP reasoning engine. In the next section, we show how it can be used to realize dependency
backtracking.

3.1 Hype ,

The nature of the hypothetical information is easy to characterize. It is composed of two parts: 1)
the current binding of an associated logical variable, and; 2) the set of goal choices which have caused
this particular binding. Hypothetical information is represented as discrete units associated with logical
variable events which we refer to simply as hype for lack of a better term. The hype associated with
variable X is the quantity: V

n=(X,H)

where X' is the refined bindihg of X and H is the set of hypotheses supporting the new binding. H
is called the label of 1| using normal RMS terminology [7]. We know that CLP reasoner has applied
some constraint to X yielding a new binding X' such that:6

XcX

The normal mode for the CLP reasoner is to progressively refine X from its full declared domain
Dx0 towards a ground value "a" or perhaps too far to bottom. We can write:

X05X'o...of{a}lo Ll

Each step in this refinement requires adding new hypotheses to the label supporting the new binding.

The label for bottom represents an inconsistent environment, a nogood.

Bwe assume all logical variables are domain variables of one type or another. The binding for a domain variable
is some subset of its original declared domain.
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3.2 Goal Metavariables

Hypothesis is created freely in the process of satisfying goals. We represent the nondeterministic
state of each goal in the proof tree for a particular query as a state variable. These state variables are not
variables in the underlying first-order logic (i.e. the object language) but are goal meravariables. They

are accessible only to the reasoning engine itself. Each metavariable has an associated domain which

contains the clause choices which may be used to satisfy the goal. Choosing a particular value for the
metavariable creates a new hypothesis about the proof of the query. The choice causes the
corresponding clause to be unified with the goal and consequently the proof tree to be further elaborated.

The reasoning engine maintains a vector of the goal metavariables which it manipulates to find
solutions to the input queries. In the process, goals are elaborated, predicates are evaluated and
constraints are propagated. The size of the state vector grows as a proof tree is constructed and shrinks
when dependency backtracking occurs. Metavariables are freely manipulated by the reasoning engine to
effect dependency backtracking. Indeed, the engine is only concerned with assigning metavariables such
that the clauses in the proof tree remain consistent during elaboration.

Let G = p(X;, ... , X;,) be an unelaborated goal where p is the principle functor and Xis o » X are
the arguments. We associate with G a goal metavariable { which records the current clause choice. The

domain of { is DC = {pl, ..., p™} which is the set of clauses defining the predicate p. When G is
selected for elaboration, it will be satisfied if some clause pl € DC can unify with G such that all its

subgoals can be satisfied and all its constraints remain consistent. The process of choosing pl is
nondeterministic in the general case.
The representation of DC is mutable in order that it can be manipulated by the reasoning engine and

its RMS. Associated with DC is a vector which has the following properties. Each element j in the
‘vector may contain either nil (indicating that p‘ € DC is a valid candidate clause for G) or a ﬁogood
(which indicates that pl & DC and the clause is an inconsistent choice for G).

Elements of DC are deleted by various operations in the reasoning engine. Retrieval of candidates

clauses from the knowledge base deletes those elements which cannot match the goal pattern of G. The
unification of G and a candidate clause deletes the candidate if the clauses cannot be unified. Elements

are also deleted on fa.ilure by the RMS as described later in §4. If ever DC =, then every candidate

clause for G has been attempted and failed. Consequently, the predicate p(X;, ..., X)) = L for the
arguments X, ..., X, given in G and bottom is signaled to the RMS. Deep backtracking is then begun
with G as the inconsistent node.

Goal metavariables and their domains are only constructed for nondeterministic goals (those goals
which could be satisfied by unification with more than a single clause in the knowledge base). Neither
are metavariables constructed for primitive constraints or primitive system predicates. Generators such
as split(X) and indomain(X) defined as in CHIP [26] also have associated metavariables but of a
different type.
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3.3 Labels

We use the notion of label for the same purpose as [9, 1]. Labels record causal support in the RMS
for dependency backtracking. A label is a set of clause choices which has caused a particular derivation.
More precisely, a label is a chronologically ordered set of metavariable choices:

H= { cw=aw, ves s Ci=ai, vee y Cc=a,c } forw<i<c

Each metavariable choice is an assignment, {;=a;, where {; is the metavariable'and a; € D is its choice
value. In any non-empty label, there is a distinguished choice, {.=a., which is the most recent called the
culprit [25] which is the choice selected on failure for dependency backtracking. Besides being
associated with logical variables, labels are also attached to boolean propositions, and first order goals:

3.3.1 Propositions

The nodes in a proof tree correspond to subgoals generated by a particular derivaton (and hence a
particular choice of metavariables). These choices are independent of the support for any logical
variables which may appear as arguménts in their goals. We define H(?p) as the label of the proposition,
7p, associated with some goal:

G =pXy, ... » Xp)

H(?p) is the ordered set of metavariables choices (from a toplevel query to the goal G itself) which have
caused G to be elaborated. Each choice,

Lo=i € H(p),

specifies a particular choice of a clause, qi e Q, to satisfy either G or one of its parent goals. If any
choice in H(?p) is changed, it will necessarily remove G from the proof tree. Fora purely propositional
system, H(?p) entirely characterizes the state of G. This is not true for first order goals where the
support for their arguments must also be considered. '

3.3.2 Goals
The label H(G) of the goal G is the set of metavariable choices which have caused the goal to be in

its current state of resolution. H(G) is composed of two different influences: -
« the propositional label, H(?p), for G, and
« the variable label, H(X), for each variable,-X e (X}, ..., X )

We can write: S

H(G) = H(?p) VHX ) v ... VHX)

where contributions of support from the various components of H(G) are not disjoint but usually share
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many of the same metavariables.

Given the goal G and the candidate clauses in DC’ the reasoning engine must select one clause to
unify with G. We think of the reasoning engine as having an active (and clever) agent associated with
each goal. This agent continually monitors its metavariable. Whenever its current value becomes
"nogood", the agent spontaneously changes the value. It does so by examining the remaining possible
choices in the metavariable domain. It chooses a next candidate clause (by assigning a new value to the
metavariable) such that the substitution of the new clause for the previous failed clause will minimize the
constraint propagation effects to the existing proof tree(s).

Letje DC be chosen as the current value for {. Let the corresponding rule clause p be of the form:

p(Yq, s Y,) -Ry, s R;, ... Rm-

If the unification fails, pi(Xl, ... » X;) = L meaning that clause p’ is false for arguments (X, ... , X)).
The reasoner deletes value j from DC and looks for another choice. The nogood which supports the
deletion in DC is derived from H(G) as described in §4. o

If the unification succeeds, the reasoning engine constructs new metavariables for each goal R; in the
body of pl. The propositional label, H(?Rj), for R is:

H(?Ri) =H(?p) U {{ =]}

3.4 Combination Rules

New hype is constructed by unification, constraint propagation and predicate application. Dataflow
dependency dépends on the actual changes made to logical variables propagated among related goals,
not the potential of changes [27]. Sharing a variable between two goals is necessary but not sufficient for
data dependency between them. Indeed in CLP languages, the dataflow dependency can run in both
directions simultaneously between goals sharing common variables.

3.4.1 Unification

The propagation of hype is initiated by unification (Which is induced by metavariable choices).
Unification builds identity constraints between unifying terms. We consider four cases of dataflow
resulting from unification which are illustrated in Figure 3 in sequence. Let X and Y both be arbitrary
terms to be unified. During their unification, hype can be exchanged between X and Y as follows:

« case 1: X == Y - Both terms unify exactly. A new identity constraint is established between
X and Y.” No monotonic change need occur to either term and no hype is propagated in either
direction. If X and Y are logical variables, then DX = DY and the labels of both variables remain the
same after unification:

H'(X) =HX) and H'(Y)=H(Y).

"The identity constraint may be implemented by both variables sharing common storage.
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» case 2: X = Y - The variable Y subsumes the term X causing hype to propagate from X to
Y. If X is also a variable, then DX ¢ DY. The new hype Nny' is derived from X and the proposition,
7p, (which caused the unification) as follows:

My' = (X, HX) v H(?p) )
Ty is propagated to Y with the result that:
Y'=X and H'(Y) = HX) U H(?p).
The label of X remains unchanged:

H'X) = HX).

e case 3: X <& Y - The variable X subsumes the term Y which is the symmetric case of 2 above.
Hype is propagated from Y to X. If Y is a variable, then DX D DY. Hype from the unification is:

nx' = (Y, H(Y) VH(p))
and is propagated to X with the result that:
X'= Y and H'(X) =H(Y) U H(?p)
while the label of Y remains unchanged: o
H'(Y) = H(Y).

« case 4: X & Y -Both X and Y are variables such that DX "Dy # & and neither variable
subsumes the other. New hype for both variables is the same: ‘

nx =My = (XY, HX) UHY) UH?p))

which is propagated in both directions with the result that:

X=Y=XNnY

The labels for both variables are changed to:
H'(X) = H(Y) = H(X) U H(Y) U H(?p).

Once established by unification, identity constraints are propagated like other constraints as described

in the next section.
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Figure 3: Dataflow under Unification

3.4.2 Constraint Propagation

Constraints tie together logical variables under a specified relation. The relation can be a primitive
constraint or represented as a definite clause. Echidna uses a type of arc consistency [22] generalized for
k-ary constraints. Constraints are implemented as compiled set functions over the variable domains. Let

R be a k-ary constraint over domains D,,..., Dy, then the ith set function of R is:

FiR) = { aj | a1,..., aj,..,ak ) € R, a1 € D1,.., ai € Di, ,..,ake Dk} =

Graphically, the constraints are directed hyper-arcs. Each constraint has k argument nodes and a
distinguished member of the arguments called the targer node. The set function is applied to the
argument domains yielding a new domain for the target. 4

Constraints transform hype across logical variables. Let C be an instance of a constraint with
arguments, X1, ... , Xi, ... , Xk:

C =R(1, ..., Xj, ... , Xk)

A constraint is quiescent whenever all its variables are arc consistent. Xi is made arc consistent by
applying Fi(R) to D1, ..., Dj, ... , Dk thereby removing those values from Dj which do not satisfy the
constraint R.

Whenever Xi is refined to Xj' by arc consistency, then new hype is added to that variable and the
hype is propagated to every other constraint (either primitive or clausal) which has Xi as an argument.
The new hype computed for Xj is:

nx;= (Xi, H(C))
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where H(C) is the label supporting the application of the constraint:

"H(C) = H(?c¢) VHX1) V... U HXi-1) U HXi+1) U ... U H(Xk)
Graphically, the propagation of hype for constraints is illustrated in Figure 4. The propositional
support for the constraint H(?c) is inherited from the goal clause Q in which it appears:

H(?c) = H(?Q).

H?) M M Mxa

R

c(X1,..., Xi,..., Xn)

#

Mxi
Figure 4: Dataflow through Constraints

3.4.3 Predicate Application
Predicates include both system primitive predicates and definite clauses (without embedded

constraints). Predicates are elaborated once by the reasoning engine causing the proof tree to grow new
branches. Hence, a predicate can only create new hype once but for more than a single argument
variable. Let p be a predicate on arguments X1, ... , Xi, ... , Xn. The predicate is applied to its
arguments and for each argument Xj which is bound to a new value Xj', we create new hype:

Ny = Xj, H(?p) L HX1) L H(X;j) U HXp))

and propagate it along X1 The general case of dataflow for predicates is illustrated in Figure 5 where

only some of the Ny} # Nx;-
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Mx1  Mxi Mxn
Figure 5: Dataflow in Predicates

4. Dataflow Dependency Backtracking

Given the machinery described above, intelligent backtracking is straightforward to implement. We

make three significant contributions:

« The culprit is identified as the most recent clause choice which has bound a logical variable
appearing in some inconsistent constraint or failed predicate. The method is analogous to
unification context analysis of [27] but extended for domain variables in a CLP reasoner.

« Like Drakos[9], nogood information is computed during forward reasoning (and constraint
propagation) but discarded on failure thereby limiting the size of the dependency lattice in the
RMS. .

« Definite clause instantiations in the proof tree are reused whenever possible thereby avoiding the
recomputation of significant portions of the tree.

In our implementation, the RMS records hype events associated with logical variables. The event
records form the nodes in the dependency lattice maintained by the RMS. The arcs in the lattice are the
causal support of the unifications, constraint propagations and predicate applications as described above.
Each node and its supporting arcs roughly correspond to a datum as defined by deKleer[7]. The
maximal nodes of the lattice are queries and the minimal nodes are the fringe of goal elaboration and
constraint propagation. ‘

RMS uses the dependency lattice for two purposes: 1) computing the culprit on failure for
dependency backtracking and; 2) optimizing the reuse of existing clauses on failure. We describe only
the first function here. _

The CLP reasoning system continues to elaborate goals and apply constraints until a failure or

inconsistency is encountered. From the failing unification, goal or constraint, a nogood label H(1) is |

constructed. H(L) represents a metavariable choice environment which is known to be inconsistent. At
least one of the choices in H(L) must be changed to remove the failure. Any one will do since every
choice was necessary to arrive at the current inconsistent proof. However, in order to ensure
completeness in dependency backtrack search, we synchronize the iteration of choice variables by
selecting the most recent chronological choice in H(L) as the culprit. Let H(L) take the form:
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HL={.., Cn-1=2n-1, Gn=2y } n>0.

We identify the culprit as {,=a, and the support for removing choice a, from D¢ _ as:
. Cn-1=an-1 } n20.

Deleting a, from Dgn has the side effect of undoing the clause instance allocated for that choice. ‘¥
removes the clause choice from future consideration until any. its own support is deleted by a higher
order failure in the chronological order of H(L). If any support for ‘¥ is deleted, then clause aj is
restored to metavariable domain Dgn and becomes a candidate clause for G again. Note that current
dependency backtracking techniques in Prolog reinitialize the entire goal including all of its candidate
clauses in order to maintain the lexical order of clause selection defined in the language. We make no
assumptions in Echidna about the execution order of candidate clauses for a goal.8 This approach
gains efficiency because it only restores those candidate clauses which may possibly now succeed given

the higher failure.

Once culprit has been identified and its current metavax_'iablé choice deleted with the support of the
nogood, the goal is left again unsatisfied and unelaborated. A new value is chosen arbitrarily for the
metavariable from its domain (if any candidate clauses remain) and unification begun anew. On success,
new identity constraints are established among the unifying terms in the goal and the matching clause and.
their bindings propagated.

If the culprit metavariable domain is empty, then no possible alternate clause can be unified with its
goal. Every clause in the metavariable domain has been tried and failed. This initiates deep backtracking
because the goal itself is false given its arguments. H(G) = 1. The union of all the individual nogoods
for the metavariable choices is itself a nogood [1]. The corporate environment represented by these
choices necessarily leads to failure. We construct the nogood for G as follows:

nogood(G) = ) nogood(pi)
peDg

then identify the new culprit as the most recent choice in this ordered set. And the dependency
backtracking process continues. ' '

5. Conclusion :
In this short paper, we have descnbed a method for reahzmg efficient dependency backtrackmg ina

new CLP language called Echidna. The new language is intended for model-based expert system
applications which require object-centered knowledge representation, support for hypothetical reasoning

8The programmer must avoid assumptions about the execution order of.clauses in a predicate.
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and an interactive user interface. To achieve these capabilities, we have synthesized techniques from
logic pregramming, constraint reasoning, reason maintenance and object-oriented programming.
Previous dependency backtracking techniques have been applied to logic programming experimentally.
Extending them to CLP has presented some difficulty which is further exacerbated by persistent object
variables. These problems have necessitated development of a new way of viewing the propagation of
hypothetical information in CLP reasoners. The result is dataflow dependency backtracking. A first
implementation of the Echidna language is complete with a second commercial version underway. We
are currently experimenting with the new programming language in a number of applications. QOur
- theoretical interest is now focused on optimizing backtrack efficiency by reusing existing clause
instances on failure even when their arguments change nonmonotonically.
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Abstract

Although the Constraint Logic Programming (CLP) theory (7] is an elegant generalization

of the LP theory, it has some difficulties in capturing some operational aspects of actual CLP
languages (e.g. [8, 6, 3, 12, 18, 19]). A difficulty comes from the intentional incompleteness
of some constraint-solvers. Some constraints are simply delayed until they can be decided by
the constraint-solver. Others are approximated, providing an active pruning of the search
space without being actually decided by the constraint-solver.

This paper presents an extension of the Ask & Tell framework [14] in order to give
a simple and precise operational semantics to (a class of) CLP languages with an incom-
plete constraint-solver. The basic idea is to identify a subset of the constraints (the basic
constraints) for which there exists an efficient and complete constraint-solver. Non-basic
constraints are handled through two new combinators, relaxed ask and relaxed tell, that are
in fact relaxations of the standard ask and tell.

The extended framework is instantiated to CLP on finite domains, say CLP(F) (16,
6]. Arc-consistency is shown to be an efficient and complete constraint-solver for basic
constraints. We also present how non-basic constraints can be approximated in CLP(F).
The resulting semantics precisely describes the operational semantics of the language, enables
the programmer to reason easily about the correctness and efficiency of his programs, and
clarifies the links of CLP(F) with the CLP and Ask & Tell theories.

It is believed that the approach can be used as well to endow other CLP languages
such as BNR-Prolog [12], CLP(Z*) [19], and parts of Trilogy [18] with a precise operational
semantics.

1 Introduction

Constraint Logic Programming (CLP) is a generalization of Logic Programming (LP) where
unification, the basic operation of LP languages, is replaced by the more general concept of
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constraint-solving over a computation domain.
Syntactically, a CLP program can be seen as a finite set of clauses of the form

He—cAN...ANca OBiAN...ANBn,

where H, B,, ..., Bnm are atoms and ¢y, ..., c, are constraints. A goal in a CLP language is
simply a clause without head. 4

The declarative semantics of a CLP language can be defined either in terms of logical
consequences or in an algebraic way. An answer to a CLP goal is no longer a substitution
but rather a conjunction of constraints ¢y, ..., cn such that

P,T = (¥)(e1 A...Acn = G) (logical version)
Pls(¥)(c1 A ... A cn = G) (algebraic version)

where P is a program, S is a structure, 7 is the theory axiomatizing S, and (V) (F) represents
the universal closure of F. The rest of the presentation can be read from a logic or algebraic
point of view and we use the notation D = to denote that fact. _

The operational semantics of CLP amounts to replacing unification by constraint-solving.
It might be defined by considering configurations of the form (G, o) where G is a conjunction
of atoms and o is a consistent conjunction of constraints. Now the only transition that needs
to be defined between configurations is the following:

Heah. . .AeaOBA...ABa€P
DE@)(cAaA...Acax AH=A)
(ANG,0) — (BiA...ABaAG,cAci A...Aca A H = A)

In the above tra.zisition_ rule, A is the selected atom (it can be any atom in the goal since
the order in a conjunction is irrelevant) and (3) (F') represents the existential closure of F'.
The CLP theory [7] imposes a number of restrictions on S, 7, and their relationships to
establish equivalences between the semantics. Also tlie CLP language should be embedded
with a complete constraint-solver, which means that, given a conjunction of constraints o,
the constraint-solver should return true if D = (3)(c) and false otherwise (i.e D k= (V)(—7)).

Although the CLP theory is an elegant generalization of the LP theory, it has some diffi-
culties in capturing all operational aspects of actual CLP languages such as [8, 6, 3, 12, 18, 19].
One difficulty comes from the possibility offered by these languages to state constraints that
cannot be decided upon by the constraint-solver. This is the case for instance of non-linear
constraints over rational and real numbers which are simply delayed until they become linear.
Another difficulty comes from the fact that, for some classes of problems, an intentionally
incomplete but efficient constraint-solver might well turn out to be more valuable from a
programming standpoint than a complete constraint-solver. This is justified by the trade-
off, that appears in many combinatorial problems, between the time spent in pruning and
searching.
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The present paper originates from an attempt to define in a precise and simple way the
operational semantics of CLP over finite domains, say CLP(F) [16, 6], which suffers for both
difficulties mentioned above. CLP(F) was designed with the goal of tackling a large class
of combinatorial optimization problems with a short development time and an efficiency
competitive with procedural languages. Typical applications for which CLP(F) is success-
ful include sequencing and scheduling, graph coloring and time-table scheduling, as well as
various assignments problems. The basic idea behind CLP(F) is to associate to variables a
domain which is a finite set of values. Constraints in CLP(F) include (possibly non-linear)
equations, inequalities, and disequations. It is simple to see that a complete constraint-solver

exists for the above constraints but would necessarily require exponential time (unless P =

NP). Moreover many of the abovementioned applications require different solutions and use
various kinds of constraints, heuristics, and problem features. Hence it is unlikely that a
complete constraint-solver be adequate for all of them. Fortunately most of them basically
share the same pruning techniques and the idea behind CLP(F) was precisely to provide the
language with those techniques'. However CLP(F) does not inherit directly its operational
semantics from the CLP framework since, on the one hand, some constraints are only used
when certain conditions are satisfied (e.g. disequations) and, on the other hand, some con-
straints are used to prune the search space although the constraint-solver cannot, in general,

"decide their satisfiability (e.g. inequalities). Previous approaches to define the operational

semantics of CLP(F) were not based on the CLP framework but rather were given in terms
of inference rules [15]. '

The new operational semantics presented here is based on the Ask & Tell framework
[14] which generalizes the CLP framework by adding the concept of constraint entailment
(i.e. ask) to the concept of constraint-solving (i.e. tell). Ask constraints directly account for
the first difficulty in CLP languages: they might be used to restrict the context in which a
constraint is executed. However to account for the incompleteness of the constraint-solver,
we need to generalize the framework?. The basic idea behind the semantics presented here
is to split the set of primitive constraints into two sets:

e basic constraints for which there exists an efficient and complete constraint-solver;
e non-basic constraints which are only approximated.

The basic constraints are handled following the standard CLP theory and are precisely
those constraints that can be returned as an answer to a goal. Non-basic constraints are
handled through two new combinators, relaxed ask and relaxed tell. Contrary to ask (resp.
tell), relaxed ask (resp. relaxed tell) check entailment (resp. consistency) not wrt the ac-
cumulated constraints but rather wrt a relaxation of them. Moreover relaxed tell enables
to deduce new basic constraints approximating the non-basic one. Formally, relaxed ask

1Note that for other types of problems a complete constraint-solver might be more a.ppropriéte 11].
2In fact Saraswat considers his framework as parametrized on the combinators as well so that we are
actually instantiating his framework.
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and relaxed tell are not mere combinators but rather they define a family of combinators
parametrized by a relaxation and an approximation function. The relaxation function spec-
ifies the relaxation of the accumulated constraints while the approximation specifies how to
infer new basic constraints. J :

Describing a CLP language in the extended framework (i.e. with relaxed ask and tell)

amounts to specifying:
o the basic constraints and their associated complete constraint-solver;

o the non-basic constraints and their associated (1) relaxation functions, (2) approxima-
tion functions, and (3) constraint-solvers that are complete for the conjunction of a
non-basic constraint and the relaxation of a conjunction of basic constraints.

The extended framework is then instantiated to CLP(F). We identify the subset of basic
constraints and show that arc-consistency [9] provides an efficient and complete constraint-
solver for them. We also define the relaxation and approximation functions used in CLP(F)
and suggest the non-basic constraint-solvers. '

The contributions of the paper are twofold.

1. It gives a precise and simple operational semantics to CLP(F), characterizing what is
computed (e.g. what is an answer) and how the computation is achieved (e.g. what
is the pruning at some computation point). The semantics allows the programmer to
formally reason about the correctness and the efficiency of his programs. It also clar-
ifies the relationships between CLP(F) on the one hand, and the CLP and Ask&Tell
frameworks on the other hand.

2. It proposes an extended framework that can possibly be instantiated to endow lan-
guages such as BNR-Prolog [12], CLP(Z*) [19], and parts of Trilogy [18] with a precise

operational semantics.

The rest of this paper is organized in the following way. The next section defines the
operational semantics of basic CLP. Section 3 instantiates basic CLP to finite domains.
Section 4 describes the new combinators for non-basic constraints, relaxed ask and relaxed
tell. Section 5 instantiates relaxed ask and relaxed tell to CLP(F). Section 6 contains the
conclusion of this paper and directions for future research. '

2 Basic CLP

In this section, we define the syntax and operational semantics of the class of languages we
consider‘for Constraint Logic Programming. We use a structural operational semantics [13]
similar to the one used in [14]. There is an important difference however due to the various

possible interpretations of nondeterminism. Saraswat’s semantics, as well as other semantics
for concurrent logic programming languages, describes all possible executions of a program
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on a given goal. Hence an actual implementation might actually fail (resp. succeed) for
some elements of the success (resp. failure) set. Our semantics captures a single execution
and hence an element of the success set might never fail in an actual implementation. This
difference does not show up in the transition rules but rather in the definition of the success,
failure, flounder, and divergence sets.

2.1 Syntax

The abstract syntax of the basic language can be defined by the following (incomplete)
grammar:

P := H«B|PP
B ::= Alask(c) — B|tell(c)| B& B |3z B |true

In words, a program is a nom-empty set of clauses. A clause is composed of a head
and a body. The head is an atom whose arguments are all distinct variables. The body is
either an atom, an implication ask(c) — B where ask(c) is an ask on constraint c, a tell on
constraint ¢, a conjunction of two bodies, an existential construction 3z B where B is a body
with variable z free, or true. For completeness, some semantic rules should also be added,
for instance the rule stating that any variable in a clause is either existentially quantified or
appears in the head.

The concrete syntax can be the one of any existing CLP language suitably enhanced to
include the implication construct. There is no difficulty in translating any of these concrete
syntax to the abstract one. ‘

2.2 Basic Constraints

Basic constraints are split into two sets: basic tell-constraints, simply referred to as ba-
sic constraints, and basic ask-constraints. The constraint-solver for basic CLP should be
complete for consistency of basic constraints and entailment of basic ask-constraints.

Definition 1 A basic constraint-solver is complete iff it can decide
1. consistency of c and ¢ (i.e. D = (3)(0 Ac));
2. entailment of ¢’ wrt o (i.e. D = (V) (0 = ¢'));

where c is a basic constraint, ¢’ a basic ask-constraint, and o a conjunction of basic con-
straints.

CLP languages usually maintain constraints in a reduced form to obtain an incremental
behaviour necessary to achieve efficiency®.

3Most operational semantics do not include this function as it plays no fundamental role in their descrip-
tion. As we will see, it plays an important role in showing how efficiently the relaxation function can be
computed in CLP(F). :
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Definition 2 A reduction function is a total function red which, given a consistent conjunc-
tion of basic constraints o, returns a conjunction of basic constraints, such that D & o &

red(o).

In the following, we assume the existence of a reduction function red for basic constraints
and denote by CCR the set of consistent conjunctions of constraints in reduced form (i.e. the
codomain of red). The actual choice of the reduction function depends upon the computation
domain. '

2.3 Structural Operational Semantics

2.3.1 Configurations

The configurations in the transition system are of the form (B, o) where B is a body and o a
conjunction of basic constraints in reduced form. Informally B represents what remains to be
executed while o represents the constraints accumulated so far. Successful computations end
up with a conjunction of basic constraints in reduced form. Hence CCR C T'. Computations
may also flounder when an ask on constraint ¢ cannot be decided upon (i.e. neither ¢ nor —c
is entailed by the accumulated constraints). We use the terminal flounder to capture that
behaviour. '

Terminal configurations are thus described by

T = {o|o € CCR}U{flounder}.
Configurations are described by
I' = {{B,o)|Bisabody and 0 € CCR} U T.

A transition ¥ — %' can be read as “configuration v nondeterministically reduces to .

2.3.2 Transition Rules

Goals are assumed to be resolved against clauses from some program and constraints are
assumed to be checked for consistency and entailment in a given structure or theory D. Since
the structure (or theory) never changes, we simply omit it and assume that it is clear from
the context. As the program changes, we make use of an indexed transition system and use
P F v —> 4' to denote that the transition ¥ — 7’ takes place in the context of program P.
When the transition does not depend on program P, we simply drop the prefix P I-. In the
following, o denotes a conjunction of basic constraints in reduced form, v a configuration, B
and G bodies, P a program, and c a basic constraint. These are possibly subscripted.

True: The atom true.si’mi)ly leads to a terminal configuration.

(true, o) —> ©
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Tell: The tell operation on a basic constraint is successful if the constraint is consistent
with the accumulated constraints. ‘

DE(@)(eAQ)
(tell(c), o) —> red(o A c)

Implication: An implication ask(c) — B never fails. If the basic ask-constraint ¢ is en-
tailed by the accumnulated constraints, it reduces to the body B. If —c is entailed by the
accumulated constraints, the implication terminates successfully. Otherwise, the implication
flounders.

D (V)02 o)
(ask(c) — G, o) — (G, )

D k= (V) (0 = =¢)

(ask(c) = G, o) r— 0

(ask(c) — G, o) — flounder

Existential Quantification: An existential quantification can be removed by replacing
the quantified variable by a brand new variable.

y is a brand new variable

(Glz/y], o) — v
(Fz G, o) —

The fact that variable y be brand new can be formalized in +arious ways if necessary.

Conjunction: The semantics of conjunction is given here by the interleaving rule which is
appropriate for CLP languages. If any of the goals in a conjunction can make a transition,
the whole conjunction can make a transition as well and the accumulated constraints are
updated accordingly. The conjunction flounders when both conjuncts lounder.

(G110>'_—)( ;.adl)
(G1& G, , o) — (G1 & G;, o)
(Ga& Gy, o) — (G & G}, d')

(G1, o) — 0’
(G1&G,, d)— (G, o)
(G2& G, o) — (G, ')
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(G, o) — flounder
(G2, o) — flounder

(G1& G3, o) — flounder

Procedure Call with one Clause: We now consider the solving of an atom p(24, .. .,ts)
wrt a clause p(21,...,2n) «— B. If Blz1/t1,...,Zn/ts] can make a transition in the context
of the accumulated constraints, then so can p(ti,...,t,) in the context of the clause and the
constraints.

p(z1,...,20) — B F (B[z1/t1,...,Tn[tn],, 0) — 7

p(z1,...,za) — B F (p(t1,...,tn), o) — 7

Procedure Call with several Clauses: If an atom can make a transition in program
Py, it can obviously make a transition in the program made up of P; and program P;.

PoF yr—o
PP, F y—
PP F yr—

2.4 Operational Semantics

We now define the operational semantics of the language in terms of its success, floundering,
divergence, and failure sets. Let —— denote the reflexive and transitive closure of +—
and initial(G, o) the configuration (G, red(c)). Also a configuration v is said to diverge in
program P if there exists an infinite sequence of transitions

Pryr—mr— .. —yi— ...

The success, loundering, and divergence sets (not necessarily disjoint) can be defined in the
following way.

SS[P] = {{G,0)|Ptinitial(G,o)—— o'}
FLS[P) = {(G,0)|P rinitial(G,o) — flounder}
DS[P] = {(G,o)|nitial(G,o) diverges in P}

The failure set can now be defined in terms of the above three sets.
FS[P] = {(G,0)|(G,o) ¢ SS[P]UFLS[P]UDS[P}}
Another semantic definition can be given to capture the results of the computation.

RES[P)(G,s) = {o'|PF initial(G,0)+— o'}
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3 Basic CLP(F)

In this section, we instantiate basic CLP to finite domains.

3.1 | Basic Constraints

In the following, z and y, possibly subscripted, denote variables and @, b, ¢, v, w, possibly
subscripted, denote natural numbers.

Definition 3 The basic constraints of CLP(F) are either domain constraints or arithmetic
constraints.

¢ domain constraint: z € {v1,...,vn};
e arithmetic constraints:

— az # b

- az = b;
—az=by+c(a#0#b)
—az > by+g '
—az < by+g

The semantics of addition, multiplication, =, <, >, and # is the usual one. Clearly,
the negation of each basic constraint can be expressed as a conjunction or disjunction of
basic constraints. Hence all the basic constraints can also be basic ask-constraints*. Note
that the variables appearing in arithmetic constraints are expected to appear in some domain
constraints. Every variable thus has a domain. This can be seen as an implicit ask-constraint
and justifies the following definition.

Definition 4 A system of constraints S is a pair (AC, DC) where AC is a set of arithmetic
constraints and DC is a set of domain constraints such that any variable occurring in an
arithmetic constraint also occurs in some domain constraint of S.

Definition 5 Let § = (AC, DC) be a system of constraints. The set D is the domain of
z in S (or in DC) iff the domain constraints of z in DC are ¢ € Dy,...,z € Dg and D is
the intersection of the D;’s.

It follows that, provided that each variable has a domain, a conjunction of basic con-
straints can be represented by a system of constraints and vice versa.

We conclude this subsection by a number of conventions. If ¢ is an arithmetic constraint
with only one variable z, we say that c is unary and denote it as ¢(z). Similarly, if ¢ is
an arithmetic constraint with two variables z and y, we say that ¢ is binary and denote it
c(z,y). As usual, c(z/v) and ¢(z/v,y/w) denote the Boolean value obtained from ¢(z) and
c(z,y) by replacing = and y by the valies v and w respectively.

4Note that we may want to consider some of them as non-basic constraints for efficiency reasons.
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3.2 Constraint-Solving

The constraint-solver of CLP(F), and hence of basic CLP(F), is based on consistency tech-
niques, a paradigm emerging from Al research [9]. We start by defining a number of notions.

Definition 6 Let c¢(z) be a unary constraint and D, be the domain of z. Constraint ¢(z)
is said to be node-consistent wrt D, if ¢(z/v) holds for each value v € D,.

Definition 7 Let ¢(z,y) be a binary constraint and D, D, be the domains of z,y. Con-
straint ¢(z,y) is said to be arc-consistent wrt D, Dy if the following conditions hold:

1. Vv € D; 3w € D, ¢(z/v,y/w) holds;
2. YVw € D, v € D, ¢(z/v,y/w) holds;

We are in position to define a solved form for the constraints.

Definition 8 Let S be a system of constraints. S is in solved form iff any unary constraint
¢(z) in S is node-consistent wrt the domain of z in S, and any binary constraint ¢(z,y) in.
S is arc-consistent wrt the domains of z,y in S.

We now study a number of properties of systems of constraints in solved form.

Property 9 Let ¢(z,y) be the binary constraint az > by + ¢, arc-consistent wrt D, =
{vi,...,vn}, Dy = {w1,...,Wnm}. Assume also that v; < ... < v, and w; <... < Wp. Then
we have

R

~ o

1. ¢(v1, w1) and c(vn, wm) hold; - n

2. if c(v;, w;) holds, then c(vitk, wj-i) holds (0 < k<n—1, 0 1<)

" Proof

o (2): Since viyx > v, w; > wj; and a, b are natural numbers, we have that aviix >
av; > bw; + ¢ > bw;_; + c. Hence ¢(vitx, wj—1) holds.

. (1) By arc-consistency, c(v1,w) and c¢(v,w,) holds for some w € D, and some v €
D..Hence, by (1), ¢(v1,w;) and c(vn, wm) hold.

a

Property 10 Let ¢(z,y) be the binary constraint az < by + ¢, arc-consistent wrt D, =
{vi,...,v.}, Dy = {ws,...,wn}. Assume also that »; <...< v, and w; <... < wm. Then
we have

1. ¢(vi, w;) and ¢(vn, wm) hold;
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2. if ¢(v;, w;) holds, then c(vi_g, wj4) holds (0 < k <2, 0 <1 <m — 7).

Property 11 Let c(z,y) be the binary constraint az = by + ¢, arc-consistent wrt D, =

{v1,...,vn}, Dy = {w1,...,wm}. Assume also that v; < ... <wn and w; <..| < wp,. Then

we have n = m and c(v;, w;) holds (1 <1 < n). \

Proof The proof is by induction on z. Applying Properties 1 and 2 to the inequalities
associated with ¢(z,y) implies that c(v;,w;) holds. Assume now that ¢(v;,w;) holds for
some 1 <1 < n. For all v € {vi41,...,vs}, because a,b are non-zero natural numbers, we
have

av > av; = bw;+c¢ 2> b’Wg_k+C(OSk<i).

Hence c(v, w;_x) does not hold. Similarly, for allw € {wii1,...,Wm}, c(vi—k,w) does not hold
(0 < k < ). The constraint c(z,y) is thus still arc-consistent wrt the domains {vi41,...,va}
and {wit1,...,Wn}. Using Properties (1) and (2) again, we get that c(vi41,wis1) holds.
Assume now that n < m. Since c(vn, wn) bolds, ¢(v,wn41) does not hold for v € D;. The
constraint c¢(z,y) is thus not arc-consistent which is a contradiction. Hence n =m. O
The satisfiability of a system of constraints in solved form can be tested in a straightfor-
ward way.

Theorem 12 Let § = (AC, DC) be a system of constraints in solved form. S is satisfiable
iff (9, DC) is satisfiable. '

Proof It is clear that (), DC) is not satisfiable iff the domain of some varia . . is empty in
DC. If the domain of some variable is empty in DC, then S is not satisfiable. Utherwise, it
is possible to construct a solution to S. By properties (1), (2), and (3), all binary constraints
of § hold if we assign to each variable the smallest value in its domain. Moreover, because
of node-consistency, the unary constraints also hold for such an assignment. O

It is worth noting that, in a system of constraints in solved form, all the values within the |

domain of a variable do not necessarily belong to a solution. For instance, in the following

system
({z <y,3z > 2y +1},{z € {2,4,6},y € {2,3,6}})

there is no solution with the value 4 assigned to z although the system is in solved form.

It remains to show how to transform a system of constraints into an equivalent one in

solved form. This is precisely the purpose of the node- and arc- consistency algorithms [9].

Algorithm 13 To transform the system of constraints S into a system in solved form S":

1. apply a node-consistency algorithm to the unary constraints of S = (AC, DC) to obtain
(AC, DC’);

2. apply an arc-consistency algorithm to the binary constraints of (AC, DC’) to obtain
S'=(AC,DC").
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Theorem 14 Let S be a system of constraints. Algorithm 1 produces a system of constraints
in solved form equivalent to S.

We now give a complete constraint-solver for the basic constraints. Given a system of
constraints S, Algorithm 15 returns true if S is satisfiable and false otherwise.

‘Algorithm 15 To check the satisfiability of a system of constraints S:

1. apply Algorithm 13 to S to obtain S’ = (AC, DC);

9. if the domain of some variable is empty in DC’, return false; otherwise return true.

The complexity of Algorithms 13 and 15 is the complexity of arc-consistency algorithms.
In [10], an arc-consistency algorithm is proposed whose complexity is O(cd?) where c is
the number of binary constraints and d is the size of the largest domain. Given the form
of the basic constraints, it is possible to design a specific arc-consistency algorithm whose
complexity is O(cd) [4] showing that basic constraints can be solved efficiently.

3.3 Reduced Form of _the Basic Constraints

This subsection defines the reduced form of basic constraints in CLP(F).

Definition 16 Let o be a consistent conjunction of basic constraints. The reduced form of
o, denoted red(c), is obtained as follows: :

1. Let S be the system of constraints associated with o and §’ = (AC’, DC') be its solved
form. :

2. Let DC" be equivalent to DC’ be with only one domain constraint per variable.
3. Let AC"” be AC' without

e the unary constraints;

e the binary constraints c(z,y) satisfying
Yv € D, Yw € D, c(z/v,y/w)
where D,, D, are the domains of z,y in 5.

4. re-g(a) is the conjunction of basic constraints in (AC", DC").

The reduced form for the basic constraints is equivalent to the solved form since the unary
constraints are node consistent (and hence implied by the domain constraints) and the binary
constraints satisfying the given condition are also implied by the domain constraints.
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3.4 Expressive Power

The basic constraints of CLP(F) have been chosen carefully in order to avoid an NP-Complete
constraint-solving problem. For instance, allowing disequations with two variables leads to an
NP-Complete problem (graph-coloring could then be expressed in a straightforward manner).
Allowing equations and inequalities with three variables also leads to NP-complete problems.
Finally, it should be noted that Algorithm 15 is not powerful enough to decide systems of
constraints including constraints of the form az + by = c.

The reason is that arc-consistency algorithms handle constraints locally while more global
reasoning is necessary to check satisfiability of this class of constraints. As an example, the
system

({(Bl + xy = 1,2)2 + 23 = 1,273 4+ = 1} ’ {:1:1 € {0, 1},:1:2 € {0, 1},:23 € {0,1}})

is not satisfiable although it is arc-consistent. To verify the unsatisfiability, just add the
three constraints to obtain :
2z, + 224 + 223 = 3.

The left member is even while the right member is odd.

4 Non-Basic CLP

The purpose of this section is to provide a systematic way to describe the operational se-
mantics of non-basic constraints that are approximated in terms of basic constraints. As
mentioned previously, approximation is present in several CLP languages.

To capture that behaviour, we introduce two new combinators in the Ask & Tell frame-
work, relaxed tell and relaxed ask. These combinators are parametrized by a relaxation and
an approximation function such that we are in fact defining a family of combinators.

Before starting the more formal presentation, let us give an informal account to the
approach. Let o be the accumulated constraints and assume that we face a relaxed tell on a
non-basic constraint ¢. Relaxed tell, instead of checking the consistency of o A ¢ which might
be quite complex in general, only checks the consistency of a relaxation of o A c. Clearly if
the relaxed problem is not satisfiable, the initial problem is not satisfiable either. Moreover
the solutions of the relaxed problem cannot necessarily be expressed as a conjunction of basic
constraints. Hence only an approximation of the solutions, in the form of a conjunction of
basic constraints, can be added to the accumulated constraints. When the approximation
is not equivalent to the initial problem, the non-basic constraint cannot be removed from
the goal part of the configuration. Finally, if we face a relaxed ask, then entailment is not
checked wrt o, but rather wrt to its relaxation. As a consequence, relaxed ask could return
undecided (i.e. flounder) while an ask (if implemented) would have returned true or false.

180



l

4.1 Relaxation and Approximation

Relaxed tell and relaxed ask require to associate, with each non-basic constraint, (1) a
relaxation function; (2) an approximation function and (3) a complete constraint-solver.

Definition 17 A relazation function is a total function r : CCR — CCR such that

D £ (¥)(o = (o))

In other words, a relaxation function associates with each conjunction o of basic con-
straints another conjunction of basic constraints that is implied by o. Hence the relaxation

of o captures the solutions of ¢ and possibly some non-solutions.
We also would like to infer new basic constraints from a non-basic constraint. This is

achieved through an approximation function.

Definition 18 Given a relaxation function r, an approzimation function is a total function
ap, which, given ¢ € CCR and a non-basic constraint c, returns a conjunction of basic
.constraints, such that D = (V)((r(o) A c) = ap(a,¢c))

This definition specifies that the approximation captures all solutions of T(U) A ¢ and
possibly some non-solutions. In the following, we assume that a relaxation function and
an approximation function have been defined for each constraint and denote them by the

(overloaded) symbols r and ap respectively. '
The non-basic constraint-solver has to satisfy a number of requirements.

Definition 19 A non-basic constraint-solver is complete iff it can decide
1. the consistency of ¢ and r(o);

2. the entailment of ¢’ by r(o)

where c is a non-basic constraint, ¢’ is a non-basic ask-constraint, and & is a conjunction of
basic constraints.

The following properties are straightforward but help understanding the transition rules.
Property 20 [Properties of relaxation and approximation].
. DE (Y)((oAc)= (o Aap(o,c));
. D ~(3)(cAr(o)) implies D = —~(F)(c A o);
. D ~(3)(ap(o,c) A o) implies D |= =(3)(c A o);
. D = (¥Y)(ap(o,c) = c Ar(c)) implies D E (V)((eAc) e (aA ap(a, ));
. D= () ap(o,c)Ao)and D = (V)(ap(c,c) = ¢ A r(c)) implies D = (3)(cAo);
. D k= (Y)(r(c) = c) implies D |= (V)(0 = c).

—
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4.2 Relaxed Tell

We are now in position to define the operational semantics of relaxed tell.

Termination: Termination of relaxed tell occurs when the approximation ap(o, c) is equiv-
alent to 7(c) A ¢ which means that r(o) A ¢ can be represented as a conjunction of basic
constraints. Moreover if ap(o, c) is consistent with o, we obtain a terminal configuration.

D k= (3) (0 A ep(0,))
D & (¥) (apl0,¢) = (r(0) A <))

(relaz-tell(c),o) — red(c A ap(o, c))

Property 20.4 and 20.5 ensure respectively the equivalence of o A ap(c,¢) and o A ¢ and
the consistency of ¢ and o.

Pruning: Property 20.1 allows for the addition of new basic constraints (and hence prun-
ing of the search space) provided that r(c) A ¢ and ap(c,c) A o be consistent, and ap(c, c)
be not entailed by o. :

D= (3)(r(o)ne)
l=( ) (o A ap(a,¢))
~(V) (ap(o,¢) = (r(0) A c))
D i= ~(¥) (o = ap(e,c))
(relaz-tell(c), o) — (relaz-tell(c),red(c A ap(o, c)))

The third condition (non-termination) imposes to keep relaz-tell(c) in the resulting con-
figuration while the last condition (non-redundancy) avoids the infinite application of the
rule. Progress is achieved here together with the conjunction rules because the search space

is pruned by the new constraints.

Floundering: Floundering occurs when there is no termination and when the approxima-
tion is entailed by the accumulated constraints.

D & (3)(r(o) A <)
D | ~(¥) (ap(0,¢) = (r() A <))
D k () (0 = ap(o, )

(relaz-tell(c),o) — flounder

4.3 Relaxed Ask

Relaxed ask can be defined in a straightforward way by checking entailment of the non-basic
ask-constraint by the relaxation of the accumulated constraints.
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D E (¥)(r(2) = )
(relaz-ask(c) — G,o)+— (G,0o)

D = (V) (r(9) = —)

(relag-ask(c) — G,0)r— 0

D k= ~(¥) (r(e) = ©)
D & (%) (r(o) = —c)

(relaz-ask(c) — G,o) —> flounder

4.4 Relations with Ask and Tell

The soundness of the transition system can be proven by structural induction on the configu-
rations. More interesting perhaps is the relationships between ask and tell and their relaxed
versions in the case where ask and tell can be decided in the computation domain. Assume
that P* is the program P where all occurrences of relaxed ask and relaxed tell have been
replaced by ask and tell. We state the following property without proof.

Property 21
e SS(P)C SS(P*)
e FS(P)C FS(P)

5 Non-Basic CLP(F)

In Section 2, we have presented the basic constraints of CLP(F). These constraints can be
handled by an efficient complete constraint-solver but are certainly not expressive enough to
be the only constraints available in CLP(F'). Moreover we have shown that apparently simple
extensions to the basic constraints can lead to an NP-Complete constraint-solving problem.
To complete the definition of CLP(F), it remains to specify the non-basic constraints and to
define (1) the relaxations, (2) the approximations, and (3) the constraint-solvers.

Definition 22 Let o be a conjunction of basic constraints in reduced form and (AC, DC)
its associated system of constraints. The relaxation r(c) is the conjunction

$1€D1/\.../\(Bn€Dn
such that DC = {z, € Dy,...,2n € Dpn}. |

In other words, the relaxation in CLP(F) simply ignores all constraints but the domain
constraints. Note also that computing the relaxation does not induce any cost since the
accumulated constraints are already in reduced form for incrementality purpose.
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There are two approximation functions depending if full k-consistency is achieved (i.e.
ap;) or if the reasoning is only performed on the minimum and maximum values in the
domains (i.e. ap,). For some symbolic constraints, both approximations might be useful
depending upon the problem at hand.

Definition 23 Let o be a conjunction of basic constraints and ¢ be a non-basic constraint
with variables zi,...,z, such that D = (3)(r(c) A ¢). Let dom(r(c),c) be the set of

natural number tuples
{{a1,...,a.) |D E () ((r(o) A ¢)[z1/a1,...,Tn/an]}).
The approximation ap,(c, ¢) is defined by
21 €EDWA... ANz € Dy,
and the approximation ap,(c, ¢) is defined by
z; € {min,,...,maz} A... Az, € {min,, ..., maz,},

where D; represents the projection of dom(r(c), c) along its argument 7, and min; and maz;
represents the minimum and maximum value in D;.

Finally, the constraint-solvers for the non-basic constraints are once again based on con-
sistency techniques. However they use the semantics of the constraints to come with an
efficient implementation. For instance, inequalities and equations use a reasoning about
variation intervals {5, 16]. There can be a large variety of (numeric and symbolic) con-
straints that might be considered as interesting primitive constraints so that we will not
specify the constraint-solvers for them. Note only that the constraint-solvers can be made
complete as only domain constraints (i.e relaxation of basic constraints) are considered in
conjunction with a non-basic constraint. Also, in [17], we propose a new combinator that
makes possible to define most interesting numerical and symbolic constraints from a small
set of primitive constraints.

6 Conclusion

This paper has presented an extension to the Ask & Tell framework to capture, in a simple
and precise way, the operational semantics of CLP languages where some constraints are
approximated, inducing an incomplete constraint-solver. The extension consists of two new
combinators, relaxed tell and relaxed ask, that are parametrized on a relaxation and ap-
proximation function. Constraint are divided into two sets, basic and non-basic constraints.
Basic constraints (that can be decided efficiently) are handled as usual while non-basic con-
straints (that are approximated in terms of basic constraints) are handled through the new
combinators.
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The extended framework has been instantiated to CLP over finite domains. The basic
constraints of CLP(F) have been identified and arc-consistency has been shown to be the basis
of an efficient and complete constraint-solver. The relaxation and approximation functions
for non-basic constraints in CLP(F) have also been described.

The contributions of this paper include (1) a precise and simple definition of the opera-
tional semantics of CLP(F) and (2) the definition of two new combinators that should allow
for a precise operational semantics of several other CLP languages.

A structural operational semantics does not describe how to implement the language.
What remains to be described for that purpose is how the constraint-solvers are implemented
and under which conditions a non-basic constraint is reconsidered after floundering. An
efficient arc-consistency algorithm for basic constraints is defined in {4]. The wakening of
non-basic constraints is based on a generalization of the techniques used for delay mechanisms
(e.g. [11, 2]). Both issues are beyond the scope of this paper. '

Future work includes the study of the properties of the above operational semantics

.as well as its relationships with the declarative and denotational semantics. Application
of the approach to other CLP languages with an incomplete constraint-solver will also be

considered.
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This research looks at applying learning techniques for building abstractions
that can be used by a hierarchical Constraint Satisfaction Problem solver, of the

type described in [1]. There are three main criteria that these abstractions must -

satisfy: .

1. Some aspect of the given problem, the set of constraints, must be evaluable
on the abstractions. This will allow portions of the search space to be pruned
out at the level of the abstractions.

2. The selected abstractions must be the “best” for the job. There is a large
space of abstractions that can be constructed on the given CSP system. Some
candidates will perform better in a hierarchical solver than others.

3. The constructed hierarchical solver must be Hierarchically Complete. This
means that the hierarchical solver must be able to find all the solutions. Note
that correctness of the solver is also required.

Constraint Satisfaction Problems (CSPs) involve finding values for a fixed
number of variables such that a given set of constraints is satisfied. This can be
denoted by

Find {z € D|T(z)}

where D is the search space, and T is the constraint to be satisfied. The
hierarchical solver uses an abstraction of the search space where an abstract
version of the problem is evaluated, and the abstract solutions then get refined.
It can be shown [2, 3] that in a hierarchically complete system, for constraint T
with a corresponding abstract problem P, the following relationship must hold:

T(z) — P(f(=)) (2)

where f is the abstraction mapping. Furthermore, if f is used to map the CSP
search space into an abstract search space, an implicand of the CSP problem
becomes evaluable on those abstractions, thus satisfying criterion 1 above.

A syntactic application of this hierarchical completeness condition to a given
CSP can be used to generate candidate abstractions and hierarchical systems. In
the first part of our research, we have been investigating such techniques for
building a two-level hierarchical solver. This type of sclver, similar in princirie
to ABSTRIPS [4], is essentially built upon two CSP systems: the given orig-
CSP system defining the base level of the hierarchy, and an abstract CSP sy:....n
defining the single abstract level. Using the hierarchical completeness condition
from above, the abstract CSI;’ system can be defined as -

"Find {z€ R|P(z)}
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where z = f(z) relates the abstract and base level search spaces. The hierarchical
solver first finds solutions to P in R, and then searches their refinement in the
base level for solutions to T'. To enable this refinement process a new constraint,
restricting the elements searched to be refinements of the abstract solutions, is
added to the base level CSP:

Find {z € D|T(z) A (f(z) = 2)}

Each level of the hierarchical solver can now be implemented by a chronologically
backtracking generate-and-test system.

We have restricted our attention to the, class of parameterized Functional
Constraint Satisfaction Problems (pFCSP’s). A parameterized CSP (pCSP) can be
defined as the problem schema

Find {z € D|T(z,y)}
Where y€C

Here y are the problem parameters, and define the problem space. A problem
instance is defined by a particular set of values for the problem parameters. A
hierarchical system, built using the above techniques, for a pCSP is applicable
to all problem instances in the pCSP. The corresponding abstract problem for a
given problem instance is derived by simply instantiating the particular version
of implication from (2) used to derive the abstract level. A Functional CSP is a
CSP whose specification involves the use of function symbols (in the terms).

Asa simple example, consider the pCSP shown in figure 1. A generate-and-
test solver that finds all the solutions to the problem is shown in figure 2.




Baéktrack

xi - X2 | x3 e x4

o _Figure 2v A Genérate-and;Test' »sblv-er o :.. -

Taking f = (*,*) in the example, the constraint (z; * z; + 23 * 24 = y) is
decomposed into P: (z71+ 2z =y)and Py : (21 %22 = 21), P : (23 * 24 = 22).
The function * could be specified as * : Lo X I1jo — Cio0 Where Cjgo is
the set of products from {1,...,10} * {1,...,10} (there are 42 of them). Then
Z = (21,23) € Cioo X Cio0 becomes the abstract search space. The corresponding
hierarchical system is shown in figure 3. If the specified range for * is larger,
say {1,...,100}, the reduced Cygo can still be derived using one of the network
consistency algorithms described in [5, 6, 7].

"7 Abstract Level

x3°x4 in [22)

r for : the exan'}ple_; o

To satisfy criterion 2 stated earlier, we have derived heuristic evaluation-

functions that give an estimate of the potential of a candidate abstraction for
providing a faster hierarchical system [8]. This expression is a function of the
ratio of sizes of the two search spaces, called the abstraction ratio, and the solution
denstities of the different tests in their domains.
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The procedure for building hierarchical CSP solvers has been partially im-
plemented in a research prototype system called HiT (for Hierarchical Transfor-
mation). It works on application domains involving function symbols — called
Functional pCSPs — and is being tested on toy problems and the domain of floor-
planning for buildings. The HiT procedure requires some additional knowledge,

- beyond the traditional CSP specification, to operate. This includes additional
domain knowledge, and data gathered from running experiments.

The space of candidate abstraction functions is defined by the implication
in (2). In practice, a partial list of implicands is. cansidered, restricted by a
maximum depth of implication. The implicands are-generated by applying rules
of logic (like modus ponens) to the provided domaireknowledge.and problem
specification. Values for the parameters required by the heuristic evaluation are
obtained by running a non-hierarchical solver for the CSP on sample problems.
Alternatively, this data can be estimated by using monte-carlo sampling.

The single level and hierarchical generate-and-test systems of figures 2 and
3 were run for several values of the problem parameter. A comparison of their
performance for different solution densities is shown in figure 4. The graphs
depict-run times (on a Sparcsystem 330),-and number of nodes (i.e. generator
invocations) explored. The single-level:system is forced to generate the whole
search space because the testing is done only after all the solution parameters
have been instantiated. Therefore the run times and nodes éxpanded for the
non-hierarchical system are constant across problem instances. As was expected,
the hierarchical system performs much better at lower solution densities.

Another test application used in our experiments is the domain of floorplan-
ning for buildings. A simple floorplanning problem could be of the type “Find
all layouts for a house of specified side dimensions, and comprising of a speci-
fied number of rooms with constraints on their placement in the house, and on
their sizes”. Applying the HiT procedure to this problem, we were able to derive

_ two useful abstractions. One abstraction grouped all room sizes and locations
on their area. The second abstraction represented a topological view of relative

room placements.
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“Figure 4 © A’ comparison of the performance of the'single
"+ . level and hierarchical solvers- for the example problem.

In conclusion, the work reported here is aimed at extending and applying
research on concept learning in the machine learning community, with a focus on
performance objectives, to the task of building faster hierarchical systems. There
has also been interest in building hierarchical solvers in the CSP community.
Some researchers [9] have automated construction of abstract CSP systems by
relaxing the original CSP network. The abstract CSP system is then used to gen-
erate advice on the variable instantiation most likely to lead to a solution. This
paper extends that body of research by using reformulation techniques for gen-
erating abstract levels, and using the abstraction to reject variable instantiations
that do not lead to a solution.

Further work for the near future will be aimed at refining HiT and its evalu-
ation function, and conducting experiments. In the second part of this research,
we will be investigating algorithms for building a “component hierarchy” of the
type described in [1]. Again, the theme is to extend and apply traditional learning
techniques within a performance goal context.
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1 Introduction

In this paper we present several techniques for parallel processing of constraint networks.
One the main underlying assumptions of the Connectionist school of thought is that the
connectionist approach is naturally amenable to a parallel (distributed) implementation.
Moreover, the claim is often made that the symbolic approach does not have this
advantage. Our research is aimed at deriving a precise characterization of the utility of
parallelism in constraint networks. In previous papers we demonstrated several methods
for paralle]l execution of special cases of constraint networks such as two label networks.
and chain networks. In this paper we significantly extend our previous results. We analyze
parallel execution for chain networks, tree networks, directed support networks and
path-consistency in general networks. While the obvious parallel algorithm for local
consistency in constraint networks should work well in practice, we would like to obtain
lower and upper bounds on the complexity of the problem on ideal parallel machines (such
as the PRAM). This study may also have significant practical implications since it may
indicate which parallel primitives are fundamental in the solutions of large constraint
systems. Once such primitives are implemented in hardware, they effectively execute in
constant time for all practical purposes (e.g., parallel prefix on the Connection Machine).
The original design of the Connection Machine was motivated by these considerations.
The machine was initially designed to support highly parallel semantic network
processing. The ultimate goal of our research is to produce a set of primitives that are
critical to the solution of constraint problems.

2 Constraint Satisfaction and Discrete Relaxation

Constraint satisfaction networks are used extensively in many AI applications such as
planning, scheduling, natural language analysis and common-sense reasoning (truth
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maintenance systems) [dK86, HS79, Mac77, RHZ76, Win84]. These networks use the
principle of local constraint propagation to achieve global consistency (e.g., consistent
labelling in vision). Below, we give a formal definition of constraint satisfaction networks.

Let V= {v1, ... ,v,} be a set of variables. With each variable v; we associate a set of
labels L;. Now let {P.,} be a set of binary predicates that define the compatibility of
assigning labels to pairs of variables. Specifically, P;;(z,y) = 1 iff the assignment of label
z to v; is compatible with the assignment of label y to v;.

The Constraint Satisfaction Problem (CSP) is defined as the problem of finding an
assignment of labels to the variables that does not violate the constraints given by {P;;}.
More formally, a solution to CSP is a vector (21, ... ,2,) such that ; is in L; and for
each i and j, Pij(z;,2;) = 1. :

A standard approach to model CSP problems is by means of a constraint graph. See
[Mac77, U.74]. The nodes of the constraint graph correspond to variables of CSP. The
edges of the graph correspond to the binary constraints in the CSP. That is, with each
edge in the constraint graph we associate a matrix that shows which assignments of labels
to the objects connected by that edge are permitted. In this interpretation CSP can be
seen as generalized graph coloring. '

In this paper we will use an ezplicit constraint graph representation. Given constraint
network G we create a new constraint graph that captures the constraints of the initial
constraint graph more explicitly.

The construction of an explicit constraint graph is ﬂlustrated by example. Assume the
set of labels is {0,1}. For each edge connecting variables X and Y we create a set of 4
nodes < X,0>, < X,1>,<Y,0>and <Y,1>. < X,L > is connected with an arc to
<Y, L' > iff assigning L to X assigning L' to Y is consistent. An example is given below.

< X,0> <Y,0'>

< X,1> <Y,1>

3 Local Consistency and Discrete Relaxation

Since CSP is known to be A/P-complete, several local consistency algorithms have been
used extensively to filter out impossible assignments.

Arc C’omwtency (AC) allows an assignment of a label z to an object s iff for every
other object s’ in the domain there exists a valid assignment of a label z " which does not
violate the constraints. Arc Consistency [Mac77, U.74] is defined formally as follows.

A solution to the local version of CSP (arc consistency) is a vector of sets
(M, ..., M,) such that M; is a subset of L; and a label z is in M; iff for every Mj;, i # j
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there is a y,; in Mj, such that P;;(2,yz;) = 1. Intuitively, a label z is assigned to a
variable iff for every other variable there is at least one valid assignment of a label to that
other variable that supports the assignment of label z to the first variable.

We call a solution (M, ..., M,) a mazimal solution for AC iff there does not exist any
other solution (Sy,...,S5,) such that M; C §; for all 1 < ¢ < n. We are interested only in
maximal solutions for an AC problem. By insisting on maximality we guarantee that we
are not losing any possible solutions for the original CSP. Therefore, in the remainder of
this paper a solution for an AC problem is identified with a maximal solution. The
sequential time complexity of AC is discussed in [MF85]. Discrete relaxation is the most
commonly used method to achieve local consistency. Discrete relaxation repeatedly
discards labels from variables if the condition specified above (AC) does not hold.

Local consistency belongs to the class of inherently sequential problems called
log-space complete for P (or P-complete). Intuitively, a problem is P-complete iff a
logarithmic-time parallel solution (with a polynomial number of processors) for the
problem will produce a logarithmic-time parallel solution for every deterministic
polynomial-time sequential algorithm. This implies that unless P = AC (AC is the class of
problems solvable in logarithmic parallel time with polynomial number of processors) we
cannot solve the problem in logarithmic time using a polynomial number of processors.

4 AC in Chains

In a previous paper [Kas89] we observed that a simple separator-based technique can be
used to solve constraint satisfaction problems in chains graphs. The technique is based on
removing a variable that separates a constraint chain with N variables into two chains
with N/2 variables. Then we create 2K recursive subproblems, where K is the number of
labels. We repeat the process log N times, so that the complexity is O(K'°8¥), For details
see [Kas89]. Thus, when the number of labels is large (and becomes a function of the
input size, the complexity is exponential, i.e.,0(K8¥),

Here we propose a simple procedure to achieve AC in a constraint chain. We first
construct an explicit constraint graph. The number of nodes in this graph is VK, one
node for each variable/label pair. Recall, that two nodes, < X,d > and < Y,b >, in an
explicit constraint graph are connected iff the assignment of @ to X is compatible with

- assigning b to Y. Without loss of generality, assume the variables are numbered X; to X,

in order on the chain. We now orient all the edges in the direction from X; to X;;;. We
mark all nodes reachable from the source nodes containing X3, and discard all other
nodes. Next, we reverse the orientation of edges to point from X, to X;. We then mark
all nodes reachable from the nodes in X,,, and discard the rest. We claim that all the
nodes that remain correspond to labels that stay.

Theorem 1 AC in chains is reducible to reachability in directed graphs and therefore
solvable with NK? processors in O(logNK) time.
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5 Trees

In the previous paper we addressed the problem of AC in trees. We suggested a separator
based algorithm. Similarly to chains, the complexity of that algorithm is O(log N') with
O(K'eN) processors. Here we propose a different algorithm. The algorithm operates in
O(log?) time and uses a polynomial number of processors. More importantly, it reduces
the problem to reachability and expression evaluation on trees.

The algorithm is probably inpractical, and is presented to demonstrate the substantial
difficulty in getting asympotically optimal parallel algorithms even for tree-like constraint
networks.

We sketch the idea of the proof. The formal proof is omitted for length considerations.

Root the tree at any particular node, and construct the explicit graph E. Let ¢;,
denote the 2 label in node v, and let P, , denote the compatibility (support) predicate
between nodes u and v. Note that P,, is also the adjacency matrix for the subgraph of E
restricted to labels in nodes u and v.

Step 1: Mark the following set of labels, defined bottom up in the tree: - {;, is marked
if v is a leaf. - £;, is marked if Vw such that w is a child of v 35 such that {;,, is marked
and ¢;, and {;,, are adjacent in E. The entire system is consistent iff the set of labels
marked at the root is non-empty.

Step 2: Discard all unmarked labels, and consider the original problem restricted only
to marked labels. Clear all marks, and do the following second marking procedure: - Mark
all labels at the root. - Mark ¢;, iff 35 such that ¢;,, is marked and w is the parent of v
and ¢;, and {;,, are adjacent in E. The solution is the set of nodes marked at the end of
Step 2.

Step 1 can be implemented either as an expression evaluation problem, or by
reachability. - As an expression we are computing a bit vector at each node. The
operations being performed are multiplication by boolean matrices P,, and intersection
(which is just a bitwise AND). We can evaluate this expression by raking leaves. When a
leaf is raked, we are applying an intersection of a known (i.e., constant) bit vector in
between 2 matrix multiplications. This is simply a restriction of the matrix product to the
rows and columns of the intersection vector. Thus the result of the rake operation can be
represented as a single matrix, and can be computed in NC. - By reachability, we can
identify all labels reachable from a leaf label (assuming E is now directed with all arcs
oriented toward the root). We then mark all labels that are reachable from all leaves
under them. We then restrict ourselves only to these marked nodes, and redo the
reachability from leaves calculation. (the formal proof can be obtained by induction on
the level in the tree).

Step 2 is simply reachability.

Theorem 2 AC is NC in trees for arbitrary number of labels.
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6 Directed Arc Consistency (DAC)

Traditionally, AC was considered as a prefiltering step in order to solve constraint
satisfaction problems. However, there is an interesting modal-logic-like interpretation of
AC in the context of support networks. We start with a collection of agents (variables)
each holding a set of beliefs (labels). For each pair of variables X and Y we define a
directional support relation that for each belief states which beliefs at one agent get
supported by beliefs at the other agents.

An agent keeps a belief a if it is supported by at least one belief at each of the other
agents. Note, that we are not seeking a global interpretation of the variables but rather
would like to filter unsupported beliefs. This is analogous to the standard AC problem,
however, the support relations are directed. Judea Pearl communicated to us several
applications of directed support networks. David McAllester pointed out that this version
of local consistency is not useful in the context of constraint satisfaction problems where
one is seeking to find single assignments for variables. Directed AC is naturally described
by an explicit constraint graph. Edges in the graph describe directed support (see
example below). The only label that drops is E from Y.

<X,B> <Y, E>
<Y,D>
<Y,C >
<X,A> <Y,B>

The following surprising result indicates that the parallel complexity of solving
directed AC is considerably more complicated than the standard AC problem. Essentially,
this result states the parallel complexity is dependent on the structure of the explicit
constraint graph, rather than the structure of the constraint graph. This follows from the
fact that we can encode general logical dependency in such a graph.

Theorem 3 Directed Arc Consistency (DAC) is P-complete, even if the underlying graph
i3 a 3-node chain.

Proof: Our reduction is from Propositional Horn-Clause Solvability. Without loss of
generality we assume the Horn clause program contains a single assertion T, and that
every other variable A; appears as the head of either exactly one rule of the form
A; — Aj, Ay, or else two or more rules of the form A; «— A;. Let A, be the goal of

the program.

We construct an instance of DAC containing three nodes: L(eft), M(iddle) and
R(ight). Let each of these three nodes contain a label for T and for each 4;. Now
construct arcs for the explicit support graph as follows:
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1. From each label in M to the corresponding label in both L and R.

2. From Tt to Thas and from Tr to T)y.

3. For every clause of the form A; — Aj, Ag, construct an arc from A;z to A;am
and from A].'R to A; M.

4. For every clause of the form A; — A;, construct an arc from A4, to A; and
from Th to A; .

It is now easy to show that the labels that remain in M correspond exactly to the
variables that are true in the Horn-clause program. In particular 4, s remains iff the
goal A, of the program is true. a

7 -Path Consistency

In this section we make a simple observation about path consistency. Parallel path
consistency is also studied in [LR90]. In [Kas85, Kas89] we provided a two way reduction
between arc consistency and propositional Horn satisfiability (PHS). Here, we observe
that a similar two way reduction can be provided between path consistency and PHS. We
illustrate the reduction from 3-consistency to PHS. Without loss of generality assume all
labels are unique (otherwise, we can rename the labels). For each pair of labels A and B
we create a proposition P < 4, B > that is true iff the pair (A, B) gets dropped from
consideration. However, P < A, B > is true iff it cannot be extended to at least one
variable. We denote this condition by a predicate P < A, B,1 > which is true iff this
assignment cannot be extended to variable X;. Thus,

P<A, B> «~ P<AB,1>.
P<AB> «—~ P<AB,2>.
P<A B> «~ P<AB,3>.

Now, P < A,B,i > istrueiff P < B,C > or P < 4, C>1strueforalllabelsC’tha.t
potentially support the assignment < A, B > at variable X;. Thus,

P<AB1> ~ P<ABCl1>P<AB,C2>,..
P<AB,Cl> « P<ACL>.
P<ABCl> «~ P<B,(Cl>.

We have O((EK?)) predicates of the form P < A, B >. Therefore, the size of the input
is dominated by the clauses of the form
P<AB,1>«P<A,B,C1>,P< A,B,C2>,... The total size is therefore
O(EK*NK)) = O((NEK?)) or alternatively O((N*K?)). The assertions of the program
are obtained by applying 3-consistency check once, and asserting all the dropped pairs
< A,B > as facts P < A,B >.

The important corollary of this construction is that now we can utilize the standard
linear time PHS algorithm for local consistency. This immediately yields an algorithm
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that matches (in asymptotic complexity) the best known algorithm for path consxstency
This algorithm is optimal if the number of labels is assumed constant. The same
algorithm would also work for k-consistency with similar optimal performance. The
bottom-up PHS algorithm also has very good performance in practice. The conversion to
PHS can be done efficiently in parallel.

Similar observations were made independently by McAllester (Ph.D. thesis), Bible,
Mackworth and Reiter (previous KR conference), and Saraswat (workshop on constraint
systems 1990). Here we presented a careful analys of the transformation that leads to
optimal complexity results as stated above.

8 Summary of Parallel AC Results

In this section we summarize our knowledge of parallel complexity of local consistency
problems in constraint satisfaction problems. The results appear in the tables below. We
classify the problems according to their parallel complexity into two classes: P-complete
problems and MC problems. P-complete are perceived to be difficult to parallelize (in the
same sense NP-complete problems are considered intractable), and AC problems can be
solved in polylogarithmic time with a polynomial number of processors. AC-problems are
often amenable for optimal speed-up on parallel machines. R denotes relation in the
tables.
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of Scientific Research under grant AFOSR-89-1151 and National Science Foundation
under grant TRI-88-09324. Thanks are due to David McAllester, Judea Pearl and Rina
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Table 1: Complexity of Arc Consistency for Arbitrary-Size Label Sets

Arbitrary K (K is the size of the label set L)

CSP

AC

Chain

NC; rem;.hsbi]ity

Undirected R’s: AC; reachability

Directed R’s: P-complete;
reduction from Propositional
Horn-Clause Solvability

Tree

NC;

Undirected R’s: ANC; like
expression eval where
operation at each node is
intersection of sets of support
for each label (see this paper)

Directed R’s: P-complete; from
above

Simple Cycle

NC; reachability

Undirected R’s: NC; cycle
detection

Directed R’s: P-complete; from
above

Arbitrary Graph

NP-complete; reduction from
graph colouring

Undirected R’s: P-complete;
reduction from Propositional
Horn-Clause Solvability

Directed R’s: P-complete; from
-above
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Table 2: Complexity of Arc Consistency for Fixed-Size Label Sets

Fixed K (K is the size of the label set L)

G CSP AC

Undirected R’s: AC
Directed R’s: AC;

Chain NC

Undirected R’s: MC

Tree N Directed R's: AC; from above

Simple Cycle NC

Undirected R’s: AMC
Directed R’s: AC; from above

K = 2: Linear sequential by reachability along
algorithm by reduction to “singleton paths”; For X > 3,
Arbitrary Graph 2-SAT which is AC P-complete from Propositional
K > 3: MP-complete; reduction Horn-Clause Solvability
from 3-colouring graphs Directed R’s: P-complete for
K >2

Undirected R’s: For K = 2, AC
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Parallel Path Consistency
Steven Y. Susswein, Thomas C. Henderson and Joe Zachary

Department of Computer Science
University of Utah
Salt Lake City, UT 84112

Abstract

Filtering algorithms are well accepted as a means of speeding up the solution of the
consistent labeling problem (CLP). Despite the fact that path consistency does a better job
of filtering than arc consistency, AC is still the preferred technique because it has a much
lower time complexity.

We are implementing parallel path consistency algorithms on a multiprocessor and com-
paring their performance to the best sequential and parallel arc consistency algorithms. We
also intend to categorize the relation between graph structure and algorithm performance.
Preliminary work has shown linear performance increases for parallelized path consistency
and also shown that in many cases performance is significantly better than the theoretical
worst case. These two results lead us to believe that parallel path consistency may be a supe-
rior filtering technique. Moreover, we conjecture that no set of relations exist of n nodes and
m labels which requires more than mn iterations of Path Consistency to make the relations
consistent.
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1 Introduction

There is a class of problems in computer science known variously as Consistent Labeling
Problems [4], Satisfycing Assignment Problems [2], Constraint Satisfaction Problems [6], etc.

"We will refer to it as the Consistent Labeling Problem (CLP). Many classical computer science

problems such as N-queens, magic squares, and the four color map problem can be viewed as
Consistent Labeling Problems, along with a number of current problems in computer vision.

The basic problem can be looked at abstractly in the form of a graph, in which we have:

o A set of nodes, N = {ny,n,,.. .,n,;}; (let |N| =n).

e For each node n; a domain M;, which is the set of acceptable labels for that node.
Often all the M;’s are the same, giving M; = M; = ... = M, = M; (let |M|=m).

o A set of constraint relations R;;, i,j = 1,n, which define the consistent label pairs
which can be assigned to nodes n; and n;; i.e., R;;({,l;) means label /; at node n; with
label I, at node n; is a consistent labeling. Directed arcs give a visual representation
of the relationships.

The problem is to find a complete and consistent labeling such that each node is assigned a
label from its label set that satisfies the constraints induced by all its connected arcs.

For example, take a three node graph where the arcs represent the relationship “equals.”
That is, the labels assigned to the two nodes at the ends of each arc must be equal. If the
label sets for the nodes are:

e node;: {1,2,3}
o node;: {2,3,4}
e nodes: {3,4,5}

then the only possible solution is:

node; = 3
node, = 3
nodes = 3

1.1 Solutions to CLP

It can be shown that CLP is NP-complete[3]. Thus there are no known efficient solutions.
However, there are a number of ways the problem can be solved, including generate and test,
standard backtracking, Waltz filtering[11], etc. In standard backtracking, we assign a label to
node;, and using this constraint attempt to find a valid label for node;. Using these values
for nodes one and two, we attempt to find a valid label for nodes, etc. When no valid label
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exists for a node, we backtrack and make a new assignment for the last node. We continue

until all nodes have been assigned labels or all possible assignments have been attempted,
and failed. :

Mackworth [7] has shown that the “thrashing” behavior of standard backtracking can be
reduced by the incorporation of consistency algorithms (node, arc, and path consistency).
Mohr and Henderson (8] have given an optimal algorithm for arc consistency and an improved
algorithm for path consistency.

o In node consistency, we look at the label set for a single node and remove any impossible
labels.

e In arc consistency we look at each pair of nodes and remove those labels which cannot
satisfy the arc between them. For example, if we looked at nodes one and two in the
above example using arc consistency we would remove the value 1 from node;and the
value 4 from node;.

o In path consistency we look at groups of three or more nodes (Montanari has shown
that if all paths of length two are consistent then the entire graph is consistent, so we
actually look at paths of length exactly two).

Path consistency does a much better job of filtering than arc consistency, but is also
much slower (i.e., requires a lot more computation); as a result, arc consistency is currently
the most widely used filtering technique.

1.2 Parallel Algorithms for AC and PC

Samal has explored parallel versions of arc consistency [10]. He showed that the worst case
performance of any paralle] arc consistency algorithm is O(mn). This means that given a
polynomial bound on the number of processors, it takes time proportional to mn to solve
the problem in the worst case. Moreover, he explored the dependence of performance on
graph structure.

We are interested in providing a similar analysis for parallel path consistency algorithms.
We conjecture that the average case time complexity of parallel path consistency is O(mn).
This means that over populations of standard problems and given a polynomial bound on the
number of processors, the average time to solve the path consistency problem is proportional
to mn. In fact, our preliminary results indicate that the innermost loops of path consistency
(i.e., those which update the relations) run in constant time, O(1). We therefore propose
the following conjecture:

Linearity of Parallel Path Cohsistency: No set of relations R;j, ¢, = 1,n, exists which
requires more than mn iterations of Parallel Path Consistency to make them consistent.
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2 Parallel Path Consistency

The current best path consistency algorithm (PC-3) has a time complexity of O(n’m?),
compared to the optimal arc consistency algorithm (AC-4) which has a time complexity of
O(n®m?)[5], but path consistency does a much better job of pruning the search space. This
can be seen by looking at the 4-Queens problem. Path consistency will prune 50% of the
labels from each node, leaving just two possible positions for each queen; arc consistency on
the other hand prunes none of the labels, leaving the problem at its original complexity.

The main thrust of this research is to define and implement paralle! versions of the PC
algorithms on a multiprocessor to see whether they can outperform the best AC algorithms
when used within search to prune the search tree at each node.

2.1 Standalone Parallel PC

We are currently investigating parallel versions of the PC algorithms and comparing their
performance to each other and to the parallel AC algorithms measured by Samal. Samal has
shown that the best sequential AC algorithm is not necessarily the best parallel algorithm.
For each algorithm we will measure its raw speed as well as its speedup linearity, with the
goal of finding a parallel PC algorithm with at least linear speedup. Speedup linearity is a
measure of how well we are utilizing the additional processors and is defined as time on I
processor/ (N x time on N processors).

2.2 Using PC in Search

The next step involves creating a standard backtracking program, in which various parallel
AC and PC routines are embedded. At each node of the search tree we run the chosen AC
or PC code to check for consistency. Again, we are measuring the raw performance and
speedup, as well as the average, minimum, and maximum search depth and the number of
nodes traversed. '

2.3 Finding Worst Case Performance

Although theoretical worst case performance of sequential PC-1 is of complexity O(m®n?),
early experiments have shown actual performance to be much better (see section 3.3). We
are attempting to find and categorize the worst case performance based on the type of graph
and constraint relation.

N-queens and confused n-queens[9] are the standard test cases for performance measure-
ment and comparison.
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3 Initial Results

We have conducted some simple experiments. These experiments support the following
claims:

1. Path consistency prunes the search space to a greater extent than arc consistency.
2. Highly parallelized versions of path consistency can achieve near-linear speedup.

3. Path consistency will normally run in much better than theoretical worst case perfor-
mance.

3.1 Pruning Efficiency of PC vs. AC

We already had a working version of arc consistency created by Samal, so PC-1 was coded
based on the algorithm given by Mackworth. Both these programs use identical system calls
to report timing information and were run on a number of both consistent and inconsistent
graphs. These graphs mostly corresponded to the N-Queens problem (for various values of
N), but other graphs were also examined. As expected, arc consistency ran much faster than
path consistency, but path consistency did a superior job of pruning the search space. As
mentioned earlier, a good example of this is consistent 4-Queens. Figure 1 shows number of
nodes expanded for n-queens (n = 4,6,8,10).

3.2 Parallel PC-1

As a next step, we modified the PC-1 program mentioned above to run as a parallel program
on the Butterfly. We employed a straightforward parallelization, where the number of parallel
processes generated is based on the size of the initial graph. Larger graphs have shown an
approximately linear speedup, up to the number of processors available (see Table 1). Note
that the number of iterations varies slightly due to interactions caused by the parallelization,
and the speedup remains linear only for equal iteration counts. '

3.3 Worst Case Performance

The graph input to PC-1 is encoded in the form of an nm*nm binary matrix. The algorithm
iterates over this matrix until two successive iterations yield no change in the matrix. Each
iteration is of complexity O(m3®n?®) and can only simplify the matrix (i.e., change a “1” to a
“0”). Since each iteration simplifies at least one element in the matrix, we require as a worst
case m?n? iterations, yielding a worst case performance of O(m3n?).

Since the input matrix defines both the list of possible labels for each node and the
constraint relation between nodes, it is possible to exhaustively examine all possible relation
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nodes expanded vs. n 4 -x- 12 0 -y~ 7000

Figure 1: Number of Nodes Expanded in N-Queens for AC and PC
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processors | raw time (ms) | iterations

speedup linearity

1s
1p

602980
626305
322272
213479
244888
128830
169108
142597
123289
113087
101053
93206
84602
78071
72184
44201

DWW W WWw W

2 iterations | 3 iterations
1.00 '
0.96
0.94
0.94

0.62
0.94
0.59
0.60
0.61
0.59
0.60
0.59
0.59
0.59
0.60
0.91

Note: 1s is sequential code and 1p is parallel code

Table 1: Speedup Linearity for 16-Queens using PC-1
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constraints for small values of m and n through a brute-force approach of constructing
all possible input matrixes. The purpose of this experiment was to find which constraint
relations produced the worst results (greatest number of iterations). While we haven’t been
able to fully characterize which constraint relations produced the most iterations, we were
surprised by the maximum and average number of iterations required. Using values of m = 2
and n = 3 yielded a worst case performance of 5 iterations (compared to a theoretical worst
case of 30 iterations) and an average case performance of 2.07 iterations (see Figure 2).

Additional experiments varying the value of m and n for a fixed relation showed that
the number of iterations required remains small and relatively constant for at least some
relations. If found to be generally true for all relations this would make parallel path con-
sistency even more attractive. Each iteration in PC-1 can be highly parallelized, but the
iterations themselves are performed in sequence. The number of iterations required (whose
upper bound is theoretically m2n?) places an upper bound on the efficiency of parallel PC; if
the number of iterations required is found to be small and relatively constant for large values
of m and n, then parallel path consistency may prove to be a superior filtering technique.

4 Tools and Facilities

All the code is being written in standard C. Timing information is gathered using standard
Uniz system calls (for. the sequential code) and Uniform built-in timing routines (for the
parallel code). '

4.1 DECStation 3100

Sequential code is developed and run on a dedicated DECStation 3100, a high-performance
RISC workstation. Code developed here under ULTRIX is source-code compatible with the
University Bobcat workstations, but its high performance (approximately 3x an HP370)
and lack of contending jobs means that large runs can be completed quickly.

4.2 Butterfly GP1000

Parallel code is being developed and run on the BBN Butterfly multiprocessor. The Butterfly
offers two means of accessing its multiprocessor features: direct system calls to the Mach
operating system, and the Uniform system. The Uniform system consists of a library of
routines which allow easy access to the multiprocessing features. While not as powerful as
direct Mach calls, it is much easier to use and supplies all the features needed to implement
parallel path consistency. .

The Butterfly is configured with eighteen nodes, which will be sufficient for development
and testing and to show the effect of parallelized PC, but we also hope to gain access to a
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and Max. Iterations for all relations of m = 3 and n = 2.
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40 node Butterfly located at Cornell University to verify that my results hold for a larger
degree of parallelization.

4.3 Connection Machine

In future work, we plan to represent and compute Path Consistency as an outer product [1]
on a fine grain connection machine at Los Alamos. We hope to determine from this whether
the speedup is sufficient to motivate the investigation of a special-purpose integrated circuit.
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Abstract

In this paper we present a distributed algorithm for solving the binary constraint satis-
faction problem. Unlike approaches based on connectionist type architectures, our protocol
is guaranteed to be self stabilized, namely it converges to a consistent solution, if such exists,
from any initial configuration. An imponant quality of this protocol is that it is self-

stabilizing - a property, that renders our method suitable for dynamic or error prone environ-
ments.

1. INTRODUCTION

Consider the distributed version of the graph coloring problem, where each processor
must select a color (from a given set of colors) that is different from any color selected by its
neighbors. This coloring task, whose sequental version (i.e. graph coloring) is known to be
NP-complete, belongs to a large class of combinatorial problems known as Constraint
Satisfaction Problems (CSPs) which present interesting challenges to distributed computa-
tion, particularly to connectionist architectures. We call the distributed version of the prob-
lem the network consistency problem. Since the problem is inherently intractable, the
interesting questions for distributed models are those of feasibility rather than efficiency.
The main question we wish to answer in this paper is: What types of distributed models
would admit a self-stabilizing algorithm, namely, one that converges to a solution, if such
exists, from any initial state of the network.

The motivation for addressing this question stems from attempting to solve constraint
satisfaction problems within a "connectionist” type architecture. Constraints are useful in
programming languages, simulation packages and general knowledge representation systems
because they permit the user to state declaratively those relations that are to be maintained,
rather than writing the procedures for maintaining the relations. The prospects of solving
such problems by connectionist networks promise the combined advantages of massive
~ parallelism and simplicity of design. Indeed, many interesting problems attacked by neural
networks researchers involve constraint satisfaction [1, 16, 3}, and, in fact, any discrete state
connectionist network can be viewed as a type of constraint network, with each stable pattern
of states representing a consistent solution. However, whereas current connectionist

(1) This research was supported in part by NSF grant #IRI-8815522 and by Air Force grant #AFSOR 80-0136
while the second author was visiting the cognilive systems lab at UCLA.
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approaches to CSPs lack theoretical guarantees of convergence (to a solution satisfying all
constraints), the distributed model which we use here is the closest in spirit to the connec-
tionist paradigm for which such guarantees have been established. Other related attempts for
solving CSPs distributedly were either restricted to singly connected networks {4, 15], or,
were based on a general constraint propagation, thus not guarantee convergence to a con-
sistent solution {12]. o

Our distributed model consists of a network of interconnected processors in which an
activated processor reads the states of all its'neighbors, decides whether to change its state
and then moves to a new state. The activation of a processor is determined by its current
state and the states of its neighbors. We also assume that all processors but one are identical
(this assumption is not part of classical connectionist models, but is necessary for our proto-
col). Under these architectural restrictions the network consistency problem is formulated as
follows: Each processor has a pre-determined set of values and a compatibility relation indi-
cating which of its neighbors’ values are compatible with each of its own. Each processor
must select a value that is compatible with the values selected by its neighbors. We shall
first review the sequential variant of this problem and then develop a dismibuted self-

stabilizing solution.

A network of binary constraints involves a set of n variables Xy,...X,, ¢ach
represented by its domain values, D, .. .,Dn,, and a set of constraints. A binary constraint
R;; between two variables X; and X is a subset of the cartesian product D;xD; that specifies
which values of the variables are compatible with each other. A solution is an assignment of
values to all the variables which satisfies all the constraints, and the constraint satisfaction
problems (CSP) associated with these networks are to find one or all solutions. A binary
CSP can be associated with a constraint-graph in which nodes represent variables and arcs
connect pairs of variables which are constrained explicitly. Figure 1a presents a constraint
network where each node represents a variable having values {a, b, ¢} and each link is asso-
ciated with a strict lexicographic order (where X; < X; iff i < j). (The domains and the con-
straints are explicitly indicated on some of the links.)

(@) ®)
Figure 1: An example of a binary CN
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General constraint satisfaction problems may involve constraints of any arity, but since net-
work communication is only pairwise we focus on this subclass of problems.

The rest of this paper is organized as follows: Section 2 provides the sequential algo-
rithm for solving a CSP, that is the basis for our distributed protocol. Section 3 introduces
the distributed model and the requirements for self-stabilization, section 4 provides the self-
stabilizing distributed protocol for solving the network consistency problem, while section 5
presents some worst-case analysis of the performance of our protocol.

2. SEQUENTIAL ALGORITHMS FOR CONSTRAINT SATISFACTION

2.1 Backtracking

The most common algorithm for solving a CSP is backtracking. In its standard ver-
sion, the algorithm traverses the variables in a predetermined order, provisionally assigning
consistent values to a subsequence (X, ..., X;) of variables and attempting to append to it a
new instantiation of X;,; such that the whole set is consistent. If no consistent assignment
can be found for the next variable X;,;, a deadend situation occurs; the algorithm *‘back-
tracks’’ to the most recent variable, changes its assignment and continues from there. A
backtracking algorithm for finding one solution is given below. It is defined by two recur-
sive procedures, Forward and Backword. The first extends a current partial assignment, if
possible, and the second handles deadend situations. The procedures maintain lists of candi-
date values (C;) for each variable X;.

Forward (X1,..., X;)

Begin
1. if i = n exit with the current assignment.
2. C;41 ¢ Compute-candidates(X , . . . ,X;,Xi+1)

3. if C; 41 is not empty then

4. Xx;, ¢ firstelementin Cj,,and
5. removeX;,; fromC;,;,and

6. Forward(x,,....X;,Xi+1)

7. else

8. Backword(x;,....,X;)

End.

Backword( Xy, ...,X;)
Begin
1. if i=0,exit ( No solution exists }
2. if C; is not empty then
3. x; ¢ firstinC;,and
4. removeX; from C;, and
5.

Forward(xy,....X;)
6. else
7. Backword(Xy,....Xi-1)
End
The procedure compute-candidates(x, ... ,x;,X;,1) selects all values in the domain of

X;,1 which are consistent with the previous assignments.
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2.2 Backjumping

Many enhancement schemes were proposed to overcome the inefficiency of "naive”
backtracking [14, 13,9, 11]. One particularly useful technique, called backjumping [5] con-
sults the topology of the constraint graph to guide its "backword" phase. Specifically, instead
of going back to the most recent variable instantiated it jumps back several levels to the first
variable connected to the deadend variable.

Consider again the problem in figure la. If variables are instantiated in the order
X1,X2,X4,X3,X7.X5,X¢ (see figure 1b), then when a dead-end occurs at X7 the algorithm
will jump back to variable X ,; since X7 is not connected to either X3 or X4 they cannot be
responsible for the deadend. If the variable to which the algorithm rewreats has no more
values, it backs-up further, to the most recent variable connected either to the original or to
the new deadend variables, and so on.

2.3 Depth first search with backjumping

Whereas the implementation of backjumping in an arbitrary variable ordering
requires a careful maintenance of each variable’s parents set [5], some orderings facilitate a
specially simple implementation. If we use a depth-first search (DFS) on the constraint graph
(to generate a DFS tree) and then conduct backjumping in an inorder traversal of the DFS
tree [8], finding the jump-back destination amounts by following a very simple rule: if a
deadend occurred at variable X, go back to the parent of X in the DFS tree. Consider once
again our example of figure 1. A DFS tree of this graph is given in figure 2, and an inorder
traversal of this tree is (X {.X7,X3,X4.X5,X¢ X 7). Hence, if a deadend occured at node X5
the algorithm retreats to its parent, X 5.

Figure 2 :-A DFS tree

The nice property of a DFS tree, which makes it particularly suitable for parallel
implementation, is that any arc of the graph, which is not in the tree, connects a node to one
of its tree ancestors (i.e. along the path leading to it from the root). Namely, the DFS tree
represents a useful decompositon of the graph: if a variable X and all its ancestors are
removed from the graph, the subtrees rooted at X will be disconnected. This translates to a
useful problem-decomposition strategy: if all ancestors of variable X are instantiated, then
the solutions of all its subtrees are completely independent and can be performed in parallel.
The idea of using a DFS tree traversal for backtracking and its potential for parallel imple-
mentation is not new. It was inroduced by Freuder and Quinn [11]. However, the parallel
algorithm they present assumes a message passing model, it is targeted for implementation




on a multiprocessor and it is not self-stabilizing [10]. We believe that the use of a DFS-

based backjumping for a connectionist type architecture and its self-stabilizing property is
novel to this work.

3. BASIC DEFINITIONS FOR DISTRIBUTED COMPUTATIONS
3.1 The model

Our general communication model is similar to the one defined in [7]). A distributed
system consists of n pl‘OC\CSSOI'S, Py, Py, -+ P,_y, connected by bidirectional communica-
tion links. It can be viewed as a communication graph where nodes represent processors
and arcs correspond to communication links. We use the terms node and processor inter-
changeably. Some (or all) edges of the graph may be directed, meaning that the two linked
processors (called a child'] and a parent respectively), are aware of this direction (the link
directions, though, are unr"clated to the communication flow). Neighbors communicate using
shared communication registers, called state registers, and state; is the register written only
by node i, but may be read by several processors (all i’s neighbors). The state register may
have a few fields, but it is 'rcgarded as one unit. This method of communication is known as
shared memory multi-reaider single-writer communication. The processors are anonymous
i.e. have no identities. (We use the term node i or processor P; as a writing convenience
only). A configuration C of the system is the state vector of ail processors.

A processor’s activity is managed by a distributed demon defined in [2,7). In each
activation the distributed demon activates a subset of the system’s processors, all of which
execute a single atomic step simultaneously. That is, they read the states of their neighbors,
decide whether to change their state and move to their new state. An execution of the sys-
tem is an infinite sequence \of configurations £ =.c, , c3 - - such that for every i ¢;,; is a

configuration reached from|configuration ¢; by a single atomic step executed by any subset,

of processors simultaneously. We say that an execution is fair if any node participates in it
infinitely often.

A processor can be modeled as a state-machine, having a predetermined set of states.
The state transition of a processor is controlled by a decision function, f;, which is a func-
tion of its input, its state and the states of its neighbors. The collection of all decision func-
tions is called a protocol. S

A uniform protocol is a protocol in which all the processors are logically equivalent,
idenically programmed (i.e. have identical decision functions). Following Dijkstra’s obser-
vation (6] regarding the mutual exclusion task, we have showen, that solving the network
consistency problem, using a: uniform protocol, is impossible (see the extended paper). We,

~ therefore, adopt the model of, "almost uniform protocol” namely, all processors but one are

identical and have identical decision functions. We denote the special processor as Py.
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3.2. Self stabilization

Our requirements from a self stabilizing protocol are similar to those in {6]. A self
stabilizing protocol should demonstrate legal behavior of the system, namely when starting
from any initial configuration (and with any input values) and given enough time, the system
should eventually converge to a legal set of configurations for any fair execution. The legal-
ity of a configuration depends on the aim of the protocol. Formally, let L be the set of legal
configurations. A protocol for the system is self stabilizing with respect to L if every infinite
fair execution, £, eventually satisfies the following two properties:

1. E enters a configuradon c; that belongs to L.

2. For any j>i and ¢;,c;€ E, if c;e LthencjeL (i.e. once entering L it never leaves ir).

In our case a legal configuration is a consistent assignment of values to all the nodes
in the network if one exists, and if not, any configuration is legal.

4. A DISTRIBUTED CONSISTENCY-GENERATION PROTOCOL

This section presents a self stabilizing protocol for solving the network consistency
problem. It is logically composed of two subprotocols: one simulates the sequential
backjumping on DFS (section 4.3), and the other facilitates the desired activation mechanism
(section 4.2).

4.1 Neighborhoods and states

We assume the existence of a self-stabilizing algorithm for generating a DFS tree, as
a result of which each internal processor, P;, eventually has one adjacent processor,
parent (P;), designated as its parent, and a set of children nodes denoted children (P;). The
link leading from parent(P;) to P; is called inlink while the links connecting P; to its chil-
dren are called outlinks. The rest of P;’s neighbors are divided into two subsets:
ancestors (P;), consisting of all neighbors, that reside along the path (in the tree) from the
root to P;, and the set of its successors. For our algorithm a processor can disregard its suc-
cessors (which are not its children) and observe only the three subsets of neighbors as indi-
cated by figure 3a (for internal nodes) and figure 3c (for leaves). The root, having no
parent, is played by the special processor P (figure 3b).

We assume that processor P; (representing variable X;) has a list of possible values,
denoted as Domain;, one of which will be assigned to its state (i.e. to its value field in the
state register), and a pairwise relation R;; with each neighbor P;.

The state-register of each processor contains the following fields:

1. A value field to which it assigns either one of its domain values or the symbol "*" (to
denote a deadend).

2. A mode field indicating the processor’s "belief” regarding the status of the network.
A processor changes the mode from "on" to "off and vice-versa in accordance with
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ancestors(P) children(P) children(P) ancestors(P)

=

-3a- P=Intemnal Processor -3b- P=Root -~ .3¢- P=Leaf
Figure 3: A processor’s neighborhood set.

the policy described in section 4.3. The modes of all processors also give an indica-
tion whether all the processors have reached a consistent state (all being in an "off"
mode). '

3. Two boolean fields called parent_tag and children_tag, which are used to control
the activity of the processors (section 4.2.)

Additionally, each processor has an ordered domain list which is controlled by a local
domain pointer (to be explained later), and a local direction field indicating whether the
algorithm is in its forward or backward phase (to be discussed in section 4.3).

4.2 An activation mechanism

The control protocol is handled by a self-stabilizing activation mechanism. Accord-
ing to this protocol a processor can get a privilege to act, granted to him either by its parent
or by its children. A processor is allowed to change its state only if it is privileged.

Our control mechanism is based on a mutual exclusion protocol for two processors
called balance/unbalance. The balance/unbalance mechanism is a simplified version of
Dijkstra’s protocol for directed ring [6, 7], and is summarized next. '

Consider a system of two processors, P and P, each being in one of two states "0"
or "1". P changes its state if it equals P ’s state, while P changes its state if it differs from
Pg’s state. We call a processor that is allowed to change its state privileged. In other words,
P becomes privileged when the link between the processors is balanced (i.c. the states on
both its endpoints are identical). It then unbalances the link and P becomes privileged, (the
link is unbalanced). P in its turn balances the link. It is easy to see that in every possible
configuration there is one and only one privileged processor. Hence this protocol is self sta-
bilizing for the mutual exclusion task and the privilege is passed infinitely often between the
two processors. We next extend the balance/unbalance protocol to our needs, assuring, for
instance that a node and its ancestor will not be allowed to change their values simultane-
ously.

Given a DFS spanning tree, every state register contains two fields: parent_tag,
referring to the inlink and children_tag, referring to all the outlinks. A node, i, becomes
privileged if its inlink is unbalanced and all its outlinks are balanced, namely if the following
two conditions are satisfied:
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1. for j = parent (i) : parent_tag; # children_tag; (the inlink is unbalanced)

2. Vke children (i) : children_tag; = parem_tagk“) (the outlinks are balanced)

A node applies its decision function (described in section 4.3), only when it is
privileged (otherwise it leaves its state unchanged), and upon its execution, it passes the
privilege accordingly. The privilege can be passed backwards to the parent by balancing the
incoming link or forward to the children by unbalancing the outgoing links (i.e. by changing
the parent_tag or the children_tag value accordingly).

We define the legally-éontroled configurations, to be those in which exactly one
processor is privileged on every path from the root to a leaf. Figure 4 shows such a
configuration. Note how the privilege splits on its way "down". We claim that the contol

mechanism is self stabilizing, with respect to that legally-controled configurations set ® (the
proof is presented in the extended paper).

O - A Privileged Processor

Figure 4: An example for a legal privileges configuration

Once it has become privileged, a processor cannot tell where the privilege came from
(i.e. from its parent or from its children). Thus, a processor uses its direction field to indi-
cate the source of its privilege. Since during the stable period exactly one processor is
privileged on every path from the root to a leaf, the privileges travel along their paths back-
wards and forwards. The direction field of each processor indicates the direction that the
privilege was recently passed by this processor. When passing the privilege to its parent, the
processor assigns its direction field the "backward” value, while when passing the privilege
to its children it assigns the "forward" value. Thus, upon receiving the privilege again, it is
able to recognize the direction it came from: if direction = "forward', the privilege was
recently passed towards the leaves and therefore it can come only from its children; if direc-
tion = "backward", the privilege was recently passed towards the root and therefore it can
come only from its parent. Following are the procedures for privilege passing by P;.

procedure pass-privilege-to-parent

Begin
1. parent_tag; « children_tagparens (i) { balance inlink )
2. direction; « "backward"

End.

(1) Note that this is well defined since we can prove that eventually all siblings have the same parent-tag.
(2) We show that our protocol is self-stabilizing with respect o the network consistency task as well as to the

legally-controled cmﬁgm'anons set (the network converges to LNL.
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procedure pass-privilege-to-children

Begin
1. for ke children (i) children_tag; —parent_tag, ( unbalance outlinks )
2. direction; « "forward"

End.

4.3 Protocol description

The protocol has a forward and a backward phases, corresponding to the two phases
of the sequendal algorithm. During the forward phase processors in different subtrees assign
consistent values (in parallel) or verify the consistency of their assigned values. When a pro-
cessor realizes a deadend it assigns its value field a "*" and initiates a backward phase. When
the network is consistent (all processors are in an "off" mode) the forward and backward
phases continue, whereby the forward phase is used to verify the consistency of the network
and the backward phase just returns the privilege to the root to start a new forward wave,

Once consistency verification is violated the offending processor moves to an "on" mode and
continues from there.

A processor can be in one of three situations:

1. Processor P; is activated by its parent which is in an "on" mode (this is the for-
ward phase of value assignments). In that case some change of value in one of its
ancestors might have occurred. I, therefore, resets the domain pointer to point to the
beginning of the domain list, finds the first value in its domain that is consistent with
all its ancestors, put itself in an "on" mode and passes the privilege to its children. If
no consistent value exists, it assigns itself the "*" value (a deadend) and passes the
privilege to its parent (initiating a backward phase).

2. Processor P; is activated by its parent 'which is in an "of" mode. In that case it

verifies the consistency of its current value with its ancestors. If it is consistent it
stays in an "off" mode and moves privilege to its children. If not, it assigns itself a
new value (after resetting the domain pointer to start), moves to an "on" mode and
passes the privilege to the children. -

3. Processor P; is activated by its children (backward phase). If one of the children
has a "*" value, the processor selects the next consistent value (after the current
pointer) from its domain, resets its domain pointer to point to the assigned value and
passes the privilege to the children. If no consistent value is available, it assigns

itself a "*" and passes the privilege to its parent (). If ail children have a consistent
value, P; passes the privilege to its parent.

Following we present the algorithms performed by processors P;, i # 0, (see figure 5)
and the root processor (figure 6).

(1) Due to the privilege passing mechanism, when a parent sees one of its children in a deadend it has to wait
until all of them have given him the privilege. This is done to guarantee that all subtrees have a consistent view
regarding their ancestor’s values.
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The procedure compute-next-consistent-value (figure S) tests each value which is
located after the domain pointer, for consistency. Namely the value is checked against each
of ancestor (P;)’s values and the first consistent value is returned. The pointer’s locaton is
readjusted accordingly (i.e., to the found value). If no legal value was found the value
returned is "*" and the pointer is reset to the beginning of the domain. The procedure
verify-consistency checks the consistency of current value with ancestors and retums a
ruth-value (i.e. "true” if it is consistent and “false" otherwise).

The algorithm performed by the root, Py, (figure 6) is slightly different and in a way
simpler. The root does not check consistency. All it does is assigning a new value at the end
of each backward phase, when needed, then initiating a new forward phase.

procedure update-state (for any processor except the root)
Begin
1. read parent (P;) and children (P;)
2. if direction = "backward" then | privilege came from parent }

3. if parent’s mode is "on” then

4. mode « "on"

5. pointer « 0

6. value « compute-next-consistent-value

7. if value = "*" then

8. pass-privilege-to-parent

9, else { there is a legal consistent value }

10. pass-privilege-to-children '

11, else ( parent’s mode is "off* )

12. if verify-consistency = "true” then

13. mode « "off"; pass-privilege-to-children

14, else ( verify-consistency = "false" )

15. mode « "on" ‘

16. value « compute-next-consistent-value

17, if value = "*" then .

18. pass-privilege-to-parent

19. else { there is a legal consistent valug }

20. pass-privilege-to-children

21. else ( direction ="forward" ie. privilege came from children }
2. if 3kechildren (P;) value; ="*" then ‘ .
2. mode « "on"

24, value « compute-next-consistent-value

25. if value = "*" then  no consistent value was found )
26. pass-privilege-to-parent

27. else { there is a legal consistent value ]
28, pass-privilege-to-children
29. else ( all children are consistent }
30. pass-privilege-to-parent

End.

Figure 5: The decision function of P; ,i = 0.
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procedure root-update-state
Begin
1. read children (P )
2. if 3ke children (P ) valuey = "*" then
3. mode « “on”
4, value « next-value

S. else { all children are consistent )
6. mode ¢« "off

7. pass-privilege-to-chiidren
End.

Figure 6: The decision function of Py.

The procedure next-value returns the value pointed by the domain pointer and incre-

ments the pointer’s location (if the end of the domain list is reached, the pointer is reset to
the beginning).

In the extended paper we prove the correctness of our protocol. The seif-stabilization
property of our activation mechanism assures an adequate control for distributedly imple-
mented backtracking. Having this property we can prove the self-stabilization of the
“consistency-generation” protocol, namely that eventually the nerwork converges to a legal
solution, if one exists, and if not it keeps checking all the possibilities over and over again.

5. COMPLEXITY ANALYSIS

The precise time complexity of the protocol has yet to be formally analyzed. How-
ever, a crude estimate can be given of the maximal number of state changes from the time
the activation mechanism had stabilized until a final convergence. The worst-case number of
states changes depends on the worst-case time of the sequential backjump algorithm. We
will present a bound on the search space explored by the sequential algorithm and show that

the same bound applies to the number of state changes of our protocol. Our bound improves
the one presented in [11].

Let Ty, stand for the search space gencrated by DFS-backjumping when the depth of
the DFS tree is m or less. Let b be the maximal brunching degree in the tree and let k bound
the domain sizes. Since any assignment of a value to the root node generates b subtrees of
depth m -1 or less, that can be solved independently, T,, obeys the following recurrence:

(1) Th=kbTp
with Ty = k. Solving this recurrence yields

(2) Tm = bmkm+l
(Note that when the tree is balanced we get that T, = nk™*!)

It is easy to show that the number of state changes of our protocol satisfies exactly
the same recurrence. The reason is as follows: Any sequential DFS-backjumping produces a
search space smaller or equal to the number of state changes of the distributed protocol.
However, there is exactly one run of the sequential algorithm, whose search space is identi-
cal to the number of state changes in the protocol, thus the two worst-case are identical.
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6. CONCLUSIONS

We have shown that the network consistency problem can be solved distributedly
within a connectionist type architecture. The protocol we presented is self-stabilizing,
namely its convergence to a consistent solution is guaranteed. The self-stabilizing property
renders our model suitable for soiving CSPs in dynamic environments. For instance, unex-
pected changes of some of the domains or some of the constraints will trigger a transient per-
turbation in the network which will eventually converge to a new solution. Similarly, the
protocol can readjust to changes in the network’s topology, after generating a new DFS span-
ning tree. A self swabilizing DFS spanning tree protocol will be presented in the extended

paper. :

Although we are attacking an NP-complete problem, we have shown that our
protocol’s complexity is polynomial in networks of bounded DFS depth. Thus the DFS depth
can be regarded as a crucial parameter of the rate of convergence in our model. It will be
interesting to explore whether the speed of convergence in other models is related to similar
parameters.

225 -



(4]
(5]

(6]

(8]
(9]

(10]

(11]

References
I.Bxgaé\lsn{darlgmﬁctgrgs dn’x’%é’?? (r)v} Rocﬁesteraiiocgggpeh I{?Pleﬂscgn ?{58“’1‘%
' W 3 - .
B, ey T i Tt i 5 SRR o

gr%]&'x E BnngN¢ural netg\e{eg‘(g algzn}lhn}%ipé ﬁ;st na? le&)nfo g}ze;veur a? N u

works, anDlego 1987,

Egc tr':; R 'P and / dm?;:ch e P fgllcﬁ malﬁﬁengmm élggmmic constraint net-
h“"g " S B C?.%S‘mm*’i&?wﬂw%e“%'“s
Dijkourn, B i of T ALY 1918 TS, i £ distributed control. ™

Dolev, S., A li, and S. Moran,_ ‘S ili
assxfr}’xmg only m write atomxcug. Techﬁx‘gnmp lﬁ.aﬁ Y-faﬂgn fnrlael R
Even, S., Graph Algorithms, Maryland, USA: Computer Science Press, 1979.

S{E‘f ol 5 94 l§uiﬁcxe5ng Condxfi)_r?5 2for Backtrack-Free Search.,’’ Journal of

CRILE M) O Exnllon s Ut e LI

Fﬁfr::;:r' E Ceci.n %%r;a;p{'so ?‘?{lnng:‘,g oy nﬁ/géelt? foprﬁglwsm%ﬁigge rhangre\scm

s BB AT B ST 8. L TR 5
stramtcé(ansfacuon Sroq)lem ]’thn i In:emfe ce. &F&E{g e“p? 5 3%?3?

‘ £ Net f Relations,”* Artificial intelli-
Mk 1 SIS Ty erwors of Relatons” Arifcal el

osm and U. Montanan actso u etworks nstmmts usm‘g
rflgxat of-, rocﬁef st n 6 Principles of
nowleage epresen:auon asomng

e o’lz‘in 1ego l g ocee‘i ?':7(2 &Eﬂﬁgﬂ‘m 53“5f g ’vl'l propler lems m}lf}

226



Connectionist Networks for
Constraint Satisfaction *

Hans Werner Guesgen
German National Research Center for Computer Science (GMD)
Schloss Birlinghoven, 5205 Sankt Augustin, Fed. Rep. of Germany

Abstract

Algorithms for solving constraint satisfaction problems, i.e. for finding one, several, or
all solutions for a set of constraints on a set of variables, have been introduced in a variety
of papers in the area of Al. Here, we illustrate how connectionist networks for constraint
satisfaction can be implemented.

The idea is to use a connectionist node for each value of each variable and for each tuple
of each constraint of the constraint satisfaction problem, and to connect them according to
the way in which the constraints are related to the variables. Goedel numbers are used as
potentials of the nodes that correspond to variables, representing possible paths of solutions.

1 Introduction

Constraint satisfaction has been applied successfully in many subfields of Al, such as computer
vision [22], circuit analysis [20], planning (21}, diagnosis [3] [6] {13], and logic programming [10].

A constraint satisfaction problem consists of a constraint network, i.e. a set of variables and
a set of constraints on subsets of these variables, and the task of determining one or more tuples
of values that satisfy the constraint network. A brute-force approach to finding a solution for
a constraint network is to use a backtracking algorithm: values from the domain are tentatively
assigned to the variables and the constraints are checked as to whether they are satisfied. If this is
not the case, values are backtracked and other values are assigned until a solution is found or no
other values can be assigned, i.e. inconsistency is detected.

In general, there is no straightforward (massively) parallel mlplementauon for the backiracking
approach. However, there are other algorithms (which are preprocessing methods rather than
complete constraint satisfaction algorithms) that can be implemented in parallel. Examples are
the arc consistency algorithms in [16], the complexity of which is discussed in [12] and a parallel
implementation of which is illustrated in [1].. In particular, it is shown in [1] how connectionist
networks can be used to compute arc consistency.

1t is the purpose of this paper to iniroduce connectionist networks that are able to compute
global consistency rather than arc consistency. Similar to [1], the nodes used in our networks are
in accordance with the unit/value principle (cf. {4]): a separate connectionist node is dedicated
to each value of each variable and each tuple of each constraint of the constraint network. This
approach is in analogy to the way deKleer represents constraint networks as propositional clauses

14].
[ ‘The paper is organized as follows: we will first summarize the part of [1] that is essential for
our approach and will then show how it can be extended to a complete constraint satisfaction

*Part of this work was performed while the author was at the International Computer Science Institute, 1947
Cenler Street, Berkeley, California 94704.
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Figure 1: Scheme of a connectionist network for constraint satisfaction.

algorithm, using Goedel numbers to represent possible paths of solutions. Qur work is related
to the work in symbolic Al that is described in [8}, and therefore it is another example of how
symbolic algorithins can be implemented in a connectionist manner.

2 Connectionist Representation

Constraints are usually defined on a set of variables V over a domain D. We represent each
variable-value pair (z,a), z € V, a € D, by a connectionist node (v-node) and denote such a node
by v(z,a). _

A binary constraint on two variables consists of a set of pairs, each pair representing a consistent
value assignment for the variables. We introduce a connectionist node (c-node) for each quadruple
(z,y,a,b) withz,y € V and a,b € D, and denote such a node by ¢(z, y, ¢, b}. Because of symmetry,
¢(z,y,a,b) and ¢y, x, b, a) denote the same node.

This representation corresponds directly to the one in [1]. As it is shown there, v-nodes and
c-nodes can be connected in such a way that the resulting network computes an arc consistent
solution for the corresponding constraint satisfaction problem (cf. figure 1). For that purpose, the
nodes are initialized as follows:

e Each v-node obtains potential 1.

e A c-node ¢(z,y, a,b) obtains potential 1, if (a,b) is an admissible assignment of values for
(z, y); else it obtains potential 0.

Since it is more convenient, we will use v(z,a), for example, for both: either for referring to the
potential of a node or for denoting the node itself.

A v-node is reset to 0 if one cannot find at least one v-node for every other variable such that
the constraint between this v-node and the given v-node is satisfied. This rule is called the arc
consistency label discarding rule:

reset(v(z,a)) = - /\ \/ (v{y, b) )\c(z,y,a, b))

yeV beD
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This is equivalent to:

v{z,a) = { (l) ;‘i;y € V3be D:v(y,b) Ac(z,y,a,b)

A shortcoming of the label discarding rule is that it computes only arc consistency according to
[16]. Although arc consistency may help to find a global solution by restricting the search space,
one often needs additional mechanisms to obtain a globally consistent network. We will show in
the next section how a connectionist network can be designed to compute global consistency. The
approach described in that section may be compared with the one in [15], where mgnatures are
used to maintain variable bindings.

3 Towards Global Consistency

The idea is to apply the same communication scheme as in [1] but to use the potential of a v-node
to encode information about how the variable/value pair contributes to a solution (and not only
whether or not it does so). The information is composed from the codings that are associated with
the c-nodes. In particular, we encode each c-node by a prime number and denote this encoding by
a function e : V2 x D? — P from the set of c-nodes to the set of prime numbers.

For example, let V = {z,y} and D = {a, b}, then e may be defined as follows:

e(z,z,a,a) =2 e(z,y,a,a):e(y,z,a,a): 11
- e{z,z,b,b)=3 e(z,y,a,b) = e(y,z,b,a) =

e(y,y,a,a)=5 (2 yaba)"‘e<y1:ab)"

e(y, v, 0,0) =7 e(z,y,b,b) = e(y,z,b,b) = 19

Nodes such as ¢z, z,a,b) with a # b do not make sense and therefore are omitted in the coding.

We will again use the same notation for a node and its potential, i.c. the terin ¢(z,y, a,b), for
example, may denote the connectionist node representing the tuple (a, b) of the constraint between
z and y, or may denote the potential of that node. It is determined by the context which meaning
is intended.

The initial potentials of c-nodes are the same as in [2]. A c-node c(z,y,a,b) is assigned the
potential 1, if there is a pair (a,b) in the constraint between z and y; else it is 0. The initial
potential of a v-node v{z, a) is determined by the product of the codes of all c-nodes except those
that refer to the same variable as the given v-node but to a different value for that variable (i.e. a
factor e(z, ..,b,..) with b # a does not occur in the product):

» H e(z,y,a,b). H Mg%_b_l_,b_?)

YEV ¥1,¥2 € V\ {x}
beD by, bz €D

The factor -} is due to the fact that ¢(yi, ya, b1, ba) and e(ya2, ¥1, b2, b1) are identical nodes.
Unlike computing arc consistency (in which a v-node’s potential is reset to 0 if it is inconsistent),
we will perform here what is called graceful degradation:

1. A c-node receives the potentlals of its v-nodes and computes their greatest common divisor
(8ed).

2. The ged is returned to the v-nodes if the c-node has potential 1; else 1 is returned.

3. A v-node computes the least common multiples (lem) of data coming in [rom c-nodes that
refer to the saine variables and combines these by computing their gdc.

229



The idea is that the potentials of v-nodes shall reflect paths in the network that correspond to
solutions of the constraint satisfaction problem. A v-node may be on the same path as another
v-node if the c-node between them has potential 1. We start with allowing all paths among the
v-nodes. Whenever a part of path is determnined that is not admissible, i.e. the corresponding
c-node has potential 0, the path is deleted.

This means that global information about solution paths is held locally in the v-nodes of the
network. . To keep this information consistent, the c-nodes compute the ged of the potentials of
neighboring v-nodes. The gecd reflects that piece of information neighboring v-nodes can agree
on. In order to consider alternatives, the v-nodes compute the lem of data that comes in from
c-nodes connecting to the same variable, and combine the results by applying the ged operator.
The alternation between the application of ged and lem directly corresponds to the semantics of
constraints and their constituting tuples: a constraints network can be viewed as a conjunction of
constraints (therefore ged) wheras a constraint can be viewed as disjunction of tuples (therefore
lem).

More formally, the degradation rule can be denoted as follows:

0(2, a) ‘—SCd yev lem beD (out(c(.r, y,a, b)))

with
ged(v(z,a),v{y, b)) il ez, y,a,b)=1
out(c(z, y, a, b)) =
1 else

Since the degradation rule is monotonous and discrete, the network finally settles down. After
that, the potentials of the v-nodes characterize the set of solutions of the given constraint satisfac-
tion problem. In particular, a solution is given by a subset of v-nodes, W, for which the following
holds:

1. Every variable occurs exactly once in W,
2. The potentials of the v-nodes in W are divisible by p, where:

e{z,y,a,b)

p= 2

v(z,a),vi{y b)eW
-(Again, the factor :i,- is due to the fact that c(z,y, a,b) and ¢(y, z,b, a) are identical nodes.)
We will show in the next section that the approach is sound and complete. We will also provide
some upper bound for its space complexity. Before that, however, we will illustrate our approach
by a small example. Figure 2 shows a part of a connectionist network for a constraint problem
with variables =), za2, z3, and z4, which are constrained by binary constraints according to the
following table:
" Variables | Constraint
1,22 {(ava)v(bv b)}
Z2,Z3 {(a,a),(b,b).(b,a)}
z3, 74 {(a,a), (b, a)}

Here, we use circles for the represeritat.ion of v-nodes, boxes with solid boundary lines for c-
nodes that have potential 1, and boxes with dashed boundary lines for c-nades that have potential
0. For the sake of simplicity, c-nodes that correspond to universal constrainis, i.e. constraints with
the whole Cartesian product as relation, have been omitted. This sinplification is admissible since
all v-nodes are already connected by nonuniversal constraints, guaranteeing that inconsistent codes
are remnoved from the potentials of the v-nodes.

Figure 3 shows a sequence of tables in which listings of v-node potentials and c-node outputs
alternate. It illustrates how the network is initialized and how it settles down.
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Figure 2: Connectionist network for a simple constraint satisfaction problem.

The example suggests that nodes in the center of the network (v(z,,a), v(za,b), v(z3,a), and
v(z3,b)) settle down faster than nodes at the periphery (v(z),a), v(zy,b), v(z4;a), and v(z4,b)).
This, however, is only because we simplified the example and left out somne connections. In a
network with full connectivity, there is no distinction between center nodes and peripheral nodes;
therefore, these networks settle down in 8 more uniform way.

4 Termination, Soundness, and Completeness

The kernel of our approach is the degradation rule as introduced in the previous section, which,
on a more abstract level, may be denoted as follows:

v(z,a) — degrade(...,v(z,a),...)

In this context, two observations are important: first, degrade is composed of ged's and lem’s in
such a way that factors are deleted from v(z,a) rather than added, and second, the number of
factors with which v(z, a) is initialized is finite. This implies that the degradation rule terminates,
independently of the given constraint satisfaction problem.

We will now show that our approach is sound and complete. For that purpose, we have to
answer the following questions:

1. Does every subset W of v-nodes with

(a) Every variable occurs exactly once in W.
(b) The potentials of the v-nodes in W are divisible by p, where:
_ e(z,y,a,b)
= I ==
v(z,a},v(y,b) €W

represent a solution, i.e., does the degradation rule always converge to a solution, i.e., is our
approach sound?

2. Does a subset IV of v-nodes with the above properties exist for each solution of the constraint
satisfaction problem, i.e., is our approach complete?

To answer the first question, let us assume that there is a subset of v-nodes, W, for which
the above conditions hold but which does not represent a solution of the constraint satisfaction
problem. ‘This means that the tuple suggested by IV violates at least one constraint of the network.
Let ¢(z,y,a,b) be the c-node representing the tuple of the constraint that is violated, then the
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V-Node | Initial Potential C-Node OQutput

u(:n,u) 2:.3:-11-13.17-19-23-29.31.37 c(zl,rz,a,a) 2-11-13-23.29.31.37

v(zy,b) | 5-7-11-13.17.19.23.29.31.37 ez1,z2,0,b) | 1

u(.r:,a) 2:5-11:13.23-29:31.37 c(rl,rg,b,a) 1

v(za,b) | 3-7-17-19.23.29.31.37 e{z1,72,b,6) | 7-17-19.23.29.31.37

v{ra,a) {2-3:5:7-11:17-23.29 c(za,z3,a,0) [ 2:5:11.23.29

v({rs,b) | 2:3.5:7-13.19-31.37 e{ra,z3,a,b) |1

v{ze,a) | 2:3-5.7.11.13.17.19.33.31 c{z2,z3,b,a) | 3-7-17.23.29

v{zy,b) | 2-3-5.7-11.13.17.19.29.37 c(z2,z3,b,b) | 3-7-19.31.37
c(r3,z4,0,a) | 2:3.5-7.11:17.23
c{z3,z4,a,b) | 1
e{x3,z4,b,8) | 2-3-5-7-13:19.31
c{za,z4,0,0) | 1

V-Node | Potential C-Node Qutput

v(zy,a) | 2-11.13.23-29.31-37 c{z1,72,8,a) | 3:11-23.29

v(z),b) | 7-17-19.23.29.31.37 e(ry,x3,a8,b) | 1

v{zz,a) | 2-11-23.29 e{ry,z3,b,a) |1

v{za,b) | 7-17-19-.23.29.31.37 e{z1,72,b,b) | 7.17.19.23.29.31.37

v({rs,a) | 2:3-5:7-11.17-.33 c{ra2,z3,a,a) | 32:11-23

v(ra,b) | 3-7.19.31 c{za,z3,a,b) | 1

v{zr¢,a) | 2:3:5-7.11-13.17.19.23 .31 (z2,73,b,8) | 7:17-33

v{ze,b) | 1 c(r2,z3,b,b) | 7-19.31
c(r3, z4,a,0) | 3:3:6-7-11-17.23
c{ra,z4,a,0) | 1
¢(z3,z4,0,a) | 3-7.19.31
c{za,ze,0,0) | 1

V-Node | Potential C-Node Output

wWz1,a) | 2-11-23-29 (z1,z23,0,0) | 2-11-23

v{z1,b) | 7-17-19-23.29.31.37 elr1,z2,0,8) | 1

v(zz,a) | 2-11-23 c{ry,x2,b,a) | 1

v{za,b) | 7-17-19.23.31 e(z1,72,6,6) | 7-17-19.23.31

v(r3,a) | 2:7-11.17.23 c(r3,z3,a,a) | 2:11.23

v(z3,b) | 7-19.31 c{r3,z3,a,b) | 1

v(ze,a) | 2:3-5-7-11.17.19.23.31 (za,z3,b,a) | 7:17.23

v(zy,b) | 1 c{rg,x3,b,b) | 7-19.31
c{r3, x4 a,0) | 2-7-11:17.23
c{T3,z4,a,b) | 1
c(z3,z4,0,a) | 7-19.31
c(ra,ze,0,0) | 1

V-Node | Final Potential

v(ry,a) | 2:11.23

u(zl,b) 7-17-19:23.31

v{zrz,a) | 2-11-23 '

v(za,b) | 7-17-19.23.31

v(r3,a) | 2:7-11:17:23

v(zs,b) | 7-19.31

v(zs,a) | 2-7.11.17.19.23.31

v{ze,b) | 1

Figure 3: Sequence of v-node potentials and ¢-node outputs.
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potential of ¢(z,y,a,b) is 0. Due to the initialization scheme, the potential of a node v(z, a’) with
a’ # a does not contain the factor e(z,y, a,b); the same holds for v(y,b') with &' # b. Since the
potential of ¢(z, y, a,b) is 0 and since no neighboring node can provide the factor e(z,y, a,b), this
factor is neither in the potential of v(z, a) nor in the potential of v{y,b), i.e. these potentials are
not divisible by e(z, y, a, b). Therefore, they are also not divisible by p (p defined as above). This,
however, is in contradiction to the assumption, i.e. every subset of v-nodes for which the above
conditions hold represents a solution of the constraint satisfaction problem. '

On the other hand, each solution of a given constraint satisfaction problem defines a subset of
c-nodes, C, for which the following holds: '

1. Each constraint is represented by exactly one c-node.

2. The potentials of the c-nodes are equal to 1.

Let W be the subset of v-nodes that are connected to c-nodes of C, i.e.:
W = {v(z,a) | 3y,b : ¢(z,y,a,b) € C}

It is easy to see that W represents the given solution. Since the potentials of the c-nodes in C are
equal to 1, the potentials of the v-nodes in ¥ are divisible by the code of any c-node in C, i.e.
they are divisible by p, where p is the product of the codes of c-nodes in C. Thus, W satisfies the
conditions proposed above.

With that, we have shown the soundness and completencss of our approach, i.e. the one-to-one
relationship between solutions of a given constraint satisfaction problem and special subsets of
v-nodes in the corresponding connectionist network. We will now discuss the complexity of our
approach. C

5 Complexity

Let n be the number of variables of the given constraint satisfaction problem (n = |V|), and let
m be the number of values in their domain (m = |D|). Then, the number of v-nodes and c-nodes
can be estimated as follows:

Number of v-nodes: O(mn)

Number of c-nodes: O(m?n?)

Total number of nodes: O(m?n?)

In addition, we have to consider the local space that is required for storing the Goedel numbers.
Each v-node potential is the product of at most O(m?n?) factors, corresponding to the c-nodes
of the network. These factors could be represented by bit vectors, which facilitates the ged and
lem operations, reducing them to intersection und union operations. This means that we need
additional space of magnitude O(m2n?) for each v-node, i.e. O(m®n®) additional space in total.

6 Conclusion

We have shown in this paper how a connectionist network can be used to compute the solutions
of a constraint satisfaction problem. In particular, we have provided a scheme which allows us
to transforin an arbitrary binary constraint satisfaction problem, i.e. a set of variables and a
set of constraints on these variables, into a connectionist network consisting of v-nodes and c-
nodes. C-nodes are initialized with either 1 or 0, depending on whether they correspond to an
admissible value combination or an inconsistent one; v-nodes are initialized with a Goedel number,
representing the possible paths of solutions. A

Unlike former approaches, the connectionist network introduced here computes global consis-
tency rather than arc consistency, i.e. it computes the solutions of a given constraint satisfaction
problem. We restricted ourselves to binary constraint satisfaction problems, although our approach
can be extended to problems of higher arity in a straightforward manner.
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Distributed Constraint Satisfaction for DAI Problems
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Abstract

In this paper, a distributed constraint satisfac-
tion problem (DCSP) is introduced as a gen-
eral framework for Distributed Artificial Intel-
ligence (DAI) problems. A DCSP is an ex-
tension of a constraint satisfaction problem
(CSP), and various DAI problems can be for-
malized as DCSPs.

Various methods for solving DCSPs are devel-
oped in this paper. In particular, the newly
developed technique called asynchronous back-
tracking allows agents to act asynchronously
and concurrently, whereas backtracking in
CSP is essentially a sequential procedure.
These methods are compared experimentally,
and typical DAI problems are mapped into
DCSPs.

1 Introduction

Distributed Artificial Intelligence (DAI) is a subfield
of AI, which is concerned with how a set of auto-
mated agents can work together to solve problems. Re-
cently, [Lesser 90] has presented the idea of viewing
DAI as a distributed state space search in order to
develop a general framework of DAI. This concept is
important because without such general frameworks,
it is very difficult to compare alternative approaches
(which often make different and quite specific assump-
tions) or to reproduce results obtained by one approach
on slightly different problems. Our goal is to develop
a framework for formalizing a subset of DAI prob-
lems and methods by extending constraint satisfaction
problems (CSPs) [Mackworth 87] to distributed multi-
agent environments. In this paper, we define a dis-
tributed constraint satisfaction problem (DCSP) as a
CSP in which multiple agents are involved. CSPs are
an important subclass of the problems which can be
solved by state space search, and the characteristics of
CSPs are well understood both theoretically and experi-
mentally [Haralic and Elliot 80] [Dechter and Meiri 89].
Similarly, DCSPs are a subclass of the problems which

*Currently staying in Department of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Ar-
bor, Michigan 48109, e-mail: yokoo@caen.engin.umich.edu
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can be solved by distributed search. DCSPs are impor-
tant for the following reasons.

e Various DAI problems can be formalized as
DCSPs.
Multi-agent resource allocation problems described
in [Conry, et al. 88], [Kuwabara and Lesser 89] are
examples of a class of problems which can be nat-
urally formalized as DCSPs. By formalizing these
problems as DCSPs, the methods for solving DC-
SPs proposed in this paper can be applied.

¢ DCSPs provide a formal framework for
studying various DAI methods.
There are various options in the methods for solv-
ing DCSPs, which influence the efficiency (e.g., the
selection order of the values). Agents have to make
decisions about these options and these decisions
are interrelated. DCSPs serve as a basis for studies
such as [Durfee and Lesser 87], in which agents ex-
change their local plans in order to make agents’ de-
cisions coherent. Furthermore, restructuring CSPs
in order to solve them more efficiently was stud-
ied in [Dechter and Pearl 88], [Fox, et al. 89]. Re-
structuring DCSPs can be considered as equiva-
lent to restructuring the organization of the agents.
DCSPs serve as a basis for studies of organization
self-design, such as [Ishida, Yokoo, and Gasser 90].

In this paper, we introduce the definition of a DCSP,
and describe the various methods for solving DCSPs. In
particular, the newly developed technique asynchronous
backtracking is introduced. Backtracking, which is a
standard approach to solve CSPs, is essentially a step-
by-step procedure. On the other hand, asynchronous
backtracking allows agents to act asynchronously and
concurrently. Then, the methods for DCSPs are com-
pared experimentally. Furthermore, we show how typi-
cal DAI problems can be mapped into DCSPs and pro-
vide appropriate methods for solving them.

2 Distributed Constraint Satisfaction
Problem (DCSP)

2.1 CSP

A CSP is defined by m variables z,, 23, ..., zm, each of
which takes its value from domain Dy, Dy, ..., Dy re-
spectively, and a set of constraints. A constraint is



defined inclusively by a predicate, i.e., the constraint
Pi(Zk1, ..., Zkj) i8 a predicate which is defined on the
Cartesian product Dgy x ... x Dgj. This predicate is
true iff the instantiations of these variables are compat-
ible with each other. To find a solution of a CSP is
to find an assignment of values to all variables, which
satisfies all constraints.

2.2 DCSP

A distributed constraint satisfaction problem (DCSP)
is a problem in which variables of a CSP are distributed
among agents. Each agent has some variables and tries
to instantiate their values. Constraints may exist be-
tween variables of different agents, and the instanti-
ations of the variables must satisfy these inter-agent
constraints. Formally, there exist n agents 1,2,...,n.
Each variable z; belongs to one agent i (this relation
is represented as belongs(z;,i)). Constraints are also
distributed among agents. The fact that the agent
k knows the constraint predicate P is represented as
known(Py, k).

We say that a DCSP is solved iff the following condi-
tions are satisfied.

o Vi, Vz; belongs(z;, i), z; is instantiated to d;, and V

k, VP, known(P, k), P is true under the assignment
z = dl,z‘z =d2,...,zm =dm.

The goal of the methods for solving DCSPs is to reach a
solution as quickly as possible with the smallest number
of messages. At the same time, considerations for DAI
specific problems such as robustness against failures or
agent authorities are needed.

In this paper, we make the following assumptions for
simplicity. The generalization of these assumptions is
discussed in the next section.

¢ Fach agent has exactly one variable.

o Each agent knows all constraint predicates relevant
to its variable. :

3 Methods for DCSP

The methods for solving CSPs can be divided into two
groups, i.e., backtracking algorithms and consistency
algorithms [Mackworth 87). The application of these
methods to DCSPs is discussed below.

3.1 Backtracking for DCSP

3.1.1 Synchronous Backtracking

The standard backtracking algorithm for CSP can be
simply modified to yield the synchronous backtracking
algorithm for DCSP. Assume the instantiation order of
the variables is agreed (e.g., from agent 1 to agent n)
among agents. Each agent, receiving a partial solution
(the instantiations of the preceding variables) from the
previous agent, instantiates its variable and attaches the
value to the partial solution and sends it to the next
agent. If no instantiation to its variable is compatible
with the partial solution, the agent sends a backtracking
message to the previous agent.

This algorithm is weak because agents have to act in
predefined sequential order and can not act simultane-
ously. At each moment, only one agent can act.

3.1.2 Asynchronous Backtracking

The asynchronous backtracking algorithm developed
in this paper removes the drawbacks of synchronous
backtracking. Each agent acts not in predefined sequen-
tial order but concurrently and asynchronously. Each
agent instantiates its variable and communicates the
variable value to relevant agents. There are two main
issues in asynchronous backtracking:

¢ dealing with asynchronous change in order to avoid
irrelevant actions based on obsolete information

¢ avoiding infinite processing loops

In the following, the main part of the algorithm and the
ideas to solve the above issues are described. Then, an
example of its application and a proof are shown. The
obtained algorithm includes the function of dependency
directed-backtracking in CSP [de Kleer 87]. Therefore,
it requires less thrashing than synchronous backtrack-
ing. For simplicity, we assume every constraint is binary
(between only two variables).

A constraint satisfaction problem in which all con-
straints are binary can be represented by a network,
where variables are nodes and constraints are links be-
tween nodes. Since each agent has exactly one variable,
a node also represents an agent. We use the same id for
representing an agent and its variable. We assume that
every link (a constraint) is directed, i.e., for each con-
straint, one of the two agents is assigned to evaluate the
constraint, and the other agent sends its value to the
constraint evaluating agent. A link is directed from the
value sending agent to the constraint evaluating agent
(Figure 1 (a)).

Each agent instantiates its variable concurrently and
sends the value to the agents which are connected by
outgoing links. After that, agents wait for messages and
do actions in response to receiving messages. Figure
2 describes the procedures for receiving two kinds of
messages, i.e., an ok? message for receiving the value
from incoming links (Figure 2 (1)), and a nogood message
for receiving the request to change its own value from
outgoing links (Figure 2 (ii)). ' '

An agent has a set of values from the agents connected
by incoming links, which is called an agent.view. The
fact that z,’s value is 1 is represented by a pair of the
agent id and the value, (1,1). Therefore, an agent_view
is a set of these pairs, e.g., {(z1,1),(z2,2)}. If an ok?
message is sent from an incoming link, the agent adds
the pair to its agent_view and checks whether its own
value assignment (represented as (my-id, my.value)) is
consistent with its agent_view. Its own assignment is
consistent with the agent_view if all constraints the
agent evaluates are true under the value assignments
described in the agent_view and (my.id, my_value), and
all communicated nogoods are not compatible * with the
agent_view and (my-id, my-value). If its own assign-
ment is not consistent with the agent_view, the agent
tries to change my.value so that it will be consistent

- with the agent_view.

! A nogood is compatible with the agent_view and (my_id,
my.value) if all variables in the nogood have the same values
in the agent_view and (my_id, my_value).
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Figure 1: Example of constraint network

A subset of an agent.view is called a nogood if the
agent is not able to find my.value which is consis-
tent with the subset. For example, in Figure 1 (b),
there are three agents, zi,z3,z3, with variable do-
mains {1, 2}, {2}, {1, 2} respectively, and the constraints
zy # z3 and z3 # z3. If agents z; and z» instantiate
their variables to 1 and 2, the agent_view of z3 will be
{(z1,1),(z2,2)}. Since there is no possible value for z3
which is consistent with this agent_view, this agent_view
is a nogood. If an agent finds a subset of its agent.view
is a nogood, the assignments of other agents must be
changed. Therefore, the agent causes a backtrack (Fig-
ure 2 (iii)) and sends a nogood message to one of the
other agents.

Dealing with asynchronous changes. One diffi-
culty is caused by the fact that an agent.view is sub-
ject to incessant changes, since agents change their in-
stantiations asynchronously. Coincident with sending a
nogood message, the value of an agent’s variable which
is relevant to the failure may be changed. After that
change, there would be no need for backtracking.

The idea for solving this difficulty is contezt attach-
ment, i.e., each message is coupled with the nogood,
which is the context of backtracking. After receiving
this message, the receiver checks whether the nogood is
compatible with its agent_view and its own assignment,
and changes its value only if the nogood is compati-
ble (Figure 2 (ii-a)). Since the nogood attached to a
nogood message indicates the cause of the failure, asyn-
chronous backtracking includes the function of depen-
dency directed-backtracking in CSPs.
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A nogood can be viewed as a new constraint obtained
from original constraints. For example, in Figure 1 (c),
the nogood {(z1,1), (z2,2)} represents a constraint be-
tween z;, and z3. There is no link between z; and z»
originally. In order to evaluate this new constraint, a
new link must be added between z, and z3. Therefore,
after receiving the nogood message, agent z; asks z, to
add a link between them. In general, even if all orig-
inal constraints are binary, newly obtained constraints
can be among more than 2 variables. In such a case,
one of the agents in the constraint will be an evaluator
and links will be added between each of non-evaluator
agents and the evaluator. .

Avoiding infinite processing loops: If agents
change their values again and again and never reach a
stable state, they are in an infinite processing loop. An
infinite processing loop can occur if there exists a value
changing loop of agents, e.g., a change in z, causes z2
to change, then this change in z, causes z3 to change,
and then this change causes z, to change, and so on. In
the network representation, such a loop is represented
by a cycle of directed links in the network.

One way to avoid cycles in a network is to use a to-
tal order relationship among nodes. If each node has
an unique id, and a link is directed from the smaller
node to the larger node, there will be no cycle in the
network. This means that each agent has an unique
id, and for each constraint, the larger agent will be
an evaluator, and the smaller agent will send an ok?
message to the evaluator. Furthermore, if a nogood is
found, a nogood message is sent to the largest agent in




when received (ok?, (sendor_id,value)) do — (i)
add (sendor_id,value) to agent_view;
when my_value and agent_view are
inconsistent do
change my_value to a new consistent value;
when can not find such a value do backtrack;
change my_value to a new consistent value;
end do;
send (ok?, (my-id,my_value)) to its outgoing links;
end do;
end do;

when received (nogood, sendor_id, nogood) do — (ii)
record nogood;
when (id,value) where id is not connected
is contained in nogood do
request id to add a link from id to my_id
and add (id,value) to agent_view;
end do;
if agent_view and my_value are
incompatible with nogood — (ii—a)
then send (ok?, (my-id,my_value)) to sendor_id;
else change my_value to a new consistent value;
when can not find such a value do backtrack;
change my_value to a new consistent value;
end do;
send (ok?, (my-id,my_value)) to its outgoing links;
end if;

procedure backtrack — (iii)
begin
nogoods —
{Vi | Vs=inconsistent subset of agent_view};
when {}€ nogoods do
broadcast to other agents that there is
no solution, terminate this algorithm;
end do;
for each V, = {(id1,v1),...} € nogoods do;
select (id;,v;)
where id; is the largest in V,; — (iii-a)
send (nogood, my_id, V,) to idj;
remove (id;, v;) from agent_view;
end do;
end backtrack;

Figure 2: Procedure for receiving messages

239

the nogood (Figure 2 (iii-a)), and the largest agent will
be an evaluator and links are added between each of
non-evaluator agents in the nogood and the evaluator.
Similar techniques to this unique id method are used
for avoiding deadlock in distributed database systems
[Rosenkrantz, et al. 78].

The required knowledge of each agent for this unique
id method is much more local than that for synchronous
backtracking. In synchronous backtracking, agents
must act in predefined sequential order. Such sequen-
tial order can not be obtained easily just by giving an
unique id to each agent. Each agent must know who are
the previous and next agent in synchronous backtrack-
ing. On the other hand, in the unique id method for
asynchronous backtracking, each agent has to know only
the relations between their neighbors, i.e., which is the
larger. This knowledge for asynchronous backtracking
is much more local than that for synchronous backtrack-
ing. For example, all people in the world can be totally
ordered by their heights, and it is easy for a person to
tell the height relation (which is the taller) between his
neighbors. However, it will be very difficult (almost im-
possible) for him to determine the person whose height
1s next to him in the world.

As for CSPs, the order of the variables greatly af-
fects the search efficiency. Further research is needed
in order to introduce variable ordering heuristics into
asynchronous backtracking.

An example. In Figure 1 (b), by receiving 0k? mes-
sages from z; and z;, the agent_view of z3 will be
{(z1,1),(=2,2)}. Since there is no possible value for z3
which is consistent with this agent_view, this agent_view
is a nogood. Agent z3 chooses the largest agent in the
agent.view, agent 22, and sends a nogood message with
the nogood, and removes (z3,2) from the agent_view.
By receiving this nogood message, agent z3 records this
nogood. This nogood, {(z1,1),(22,2)} contains agent
z1, which is not connected with z, by a link. Therefore,
a new link must be added between z; and z,. Agent z
requests z; to send z;’s value to z3, and adds (z1,1) to
its agent_view (Figure 1 (c)). Agent z3 checks whether
its value is consistent with the agent.view. Since the
nogood received from agent z3 is compatible with its as-
signment (z2, 2) and its agent_view {(z1, 1)}, the assign-
ment (z2,2) is inconsistent with the agent.view. The
agent_view {(z,,1)} is a nogood because z; has no other
possible values. There is only one agent in this nogood,
i.e., agent z;, so agent zg sends a nogood message to
agent z; (Figure 1 (d)).

Proof. If there exists a solution, this algorithm
reaches a stable state where all variable values satisfy
all constraints, and all agents are waiting for an incom-
ing message®. If there exists no solution, this algorithm
finds the fact that there is no solution and terminates.

21t must be mentioned that the way to determine
that agents as a whole reach a stable state is not con-
tained in this algorithm. In order to detect the stable
state, distributed termination detection algorithms such as
[Chandy and Lamport 85] are needed.




The soundness of this algorithm, i.e., if the agents
reach a stable state, then all variable values satisfy all
constraints, is obvious because agents are never in a
stable state unless their constraints are satisfied. We
show that this algorithm is complete, i.e., the algorithm
finds a solution if there exists one, and if there is no
solution, the algorithm finds the fact that there exists
no solution.

This algorithm terminates if and only if an empty set
is found to be a nogood. Logically, a nogood represents a
set of assignments from which a contradiction is derived.
If a contradiction is derived from an empty set, it means
a contradiction can be derived from any assignment, and
no assignment can be a solution.

We show the proof that there will be no infinite pro-
cessing loop. If an infinite processing loop exists, the
agent z;, which has the smallest id, is either in a stable
state (case-1) or in an infinite processing loop (case-2).

In case-1, assume that agents z; to ze—1 (k > 2) are
in a stable state, and agent z is in an infinite processing
loop. Since agents z; to zx—1 (k > 2) are in a stable
state, we can conclude that the agent_views of z; to z,
will contain the correct values of z; to zx—1. In this case,
the only messages agent z, receives are nogood messages
from agents whose ids are larger than k. Since agents
z, to £z, are in a stable state, the nogoods agent z;
receives is compatible with the agent_view of z, and
agent z; changes its value by receiving these nogood
messages. Agent zp must send a nogood message to one
of the agents whose id is smaller than k sooner or later,
because the domain of its variable is finite. This fact
contradicts the assumption that agents z; to zx_; are
in a stable state. In case-2, the only messages agent z;
receives are nogood messages. If agent z; receives nogood
messages for all possible values, an empty set will be a
nogood and this algorithm terminates. If this algorithm
does not terminate, agent z; must reach a stable state
sooner or later, and this fact contradicts the assumption
that agent z; is in an infinite processing loop. Since
both case-1 and case-2 are impossible, there will be no
infinite processing loop. .

By using this fact, we show how agents will reach
a solution. Agent z; will reach a stable state where
the value of z; is a part of a solution if there exists
a solution. If the choice of z; is a part of a solution,
agent z; never change the value since no valid nogood
message will be received, and eventually the agent_views
of agent 2 to agent n will contain the correct value of z;.
If the choice of z; is not a part of a solution, since agent
z, to agent z, will not fall into an infinite processing
loop and can not reach a stable state, z; will receive
a nogood message from one of z3 to z, and change its
value. Similarly, it can be shown that if agent z; to zx—)
are in a stable state where the values of z; to zz_; are a
part of a solution, agent z; will also reach a stable state
where the values of z; to z; are a part of a solution.
Therefore, we can show inductively that all agents will
reach a solution. If there exists no solution, since there
will be no infinite loop and agents can not reach a stable
state, this algorithm will terminate by finding an empty
nogood. ‘
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3.2 Consistency Algorithm for DCSP

For DCSPs, consistency algorithms [Mackworth 87} can
be used as a preprocessing procedure before backtrack-
ing. Applying various consistency-algorithms developed
for CSPs to DCSPs is not so straightforward, although
they are generally assumed to be a collection of local
procedures for variables. Actually, 2-consistency algo-
rithms are a collection of local procedures for variables
which are connected with each other, and easy to apply
to DCSPs. However, most of k-consistency algorithms
[Fruder 78] require to achieve 1,2,..., k consistency se-
quentially. Therefore, applying these algorithms to DC-
SPs requires global synchronization, i.e., all agents must
make sure that [-1-consistency is achieved globally be-
fore achieving Il-consistency.

On the other hand, the k-consistency algorithm in
the ATMS framework [de Kleer 89)] is essentially mono-
tonic and the final result is not affected by the order
of the local procedures. Therefore, the ATMS-based k-
consistency algorithm is suitable for DCSPs.

The ATMS-based k-consistency algorithm for DCSPs
is described as follows.

1. Exchange the domains of the variables between in-
terrelated agents.

2. Generate nogoods using constraints, then generate
new nogoods whose lengths are less than k using
hyper-resolution rules, send the new nogoods to rel-
evant agents.

3. Generate new nogoods from communicated no-
goods using hyper-resolution rules, repeat until no
new nogood can be obtained.

This algorithm can be modified by restricting the appli-
cation of hyper-resolution rules so that the ids of agents
in newly generated nogoods must be smaller than the
generator id. The obtained result is equivalent to the
directed k-consistency in [Dechter and Pearl 88].

3.3 Generalization of Methods for DCSPs

We assume that one agent has exactly one variable and
the agent knows all constraint predicates which are rel-
evant to its variable. The first assumption can be re-
laxed so that an agent may have several variables, since
an agent which has several variables can act as if each
of its variables belongs to distinct agents. The second
assumption can be relaxed so that an agent do not have
to know all constraints relevant to its variables, but
has to know the ids of agents which know the relevant
constraints. In that case, agents send their values to
the evaluators, i.e., the agents which have relevant con-
straints.

4 Comparison of Methods for DCSP

In chis section, the various methods for DCSP described
in the previous section are compared. The efficiency of
these methods is measured by two simulator-based val-
ues, i.e., number of cycles and number of messages. One
cycle consists of the time that an agent reads all mes-
sages in its input buffer, does local processing, and sends
all messages to other agents. By assuming all agents
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act synchronously (all of them enter the first cycle at
the same time, and then enter the second cycle at the
same time, and so on), the number of cycles which is
required to finish the algorithm, and the total number
of messages are measured. The number of messages cor-
responds to the message complezity, and the number of
cycles corresponds to the ideal time, which are widely
used for evaluating distributed algorithms.

4.1 Tradeoff between asynchronous and
synchronous backtracking

The following results are obtained by experiments on
many example problems.

o The asynchronous backtracking algorithm includes
the function of dependency-directed backtracking
(DDB), and each agent acts concurrently. There-
fore, the required cycles to reach a solution for
asynchronous backtracking are fewer than for syn-
chronous backtracking, or even for synchronous
backtracking which incorporates DDB?3.

o On the other hand, asynchronous backtracking, in
which the agents connected by constraints com-
municate with each other concurrently, usually re-
quires more messages than synchronous backtrack-
ing, in which only one message is required for one
cycle. Therefore, there exists a tradeoff between
the number of cycles and the number of messages.

o As the number of constraints increases, the num-
ber of messages for asynchronous backtracking in-
creases more rapidly than for synchronous back-
tracking. Therefore, asynchronous backtracking is
suitable for problems which have natural locality,
i.e., interaction between agents is relatively small.

o If the problem has locality, as the number of
agents increases, the number of cycles for asyn-
chronous backtracking increases more slowly than
for synchronous backtracking. Therefore, asyn-
chronous backtracking has an advantage to syn-
chronous backtracking in large problems, as long
as the problems have locality.

Figure 3 shows results of nqueens problems. There ex-
ist n agents, each of which tries to position its queen
so that the queens do not threaten each other. Obvi-
ously, the number of cycles for asynchronous backtrack-
ing is much less than for synchronous backtracking. On
the other hand, as the number of queens increases, the
number of messages for asynchronous backtracking in-
creases more rapidly than for synchronous backtracking.
This is because in the nqueens problem, all agents are
connected with each other by constraints. We can see
that the increase in messages is approximately linear to
the number of constraints, which is quadratic in n (the
number of queens).

Figure 4 shows the results of randomly generated
problems, as a function of the number of constraints.
These problems are generated given the following pa-
rameters: the number of agents n, the number of values

3Backtracking is done to the nearest agent which is rele-
vant to the failure and agents keep track of the failure.
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of one variable d (all variables have the same number
of values), the number of constraints /, the probabil-
ity that a value pair of two variables, which are con-
nected by a constraint, satisfies the constraint. Figure
4 shows the results as a function of ! (the number of con-
straints), given n,d,p. For each set of parameters, 25
problems are generated and the graph shows the ratio of
the average of these problems. For the number of cycles,
the graph shows the ratio of synchronous/asynchronous,
and for the number of messages, the ratio of asyn-
chronous/synchronous. We can see that as the number
of constraints increases, the ratio of the messages in-
creases. Similar results are obtained by varying n,d, p.
In most of DAI problems, we can expect that there ex-
ists natural locality. For example, in the example prob-
lem in [Conry, et al. 88] (routing problem of communi-
cation network), the number of agents is n = 5, and the
number of constraints is | = 6.

Figure 5 shows the results as a function of n, given
d,p, and [ is set to 1.5 x n. As long as the aver-
age number of the constraints for one agent is fixed,

the number of cycles for asynchronous backtracking in-.

creases more slowly than for synchronous backtracking.
Asynchronous backtracking has an advantage to syn-
chronous backtracking for large problems which have
locality, since agents can exploit more concurrency.

4.2 Tradeoff between consistency algorithms
and backtracking

Finding an appropriate combination of consistency al-
gorithms and backtracking is an important issue in
DCSP. If the problems have a small number of solu-
tions (typically only one solution), 2 or 3-consistency
algorithms are effective. On the other hand, if the prob-

lems have several solutions, applying backtracking with--

out any preprocessing can be more effective. For exam-
ple, in the 8queens problem, 2 or 3-consistency algo-
rithms are totally useless (no new nogood is generated),
and more powerful consistency algorithms are ineffi-
cient because too many nogoods are generated. On the
other hand, in line drawing recognition problems, the 2-

backtrack

. preprocess n=10,d=5, =15, p=0.4

Q0
o

Yo

Y
(=]

—
o O & o O o O
IVTTY TRV STUUY FUTUS FUUTY FEVEY FUTeY

number of cycles
[3S JO 7S TR -V, B - )

asynchronous 2-consistency synchronous+ 2-consistency
&

asynchronous synchronous+
Figure 6: Effect of 2-consistency algorithm for syn-
chronous and asynchronous backtracking

consistency algorithm described in this paper eliminates
all futile backtracking, and the routing problems in
communication networks described in [Conry, et al. 88],
[Kuwabara and Lesser 89] (no solution exists because
constraints are too strong), the fact that there is no so-
lution is shown by achieving 2 or 3-consistency. These
results are similar to those of CSPs.

By the experiments on many randomly generated
problems, the following results are obtained.

e The cost of preprocessing and the effect of prepro-
cessing is almost equal for the 2-consistency algo-
rithm.

e By achieving 3-consistency, the total number of cy-
cles can be reduced, but the total number of mes-
sages increases.

[Dechter and Meiri 89] shows that in CSP, 2-
consistency algorithm is usually effective for reducing
thrashing, and n-consistency algorithms where n > 2 re-
quire too much preprocessing costs. However, in DCSP,
9-consistency algorithm is not effective for reducing re-
quired cycles. Figure 6 shows the total number of cy-
cles for asynchronous backtracking after achieving 2-
consistency and synchronous backtracking with DDB
after achieving 2-consistency for given n,d, p,l.

In synchronous backtracking, the variable values are
determined sequentially. If there exists a strongly con-
strained variable, it is very effective to propagate the
constraints from that variable by preprocessing in or-
der to reduce useless backtracking (which occurs be-
fore determining the value of the strongly constrained
variable). On the other hand, all variable values are
determined asynchronously in asynchronous backtrack-
ing and the constraints are propagated immediately
from the strongly constrained variable. Therefore, the
2-consistency algorithm is not as effective for asyn-
chronous backtracking as for synchronous backtracking.

5 DCSP in DAI

In this section, we show how allocation problems and
recognition problems, which are typical in DAI, can be
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mapped into DCSPs.
5.1 DCSP in Allocation Problems

If the problem is to allocate tasks or resources to agents
and there exist inter-agent constraints, such a problem
can be formalized as a DCSP by viewing each task or
resource as a variable and the possible assignments as
values. Examples are discussed below.

Contract net.

The contract net protocol [Smith 80] is a protocol for
assigning tasks to agents. Since the contracts made dur-
ing task allocation are assumed to be independent, the
aspect of the task allocation as a CSP, i.e., allocating
tasks so that constraints are satisfied, is not emphasized
in the contract net protocol. However, when the num-
ber of tasks increases, it will be an important issue to
allocate tasks so that as many tasks can be executed
simultaneously as possible.

Multistage negotiation.
The multistage negotiation [Conry, et al. 88] deals with
the case in which tasks are not independent and there
are several ways to perform a task (plans). The goal
of multistage negotiation is to find the combination of
plans which enables all tasks to be executed simultane-
ously. [Conry, et al. 89] and [Kuwabara and Lesser 89]
formalized a class of allocation problems using goals and
plans, and described algorithms for finding conflicting
goals. This class of problems is a subset of DCSPs and
the essential part of these algorithms is equivalent to the
hyper-resolution rules. These algorithms try to achieve
n-consistency.

For the routing problems in communication networks
described in [Kuwabara and Lesser 89] (no solution ex-
ists since the problems are over-constrained), 2 or 3-

- consistency algorithm presented in this paper is suf-

ficient to find that no solution exists. On the other
hand, for similar routing problems which have multiple
possible solutions, k-consistency algorithms for k& < 3
are not effective for reducing futile backtracking, and
k-consistency algorithms for k > 4 are inefficient since
they produce too many nogoods. Therefore, using back-
tracking without preprocessing is more efficient.

5.2 DCSP in Recognition Problems

A recognition problem can be viewed as a problem to
find a compatible set of hypotheses, which corresponds
to the possible interpretations of input data. A recog-
nition problem can be mapped into a CSP by viewing
possible interpretations as possible variable values. Sev-
eral examples are described below.

Waltz’s labeling problem of line drawings.
Waltz’s labeling problem [Waltz 75] is a recognition
problem of line drawings. The problem to find the com-
patible interpretations of agents, each of which is as-
signed a different part of a line drawing, can be formal-
ized as a DCSP. For the DCSP version of the line draw-
ing recognition problem in [Winston 77], the algorithm
for achieving 2-consistency (arc-consistency) described
in this paper eliminates all futile backtracking.

Seismic Interpretation Problem.

[Mason and Johnson 89}

proposed the Distributed ATMS as a framework for
solving seismic interpretation problems, in which each
agent finds the compatible combination of interpreta-
tions of its input sensor data. The ATMS supports
assumption-based reasoning of each agent. If the in-
terpretations of different agents have to be compatible
with each other, consistency algorithms can be used for
eliminating hopeless interpretations. In the application
problem of [Mason and Johnson 89], however, the inter-
pretations of different agents are possibly incompatible
if the agents have different opinions and can not agree
with each other. : :

DVMT.

DVMT [Lesser and Corkill 83] utilizes a method called
FA/C, where each agent solves a sub-problem and elim-
inates possibilities by exchanging the intermediate re-
sults (result sharing), and finally reaches a mutually
consistent solution. The method for solving a DCSP,
where each agent first finds possible solutions for its
sub-problem, and exchanges these solutions and elim-
inates the possibilities by consistency algorithms can
be regarded as a kind of FA/C. However, further re-
search is needed for formalizing the high-level coordina-
tion framework in DVMT, where only abstract informa-
tion is exchanged.

5.3 Other Related Problem

Distributed Truth Maintenance.

[Bridgeland and Huhns 90] presented a distributed
truth maintenance algorithm. The truth maintenance
tasks are essentially solving a DCSP where each vari-
able can be either IN or OUT. However, truth main-
tenance tasks are incremental, i.e., a new justification
(new constraint) will be added to a stable state (where
all constraints are satisfied), and some variable values
must be changed. In [Bridgeland and Huhns 90], in-
stead of re-solving the whole problem, some variables
are selected first, and a DCSP among selected variables
is solved. If the DCSP can not be solved, then more
variables are added and a DCSP among these variables
is solved, and so on. The algorithm used for solving
DCSPs in [Bridgeland and Huhns 90] is a kind of syn-
chronous backtracking. Therefore, the distributed truth
maintenance algorithm can be optimized by introducing
asynchronous backtracking and consistency algorithms.

6 Conclusions

The distributed constraint satisfaction problem was for-
malized and various methods for solving DCSPs and
comparisons of these methods were presented. Further-
more, the formalization of typical DAI problems as DC-
SPs and appropriate methods for solving these problems
were described.

The future issues are as follows.

¢ Introducing heuristics
Various heuristics proposed in CSP can be in-
troduced into DCSP. Especially, heuristic repair
method [Minton, et al. 90] is very powerful and
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easy to introduce into DCSP. In [Minton, et al. 90],
variable values are changed so that the number of
constraint violations will be minimized. Introduc-
ing this heuristic into DCSP can be considered as
equivalent to making agents cooperative.

¢ Extending DCSPs
Using the analogous techniques described in
[Fruder 90], DCSPs can be extended so that the
number of variable values can be increased dynam-
ically. By this extension, DCSPs can formalize the
problems in which the local solutions of each agent
are obtained incrementally.

¢ Studying various DAI methods using the
DCSP framework
We are now trying to formalize various DAI meth-
ods (e.g., methods for achieving coherent behav-
iors, methods for organization self design) using the
DCSP framework. Qur goal is to obtain quantita-
tive comparison results of alternative approaches.
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Constraint Satisfaction in a Connectionist
Inference System
(Extended Abstract)
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Constraint satisfaction can be regarded as a technique for solving satisfiability prob-
lems in a restricted logical system. Though only constants, variables and Horn clauses are
allowed, constraint satisfaction systems solve quite impressive problems (e.g. [van Henten-
ryck, 1989]). For many reasons - like the natural representation of constraint satisfaction
problems as graphs and the solution of these problems by local and global propagation
techniques — constraint satisfaction is often considered as a good candidate for the ex-
ploitation of parallelism. There are some limitations though. For example, Kasif [1990]
has shown that the arc consistency problem is logspace-complete. On the other hand we
should keep in mind that Kasif's result describes a worst case behavior. It still remains
to be seen whether average practical problems reveal such bad manners.

But which technique shall we use if we want to parallelize constraint satisfaction?
The results of Pinkas {1990] point into a possible direction. Pinkas has formally proved
that the satisfiability problem of propositional logic is equivalent to the problem of find-
ing a global minima of an energy function. In fact, since each constraint satisfaction
problem can be presented as a propositional formula we can use Pinkas’ formalism and
construct an energy function whose global minima correspond precisely to the solutions
of the constraint satisfaction problem and vice-versa. It is well-known that such energy
functions can be implemented by artifical neural nets (see e.g. [Hinton et al., 1986}). For
example, we could design a Hopfield network and apply gradient descent to find a min-
ima [Hopfield, 1982]. Alternatively. we could construct a Boltzman machine and try to
find a minima by simulated annealing [Hinton et al., 1986]. However, there is a problem.
Both techniques, gradient descent as well as simulated annealing! do not guarantee that
they find a global minima. They may as well get stuck in a local minima, which does
not correspond to a solution of the constraint satisfaction problem. How often does this
happen? There is no general answer and we have to look at special examples. One of
these is the travelling salesman problem. In their initial paper concerning a connectionist
solution of this problem, Hopfield and Tank [1985] reported that in only about 30% of

*on leave from FG Intellektik, FB Informatik, TH Darmstadt, Germany
1Simulated annealing may find a global minimum if the “temperature” is lowered in 1nﬁmtesxmal small
steps, which is impracticable.
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all cases the system did not succeed in finding a good solution. Such a good solution
must not be a global minima. but close to a global minima such that the salesman has
not to take a significant detour. However, reimplementations revealed that in up to 90%
of all the cases the system failed to find acceptable solutions {Wilson and Pawley, 1988:;
Kamgar-Parsi and Kamgar-Parsi, 1990]. '

What are the alternatives? If we want to stick to the connectionist realm and to

massive parallelism then we may employ the propagation of activation metaphor. Here,

we are not searching for a global minima, rather activation is spread through a network of
neurally-inspired units and the result of the computation is determined by the activation
of certain output units. The operations performed as well as the messages sent by a
unit are quite simple in a truly connectionist system. The messages contain almost no
information. All knowledge is encoded in the connections between units. Such systems
differ considerably from conventional parallel architectures. For an introduction into
connectionist systems see eg. [Feldman and Ballard, 1982].

Shastri & Ajjanagadde [1990] have built a connectionist reasoning system for a limited
class of first-order formula which exhibits impressive characteristics. The number of units
used in the system is linear to the size of the formula or knowledge base and the time
to answer or to respond to a query is bound by the depth of the search space. This
optimal time behavior can be achieved by investigating all branches of the search space
in parallel. Unfortunately, Shastri’'s & Ajjanagadde’s system cannot be applied to solve

constraint satisfaction problems due to their restrictions. In particular, the system does -

generally not guarantee that multiple occurrences of a variable are instantiated with the
same term. In other words, the variable binding problem is not solved consistently. But
if we consider Mackworth’s {1977] formalization of constraint satisfaction, then this is
precisely one of the problems we have to solve.

Cooper & Swain [1988] have designed a connectionist constraint satisfaction system.
However, they limit their attention to arc consistency. In other words, they can handle
only problems which can be solved by local constraint propagation. For each variable-
value pair their system contains an initially active unit. Arc consistency is encoded as
support for these units. A unit for the variable z and value a remains active as long as
this value is supported by a respective constraint between z and each other variable in
the system. Otherwise, the unit is deactivated. Guesgen [1990] has extended Cooper’s
& Swain’s approach such that general constraint satisfaction problems can be solved.
He uses a kind of Goédel numbering to encode path information in the potential of the
variable-value units. To obtain this information the units must be able to pass Gddel
numbers as messages and to compute greatest common divisors as well as least common
multiples. This poses a certain problem since such complex messages and operations are
considered to be biologically implausable. Guesgen refers to this problem by comparing
his approch with Lange & Dyer’s [1989] Robin, where signatures are used to encode
constants and are passed as messages. However, the set of constants in Robin is usually
quite small compared to the possible Godel numbers and, hence, a distributed or localist
representation of signatures complying with truly connectionist models is much easier to
achieve (and has been done in the latest version of Robin) as with Godel numbers.

CHCL is a connectionist inference system for Horn logic with limited resources
(Holldobler, 1990c; Holldobler, 1990a]. The system is based on a connectionist unifi-
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cation algorithm [Holldobler, 1990b] and uses Bibel’s connection method [Bibel. 1987).
There, a connection is a link between complementary literals. We know from [Bibel, 1987]
or [Stickel, 1987] that a proof for a formula is found if we can identify a spanning and
complementary set of connections. Informally, the spanning conditions ensures that the
connections in the set form a complete proof of the formula on the propositional level
obtained by omitting all arguments of predicates. Such a spanning set is complementary
iff all connected literals are simultaneously unifiable. The search space can be compressed
with the help of reduction techniques, which are typically applied linearly in time and
space. The technique of interest as far as this note is concerned is the removal of isolated
connections (Bibel, 1988a]. A connection is isolated iff the connected literals are not en-
gaged in any other connection or the connected literals are ground or one of the connected
literals is ground and the other one is not engaged in any other connection. Literals in
isolated connections can be unified and under certain conditions the clauses containing
these literals can be replaced by their resolvents. CHCL reduces a formula, generates the
spanning sets and simultaneously unifies all connected literals in such a set.

From its expressive power CHCL can easily solve constraint satisfaction problems.
But CHCL is not specifically designed for handling constraints and thus does not make
use of the special features found in constraint satisfaction problems. It is the goal of this
note to show

- how a simple modification of Mackworth’s [1977] formalism allows to check in par-
allel, that the domain constraints are satisfied, '

— how binary constraints which violate the domain constraints can be removed from
the database in parallel,

— how a simple modification of CHCL and, thereby, of the underlying connection
method allows to check for arc consistency in parallel, and

- how constraint satisfaction problems can be solved in a truly connectionist setting.

As an example consider a simple constraint network with variables z1, 7, and z3,
whose domains are {a, b}, {a,b,c}, and {b, c}, respectively. These variables are constraint
by the relations (a,a), (a,b) between z; and z2, (b, b}, {c, c) between x; and z3, and (a, b},
{a,c) between z; and z3. The domain constraints are expressed as simple facts. In our
example we obtain the domain facts s

Dy(a) Do(a) Dy(b) Di(b) Da(b) Ds(c) Dalc).

The constraints between variables are stated as binary predicates. However, these binary
predicates are conditioned in that the values for the variables have to be elements of the
domain of the respective variable. In our example we find the constraint rules

Cn(a,a) <« Dl((l) A Dg(a)
Cig(a,b) < Di(a) A Dofb)
(}'13(a,b) <« Dl(a) A Dg(b)
C13(a,C) = D,(a) A D3(C)
Colbb) < Dy(b) A Da(b)
Caalc, C) < D2(C) A D3(C).
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We are interested in the values for the variables z;, 27, and r3 such that all constraints
are simultaneously fulfilled. In other words, we want to know whether there exists a
substitution for the variables in

& Cra(z1, 72) A Cia(z1, 23) A Cas(z2, 23)

such that the respective instances of C5(zy.2,), Cia(zy,r3), and Cas(z,, z3) are logi-
cal consequences of the previously mentioned facts and rules. As the only difference to
Mackworths’ formalism we have moved the domain conditions from the goal clause to the
constraint rules. This seems to be a minor difference. Obviously, the expressive power
of the system is not affected. But as we will see in the sequel it is the basis for our
connectionist constraint satisfaction system. As a side-effect it also allows to eliminate in
a reduction step those constraint rules which specify constraints whose values are not in
the domain of the respective variables. Note that all connections between the conditions
of the constraint rules and the constraint facts are isolated. Replacing the constraint rules
by their resolvents yields

—
[*]

OO0 0
v W

which is precisely the formalization used in [Bibel, 1988b]. As described in [Bibel, 1988b]
any constraint satisfaction problem can be transformed into this representation in linear
time and space and we have done just this in the previous paragraphs. One should observe
that, if we had a constraint rule like '

Cra(c, ) <= Dy(c) A Da(cy

then none of the connections between the domain facts and D;(c) is unifiable and, hence,
the rule would be useless. This fact is detected in CHCL by using a kind of weak unifi-
cation [Eder, 1985]. The unsolvability of all connections with Di(c) is propagated and,
consequently, all connections with Ci3(c, ¢) will be unsolvable. This essentially removes
the rule from the data base. One should observe that this check is done for all rules
simultaneously. For more details see [Holldobler, 1990a).

Let us point out that constraint satisfaction uses only constants and variables whereas
CHCL as an inference system for Horn clause logic can deal with general first-order terms.
Since no function symbols are involved, unification is no longer logspace-complete but
parallelizable in any case [Dwork et al, 1984]. Moreover, an inspection of the above
example and a simple generalization shows that the unification problems solved within
constraint satisfaction are always matching problems (ie. one of the involved terms does
not contain variables). The connectionist unification algorithm built into CHCL can
match terms in 2 steps and this is independent of the size of the matching problem
[Holldobler, 1990b]. Hence, the test whether a spanning set is complementary is performed
in two steps. This speed-up is an inherent feature of CHCL.
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We now come back to the constraint satisfaction procedure as described in [Bibel,
1988b]. Bibel applies a reduction technique called database (or DB-) reduction. He
transforms the problem into a sequence of natural joins. We cannot repeat the details
of this transformation in this note but we may briefly illustrate what happens in our
example. By denoting the relation between the variables z; and z; by C;; we find the
solution to our example problem by computing '

(Cr2 M Cy3) W Cag,

where X denotes the natural equi-join (see e. g. [Maier, 1983]). Thus the problem of solv-
ing constraint satisfaction problems is transferred from the deductive part of a reasoning
system to a database system. Bibel discusses in his paper various methods for computing
sequences of equi-joins but he views this mainly as a database problem.

There is a certain gap in Bibel’s approach. He does not deal with arc consistency. As
the experienced reader may have noticed, the running example can be completely solved
by local operations which ensure arc consistency. Formally, arc consistency states that a
variable z may have value a if for each other variable y there is a value b such that (a, b)
is a valid constraint between z and y, viz. Czy(a, b) is true. In other words, any variable
y has to support each value for z. The arc consistency conditions allows to remove any
value from the domain of z which is unsupported. This in turn may result in further
unsupported values for the variables in the constraint network and, consequently, to the
removal of these values. Though Bibel mentions Mackworth's [1987] observation that arc-
consistency is a particular sequence of semi-joins, he does not address arc-consistency as
a means to reduce the search space. Since he transforms (viz. reduces) a global constraint
satisfaction problem into a sequence of natural equi-joins, it is the task of the database
system to evaluate these equi-joins as fast and efficient as possible. However, I am not
aware of a database system that uses semi-join operations as a reduction technique for
sequences of equi-joins. Rather, semi-join operations are viewed as means to reduce the
amount of communication in a distributed database system [Ullman, 1989].

Whereas Bibel solves global consistency problems using standard reduction tech-
niques in his connection method without changing the calculus we will show how slight
changes in the calculus achieve arc consistency. The changes are especially minor as far
as the connectionist realization within CHCL is concerned. But let us first have a look at
the connection method and arc consistency. The following two step algorithm AC realizes
arc consistency.

AC Algorithm

1. For all < let S;; be the set of values in the domain of z; which are supported by z;.
Eliminate all atoms D;(c) if there is a j such that ¢ € S;;.

2. If step 1 results in useless constraint rules then eliminate these rules and goto step
1 else stop.

Applying the AC Algorithm to our running example we are left with the domain facts
Di(a) Dy(b) Ds(b)

and the constraint rules
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Ciz2(a,b) & Dy(a) N Da(b)
Ciala,b) < Di(a) A Ds(b)
Cas(b,0) & Dy(b) A Ds(b)

Recalling the initial query
< Cr2(x1,72) A Cra(zy, 23) A Cas(z2, 23)

we observe that all remaining connections in the formula are now isolated and can be
evaluated simultaneously in one step. The formula collapses to the empty clause and we
obtain the desired answer substitution

{z1—a,z3b,z3 —b}.

Proposition 1 The AC algorithm transforms a given constraint satisfaction problem into
an arc consistenl constraint satisfaction problem such that both problems have eractly the
same solutions.

As previously mentioned, CHCL contains already a unit for each condition in a rule
which will become active if the condition is found to be unsolvable. Furthermore, the
unsolvability of conditions is propagated such that the respective rule becomes useless.
Hence, all what remains to be done in order to ensure arc consistency within CHCL is to
determine the sets S;; and to eliminate all atoms D;(z) which are no longer supported.
The sets S;; are easily obtained from the constraint rules. Consider the constraints for
the variables r; and x4, viz.

Ciz(a,a) < Di(a) A Dofa)
(712(a,b) ~ Dl(a) A Dg(b)

Sy and S5, are simply the union of the arguments of the D, and D, predicates, respec-
tively. Let us concentrate on the D, conditions. The D, conditions are treated analogously
and simultaneously. There is a connection between each of the D, conditions and each
domain fact for D,. CHCL will detect which connections (viz. connected literals) are not
unifiable. In the example these are all connection with the fact D;(b), which indicates that
b is unsupported (viz. b is not in Si,). It is easy to extend CHCL to record this fact. All
we need is an additional unit? for each domain fact. This unit will be called unsupported
and is active iff the corresponding domain value is unsupported. Consequently, we have
to remove the fact D;(b). A fact or a rule is essentially removed if all connections with
the fact or the conclusion of the rule are unsolvable. CHCL contains already a unit for
each connection which indicates whether the connection is unsolvable or not. Hence, all
we have to do is to provide a link between the unsupported unit of D,(b) to the unsolvable
unit of each connection with D;(b) such that the unsolvable units are activated as soon
as the unsupported unit is active.

?More precisely, an OR-of-AND unit in the terminology of [Feldman and Ballard, 1982], where each
AND-site corresponds to the constraint between the variable z, and another variable.
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With the presented modifications CHCL becomes a connectionist inference system
for constraint satisfaction which exploits the maximum parallelism inherent in local con-
sistency operations in the sense that all parallalizable operations for checking the domain
constraints as well as arc consistency are performed in parallel. Global consistency is
computed by sequentially generating spanning sets of connections and. then, simultane-
ously unifying all connected literals in each spanning set. This can be illustrated if we
add the constraint (b,c) to the set of constraints between z, and z3. Formally, we have
to extend our formula by

Caa(b, c) <= D2(b) A Ds(c).
After the application of AC algorithm we are left with the domain facts

Di(a) Da(b) Da(b) Da(c),

the constraint rules

Cia(a,b) < Di(a) A Dy(b)
Cm(a,b) <« Dl(a) A Dg(b)
Ciala,c) <= Di(a) A Ds(c)
Cas(b,b) <= Da(b) A Ds(b)
Caa(b.c) <« Do(b) A Ds(c),

and the query
& Cha(z1, z2) A Cra(z1,23) A Co3(22, T3).

The subgoal Ci2(z1,72) is engaged in only one connection and, hence, is isolated. Fur-
thermore, all connections involving domain facts are isolated. CHCL will evaluate these
connection in parallel which results in the reduced query

< Cha(a, z3) A Caa(b, z3)

and the reduced clauses

There are four connections left which can be combined to four spanning sets. CHCL
generates and tests the spanning sets sequentially. However, the members of a span-
ning set are determined in parallel. In fact, for each constraint satisfaction problem,
a spanning set is generated in 2 steps. The invocation of the unification algorithm re-
quires 1 step and the unification (viz. matching) of all connected literals is performed in
2 steps. Hence, the example is solved after 5 x 4 = 20 steps with the two possible answers
{2, —a,z, = b,z3—b} and {z; —a,z,—b,z3—c}. This is considerably faster than se-
quential implementations such as CONSAT [Giisgen, 1989}, where the global consistency
is computed via backtracking or tagging. There, to compute a solution the constraint
graph has to be searched sequentially.

The process for determining global consistency is not particularly adaptated to con-
straint satisfaction problems. The system also does not make use of domain knowledge,
which is known to reduce the search space considerably [Cooper and Swain, 1988]. These
and other improvements are envisioned in future work. CHCL is currently being imple-
mented at the International Computer Science Institute in Berkeley, California.
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Abstract

Normally, constraint networks are undirected, since constraints merely tell us
which sets of values are compatible, and compatibility is a symmetrical relation-
ship. In contrast, causal models use directed links, conveying cause-effect asym-
metries. In this paper we give a relational semantics to this directionality, thus
explaining why prediction is easy while diagnosis and planning are hard. We use
this semantics to show that certain relations possess intrinsic directionalities,
similar to those characterizing causal influences. We also use this semantics to
decide when and how an unstructured set of symmetrical constraints can be

configured so as to form a directed causal theory.
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DIRECTED CONSTRAINT NETWORKS:

A RELATIONAL FRAMEWORK FOR CAUSAL MODELING 7

1. Introduction

Finding a solution to an arbitrary set of constraints is known to be an NP-hard
problem. Yet certain types of constraint systems, usually those describing causal
mechanisms, manage to escape this limitation and permit us to construct a solu-
tion in an extremely efficient way. Consider, for example, the task of computing
the output of a circuit consisting of a large number of logical gates. In theory,
each gate is merely a constraint that forbids certain input-output combinations
from occurring, and the task of computing the output of the overall circuit (for a
given combination of the circuit inputs) is equivalent to that of finding a solution
to a set of constraints. Yet contrary to the general constraint problem, this task is
remarkably simple; one need only trace the flow of causation and propagate the
values of the intermediate variables from the circuit inputs down to the circuit
output(s). This forward computation encounters none of the difficulties of the
generél constraint-satisfaction problems, thus exemplifying the simplicity

inherent to causal predictions.

The aim of this paper is to identify and cﬁaracterize the features that
render this class of problems computationally efficient, thus explaining some of
the reasons that causal models are so popular in the organization of human
knowledge. Note that this efficiency is asymmetric; it only characterizes the for-
ward computation, but fails to hold in the backward direction. For instance, the
problem of finding an input combination that yields a given output (a task we nor-
mally associate with planning or diagnosis) is as hard as any constraint satisfac-
tion problem. Thus, the second aim of our analysis is to explain how a system of
constraints, each defined in terms of the totally symmetric relationship of compa-
tibility, can give rise to such profound asymmetries as those attributed to cause-

effect or input-output relationships. At first glance, we might be tempted to

T This work was ported by the National Science Foundation, Grant #IRI-8821444 and
by the Air Force fﬁ of Scxenuﬁc Research, Grant #AFOSR-90-0136.
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attribute the asymmetry to the functional nature of the constraints involved. HOW-
ever, functional dependency in itself cannot explain the directional asymmetry
found in the analysis of causal mechanisms such as the logic circuit above. Ima-
gine a circuit containing some faulty components, the output of which may attain
one of several values. The constraints are no longer functional, yet the asymmetry
persists; finding an output compatible with a given input is easy while finding an
input compatible with a given output is hard. This asymmetry between prediction
and planning seems to be a universal feature of all systems involving causal
mechanisms [Shoham, 1988], a feature we must emulate in defining causal

theories.

Our starting point is to formulate a necessary and sufficient condition for a
system of constraints to exhibit a directional asymmetry similar to that character-
izing causal organizations. Basically, the criterion is that there should exist an
ordering of the variables in the system such that imposing constraints on later
variables would not further constrain earlier variables. Intuitively, it captures the
understanding that predictions are useless for diagnosis. Starting with this cri-
terion as a definition of causal theories (Section 2), we show that it is tantamount
to enabling backtrack-free search (for a feasible solution) along the natural ord-
ering. We then explore methods of constructing causal specifications for a given
relation, that is, specifications that permit objects from the relation to be retrieved
backtrack-free along some ordering. Such methods are investigated along two
dimensions: inductive and pragmatic. Along the inductive dimension (Section 3),
we are given the tuples of some relation p, and we seek to represent this set of
tuples by a causal theory that is as simple as possible. We provide a formal
definition of simplicity and show that together with the insistence on backtrack-
free predictions, it leads to a natural definition of intrinsic directionality, match-
ing our perception of causal directionality in logical circuits and other physical

devices.
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- Along the pragmatic dimension (Section 4), we start with an unordered
collection of constraint specifications, which might represent some stable physical
laws, and we seek an ordering of the variables such that the overall system consti-
tutes a causal theory. Clearly, not every system of constraints can turn causal by
a clever ordering of the variables. The criterion for the existence of such an order-
ing depends on both the nature of the constraints and the topology of the subsets
of variables upon wﬁich the constraints are specified. Some constraint systems
are amiable to causal ordering by virtue of their topology alone, regardless of the
content of the individual constraints. These are called acyclic constraint systems,
originally studied in the literature of relational databases, [Beeri et al 1983]. In
contrast, Section 4 ascribes causal ordering to a more general set of topologies,

but imposes special requirements on the character of the individual constraints.

Our basic requirement for a k -variable constraint to qualify as a descrip-
tion of a primitive causal mechanism, is that at least one set of k—1 variables must
behave as inputs (or causes) relative to the remaining k™ variable (to be
regarded as an output or an effect), in the sense that each value combination of
these k—1 variables must be compatible with at least one value of the k* vari-
able. Additionally, in order for the system as a whole to act as a causal system,
the constraints must be ordered in a way that prevents conflicts among the various
outputs, hence, no two constraints should designate the same variable as an out-
put. We provide effective procedures for: (1) deciding if such an ordering exists
and, (2) identifying such ordering whenever possible. The ordering found can be
used to facilitate search and retrieval, and are similar to those used to describe the
operation of physical devices [Kuipers, 1984] [Iwasaki, 1986] [de-Kleer,1986]
[Forbus, 1986]

2. Definitions and Preliminaries: Constraint Specifications and
Causal Theories ’

Definition 1 (Constraint Specification): A constraint specification (CS) con-
sists of a set of n variables X = {X,,...,X,}, each associated with a finite
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domain, dom, . .., dom,, and a set of constraints {C,C,, ..., C,} on subsets

of X. Each constraint C; is a relation on a subset of variables S; =

(Xi,. .., X;}, namely, it defines a subset of the Cartesian product of
dom; X ,..., X dom; . The scheme of a CS is the set of subsets on which con-
straints are defined, scheme (CS)={S,S5, ..., S; }, S;<X. A solution of

a given CS is an assignment of values to the variables in X such that all the con-
straints in CS are satisfied. A constraint specification CS is said to define an

underlying relation re!/(CS), consisting of all the solutions of CS.

Definition 2 (Causal Theories): Given a constraint specification CS, its underly-
ing relation p=rel/(CS), and an ordering d = (X, X5, .. ., X,), we say that a

CS is a causal theory (of p) relative to d if forall i = 1 we have

IT (p)= P! C 1
Xivoo x (P iS Xy ..., x) M

where Iy = x,(p) denotes the projection of pon {X,, ..., X;}, that is,
My, .., xP={x=@,,....,x;) ! 3x e p,Xisanextensionof x}, ()

and X is the join operator. Any pair <d, CS> satisfying (1) will be called a
causal theory (of p).

Although condition (1) may seem hard to verify in practice, it nevertheless
provides. an operational definition for causal theories. To test whether a given CS
is causal relative to ordering d, we need to find the set of solutions to the given
CS, project back these solutions on the strings of variables X;,X,,..., X;,
1 <i <n, then check whether each such projection coincides exactly with the set
of solutions to a smaller CS, one consisting of only those constraints that are
defined on variables taken from {X,,..., X;}. In Section 4 we will show that
certain types of specifications possess syntactic features that render them
inherently causal, in no need of the elaborate test prescribed by (1). For example,
the specifications of logic gates are always causal relative to orderings compatible

with their interconnections in logic circuits. Similarly, linear inequalities and
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propositional clauses, under certain conditions, can be assembled into causal

theories by finding appropriate orderings of the variables.

From a conceptual viewpoint, Definition 2 can be given the following
interpretation. If we view the variables X |, ..., X; as past events, the variables
X;.1. ..., X, as future events, and the constraints as physical laws, then Eq. (1)
asserts that the permissible set of past scenarios is not affected by laws that per-
tain only to future events. In other words, past events cannot be ruled out by con-
sidering their impact on future events. This interpretation is indeed at the very
heart of the notion of causation, and is closely related to the principle of chrono-
logical ignorance described in [Shoham 1988], although Shoham’s definition of

causal theories insists on functional dependencies.

We shall now show that causal theories as defined by (1) yield a computa-
tionally effective scheme of encoding relations; it guarantees that the tuples in
these relations can be generated systematically, without search, by simply instan-

tiating variables along the natural ordering of the theory.

Definition 3 (Backtrack-free): We say that a CS is backtrack-free along order-

ingd=X,,..., X,) if for every i and for every assignment x,, ..., x; con-
sistent with {C;:S; S {Xy,..., X;}} there is a value x;,; of X;,, such that
Xy, ..., X, X4 satisfies all the constraints in {C;:S; {X,,..., X;,4}}. In

other words, a CS is backtrack-free w.r.t. d if rel_(CS ) can be recovered with no
dead-ends along the order d.

Theorem 1: A constraint specification CS is backtrack-free along an ordering d
if and only if it is causal relative to d.

Definition 4 (Dags and Families): Given a directed acyclic graph (dag) D, we

say that an orderingd = (X, ..., X,) of the nodes in the graph respects D if all
edges in D are directed from lower to higher nodes of d. A dag D defines a set
of n families F,, ..., F,, each family F; is a subset consisting of a son node,

X;, and all its parent nodes, P;, which are those directed towards X; in D.
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Definition 5 (Characteristic dag): The characteristic dag, D, of the pair
(d, CS) is constructed as follows: For each set S ; in scheme(CS), designate the

largest variable in S; as a sink and direct the other variables in §; towards it.

Figure 1 shows the characteristic dag of a CS defined on the subsets AD, DC,
DEF ,AB , BC, CF, along the orderingd =(B,A,C,D,F,E).

Figure 1: The characteristic dag of a CS

Lemma 1: If D is the characteristic dag of the pair (d, CS) then it is also the
characteristic dag of (d’,CS) whenever d’ respects D and, furthermore, if
<d, CS > is a causal theory, then so is also <d’, CS >..O

We can, therefore, characterize a given causal theory <d, CS > by the pair
<D, CS > where D is the characteristic dag of (d, CS). Indeed, the prevailing
practice in causal modeling is to use dags, not total orders, to describe the struc-

ture of causal organizations. Note that for <D, CS> to be a causal theory, the

families of D must form a partition of scheme(CS), because to comply with the

construction of Definition 5, any set of variables that supports a single constraint

must reside within at least one family of D .

Definition 6 (Causal model): Given a relation p and an arbitrary dag D, D is a
causal model of p if there exists a constraint specification CS such that <D, CS >
is causal theory of p. In other words, if there exists a constraint specification CS
defined on subfamilies of D such that rel (CS)=p and such that CS is causal
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relative to some ordering respecting D .

A causal model is a graph which merely designates qualitatively the
existence of direct causal influences among sets of variables, but does not specify

the nature of the influences.

3. Synthesizing Causal Theories and Uncovering Causal Direc-
tionality

Our ultimate goal is to construct causal theories for the information we possess.
Since our formulation of causal theory consists of three elements: a relation p, a
constraint specification CS, and a dag D, the natural question that arises is:
Given any two of the three elements, can we find the third so as to form a causal
theory (i.e., satisfying condition (1) while maintaining p = rel(CS))? These ques-

tions will be explored in Sections 3 and 4.

Task 1: (decomposition) Given a relation p and an ordering 4, find a causal

theory for p along d.

Barring additional requirements, a causal theory can be obtained by a
trivial construction. For instance, the complete dag generated by directing an edge
from each lower variable to every higher variable is clearly a causal model of p,
and the desired causal theory can be obtained by projecting p onto the complete
families F; = {X;,X,,..., X;}. We next present a scheme for constructing a
causal theory on top of an edge-minimal model of p, that is, a dag D from which
no edge can be deleted without destroying its capability to support a causal theory
of p.

The algorithm that follows constructs an edge-minimal causal model of p.




build-causal-1 (p,d):

1. Begin
2. Fori =n w02by-1do: 4
3. Find a minimal subset P; < (X, ..., X;_;) such that

Oy, x, PIXIp xy P =TIk, , ... x, (P
4, Return a dag D generated by directing an arc
from each node in P; towards X ;.
5. End.

To form a causal theory, we simply pair this dag with the projections of p on its

families.

The construction above shows that a causal theory can be found for any
arbitrary ordering. However, we will next show that certain orderings possess
features that render them more natural for a given relation. It is these features, we
conjecture, which give rise to the perception that certain relations possess "intrin-

sic" directionalities.

Definition 7 (Model Preference): A causal model D, is said to be at least as
expressive as D, denoted D <D, if for any causal theory <D, CS> there
‘exists a causal theory <D,, CSy> such that rel (CS ) =rel (CS,). A dag D is said
to be a minimal causal model of p if it is not strictly more expressive than any

other causal model of p.

Definition 8 (Intrinsic Directionality): Given a relation p, a variable X is said
to be a direct cause of variable Y, if there exists a directed edge from X to Y in
all minimal causal models of p.

Example 1. Consider a relation p specified by the table of Figure 2(a). The table
is small enough to verify that the dag in 2(b) is the only minimal causal model of
p. For example, the arrow from X to Z cannot be reversed, because p cannot be
expressed as a set of constraints on the families of the resulting dag,
{(YZ,ZX,XYW}. Adding an arc ¥ — X to the resulting dag would permit a
representation of p (using the scheme {YZ, YZX, YXW }), but would no longer be

minimal, being strictly more expressive than the one in 2(b). The causal theory
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corresponding to the dag of 2(b) is shown in 2(c), matching our intuition about
the causal relationships embedded in 2(a). Note that the same minimal model
ensues (though not the same theory) were we to destroy the functional dependen-
cies by adding the tuple 1100 to the table in 2(a).

>
P~<

@ (b) ©
Figure 2
Verma and Pearl [Verma, 1990] have useéd minimal model semantics to
construct a probabilistic definition of causal directionality. They have also
developed a proof theory which, under certain conditions provides efficient algo-
rithms for determining causal directionality without inspecting the vast space of
minimal models. Whether similar conditions exist in the relational framework

remains an open problem.

Task 2: Given a constraint specification CS, find a dag D and a constraint
specification CS’, s.t. <D ,CS "> is a causal theory of rel (CS).

This task can be solved by executing algorithm Adaptive-consistency
[Dechter, 1987] along an arbitrary ordering d: '
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build-causal-2 (CS ,d)
1. Begin
2. Execute adaptive-consistency w.r.t order d . )
3. Take the graph induced by adaptive consistency and direct edges from
lower to higher variables, Call this dag D .
4. For each variable, X, return the constraint C ; that adaptive consistency
induces on the i ™" family of D .
5. End
The resulting pair <D, {C;}> is a causal theory of CS. Algorithm adaptive-
consistency is known to be exponential in the induced width W * of scheme(CS)
[Dechter, 1987], hence, it is a practical procedure only for sparse constraint topo-

“

logies. /™
4. Finding Causal Ordering

In this section we characterize sufficient conditions under which causal theories
can be assembled from pre-existing constraint specifications. Part of these condi-
tions relate to the nature of the individual constraints; each must permit a causal
relationship to exist between variables designated as inputs and that designated as
the outpur. Additionally, to avoid conflicts in assembling the overall theory, we
shall also insist that no two constraints designate the same variable as their out-
put. Whether a given CS can comply with the latter restriction depends only on
the topological property of scheme(CS) and is captured in the notion of an
ordered CS.

Definition 9: An ordered constraint specification (OCS) is a pair (D, CS) con-
sisting of a dag D, and a special CS s.t. scheme(CS) is isomorphic to the families
of D, namely, C € scheme(CS) iff C =F; for some i in D . The constraints (of
which there are at most n) will be denoted by C;,...,C; ,t <n, each indexed

by the son of the corresponding family.

For example, a CS with constraints {ADC, DEF ,AB, BC, CF } together
with the dag of Figure 1 is clearly an OCS. However, if instead of ADC, we had
two separate constraints, on AD and CD, this dag could no longer be paired with
the CS to form an OCS and, in fact, no such dag exists.
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Task 3: Given a CS find, whenever possible, adag D s.t. (D ,CS) is an OCS.

Procedure build-dag-3 (CS)
1. While scheme (CS') is non-empty do
2. If there is a subset S € scheme (CS) having a lonely
variable X (i.e., one that participates in only one constraint), then :

3. direct edges from all variables in S towards X , and remove S from scheme (CS ).
4, else, return failure.

5. end while .

6. return the dag D generated.

Theorem 2: Procedure build-dag-3 (CS) returns a dag D if and only if (D, CS)

is an OCS . Moreover, the dag returned is unique. O

Task 4: Given a CS, find, whenever possible, a dag D s.t. <D, CS > is a causal
theory of rel (CS).

In general, this task 'seems to require ihsurmountable amount of computa-
tions. The task becomes easier when the C'S can be assembled in an OCS by the
procedure above. Stll, not every OCS pair (D, CS) corresponds to a causal
theory <D, CS > according to criterion (1). We next show that if the constraints
residing in a given OCS meet certain conditions, then the OCS always yields a

causal theory. Such constraints will be called causal.

Definition 10 (Causal constraints): A constraint, C, on a set of variables U=
(X,,..., X4y, X} is said to be causal with respect to a subset O of its vari-
ables if the following three conditions are met: i). Any assignment of values to
U-0 is legal. Formally, if O=(X;....,X;}cU, then
Ny (C)=dom; x,..., xdom; . ii). Let O; denote the set {X,-J_} wU-0,
then C =TIy, (C)™M . XTIy, (C). In other words, C can be losslessly)
decomposed into 10| smaller constraints, each defined on U—O plus a single
variable from O. iii). O has no superset satisfying (i) and (ii). We say that U-O

and O are inputs and outputs, respectively, of the causal constraint C'.

() A relaion p is said to be losslessly decomposed into py,..., P, if
p=p1XpyX,..., Mp,. :
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Example 2: Consider the constraint C specified in Example 1. The sets {X,Y},
{X},{Y},(Z]}, and {W} qualify as input sets (U—-0O ) according to condition (i),
since C permits all possible assignments to their constituents. However, only
{X, Y} qualifies as an input set by requirement (ii), since C can be losslessly
decomposed only into the scheme (XYZ,XYW}. Hence, C is causal w.r.t.
O ={Z, W}, and indeed, it matches the functional description of C as shown in

Figure 2(c).

Definition 11 (Symmetric constraints): A causal constraint is said to be sym-

metric if it is causal with respect to each of its singleton variables.

For example, the constraint on {X,Y,Z} given by the linear inequality
X +Y +Z <a, is causal and symmetric, since any one of the three variables
qualifies as an output, with the other two as inputs. It is easy to verify that linear
equalities, e.g. X + Y + Z =a and propositional clauses, e.g. X v Y v Z are also

symmetric.

Theorem 3: If in a given OCS, (D, CS), the constraint associated with each
family F; is causal w.r.t. X;, then <D, CS > is a causal theory. O

Corollary: An unordered set of causal constraints can be assembled into a causal
theory if there is a dag D that will render it an OCS and if the sons in the families

of D coincide with the output variables in the causal constraints. O

To test for these conditions, it is sufficient to run the build-dag-3 algo-
rithm and check if the returned dag satisfies the last condition of the corollary.
Since build-dag-3 runs in quadratic time, the entire construction can be accom-

plished in quadratic time.

A subclass of OCS’s that is causal w.r.t. any specification of the con-
straints is the well known acyclic CS [Dechter, 1989] which is closely related to
acyclic databases [Beeri, 1983]. It can be shown that models enforcing local con-
sistency between adjacent constraints is sufficient for rendering any acyclic OCS
backtrack-free, hence, a causal theory.
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In many Al systems knowledge is expressed as a conjunction of proposi-
tional clauses, where each clause is a disjunction of literals. One can view each
literal as a variable accepting one of two values, and each clause as a constraints

on its literals.

Lemma 2: Every clause is a symmetric causal constraint w.r.t each of its single-

ton variables. O

Corollary: A set of clauses that forms an OCS is always satisfiable and, more-

over, a satisfying assignment can be found in linear time. (J

In case algorithm build-dag-3 fails, we know that the specifications do not
lend themselves to causal modeling by straightforward variable ordering. It is
still feasible though that causal theories could be formed by treating clusters of
variables as single objects. Such clusters were permitted, for example, in the
causal ordering of Simon [Iwasaki, 1980], which was restricted to the case of
linear equations. The basic build-dag-3 algorithm can be used to identify
promising candidates of variable clusters, and to assemble a more powerful type

of causal theories than those treated in this paper.

5. Conclusions

This paper presents a relational semantics for the directionality associated with
cause-effect relationships, explaining why prediction is easy while diagnosis and
planning are hard. We used this semantics to show that certain relations possess
intrinsic directionalities, similar to those characterizing causal influences. We
also provided an effective procedure for deciding when and how an unstructured
set of symmetrical constraints can be configured so as to form a directed causal

theory.

These results have several applications. First, it is often more natural for a
person to express causal relationships as directional, rather than symmetrical con-

straints. The semantics presented in this paper permits us to interpret and process

267




directional relationships in a consistent way and to utilize the computational
advantages latent in causal theories. Second, the notion of intrinsic directionality
suggests automated procedures for discovering causal structures in raw observa-
tions or, at the very least, for organizing such observations into structures that
enjoy the characteristics of causal theories. Finally, the set of constraint
specifications that can be configured to form causal theories constitutes another
"island of tractability” in constraint satisfaction problems. The procedure pro-
vided for identifying such specifications can be used to order computational

sequences in qualitative physics and scheduling applications.
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Abstract

Given a set of constraints and a set of assumptions, we can propagate a premise
set through the constraints to determine all possible inferences. Those inferences
allow us to answer queries regarding the consistency of the premise set, the assump-
tions underlying every inference, or the sets of assumptions (nogoods) leading to

. contradictions. We describe a constraint propagation system initially developed for
model-based diagnosis {9]. The system maintains labels of all assumptions underlying
every inference, in a manner similar to an ATMS. Unlike ATMS, the justifications
and premises in our TMS are represented as first-order predicate formulae, which
include variables. Our TMS accumulates macro rules so as to speed up answers to
queries for different instantiations of the premise set. In one version, the compilation
is done in advance, while in the other, is done when answering queries for a specific
premise set, in a manner similar to explanation-based learning (EBL) [8, 20]

1 Introduction

Constraint propagation is of central importance in search-based problem solving. Value
inference is one kind of constraint propagation, where values for unassigned variables are
deduced from the values already assigned. This technique has been used in various diagnosis
algorithms [5, 2]. It is also the basis of the CONSTRAINTS language [19].

Truth Maintenance Systems (TMS) can be viewed as a kind of constraint propagation.
A TMS-based problem solver consists of two components: an inference engine and a TMS.
The TMS’s task is to determine what is and what is not believed, and the inference engine’s
task is to make inferences about the domain. In ATMS [3] all such inferences are recorded
and communicated to the ATMS as justifications. Every problem solving hypothesis is
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communicated to the ATMS as an assumption. A set of assumptions is an environment
and the set of all data derivable from the assumptions is the contezt of the environment.
The ATMS associates with every datum a set of minimal environments from which it
is derivable. The set is the label of a datum. The task of the ATMS is to guarantee
that each label of each node is consistent, sound, complete, and minimal with respect to
the justifications. A task involving n assumptions has 2" environments, and at most 2"
contexts. The ATMS is required to tell when a context becomes inconsistent and whether
a node holds in a particular context.

In an ATMS, the label generation algorithm actually calculates the set of prime impli-
cates for the set of justifications [17]. Provan [15] has shown that ATMS label manipulation
is of exponential complexity in the worst case. This is because there can be an exponential
number of minimal support clauses (prime implicates) for a set of input clauses.

McAllester’s [13] justification-based TMS (JTMS) is a single-context system. In a
single-context system the TMS maintains for the problem solver only one consistent sub-
set (a context) of the data that has been passed to the TMS, whereas the multiple context
system (like ATMS) provide a facility for determining contexts dynamically, without en-
forcing the usage of any particular one. Although McAllester’s JTMS is efficient and
tractable, the multiple-context feature of ATMS is useful in device diagnosis if one wants
to find the minimal number of possible faults that explains a given observed behavior [5].
In single-fault diagnosis, however, the full-generality of the ATMS is not needed.

Reiter and de Kleer [17] compares an interpreted versus compiled approach to a clause
management system (CMS) — a generalization of de Kleer’s ATMS. In the compiled ap-
proach, the CMS does not store the clauses transmitted to it by the “Reasoner” (as in the
interpreted approach) but rather the prime implicants of these clauses. The reward for
this is that the cost of queries becomes cheap.

.Freuder [10] described a method for constraint propagation by synthesizing new ones.
The method constitutes a sort of compilation process using a dynamic programming tech-
nique. That compilation is a form of learning in advance by means of constraints pre-
processing. Inducing all possible constraints may involve a procedure which is exponential
both in time and space [10]. Dechter [6] proposed a method of learning while searching
that consisted of identifying minimal conflict sets contributing to dead-ends in a a back-
track search. Constraint compilation also appears in the interpretation of constraint logic
programming, as described by the CLP interpreter in Cohen {1]. Van Hentenryck’s [11]
version of Prolog called Chip (for constraint handling in Prolog) combines automatic back-
tracking with automatic constraint propagation. Dechter [7] defines and compares the
performance of various schemes suggested in the areas of constraint satisfaction problems,
logic programming, and truth maintenance systems for enhancing the performance of the
backtracking algorithms. Those schemes are classified into two types: those that are em-
ployed in advance of performing the search, and those that used dynamically during search.

All truth maintenance systems manipulate proposition symbols and relationships be-




tween proposition symbols. They address the search problem for a specific premise set.
Should the problem premises change, the inference and search process are repeated, though
the problem may have the same or “similar” solution as the ones that were solved before.
In a recent work [9], we addressed this problem in the context of multiple fault diagno-
sis. Instead of propagating the assumptions for each propositional datum, we propagate
the assumptions for a generalization of the datum. The generalization is such that the
set of assumptions for each datum remain valid for any instantiation of the premise set.
Our approach is similar to explanation-based learning [8, 20], although it shares com-
mon features with ATMS and constraint logic programming. We present in this paper a
procedural description of our approach. We hope that this paper will facilitate further
integration of ideas from explanation-based learning, constraint logic programming, and
truth maintenance systems.

2 Motivation

An Assumption-Based Truth Maintenance system (ATMS)[3] receives from a deductive
module a set of pairs (assertion, justification). The pairs correspond to propositional
Horn clauses. The elements of a base of facts maintained by the ATMS are denoted by:
(assertion, list of justifications, label). The label of an assertion A is a set of environments
denoted by {Ei, Ey,...,E,}. An environment E is a set of basic assumptions denoted
by {Hy, Hs, ..., Hi}. A basic assumption H is an assertion specified as such by the user.
The deductive module may transmit pairs (contradiction, justification) to ATMS. The
environments of a contradictory assertion are called nogood sets. Every superset of a
contradictory environment is itself contradictory. The task of the ATMS is to calculate
and update the label of each assertion. Labels should be sound, complete, consistent, and
minimal [4].

The ATMS may only be used to answer questions concerning instantiated cases. For
example, the nogood sets will be applicable only to the propositional premises communi-
cated by the deductive module. For another instantiation of premises, ATMS will have to
calculate and update the labels of various assertions anew.

We borrow the following example from [18]. The example involves the following base
of rules:

student(X) A Hi(X) — young(X) (1)
young(X) A Hy(X) — single(X) (2)
student(X) A parent(X) A H3(X) — married(X) (3)

Rule 1 says: “students are young”; Rule 2: “young people are single”; Rule 3: “students
who have children are married”. H;(X) is the assumption that rule i applies to individual
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Figure 1: A contradiction

X (i = 1,2,3). Consider the set of premises: student(jim), parent(jim) The deductive
engine transmits the assertions:

young(jim), single(jim), married(jim)

along with their justification. The deductive engine also transmits the contradiction with
the justification married(jim) A single(jim). The state of the knowledge base is depicted
in figure 1. Based on this, the ATMS concludes that {Hy(jim), Hy(jim), H3(jim)} is a
nogood for the given set of premises.

Explanation-based learning (EBL) [8, 20] aims at generalizing explanations (justifi-
cation) of assertions derived by a deductive module in order to speed-up the derivation
of “similar” assertions. The propositional nature of ATMS means that for a new set of
premises such as A

student(bob), parent(bob)

the work is repeated, and ATMS concludes that {H;(bob), Hy(bob), H3(bob)} is a nogood

set.
For the example above our TMS following the jim example would conclude the following

macro rules

student(X) A parent(X) — nogood([H1(X), Ha(X), Hs(X)]) (4)




3 Problem Statement

We pose our problem in terms of a constraint satisfaction problem (CSP) [12]. Assume
the existence of a finite set I of variables X = {Xi, X,,..., X,}, which take respectively
their values from their finite domains Dy, D,, ..., D, and a set of constraints. A constraint
o(Xiy, Xigy . ., Xi,) between k variables from [ is a subset of the Cartesian product D; x
D, x...x D,, which specifies which values of the variables are compatible with each other.

We are also given a set of assumptions H = {Hy,..., H,}, where assumption H; is in
conjuction with constraint Cj.

Constraints are represented as inference rules in the form:

Head « Body {Constraints} (5)

The rules specify what information on variable assignments can be deduced once some
variable assignments are available. Assignments inferred correspond to what we call con-
clusion variables, while known assignments leading to the application of the constraints
correspond to what we call triggering variables.

Example 1. An adder constraint whose input variable assignments are SInl, SIn2 and
output variable assignment is SOut can be expressed as

—AB(Adder) = out(Adder) = SOut,inl(Adder) = SInl,in2(Adder) = SIn2,
{SOut = SInl + SIn2} (6)

Adopting Reiter’s convention [16], AB(c) is the assumption that component c is defective
(behaves abnormally). '

The problem is as follows. For a given initial set of premises: ¢ = {X;, = z;,, X;
Tiyy...,Xi, = z;,}, 8 < r, forming a partial assignment over X, we want to be able to
answer queries such as:

1. Is the assignment ¢ consistent with the set of constraints?
2. If o is inconsistent, what are the minimal nogoods?

3. For every deduced variable assignment, what are all the (minimal) assumptions under

which it holds?

4 Value Inference

In order to answer the queries stated in section 3 we need to propagate the assignments of
the premise set through the constraints, using all possible inference rules. In the process of
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making value inferences, it is important to keep track of the underlying assumptions and
avoid redundant or circular inferences. The process halts when all possible inferences are
made. This is illustrated by the procedure PROPAGATE. -
ALGORITHM PROPAGATE(PremiseSet)
1.[Initialization] for every Var = Val € PremiseSet

2. CREATE-NODE(Var,Val,[],[])

3. repeat

4. change — false

5. for each value-inference rule R;

6. for each set of trigger nodes N;;

7. change — (NEW-INFERENCE(R;, N;;) or change)
8. until —change

We represent each inference by a node in an inference network. In that network, special
nodes are: premise nodes and assumption nodes. ‘A premise node is a variable assignment
whose underlying assumption is the empty set. An assumption node is a special node
recording an assumption associated with some constraint.

While propagating inferences, statements of the form node(Var, Val, Support, Depen-
dency), are asserted, where Var is a variable assigned the value Val, Support is the set of
assumptions underlying the inference. Dependency is the set of variables of all nodes in the
proof tree for the current inference. Figure 2 depicts a part of the inference network corre-
sponding to example 2 below. For the node F' = 12, the set of support and dependencies
are: [Al, M1, M2} and [A, B,C, D, X, Y], respectively.

assumption

premise

premise assumption

premise

premise

M,

assumption

Figure 2: Inference Network




The procedure NEW-INFERENCE called by PROPAGATE does the following. It
checks whether the trigger variables of Nodes have any dependency that include the con-
clusion variables of Rule; line 5. This check will exclude any circular inference. The support
and dependency labels are propagated in lines 8,9, respectively. The conclusion nodes are
created in line 11. If a value is deduced for a variable that conflicts with a premise, then
the support set for the variable is asserted as a conflict; line 12.

ALGORITHM NEW-INFERENCE(Rule,Nodes,PremiseSet)

1. if Rule was already triggered by Nodes

2.  then return false

3. else begin

4. W « conclusion_variables(Constraint, Nodes)

5. if for every node € Nodes NO-CYCLE((node, W)
6. then begin

7. H « hypothesis(Rule)

8. Support — UnodeeNodes SUPpOTt(node) U { H}

9. Dependency «— UnodecNodes(dependency(node) U {node})
10. for every assignment Val to Var e W

11. CREATE-NODE(Var, Val, Support, Dependency)
12. if Var = Val; € PremiseSet and Val # Val,

13. then assert Support as a conflict set

14. return true

15. end

16. else return false

17. end

The procedure NO-CYCLE checks that the dependency label for a trigger node does
not include any element of the set of conclusion variables W.

ALGORITHM NO-CYCLE(node, W)

1.if dependency(node) N W # §

2. then return true

3. else return false

Example 2. Consider the polybox circuit of figure 3, consisting of three multipliers,
M, M3, M3, and two adders. Let the premise set be: A =3, B=2,C =2, D = 3,
E =3, F=10,G =12. Step 1 of PROPAGATE will assert the following premise nodes:

node(a,3,(],[]) node(b,2,[],[]) node(c,2,[],[]) node(d,3,[],[])
node(e, 3, [1,[1) node(f,10,[],[]) node(g,12,],])

The first cycle of PROPAGATE will assert the following nodes:
node(z, 6,(ml], [a, ])
node(y, 6, [m2), [5,d)
node(z,6,[m3], [c, e])
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Figure 3: The Polybox Circuit

node(f,12,[m2,ml,all, [b,d,a,c,z,y])
node(y, 4,[ml,al], [a, ¢, z, f])

node(z’ 47 [mz’ al]’ {b’ d’ y, f])
node(g,12,[m3,m2,a2],[c, e, b,d,y, z])
node(g,10,[m3,m1,al, a2},[e, a, ¢, z, f,y, 2])
node(z,6,[m2, a2], [b, d,y, g])
node(z,8,[ml,al,a2,[a, ¢z, f,y,9])

node(y, 6,(m3,a2],[c, €, z, g])

The second cycle of PROPAGATE will assert the following nodes:
node(f,12,[m3,a2,ml,al],[e, 2,9, a, ¢, z,])
node(z,4,[m3,a2,al),[c, e, z,9,y, f])

The third cycle cannot deduce anything new, so PROPAGATE stops.
There are two conflict sets: [m2,ml,al], and [m3,ml,al,a2).

5 Dynamic Compilation

The procedures presented in section 4 have to be applied every time the premise set has
changed. By compiled value inference, we mean generalizing the inferences being made
during the propagation process. That generalization permits the inference network to be
utilized for various instantiations of the premise set.

This idea of compilation is based on the Explanation-Based Learning (EBL) framework.
When given a premise set and constraint propagation is performed, the successful inference
rules are also propagated and represented in the inference network. A node in that network
consist of an uninstantiated assignment, along with a function relation instantiating the
assignment in terms of the instantiation of the premise nodes.
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As before, we represent each inference by a node - an inference network. In that
network, special nodes are: premise nodes and assur. .on nodes. A premise node is an
uninstantiated (symbolic) assignment to a variable with an empty assumption set. An
assumption node is a special node in the network.

While propagating inferences, statements of the form

node(Var,SVal, Constraint, Support, Bindings, Dependency) (7)

are asserted, where Var is a variable assigned the uninstantiated (symbolic) value SVal,
Constraint is a function relation expressing SVal in terms of the symbolic values of the
premise variables specified by Bindings. As before, Support, Dependency denote the set
of support and dependencies, respectively.

We call the new propagation process EBL-PROPAGATE, to emphasize the fact that
generalized inference network is being learned during the propagation process. Figure 4

depicts the generalized network obtained by EBL-PROPAGATE for the example of figure 2.

M,

Figure 4: Generalized Inference Netwok

EBL-PROPAGATE generalizes the premise set by replacing each value assignment by
a symbolic value, namely a Prolog variable; line 2. It continues applying EBL-NEW-
INFERENCE until nothing more can be inferred.

ALGORITHM EBL-PROPAGATE(PremiseSet)

1. [Initialization] for every Var € variables(PremiseSet)

2. CREATE-NODE(Var,SVal,SVal,nil, [Var : SVal},nil)

3. repeat
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4 change « false

5. for each value-inference rule R;

6. for each set of trigger nodes N,;

7. change — (EBL-NEW-INFERENCE(R;, N;;, PremiseSet) or change)

8. until —change

EBL-NEW-INFERENCE first checks whether the inference had been already made;
line 1, and if not whether the conclusion variables are included in the dependency lists
of any trigger variable (to prevent circular inference); line 5. If the check succeeds then
the support, dependency, and binding lists are propagated; lines 7-10. Moreover, the
constraints of Rule and those of Nodes are merged— unifying symbolic values in the
process— to obtain a NewConstraint list and symbolic values for the conclusion variables.
Nodes for the conclusion variables are then created; line 14. If the value of a conclusion
variable conflicts with a premise then assert a conflict rule. The rule states that the support
set of the conclusion variable is a conflict if its constraints- and bindings-list yield a value
for the variable different from a premise assignment.

ALGORITHM EBL-NEW-INFERENCE(Rule, Nodes, PremiseSet)

1. if Rule was already triggered by Nodes

2. then return false

3. else begin
4. W «— conclusion_variables(Rule, Nodes)
5. if for every node € Nodes NO-CYCLE(node, W)
6. then begin
7. Bindings «— UnodeeNodes Dindings(node)
/* MERGE-CONSTRAINTS has the side effect of symbolic
assignments S-ASSIGN(.) on W */
8. NewConstraint « MERGE-CONSTRAINTS(constraints(Rule),
Unodee Nodes CONStraints(node))
9. if NewConstraint subject to Bindings is satisfiable by PremiseSet
for the the assignment ASSIGN(.) on W .
10. then begin
11. H « hypothesis(Rule)
12. Support — UnodeeNodes Support(node) U {H}
13. Dependency — UnogecNodes d€pendency(node) U {node}
14. for every Var e W
15. begin
16. SVal «— S-ASSIGN(Var)
17. Val — ASSIGN(Var)
18. CREATE-NODE(Var, SVal, NewConstraint,
Support, Bindings, Dependency)
19. if Var = Val; € PremiseSet and Val # Valy
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20. then assert a conflict set rule
21. ' end

22. return true

23. end

24. else return false

25. end

26. else return false

27. end

Example 4. Consider the polybox circuit of figure 3, with the premise set as in example 2.

Step 1 of EBL-PROPAGATE will assert the following premise nodes:

node(a, a,[],[l,{a: -a],[]) node(b,.b, ], ], [b: 8], 1])
node(c, -c, ], ], le -} ) mode(d, -d, [}, [}, d ], [}
node(e, ¢, ][], [e: |, [I) node(f,-f, [, [ [f: -1, 1)

node(g, -9, 1l [g: 9], 1)
The first cycle of EBL-PROPAGATE will assert the following nodes:

node(z, -a * .c,[ml],[],[a: -a,c: _c],[a,c])

node(y, -bx _d,[m2],[],(b: -b,d : _d],[b,d])

node(z, c* _e,[m3],[],[c: <, e: €], [c, €])

node(f, ax _c+ bx_d [al,ml,m2],[],[a: .a,c: c,b: b,d: d],[z,a,c,y,b,d])

node(y,-f ax*_cfal,ml],[],[a: a,c: ¢ f:_f],[z,a,c, f])

node(z,_f — _b* _d,[al,m2],[],[b: b,d: d, f:_f],[y,b,d, f])

node(g, b* d+ _cx e, [a2,m2,m3], [] [b: b,d: dyc: c,e: ¢],[y,b,d,z2,c,€])

node(g, .f — ac+ c* e,[a2,al,ml,m3],(],[a: a,c: ¢, f:_f,e: €],[y,z,a, f,2,0¢,¢])

node(z, g — b+ d,[a2, m2] 0, [b b,d:dyg: g, [y,b,d, g])

node(z, g — (-f — _a * ), [a2, al,ml],[],[a a,c: ¢, f:_fig:.gl,ly,z,a,c, f,9])
node(y,_g — -c* _e,[a2,m3],[],[c: c,e: e,g: g] [z,¢,e,9])

The second cycle of EBL-PROPAGATE will assert the following nodes:

node(f, -a*_c+(-g—c*_e),[al,ml,a2,m3|,[],[a: a,c: c,e: e,9: ¢],[z,a,y,2¢c,e,9])

node(z, f — (g — c* <), [a1,02,m3], [L[c: cre: eg: g f : -l 19> 20009 )

The third cycle cannot deduce anything new, so EBL-PROPAGATE stops. Notice that
in this example the symbolic value of each variable is given directly as a function of the
premise variable bindings, and therefore the Constraint list (eqn. 7) is empty. In general,
the value of a variable will be specified as a function relation given by the Constraint
argument of the node, in terms of the bindings of the premise variables given by the
Bindings argument (eqn. 7).

In order to better understand how EBL-NEW-INFERENCE obtains the above results,
consider applying the value-inference rule (eqn. 6) for the adder Al of the polybox (figure 3).
Let the adder’s inputs z and y be the trigger variables corresponding to the nodes:

node(x,_a*_c,[ml},[],[a:_a,c:_c],[a,c])
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node(y,-b*_d,[m2],(],[b: b,d:_d},[b,d])

The assumption that a component is not abnormal is simply indicated by a propositional
symbol corresponding to the component’s label. Propagating the binding sets for z and y
(step 7) yields the binding set [a:a,c:.c,b: b,d:.d]. The symbolic value for z is _a * .c. The
symbolic value for y is -b* _d. Unifying the assignments of the adder’s inputs with _a * _c
and _b * _d yields constraint(Rule) being equivalent to SOut = _a * ¢+ _b x .d. Merging
constraints (step 8) results in NewConstraint = {} and the side effect of a symbolic
binding of the adder’s output to SOut = _a* _c+ bx_d. The if condition of step 9 succeeds
with the the value 12 assigned to f. Next the rule’s assumption is al. Propagating the
support sets for z and y (step 12) yields the support set [al,m1l,m2]. Propagating the
dependency sets for z and y(step 13) yields the dependency set [a,c,b,d,x,y]. A node is
then created (step 18) for f with the so-obtained symbolic binding, support, dependency,
and bindings lists. Since the value of 12 assigned to f conflicts with the premise f = 10,
the following conflict set rule is asserted (step 19):

con flict_set([m2,ml,al]) : —
premise([a: a,c: ¢,b: b, d: d, f:_f]),dif f(_f,.a% c+ bx*_d)

The rule says given the premise set bindings, if the value of f is different from the value
of a times the value of ¢ plus the value of b times the value of d then the set of assumptions
[al, m1, m2] is a conflict (nogood).

Another conflict set rule,

con flict_set([a2,al,m1,m3]) : —
premise([a: a,f:-fic:ce:e,g:g]),diff(_g,-f —-a*xc+ cx_e)
will be asserted following the inference:
node(g, -f — ac+ cx _e,[a2,al,ml,m3],[],{a: a,c: ¢, f: _f,e: e],[y,z,a,f, 2,0¢,¢])

6 Static Compilation

Static compilation is a pre-compiled value inference, covering all possible assignments of
the premise set. We assign symbolic values to the premise variables and propagate the
constraints in symbolic form.

The fact that in static compilation the premise variables are uninstantiated leads to
the following distinctions from dynamic compilation:

1. Propagated constraints are not evaluated for a specific premise set, since the premise
set consists of uninstantiated assignments. This raises the need to ensure that the
propagated constraints are compatible.

2. Conflict set rules are formed by hypothesizing all possible inconsistencies between the
premise assignments. Note that in dynamic compilation, conflict set rules are only
learned when an inconsistency is found for the initially given premise assignments.
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This implies that static compilation will definitely lead to a potentially larger set of
conflict rules than for dynamic compilation.

Static compilation is performed by the procedure STATIC-PROPAGATE, which takes
a set of premise variables and continues propagating the symbolic assignments to those
variables until nothing new can be inferred.

ALGORITHM STATIC-PROPAGATE(PremiseVars)

1. [Initialization] for every Var € PremiseVars

2. CREATE-NODE(Var,SVal,SVal,nil, [Var : SVal],nil)

3. repeat

4. change « false
5. for each value-inference rule R;
6 for each set of trigger nodes V;;
7 change — (STATIC-NEW-INFERENCE(R;, N;;, PremiseVars)

or change)

8. until —change
STATIC-NEW-INFERENCE is similar to EBL-NEW-INFERENCE with the following

two distinctions.

1. The satisfiability check for the merged constraints in step 9 is done with respect to
all possible instantiations of the premise set, rather than to an initially given one as

in EBL-NEW-INFERENCE.
2. Hypothesized conflict rules are sought for each premise variable, step 18.

ALGORITHM STATIC-NEW-INFERENCE(Rule, Nodes, PremiseVars)
1. if Rule was already triggered by Nodes
2. then return false

3. else begin
4. W « conclusion_variables(Rule, Nodes)
5. if for every node € Nodes NO-CYCLE(node, W)
6. then begin
7. Bindings «— UnodeeNodes bindings(node)
/¥ MERGE-CONSTRAINTS has the side effect of symbolic
assignments S-ASSIGN(.) on W */

8. NewConstraint «— MERGE-CONSTRAINTS(constraints(Rule),

UnodeeNodes CONStraints(node))
9. if NewConstraint subject to Bindings is satisfiable
10. then begin
11. H « hypothesis(Rule)
12. Support — UnodeeNodes SUPPort(node) U {H}
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13. Dependency — Unodee Nodes dependency(node) U {node}
14. for every Var ¢ W

15. begin

16. SVal «— S-ASSIGN(Var)

17. CREATE-NODE(Var, SVal, NewConstraint,

Support, Bindings, Dependency)

18. if Var € PremiseVars

19. then assert a conflict set rule

20. return true

21. end

22. return true

23. end
24, else return false

25. end

26. else return false

27. end

Example 5. STATIC-PROPAGATE will lead to the same network of nodes as in exam-
ple 4, but will add a third conflict rule:

con flict_set([m3,m2,a2],2) : — ,
premise([b: b,d: .d,c: c,e: e,g: g]),dif f(-g,-b* d+ c*_e)

7 Search Control

Compiling rules for the conflict sets can dramatically reduce the size of the search space.

- Consider the problem of multiple-fault model-based diagnosis [5]. Given a device consisting

of n components, each behaving normally according to a given constraint, and a set of
input-output observations for the device (premise set), it is required to find all minimal
candidates (multiple as well as single faults) that explain the observations. In other words,
it is required to assign credit or blame to components based on observations inconsistency
with predictions based on the internal constraints.

The space of potential candidates is potentially exponential in the number of compo-
nents. The number of conflict sets is generally much lower than the number of potential
candidates. How much lower will depend on the connectivity between the components. In
one extreme, if we have 2n components as in figure 5, we have n conflicts, one for each
pair of components 2: and 2: + 1, resulting in 2" candidates. As the connectivity between
the components increases, there is the possibility that the number of conflicts may become
exponential in the number of components [14].

In cases where the number of conflict sets is a polynomial in the number of components,
we expect that static compilation will lead to a considerable reduction in the search space.

283




The cost of matching the conflict set rules will be less than the cost of propagating the l
constraints while exploring minimum environments first in the candidate space, as is done
in the ATMS-based GDE system [5]. m

In the case of dynamic compilation, the system learns the conflict set rules as it solves
actual diagnostic problems. Since the system is never sure that it has seen enough cases
that cover the whole conflict space, the system verifies its candidate hypotheses using
constraint-suspension checking. This adds a computational cost that may overwhelm the
savings obtained from the compilation.

Computational experiments were carried out using a batch of 100 diagnosis problems,
that were created by randomly inducing single to triple faults in the polybox circuit. We
fed the same problem batch to three diagnosis systems; first without compilation (MBD),
second with dynamic compilation (EBL), and the third with static compilation (STATIC).
All three systems produced exactly the same output (all diagnoses) for the same problem,
but took different cpu times. We plotted the cumulative cpu time for each diagnosis system
for each circuit example. See figures 6.

In EBL (dynamic compilation), the net effect of speed-up from learning conflict set
rules, on one hand, and the constraint-suspension checking slow-down on the other hand,
depends on the size and the nature of the circuit. For the polybox circuit EBL contributed
a net marginal speed-up.

For STATIC (static compilation), conflict sets were generated on the basis of the pre-
determined conflict rules. The circuit model was no longer needed. The effect of speed-up
was very significant, as is evident from the performance plots of figures 6.

8 Conclusions

This paper describes two approaches to compilation in constraint-based reasoning. The
first approach, called “dynamic”, generalizes and caches truth maintenance labels as infer-
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Figure 5: Loosely connected Structure
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ences and queries being made. The second approach, called “static”, runs all inferences,
generalizes, and caches all labels prior to any queries. In both cases, the labels are stored
as rules whose conditions are in terms of premise variable assignments, and conclusion are
the inference supporting environments.

Dynamic compilation can be thought of as explanation-based learning, where the gen-
eralizations are being made at the time of problem-solving examples. Static compilation
corresponds to learning in advance by analyzing all abstract constraints.

The impact of compilation is discussed in terms of a model-based diagnosis application.
For multiple-fault diagnosis, compilation is most attractive when the number of conflict
sets is orders of magnitude less than the size of the candidate space.
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Abstract

The general constraint satisfaction problem is known to be NP-complete.
However, certain domain-specific constraint satisfaction problems can
be shown to have polynomial complexity. In this paper, we show that
polynomial-time algorithms are possible for solving geometric constraint
satisfaction problems (Gcsp’s). Traditionally, such problems are solved by
reformulating the constraints as equations whose roots are found symboli-
cally or numerically. Symbolic solution has exponential complexity, while
numerical solution can be unstable and may have robustness problems.
Our philosophy for solving GCsP’s is to reason directly in the domain of
symbolic geometry. We employ an operational semantics for geometric
constraint satisfaction, using geometric constructions to measure proper-
ties of a model, and actions to move objects in the model to satisfy new
constraints without violating previously-satisfied constraints. This incre-
mental approach leads to a monotonic decrease in the number of degrees
of freedom in a system of geometric objects, and is responsible for the
polynomial complexity of the resulting algorithms. We describe two im-
plemented systems, one for mechanical modeling, and one for kinematic

simulation.

1 Introduction

Solving geometric constraint systems is an important problem with applications in many
domains, for example: describing mechanical assemblies, constraint-based sketching and de-
sign, geometric modeling for cap, and kinematic analysis of robots and other mechanisms.
An important class of such problems involves finding the positions, orientations, and dimen-
sions of a set of geometric entities that satisfy a set of geometric constraints. This paper first
examines traditional means of solving geometric constraint satisfaction problems (GCsP’s).
Then, we introduce a fundamentally different philosophy of constraint satisfaction, based
on symbolic geometric reasoning and an operational semantics for constraint satisfaction.
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We illustrate this approach in the context of two implemented programs, one for mechanical
modeling, and one for kinematic simulation.

Representations of constraint problems must be appropriate for the domain in the sense
that the ontology of the problem should lend itself to an efficient solution strategy. A
simple translation into the ‘standard model’ of constraint satisfaction (e.g., [Mackworth,
1977]) may lead to an inefficient, and perhaps exponential-time, solution process, while
representation shifts may yield a fast and elegant solution. A classic example is found in
the Missionaries and Cannibals problem [Amarel, 1968].

Besides efficiency, many other issues arise in the solution of GCsp’s. Underconstrained
situations must be dealt with in an intuitive manner, and topological consistency may
be important. In domains such as mechanism simulation and mechanical cap (McaD),
solutions must be consistent in terms of which ‘branch’ in the solution space is chosen in
fully-constrained cases where more than one solution is possible.

1.1 Terminology

The objects of interest in solving GCSP’s are called geometric entities, or geometric objects;
some examples are lines, circles, and rigid bodies. Entities have degrees of freedom, which
allow them to vary in location or size. For example, in 3D space, a general rigid body
has three translational and three rotational degrees of freedom. A circle with a variable
radius has three translational, two rotational, and one dimensional degree of {reedom (a
third rotational degree of freedom is not required because the circle is invariant under the
rotation about its axis).

The configuration variables of a geometric object are defined as the minimal number of
real-valued parameters required to completely specify the object in space. The configura-
tion variables are used to parameterize an object’s translational, rotational, and dimensional
degrees of freedom (DOF’s), with one variable required for each DOF. A configuration of an
object is a particular assignment of the configuration variables, yielding a unique instanti-
ation of the geometric entity.

The definition of a Ggcsp is then as follows: Given a set of geometric entities and con-
straints between them, find the values of the configuration variables of the objects such that
all constraints are satisfied. The collection of entities and constraints is called the constraint
system, or simply the system.
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2 Equational techniques for solving GCsP’s

GCsP’s are usually solved by modeling the geometry and constraints with algebraic equations
that relate the configuration variables of the different objects according to the problem
constraints. Solving these equations—either numerically or symbolically—yields the desired
configuration for each geometric entity.

2.1 Numerical solution

Numerical solutions represent constraints using error terms, which vanish when the con-
straint is satisfied, and otherwise have magnitude proportional to the degree to which the
constraint is violated. The error function is the sum of all error terms; the constraint system
is satisfied when the error function is zero. One of the most efficient methods for finding a
zero of the error function is Newton-Raphson iteration [Press et al., 1986].

Numerical techniques find zeros of the error function by ‘sliding’ down the function’s
gradient. This process is necessarily iterative for nonlinear problems. Numerical tech-
niques have many drawbacks. Each iteration of Newton-Raphson is slow, taking O(c®)
time, where c¢ is the number of constraints. In addition, the Jacobian matrix must be
evaluated at every iteration. Overconstrained situations, which are quite common, require
pre- and post-analysis to remove redundant constraints before solving and to check them
later for consistency. Newton-Raphson can jump chaotically between different roots of the
error function during solution [Peitgen and Richter, 1986], which can make the choice of ini-
tial solution guess crucially important. Underconstrained situations require pseudo-inverse
techniques, since the constraint matrix is non-square. Additionally, when a solution is im-
possible, no information is available to pinpoint the smallest set of constraints which are

inconsistent.

2.2 Symbolic solution

Symbolic solutions use algebraic rewrite rules or other techniques to isolate the configuration
variables in the equations in a predominantly serial fashion [Buchberger et al., 1983]. Once
a solution is found, it may be reused—or ezecuted—on topologically equivalent problems.
Execution is fast, typically linear in the number of constraints. If numerical stability is
properly addressed, the solution can be more accurate by virtue of being analytic; there
is no convergence tolerance as found in numerical techniques. The principal disadvantage
of symbolic techniques is the excessive (potentially exponential) time required to find a
solution or determine that one does not exist {Liu and Popplestone, 1990]. Poorly-chosen
configuration variable assignments can exacerbate the problem by coupling the equations in




unnecessarily complicated ways, requiring very clever and complex inferences. Hence, the
symbolic techniques are feasible and complete only for very small problems.

3 Geometric techniques for solving GCsSP’s

Our approach to solving GCSP’s relies on a representation shift from reasoning about configu-
ration variables to reasoning about the DOF’s of the actual geometric entities. Configuration
variables are related to each other by sets of equations that may be very complicated, tightly
coupled, and highly nonlinear; in addition, the domains of the configuration variables are
continuous, yielding an infinite search space. In contrast, the degrees of freedom of an ob ject
form a compact, discrete-valued, linear description of the state of the object. Coupling of
degrees of freedom is rarely encountered, and when it does occur, it car be accommodated
easily.

Degrees of freedom form abstract equivalence classes describing the state of a geometric
entity without specifying how the constraints that lead to that state are satisfied. DOF’s
are grouped into three equivalence classes: rotational, translational, and dimensional. All
DOF’s of the same type are considered ide itical elements of that resource. DOF resources
are consumed by moving an object so as to satisfy a constraint. Further actions are then
confined to those that do not violate any previously-satisfied constraints. Therefore, ev-
ery constraint, upon being satisfied, introduces invariant quantities for the satisfaction of
subsequent constraints, and restricts some number of degrees of freedom.

Measurements and actions form the basis for an operational semantics for constraint
satisfaction. For example, consider points A and B on a line L, where L has no constraints
applied to it. Suppose a constraint specifies that point A be coincident with a fixed point
C. The line may be translated to make those two points coincident. If another constraint,
say one involving point B on the line, is solved next, any action applied to line L must
preserve the location of point A. Therefore, subsequent actions are limited to rotations and
scaling about point A. The constraint coincident(A, C) removes the line’s translational
DOF’s, thereby restricting subsequent operations. A similar operational semantics is found
in [Wang, in preparation].

Reasoning about degrees of freedom is essential to decoupling the constraints. Consider
the zyz coordinate frame in Figure 1, with points O, at the origin, and P, in some arbitrary
location, rigidly fixed in the coordinate frame. The coordinate frame is parameterized by
six configuration variables, three for the translational DOF’s, and three for the rotational
DOF’s. Thus, the coordinate frame is free to translate and rotate in space.
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Figure 1: A rigid body with two embedded points.

Fixing the position of either point O or P (through the satisfaction of some constraint)
removes the three translational DOF’s in the system: the coordinate frame may only rotate
about the fixed point in order to satisfy subsequent constraints. But consider the constraints
in terms of configuration variables. Fixing the position of point O uniquely determines the
three translational configuration variables, while fixing the position of P introduces nonlinear
constraint equations into the system to relate the configuration variables to the distance
OP. Solving constraint systems in the configuration variable space is difficult because of this
type of coupling between configuration variables. Solving in DOF space is simpler because
the actions can be specified independently of how the system is parameterized in terms of
configuration variables.

The use of the metaphors of measurement and action to guide equation solution distin-
guishes our approach from other techniques for solving large sets of nonlinear equations.
Since the DOF representation is decoupled, a monotonic decrease in the degrees of free-
dom in a system can be achieved as the constraints are incrementally satisfied, leading to
polynomial-time algorithms for constraint satisfaction.!

4 Prototype systems

We believe it is important to examine constraint problems in specific domains, and then
generalize our results to the solution of broader classes of gesp’s. To this end, we have

11t should be noted that the plan of measurements and actions that satisfy the constraint network do
not necessarily correspond to a physically-realizable plan for assembling a collection of real objects. Since
the objects in a GCSP are purely geometric, they have no volume or other physical properties. Objects may
pass through each other in a ghost-like fashion, on their way to satisfying constraints. This property of the
solution process allows decoupling the solution of all constraints affecting any one entity.
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implemented our constraint solution ideas in two prototype systems. This section outlines
the systems, called HyperGEM and TLA, and then briefly compares them. The HyperGem
program is oriented toward mechanical modeling, and is described in [Keirouz et al., 1990].
TLA is specialized for the domain of kinematic simulation of mechanical linkages, and is
described in [Kramer, 1990b].

4.1 HyperGEM

HyperGEM is a prototype environment for mechanical modeling, emphasizing the early
stages of ‘conceptual’ design not addressed by most current MCAD systems. Mechanical
modeling includes not only geometric information, but engineering equations and other
design information as well. HyperGEM uses a graph-based solution technique for solving
GCSP’s as a subproblem of conceptual design.

HyperGEM treats the GCSP as a graph flow problem, where the constraints are sources
of DOF’s, and the geometric entities are sinks. A graph algorithm allocates the dimensional,
translational, and rotational DOF’s absorbed by each entity so as to distribute the DOF
equivalence classes according to each entity’s ability to absorb them. The algorithm is
executed incrementally each time a new constraint is added to the system. When all pof’s
have been allocated, an ordered dependency list among the geometric entities is generated.
This dependency list can be used as an execution sequence to update the geometric entities
so as to satisfy the imposed constraints. The execution sequence is recomputed after a new
constraint is added, as it may alter the allocation of DOF’s.

The DOF’s are represented in a hierarchical fashion from ‘weakest’ to ‘strongest’:; dimen-
sional, translational and rotational. An action that restricts a particular class of DOF may
be used to satisfy a constraint involving that class of DOF or a weaker one.

Default procedures are provided to ensure ‘intuitive’ behavior of the constraint solver
in underconstrained situations, which are quite common in conceptual design. As the
allocation of DOF’s is incremental, overconstraining constraints are detected at the time they
are added to the system. The solver does not yet attempt to classify the overconstraining
conditions (i.e., whether they are conflicting, in which case no solution is possible; or just
redundant but solvable); it ‘flags’ the constraints for the user, and ignores them when
updating is required. Cycles in the constraint graph are identified and solved numerically.

4.2 TLA

TLA is a program for kinematic analysis of mechanisms. Since many mechanical devices
contain loops, TLA is oriented toward the solution of constraint loops. A graph reduction
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algorithm is used in which constraint loops are identified and solved, reducing a cycle in
the constraint graph to a single node, and proceeding recursively.

- EE

To solve cycles in the constraint graph, it is necessary to have knowledge not only of |
how actions can satisfy constraints, but also of how partially-constrained objects may move |
as a function of their available Do®’s. The loci of points, lines, and vectors on partially-
constrained objects are intersected as a geometric analog to solving simultaneous nonlinear
equations. The complete algorithm is called degrees of freedom analysis, and is described
in detail in [Kramer, 1990a].

Information about measurements and actions is stored in a dispatch table indexed by
translational DOF’s, rotational DOF’s, and the type of constraint to be solved.? Each entry in
the table specifies how to move an object to satisfy the new constraint using only available
DOF’s, and what DOF’s the object will have after the action is performed. Similar data
structures store information about the loci of points, lines, and vectors on bodies as a
function of translational and rotational DOF’s.

ﬁ —

Kinematic simulation of a mechanism involves repeatedly solving the same set of con-
straints (with a few numerical parameters, such as the angles of lines or displacements of
points, changing for each solution). Therefore the measurements and actious for solving the
constraint system is compiled into an efficient procedure for reuse on any mechanism of the

same topology.

4.3 Comparisons

The two programs described above appear to have complementary sets of strengths and
weaknesses, as briefly described here.

First,.TLA cannot represent some situations involving coupled DOF’s that occur in MCAD
(such situations cannot occur in the kinematics of mechanical linkages); in contrast, the hi-
erarchical representation of DOF’s in HyperGEM overcomes this problem. Second, HyperGeM
uses iterative techniques to solve some loops that could be solved analytically. The loop anal-
ysis capability of TLA allows closed-form analytic solution of such loops. And finally, TLA
compiles plans for reuse in simulation, while HyperGEM does not. This is in part because
in TLA’s domain of kinematics, the constraint set is static (although numerical values of
constraint parameters can change), whereas constraints are continually added and removed
from HyperGEM’s constraint set during the process of conceptual design. We have begun
the process of combining the two techniques to obtain a powerful, more general-purpose

algorithm for solving GCSP’s.

21n kinematics, all objects are rigid bodies, so no dimensional DOF’s are involved.
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Figure 2: Timing comparisons of TLA and ADAMS.

5 Theoretical and empirical analysis

HyperGEM’s graph algorithm for allocating DOF’s involves an amount of work linear in the
number of constraints each time a new constraint is added to the system. If only numerical
parameters change between constraint solutions, and no constraints are added or deleted,
the solution can be re-executed in typically linear time (not including numerical solution of
constraint loops). When a constraint is added or deleted, the graph flow algorithm is run
again.

For TLA, a plan to satisfy a Gosp is generated in O(gc) time, where g is the number of
geometric entities in the constraint system, and ¢ is the number of constraints. The plans
may be executed in O(glogg) time, although typically the execution time is linear in g.

TLA has also been empirically compared with the ADAMS mechanism simulator, which
employs iterative numerical solution techniques [ADAMS, 1987]. The graph of Figure 2 shows
the runtime of ADAMS and TLA as a function of the number of links in a mechanism. The
dashed line shows the time per iteration for ADAMS; typically, between 2 and 12 iterations
are required to solve a GCSP, as indicated by the gray area. In contrast, the behavior of
TLA is linear, and is substantially more efficient.
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6 Discussion

The general constraint satisfaction problem was defined by [Mackworth, 1977]. In this re-
stricted sense, a constraint problem involves finding consistent bindings for a set of variables
in a logical formula (a conjunction of unary and binary predicates), where each variable may
take one of only a finite set of discrete values. More recently, problems with infinite (z.e.,
continuous) domains have become of interest, as in temporal reasoning [Allen and Hayes,
1985] and spatial reasoning [Popplestone et al., 1980].

It seems unlikely that there will ever be an efficient solution technique to general con-
straint problems. However, domain-specific strategies can be quite efficient; sometimes they
are a complete solution strategy, and other times they serve to accelerate the solution of
the vast majority of that domain’s constraint satisfaction problems.

In this context, we view our work as a small step toward the solution of the general con-
straint satisfaction problem. While it provides leverage in solving GCSP’s, it is doubtful that
the methods will extend beyond the realm of geometry. Just as weak problem-solving meth-
ods like Gps [Newell and Simon, 1972] were supplanted by more domain-specific approaches,
the general constraint satisfaction paradigm must be supplemented with domain-specific al-

gorithms.

There are some broad concepts that can be reused in formulating constraint satisfaction
problems for other domains. The notion of abstracting some continuous space (e.g., position
and orientation) into a discrete space (e.g., degrees of freedom) may apply to other domains.
Designing algorithms that make use of monotonic trends (such as the reduction of degrees
of freedom of a geometric entity) tends to lead to polynomial-time algorithms. Creative
representation shifts will be required to use these principles in other domains, but if they
can be found, the benefits may be substantial.
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1 __ Introduction

A primary motivation for this research is investigating programming language support for interac-
tive graphical applications. Our previous research made it clear that some portions of an interactive
system are most naturally described as a set of relations, others as a sequence of operations. Con-
straint programming languages are based on multidirectional relations for specifying the desired
results, but in their pure form have no means of specifying how to attain those results. Thus the
language’s embedded constraint solver is given the task of determining the algorithms to use and

in what order they should be applied. /mperative languages are based on sequences of operations,

and allow an exact and precise specification of the algorithm to use in computing a result. In other
words, constraint languages emphasize the resull whereas imperative languages emphasize the pro-
cess. The core of our work has been to combine these two (apparently incompatible) paradigms in
a single framework: Constraint Imperative Programming (CIP). Our thesis is that this integration
is reasonable, expressive, and useful.

Constraint Imperative Programming permits progranmumers to choose whichever is the appropriate
paradigm for each part of the interactive system: constraints for relations, and imperative code
for sequencing. For example, in a user interface, the output channel can be nicely described using
constraints, or filters, that relate internal data objects to graphical displays [Ege et al. 87]. Con-
versely, the input channel is more conveniently described with state transitions, event handlers,
mode sequencing, and other imperative control flow operators. Analogously, within the application,
numerous consistency and preference relations are easily expressed as constraints: arithmetic rela-
tions between numbers, information about which nodes in a graph are adjacent to each other, and
rules about how the font size should relate the number of lines on a page, to name just a few. Other
aspects of the application, however, are hetter specified imperatively.

In our work we extend the notion of constraints to constraint hierarchies, which allow both required
and non-required (i.e., preferential or default) constraints [Borning et al. 89a]. A common use of
such default constraints is to specify that objects remain in the same state over time, unless there
is some reason for them to change. [n an interactive graphics application, for example, this means
that as we edit parts of a picture, other parts don’t change gratuitously. In Constraint Imperative
Programming, such defaults are ubiquitous {variables stay the same unless changed as a result
of some stronger constraint); they provide a solution to the classical Al Frame Problem in these
languages. Constraint hierarchies are also useful for expressing user preferences, for example that
window! be above window? if possible, and (less strongly) that window! be on the left- hand-side
of the screen. The theory of constraint hierarchies is more fully described in reference [Borning et

al. 89a).
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2 _ The Semantics

The key to integrating the declarative
the definition of a semantics that com
the semantics of the imperative

constraint paradigin and the imperative object-oriented one is

bines the two. Asa starting point. one can loosely characrerize
and declarative paradigms:

Imperative  Each instance variable holds a single value (e.g.,

each instance variable potentially holds a different value after each instruction is

executed. However. the value of a variable cannot change unless the instruction
explicitly writes to that variable.

a pointer to an object). Also.

Declarative  Each variable holds only one value, i.e.. the result of evaluating the program. For

functional prograins. this is the least fixed-point; for constraint hierarchies, the best
valuation. Time does not advauce. and the value of the variable cannot changet.

Constraint Imperative Progranmming (CIP) is a framework for a family of languages that merge

declarative constraints with imperative stare and sequencing. This framework defines the essential
semantics of CIP languages. but leaves language designers free to create or adapt their own syn-
tax. Our initial CIP language was loosely based on Ada and Object Pascal; our cu

rrent language,
Kaleidoscope, is based on Smalltalk (Freeman-Benson 90a).

The complete CIP semantics are described in (Freeman-Benson 90b). The major points are as follows:

e Each variable holds a stream, or history. of values.
variable at a different interval, with subse
is virtual and represented by th

Each value represents the value of the
quent values representing subsequent intervals. Time
¢ e positive integers. These values are held by sub-variables
named pellucid variablest. [or example. at time n the variable X represents the stream of

pellucid variables z,, &, .. .. 2. The pellucid variables for past intervals are z,, z,, .
the pellucid variable for the current interval 15 Tp;

do not yet exist (z,4;,...). To prev
pellucid variables are write-once. Not
not available to the prograinmer—he

coadnay;
and the pellucid variables for the future
ent paradoxes that can arise when past values change,
e that pellucid variables are a semantic feature and are
or she can only use variables that denote entire streams.

Frame azioms (the term is borrowed from the artificial intelligence literature) state that vari-
ables stay the same unless explicitly changed. Imperative programs implicitly satisfy the frame
axioms because only assignment can change a variable's value. Pure constraint programs do
not have a notion of time and thus do not suffer from the frame problem. In Constraint Imper-
ative Programming. a special very weak sfay constraint is used to represent the frame axioms:
Vt,veryweak |} = |;_, .

An imperative assignient stateicnt repeesents a constraint on the next pellucid variable of
the stream and thus can only affect the next interval, [t can affect the distant future only when
the new value is propagated forward by other constraints (such as the weak stays mentioned
in the previous paragraph). For exdimple. if the current value of time is 9, then x — x + 3

is equivalent to 215 = &g + 3. Thus, as time continues to advance, this assignment constraint
will fade into the past.

1'Logic variables in logic programs can he progressively refined during execution, but they cannot arbitrarily change
from one value to another. '

+ . . . . . .
*Pellucid: transparent, translucent. Pellucid variables are essential to the semantics of CIP, but cannot be directly
accessed by the program. Thus they are “transparent or translucent.”
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o All other constraint expressious denote a (potentially) infinite set of constraints on individual
values in the streams. Thus. in Constraint limperative Programming, the constraint expression
z = y defines a value coustraiut for each instant starting with the current time: r, = y,, £y, =
Yea1. - -- In other words. a constraint expression affects the values of the variables it constrains
“from now on”. A while... assert.. construct corresponds to "from now until then.” or:
Yitem...n, 1 =y )

e Virtual time is explicitly advanced using the “#” operator. Note that explicitly separating
time advances from other statenents allows simultaneous assignments, so that for example one
can conveniently swap two variables without using a temporary:

begin
x —Y; _ X — ¥ _ Xe4l = Ye
y—x; 8 = y — x; T Vel =X
end; #

A CIP program without constraints (i.e.. only assignments). has similar semantics to an imperative
program (values stay the saine. assignients change values). A CIP program without assignments
or hash-marks has the same semantics as a pure constraint program.

3 __ Comparisons with Other Paradigms

3.1 _ Versus C++ (Better Aliasing) _

One way to. understand the Constraint Imperative Programming semantics is to treat CIP as an
imperative language with better aliasimg. In this view, a CIP program is an imperative program
in which invisible relations (constraints) can be defined between memory cells. These relations are
similar to those created by deliberate aliasing. For example, in the C++ programming language an
alias is created when two pointers point to the same object (e.g., p and q both point to object #124.)
When object *p is modified, object #q is too (because *p and *q are the same object). In a CIP
language, the same aliasing effect can be created by a required equality constraint. Additionally,
CIP languages go beyond mere equality and support fairly arbitrary constraints between memory
cells (see figure 1.) '

C++ Constraint Imperative Programming
int z, *p, *q; var p, q, I;
p = &z; always: p = q; % < alias created

q = &; /* & dlias crealad %/ always: q - 32.0 = r * 1.8;
%t C++ cannot do this

Figure 1: Constraiut hperative Programming as Better Aliasing

3.2 _ Versus CLP (Constructionism) _

Another way to understand the semantics is to treat CIP as an imperative program that constructs
a constraint graph. In this view. a C'IP virtual machine is composed of two parts which cooperate
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ce languages Constraint [mperative Programming
Constructor LLogic programming [mperative programming
Backtracking Yes No
Constraints Flar (all required) Constraint hierarchy
Adding constraints Tell Constraint statement
Querying coustraints Ask a constraint Demand a value
Value refinement Yes Yes until commit then no
Adding variables Tell a constraint Both time advances
with new variables and variable declarations

Objects No Yes
Long-lived coustraints Cnuccessary Automatic
Familiar to

imperative programniers | No Yes

Table 1: Comparing the cc languages with Constraint Imperative Programming

to construct and solve a network of coustraints. The two parts are an imperative execution engine

and an constraint-based data store. The unperative engine interacts with the passive data store by -

asserting constraints aud requesting the values of pellucid variables:

Imperative Engine Constraint-based Data Store

constraint statement —  add a constraint

constraint staternent — add a constraint

advance time — append pelluctd variables

assignment — add a constraint

conditional branch — solve coustraints, commit, and return a value
constraint statement —  add a constraint

advance time — append pellucid variables

. ete.. .. ...oete.. ..

This constructionist view can also be applied to a restricted version of the cc family of languages
[Saraswat 89] (see table 1) and to the Constraint Logic Programming and Hierarchical Constraint
Logic Programming frameworks [Jaifar & Lassez 87, Borning et al. 89b]. In these logic programming-
based constraint languages a logic program. rather than an imperative program, does the construct-
ing and querying of tlie passive constraint database.

3.3 __ Versus UIMSes (Finite State Machines) __

A third way to describe the senmwntics (foe «orestricted class of programs) is to view a CIP program
as a lar%e fimite state machme. similar to the way that many User Interface Management Systems
operatel . The coustraint statcments define hoth inter- and intra-state data relations, and the
imperative control flow statetnents define the state transitions. Always constraints define relations

that are true for all states; ouce constrair.  deline relations that are true for just one state; and the -

“assert P during B” construct defines c.ustraints that are true for some subset of the states. Stay
constraints and assignments define constraints between pairs of states.

tcip languages are Turing-equivalent, and thus. in general. cannot be modeled by a finite state machine. However,
the FSM view is useful in many cases.
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Inter-state
constraints

Imperative

Intra-state control flow

constraints

Figure 2: A Constraint lmperative Program as a Finite State Machine

The finite state machine visualization is particularly apt for interactive user interfaces: each state
corresponds to one mode (IDLE. DRAGGING-ICON. DRAGGING-ICON-WITH-SHIFT-KEY, ... ), and the
imperative state transitions correspoud to significant events (mouse button down, key pressed, ... ).
Constraints common to all modes are deflined with always expressions, but the constraints unique
to each mode are created by once expressions. For example, the menu bar is always at the top of
the screen, but only in the DRAGGING-1CON thode is the icon’s position equal to the mouse position.
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Abstract

Explanation is regarded as an essential component of Al systems, especially
expert systems. Technology for explaining rule-based systems is particularly
well-understood. Constraint systems can be viewed as generalizations of rule-
systems where there is more flexibility in the direction of information flow.
Explaining this more flexible framework is difficult and has not received much
attention. In this paper, we propose a model for explaining constraint compu-
tations based on traversing reduction trees, an énalogue of Prolog proof trees.
Example explanations are given for computations with the constraint logic pro-

gramming language CLP(R).

1 Introduction

It is widely accepted that most inteﬂigent systems need an explanation compo-
nent. People interacting with a computer demand justification of the computer’s
behavior in terms that they understand. “The computer told me” is not, and

should not be, sufficient basis for decisions.

How to explain rule-based systems is well understood [6]. The rules involved'

in a computation must be explicitly represented, and collected in some structure
such as a proof tree [7]. The explanation is generated from some traversal of
the proof tree, with due consideration made of user interface issues.

How to explain constraint computations is not well understood as there are
difficulties in directly translating the techniques from rule-based systems. For
example, although constraint logic programming languages are natural gener-
alizations of languages such as Prolog, meta-language capabilities are not cur-
rently present in them. Also proof trees are inadequate to explain the proof
structure for a constraint logic programming computation because the latter
generalizes unification by a more general mechanism - solving constraints in
the domain of interpreted functors over terms in the domain of interpretation.
What meta-level linguistic capabilities are needed is only now beginning to be
understood [4,5].
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This paper proposes an explanation style for constraint computations. It

focuses on explaining the logical component of the constraint computation and
treats the constraint solver as a black boz. The syntactic structure of the con-
straint program is considered important so that the programmer can determine
the explanation given by the program.

Section 2 gives our model of constraint computation which is essentially a
general form of the model of constraint logic programming proposed by Lassez
and Jaffar in [3]. In Section 3, we propose a new structure, a reduction tree, as
a graphical form of representing a constraint computation. Reduction irces are
analogous to proof trees for Prolog computations. Explanations for constraint
computations are then generated by traversing the reduction tree. Sample ex-
planations for CLP(R) computations are given in Section 4.

We have developed a prototype program in Prolog which generates expla-
nations from reduction trees given in the examples. Such a program is not
currently implementable, as far as we know, in a constraint programming lan-
guage due to the lack of suitable meta-predicates. Consequently, this paper
can implicitly be seen as indicating to developers of constraint programming

languages what system meta-predicates need to be provided.

2 Constraint Logic Programming Model

A constraint logic programming language consists of a domain of interpretation,
a collection of function symbols denoted by X, a collection of variables V, and
a collection of predicate symbols II.

A term is a variable, a constant or is of the form f(t1,...,%,) where f € &
and ¢;,...,t, are (argument) terms. A term s is a subterm of t iff s =¢, or s is
the subterm of an argument of . We will need to refer to specific subterms, and
introduce a suitable numbering scheme. The first subterm ¢; in f(t1,...,t,)
will be identified by 1 and ¢2 by 2 etc. Further nesting of subterms within a
particular term is handled by giving an extension to the first number, e.g. in -
t=f(g(h(a,b),2),a) bcan be identified as 1.1.2 since g(h(a, b)) is the first subterm
of ¢, h(a, b) is the first subterm of g(h(a, b)) and so forth.

In contrast to Prolog, the function symbols are divided into two classes, in-
terpreted function symbols denoted by £;, and uninterpreted function symbols
denoted by I,. Predicate symbols II are also divided into two classes, con-
straint symbols denoted by II., and remaining predicate symbols denoted by
II,. Constraints are of the form p(ts,..., t,) where p is an n-ary element of II,
and t1,...,t, are terms. A goal is of the form p(t1,...,tn) where p € II and
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t1,...,tn are terms.

A constraint logic program is a finite set of clauses of the form :

A~0C,...,.Cn,B,..., By

where A is a logical atom, C,,...,C,, are constraints, By, ..., B, are logical
atoms and m, n are non-negative integers.
We will occasionally refer to the C/s as ezplicit constraints.

A reduction step of a computation of a constraint logic programminé (CLP)
language program P selects a goal :

(cabD,..Di..D,)
where C is a satisfiable conjunction of constraints, and each D; is

a logical atom; selects an atom D;, and chooses a rule of the form A «
Ci,-..,Cm, B1,..., Bn, such that A and D; have the same predicate symbol.
It then adds constraints arising from equating the terms of A with those of D;,
to C resulting in a satisfiable set of constraints. The new resolvent is

{CACy,....,Cn AN{ A= D;}} QDy, ..., Di1, By, ...Bpn, Dit1,...D,)
where C A C1,...,Cm A { A = D; } are satisfiable with { A = D; } being a
set of constraints arising out of equating the arguments of A and D;.
It will be useful to identify constraints which equate a variable with a term
whose principal functor is an interpreted function symbol. We refer to such
constraints as implicit constraints.

Operationally, we can think of a computation of a constraint logic program
as a sequence of reduction steps - accumulating constraints and either verifying
that the constraints are satisfiable, or else backtracking if they are not. The

comnputation terminates with an accumulated set of constraints.

In this paper we give explanations for a particular language, CLP(R), which

is an example of a constraint logic programming language. The domain of

CLP(R) is the set of real numbers R, the interpreted function symbols are {+,
-, #, /, transcendental functions, pow}, the constraint symbols are {=, <, <,
>, <}, the user-defined function and predicate symbols are the uninterpreted
function and predicate symbols respectively. For a complete definition, please
refer to [2]. '

3 Reduction Trees

Explanations of Prolog computations are based on traversing a proof tree [T7].
To explain computations of constraint logic programs, we need a structure anal-
ogous to a proof tree. In this section we define a reduction tree, and show how

it applies to constraint computations. Throughout we use the word program to
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refer to a constraint logic programming language program.

A reduction tree for a computation of a program starting from a goal G is a
directed tree (V;E) whose root is G. Each vertex V has the form (B,C) where
B and C are the following components respectively :

o Goal component
e Constraint component

If the clause A «— C1,...,Cm, B1,..., By is used in the computation then
there is an edge from a pair (A4,C4) to a node (B’,C’) where either

(1) B' is empty, and C' is one of the C;s.
or
(2) B’ is one of the Bjs and C' is a conjunction of implicit constraints
(defined earlier) arising from the arguments of B’ together with constraints
obtained from the accumulated constraints which contain any occurrence of the
variable occurring in the arguments of B'. ‘

The definition of reduction trees is consistent with the computation model
of constraint programming language presented earlier, and the goal component
of every non-leaf node in the reduction tree is one of the Bjs chosen at each
reduction step. The ezplicit constraints (defined earlier) can appear only as
the constraint component of leaf nodes of the reduction tree because by the
definition given above, no directed arc can originate from one of the Cjs in the
body of any clause. Another important difference between a reduction tree and
proof tree comes from the fact that proof trees in Prolog do not contain variables
while reduction trees may contain variables. This comes about because answers
to a CLP computation can be constraints over variables appearing in the goal

arguments.

3.1 Goal Component Representation

The goal component of a node in the reduction tree is similar to a node in a Pro-
log proof tree. Differences between them will be pointed out in this subsection.
The differences arise due to the presence of implicit constraints in the goal head.
The goal component of a node in the reduction tree is absent for explicit con-
straints, and is denoted as empty. For example, an explicit constraint X > 10
with X bound to 11 will appear in the reduction tree as (empty,{11>10}).

If any subterm of the head of the clause used in the computation has as
principal functor an interpreted function symbol, then there will be an implicit

constraint in the constraint component of the node whose goal component was
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equated to the head of the clause in the computation. For example, for a goal
f(X,N) and clause f(X,NI1+N2) :- ... if N1 and N2 are 2 and 3 respectively,
the reduction tree node for f(X,N) would be f(_,5) with a corresponding con-
straint 5=2+3 appearing in the constraint component. If N1 and N2 are not
instantiated, the goal component of the reduction tree node will be f(_,T'1)
with T1 = N1+ N2 being included in the corresponding constraint component.

Note that this corresponds to the introduction of a temporary variable.

3.2 Constraint Component Representation

The constraint component of a reduction tree node contains representations
of any implicit constraints as well as solved and unsolved constraints over all
variables appearing in the head of a clause.

The constraint component is a set of named and miscellaneous constraints. A
named constraint has the form $i : C where i identifies a subterm of the logical
atom in the corresponding goal component and C is an implicit constraint.
Miscellaneous constraints appear only if there are unsolved constraints involving
variables in the goal component. These are precisely the simplification of the
constraints in the satisfiable consiraint set involving variables appearing in the
logical atom in the goal component excluding the implicit constraints already
mentioned. )

Subterm numbers are given because two different terms in a goal component
might have the same values but different constraint component values, e.g. in
9(3,3) the first 3 could be a unified value and the second one could arise from
the constraint 3=2+41. Component numbering usage resolves ambiguities and
the corresponding constraint component will appear as { $2 : 3=2+1 }.

Here are reduction trees for some CLP(R) programs:
Example 1:
fib(0,1).
fib(1,1).
fib(N,X1+4+X2) :- N > 1, fib(N-1,X1), fib(N-2,X2).

The goal ?- fib(3,N) has the solution N = 3. The corresponding reduction tree

18
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(fib(3,3),{82:3=2+1})

/

(empty,{3>1}) (fib(1,1),{8$1:1=3-2})
(fib(2,2),{$1:2=3-1,$2:2=1+1})
(empty,{2>1}) (ib(0,1),{$1:0=2-2})
(fib(1,1),{$1:1=2-1})

This example, albeit simple illustrates a reduction tree highlighting the con-
straint computation mechanism for computing fibonacci numbers. Both implicit

and explicit constraints appear in the figure.

Example 2:
foo(X,N14-N2) - X=10, N1> 5, N2 < 10.

The goal ?- foo(10,N) has the solution true. The corresponding reduction tree is

(foo(10,N),{82: N=N1+N2})

/

(empty,{10=10}) _ (empty,{N2<10})

(empty,{N1>5})

The second example illustrates a reduction tree having uninstantiated vari-
ables in some of the arguments in the clause head. There is a named implicit
constraint in the constraint component. The answer to the query in the CLP(R)
system is true which is not very informative.

The third example, adapted from [1], illustrates a case when constraints ap-
pear in the miscellaneous constraint set, and also uninstantiated instances of
variables appear in the goal head:

Consider the following predicate for a point X,Y to be on the circumference of
a ciréle with center A,B.

on_circle(p(X,Y),c(A,B,(4 - X)? + (B - Y)?)).
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For a query ?- on_circle(p(2,0),C) , the corresponding node in the reduction tree

would be

(on_circle(p(2,0),c(A,B,T)),{82.3: T = (2 — 4)? + (0 — B)?}).
Consider the following extension to the previous example:
points_on_circle(C) :- on_circle(p(7,1),C), on_circle(p(0,2),C).

The query ?- points_on_circle(C)) results in a reduction tree as illustrated below.
Here 14 * A — 2« B = 46 is the solution to the constraints

T=(7-A)?+(1- B)? and T = (0 — A)? + (2 — B)2.

(points.on_circle(c(A,B,T)),{$1.3: T = (7 - A)?+ (1 — B)?,
T=(0-A)? + (2 - B)?,
$3: 14xA-2+B =146

)

(on_circle(p(0,2),c(A,B,T),{82.3: T = (0 - 4)* + (2 - B)?})
(on_circle(p(7,1),c(A,B,T)),{$2.3: T = (7 - 4)? + (1 - B)?})

4 Explanation

In this section we illustrate how CLP reduction trees can be used to generate
explanations for constraint computations. Examples of CLP(R) computations
are used as illustrations.

We concentrate on how explanations of successful computations [7]. Expla-
nation can be provided incrementally and the user has the ability to choose the
depth of explanation in the explanation system. At any depth the following
things are identified and explained:

e Explicit constraints: Explicit constraints could be of the types which were

explained earlier.

o Implicit constraints: Implicit constraints occur in the constraint compo-
nent if any subterm of the head of a clause used in the computation has

as principal functor an interpreted function symbol.

e Facts
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o Explainable goals : The explanation system is capable of explaining the
subgoals. The user can ask for further explanation by typing the query

how(number) where number is an index to the explainable goal.

We begin with the a constraint explanation for fib(3,3), using the reduction

tree in Example 1.

How Ezplanation:
>>how(fib(3,3))?
fib(3,3) is true with implicit constraint $2: 3=2+1 because
(1) 3>1,
(2) fib(2,2) explainable with constraint $2: 2= 3-1
(3) fib(1,1) is a fact
The user can now instruct the explanation system to further expatiate any
of the explainable goals, as follows:
>>how(2)
fib(2,2) is true with implicit constraint $2: 2=1+1
(1) 2>1
(2) fib(1,1) is a fact
(3) fib(0,1) is a fact

Here is an explanation for foo(10, 6) from the reduction tree in Example 2.

>> how(foo(10,6))?

foo(10,6) is true with implicit constraint 6 = N1 + N2 because
(1) 10=10
(2)N1>5
(3) N2< 10

and 6 = N1 + N2, N1 > 5, N2 < 10 is a solvable system of constraints.

It seems plausible to modify how explanations, giving whynot explanations
for failed goals. A whynot explanation would show the set of unsatisfiable con-
straints which led to the failure of the query. Consider a slightly modified foo
predicate - fool, which has a further restriction on N2. fool is defined as

follows:
fool(X,N1+N2) :- X=10, NI> §, N2 > 0, N2 < 10.

The query fool(10,4) does not succeed and the following explanation could be
provided :

>> whynot(foo1(10,4))?
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Ezplanation:

foo1(10,4) is not true because
(1) 10 = 10,
(2) N1 >5
3y N2>0
(4) N2 < 10

and 4 = N1 4+ N2, N1 > 5, N2 > 0, N2 < 10 is not a solvable system of con-
straints.

The next explanation shows how information about partial solution of con-

straints can be explained.

>>how(points_on_circle(C))?
Ezplanation:

points_on_circle(c(A,B,T)) with 14 * A — 2 % B. = 46 is true

because
(1) oncircle(p(7,1),c(A,B,T)) fact with T = (7 — A) + (1 — B)?
(2) oncircle(p(0,2),c(A,B,T)) fact with T = (0 — A)? + (2 — B)?

and 14x* A —2* B =46 summarizes

T=(T-A4)2+(1-B)> and T=(0-A)>+(2-B)?

The explanation provided depends on the underlying program and on the
representation of constraints. In the previous explanation the constraint com-
ponent of the corresponding reduction tree contains implicit components for T
in the goal head but the explanation system avoids duplicity of information and
does not state the implicit constraints for T' again. These examples illustrate
explaining constraint computations by traversing the reduction tree, extracting
relevant information and presenting it to the user in a meaningful way. More

examples and explanations are available in [8].

5 Conclusion

Reduction trees are a generalization of the proof trees used to explain conven-
tional Prolog programs. Reduction trees differentiate between unification and
constraint solution involving interpreted functions over a domain. Explanations
traverse the reduction tree structure to explain CLP programs. Since meta pro-
gramming facilities available in the current implementation of CLP(R) are not

adequate to implement a program to construct the reduction tree, the reduc-
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tion trees were crafted manually. We feel that reduction trees are well suited

for explaining a constraint computation system.
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Layer Constraints
in Hierarchical Finite Domains

Philippe Codognet *, Pierre Savéant !,
Enrico Maim !, Olivier Briche !

Abstract

We present a framework for handling various kinds of constraints in type
hierarchies (taxonomies). In addition to the basic inheritance and equality
constraints proposed by the LOGIN language, and disequality, we introduce
inheritance, equality and disequality relative to a specific layer in the hierar-
chy. This allows to both enhance the expressiveneas of the language and to
design new propagation techniques that we call layer propagation. The under-
lying idea is to apply the propagation mechanisms of the CHIP language to
hierarchical finite domains instead of flat ones.

1 Introduction

Object inheritance has proved to be a useful notion in various programming paradigms.

Type hierarchies, or taxonomies, described by an ss_a relation allow to encode sev-
eral kinds of information about objects. In Logic Programming, the LOGIN ap-
proach [1] consists in integrating inheritance directly into the unification process
rather than indirectly in the inference engine (Prolog). This can be seen as a spe-
cial Constraint Logic Programming (CLP) language [4] dealing with hierarchical
constraints over finite lattices. Inheritance (1s.a) constraints are efficiently handled,
thanks to a boolean encoding of the taxonomy, by a kind of compilation of the
inheritance relation.

The CRL language [5] extends the LOGIN approach, in particular in considering
the type constraints in the spirit of the finite-domain constraints of CHIP [6]. CHIP
provides efficient constraint handling techniques for flat finite-domains, i.e. flat
taxonomies representing sets of possible values. This is achieved by having a special
low-level encoding of finite-domains and constraint propagation techniques. The
latter enables constraints to be ‘active and to prune the search space in an a priors
way, eg. forward-checking or looking-ahead techniques.

*INRIA, B.P. 105, 78153 Le Chesnay, FRANCE (codognet@minos.inria.fr)
tSYSECA, 315 bureaux de la Colline, 92213 St Cloud, FRANCE
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The idea is to apply CHIP-like technology to hierarchical finite domains (tax-
onomies). In this way one can benefit both from the ability to reason at several
layers of abstraction given by the type hierarchy and from the efficient constraint
solving techniques over finite domains. Having a taxonomic structure allows to
work at the most abstract level and thus to factorize computations that would have
been necessary if we only had a flat structure. We will treat three types of con-
straints: inheritance constraints, noted X:Y, i.e. the transitive closure of the basic
is_a relation, equality (common subtype coercion), noted X=Y, and its opposite
(no common subtype), noted X#Y. The first two are already present and efficiently
handled in LOGIN, the last will be treated in a way similar to the disequation con-
straint (#) of CHIP, by active domain reduction. Moreover, the expressive power
of taxonomies and the possibility to reason at different layers of abstraction will
amount to the definition of a new type of constraints. We propose an extension
of the LOGIN framework which focuses on the notion of layer, that can be used
both to enhance the expressiveness of the language and to design new propagation
techniques that we call layer propagation. |
This control mechanism allows the user to tune the granularity at which compu-
tation will take place and to save computation work. This control mechanism can
indeed be seen as an “implementation” of the principle of reasoning at the higher
layer of abstraction in taxonomies. A
The new constraints are equality and disequality and membership with respect to
a specific layer. Assume for instance that we have a time taxonomy with different
granularities considering months, weeks and days. One may for instance want to
state that two events happen the same month (but not necessarily the same week
or day) or that two events do certainly not happen the same week (even if we don’t
know which week). This is not feasible with the basic constraints that we have
previously presented, but the layer constraints that will be detailed allow this kind
of knowledge to be expressed. ate
The layer propagation technique consists in considering as active only constraints
concerning a certain layer?(é# layers above), while delaying constraints concerning
lower layers until necessaryi=*?

SoKen
This paper is organized as follows : the next section presents taxonomies and lat-
tice domains, together with the basic low-level encoding techniques, while section 3
details the different constraints and their operational behavior. A short conclusion

ends the paper.

2 Lattice domains

We will present in this section taxonomies and lattice domains and recall the efficient
encoding proposed by [2].
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2.1 Taxonomies, posets and semilattices

A taxonomy is indeed a partially ordered set (poset) whose order relation (L) is
is_a, but it is not necessarily a lattice or even a semilattice. The taxonomy may be
completed with a top ("universe”) and a bottom ("empty”) element to ensure that
the greatest lower bound (GLB) and least upper bound (LUB) always exist between
any two elements, but nothing ensures that they are unique. As we are interested
in inheritance properties, we will only try to give the taxonomy a lower semilattice
(LSL) structure. This property can be checked when the taxonomy is given, but
this requires from the programmer to specify many pairwise GLBs, that are indeed
implicit.

To avoid this task, the taxonomy will be embedded into a LSL structure that
is compatible with the original < relation, and also contains the necessary GLBs.
We will use for this purpose the technique developed for LOGIN and LIFE in (2],
which will be detailed in the next section.

The interest in embedding the taxonomy in a LSL structure is that in the latter
structure the computation of the GLB, and < (is-a) relation, i.e. the basic operation
needed for our inheritance properties and constraints, can be made very efficient
due to a specific boolean encoding. Indeed these operations are very frequent during
a program execution, and it is crucial to have them fast.

2.2 Efficient encoding of semilattices

The semilattice encoding consists in considering the restricted powerset RP (L) of a
poset L, that is the set of non-empty sets of pairwise incomparable elements of L.
Observe that L can be trivially injected in its restricted powerset by identifying a
with {a}. The extra-elements in RP(L) correspond in fact to the "missing” GLBs
of L that are needed to form a LSL structure. The elements of the restricted
powerset can be encoded as bit-vectors on which the basic operations of computing
the GLB and order checking can be efficiently performed. The encoding consists in
providing each element with a unique code, in the form of a bit-vector whose size is
the number of elements of the initial taxonomy. The extra-codes produced by the
encoding correspond to the specific elements of the restricted powerset . They are
precisely the extra LUBs required for the embedding of the taxonomy (poset) in a

LSL. Consider the poset: :
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other square  plain/square other plain figure

A first method is given by taking the matrix of the reflexive transitive closure of
the is_a relation, where 1 in row i and column j indicates that j inherits from i.
For each element of the poset, the corresponding row of the matrix can be seen
as a bit vector code of this element. There is another way of realizing a similar
encoding: instead of computing the transitive closure matrix, one can simply make
a poset traversal layer by layer, starting from the bottom element, and assigning
codes to the elements. The method is rather natural. Each node of the poset has a
power of 2 that identifies it. For the reflexive transitive approach, the node is then
represented by the union of its power of 2 and the powers of 2 of all nodes that are
less than it (the partial order being defined by the 1s_a relation). To get codes more
compact, we get rid of useless powers of 2 which is the case every time the GLB is
unique. Algorithms are described in [2]. On the previous example, the encoding is

as follows.

Node Code
bottom 00000
other plain figure | 00001
plain square 00010
other square 00100
other rhomb 10000
square 00110
other rectangle 01000
rhomb 10110
rectangle 01110
plain figure 00011
parallelogram 11110
universe 11111

The main interest of this encoding is to allow efficient computation of the basic
operations that are needed to solve the type constraints. Indeed GLBs can be com-
puted by simply taking the bitwise AND of the corresponding elements. Consider
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for instance plain square, the GLB of rectangle and plain figure, its code is the AND
of the code of rectangle and plasn figure.

The semilattice embedding allows the mapping of union, 1ntersectlon and com-
plement of types respectively into binary or, and and complement of their corre-
sponding codes. The complemented object will be used when dealing with the
disequation constraints, for representing objects with a negative part. Such an ob-
ject can be represented by ¢, - ta, that is interpreted as t; N t; and is encoded as
~(t1) A ~(t3), 7 being the encoding function.

3 Constraints

3.1 Dbasic constraints

We will now detail the handling of our type constraints, that is X:Y (X inherits
from Y), X=Y (type equality) and disequality : X#Y (instance disequality).

311 X=Y

Operationally, this constraint is treated by creating a new variable Z with a type
domain which is the GLB of the type of X and Y, and by binding both X and Y to
Z. Observe that this constraint is equivalent to the conjunction X :Y,Y : X.

This operation can be efficiently implemented by assigning to the bitvector en-
coding of the domains of Y and X the bitwise AND on these codes, corresponding
to their GLB.

31.2 X:Y

Operationally, it is treated as follows. If X is a (direct or indirect) subtype of Y,
this constraint succeeds. Otherwise, a new variable Z is created whose domain is
the GLB of X and ¥ If the domain of Z is reduced to L, then the constraint fails,
and the whole systew: is unsatisfiable. If this domain is non-empty, then X is bound
to Z to ensure that X is included in the domain of Y.

Thanks again to the encoding, this operation corresponds to a simple logical oper-

ation on bit-vectors : one simply assign to the code of X the AND of those of X
and Y and checks that it is not zero (code of ).
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3.1.3 X#Y

As we want to treat this constraint by forward checking techniques, the meaning of
X+#£Y will be that X and Y denote two different basic types. A basic type is a type
covering the bottom root, i.e. that has no other subtype than bottom. Basically,
forward checking consists in delaying constraints until one of their variables is bound
to a value. A disequation is treated by removing this value from the domain of the
other variable. The search space is thus pruned in an a priori way. This explains
the restriction to basic types, which are singletons whereas other types denote sets
of types.

Operationally removing the value of X from the domain of Y consists in updating
the domain of Y by taking the bitwise AND with the complement of the domain of
X: v(domain(Y)) «— 7(domain(Y))A~(domain(X)), v being the encoding function.

3.2 Layer Constraints

Hierarchical domains allow to define layers of abstraction, and we will see the use
of this concept to extend both the expressiveness of our constraint language (layer
constraints) and the constraint solving process (layered propagation).

The new constraints are equality and disequality and membership with respect to
a specific layer. Assume for instance that we have a time taxonomy with different
granularities considering months, weeks and days. One may for instance want to
state that two events happen. the same month (but not necessarily the same week
or day) or that two events do certainly not happen the same week (even if we don’t
know which week). This is not feasible with the basic constraints that we have
previously presented, but the layer constraints that will be detailed below allow
this kind of knowledge to be expressed.

The basic idea of the layered propagation technique is to control constraint prop-
agation by taking into account a layer upon which the triggering of a constraint
propagation depends. When constraint propagation is done at layer L, only con-
straints concerning layer L or above are woken up and used in propagation, other
constraints are delayed until their layer is considered. The programmer can hence
«tune” the constraint solving process by stating the triggering layer, and refine re-
peatidly the answer by going to a lower layer if necessary. This mechanism that
considers only constraints and domains above a certain layer is also important for
efficiency, as staying at the higher layers allows a bigger pruning in the domains,
and as the computation work related to (too) specific constraints is delayed until it
is really needed and can be saved if not necessary.

3.2.1 Layers

A layer is a set L of pairwise incomparable types such that all elements of L are at
the same rank. The rank of a node is the length of the longest path from the top
root to this node.
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For the sake of simplicity we allow to give a layer a symbolic name, as shown by
the following example:
Consider a simple classification for a chart of colors.

T

Yel/\red

crimson claret

gold lemon sand vermilion carmi

Possible layers on this example are {yellow,red} that we call the color layer and
{gold,lemon sand,vermilion,carmin,crimson,claret} that we call the shade layer.
We will say that a type ¢ is below (resp. above) a layer Lif 3l € L/t : LAt # | (resp.
JeL/l:tAt#1). Wesay that t is at layer L if ¢t € L.

322 X=Y

This constraint states that, whatever the domains of X and Y are, they have an
upper bound (common ancestor) which is at or below layer L. Considering the
taxonomy of the color example, X =, Y means that X and Y have the same color
(i.e. red, yellow, ...), but not necessarily the same shade. For instance, we have
gold =,oi0r lemon.

This constraint is handled as follows :
let t = GLB(X,Y). If t is at or below layer L, then the constraint can be treated :
X is bound to a new variable X1 whose domain is t. Note that X and Y are not
bound to each other as for the basic = constraint.
If t is above L, the the constraint is delayed until this condition is satisfied. This
constraint will hence be woken up each time the domain of X or Y will be changed
in order to check the above condition. '

3.2.3 X#,Y and layered forward checking

Back to the color example, suppose that one wants to express that X and Y are '

different colors (one red, the other yellow), and not simply of different shades. This
was suggested by a map coloring problem. Indeed what we want to express is that
X and Y are different at the color layer. Therefore, the disequation operator has
to be indexed by the layer. On the example, the color layer is the set {yellow, red}
and our constraint will be written X+#..10r Y.

This constraint will be handled by layered forward checking, i.e. forward checking
triggered as soon as one variable is bound to a type at or below the indicated layer.
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Suppose on the color example that X is bound to red and Y to color, then the
constraint is woken up, that is red is removed from the domain of Y which is now
reduced to yellow. Variables can further be bound to more specific shades, the
constraint will always be enforced.

At the implementation level, it works exactly the same as the simple case :
+(domain(Y)) — 4(domain(Y)) A v(domain(X)).

3.24 XY

This constraint ensures that X is a subtype of Y whose domain is at layer L or
below. Taking the same example again, X:,5.4.Y constrains X to be a subtype of
Y which is a shade (vermilion, sand, ...) and not just a color (red, yellow, ...).
Observe that the constraint X:1Y ensures that the domain of X is at or below layer

L.

This constraint is handled as X:Y with an extra checking : if the domain of X
is below L, then the constraint is satisfied, else the constraint is delayed and will
be woken up each time the domain of X will be changed in order to check this

condition.

4 Conclusion

We have presented hierarchical finite domains, i.e. taxonomies, and their associ-
ated constraints. Basic constraints such as equality, membership or disequality are
well known, thanks to the LOGIN language. We proposed an extension which fo-
cuses on the notion of layer, that can be used both to enhance the expressiveness
(considering equality or disequality with respect to a given layer) and for designing
new propagation techniques based on the triggering of constraints with respect to a
given layer. This control mechanism allows to stay at the higher level of abstraction
and to save computation work.

We have based our approach on the lattice embedding of taxonomies proposed by
LOGIN, as it provides an efficient low level encoding of domains and efficient basic
constraint handling, and it would be interesting to consider other algebraic struc-
tures. For example, for applications dealing with temporal reasoning at different
granularities [3], one can consider the algebra of time intervals, and an interesting
topic is to see how our layer constraints can be adapted to fit into this framework.

This work was done in the framework of the development of the CRL language
in the European Esprit II (f 2409) project.
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Abstract

The Restriction Site Mapping problem is an important computational
problem in molecular biology. In this paper, we show how to formulate this
problem as a dynamic constraint satisfaction problem. This leads to an
elegant solution for solving linear restriction site mapping problems for two
enzymes using the constraint logic programming language CLP(R). The
solution here is different from classical CSP techniques as the system of
constraints here is dynamic and instead of finding a satisfying assignment
of values for the variables, we obtain a satisfying set of constraints.
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1. Introduction

Restriction site mapping is an important problem in molecular biology. An intro-
duction to the problem is contained in [3]). In this section, we will briefly review
some of the molecular biology background of the problem. Knowledge of these de-
tails is not necessary for understanding the problem which is formulated abstractly
in section 2.

Restriction site mapping is an important tool used in sequencing and cloning
DNA. A DNA molecule can be cut into fragments using an enzyme called a re-
striction enzyme. The restriction enzyme recognises specific patterns in the DNA
sequence and cuts the molecule at those particular places, which are known as
restriction sites. The restriction site mapping problem then is to reassemble to-
gether the original molecule given those fragments. The reconstructed molecule
or restriction map serves as a gross description of the original molecule since the
position and patterns of the restriction sites are known.

The DNA molecules which are to be mapped come in two kinds, linear molecules
which can be thought of as being a string over a four letter alphabet or a circular
molecule. Restriction enzymes can be applied to the molecule in a number of ways.
Application of a single enzyme alone is known as a single digest and applying two
enzymes together is a double digest. A double digest cuts the DNA at both the
restriction sites of the two enzymes. Figure 1, shows the cut sites on a linear
molecule with enzymes A and B. The thick horizontal lines are the fragments

Map A: | A A v
Map B: |mesmB B |
Map D: | B B s/ s |

Figure 1: A linear restriction map

which would be produced by applying the enzymes A, B and the combination of
A and B (the double digest D). The sites are the letters A and B separating the
thick lines. Reconstruction of the maps for A, B and the double digest D given
the fragments would produce the figure above. Basically the enzymes cut up the
DNA at the sites A in map A and B in map B. The map of the double digest is
obtained when the A and B maps are superimposed.

The double digest constrains the way fragments can fit in the individual single
digest maps and together these determine the total map. The fragments themselves
are obtained through experiments as fragment lengths. Because the lengths are
experimental data, the mapping problem is also complicated by the presence of
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errors in the fragment lengths (usually percentage error). In general, there may be
a number of consistent maps for the same data. The presence of errors means that
the fragments may not match up exactly, for example the sites in Figure 1 match
up by aligning vertically since there are no errors. It also tends to increase the
number of solutions and thus it is important to treat fragment errors uniformly in
order to avoid missing possible solutions.

This paper describes a solution to the restriction site mapping problem for two
enzymes in the presence of errors for linear molecules. The solution is formulated in
terms of constraints which are built up incrementally using the notion of consistent
map prefixes. This leads to a straightforward implementation in the constraint

logic programming language CLP(R){10].

2 Forrhulation of the problem constraints

In this section we develop the conditions for a consistent set of restriction maps
for a linear map with two enzymes, call these two enzymes A and B. Throughout
this paper we will use the symbol A to denote things which are related to the
single digest with enzyme A, B for single digests of B and D for the double digest.
Recall that we two enzymes, there is either the single application of the enzyme to
produce digests A and B or the combined application of A and B to produce the

digest D.

Firstly, let A= {a1,a3,...,0n,} and B= {b1,b,...,bn} be the set of true
single digest fragment lengths, and D= {d;,d3,...,ds o} be the set of true double
digest fragments, where n4, np and np are their number respectively. Note that
we distinguish the true possibly unknown lengths from the observable lengths. A
consistent map of the whole molecule is some permutation of A, B and D which
satisfies the conditions below. We will say map A to mean the particular map
involving only the restriction sites of A. A map like map A is simply a string
consisting of all the fragments of .A permuted in some fashion. Also, define the
prefiz length of A, A;, to be the length of a prefix of the map of A with j fragments,
and similarly for B; and D;. The conditions for map consistency are:

o The total length of all digests are equal/consistent:

N4 np np
dai=) bj=> di=1L (1)
k=1

i=1 Jj=1

where L is the length of the original DNA molecule.
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o The single digests are composed of double digest fragments, i.e. the length
of every prefix of A is compatible with a prefix of D:

Vidj: A =D, and Vi3j:B; =D, ‘ (2)

Also, we will write A(k) = Vi : 1 < i < k, 35 A; = D; (the first half of
condition (2)), and similarly B(k) for the second half.

¢ Every end of a double digest fragment must originate in either map A or
map B (except for the the start and end piece which has only 1 cut site):

ViBj,k:'D;:A,- or’D;:Bk . ' ) (3)

e Since there are errors in the fragments, each a; the unknown true length has
an associated upper bound (a?) and a lower bound (a!) for the length. For
every fragment, this gives:

Vi:al < a; <a! and Vi:bl < b < b and Vi:d <d; <d (4)

In summary, the consistency conditions above enforce alignment for the restric-
tion sites so that a site on the double digest lies on a single digest and vice versa.
Because of the presence of errors, checking a valid permutation of A, B and D,
requires checking all the consistency conditions above and simply lining up the
fragments as in the exact example of figure 1 is not sufficient.

3 Solving the problem constraints

Before we look at constraint approaches to the problem, we will briefly mention
some of the other approaches in the literature. Many of the methods like (2, 6,7,

15, 14] are based on the combinatorial combination of compatible partitions but
usually only local consistency checks are applied. Other statistical methods such as
least squares [13] and simulated annealing [8] have also been used. However while
many of these approaches are similar in spirit they handle errors in different and
somewhat ad-hoc ways. Also some of the methods like the statistical ones have the
disadvantage of not being complete and only produce some of the solutions. The
approach in [1] is more similar to the work here except that they focus at a low
level on consistent loops and loop checking. The approach in this paper is to view
the problem in terms of constraints and utilise constraint solving techniques. We
suggest that this is a natural way of solving and analysing restriction site mapping
because reasoning at the level of the constraints is much simpler.
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Restriction site mapping is a computationally intensive problem and can be
shown to be NP-complete [8]. Thus a search guided by CSP techniques for deal-
ing with the constraints is a natural approach. There are a number of different
possibilities to using the conditions of section 2. The classical view of constraint
satisfaction deals with pre-specified constraints over a known domain, that is the
constraints are static and global. Conditions (2) and (3) define a consistent map in
terms of a valid permutation of the fragments, but this permutation is not known
and as such is harder to state statically. The other conditions, being global can of
course be stated statically. One way of dealing with the unknown ordering is to
factor it in by using a permutation matrix. So the prefix length A; can be written
as A; = Ti_; P;A where A is a vector of the fragments and P is the j-th row of a
permutation matrix. A permutation matrix is simply an identity matrix where the
rows and columns have been permuted, e.g. P; = (OVI)AY; P =1AL; Pj = 1.
With this formulation, conditions (2) and (3) can be written statically using prefix
lengths and the permutation matrix.

Such a static formulation has a number of disadvantages. Firstly the number
of variables is now increased by O(n?). The problem is now in the form of a non-
linear programming program (the true fragment lengths a; are not known) and
nothing is gained from this transformation as it makes little use of the constraints
to prune the solution space. This is basically a static transformation of a dynamic

problem.

Another other major difference lies in the domain of the variables in the con-
straints. Typically CSP formulations deal with finite domains for the variables.
The variables here are the fragment lengths which are in principle integral. How-
ever the cardinality of the domain of a single variable can range from the hundreds
to the thousands. This suggests that simply using the variables as ranging over a
finite set of values may lead to an explosion in the size of the search space. Also
we are interested in a description of the solution and not necessarily in the values
for the variables since there would be a large number of solutions with different
values which can be more concisely described by a set of answer constraints. ‘Thus,
we choose here to use the infinite domain of the real numbers instead for the con-
straints. Also changing to the reals relaxes the problem constraints. Since the
problem constraints involve arithmetic, such constraints with the real numbers are
generally easier to solve than in the integers. It is also more convenient to use the
reals since the lengths are from experimental measurements.
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3.1 Using dynamic constraints

A more problem orientated approach is to consider it as dynamic constraint prob-
lem where the conditions of section 2 are gradually applied to build up the map
incrementally. Once a prefix segment has been determined the constraints on that
segment are also determined since that part of the permutation is known. The
constraints are dynamic as they are added incrementally by extending the seg-
ment prefixes. Constraint logic programming (CLP[9]) languages such as CLP(R),
Prolog III [4] and CHIP [5] are naturally suited for such a dynamic constraint
satisfaction problem.. In particular, CLP(R) is very appropriate as it deals with
arithmetic constraints on the real numbers. In CLP, constraint solving/satisfaction
is dynamic and constraints are added incrementally during forward execution and
deleted appropriately by backtracking. The difference with the classical CSP ap-
proach above is that the constraints are no longer pre-specified and satisfying a
set of constraints corresponding to a prefix will lead to a longer prefix with more
constraints being added and so on. The other advantage of solving such combi-
natorial constraint problems in a CLP language arises from the fact that it is a
programming language and is thus more flexible for encoding the problem. The
program can dynamically generate and select which constraints to solve, problem
heuristics can be incorporated easily and being a declarative logic programming
system it is flexible and can be used in a number of different ways, e.g. fragments
can be specified or not, partial answers can be used, etc.

We can now formulate the constraints dynamically in the following way. The

‘maps are built up incrementally by adding one fragment at the time and at the

same time applying the consistency contraints resulting from those fragments.
Consider A;, B, and D, the first segments of the map. We have from conditions
(2) and (3) the initial starting condition:

Al = Dl A Bl 2 Dl
or ()
Bi=D, AN A2D

Condition (3) is satisfied but condition (2) may not be satisfied with the current.

prefixes obtained so far, e.g. A; > D; but A; = D; is required. That part of (2),
say A(1) may be satisfied by adding more B and D fragments while maintaining
all other conditions. Thus by adding fragments simultaneously along the double
digest and one of the single digests we can maintain the following invariant:

A‘-=’Dj A By 2D Br=D; A A; 2 D; .
and V and (6)
A(?) A B(k-1) B(k) A A(E=-1)

At every step this may lag behind satisfying condition (2) by one single digest
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fragment. Finally when all the fragments have been placed we have the complete
and consistent map. :

It is easy to write the corresponding CLP(R) program to generate the map
in this fashion. The domain variables are simply the fragment lengths a;, b; and
d; which are real numbers constrained to lie within the intervals of condition (4).
Fragments are first chosen corresponding to the initial starting condition (5). Then
the map is built up incrementally by extending the map prefixes one at a time along
the double digest D and one of the single digests, A or B, until the complete map has
been constructed. The map is extended by choosing a d; and one of a; or b, which
maintains the invariant. The constraints resulting from the extension are added
to the system of constraints of the earlier map. These are simply the appropriate
part of the disjunction of invariant (6). Note that we choose among fragments
and not fragment values. The program obtained is quite straightforward and is
only about a page in length omitting auxiliary routines. We also add reflection
symmetry constraints and heuristics on variable ordering.

4 Discussion

In this paper, we have sketched a dynamic constraint formulation for solving linear
restriction maps. This can be easily extended to circular maps by transforming a
circular map to a linear one and imposing additional constraints.! Comparing the
solution here with other approaches in the literature, this is much easier to work
with and understand because it is formulated in terms of the problem constraints.
A programming language like CLP(R) allows such constraints to be stated directly
and be easily combined in a dynamic fashion. This problem is an example of a
CSP-like problem which can be described easily in terms of how constraints interact
with each other in a dynamic way whereas viewing it as a global set of static
constraints to be solved is less useful and does not take advantage of knowledge of
the problem. In contrast to CSP-techniques for manipulating values of variables
to maintain consistency such as arc and path consistency {11] or waltz filtering
[16], the approach here manipulates the problem constraints themselves. So the
approach here is to select valid constraints to describe the map rather than selecting
valid values for variables. Also in the final solution, if the fragment lengths are
only constrained to lie within an error interval then the problem variables do not
have definite values even though a solution has been obtained i.e. the answers are
not ground. Instead the answer is a simpler set of constraints which describe the
solution space, i.e. possibly new tighter fragment intervals and the summation of

1{17] describes solving linear and circular maps in CLP(R).
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Map 1 | Map 2
No. of A 3 4
No. of B 4 6
No. of D 6 9
No. of solutions 16 12
Fragments placed | 285 2491
Time (RS/6000) 2.6s 48.5s

Table 1: Run-time statistics on two sets of data

Map 1 | Map 2
Fragments placed | 721 2491
Time (RS/6000) | 3.3s | 31.8s

Table 2: Run-time statistics for the relaxed problem

some fragment variables on one digest equated to those on another digest.

Preliminary experiments with random and experimental data indicate that the
problem constraints do prune the search space considerably. Table 1 shows some
statistics on real experimental data for two linear maps which has been obtained
using an experimental version of CLP(R). The fragments placed column refers
to the number of fragments which were successfully placed when trying to extend
the map, i.e. the fragments which were consistent prefixes at that point. This is
a measure of the size of the actual search space of the problem considered. The
worst case size of the search space is O(nlng!np!) while the actual number of
fragments placed is relatively small which indicates that the problem constraints
are fairly strong but the amount of time for constraint solving is also significant.
One heuristic for reducing the amount of work required in constraint solving is
to relax the program constraints. This leads to faster solving at the expense of a
potentially greater search space since the problem conditions have been weakened.
For example, the program can be relaxed by dropping condition 1 which requires
the total lengths to be compatible. Figure 2 gives the corresponding relaxed version
of the problems from Figure 1. We can see that with map 1, dropping the length
requirement doesn’t help as it increases the amount of time required while with map
2, the time required is much less. The reason for this is that in map 1, condition 1
was a strong constraint because the total lengths of the different digests was quite
different and thus constrained the individual fragments somewhat, while with map
2 the total lengths were sufficiently similar. This can be readily seen in the fact
that the size of the search space increased with Map 1 while Map 2 was unchanged.
So this heuristic can be useful depending on the nature of data being used. Finali:
we note that this problem is one of the few “real” constraint satisfaction problem
which is easily scalable and as such may be a useful problem for investigating

328

=



search techniques in the fashion that N-queens is used as a testbed.
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