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Abstract

In an ideal world, evidence of disparities motivates people to
fight them; in reality, disparities often “reproduce” themselves.
Upon seeing the police stopping some groups at higher rates,
people may believe members of these groups are more prone
to crime and therefore seek more punitive measures against
them. In this paper, we argue that even without stereotypic
associations linking some groups with crime, people may still
reproduce observed disparities via rational inference: Assum-
ing an agent is knowledgeable about a target trait’s “hit rates”
in different groups and acts to maximize the expected utility of
checking, you may infer that groups checked more often have
higher hit rates. In Experiment 1, this “Naı̈ve Utility Calculus”
successfully captured how people inferred the hit rate in a pop-
ulation based on how often an agent sampled from it (“check
rate”). In Experiment 2, when hit rates in the samples were
revealed, people predominantly relied on this new information
more heavily than the agent’s check rates. Our work both pro-
vided a novel explanation for why people reproduce disparities
and a potential intervention to combat such a tendency.

Keywords: social cognition; disparities; theory of mind; com-
putational modeling

Introduction
In Oakland, California, around 60% of the police stops be-
tween 2013 and 2014 were of African Americans, who only
make up about 28% of the local population and were no
more likely than members of other races to carry contra-
band (Hetey, Monin, Maitreyi, & Eberhardt, 2016). Not only
does intense proactive policing tend to induce psychological
stress and future crimes in the African American community
(Del Toro et al., 2019), it’s also the first step towards dispari-
ties in areas with more dire consequences, such as arrests and
incarceration. As scientists and educators, what can we do to
help combat racial disparities in proactive policing?

Perhaps if people saw what we saw, they would be eager to
end racial disparities. However, numbers don’t always speak
for themselves: Evidence of disparities often leads people
to support the very system that has created them in the first
place (Hetey & Eberhardt, 2018). For instance, when pre-
sented with a “Blacker” prison compared to a “less Black”
one (45% vs. 25% inmates were African Americans), White
voters became more supportive of laws that severely punish
repeated offenders (Hetey & Eberhardt, 2014). Why would
people support laws that may intensify racial disparities af-
ter being made more aware of their existence? Hetey and
Eberhardt (2014, 2018) argued that this paradox could be ex-

plained by stereotypic associations linking Blacks with crime:
A Blacker prison made people more fearful of crime and the
fear prompted them to support stricter criminal law.

Are pre-existing stereotypes such as the “Black-crime as-
sociation” necessary for observers to reproduce disparities?
Imagine, as a new quality inspector at a factory, you shad-
owed the most experienced inspector on your first day there.
They checked 7 out of every 10 X products and only 3 out
every 10 Y products. Inspecting a product incurs a small cost
every time but catching a defective one is far more reward-
ing. When it’s your turn, would you check X or Y more of-
ten? If your answer is “X”, is it because you have stereotypic
associations linking it with low quality? This explanation is
unlikely since you’ve only just seen these products. Alterna-
tively, your preference may be a result of rational inference:
Assuming the inspector is knowledgeable about product qual-
ity and acts to maximize the expected utility of checking (the
expected reward from finding defective products minus the
total cost of checking), it only makes sense if X has a higher
defect rate than Y—so you should also check X more often,
just like your predecessor did. This kind of Naı̈ve Utility Cal-
culus (NUC, Jara-Ettinger, Gweon, Schulz, & Tenenbaum,
2016) explains how we might end up reproducing disparities
we observe without having any stereotypes from the get-go.

Inferring “ground truth” from sampling processes
It’s not a new idea that sampling behavior is a window into an
intentional agent’s preference. Even young children (Kush-
nir, Xu, & Wellman, 2010) and infants (Wellman, Kushnir,
Xu, & Brink, 2016) understand that a person selecting rare
toys at a disproportionately high rate prefers these toys and
will choose the same type in the future. It’s also been pro-
posed that such inferences arrive from a principle of efficiency
(Jara-Ettinger, Sun, Schulz, & Tenenbaum, 2018): A utility-
maximizing agent wouldn’t go out of their way to seek out
the rarer option if they didn’t like it better.

The police scenario differs from previous studies in that we
care not about how people use sampling to infer others’ pref-
erence but some “ground truth” about the world. To our best
knowledge, only one study (Gweon, Tenenbaum, & Schulz,
2010) has looked at ground truth inference from non-random
sampling. In their study, infants had to infer was whether a
property (squeaking) found in one category (blue balls) ex-
tended to another (yellow balls). When most balls were yel-
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low but the experimenter only sampled blue balls which all
squeaked, infants didn’t expect yellow balls to also squeak
(“If yellow balls also squeak, why didn’t she show me?”).

Ground truth inference in our study goes beyond binary:
Rather than whether a trait extends to a group, people must
infer the prevalence of that trait. After all, members of all
races commit crime but what observers believe drives the po-
lice’s sampling behavior is the magnitude of crime rates. Fur-
thermore, infants in Gweon et al.’s (2010) study had to simul-
taneously infer whether the experimenter was sampling from
all balls or just squeaking balls. This joint inference captures
observers’ uncertainty about both the police’s intention and
knowledge. However, before factoring in the agent’s inten-
tion, we want to first establish whether people can make ac-
curate inference about “crime rates” based on sampling. We
made it clear that the agent is cost-effective and knowledge-
able about true “crime rates” in different groups. In the future,
it’s worth exploring joint mental state/ground truth inference
as a model of how people learn from a rational agent’s sam-
pling behavior and also a potential anti-bias intervention.

By viewing the reproduction of disparities from a ratio-
nal perspective, by no means do we wish to “rationalize” it
or downplay the role of stereotypes discussed in a vast body
of literature (e.g., Eberhardt, Goff, Purdie, & Davies, 2004;
Payne, 2001). Rather, what we are ultimately searching for is
an effective way to fight disparities and if we find that ratio-
nal inference alone has the power to reproduce disparities, we
need further measures than just doing away with stereotypes.

Study overview

To capture key elements of proactive policing without evok-
ing pre-existing racial stereotypes, we designed a novel ar-
cade game called the “Golden Ticket” (Figure 1). In this
game, a robot chicken lays one egg at a time, which is either
empty or has a golden ticket that can be redeemed for a grand
prize. Each egg costs a token and tokens are expensive and
come in limited quantities. Players can pass on eggs that they
don’t want to buy. This game is designed to simulate real-
life police encounters. A robot chicken and the eggs it lays
are akin to a social group and members of that group and the
player symbolizes the police officer. Winning a golden ticket
and catching a criminal are both highly rewarding yet check-
ing incurs a cost every time, be it a token or time and energy.
Each chicken has a fixed “hit rate” (the probability of lay-
ing an egg that has a golden ticket) known to an experienced
player Alex. Alex also doesn’t spend tokens unnecessarily.
Participants watched Alex play a series of robot chicken. Af-
ter each, they were asked to infer the chicken’s hit rate and
indicate whether they wanted to buy a new egg from it.

In Experiment 1, the eggs’ content was not revealed. We
looked at whether participants could infer hit rates based on
“check rates” (the probability that Alex buys an egg from a
chicken) alone. Their inferences were compared to predic-
tions generated by a Naı̈ve Utility Calculus model. In Ex-
periment 2, Alex opened the eggs after each round. We ex-

Figure 1: The Golden Ticket game: A robot chicken laid a
total of 6 eggs one at a time. Alex, the best player who knew
every chicken’s hit rate and refrained from unnecessary pur-
chase, decided whether to buy each egg or let it go. In Experi-
ment 1, participants only saw how many eggs Alex bought but
not the content of the eggs. In Experiment 2, Alex opened the
eggs they bought, revealing which ones had tickets and which
ones were empty. At the end of each trial, participants were
asked to estimate the hit rate of the robot chicken and indicate
whether they want to buy a new egg laid by this chicken.

amined whether participants used both the hit rate and the
check rate in the sample to infer the true hit rate in the pop-
ulation or if they relied on one source of information. We
created three computational models to compare against hu-
man performance, each corresponding to an aforementioned
possibility (hit rate only, check rate only, check + hit rates).

Computational Modeling

Naı̈ve Utility Calculus models
We created computational models based on the Naı̈ve Util-
ity Calculus (NUC) (Jara-Ettinger et al., 2016) to predict how
learners infer each chicken’s hit rate from Alex’s check rate.
The key assumption is that Alex maximizes the expected re-
wards of winning golden tickets relative to the total costs of
buying eggs. Suppose each ticket has a value of V , each to-
ken costs C, and the true hit rate of a chicken is θ, then the
expected utility of buying an egg from a given chicken is:

E[U(buy)] =V θ−C (1)

The higher the expected utility E[U(buy)], the more likely
that Alex will buy an egg, hence the higher the check rate
µ. We assume that Alex’s choice behavior follows a softmax
choice rule (Sutton & Barto, 1998). In the case of binary
choices, the softmax function becomes the logistic function:

µ =
1

1+ exp(−E[U(buy)])/τ
(2)

where τ is a temperature parameter controlling the level
of stochasticity in Alex’s decisions. When τ→ 0, Alex will
always buy an egg if E[U(buy)] > 0; when τ→ ∞, Alex just
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Figure 2: Computational models of hit rate inference. In the
two Naı̈ve Utility Calculus (NUC) models, the check rate µ
is inferred from the number of eggs Alex bought (S) out of
the number of eggs a chicken laid (P). µ is linked to the true
hit rate θ via a logistic function, whose intercept β0 and slope
β1 are estimated from participants’ inferred hit rates and pur-
chase decisions. In Experiment 1, θ can only be inferred from
µ. In Experiment 2, θ can be simultaneously inferred from µ
and the number of eggs with tickets (H) out of P. Alterna-
tively, people may ignore µ and assume that the observed hit
rate is the true hit rate, in which case “hit rate only” model
captures their inference.

randomly decides between buying an egg and letting it go.
The three free parameters V , C, and τ can be absorbed into

the slope β1 =V/τ and the intercept β0 =−C/τ of the logistic
function in Equation 2, which then becomes:

µ =
1

1+ exp(−(β0 +β1θ))
(3)

We can estimate β0 and β1 from participants’ inferred hit
rates and subsequent purchase decisions. Plugging the esti-
mates back in Equation 3 allows us to infer what participants
thought the true hit rate θ was based on the observed check
rate µ—assuming that they used the same utility function to
interpret Alex’s decisions and make their own decisions1.

In both NUC models, µ is inferred from the number of eggs
Alex bought, S, out of the number of eggs each chicken laid,
P: S∼ Binomial(µ,P). In Experiment 1 with only check rate
information, θ is solely inferred from µ via Equation 3. In
Experiment 2, θ can be simultaneously inferred from µ and
the number of eggs with tickets, H, out of the number of eggs
Alex bought, S: H ∼ Binomial(θ,S). If participants ignore

1This is not necessarily true. People’s own utility function can
differ from what they think an another agent’s utility function is. For
instance, Liu, McCoy, and Ullman (2019) found that most of their
participants saw others as less or more risk averse than—but not the
same as—themselves. However, since what we care about is each
model’s relative performance, this difference is not too concerning.

new hit rate information, then their inferential process is cap-
tured by the same “check rate only” model in Experiment 1.

Alternative model
In Experiment 2 where hit rate information was also pro-
vided, participants may ignore check rates and assume that
each chicken’s observed hit rate is its true hit rate. In this
“hit rate only” model with no utility concerns, θ is solely de-
termined by H (the number of eggs with tickets) and S (the
number of eggs Alex bought): H ∼ Binomial(θ,S).

Experiment 1
Methods
Participants Sixty-two adult residents of the United States
(mean age = 38.5 years) participated in Experiment 1 through
Amazon Mechanical Turk. A past acceptance rate of at least
95% was required for participation. Another 31 participants
were excluded for failing any of the five instruction check
questions. All participants gave informed consent prior to the
study and were paid $2 for about 15-20 minutes of their time.

Procedure Participants first watched a video introducing
the “Golden Ticket” game and were then tested on the util-
ity structure of this game, namely rewards (a golden ticket or
none) and costs (a token or none). Next, participants learned
that different robot chickens may have different hit rates and
the best player Alex knows each chicken’s hit rate and avoids
spending tokens unnecessarily. It was also emphasized that
while each chicken has a fixed hit rate on the long run, the
hit rate in each batch of eggs is subject to random fluctua-
tions. To ensure that participants understood all the critical
information, we tested them on what makes Alex the best
player (because they are knowledgeable about hit rates and
cost-effective) as well as possible fluctuations in hit rates.

Those who passed both rounds of instruction checks within
two attempts were allowed to continue to the main experi-
ment, where they watched short videos of Alex playing 12
different robot chickens, each distinguished by a unique color.
The total number of eggs laid by each chicken was held con-
stant (6 eggs) while the number of eggs Alex bought varied
(2 chickens: bought 1 or 6 out of 6 eggs; 4 chickens: bought
2 or 5 out of 6 eggs). The order of the 12 chickens was ran-
domized for each participant. Once Alex made decisions for
all 6 eggs laid by a chicken, participants were reminded of
how many eggs they bought or let go on a summary page.

To measure hit rate inference, we asked participants to
guess that out of 6 eggs randomly selected from all the eggs
a chicken has ever laid, how many might have golden tickets.
Finally, they were asked to decide whether they would buy a
new egg from this chicken or pass on the opportunity.

Results
The central question that inspired this research is whether
people would still reproduce observed disparities even with-
out existing stereotypes. In Experiment 1, this question trans-
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Figure 3: Results from Experiment 1: (Left) The proportion
of participants deciding to buy a new egg as a function of
the number of eggs Alex bought. (Right) Hit rates of robot
chickens predicted by the model vs. inferred by participants.
(Error bars indicate the 95% confidence intervals.)

lates to whether participants’ purchase decisions were influ-
ence by Alex’s check rates. From Figure 3 (left), it’s obvi-
ous that far more participants chose to buy a new egg when
Alex bought 5 or 6 eggs compared to only 1 or 2. To test
this observation more rigorously, we fit a generalized linear
mixed model (GLMM) using the R package lme4 (Bates,
Mächler, Bolker, & Walker, 2015) with participants’ purchase
decisions as the outcome variable, the number of eggs Alex
bought as the fixed effect, as well as random intercepts and
slopes for participants and trials2. Consistent our observa-
tion, with each additional egg Alex bought, the odds ratio for
participants buying an egg increased by 2.36, which was sig-
nificantly higher than chance, Wald’s χ2 = 14.03, p = .00018.

Were participants “mindlessly” copying Alex’s sampling
behavior or did they use it to infer robot chickens’ hit rates
in a “rational” way? To answer this question, we examined
whether participants’ hit rate inferences can be captured by a
NUC model. First of all, we estimated parameters values in
Equation 3 to be β0 = −2.56 and β1 = .98 using the Python
library PyMC3 (Salvatier, Wiecki, & Fonnesbeck, 2016) based
on participants’ inferred hit rates and purchase decisions.
Then we implemented a “check rate only” NUC model to
predict how people should infer each chicken’s hit rate from
Alex’s check rate and compared model predictions against
participants’ actual inferences. As you can see in Figure 3
(right), this NUC model captured all the qualitative trends
across all trial types. Model predictions were strongly cor-
related with human responses, Pearson’s r = .79, p < .001.

Discussions
Before playing the Golden Ticket, participants had no ex-
pectation for each robot chicken’s hit rate. Yet, after watch-
ing a knowledgeable, utility-maximizing agent Alex playing
the game, participants quickly followed their lead, buying
more eggs from chickens that Alex was more likely to buy

2Here we implemented lme4 models in Python via rpy2 to keep
in the same environment. The formula for the full model was: buy
∼ checked + (1 | participant) + (1 | trial).

from. This result shows that participants ended up reproduc-
ing observed disparities in check rates without having prior
stereotypes of chickens’ hit rates. At least when explicitly
asked to, participants could do more than just blindly copying
Alex’s sampling behavior: Each chicken’s hit rate that they
inferred from Alex’s check rate closely matched the predic-
tion generated by a simple Naı̈ve Utility Calculus model. Per-
haps through a similar inferential process, a naı̈ve observer
of police encounters may conclude that groups under heav-
ier scrutiny have higher crime rates and will check members
from these groups more often when given the opportunity.

What if groups checked more often have the same or even
lower hit rates? One of the most striking and informative
findings from the Oakland police stop data is that African
Americans who were stopped far more often than other races
were no more likely to carry contraband. If people trust a
knowledgeable, utility-maximizing agent blindly, they may
disregard this new hit rate information as a “fluke”. It’s also
possible that they ignore the agent’s sampling behavior and
solely focus on observed hit rates. Alternatively, people may
consider both the hit rates and the check rates in the sample to
infer group hit rates. To examine these possibilities, we con-
ducted Experiment 2 where Alex opened the purchased eggs
to reveal which ones had tickets and which ones were empty.

Experiment 2

Methods
Participants Sixty-seven adult residents of the United
States (mean age = 36.9 years) participated in Experiment 2
through Amazon Mechanical Turk. To participate, one must
have a past acceptance rate of 95% or above and not have
taken part in Experiment 1. Another 30 participants were ex-
cluded for failing any of the five instruction check questions.
All participants gave informed consent prior to the study and
were paid $2 for about 15-20 minutes of their time.

Procedure The procedure for Experiment 2 was identical to
that for Experiment 1, except that Alex opened the eggs they
bought in the end to reveal which ones had tickets and which
ones were empty. There were 12 unique combinations of how
many eggs had tickets out of how many eggs Alex bought. Of
these, there were 6 critical trials where Alex bought most or
all eggs but most or all were empty (0 or 1 out of 6 eggs or
0 or 1 out of 5 eggs had tickets) or few eggs but all had tick-
ets (1 out of 1 egg or 2 out 2 eggs had tickets). In case par-
ticipants suspected that Alex was misleading or not actually
knowledgeable, we added 6 “filler” trials where Alex bought
most or all eggs and most or all had tickets (5 or 6 out of 6
eggs or 4 or 5 out of 5 eggs had tickets) or few eggs and none
had tickets (0 out of 1 egg or 0 out 2 eggs had tickets). The
order of presentation was randomized across participants.

Results
After observing both the check rate and the hit rate in an egg
sample, how did participants infer the chicken’s true hit rate?
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Figure 4: Results from Experiment 2: Hit rates of robot
chickens predicted by three models (“check + hit rates”,
“check rate only”, “hit rate only”) vs. inferred by partici-
pants. (Error bars indicate the 95% confidence intervals.)

We created the three models to capture three hypotheses (Fig-
ure 2): 1) a NUC model inferring hit rates from both observed
check rates and hit rates (“check + hit rates”), 2) another NUC
model only inferring from observed check rates (“check rate
only”), and 3) a non-NUC “hit rate only” model.

Based on participants’ inferred hit rates and purchase deci-
sions, we estimated the parameter values in Equation 2 to be
β0 = −2.79 and β1 = 1.10. The we implemented the above
models using the estimates (with the exception of the “hit rate
only” model, which doesn’t require these parameters). To
see which model resembled human performance the most, we
used the root mean square error3 (RMSE) to measure the dis-
similarity between model predictions and human inferences.
Lower RMSE indicates better model fit. As it turned out, the
“check rate only” model’s predictions strayed furthest away
from human inferences (RMSE = .37) whereas the “check +
hit rates” model and the “hit rate only” model (RMSE = .27
and RMSE = .26, respectively) performed similarly.

Figure 4 compared model predictions with human infer-
ences across 6 critical trials4 where observed hit rates and
check rates were at odds with each other (i.e., when one was
high, then the other was low). Not a single model captured
all the qualitative trends across all trial types. Among the
three, the “check rate only” model was the least accurate
one, grossly overestimating hit rates when Alex bought many
eggs and underestimating when few. The “check + hit rates”
model and the “hit rate only” model both captured part of the
trends: When Alex bought just few eggs but all had tickets,
the “check + hit rates” model was the most accurate; when
Alex bought bought many eggs but few had tickets, the “hit
rate only” model performed most similarly to humans.

3In this case, RMSE =
√

( 1
n )∑

n
i=1(θmi −θhi)

2, where n is the
number of participants and θm and θh are hit rates predicted by a
model and inferred by participants, respectively.

4Models made similar predictions on non-critical trials. In the
interest of space and model comparison, we didn’t plot these trials.

Discussions
All in all, no model captured participants’ hit rate inferences
exactly when both check rate and hit rate information was
available. Why did the “check + hit rates” model and the “hit
rate only” model each predict some but not all of the patterns?
One possibility was that hit rate information was more salient
than check rate information. The last four conditions shown
in Figure 4 provided strong evidence for both high check rates
(e.g., 6 bought out of 6 available) and low hit rates (e.g., 0
with a ticket out of 6 bought). When evidence for both was
more or less equally strong, participants seemed to value the
evidence of low hit rates over that of high check rates. In the
first two conditions, there was strong evidence for low check
rates (e.g., 1 bought out 6 available) but only weak evidence
for high hit rates (e.g., 1 with a ticket out of 1 bought). It
seemed only when hit rate information lacked strength did
participants put emphasis on check rate information.

To test whether participants placed a higher weight on hit
rate information, we fit a linear regression model using pre-
dictions generated by the “hit rate only” model and the “check
rate only” model to predict human inferences. The estimated
coefficient of the former (0.64) was greater than that of the
latter (0.42), suggesting that participants may indeed have re-
lied more on observed hit rates than check rates.

Of course, it’s possible that some participants mostly re-
lied on check rates and some on hit rates. In future research,
we could use latent mixture models or similar techniques to
identify subgroups and capture each subgroup’s behavior.

General Discussion
Racial disparities have deep roots in societies around the
world. Unfortunately, awareness doesn’t always translate into
the desire to end disparities. When reminded of racial dispar-
ities in prison, people became even more supportive of harsh
criminal law that helped create them in the first place (e.g.,
Hetey & Eberhardt, 2014, 2018). Aside from stereotypic as-
sociations linking Blacks with crime, we argue that rational
inference alone based on Naı̈ve Utility Calculus (NUC) (Jara-
Ettinger et al., 2016) can also reproduce disparities: If peo-
ple believe police officers are knowledgeable about different
races’ “true crime rates” and act to maximize expected util-
ities (expected rewards of catching criminals relative to the
total costs of checking), they may think groups under heavier
scrutiny have higher crime rates and target them as well.

This is what we found in Experiment 1 when only check
rates were available. To simulate police encounters with-
out evoking stereotypes, we created a “Golden Ticket” game
where robot chickens (“groups”) lay eggs (“groups mem-
bers”) that may or may not have golden tickets (“crime”) in-
side. Each ticket can be redeemed for a prize but each egg
costs a token. Participants watched a knowledgeable, utility-
maximizing agent Alex play a series of chickens, after which
they were asked to infer each chicken’s “hit rate” and decide
whether or not to buy a new egg from it. While participants
had no prior stereotypes linking certain chickens with high
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or low hit rates, they reproduced disparities in Alex’s sam-
pling behavior nonetheless: The more eggs Alex bought, the
more likely participants would buy from the same chicken.
To show that participants were not copying without thinking,
we asked them to infer each chicken’s hit rate and their in-
ferences closely matched a rational NUC model. Once again,
these suggest that merely exposing people to disparities with-
out addressing the underlying causes may well backfire. In
Experiment 2, participants got to observe hit rates in the sam-
ples: Alex opened the eggs they bought in the end to reveal
which ones had tickets and which ones didn’t. Participants
seemed to rely more on this new hit rate information than the
agent’s sampling behavior. Given strong evidence for high
check rates (e.g., Alex bought 6 eggs out of 6) and low hit
rates (e.g., 0 out of 6 eggs had tickets), participants expected
true hit rates to be low. This was captured by a ”hit rate only”
that ignored check rates. When the evidence was strong for
low check rates (e.g., bought 1 out of 6) but weak for high hit
rates (e.g., 1 out of 1 egg had a ticket), participants inferred
the true hit rates to be in a middling range. This inference was
captured by the “check + hit rates” model.

A number of reasons may explain why participants seemed
to value hit rate information more. Perhaps assuming that ob-
served hit rates are equal to true hit rates takes less mental
effort than decoding Alex’s motivation (“They wouldn’t have
bought so many eggs if this chicken weren’t profitable.”). It
could also be that participants doubted Alex’s knowledge af-
ter a few “failures” (“Maybe they haven’t played with this one
before?”), even though they were reminded that Alex knew
all chickens’ hit rates really well. In follow-up studies, we
can ask participants to rate Alex’s credibility throughout the
experiment to examine these hypotheses. Regardless of the
underlying mechanism, findings in Experiment 2 suggested
a way to fight disparities: Showing that groups targeted by
the police are not necessarily more prone to crime may help
people re-evaluate the true crime rates more objectively.

Future directions

Oftentimes, we don’t just see one police officer repeatedly
targeting certain groups but many across the nation targeting
the same groups. To a naı̈ve observer, consensus may be an
even stronger indicator of “ground truth”. In future work,
we wish to look at whether hit rate information becomes less
powerful when it goes against the consensus among multiple
rational agents. Also, we used non-social groups in this study
but it’s likely that people reason about social groups differ-
ently. We will investigate this possibility in the future.
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