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Abstract

Recent advances in the understanding of the genetics of type 2 diabetes (T2D) susceptibility have focused attention on the
regulation of transcriptional activity within the pancreatic beta-cell. MicroRNAs (miRNAs) represent an important
component of regulatory control, and have proven roles in the development of human disease and control of glucose
homeostasis. We set out to establish the miRNA profile of human pancreatic islets and of enriched beta-cell populations,
and to explore their potential involvement in T2D susceptibility. We used Illumina small RNA sequencing to profile the
miRNA fraction in three preparations each of primary human islets and of enriched beta-cells generated by fluorescence-
activated cell sorting. In total, 366 miRNAs were found to be expressed (i.e..100 cumulative reads) in islets and 346 in beta-
cells; of the total of 384 unique miRNAs, 328 were shared. A comparison of the islet-cell miRNA profile with those of 15 other
human tissues identified 40 miRNAs predominantly expressed (i.e. .50% of all reads seen across the tissues) in islets.
Several highly-expressed islet miRNAs, such as miR-375, have established roles in the regulation of islet function, but others
(e.g. miR-27b-3p, miR-192-5p) have not previously been described in the context of islet biology. As a first step towards
exploring the role of islet-expressed miRNAs and their predicted mRNA targets in T2D pathogenesis, we looked at published
T2D association signals across these sites. We found evidence that predicted mRNA targets of islet-expressed miRNAs were
globally enriched for signals of T2D association (p-values ,0.01, q-values ,0.1). At six loci with genome-wide evidence for
T2D association (AP3S2, KCNK16, NOTCH2, SCL30A8, VPS26A, and WFS1) predicted mRNA target sites for islet-expressed
miRNAs overlapped potentially causal variants. In conclusion, we have described the miRNA profile of human islets and
beta-cells and provide evidence linking islet miRNAs to T2D pathogenesis.
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Introduction

The overwhelming majority of the disease-associated variation

identified by genome-wide association studies (GWAS) maps to the

non-protein-coding genome. Efforts to unlock the functional

impact of these variants therefore rely on an understanding of

the processes involved in the regulation of transcription, most

particularly those which are active in the cells and tissues

implicated in disease pathogenesis [1,2].

miRNAs, short (,22 nucleotides) non-coding RNAs, are

thought to play a key role in the regulation of cellular function

through effects on mRNA destabilisation and/or translational

repression [3,4]. Altered miRNA function has been implicated in

the pathogenesis of a growing number of diseases, including

Tourette’s syndrome and a variety of cancers [5,6]. There is also

substantial evidence linking miRNAs to the regulation of glucose

homeostasis. For example, miR-375 has been reproducibly shown

to be involved in the regulation of glucose-stimulated insulin

secretion in the murine insulin-secreting cell-line MIN6 [7,8] and

other miRNAs (let-7, miR-103 and -107) influence insulin

sensitivity in rodents [9,10].

Many of the variants robustly associated with type 2 diabetes

(T2D) in GWAS exert their diabetogenic effect via a primary

reduction in insulin secretion, placing the pancreatic islet, and the

insulin-secreting beta-cell in particular, center-stage in terms of

T2D pathogenesis [11]. Given significant differences in islet

physiology between rodents and humans [12], and with few

suitable human beta-cell lines available [13], the genomic

characterisation of primary human islet preparations provides an

important opportunity to develop the functional annotations that

can support biological inference at T2D association signals.

In this study, we set out to define the miRNA profile of primary

human islets and enriched human beta-cell preparations, and to

relate these findings to patterns of T2D predisposition.

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e55272



Results

The miRNA profile of human pancreatic islets and beta-
cells
Human islets were acquired from six donors with appropriate

ethical consent. For three of these samples the islets were subjected

to fluorescence-activated cell sorting (FACS) to select for beta-cells.

The purity of the beta-cells following FACS ranged between 90–

95%, and we refer to these as ‘‘enriched beta-cell’’ preparations.

All six samples (3 islet and 3 enriched beta-cells; see Table S1 for

clinical characteristics) were sequenced using 50 base pair reads on

either Illumina GAIIx or Hiseq2000 platforms. After quality

control, a total of 83 million reads mapping to small RNA species

were obtained across the three islet samples (648,000, 14 million,

68 million per sample), and 68 million across the enriched beta-

cell samples (3 million, 38 million, 26 million per sample). The

differences in read-depths reflect improvements in sequencing

technology over the period of data collection.

Almost all reads (92%) mapped to mature miRNA sequences

annotated in miRBase v18 [14], the remainder being snoRNAs

(2.4%) and other non-coding species in Ensembl v63 [15]. As the

number of annotated human miRNAs is still expanding, we used

the miRDeep2 package – a probabilistic method for discovering

miRNAs from small RNA sequencing data using the predicted

secondary structure of potential miRNA precursors [16] – to

uncover novel, unannotated miRNAs in our sequencing data, but

there were no instances of high confidence predictions of novel

miRNAs.

In islets, 366 miRNAs were expressed above background levels

(i.e. more than 100 combined reads across the three samples), and

346 in enriched beta-cells (Figure 1; Table S2). In total, 384

unique miRNAs were identified, of which 85% (n= 328) were

shared between islets and beta-cells (Table S2). The expression

profile was of medium complexity with on average 38 miRNAs

responsible for 90% of the total miRNA aligned reads in islets, and

21 in enriched beta-cells. There was good reproducibility across

the three samples of each type (Spearman rho range 0.61–0.96),

with all but one expressed miRNA present in at least two samples

of each type.

Several of the most highly expressed miRNAs in human islets

(including miR-375, miR-7-5p, miR-148a-3p, miR-26a-5p and

miR-127-3p) have been previously described in rodent or human

islets [7,17–20]. The expression in islets of others (e.g. miR-27b-

3p, miR-192-5p) is novel. Other islet-expressed miRNAs such as

miR-143-3p and let-7 family members have been implicated in

glucose homeostasis, but primarily in the context of insulin action

rather than insulin secretion [10,21,22].

Comparison of the miRNA expression profiles of islets and

enriched beta-cells revealed a strong correlation between the two

(Figure 1), but highlighted some interesting differences. For

example, amongst the most highly expressed miRNAs, miR-375

shows substantially higher abundance in enriched beta-cells as

compared to islets (42% vs 27%) whilst the opposite is true for

miR-143-3p (2% vs 16%). On the basis that an average islet

contains ,50% beta-cells [23], and, given an estimated 90%

purity of the FACS-enriched beta-cell preparations, the ,1.5 fold

enrichment of miR-375 in beta-cells compared to islets indicates

that, in human as in rodents [7], this miRNA is predominantly

expressed in beta-cells. On the same grounds, these data suggest

that miR-143-3p is mostly expressed outside pancreatic beta-cells.

Tissue specificity of miRNA expression
We compared the miRNA expression profiles in islets against

equivalent, publicly available, next-generation sequencing-derived

miRNA expression data from other human tissues, including B-

cells [24], liver [25], pigment cells [26], pooled thymocytes, bone

marrow, CD34+ progenitor cells [27], skin [28], lung, kidney,

skeletal muscle, heart, whole pancreas, frontal orbital gyrus,

spleen, liver tissue [29], and adipose tissue [30]. Raw reads were

downloaded, realigned and normalized in parallel with our islet

and beta-cell samples (see Methods). From these data, we

generated a tissue specificity score (see Methods), defined as the

expression of a miRNA in the reference tissue divided by the sum

of its expression in all tissues, and considered a value .0.5 to

indicate tissue-specificity.

By this definition (which indicated that half or more of all

observed reads for that miRNA were derived from islets) 40 of the

366 islet miRNAs were islet-specific (Table S3). Equivalent

specificity analyses using other tissues as reference found a mean

of only 10 enriched miRNAs per tissue (ranging from 1 [in spleen,

kidney and lung] to 31 [orbital gyrus]; Table S3). Inevitably, these

comparisons are influenced by the panel of tissues for which data

were available, but they suggest that the miRNA profile of human

islets is relatively distinct (Figure 2A). By permuting the data, we

estimated that the false-discovery rate associated with an assertion

of tissue specificity for a given miRNA was approximately 8%.

Few of the 10 most islet-specific miRNAs (Figure 2B; all with

specificity scores .0.8) have previously been implicated in islet

function. For miR-184, miR-182-5p and miR-127-3p, there is

published evidence for a role in insulin biosynthesis and secretion,

though for miR-184 and miR-127-3p this is restricted to

a correlation between islet expression levels and glucose-stimulated

insulin secretion [17,18]. For other miRNA transcripts, such as

miR-409-5p and miR-183-5p, the high degree of islet-specificity

may point to novel roles in the development and maintenance of

islet cellular phenotype.

Primary miRNA sequences tend to cluster together in genomic

intervals spanning,10 kb, and it is thought that members of these

clusters are transcribed together [30,31]. We found examples of

such clustering amongst the miRNAs showing the greatest

absolute abundance in islets, as well as those that were most

islet-specific. For example, mir-182 and mir-183 (both amongst the

most islet-specific transcripts) originate from the same cluster on

chromosome 7q32.2, whilst mir-136 and mir-127 map together on

chromosome 14q32.2. Across samples, expression levels of

miRNAs within these clusters are highly correlated both in islets

and enriched beta-cells (r2.0.6).

The role of islet-expressed miRNAs in T2D predisposition
To explore the role in T2D predisposition played by genetic

variants that influence miRNA function and/or expression, we

analysed genome-wide association data from 8,130 T2D cases and

38,987 controls available through the Diabetes Genetics Replica-

tion and Meta-analysis (DIAGRAM) consortium [11].

We first looked for evidence that T2D-associated variants

mapped to sequences encoding miRNAs themselves. Of the

,2.5 million variants for which directly-typed or HapMap-

imputed T2D-association p-values were available, seven over-

lapped precursor miRNA transcripts for islet-expressed mature

miRNAs (there were a total of 364 of these in miRBase v18

corresponding to the 366 mature miRNAs we document in islets).

Next, we asked whether the predicted targets of islet-expressed

miRNAs were enriched for evidence of association with T2D. To

determine whether results were robust to different algorithms for

predicting these target sites, we used three different prediction

algorithms (TargetScan, miRanda and miRDB) [32–34]. As two

of these algorithms (TargetScan and miRanda) provide genomic

coordinates for the target sites they predict, we were able, for

Islet miRNAs and T2D Pathogenesis
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these, to consider both the target genes and these specific target

sites. Looking at the predicted target sites of those 366 islet

miRNAs (a total of 39,103 and 749,873 such target sites were

predicted by TargetScan and miRanda respectively), we identified

6,496 variants overlapping the association data. The relatively low

density of common variants observed in both islet miRNA and

miRNA target sequence, is consistent with the constraints imposed

by negative selection [19,35,36]. Of the 6,503 variants overlapping

miRNA transcripts and predicted miRNA target sites, one variant,

rs3802177 at the SLC30A8 locus (p-value = 1.4561028) showed

genome-wide significant association for T2D in the DIAGRAM

meta-analysis data.

We also sought overlap with miRNA sequence and/or

predicted targets within the set of 58 loci for which there was

consistent evidence for genome-wide significant associations with

T2D (as of July 2012 [11,37,38]). As the causal variant at most

T2D-association loci is not known, we defined a broad set of 1,403

variants comprising the lead SNPs at the 58 loci plus all good

proxies (LD; r2.0.8 in CEU 1000 Genomes pilot data) which was

likely to include the alleles causal for these associations. We found

overlap of target sites (all predicted by miRanda) at ten of these

variants, mapping to six independent loci (AP3S2, KCNK16,

NOTCH2, SLC30A8, VPS26A, and WFS1).

Finally, we implemented an approach where we sought

evidence for enrichment of T2D association signals across sets of

islet-expressed genes predicted to be targeted by an individual

islet-expressed miRNA. As we used three different target pre-

diction algorithms, with often differing predicted target genes for

individual miRNAs, we looked at the degree of enrichment of

signal in the target genes predicted by each method alone, or by

the overlap (Figure 3). To test for enrichment within the predicted

transcriptional targets of each miRNA, we employed MAGENTA

[39], a tool that uses meta-analysis summary statistics to determine

enrichment for trait association across a given gene set while

correcting for differences in transcript size, number of variants,

and patterns of LD. We found significant enrichment (p-values

,0.01, q-value ,0.1) across islet miRNA targeted gene sets with

nearly all of the (combinations of) prediction algorithms used, with

significant enrichment (miR-17-5p, p-value = 0.004, q-val-

ue = 0.09; miR-93-5p, p-value = 0.005, q-value = 0.09; miR-20a-

5p, p-value = 0.009, q-value = 0.09) even in the set of targets

predicted by all three different algorithms (Figure 3, Table S4).

Discussion

Using next-generation sequencing, we have established the first

catalog of miRNAs in human pancreatic islets and beta-cells, and

explored the overlap between these miRNAs and T2D genetic

susceptibility. Our catalog not only serves as a valuable resource

for those interested in the roles of specific miRNAs in normal islet

physiology and beta-cell function, it also provides a reference for

the study of miRNA mediated abnormalities in islets from type 2

diabetic donors.

Figure 1. Islet and beta-cell miRNA profiles. The top 10 most abundant miRNAs in islets and beta-cells are annotated, with colors denoting
those shared between the two top 10s (black), in islet top 10 only (orange), and in beta-cell top 10 only (green). There was good correlation between
the two profiles (r2 = 0.78). A black dashed line represents equality.
doi:10.1371/journal.pone.0055272.g001

Islet miRNAs and T2D Pathogenesis
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The abundance of miR-375 in the miRNA profile provides

valuable support for a critical role in human pancreatic beta-cells,

mirroring the well-established role in rodent islet biology. miR-375

null mice are hyperglycaemic and exhibit reduced beta-cell mass

[40]. In a clonal rodent beta-cell line (MIN6), knockdown or over-

expression of this miRNA influences glucose-stimulated insulin

secretion [7]. Furthermore, knockdown of miR-375 in obese ob/

ob mice results in a more profound effect on glycaemia leading to

a severe diabetic phenotype in these mice [40]. Our study

establishes that miR-375 is also abundantly expressed in human

islets and warrants further studies to define the contribution of

miR-375 to the pathogenesis of T2D.

Most of the other abundant miRNAs show comparable levels of

expression between islets and beta-cells, and the islet-cell profiles

are relatively distinct from most of the other tissues studied. Our

data adds support for an islet-enriched expression pattern of six

miRNAs previously highlighted by microarray studies (miR-184,

miR-183-5p, miR-7-5p, miR-127-3p, miR-375, and miR-493-5p)

[17,20]. However, for many of the miRNAs that are most

abundant and/or enriched in human islets, there is little, if any,

existing data concerning their effects on islet development or

function. For example, these data point to the need to further

functional investigation of the let-7 family of miRNAs. Two recent

studies have demonstrated that manipulation of let-7 levels in

mice, by overexpression or knockdown, alters insulin sensitivity

[10,22]. One of these studies however also showed reduced insulin

secretion during an intraperitoneal glucose tolerance test in the let-

7 overexpressing mice, hinting at a role for let-7 in glucose-

stimulated insulin secretion, but did not characterize the effects of

altered let-7 expression on pancreatic islet physiology [22].

When we investigated the overlap between the islet miRNAs

and published T2D genome-wide association data, we found

evidence suggestive of a role for miRNAs in diabetes pathogenesis.

We identified both global enrichment of T2D association signals

within islet-expressed miRNA target genes, and overlap of

potentially causal T2D-associated variants with predicted target

sites for islet-expressed miRNAs.

Figure 2. Comparison of miRNA profiles across tissues. The left panel (A) shows the single-linkage hierarchical clustering of inter-tissue profile
correlations. In the right panel (B) the top 10 most tissue specific islet miRNAs are displayed in descending order. The colors indicate the normalized
expression levels of these miRNAs across the different profiles used in the analysis.
doi:10.1371/journal.pone.0055272.g002

Figure 3. Results for the T2D association signal enrichment
analysis in miRNA target gene sets. The Venn diagram represents
the sets of miRNA target genes for each miRNA as predicted by miRDB,
miRanda and TargetScan alone, or overlap of these methods.
Annotated are the median number of genes in each set (black text),
the number of significantly (p-value ,0.001, q-value ,0.1) enriched
gene sets (green text), and the median enrichment of the significantly
enriched gene sets (purple text).
doi:10.1371/journal.pone.0055272.g003

Islet miRNAs and T2D Pathogenesis
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The strongest signal of overlap we identified was for a variant

(rs3802177) within the 39 UTR of the SLC30A8 gene, which maps

to miRanda predicted target sites for six islet-expressed miRNAs

(miR-363-3p, miR-25-3p, miR-32-5p, miR-92a-3p, miR-33a-5p,

and miR-33b-5p) and reaches genome wide significance in T2D-

association studies [11]. Whilst, in the DIAGRAM meta-analysis,

rs3802177 is the variant with the strongest association with T2D

[11], it is also in complete linkage disequilibrium with a non-

synonymous coding variant in SLC30A8 (rs13266634), which is

generally considered to be the causal allele [41,42]. Further

functional studies will be required to establish whether rs3802177

could be contributing to perturbation of SLC30A8 expression

and/or function.

These data are based on the common variant associations

hitherto accessible to interrogation by GWAS. Extension of risk

variant discovery efforts through next-generation sequencing to

include low frequency and rare alleles will allow a more complete

evaluation of the role of miRNAs and their targets with respect to

pancreatic islet development and/or function and the pathogenesis

of T2D.

Materials and Methods

Samples
Human islets were obtained (with research consent) from the

Oxford DRWF Human Islet Isolation Facility (n = 4) and through

existing collaborations with Barcelona (n = 2) from deceased

donors of European descent (clinical characteristics of the donors

can be found in Table S1). High islet purity was established both

by dithizone labeling, as well as through comparative quantifica-

tion by qRT-PCR of endocrine (insulin [INS], glucagon [GCG],

somatostatin [SST]) and exocrine (pancreatic lipase [PNLIP],

pancreatic amylase [AMY2A] and chymotrypsin C [CTRC])

markers.

The beta-cell enriched preparation was collected through

fluorescence-activated cell sorting of human islet preparations

using a previously described method [43,44]. RNA was extracted

from all samples using TRI reagent (Applied Biosystems,

Warrington, UK).

Library preparation and sequencing
Only samples with a total RNA yield in excess of 1ug and

a quality score (RIN) .7 were selected for library preparation.

Libraries were prepared at the High-Throughput Genomics group

(Wellcome Trust Centre for Human Genetics, University of

Oxford, Oxford, UK) using Illumina v1.5 (2 islets and 1 beta-cell

sample) or TruSeq v1 (2 beta-cell and 1 islet sample) small library

preparation protocols, and sequenced using 50 base reads on

Illumina GAIIx and HiSeq2000 platforms respectively.

Raw sequence processing
Raw data was obtained in Fastq format, and pre-processed to

remove residual 39-adaptor sequences using the fastx_clipper

function from the FASTX-toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/index.html). Sequences less than 16 bases after

adaptor stripping, and reads containing primarily N bases, were

removed. The remaining read sequences should correspond to

short RNAs. Length histograms showed enrichment of a peak

around 22 bases, which corresponds to the expected size of

miRNAs.

Sequence mapping and quantification
As ambiguities in read mapping, and frequent contamination by

large numbers of adaptor dimers pose significant challenges to the

accurate quantification of small RNAs, we used a three step

alignment approach. Reads were aligned using novoalign v.

2.07.11 (http://www.novocraft.com, parameters -h 60 60 -t30 -s -

m -l 16 -R 0 -r A 30), which is aware of sequence ambiguities, to

three consecutive references:

1. Contaminating sequences of adaptors, linkers, adaptor-linker,

and adaptor-tag combinations.

2. Full-length miRBase v17 hairpin sequences, combined with

other known and predicted human small RNA sequences

present in Ensembl v63 [14,15].

3. Human reference genome (NCBI build 37).

Reads mapping to contaminating sequences were excluded.

The remaining reads were prioritised in order miRNA . ncRNA

. genome, and alignments with the smallest edit distance were

selected. miRNA hairpin aligning reads were further split out into

mature miRNAs, star miRNAs and those reads mapping only to

the hairpin by using the respective coordinates on the hairpin from

miRBase v17 extended by 3 bases either side of the mature and

star sequences.

Finally, expression levels of each ncRNA were quantified by

counting the number of reads aligning to it. In case of multiple

mapping, where a read mapped between k alternative sequences in

one reference, 1/k was added to the count of each. Those RNA

sequences observed less than 100 times across all samples were

excluded. This cut-off was chosen as the reproducibility across

samples dropped when going lower, and means that per sample

.95% of all mapped sequences are included in the analysis.

Normalization
Data was normalized to be able to compare read counts

between samples, which all differ in read depth. An inflation factor

i was calculated for each library l using a method proposed by

Anders and Huber [45]. This was determined as the median

inflation factor across all genes g using the following formula: il =

mediang(ngl/GMl(ngl)), where ngl is the read count each gene g in

that library l, and GM is the geometric mean. Next, the data was

log2-transformed (log2(ngl/il)) to to account for the heteroskedastic

distribution of the data. These values were used in all subsequent

analyses.

Tissue specific analysis
Publicly available human small RNA sequencing data using

Illumina technology from B-cells [24], liver [25], pigment cells

[26], pooled thymocytes, bone marrow, CD34+ progenitor cells

[27], skin [28], lung, kidney, skeletal muscle, heart, pancreas,

frontal orbital gyrus, spleen, and liver tissue [29], as well as to data

from adipose tissue available through collaboration with the

MuTHER consortium [30], were downloaded, realigned and

normalized together with the islet and beta-cell samples. To

minimalize background, only those miRNAs observed at least

1000 times across the normalized values (n = 367) were taken

forward for tissue specific analysis.

Subsequently we calculated a tissue specificity score, defined as

the expression of a miRNA in a tissue divided by the sum of its

expression in all tissues, for each miRNA in each tissue. The

resulting fractional expression is an indicator of what proportion of

the expression of that miRNA is attributable to a given tissue. As

this approach would be limited in a set of tissues containing very

similar profiles, we combined the results from the islets and the

beta-cells and calculated a correlation matrix between the different

profiles and subjected this to single-linkage hierarchical clustering

in R version 2.14.0 using hclust [46]. To create profiles as unrelated

Islet miRNAs and T2D Pathogenesis
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as possible, all tissues with a Euclidian distance ,0.25 were

averaged along their branch. For each of the remaining 11

profiles, tissue specific scores were calculated by dividing the

normalized reads for a miRNA in a tissue by all reads in all tissue

for that miRNA. The resulting score thus represented the fraction

of miRNA reads explained by that tissue. Tissue-specificity was

defined by a score .0.5, which, using a permutation-based

approach comprising 1 million permutations of the observed data,

amounts to a false-discovery rate of 8%.

Involvement of miRNAs in T2D association
For all reported T2D loci, variants in strong LD (R2.0.8) in

1000 Genomes pilot CEU data were combined with the reported

T2D most associated variants using custom scripts. Genomic

locations of miRNAs were downloaded from miRBase v18

(http://www.mirbase.org) [14], Targetscan 6.2 [32] conserved

predictions from http://www.targetscan.org, miRanda predicted

targets with good mirSVR scores (release August 2010) [33] from

http://www.microrna.org/microrna/getDownloads.do and

miRDB (version 4) [34] predicted target genes from http://

mirdb.org/miRDB/download.html.

For the overlap with T2D associated variants, genomic

coordinates were, where appropriate, converted to hg18 using

the UCSC liftOver tool with -minMatch = 1. For the enrichment

analysis we determined the intersection between predicted islet-

expressed target genes of all three algorithms for each miRNA

using custom Perl scripts. MAGENTA [39] was run using pre-

defined settings using 100000 permutations for the p-value

calculation, and the 75th percentile cut-off p-values for establishing

enrichment. To correct for multiple testing q-values, which

represent the expected proportion of false positives incurred when

calling that gene set significant, were calculated using the qvalue

command from the package ‘‘qvalue’’ in R version 2.14.0 [46]

with the setting ‘‘robust =TRUE’’. Those gene sets with p-values

,0.01 and q-values ,0.1 were deemed significant.

Accession numbers
Datasets have been deposited in Gene Expression Omnibus

GEO (In process).
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