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A Higher-Order Embedded Boundary Method for 
Time-Dependent Simulation of Hyperbolic 

Conservation Laws 

D. Modiano and P. Colella . 
Lawrence Berkeley National Laboratory 

Berkeley, California 94720 

March 2, 2000 

Abstract 

We present a new method for time-dependent simulation of hyperbolic 
conservation laws using a background Cartesian grid with an embedded 
boundary to represent geometry. The fluxes are produced at the centers 
of the regular grid cell faces by a Godunov method. Since the accuracy 
of the flux divergence depends on the fluxes consistently centered at the 
centroids of the irregular faces, we linearly interpolate the fluxes from 
the regular face centers to the irregular face centroids. We compare to 
an exact solution the propagation of a planar wave in a straight-walled 
channel inclined 30 . degrees to the grid. The inconsistent flux method 
converges at well below first order in the irregular cells, and at about first 
order in the full domain. The present method, with consistent fluxes, 
converges at between first and second order in the irregular cells, and at 
second order in the full domain. 
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flux Jacobian matrices, aFx IoU and aFY IoU 
flux vectors 
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flux evaluated at centroid of irregular face 
flux evaluated at center of regular grid face 
exact hyperbolic evolution operator 
discrete hyperbolic evolution operator 
conservative discrete hyperbolic evolution operator 
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reference state, nonconservative numerical approximation to V 
preliminary update 
exact solution to hyperbolic evolution equation 
numerical error U - V 
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£2 norm of quanitity in entire solution domain 
£2 norm of quanitity in irregular cells 
normal direction of embedded boundary segment 
pressure 
pressure, solution to Riemann problem 
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fractional location of centroid of irregular face 

fractional location of centroid of embedded boundary segment 
redistribution weights 
time step 
volume fraction of irregular cell 
local volume-integrated conservation error of preliminary update 
redistribution increment 
interpolation coefficient for preliminary update 
density 
local truncation error 
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1 GOVERNING EQUATIONS 

The governing equation is a two-dimensional hyperbolic system of conservation 
laws 

oV ~ -V.F(V) = _ oFX(V) _ oFY(V) 
at ox oy (1) 

specialized to the equations of inviscid isentropic gas dynamics, with state vec
tor V = (p, pu, pv)T, and flux vectors FX = {pu, pu2 + p, puvf and FY = 
(pv, puv, pv2 +pf where p is the fluid density, u and v the x- and y-components 
of velocity, and P = Pref(P/ Pref)"'i is the pressure. 

2 NUMERICAL METHOD 

The method presented here is based on a discretization of a complex problem 
domainas a background Cartesian grid with an embedded boundary represent
ing the irregular domain region. See figure 1. We recognize three types of grid 
cells or faces: a cell or face that the embedded boundary intersects is irregular. 
A celt or face in the irregular problem domain which the boundary does not 
intersect is regular. A cell or face outside the problem domain is covered. The 
boundary of a celt is considered to be part of the cell, so that cells A, Band C in 
figure 2 are irregular. At the regular cells we use a numerical method designed 
for a uniformly spaced Cartesian grid with unit aspect ratio. We defer discus
sion of that method to section 2.5.1. At the irregular cells we use a conservative 
method based on finite volumes, described in this section. . 

State variables are defined at the geometric centers of the regular grid celts, 
even if a cell is irregular, and even if the center is outside the irregular domain. 
This is to enable the cancellation of error terms that results from the use of 
regular finite difference formulas. Cell centers have integer indices such as (i, j). 
Variables that are defined at the faces of cells are at the centers of the regular 
grid faces unless otherwise specified. Cell faces have mixed integer and half
integer indices, such as (i + ~,j) which is normal to x, and (i,j + ~) which is 
normal to y. 

An irregular cell is formed from the intersection of a grid cell and the irreg
ular problem domain. We represent the segment of the embedded boundary as 
a single flat segment. Quantities located at the irregular boundary are given 
the superscript' B. Depending on which grid faces the embedded boundary face 
intersects, the irregular c~ll can be a pentagon, a trapezoid, or a triangle, as 
shown in figure 3. A cell has a volume Ah2 , where A is its volume fraction. A 
face has an area fh, where f is its area fraction. The polygonal representation 
is reconstructed from the volume and area fractions under the assumption that 
the cell has one of the shapes above. Since the boundary segment is recon
structed solely from data local to the cell, it will typically not be continuous 
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Figure 1: Decomposition of the grid into regular, irregular and covered cells. 
The gray regions are outside the solution domain. 

A B c 

Figure 2: Cells with unit volume fraction that are irregular. 

with the boundary segment in neighboring cells. We also derive the normal to 
the embedded boundary face ii and the area of that face eB h. . 

We do not represent irregular cells such as shown in figure 4, in which the 
embedded boundary has two disjoint segments in the cell. If such a cell is 
present, it will be reconstructed incorrectly. 

The mathematical formulation and its implementation allow multiple irregu
lar cells in one grid cell, such as seen in figure 5. However, for clarity of notation, 
references to irregular cells in this paper are as if there is only one irregular cell 
in any grid cell. 

2.1 Conservative flux divergence 

The central idiom for the solution method in irregular cells is that the quantity 
we are trying to compute is the cell-centered divergence of a field discretely 
specified at the cell faces. See figure 6. In this case we solve for U, an approx
imation to the exact solution V, by discretizing the exact hyperbolic evolution 
equation 

av -- = -V·F(V) = £(V) at 

4 
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Figure 3: Representable irregular cell geometry. The gray regions are outside 
the solution domain. 

Figure 4: Unrepresentable irregular cell geometry. The gray region is outside 
the solution domain. 

Figure 5: Multiple irregular cells sharing a grid cell. The left face of the grid 
cell is also multi-valued. The gray region is outside the irregular domain. 
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Figure 6: Flux divergence at an irregular cell. 

in a finite volume manner to produce 

U!':+l - UT'. BV 
I) I:::.t I) - L(U) = 8t - £(V) + O(l:::.t + h) (3) 

in which L(U) = D.P(U) where D is a discrete divergence operator. We are 
concerned with a conservative flux divergence 

(4) 

We can construct a scheme using the conservative update 

(5) 

This scheme would be unsatisfactory for n~asons of accuracy and stability, as 
explained below. 

2.2 Consistent discretization 

Johansen and Colella [Johansen and Colella,1998] noted that the discrete di
vergence operator 4 is based on trapezoidal integration around the polygonal 
boundary of the irregular cell, which will be second-order accurate only if the 
fluxes FX, FY and FB are consistently centered at the centroids of the irreg
ular faces, whereas the fluxes are available at the centers of the regular grid 
faces, which in general will not coincide. In the context of solving elliptic 
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Figure 7: Flux interpolation from the grid face centers (x) to the irregular face 
centroids (EEl). 

and parabolic problems, Johansen and Colella devised a method whereby the 
fluxes F X and FY are linearly interpolated from the regularly-centered faces to 
the irregularly-centered faces, providing a second-order accurate divergence (we 
defer until section 2.5.3 the details of computing F B ). We apply their method 
here. The interpolation formula for the case in figure 7 is 

(6) 

where FX (or FY) are the fluxes centered at the regular faces and fih (or xh for 
faces oriented normal to y) is the distance from the regular face center to the 
irregular face centroid. This can also be written as 

Interpolation of fluxes is only performed if the other face (at (i + ~,j + 1) in 
the example) is regular. If it is not, we locally drop the order of accuracy and 
use the regular grid flux F~ 1 . directly. We defer until section 2.5.1 the details 

'+2') . 
of computing F. 

2.3 Preliminary update 

A scheme using the conservative update of equation 5 is unstable for fixed 
Courant number l:!.t / h due to the presence of Aij , which may be arbitrarily small, 
in the denominator of the discrete flux divergence, equation 4. We use a redistri
bution scheme, originally developed for shock tracking [Chern and Colella,1987, 

7 



Bell, Colella, Welcome, 1991], to transfer unacceptably large changes in state 
from small cells to their neighbors. 

Our redistribution method defines two updates, the unstable conservative 
update of equation 5 and a nonconservative reference state 

(8) 

that is stable independent of Aij . We linearly combine the conservative up
date UC and the nonconservative update UNC to form the preliminary update 

ur; = l7ijUg + (l-1Jij)Ufjc (9) 

where 0 ~ 'l7ij ~ 1. If l7ij ~ 1 we recover the original conservative method. 
The nonconservative discrete divergence must be consistent, 

(10) 

uniformly in A, in order for the overall scheme to be first-order accurate in the 
irregular cells, 

(11) 

In section 2.5.4 we describe our method for producing a reference state that 
satisfies this requirement. 

To determine a proper value of l7ij, we 1efine the volume-integrated conser
vation error of the reference state 

(12) 

and rewrite the preliminary update 9 as a correction to the reference state, 

( 13) 

This suggests that 17/ A = O( 1) is a necessary condition for small-cell stability. 
We choose l7ij = Aij. 

2.4 Redistribution 

The preliminary update is not globally conservative. The volume-integrated 
conservation error in cell (i, j) is 

(14) 

which must be added to the solution in order for the overall method to be 
conservative. We distribute (1 - Aij )JMij to a neighborhood of cells adjacent 
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Figure 8: Redistribution neighborhood (diagonal lines) of cell (i, j) (crosshatch
ing). Cells (i -1,j -1) and (i,j -1) (white) are excluded because they cannot 
be reached by monotone paths. Note that cells (i,j + 1) and (i + l,j + 1) are 
regular. 

to (i, j) (including diagonally) which can be reached from it by a monotone path, 
i.e. without going around 1800 corners. Some of these cells may be regular.' See 
figure 8. We include the cell (i, j) in its own neighborhood. The state of a target 
cell is incremented by 

(15) 

The weights Wlm,ij must satisfy 

1 
A 2: Wlm,ij = 1 

1m (l,m)Enbh(i,j) 

(16) 

for the redistribution to be conservative, and 

Wlm,ij = O(Alm) (17) 

so that JUij is finite for small Alm . For volume-weighted redistribution the 
weights are 

Alm 
Wlm,iJ' = _---::=..:.;c.;c_~_ 

.2: Ail,jl 

(il,j/)Enbh(i,j) 

The redistribution update will satisfy 

aUlm,ij = O(h ~t) 

which is the same order as uP - un. 
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2.5 Godunov details 

The numerical method is a multi-dimensional higher-order Godunov method 
based on the method described by Colella [Colella,1990j for general quadrilat
eral grids. The method presented here is restricted to Cartesian grids of a 
uniform mesh spacing h and unit aspect ratio. State variables are defined at 
the geometric centers of the regular grid cells, even if a cell is irregular, and even 
if the center is outside the irregular domain. This is to enable the cancellation 
of error terms that results from the use of regular finite difference formulas. 
Variables defined at the faces of cells are at the centers of the regular grid faces 
unless otherwise specified. 

2.5.1 Regular Grid Method 

The basic numerical method is a multi-dimensional higher-order Godunov 
method [Colella, 1990j. An outline of the method follows. Cell centers have 
integer indices such as (i, j). Cell faces have mixed integer and half-integer 
indices, such as (i + ~,j) which is normal to X, and (i,j +~) which is normal 
to y. 

1. Compute slopes. We compute the slopes of the state variables at the cell 
centers using the second-order central difference formula 

h (~~ + O(h
2
)) 

~ (Ui+1,j - U['-l,j) (20) 

at interior cells and a first-order one-sided difference formula such as 

h (~~ + O(h)) 

Ui+1,j - uti (21) 

at cells adjacent to a boundary. The formulas for slopes in the y direction 
are similar. 

2. Linearized normal extrapolation. Given data at the cell center (i, j) at 
time t = nb..t we extrapolate to the left side of the face of the cell (i + ~,j) 
at time t + ~b..t = (n + ~)b..t as 

L n 1 au 1 au u. 1 . =Uij + 2h"7l + 2b..tf;l. 
'+2,3 uX ut 

(22) 

Similarly, extrapolation to the right side of the face of the cell at (i - ~,j) . .. . 
1S 

R n 1 au 1 au u 1 = U·· - -h- + -b..t-. (23) 
i - "2,j '3 2 ax 2 at 
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In order to approximate aU/at, we linearize the conservative form of the 
equations 

aU 
at 

in the x direction as 

so that 

and 

aU 
at 

L n 1 aU 1 . x aU 1 aFY 
U 1 = U·· + -h- - -~tA .. - - -~t-

i+ 2,j 'J 2 ax 2 'J ax 2 ay 

(24) 

(25) 

(26) 

(27) 

We define [j~ 1 . and [jR 1 . to be the result of the normal derivative term 
'+2') '+2,J 

U~ L n 1 ( ~t x) J:X 
1 = U·· + - 1 - -A.. u U .. i+ 2 ,j ') 2 h') ') (28) 

and 

(29) 

The formulas for extrapolation to the faces normal to the y direction are 
similar. Normal extrapolation must be completed for all sets of faces 
before transverse extrapolation can be done. 

3. Transverse fluxes. With the definition of [j Land [j R, the time-centered 
face states are computed as 

UL - [jL _ ~t (frY _ frY ) 
.1.-.1 ... I ... I. 
'+2') '+2') 2h ")+2') ")-2') 

(30) 

and similarly for UR 1 .' We compute the transverse fluxes fry from the 
'-2') 

solution to the Riemann problem at each face defined by the states [jL 
and [jR at the face normal to y. 

4. Riemann solution. We solve the Riemann problem defined by the left 
and right states UL and UR to yield a single time-centered value at each 

1 
face Un +2. 

5. Flux difference. We compute the fluxes FX and FY at each face from the 
Riemann solution. The state vector is advanced by one time step by the 
flux difference, 

(31) 
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2.5.2 Irregular slopes 

The computation of the slopes is modified if access to a cell needed by the 
central difference stencil is blocked by the irregular boundary (this does not only 
mean that a cell is outside the irregular domain; for an example, in figure 9, 
the irregular boundary blocks access to cell (i + 1, j) for a stencil centered at 
cell (i, j)). We use a one-sided second-order formula. For example, if cell (i+ 1, j) 
isunavailable, the slope JX Uij is computed as 

JXUij = h (~~ + O(h
2
)) 

t (Ui-2,j - 4Ui - 1 ,j + 3Uij). (32) 

If the cell (i - 2, j) is also unavailable, we use a first-order formula. If the 
cell (i - I, j) is unavailable, the slope is set to zero. The latter is an indication 
that the geometry is UlJder-resolved. 

2.5.3 Embedded boundary flux 

The embedded boundary flux FS is evaluated at the centroid of the embedded 
boundary face, which does not coincide with any of the regular grid faces. The 
entire Godunov procedure must be performed to evaluate this flux. The embed
ded boundary represents a solid wall, so there is no convective transport across 
it. Thus, the only non-zero flux is the pressure term of the momentum flux. 

The slopes computed for the regular scheme can be reused. Since the em
bedded boundary is not, in general, aligned with the grid, there is no notion of 
normal and tangential grid directions for differencing. The predictor is similar 
to the normal stage of the regular grid predictor, except that spatial extrapo- . 
lation is performed to the centroid of the embedded boundary face (:i;B h, yB h) . 
(measured relative to the center of the grid cell), which is arbitrary within the 
cell, and the derivatives are linearized in both grid directions. Thus, 

~B_ 11 (.B !:l.tAX)S:x .. (-B !:l.tAV)OVU .. Uij - Uij + Xij - 2h ij. u U'J + Yij - 2h ij IJ· (33) 

A Riemann problem must be solved at the embedded boundary face. Only 
one state is available. Since the embedded boundary represents a solid wall, 
an artificial state is constructed which is identical to uS except the sign of the 
normal velocity is reversed. Recall that we only need to compute the pressure 
term, for the momentum flux. The solution to this Riemann problem is 

(34) 

where u is the velocity normal to the embedded boundary and c is the speed of 
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i+ 112,j 

Figure 9: Double-valued extended face at (i + ~, j). 

sound. The flux is then 

(35) 

2.5.4 Reference State 

The reference state U NC is a stable, nonconservative approximation to Un +1. 

It is intended to resemble" the finite difference scheme used on the regular grid, 
and does not include the effects of the geometry. Computation of the reference 
state differs from computatibn of the regular grid update when a face required 
for the flux difference is outside the valid irregular domain. These faces are 
called extend,ed faces and the quantities at them are called extended states and 
eJ.;tended fluxes. 

Extended values are specific to the cell they 'border . In figure 9, face (i + ~ , j) 
has two sets of extended values, one for cell (i, j) and one for cell (i + 1, j). The 
implementation allows double-valued extended states, but for clarity of n'otation 
that is not reflected in this description, 

Consider computation of the flux F: 1 ,for cell (i, j) when the face (i + ~ ,j) 
'+2') 

is invalid. The left and right states needed for the solution of the Riemann 
problem are computed as follows. On the "inner" side of the face (L in this 
example) we extrapolate from the center of cell (i, j) using first-order one-sided 
slopes. ' . 

where 

U~I - un 1 ( b.tAX) .xu , l· - ij + 2' 1 - -h ij U ij 
'+2') 

(36) 

(37) 

On the "outer" side of the face, we extrapolate from the center of cell (i - 1, j) 
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using first-order one-sided slopes computed from cells (i - 1, j) and (i - 2, j). 

U~o Un 1 (3 D.tAx ) £X 
. 1 . = i-1J' + -2 - -h i-1J' u Ui-lj 1+ 2 ,) I I I 

(38) 

where 
(39) 

The Riemann problem is solved using the inner and outer states fj I and fjo 
defined above, in order to compute transverse fluxes FX and Fy. The transverse 
flux update is performed with the use of the extended fluxes. The extended 
states themselves are updated with the transverse flux. 

~o D.t (~ ~) U. 1 . - - F? 1 - F.Y. 1 
'+"2,J 2h ',J+"2 ',J-"2 

(40) 

Note that it is possible for the transverse fluxes to be extended fluxes, as 
is FY 1 in figure 9. 

1')-2 

The fluxes FX and FY for computation of the reference state, 

(41 ) 

are computed from the solut.ion of the Riemann problem defined by Uland UO . 

There is no influence ofthe embedded boundary on the reference state, and these 
fluxes are centered at the centers of the regular grid faces. 

3 TEST CASES 

3.1 Simple wave exact solution 

The simple wave defined here is the time-dependent exact solution of the straight
walled channel test case. The flow field is a stagnant fluid with a small per
turbation in a single characteristic quantity. We specify an initial profile for 
density at time t = 0, 

where 

po(x) = Pref (1 + a/(x)) 

/(x) = { ~x2 - 1)4 if 0 < x< 1 
otherwise 

with the dimensionless coordinate 

x = i·fI./w. 

14 
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Figure 10: Initial condition for test problem. Density varies from 1.0 at the left 
and right to 1.001 in the center. 

The parameters are a, the amplitude of the wave; w, the width of the wave; 
and ii, the direction of propagation of the wave. The initial pressure is found 
from the isentropic relation 

( 45) 

The initjal fluid velocity is found by characteristic analysis. The value of the 
Riemann invariant 

2c 
J+=u+--

7- 1 
( 46) 

is taken from the profile u = uo(x), c = co(x), while the Riemann invariant 

2c 
J_ =u---

7- 1 

is taken from the reference ambient conditions u = 0, c = Cref.· Equating 

yields 

uo(x) = t (J+ + L) 

2 
uo(x) = -- (co(x) - cree) 

7- 1 

( 47) 

(48) 

( 49) 

The exact solution u(x, t) is obtained by using the profile uo(x+), co(x+) in 
equation 46, where x+(x,t) = x - (u +c)t, and iterating to convergence of x+. 

3.2 Simple wave pulse in straight channel 

The walls of the channel are angled 30° to the x-axis. The parameters of the 
pulse are a = 10-3 , W = 0.4, and ii = (~.J3, t). We used grids in the range 64 x 
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64 to 512 x 512. Each grid has irregular cells with a wide range of volume 
fraction. The solution error is calculated from the analytic exact solution of 
section 3.1. We compare the error, eij = Uij - Vij, of simulations using consistent 
fluxes to simulations using fluxes centered at the regular grid faces. Three 
error measures are shown: lie 1100 , the maximum error; l1el12 EB' the f.2 norms 
of the field error in the irregular cells only; and Ileib the £2 'norms of the field 
error in the entire problem domain. Tables 1-4 show the errors in density 
and x-momentum. The rate listed is the error exponent p for which the errors 
satisfy e(h) = O(hP ). It is calculated as Pn = log2(lle(2h)lln Ille(h)lIn)' We 
expect p = 1 in the irregular cells for the consistent flux method. Since the 
irregular region is a set of points codimension one lower than the full domain, 
we expect an extra factor of h, or p ~ 2, for the full domain in the asymptotic 
limit. 

The inconsistent flux method shows the maximum error and the irregular 
cells error norm to converge at well below first order, and the full domain error 
norms to converge at about first order. The present method, with consistent 
fluxes, shows the maximum error and the irregular cells error to converge at 
between first and second order, and the full domain error norm to converge 
at about second order. 'The convergence rates for x-momentum is significantly 
poorer than that for density, due to the convection of vorticity errors along the 
wall. 
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Table 1: Errors and convergence rates of density for consistent flux scheme. 

grid Ilell oo Poo lI e 11 2,EB P2,EB IIell 2 P2 
64x64 5.74( -6) 4.91(-7) 9.73(-8) 

128x 128 2.26(-6) 1.35 1.79(-7) 1.46 2.56( -8) 1.92 
256x25(3 1.03(-6) 1.13 6.40(-8) 1.49 6.77(-9) 1.92 
512x512 4.45(-7) 1.22 2.29(-8) 1.48 . 1.75(-9) 1.95 

Table 2: Errors and convergence rates of x-momentum for consistent flux 
scheme. 

grId Ilelloo Poo lIelb,EB P2,EB IIell 2 P2 
64x64 7.86(-6) 6.56( -7) 1.27(-7) 

128x 128 3.48(-6) 1.35 2.95(-7) 1.15 4.06(-8) 1:65 
256x256 1.67(-6) 1.06 1.25(-7) 1.24 1.23( -8) 1.72 
512x512 7.84(-7) 1.09 5.05(-8) 1.31 3.57(-9) . 1.78 

Table 3: Errors and convergence rates of density for inconsistent flux scheme. 

grid Ilelloo Poo lIe11 2,EB P2,EB IIell 2 P2 
64x64 6.26( -6) 1.02( -6) 2.07{ -7) 

128x128 3.28(-6) 0.93 6.60{ -7) 0.64 9.58{ -8) 1.11 
256x256 2.45(-6) 0.42 3.68(-7) 0.84 4.00( -8) 1.26 
512x512 2.23(-6) 0.13 2.15(-7) 0.78 1.67( -8) 1.26 

Table 4: Errors and convergence rates of x-momentum for inconsistent flux 
scheme. 

grid Ilell oo Poo lIe1l 2,EB P2,EB lIel1 2 P2 
64x64 6.26( -6) 9.22(-7) 1.83( -7) 

128 x 128 4.31(-6) 0.85 6.29(-7) 0.55 8.92(-8) 1.03 
256x256 4.04(-6) 0.10 4.74(-7) 0.41 4.98( -8) 0.84 
512x512 4.66(-6) -0.21 4.23{ -7) 0.16 3.17{ -8) 0.65 
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