
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Beyond the scalar Higgs, in lattice quantum field theory

Permalink
https://escholarship.org/uc/item/52w560gw

Author
Schroeder, Christopher Robert

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52w560gw
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Beyond the Scalar Higgs, in Lattice Quantum Field Theory

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics with Specialization in Computational Science

by

Christopher Robert Schroeder

Committee in charge:

Professor Julius Kuti, Chair
Professor Randolph E. Bank
Professor Benjamin Grinstein
Professor Michael Holst
Professor Vivek Sharma

2009





The dissertation of Christopher Robert Schroeder is ap-

proved, and it is acceptable in quality and form for pub-

lication on microfilm and electronically:

Chair

University of California, San Diego

2009

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Gauge Boson Masses . . . . . . . . . . . . . . . . . . . . 1
1.2 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Higgs sector . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 The Elementary Higgs Model . . . . . . . . . . . 4
1.3.2 Technicolor . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 New Higgs Physics from the Lattice . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Top-Higgs Yukawa model in large NF limit . . . . . . . . 14

2.2.1 Renormalization scheme . . . . . . . . . . . . . . 14
2.2.2 Triviality . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Renormalization group flow . . . . . . . . . . . . 18

2.3 The effective potential and vacuum instability . . . . . . 21
2.3.1 Continuum 1-loop effective potential . . . . . . . 21
2.3.2 RG improved effective potential and vacuum in-

stability . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 The constraint effective potential on the lattice . 23
2.3.4 Hybrid Monte Carlo algorithm and the effective

potential . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Wilsonian renormalization group and

vacuum instability . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Wilson’s running Lagrangian . . . . . . . . . . . . 30
2.4.2 Top-Higgs Yukawa model, vacuum instability, and

running Lagrangian . . . . . . . . . . . . . . . . . 32
2.4.3 Phenomenology from 2-loop continuum RG . . . . 33

2.5 Higgs mass lower bound from the lattice . . . . . . . . . 35
2.5.1 Yukawa couplings of the Top and Bottom quarks 35

iv



2.5.2 One-component Top-Higgs Yukawa model . . . . 37
2.5.3 Phase diagram with chiral overlap fermions . . . . 38
2.5.4 Comparison of large NF and Monte-Carlo results . 40
2.5.5 First results on Higgs mass lower bound . . . . . 41

2.6 Higgs mass upper bound and the heavy
Higgs particle . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.1 Higgs sector as an effective field theory . . . . . . 42
2.6.2 Higgs mass upper bound from the lattice . . . . . 43
2.6.3 Higher derivative (Lee-Wick) Higgs sector . . . . 45
2.6.4 Gauge and Yukawa couplings . . . . . . . . . . . 46
2.6.5 Running Higgs coupling in the higher derivative

Higgs sector . . . . . . . . . . . . . . . . . . . . . 47
2.6.6 Scattering amplitudes . . . . . . . . . . . . . . . . 48
2.6.7 Heavy Higgs particle and the ρ-parameter . . . . 50

Chapter 3 Probing Technicolor Theories with Staggered Fermions . . . . 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Dirac eigenvalues and chiral symmetry . . . . . . . . . . 53
3.3 Simulations and analysis . . . . . . . . . . . . . . . . . . 55
3.4 Staggered improvement . . . . . . . . . . . . . . . . . . . 58
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Chiral Symmetry Breaking in Nearly Conformal Gauge Theories 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Chiral symmetry breaking below the conformal window . 63

4.2.1 Staggered chiral perturbation theory . . . . . . . 63
4.2.2 Finite volume analysis in the p-regime . . . . . . 65
4.2.3 δ-regime and ε-regime . . . . . . . . . . . . . . . . 66

4.3 P-regime Goldstone spectra at Nf = 4 . . . . . . . . . . 69
4.4 P-regime Goldstone spectra at Nf = 8 . . . . . . . . . . 73
4.5 P-regime Goldstone spectra at Nf = 9 . . . . . . . . . . 75
4.6 P-regime Goldstone spectra at Nf = 12 . . . . . . . . . . 77
4.7 Epsilon regime, Dirac spectrum and RMT . . . . . . . . 79
4.8 Inside the conformal window . . . . . . . . . . . . . . . . 81

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



LIST OF FIGURES

Figure 2.1: Upper and lower bounds for the Higgs mass as a function of the
scale of new physics beyond the Standard Model, from [13]. . . 13

Figure 2.2: The exact RG flow of the renormalized couplings λ and y with
the full cutoff dependence. The corresponding bare couplings
are λ0 = 0.1 and y0 = 0.7. For large cutoff, the exact flow
agrees with the continuum RG flow, where the cutoff depen-
dence is omitted. For small cutoff, the exact RG flows to the
bare couplings λ0 and y0, but the continuum RG misleadingly
predicts that λ turns negative. . . . . . . . . . . . . . . . . . . 20

Figure 2.3: The derivative of the effective potential dUeff/dΦ for the bare
couplings y0 = 0.5, λ0 = 0.1,m2

0 = 0.1, for which the vev is
av = 2.035(1). The left side plot is a close-up of the behavior
near the origin. The circles are the results of the simulations
and the curves are given by continuum and lattice renormalized
perturbation theory. . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.4: The running Higgs coupling is plotted for different choices of
the Higgs mass from our numerical solution of the five coupled
2-loop RG equations for the λ, y, g1, g2, g3 couplings. For input,
mt = 175 GeV was used with the experimental values of the
g1, g2, g3 gauge couplings. The 1-loop matching of the couplings
and the starting scale of the RG was chosen at mZ . . . . . . . 34

Figure 2.5: The vacuum expectation value of the lattice field φ0 is plotted
in lattice spacing units a as a function of the hopping parameter
for fixed values of λ̃0 = 10−4, ỹ0 = 0.35 with 3 colors of the Top
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ABSTRACT OF THE DISSERTATION

Beyond the Scalar Higgs, in Lattice Quantum Field Theory

by

Christopher Robert Schroeder

Doctor of Philosophy in Physics with Specialization in Computational Science

University of California, San Diego, 2009

Professor Julius Kuti, Chair

Since the development of the standard model over 40 years ago, one of

the chief endeavors of particle physics has been to understand the Higgs sector of

the theory. Still experimentally undetected despite great efforts, the Higgs sector

remains a mystery, and ideas of what lies beyond have flourished. The aim of the

research described here has been to explore non-perturbatively ideas of greatest

interest which are within reach of current non-perturbative methods and resources

and beyond the current reach of rigorous perturbative investigation. The first is the

relationship between the Higgs boson mass and the energy scale of new phenomena

expected to appear at higher energies due to a peculiar property of Higgs models

known as triviality. The second is nearly conformal gauge theory and its role in

the possible explanation of the Higgs as a composite state, again linking to new

phenomena at higher energies, namely extended technicolor. The imminent advent

of the Large Hadron Collider makes the discovery and understanding of new physics

at higher energies a tangible possibility. In the likely event that new phenomena

are strongly coupled, non-perturbative methods will be crucial to interpreting the

results and producing the next generation of theories.

xiii



Chapter 1

The Higgs Mechanism

The unified theory of the electromagnetic and weak interactions is one of

the great achievements of physics. The Higgs mechanism of spontaneous symmetry

breaking is a core component. The purpose of this chapter is to introduce triviality

and nearly conformal gauge theory in the framework of Higgs physics. Much of

this chapter is based on Peskin and Schroeder’s An Introduction to Quantum Field

Theory [1], Novaes’ Standard Model: An Introduction [2] and Lane’s Two Lectures

on Technicolor [3].

1.1 Gauge Boson Masses

Early electroweak physics experiments demanded that the standard model

of electroweak interactions possess both a high-energy phase with an unbroken

gauge symmetry SU(2)L ⊗ U(1)Y and a low-energy phase where this symmetry is

spontaneously broken down to the U(1) of electromagnetism and the weak inter-

action is mediated by massive gauge bosons. Complicating matters (in hindsight,

perhaps, simplifying them), weak gauge boson masses are prohibited in the high-

energy phase since they are in direct conflict with unbroken gauge symmetry. The

solution found was, essentially, to invent terms which would function as mass terms

at low energies but evaporate in the high-energy phase. This feat was accomplished

by the introduction of a new field endowed with the novel feature of a symmetric

potential with non-zero minima, i.e. a vacuum expectation value (or vev). Thus

1
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the phenomenally successful standard model of electroweak interactions was de-

veloped, in large part, with the Higgs mechanism at its core. Observation further

demanded that the new field be a scalar in the spinor representation of SU(2)L

and assigned a charge of +1/2 under U(1)Y ; hence its covariant derivative

Dµφ =

(
∂µ − igAaµτ

a − i
1

2
g′Bµ

)
φ (1.1)

with scalar field φ, couplings g and g′, SU(2)L gauge boson Aaµ, and U(1)Y gauge

boson Bµ. If the potential for the scalar is constructed to yield the vev

〈φ〉 =
1√
2

(
0

v

)
, (1.2)

then the term (Dµφ)2 yields acceptable mass terms for the gauge bosons

1

2

(
0 v

)(
gAaµτ

a +
1

2
g′Bµ

)(
gAbµτ b +

1

2
g′Bµ

)(
0

v

)
. (1.3)

Substituting τa = σa/2 and writing out the matrix product reveals

1

2

g2v2

4

(
(A1

µ)
2 + (A2

µ)
2
)

+
1

2

v2

4

(
gA3

µ − g′Bµ

)2
. (1.4)

Thus, in the broken phase of the theory, there are three massive vector bosons,

W±
µ =

1√
2
(A1

µ ∓ iA2
µ), Z0

µ =
1√

g2 + g′2
(gA3

µ − g′Bµ) (1.5)

with masses mW = gv/2 and mZ =
√
g2 + g′2v/2, along with the massless electro-

magnetic vector potential,

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ). (1.6)

1.2 Fermion masses

Of course, the standard model must also properly describe fermions. The

covariant derivatives containing the fermion-gauge couplings must take the form

Dµ = ∂µ − igAaµT
a − ig′Y Bµ (1.7)
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for SU(2) representation corresponding to T and U(1) charge Y . In terms of the

vector boson fields, this is

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−)− i
1√

g2 + g′2
Zµ(g

2T 3 − g′2Y )

−i gg′√
g2 + g′2

Aµ(T
3 + Y ), (1.8)

with T± = T 1 ± iT 2. The identification of the electromagnetic interaction is

completed using the Gell-Mann–Nishijima relation [4],

Q = T 3 + Y, (1.9)

and defining the electron charge as

e =
gg′√
g2 + g′2

. (1.10)

It is conventional to introduce the weak mixing angle defined by

sin θw =
g′√

g2 + g′2
; (1.11)

the covariant derivative can then be written

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−)− i
g

cos θw
Zµ(T

3 − sin2 θwQ)− ieAµQ (1.12)

It is important to note that, since g = e/ sin θw and mZ = mW/ cos θw, only

three independent parameters remain, mW , θw, and e. Experimentally, the W

boson couples only to left-handed states, so right-handed fermions must be singlets

under SU(2) while left-handed fermions must be doublets. Hypercharges are then

uniquely determined from corresponding electric charges.

Like the masses for the gauge bosons, masses for the fermions are prohibited

in the electroweak symmetric phase of the theory because explicit mass terms break

the symmetry. Serendipitously, the Higgs field comes to the rescue again. For

example, the electron mass term can be generated as follows. The term

∆Le = −λeĒL · φeR + h.c. (1.13)
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with left-handed SU(2) doublet EL, right-handed singlet eR, and Yukawa coupling

λe (h.c. is short for hermitian conjugate), is gauge invariant as long as the Higgs

field is a neutral SU(2) spinor. Inserting the vev yields the electron mass term,

∆Le = − 1√
2
λevēLeR + h.c., (1.14)

with me = λev/
√

2. Masses for the other fermions can be generated similarly. A

key point is that while these Yukawa couplings allow for the large range in lepton

masses, from the electron at 0.511 MeV to the top quark at 173 GeV, the theory

provides no rationale for this. It is also noteworthy that the quark mass eigenstates

are related to their gauge eigenstates through the non-trivial Cabibbo-Kobayashi-

Maskawa (CKM) matrix, which allows for weak-interaction transitions between

quark generations.

1.3 The Higgs sector

Certainly, introducing the Higgs field and coupling it to the gauge bosons

and fermions has consequences beyond the desired mass terms. These consequences

comprise the Higgs sector. Subsection 1.3.1 is a brief description of the Higgs

sector for a fundamental scalar Higgs, while subsection 1.3.2 introduces another

possibility, that the Higgs is a composite particle produced by new physics referred

to generally as technicolor.

1.3.1 The Elementary Higgs Model

The standard choice for the Higgs Lagrangian is

L = |Dµφ|2 + µ2φ†φ− λ
(
φ†φ
)2

(1.15)

with vev

v =

√
µ2

λ
. (1.16)

Expanding φ around the vev as

φ(x) =
1√
2

(
0

v + h(x)

)
(1.17)
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yields the potential energy and interactions of the Higgs boson, h. The potential

takes the form

LV = −µ2h2 − λvh3 − 1

4
λh4, (1.18)

i.e., a scalar particle with a quartic potential and a mass

mh =
√

2µ =
√

2λv. (1.19)

Expanding the covariant derivative yields the kinetic term for the Higgs,

1

2
(∂µh)

2, (1.20)

as well as couplings to the weak bosons,(
m2
WW

µ+W−
µ +

1

2
m2
ZZ

µZµ

)(
1 +

h

v

)2

. (1.21)

Likewise, the terms used to generate fermion masses produce Higgs-fermion inter-

actions such as

−meĒL

(
1 +

h

v

)
eR. (1.22)

A fundamental scalar is only one possibility for constructing the Higgs

Mechanism. While significant experimental evidence for the electroweak standard

model has been found, the Higgs sector remains largely unexplored. Evidence for

or against the fundamental scalar model has been difficult to obtain for decades.

In the meantime, several theoretical concerns with this model have been raised.

The description of electroweak symmetry breaking relies on input parame-

ters and does not address dynamics. The model provides no reason for electroweak

symmetry breaking and no explanation for the observed energy scale of 1 TeV or

the vev of 246 GeV. There is a striking hierarchy between the electroweak scale

and the Grand Unified Theory (GUT) scale of 1016 GeV, where the strong and

electroweak interactions appear to converge through renormalization. In elemen-

tary Higgs models, the hierarchy is put in by hand, with no explanation; but that

is not all. The Higgs mass is quadratically unstable against radiative corrections

[5]; therefore a renormalized Higgs mass on the electroweak scale of order 1 TeV

would require the mass on the more natural GUT scale to be tuned to a precision of



6

order 10−32. That is, the separation of scales inherent in elementary scalar models

is not only unexplained but also unnatural.

There is no explanation of the large range of fermion masses or flavor.

In addition to the hierarchy of scales of gauge symmetry breaking, there is a

substantial hierarchy of scales present in the fermion masses, or equivalently in

the Yukawa couplings. Again, in elementary Higgs models, this scale separation is

dialed in without rationale. Nor is any meaning given to flavor – from the number

of quark and lepton generations to the observed patterns of flavor changing; it, too,

is simply an input. Flavor-symmetry breaking Yukawa couplings of Higgs bosons

to fermions are arbitrary free parameters.

Elementary Higgs models are trivial. In such a model, with an energy cutoff

Λ , the self-coupling of the Higgs boson at an energy scale µ is given, to a good

approximation, by

λ(µ) ≈ λ(Λ)

1 + 24
16π2λ(Λ) log

(
Λ
µ

) . (1.23)

The coupling vanishes for all µ as the cutoff Λ is removed to infinity; that is, the

renormalized theory is free and physically meaningless. Yukawa and gauge cou-

plings are ignored here but are not expected to alter the result qualitatively. The

standard interpretation of triviality is that the model is merely an effective ap-

proximation at low energies, and an underlying, non-trivial model will distinguish

itself at higher energies. In this interpretation, the Higgs mass, vev, and coupling

are constrained by the scale at which the low-energy approximation breaks down.

Exploration of these so-called triviality bounds is the subject of Chapter 2.

1.3.2 Technicolor

In response to these concerns, a dynamical approach to electroweak symme-

try breaking, technicolor, was introduced and extended to include flavor symmetry

breaking. The motivating premise is that every fundamental energy scale ought to

have a dynamical origin. Just as renormalization of the strong coupling in QCD

triggers chiral symmetry breaking at the scale ΛQCD = 200 MeV, a new strong

interaction, technicolor, could give rise dynamically to the electroweak scale. In



7

technicolor, there is a new set of fermions, techniquarks, belonging to a complex

representation of a new gauge group – technicolor, SU(NTC) – whose coupling αTC

becomes strong at a scale ΛTC of order 100 GeV, in close analogy to QCD. When

αTC becomes strong, the techniquark chiral symmetry is spontaneously broken,

Goldstone bosons and a techniquark condensate appear, and the Higgs mechanism

is enacted if the proper couplings exist between techniquarks and the electroweak

gauge fields. In particular, the crucial ratio of MW/MZ = cos θw is produced,

without a fundamental scalar.

Since technicolor is an asymptotically free theory like QCD, it immediately

eliminates the concerns over naturalness, hierarchy, and triviality. The ground-

state technihadron masses are naturally of order ΛTC , and there are no large mass

renormalizations and hence no need for fine tuning. Exponential separation of

scales is inherent, since ΛTC is produced from the logarithmic running of αTC , and

asymptotically free theories are known to be non-trivial. To quote Lane, “No other

scenario for the physics of the TeV scale solves these problems so neatly. Period.”

[3]. On the other hand, basic technicolor fails to address the questions of flavor

physics, neglects to generate quark and lepton masses, and produces unnecessary

additional Goldstone bosons – technipions, πT – which must be heavy enough to

have thus far escaped detection. Extended technicolor (ETC) was developed to

address all of these issues [6].

In extended technicolor, ordinary SU(3) color and SU(NTC) technicolor are

embedded into the ETC gauge group, GETC , along with flavor symmetries. By

design, flavor gauge symmetries are broken, leaving color and technicolor intact,

at an energy scale well above the TC scale of 0.1-1.0 TeV,

ΛETC ∼METC/gETC � ΛTC ≈
1

2
TeV. (1.24)

METC is the mass scale of the flavor gauge boson and gETC is the ETC gauge

coupling. All global flavor symmetries must be broken explicitly to avoid producing

any light pseudo-Goldstone particles. Coupling quarks and leptons to techniquarks

gives rise to mass terms that, at the scale METC , take the form

mq(METC) ∼ ml(METC) ∼ g2
ETC

M2
ETC

〈T̄LTR〉ETC . (1.25)
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The bilinear condensate at this scale is related through renormalization to the

condensate at the TC scale by

〈T̄LTR〉ETC = 〈T̄LTR〉TC exp

(∫ METC

ΛTC

dµ

µ
γm(µ)

)
. (1.26)

An estimate for the latter is obtained by scaling up QCD:

〈T̄LTR〉TC ≈ 4πF 3
T , (1.27)

while the anomalous dimension, γm, is calculable in perturbation theory,

γm(µ) =
3C2(R)

2π
αTC(µ) +O(α2

TC), (1.28)

where C2(R) is the quadratic Casimir of the techniquark representation R. For

the fundamental representation, C2(NTC) = (N2
TC − 1)/2NTC . Technipion masses

of the form

M2
πT

(METC) ∼ 1

F 2
T

g2
ETC

M2
ETC

〈T̄LTRT̄RTL〉ETC (1.29)

are generated similarly.

In any technicolor model, there is a spectrum of technimesons comparable

to that of QCD: spin-zero technipions, spin-one isovector technirhos and isoscalar

techniomegas, etc. In minimal technicolor, with a single doublet, T = (TU , TD),

three technipions are produced and are eaten by the weak gauge bosons. The

lightest remaining technihadron is the ρT with decay channel ρT → WLWL, i.e.

longitudinal weak bosons. In this case, very high-energy collisions would be nec-

essary to discover technicolor, beyond the scope of the LHC but perhaps within

reach of the 200 TeV Very Large Hadron Collider (or the 2 TeV Superconducting

Super Collider). However, in models with more techniquark doublets, signatures

of technicolor are expected to be accessible at the LHC and perhaps even at the

Tevatron.

Extended technicolor addresses the most pressing concerns regarding ele-

mentary Higgs models, but comes with challenges of its own. Key concerns are

disagreements with experimental constraints on flavor-changing neutral currents

(FCNC’s), the precision electroweak measurements, and the large mass of the top

quark. As described below, the FCNC and precision electroweak conflicts arise
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from the assumption that the dynamics of extended technicolor are very similar to

those of QCD, only at higher energies. This assumption is very possibly wrong. In

particular, if the ETC gauge coupling runs very slowly, or walks, over a large range

of energies above the electroweak scale, then the disagreements may be greatly re-

duced. This walking behavior could arise from proximity to a low-energy fixed

point in parameter space; i.e., ETC could be a nearly conformal theory. Walk-

ing technicolor is perhaps the most natural way to explain the large separation of

energy scales which the standard model seems to require.

Flavor-changing neutral currents occur in extended technicolor through the

same interactions which generate fermion masses, through reactions of the form

q → T → q′ and q → T → T ′ → q′. Kaon physics has shown that reactions of this

nature are strongly suppressed. Essentially, this means that the ETC scale must

be at least 1,000 TeV. However, assuming QCD-like scaling, such a high scale for

ETC breaking would result in quark, lepton, and technipion masses orders of mag-

nitude too small. A walking coupling allows the model to accommodate both the

suppression of the FCNC and proper masses for the fermions and technihadrons.

The basic electroweak parameters, α(MW ), MW , and sin θw, have been

measured with sufficiently high precision to place some experimental constraints on

the Higgs sector. The oblique parameter S, which measures the MW -MZ splitting

due to weak-isospin effects, is the most notable. Again assuming QCD-like scaling,

extended technicolor predicts a value of order one for the S parameter, while the

experimental limit is order 0.1. There is no calculation of the S parameter from

extended technicolor without assuming QCD-like dynamics; this calculation is one

of the primary goals of current lattice efforts.

The large value of the top quark mass, in particular in relation to the mass

of the bottom quark, poses a problem which it seems extended technicolor can not

solve without some fine tuning. The large mass demands a low ETC scale or an

enhancement from walking which is too much to ask. Further, the large ratio of

top to bottom mass requires large weak isospin violation which is very difficult

to accommodate. The solution to this problem may lie in extensions to walking

technicolor, such as topcolor-assisted technicolor [7].
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Chapters 3 and 4 describe non-perturbative investigations into the subject

of nearly conformal gauge theory in the context of technicolor. To date, the main

objective of these investigations has been to locate the lower edge of the conformal

window in theories with QCD-like SU(3) gauge interaction and a relatively large

number of fermions in the fundamental representation. Long-term goals include

demonstrating a walking gauge coupling if possible, calculating the electroweak

precision S parameter in a nearly conformal theory, and understanding the dy-

namics of this class of theories beyond serious limitations in perturbation theory.

Additionally, studies of fermions in higher representations, in particular the two-

index symmetric and adjoint, have been planned and begun. As described in

Chapter 3, these are considered interesting possibilities due to the fact that higher

representations may allow for walking with fewer flavors, which in perturbation

theory reduces tensions with electroweak parameters.



Chapter 2

New Higgs Physics from the

Lattice

Abstract

We report the first results from our comprehensive lattice tool set to explore

non-perturbative aspects of Higgs physics in the Standard Model. We demonstrate

in Higgs-Yukawa models that Higgs mass lower bounds and upper bounds can be

determined in lattice simulations when triviality requires the necessity of a finite

cutoff to maintain non-zero interactions. The vacuum instability problem is inves-

tigated and the lattice approach is compared with the traditional renormalization

group procedure which sets similar goals to correlate lower and upper Higgs mass

bounds with the scale of new physics. A novel feature of our lattice simulations

is the use of Ginsparg-Wilson fermions to represent the effects of Top quark loops

in Higgs dynamics. The need for chiral lattice fermions is discussed and the ap-

proach is extended to full Top-Higgs-QCD dynamics. We also report results from

our large NF analysis of Top-Higgs Yukawa models to gain analytic insight and

to verify our new lattice tool set which is deployed in the simulations. The role

of non-perturbative lattice studies to investigate heavy Higgs particle scenarios is

illustrated in extensions of the Standard Model.

11
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2.1 Introduction

The search for the Higgs has become a major issue in particle physics as

the LHC is nearing its completion. The Standard Model (SM) cannot be consid-

ered complete given that the Higgs is as-yet unobserved and it is not clear how

electroweak symmetry is broken in nature. If the Higgs is seen, its properties

could tell us about physics beyond the Standard Model, such as the energy scale

of a more fundamental theory. The current lower bound for the Higgs mass from

direct searches is 114.4 GeV [8]. The Higgs mass can also be inferred indirectly

by fitting the Standard Model to a host of electroweak precision measurements.

The best perturbative fit gives mH = 76+33
−24 GeV, so the data certainly seem to

prefer the Higgs to be light [9]. However, the global fitting procedure, which fa-

vors a surprisingly low Higgs mass, has its own intrinsic issues, perhaps a hint

that deviations from the Standard Model are already present [10]. Larger Higgs

masses together with new physics threshold effects at the TeV scale will require

new extended analysis [11, 12] where non-perturbative effects may come into play.

Based on the assumption that the Standard Model is only valid up to some

energy scale, lower and upper bounds on the Higgs mass were established before

without relying on input from electroweak precision measurements. Bounds on

the Higgs mass are valuable for two reasons. Firstly, they cut down the parameter

space where one searches for a Standard Model Higgs. Secondly, if the Higgs is

found, measuring its mass and knowing the bounds it must obey would indicate

the maximum energy scale up to which the Standard Model can work. In phe-

nomenology, the origin of the lower bound is thought to be the vacuum instability

the Top quark loop would generate, if the Higgs mass were too light. The upper

bound in phenomenological analysis is simply calculated by not allowing the run-

ning Higgs coupling λ(t) to become strong at the cutoff scale Λ which represents

new physics before λ(t) would run into the fictitious Landau pole. These ideas on

lower and upper Higgs mass bounds have been applied to the Standard Model for

almost 30 years and have been increasingly refined.

The bounds given by the state-of-the-art calculations were reviewed in [13]

and shown in Figure 2.1, based on the original work in [14] and [15]. There are
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0

Landau Pole

Vacuum Instability

Figure 2.1: Upper and lower bounds for the Higgs mass as a function of the scale
of new physics beyond the Standard Model, from [13].

several things one can learn from this plot. The Standard Model apparently cannot

generate a Higgs boson heavier than 1 TeV without strong Higgs self-interactions

and a low threshold for new physics in the TeV range, a scenario not consistent with

the perturbative loop expansion of the electroweak precision analysis. What non-

perturbative modifications on the TeV scale would support a heavy Higgs particle,

consistent with electroweak precision data, is one of the motivations for our lattice

studies [11, 12]. The lower bound is interesting for today’s phenomenology, given

the current experimental limits. If the Higgs mass is around 100 GeV, this would

intersect with the lower bound in Figure 2.1 somewhere between 10 and 100 TeV,

beyond which apparently new physics should enter.

One major goal of our lattice Higgs project is to understand the role of

vacuum instability and the Landau pole in an exact non-perturbative setting when

the intrinsic cutoff in the Higgs sector is not removable and low in the TeV range.

Another goal is to explore the role of non-perturbative Higgs physics from the

lattice in extensions of the perturbative SM analysis, including the possibility of a

heavy Higgs particle within the Higgs reach of the LHC.

The outline of this paper is as follows. In section 2 we will report results

from the large NF analysis of the Top-Higgs Yukawa model of a single real scalar

field coupled to NF fermions. The influence of the non-removable intrinsic cutoff

(triviality) on the exact renormalization group (RG) flow is exhibited. The vac-
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uum instability problem of the model is discussed on the lattice in section 3 and

compared with the traditional renormalization group procedure of the Standard

Model (earlier versions of this work on vacuum instability have been discussed in

[16] and [17]). In section 4 we present the Wilsonian view on the renormalization

group as applied to the vacuum instability and Higgs lower bound problems. The

first lattice simulation results on the Higgs mass lower bound, using chiral lattice

fermions in Top-Higgs Yukawa models, are reported in section 5.

Using the higher derivative (Lee-Wick) extension of the Higgs sector [18, 19,

20], we will illustrate in section 6 how non-perturbative lattice studies might help

to investigate heavy Higgs particle scenarios in the 500-800 GeV Higgs mass range

relevant for future LHC physics. Constraints from electroweak precision data on

the heavy Higgs particle are briefly discussed.

2.2 Top-Higgs Yukawa model in large NF limit

For pedagogical purposes, we first consider a Higgs-Yukawa model of a single

real scalar field coupled to NF massless fermions. The saddle point approximation

in the large NF limit becomes exact and this will allow us to demonstrate that

the theory is trivial. We will also calculate the flow of the renormalized couplings

as a function of the energy scale to identify problems with the vacuum instability

scenario when the intrinsic cutoff is non-removable. Similar behavior is expected

at finite NF which requires non-perturbative lattice simulations.

2.2.1 Renormalization scheme

Let us start with the bare Lagrangian of the Higgs-Yukawa theory in Eu-

clidean space-time, which is

L =
1

2
m2

0φ
2
0 +

1

24
λ0φ

4
0 +

1

2
(∂µφ0)

2 + ψ̄a0 (γµ∂µ + y0φ0)ψ
a
0 , (2.1)
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where a = 1, ..., NF sums over the degenerate fermion flavors and the subscript 0

denotes bare quantities. We rewrite this as

L =
1

2
m2

0Zφφ
2 +

1

24
λ0Z

2
φφ

4 +
1

2
Zφ (∂µφ)2 + Zψψ̄

a
(
γµ∂µ + y0

√
Zφφ

)
ψa

=
1

2
(m2 + δm2)φ2 +

1

24
(λ+ δλ)φ4 +

1

2
(1 + δzφ) (∂µφ)2

+(1 + δzψ)ψ̄aγµ∂µψ
a + ψ̄a(y + δy)φψa, (2.2)

where we have introduced the wavefunction renormalization factors Zφ = 1 +

δzφ, Zψ = 1 + δzψ and renormalized parameters with their corresponding coun-

terterms. The connections between the bare and renormalized parameters are

m2
0Zφ = m2 + δm2, λ0Z

2
φ = λ+ δλ, Zψ

√
Zφy0 = y + δy. (2.3)

In the limit where NF becomes large, all Feynman diagrams with Higgs loops are

suppressed relative to those with fermion loops. Hence, two of the counterterms

vanish, δy = 0, δzψ = 0, as there are no radiative corrections to the fermion

propagator or to the Higgs-fermion coupling. Let us specify the renormalization

conditions which determine the remaining counterterms.

In the large NF limit, the renormalized Coleman-Weinberg effective poten-

tial [21] is

Ueff =
1

2
m2φ2 +

1

24
λφ4 +

1

2
δm2φ2 +

1

24
δλφ4 − 2NF

∫
k

ln[1 + y2φ2/k2] (2.4)

containing the tree-level contributions from the renormalized parameters and their

counterterms, and the infinite sum of all diagrams with one fermion loop and an

even number of external φ legs. The factor NF comes from all the possible fermions

which can appear in the single loop and we use the notation 1
(2π)4

∫
d4k →

∫
k

for

loop integrals. The vacuum expectation value φ = v is where Ueff has an absolute

minimum i.e. U ′
eff(v) = 0. In the Higgs phase of the theory, v 6= 0. At tree-level,

this gives the relation

m2 +
1

6
λv2 = 0, (2.5)

coming from the first two terms in Equation (2.4). Our first renormalization con-

dition is that we want to maintain the tree-level relation in Equation (2.5) exactly,
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giving

δm2 +
1

6
δλv2 − 4NFy

2

∫
k

1

k2 + y2v2
= 0. (2.6)

The counterterms exactly cancel all the finite and infinite contributions of the

radiative diagrams. The same relation can also be determined by demanding that

the tadpole diagram is exactly cancelled by the counterterms.

In the Higgs phase, we define the Higgs fluctuation around the vev as φ =

ϕ+ v. At tree-level, the mass of the Higgs fluctuation i.e. U ′′
eff(v) is

m2
H = m2 +

1

2
λv2 =

1

3
λv2. (2.7)

In the large NF limit, the inverse propagator of the Higgs fluctuation is

G−1
ϕϕ(p

2) = p2 +m2 +
1

2
λv2 + p2δzφ + δm2 +

1

2
δλv2 − Σ(p2)

Σ(p2) = −4NFy
2

∫
k

y2v2 − k.(k − p)

(k2 + y2v2)((k − p)2 + y2v2)
, (2.8)

where all Higgs-loop diagrams are suppressed relative to the single fermion-loop

diagram. We impose the condition that

G−1
ϕϕ(p

2 → 0) = p2 +m2
H , (2.9)

which separates into two renormalization conditions:

δm2 +
1

2
δλv2 − Σ(p2 = 0) = 0 (2.10)

and

δzφ −
dΣ(p2)

dp2

∣∣∣∣
p2=0

= 0. (2.11)

The renormalization condition Equation (2.10) maintains the tree-level relation in

Equation (2.7) exactly. Again, the counterterms precisely cancel all the finite and

infinite radiative contributions. We should point out that the Higgs mass defined

as the zero-momentum piece of G−1
ϕϕ is identical to that defined via the curvature

U ′′
eff(v). This is not the same as the true physical mass given by the pole of the

propagator, and these masses can be related to one another in perturbation theory.

The renormalization conditions Equations (2.6) and (2.10) can easily be

solved. Because we wish to demonstrate triviality in this theory, we use some
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finite cutoff in the momentum integrals and examine what occurs as this cutoff is

removed. We will use a simple hard-momentum cutoff |k| ≤ Λ. Exactly the same

conclusions would be reached using instead e.g. Pauli-Villars regularization. The

non-zero counterterms after the loop integration are

δm2 =
NFy

2

2π2

[
1

2
Λ2 +

y4v4

2(Λ2 + y2v2)
− 1

2
y2v2

]
,

δλ = −3NFy
4

π2

[
y2v2

2(Λ2 + y2v2)
− 1

2
− 1

2
ln

(
y2v2

Λ2 + y2v2

)]
,

δzφ = −NFy
2

2π2

[
1

4
ln

(
y2v2 + Λ2

y2v2

)
+
−5Λ4 − 3Λ2y2v2

12(Λ2 + y2v2)2

]
. (2.12)

As we said earlier, in the large NF limit, the fermion inverse propagator receives

no radiative correction,

G−1
ψψ(p) = pµγµ + yv, (2.13)

so we identify the fermion mass as mt = yv (looking ahead to the Top quark),

which we substitute into all of the above equations.

2.2.2 Triviality

Let us first consider the regime mt/Λ � 1, where the cutoff is much larger

than the physical scale. In this limit, we get

Zφ =

[
1 +

NFy
2
0

8π2

(
ln

[
Λ2

m2
t

]
− 5

3

)]−1

. (2.14)

For any finite bare Yukawa coupling y0, the Higgs wavefunction renormalization

factor Zφ vanishes logarithmically as the cutoff is removed, mt/Λ → 0. This

same logarithmic behavior, for any choice of bare couplings, will appear in all of

the renormalized couplings, leading to the triviality scenario: a finite cutoff must

be kept to maintain non-zero interactions. Explicitly, the renormalized Yukawa

coupling is

y2 = y2
0Zφ = y2

0

[
1 +

NFy
2
0

8π2

(
ln

[
Λ2

m2
t

]
− 5

3

)]−1

→
[
NF

8π2
ln

Λ2

m2
t

]−1

, as
mt

Λ
→ 0.

(2.15)
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For the renormalized Higgs coupling, we have

λ = λ0Z
2
φ − δλ = λ0Z

2
φ +

3NFy
4

π2

[
m2
t

2(Λ2 +m2
t )
− 1

2
− 1

2
ln

(
m2
t

Λ2 +m2
t

)]
→ Z2

φ

[
λ0 +

3NFy
4
0

π2

(
−1

2
− 1

2
ln
m2
t

Λ2

)]
→ 12

[
NF

8π2
ln

Λ2

m2
t

]−1

, (2.16)

as
mt

Λ
→ 0.

The slow logarithmic vanishing of y and λ allows to have a relatively large separa-

tion of cutoff and physical scales and still maintain significant interactions. How-

ever, the standard renormalization procedure of removing the cutoff completely

gives a non-interacting theory. Although completely unphysical, we can also con-

sider the limit mt/Λ � 1, where the cutoff is much below the physical scale.

From Equation (2.12), we see this gives δλ = 0, δzφ = 0, and hence Zφ → 1.

In this limit, the connection between bare and renormalized parameters is simply

λ = λ0, y = y0. This result is not surprising: deep in the cutoff regime, we sim-

ply have the bare theory, with no separation into renormalized parameters and

their counterterms. This will be relevant when we discuss whether the vacuum can

become unstable.

2.2.3 Renormalization group flow

The physical properties of the theory are fixed as soon as one chooses a

complete set of bare parameters. As the cutoff is varied, the renormalized couplings

flow in order to maintain exactly the renormalization conditions we have imposed.

Using the explicit cutoff dependence of y and λ, we can calculate this Callan-

Symanzik flow. In the limit mt/Λ � 1, from Equations (2.15) and (2.16), we

have

Λ
dy2

dΛ
= −y2

0Z
2
φ

NFy
2
0

4π2
= −NFy

4

4π2
,

Λ
dλ

dΛ
=

1

16π2

[
−8NFλy

2 + 48NFy
4
]
. (2.17)

The same β functions would be obtained in the large NF limit for the running y

and λ couplings in scale dependent RG flows using e.g. dimensional regularization,
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where no cutoff would explicitly appear. (Since increasing Λ corresponds to de-

creasing mass scale µ, the β functions in Equation (2.17) have opposite signs). It is

important to note that the two RG schemes have very different physical meanings:

Equation (2.17) describes the response to changing the cutoff whereas the scale de-

pendent RG flow compensates for the arbitrary choice of the renormalization scale

at finite cutoff. When the cutoff is far above the physical scales, the finite cutoff

effects are negligible and we expect to reproduce the unique cutoff-independent

β functions. However, as the cutoff is reduced and mt/Λ increases, this cannot

continue to hold indefinitely, as the renormalized couplings must eventually flow

to the bare ones, as explained above.

Let us demonstrate an explicit example of the Callan-Symanzik RG flow in

the presence of a finite cutoff. In the large NF limit, mt = yv = y0v0. The bare

vev is determined by the minimum of the bare effective potential

Ueff,0 =
1

2
m2

0φ
2
0 +

1

24
λ0φ

4
0 − 2NF

∫
k

ln
[
1 + y2

0φ
2
0/k

2
]
. (2.18)

Using a hard-momentum cutoff, this gives

m2
0 +

1

6
λ0v

2
0 −

NFy
2
0

2π2

[
1

2
Λ2 +

1

2
y2

0v
2
0 ln

(
y2

0v
2
0

Λ2 + y2
0v

2
0

)]
= 0. (2.19)

We express all dimensionful quantities in units of the cutoff Λ. We pick some fixed

values for λ0 and y0. Varying the value of m2
0/Λ

2 changes the solution v0/Λ of

Equation (2.19) and hence the ratio mt/Λ. As we said, choosing the values of

the bare parameters completely determines everything in the theory. For example,

to attain a very small value of mt/Λ requires m2
0/Λ

2 to be tuned quite precisely.

Using Equation (2.19), the critical surface, where v0/Λ = 0, is the transition line

m2
0

Λ2
− NFy

2
0

4π2
= 0. (2.20)

Using Equations (2.3) and (2.12), all of the counterterms and renormalized pa-

rameters can be expressed in terms of λ0, y0,m
2
0 and v0. Solving this set of simul-

taneous equations is a simple numerical exercise. We make an arbitrary choice

λ0 = 0.1, y0 = 0.7 which would correspond to the physical Higgs below its lower

bound in phenomenological considerations. Varying the value of m2
0/Λ

2, we ex-

plore numerically the range 10−13 < mt/Λ < 102. The results in a limited range
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Figure 2.2: The exact RG flow of the renormalized couplings λ and y with the full
cutoff dependence. The corresponding bare couplings are λ0 = 0.1 and y0 = 0.7.
For large cutoff, the exact flow agrees with the continuum RG flow, where the
cutoff dependence is omitted. For small cutoff, the exact RG flows to the bare
couplings λ0 and y0, but the continuum RG misleadingly predicts that λ turns
negative.

are plotted in Figure 2.2. When the cutoff is high, the exact RG flow is exactly

the same as if the cutoff had been completely removed and follows precisely the

continuum form of Equation (2.17). However, as the cutoff is reduced, the exact

RG flow eventually breaks away from the continuum form and reaches a plateau

at the value of the bare coupling.

The continuum RG in the above example predicts that λ turns negative at

some energy scale as the flow continues. This was used in the past as an indication

that the ground state of the theory turns unstable at that scale which would

determine the energy scale of new physics necessary to sustain a particular value

of the physical Higgs mass (vacuum instability bound). As shown above, the true

RG flow with the full cutoff dependence saturates at λ0 and does not turn negative

under the necessary λ0 > 0 stability requirement of the model. This makes the

phenomenological RG method and the apparent vacuum instability quite suspect

in the presence of the non-removable finite cutoff which is required by triviality of

the renormalized couplings.

The absence of vacuum instability will be demonstrated directly in the next

section using the Higgs effective potential. In sections 4 and 5 we will propose a
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lattice strategy to determine the Higgs mass lower bound in the presence of an

intrinsic cutoff without relying on the continuum RG flow. In this new strategy

even the λ0 > 0 condition might be relaxed by adding new irrelevant operators,

like the λ6

Λ2φ
6 term, to keep the stability of the cutoff theory intact.

2.3 The effective potential and vacuum instabil-

ity

First, we will present here the RG improved one-loop calculation of the

effective potential with unstable vacuum when the cutoff is ignored. Next we show

the absence of vacuum instability when the cutoff is correctly enforced.

2.3.1 Continuum 1-loop effective potential

For the Higgs-Yukawa model with NF fermions of Section 2, the 1-loop

renormalized effective potential is

Ueff =
1

2
m2φ2 +

1

24
λφ4 +

1

2
δm2φ2 +

1

24
δλφ4 − 2NF

∫
k

ln[1 + y2φ2/k2]

+
1

2

∫
k

(
ln[k2 + V ′′(φ)]− ln[k2 + V ′′(0)]

)
,

V =
1

2
m2φ2 +

1

24
λφ4, (2.21)

where the Higgs-loop contributions are also included now. For consistency, we

impose exactly the same renormalization conditions Equations (2.10) and (2.11)

used in Section 2, including all the Higgs-loop radiative corrections. Because δy

and δzψ are non-zero (we no longer impose the large NF limit), we specify the two

additional renormalization conditions. The fermion inverse propagator is

G−1
ψψ(p) = pµγµ + yv + δzψpµγµ + δyv − ΣF (p),

ΣF (p) = y2

∫
k

−kµγµ + yv

(k2 + y2v2)((k − p)2 +m2
H)
, (2.22)

the radiative correction coming from a single Higgs-loop diagram, and we require

that

G−1
ψψ(p→ 0) = pµγµ + yv. (2.23)
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This gives two renormalization conditions,

δyv − ΣF (p→ 0) = 0 ,

δzψ −
dΣF

d(pµγµ)

∣∣∣∣
p→0

. (2.24)

Again, the counterterms completely remove all the finite and infinite parts of the

radiative corrections. We regulate the momentum integrals using e.g. a hard-

momentum cutoff. The counterterms and the renormalized effective potential are

calculated exactly using a finite cutoff. We then take the naive limit φ/Λ → 0 to

remove all cutoff dependence. This ignores the fact that a finite and possibly low

cutoff is required to maintain λ, y 6= 0 (a crucial point why the instability does not

occur in the presence of finite cutoff).

The continuum form of the 1-loop renormalized effective potential is given

by

Ueff =
1

2
m2φ2 +

1

24
λφ4 − NFy

4

16π2

[
−3

2
φ4 + 2v2φ2 + φ4 ln

φ2

v2

]
+

1

16π2

[
1

16
(λ2φ4 − 2λφ2m2

H) ln
m2 + λφ2/2

m2
H

+
1

16
m4
H ln

m2 + λφ2/2

m2
− 3

32
λ2φ4 +

7

16
λφ2m2

H

]
, (2.25)

where m2
H = λv2/3. Due to our choice of renormalization conditions, the tree-level

vev v =
√

3m2
H/λ is not shifted: one can check explicitly that Ueff in Equation

(2.25) has its minimum at φ = v. The large NF limit can be recovered by omitting

the Higgs-loop terms.

2.3.2 RG improved effective potential and vacuum insta-

bility

The stability of the ground state is determined by the behavior of Ueff for

large φ. We see from Equation (2.25) that the dominant terms in this regime are of

the form λ2φ4 ln(φ2/v2) and −NFy
4φ4 ln(φ2/v2). The negative fermion term brings

up the possibility that the vev v is unstable. Hence stability is determined by the

relative values of λ2 and y4, which are related to mH and mt. If the fermionic term
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dominates at large φ, the minimum at v is only a local one and will decay. If we

believe that the vacuum is absolutely stable, then new degrees of freedom must

enter at the scale where Ueff(φ) first becomes unstable. For given values of mH and

mt, this predicts the emergence of new physics. Turning this around, let us fix mt

and ask that no new stabilizing degrees of freedom are needed for φ ≤ E. Then

we obtain a lower bound mH(E): if the Higgs is lighter than this, Ueff is already

unstable for φ below E because the fermion term dominates even earlier.

Improved vacuum instability can be shown via the running renormalized

couplings in RG setting. We can define a set of renormalization conditions in the

continuum, for example in the MS scheme, where the couplings flow with the

renormalization scale µ. The 1-loop RG equations for the Higgs-Yukawa model

are

µ
dy

dµ
=

1

8π2
(3 + 2NF )y4,

µ
dλ

dµ
=

1

16π2
(3λ2 + 8NFλy

2 − 48NFy
4). (2.26)

We can set the initial conditions λ(µ = v) = 3m2
H/v

2 and y(µ = v) = mt/v. If mt

is sufficiently heavy relative to mH , the Yukawa coupling dominates the RG flow

and dλ/dµ < 0. The renormalized Higgs coupling eventually becomes negative

at some µ = E. If the instability occurs at very large φ/v, large logarithmic

terms ln(φ/v) in Ueff might spoil the perturbative expansion. This can be reduced

using renormalization group improvement to resum the leading large logarithms.

The dominant terms of Ueff at large φ then become λ(µ)φ4(µ). Hence λ(E) = 0

indicates that the ground state is just about to become unstable.

2.3.3 The constraint effective potential on the lattice

We can calculate the exact effective potential non-perturbatively, using lat-

tice simulations. This was first shown in the pure Higgs theory by Kuti and Shen

[22]. There is some finite lattice spacing a on the lattice which restricts the mo-

menta |pµ| ≤ π/a replacing the sharp momentum cutoff used in section 2. For a
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Higgs-Yukawa theory with NF fermions, the Euclidean lattice partition function is

Z =
∏
x

∫
dφ0(x)[Det(D[φ0])]

NF exp(−S[φ0]),=
∏
x

∫
dφ0(x) exp(−Seff [φ0])

S =
∑
x

1

2
m2

0φ
2
0(x) +

1

24
λ0φ

4
0(x) +

1

2
(∂µφ0(x))

2,

(D[φ0])xy = γµ∂µ,xy + y0φ0(x)δxy, (2.27)

where the partial derivatives are replaced by finite lattice differences. If the inte-

grand is positive-definite, it can be interpreted as a probability density and impor-

tance sampling (i.e. Monte Carlo integration) can be used to calculate expectation

values, e.g. 〈φ0〉, non-perturbatively with the exact distribution

[Det(D)]NF exp(−S). All dimensionful quantities are calculated in units of the

lattice spacing a. There is a phase diagram in the bare-coupling space m2
0, λ0, y0.

The Higgs phase and the symmetric phase are separated by a second order tran-

sition, where the vev, va, and the masses mHa and mta, vanish. Since the vev

and masses are non-zero in physical units, the transition corresponds to the con-

tinuum limit a → 0. To make the cutoff Λ = π/a large, the bare couplings must

be tuned to be close to the transition line. If we calculate via simulations that

e.g. av = 〈aφ〉 ≈ 0.05 for some choice of bare couplings, we can use v = 246 GeV

to convert this into a cutoff Λ ≈ 15 TeV, as well as determine mH and mt in

physical units.

In a finite space-time volume Ω, we will use the constraint effective potential

[22, 23]. For a pure scalar field theory, this is

exp(−ΩUΩ(Φ)) =
∏
x

∫
dφ(x)δ

(
Φ− 1

Ω

∑
x

φ(x)

)
exp(−S[φ]). (2.28)

The delta function enforces the constraint that the scalar field φ fluctuates around

a fixed average Φ. The constraint effective potential UΩ(Φ) has a very physical

interpretation. If the constraint is not imposed, the probability that the system

generates a configuration where the average field takes the value Φ is

P (Φ) =
1

Z
exp(−ΩUΩ(Φ)), Z =

∫
dΦ′ exp(−ΩUΩ(Φ′)). (2.29)

This is in very close analogy to the probability distribution for the magnetization

in a spin system. The scalar expectation value v = 〈φ〉 is the value of Φ for which
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UΩ has an absolute minimum. In a finite volume, the constraint effective potential

is non-convex and can have multiple local minima [24]. The standard effective

potential Ueff(Φ) is always convex, even in a finite volume, as the Maxwell con-

struction connects the various minima. The two effective potentials are identical

in the infinite-volume limit, limΩ→∞ UΩ(Φ) = Ueff(Φ), and the constraint effective

potential recovers the convexity property. In a finite volume, it is more useful to

work with the constraint effective potential, where multiple minima can be ob-

served and the transition between the Higgs and symmetric phases is clear. It is

also more natural, as the probability distribution P (Φ) can be directly observed

in lattice simulations. For the rest of this paper, we drop the subscript Ω.

2.3.4 Hybrid Monte Carlo algorithm and the effective po-

tential

One way to extract the effective potential from lattice simulations is to

generate the ensemble of configurations, calculate the average scalar field Φ for each

configuration and hence the probability distribution P (Φ). The effective potential

is extracted by numerically fitting Ueff(Φ) to P (Φ) using Equation (2.29). This

gives the effective potential for all Φ from one simulation, but with limited accuracy.

An alternative method is calculate the derivative of the effective potential. For the

Higgs-Yukawa model with NF degenerate fermions, the derivative is

dUeff

dΦ
= m2Φ +

1

6
λ〈φ3〉Φ −NFy〈ψ̄ψ〉Φ, 〈ψ̄ψ〉Φ = 〈Tr(D[φ]−1)〉Φ. (2.30)

The expectation values 〈...〉Φ mean that, in the lattice simulations, the scalar

field fluctuates around some fixed average value Φ. This method determines the

effective potential with greater accuracy than fitting the distribution P (Φ), but

the drawback is that a separate lattice simulation has to be run for every value of

Φ. This is the method we use in our investigation of the vacuum instability.

In this section we use staggered fermions [25, 26], one flavor of which cor-

responds to four fermion flavors in the continuum. With one staggered fermion,

the determinant Det(D) is real but can be negative due to φ fluctuations. Then

the partition function integrand is not positive-definite and Monte Carlo integra-
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tion cannot be applied. To overcome this problem, we simulate two staggered

fermions, corresponding to eight continuum flavors, as [Det(D)]2 guarantees a

positive-definite density.We used staggered fermions only in the very early phase

of our simulations. The complicated taste structure of staggered fermions with the

related rooting issues and the lack of full chiral symmetry motivated the switch to

chiral overlap fermions which are used now exclusively in our Higgs project. Stag-

gered results for the effective potential, which are used here mainly for simplicity

and pedagogy, have been replaced by simulations with chiral overlap fermions.

Configurations are generated using the Hybrid Monte Carlo algorithm [27],

where a fictitious time t and momenta π(x, t) are introduced. New configurations

are generated from the equations of motion

φ̇(x, t) = π(x, t) ,

π̇(x, t) = −

[
∂Seff

∂φ(x, t)
− 1

Ω

∑
y

∂Seff

∂φ(y, t)

]
, (2.31)

where the effective action Seff is given in Equation (2.27). The second term in

π̇(x, t) is included to enforce the constraints

1

Ω

∑
y

φ(y, t) = Φ,
∑
y

π(y, t) = 0. (2.32)

We work with fixed lattice volumes of size 83 × 16. The scalar field has periodic

boundary conditions, the fermionic field is periodic in the short directions and

antiperiodic in the long direction. We use the standard leapfrog method to solve

the equations of motion, where the step-size ∆t is adjusted to achieve acceptance

rates well above 90%, and each trajectory length satisfies Nt∆t ≥ 1. For each

simulation, we generate at least 104 configurations and check that correlations

between the configurations are small.

The basic quantities of the theory are the bare fields and couplings. A

particular choice of bare couplings puts us somewhere in the phase diagram and

all physical quantities are now fixed. A separate constrained simulation is run for

each value of Φ0 to calculate the effective potential derivative. The expectation

values we measure on the lattice are bare ones, so the simulations give the bare
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equivalent of Equation (2.30), namely

dUeff

dΦ0

= m2
0Φ0+

1

6
λ0〈φ3

0〉Φ0−NFy0〈ψ̄0ψ0〉Φ0 , 〈ψ̄0ψ0〉Φ0 = 〈Tr(D[φ0]
−1)〉Φ0 , (2.33)

which is converted using the relationship between the bare and renormalized fields,

Φ =
Φ0√
Zφ

,
dUeff

dΦ
=
√
Zφ

dUeff

dΦ0

. (2.34)

We measure the wave function renormalization factor Zφ in separate unconstrained

simulations.

We want to follow the behavior of Ueff as we approach the continuum limit,

the critical surface in the bare-coupling space. We make an arbitrary choice y0 =

0.5 and λ0 = 0.1. The distance from the continuum limit is determined by the

remaining bare coupling m2
0. We obtained results for three choices m2

0 = 0.1, 0.25

and 0.29. Typical non-perturbative measurements of the derivative dUeff/dΦ are

shown in Figure 2.3. All dimensionful quantities are in lattice units, e.g. a · Φ.

What do we expect to see? In the Higgs phase of the theory, Ueff should have a

local maximum at the origin and a local minimum for some non-zero a · Φ. If the

vacuum is stable, the local minimum is in fact an absolute one. Let us first look at

the results for m2
0 = 0.1, shown in Figure 2.3. The simulations show that dUeff/dΦ

vanishes at the origin and at a · Φ ≈ 2.0; these are the extrema. The derivative

is negative between these points, so the origin is indeed a local maximum. For

a · Φ > 2, the derivative is always positive and the local minimum appears to be

an absolute one. If the vacuum is unstable, dUeff/dΦ should turn negative at large

a ·Φ, for which the simulations show no evidence. In these units, the lattice cutoff

is Λ = π/a and the ratio of cutoff to scalar expectation value is Λ/v ≈ 1.5. This

is far from the continuum limit.

We vary the bare mass to get closer to the critical surface and the continuum

limit for bare masses m2
0 = 0.25 and 0.29 respectively. The simulations show

the same qualitative behavior for Ueff : the origin is a local maximum, there is

an absolute minimum for some non-zero aΦ and no sign of an instability in the

potential. The minimum occurs at aΦ ≈ 0.81 and 0.47 respectively, for which

Λ/v ≈ 3.9 and 6.7, pushing towards the continuum limit.
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Figure 2.3: The derivative of the effective potential dUeff/dΦ for the bare couplings
y0 = 0.5, λ0 = 0.1,m2

0 = 0.1, for which the vev is av = 2.035(1). The left side
plot is a close-up of the behavior near the origin. The circles are the results of
the simulations and the curves are given by continuum and lattice renormalized
perturbation theory.

Table 2.1: The wave function renormalization factor, the renormalized scalar
expectation value and the Higgs and Top masses, obtained from unconstrained
lattice simulations. The bare couplings are those used for the lattice measurements
of the effective potential Ueff . The estimated errors are in parentheses.

y0 λ0 m2
0 Zφ av = 〈aφ〉 amH amt

0.5 0.1 0.1 0.987(1) 2.035(1) 0.521(5) 0.9977(5)
0.25 0.9705(8) 0.811(1) 0.297(4) 0.3906(7)
0.29 0.9676(7) 0.4685(6) 0.248(3) 0.2230(3)

The first check of these calculations is to run separate unconstrained simu-

lations with the same bare couplings, where
∑

x φ(x) is allowed to fluctuate freely,

and to measure independently v = 〈φ〉. This expectation value should be identical

to the value of Φ where Ueff has an absolute minimum, as determined by the con-

strained simulations. In the unconstrained simulations, the second term for π̇(x, t)

in Equation (2.31) is omitted. The results of the unconstrained simulations are

given in Table 2.1. There is indeed perfect agreement between the measurements

of 〈aφ〉 and the location of the Ueff minimum obtained from the constrained sim-

ulations. The continuum perturbation theory calculation of Ueff is also shown in

Figure 2.3. We only display the large NF result: not surprisingly, for NF = 8,

the Higgs-loop contributions are negligible and can be omitted. We see excellent

agreement with the non-perturbative simulations for Φ . v, as shown in the left
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side plot. However, the behavior as Φ increases is completely different, as shown in

the right side plot. Continuum perturbation theory breaks away from the simula-

tion results and predicts that the vacuum becomes unstable, with dUeff/dΦ turning

negative. The exact non-perturbative calculation shows no indication of this.

What can we conclude from the comparison? Continuum perturbation the-

ory works well for Φ less than and even close to the lattice cutoff Λ = π/a, as

shown by the very good agreement with the exact lattice calculations. This is

the most that one could have expected. The instability is predicted at Φ well

above the cutoff, which is completely unphysical and where one cannot expect the

continuum calculation to apply. The exact effective potential, with the full cutoff

dependence, is absolutely stable. The standard interpretation of the instability

in the continuum Ueff would be to say new physics appears at this energy scale

to stabilize the ground state. But the actual cutoff of the field theory is far be-

low this scale, especially as we get closer to the continuum limit. The instability

only appears when the finite cutoff effects are ignored — there is no need for new

physics. One can ask, is it possible to arrange both the standard ground state and

the instability to occur well below the regulator cutoff? If so, the instability would

be a genuine low-energy prediction. The answer is no in the Top-Higgs Yukawa

model, if only the standard terms are included in the lattice Lagrangian. In this

case the only freedom one has is the choice of the bare couplings, and nowhere in

the coupling-space is a genuine instability seen. If higher dimensional operators are

included, the λ0 > 0 condition perhaps could be relaxed by adding new irrelevant

operators, like the λ6

Λ2φ
6 term, to keep the stability of the cutoff theory intact. This

scenario requires further investigation.

It can be shown in renormalized lattice perturbation theory that the break-

down of continuum perturbation theory is due solely to the finite cutoff. A finite

cutoff is used in the lattice momentum integrals for the radiative corrections and

the counterterms of Ueff , but otherwise the procedure is the same as in the contin-

uum. In Figure 2.3 we see excellent agreement between simulations, and lattice and

continuum renormalized perturbation theory for Φ/v . 1. As Φ increases, lattice

perturbation theory exactly tracks the non-perturbative result, showing a perfectly
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stable ground state. The continuum calculation breaks down, not because of large

couplings, but because of the neglected finite cutoff.

2.4 Wilsonian renormalization group and

vacuum instability

Most of the original work on the consistency of quantum field theory con-

sidered only idealized theories, supposedly fundamental to describe physics at ar-

bitrarily high energies. Although in the previous section on vacuum instability

and the related Higgs lower bound problem we found a non-removable intrinsic

cutoff, the analysis was based on the traditional renormalization procedure. The

Wilsonian viewpoint of the renormalization group provides a broader and more

complete perspective on the discussion.

2.4.1 Wilson’s running Lagrangian

In the 1970s Wilson developed a new, intuitive way of looking at the renor-

malization of quantum field theories based on the flow of effective Lagrangians

as generated by renormalization group transformations [28]. This is based on the

realization that physics as we know it seems to be described by effective quantum

field theories, which are useful only up to the energy scale Λ0 where new and yet

unknown physics is reached. Some smooth intrinsic regularization is introduced

(inherited from new UV physics) at Λ0 which in Euclidean space restricts the length

p2 of all four–momenta. Physics below the cutoff scale Λ0 is described by a very

general ‘bare’ Lagrangian L(Λ0) with an infinite series of local terms, constrained

only by symmetries. For any choice of the coupling constants in the local terms of

the bare Lagrangian, the Euclidean path integral of the partition function has to be

finite and well defined. The most fundamental constraint on the bare Lagrangian

is the existence and stability of the functional integral which defines the Euclidean

partition function. If the viewpoint of ‘naturalness’ is adopted, all the coupling

constants of the higher dimensional operators are chosen to be of order one in units
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of Λ0. Using Wilson’s exact renormalization group we can consider smoothly low-

ering the regularization scale to some value ΛR say, of order the energy scale E far

below Λ0. To keep physics unchanged, the coupling constants must change with

the regularization scale. Hence we have a running, or effective Lagrangian L(Λ),

which flows with Λ and remains stable at every stage of the procedure in the sense

of a convergent Euclidean path integral. Since we can use the Lagrangian L(ΛR)

to calculate low energy physics at the scale E, it is not the coupling constants at

Λ0 that are important, but those at the scale ΛR. The bare couplings have to be

close to a critical surface if mph/Λ0 � 1 for the low energy physical masses mph of

the theory.

An effective field theory is renormalizable if we can calculate all the S–

matrix elements for processes with energy scale E, up to small errors which vanish

as powers of E/Λ0, once we have determined a finite number of coupling con-

stants at some renormalization scale ΛR ∼ E. These coupling constants are called

relevant; all others are irrelevant. Whatever values we choose for Λ0 (as long as

it is large enough) and the irrelevant bare couplings η(Λ0) (as long as they are

natural enough), for a particular choice of the relevant operator set λ(ΛR), the

irrelevant operator set η(ΛR) will be of the order of some power of (Λ0/ΛR). In

other words, for any point on the submanifold of relevant couplings at ΛR there is

a flow towards it from a wide variety of initial Lagrangians at Λ0, all of these being

equivalent as far as the values of S–matrix elements for processes with energies

of order E ∼ ΛR are concerned. This more general aspect of renormalizability

is the concept of universality. An effective quantum theory thus gives us a much

more general notion of renormalizability than we had in conventional quantum

field theory: the regularization need no longer be removed, and the irrelevant bare

couplings need not be zero. It is useful now to adopt the Wilsonian view on the

running effective Lagrangian to the Top-Higgs Yukawa model we investigated in

the previous section.
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2.4.2 Top-Higgs Yukawa model, vacuum instability, and

running Lagrangian

Adapting the notion of the the running Wilson Lagrangian for the Top-

Higgs Yukawa model, there are only two marginally irrelevant couplings, λ(t) and

y(t), in addition to the relevant Higgs mass operator. It is important to note that

the couplings for increasing t = log(Λ0/Λ) flow from bare λ0 and y0 toward their low

energy renormalized values as a function of the energy scale. For example, in the

large NF limit and for large t values, neglecting the irrelevant couplings, the flows

are expected to look approximately the same as described by Equation (2.17). The

Yukawa coupling y(t) will monotonically decrease from its bare value y0 towards

zero, at the logarithmic rate of Equation (2.15) for large t. The Higgs coupling will

start from its bare value λ(0) = λ0 and either it will monotonically decrease, or

after some initial rising it will turn around and continue to decrease monotonically

towards zero, at the logarithmic rate of Equation (2.16) for large t. In the Wilso-

nian picture, all RG trajectories flow from the general coupling constant space of

cutoff Lagrangians L(Λ0)Top−Higgs towards the trajectory specified by (2.15) and

(2.16) with small but calculable corrections from irrelevant operators in the large

t limit.

In the Wilsonian view of the running Lagrangian, the cutoff dependent

Higgs mass lower bound can be determined in the space of the bare cutoff La-

grangians L(Λ0)Top−Higgs from the smallest allowed value of λ(ΛR) for a fixed

Λ0/ΛR � 1 ratio where a natural choice for ΛR is the weak boson mass mZ , or the

vacuum expectation value v. This calculation is, of course, very hard to implement

operationally with a large number of bare couplings. The important stability con-

dition is the only constraint (with, or without naturalness) on the space of cutoff

Lagrangians. For example, the choice of λ0 < 0 a priori should not be excluded

at the cutoff scale Λ0, but it requires the presence of some positive higher dimen-

sional operator, like λ
(6)
0 /Λ2 · φ6, with λ

(6)
0 > 0, to provide stability. Whether the

Higgs mass lower bound will be necessarily associated with the limit λ0 → 0, or

the λ0 < 0 region also needs to be explored remains an unresolved and interesting

question.
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In phenomenological applications an attempt is always made to simplify

Wilson’s framework of dealing with the full space of running Lagrangians. Invok-

ing the ΛR/Λ0 → 0 limit, only the running of the relevant and marginally irrelevant

couplings is calculated and the effects of irrelevant operators are ignored. In ad-

dition, in the application of RG equations to the vacuum instability problem, the

simplified equations on λ(t) and y(t) are running backward from the mZ scale

towards the cutoff Λ0. This interchange of the natural Wilsonian UV → IR flow

with the IR → UV integration of relevant couplings only is a nontrivial proposi-

tion because the Wilsonian RG flow is not known to be reversible, and to set all

the irrelevant couplings to zero at the scale ΛR = mZ would require an unknown

extension of the space of cutoff Lagrangians L(Λ0)Top−Higgs, if it exists at all.

In most of the phenomenological RG applications this is not a problem.

We believe, however, that the RG treatment of the vacuum instability problem

requires special care. What corresponds to the unstable Ueff in Figure 2.3 is the

running λ(t) which at some scale t0, far below the cutoff scale, turns negative as the

RG is running backward, from t = logΛ0/mZ towards the cutoff scale t = 1. It is

a signal that higher dimensional operators must play a role to provide a continued

stability to the theory on all scales. It is unlikely that a positive λ0 on the cutoff

scale can support this picture, forcing the running λ(t) to turn positive again and

produce an effective potential which will turn back positive again after a second

minimum which might be lower than the original one where the spontaneously

broken theory was built (decay of the false vacuum). It is more likely that this

scenario, if it exists at all, will require the λ0 < 0 extension of the space of bare

Lagrangians. This is an extension which remains largely unexplored and we are

just beginning to investigate it.

2.4.3 Phenomenology from 2-loop continuum RG

Vacuum instability was first raised in [29] and it has since been increasingly

refined in application to the Standard Model [30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 15, 42, 43]. The state-of-the-art calculation determines the effective

potential to one-loop order, with RG improvement applied up to two-loop order
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to the running couplings.
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Figure 2.4: The running Higgs coupling is plotted for different choices of the Higgs
mass from our numerical solution of the five coupled 2-loop RG equations for the
λ, y, g1, g2, g3 couplings. For input, mt = 175 GeV was used with the experimental
values of the g1, g2, g3 gauge couplings. The 1-loop matching of the couplings and
the starting scale of the RG was chosen at mZ .

Results from [15] exhibit the unstable Standard Model effective potential for mH =

52 GeV and mt = 175 GeV, where the instability appears at φ = 1 TeV. The lower

bound shown in Figure 2.1 is also taken from [15]. The finite width of the lower

bound is an estimate of the uncertainty of the theoretical calculation, including

the effect of unconsidered higher-order contributions. The strict lower bound for

the Higgs mass can be further refined if one allows the ground state to be unstable,

but demands that the time required to tunnel away from the local minimum at

v = 246 GeV is longer than the lifetime of the universe [44, 45, 46, 47, 48].

It is clear that the current experimental limits on mH bring the lower bound

into play. For example, a Higgs boson with a mass of 100 GeV should indicate

a breakdown of the Standard Model around 50 TeV. However, a Higgs mass in

the range 160 – 180 GeV apparently allows the Standard Model to be valid all

the way up to the Planck scale. The occurrence of the vacuum instability mostly

relies on the relative magnitudes of λ2 and y4 while both renormalized couplings
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can remain small and all three gauge couplings of the SM are included. The

perturbative RG approach, if cutoff effects can be safely ignored, seems to be

on solid footing. However, cutoff effects played an important role in Top-Higgs

Yukawa models where only the Higgs coupling λ and Yukawa coupling y drive the

dynamics. In this approximation we have shown that vacuum instability cannot

be induced with the SM Higgs potential in the cutoff Lagrangian (the possible role

of higher dimensional operators to induce vacuum instability remains unclear, as

we noted earlier). However, in the phenomenological application, all five couplings

are running and it is important to ask: for the cutoff Λ at or below the Planck scale

MP , should we expect Top quark induced vacuum instability with the SM cutoff

Lagrangian without adding new operators? Do we expect a qualitatively different

picture when compared to the Top-Higgs Yukawa model? From Figure 2.4 we find

that the running λ turns negative below the Planck scale for Higgs mass values

lower than 135 GeV and remains negative when MP is reached. Further lowering

the Higgs mass lowers the scale where λ turns negative. It remains unclear how

these RG flows would be effected by holding λ0 > 0 in the SM Higgs Lagrangian

at some cutoff scale Λ. How some higher dimensional operators might provide a

well-defined cutoff theory for the choice λ0 < 0 will require further investigation.

2.5 Higgs mass lower bound from the lattice

We would like to outline and implement the first step of a robust strategy

to calculate the lower Higgs mass bound as a function of the lattice momentum

cutoff. The question about breaking Euclidean invariance with the lattice cutoff

will eventually have to be addressed also.

2.5.1 Yukawa couplings of the Top and Bottom quarks

The third, heaviest generation of quarks consists of the left-handed SU(2)

top-bottom doublet QL =
(
tL
bL

)
and the corresponding right-handed SU(2) singlets

tR, bR. The complex SU(2) doublet Higgs field Φ(x) with U(1) hypercharge Y = 1

is Φ =
(
φ+

φ0

)
where the suffixes +,0 characterize the electric charge +1, 0 of the
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components. Since φ+ and φ0 are complex, we can introduce four real compo-

nents, Φ =
(
φ1+iφ2

iφ3+φ4

)
and the Higgs potential will have O(4) symmetry, with broken

custodial O(3) symmetry, if the Yukawa couplings yt and yb, defined below, are

different. The Higgs potential in the complex doublet notation has the form,

V (Φ) =
1

2
m2Φ†Φ +

λ

24
(Φ†Φ)2. (2.35)

The Higgs field acquires a vacuum expectation value responsible for the sponta-

neous electroweak symmetry breaking with 〈φ4〉 = v and the first three components

vanishing. The vacuum expectation value v can be related to the Higgs coupling

constant by v =
√

3/λmH with the relation between the Higgs mass mH and m

given by Equation (2.7).

Of the four Higgs components three represent Goldstone degrees of freedom,

which at finite weak gauge coupling become the longitudinal degrees of freedom of

the massive weak gauge bosons with mass mW = vg2/2. The fourth component

corresponds to the physical Higgs boson field. We do not use the Higgs mechanism

in the limit of zero weak gauge couplings and keep all four Higgs field components

where the φ1, φ2, φ3 fluctuations represent Goldstone particles with the symmetry

breaking in the φ4 direction. In the SM Lagrangian all four Higgs components are

treated on equal footing where LYukawa describes the interactions of the SU(2)L

doublet Higgs field with the quark fields

LYukawa = yt ·QLΦctR + yb ·QLΦbR + h.c. (2.36)

Φc = iτ2Φ
∗ is the charge conjugate of Φ, τ2 the second Pauli matrix, yt, yb are the

top and bottom Yukawa couplings, respectively. When they are equal, the O(3)

custodial symmetry of the Higgs potential is preserved after symmetry breaking.

For unequal couplings, only the SU(2)L symmetry of the Lagrangian is maintained.

It is easy to write out the Yukawa couplings in components:

LYukawa = yt{tL(φ4 − iφ3)tR + bL(iφ2 − φ1)tR}+ (2.37)

yb{tL(φ1 + iφ2)bR + bL(iφ3 + φ4)bR} + h.c.

All masses are proportional to v as they are induced by spontaneous symmetry

breaking.
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2.5.2 One-component Top-Higgs Yukawa model

We have used lattice simulations to study the Higgs-Yukawa model with

a single real scalar field coupled to the Top quark with three colors using chiral

overlap fermions. This theory has only a Higgs particle and no Goldstone bosons,

and the Top quark color indices correspond to three degenerate fermions. We will

not be able to calculate a lower bound directly relevant to phenomenology. Our

purpose here is to explain in a simpler model how this non-perturbative calculation

can be applied to a more realistic approximation of the Standard Model.

The Yukawa interaction Lagrangian in Equation (2.38) has a straightfor-

ward chiral lattice implementation in the overlap formulation where the chiral

left-handed and right-handed fermion components are precisely defined. The sim-

ulation of the full doublet with the heavy Top and much lighter b quark would be

very difficult on the lattice with two very different mass scales for mt and mb after

spontaneous symmetry breaking.

One could choose for a pilot study the degenerate case yt = yb which has

a recent lattice implementation [49, 50]. In this limit, there are three massless

Goldstone particles contributing to Top-Higgs dynamics. When the weak gauge

couplings are turned on, the massless Goldstone modes become the longitudinal

components of the massive weak gauge bosons via the Higgs-Kibble mechanism.

The limitation of the four-component model with degenerate quark doublet is the

artificially enhanced fermion feedback into Higgs dynamics.

Although the degenerate model of the Top and Bottom quarks is easy to

accommodate in our Higgs lattice toolbox, we chose the single component Higgs

Yukawa model for our pilot study with only the Top quark included. When the

weak gauge couplings are turned on, one can choose unitary gauge to eliminate

the three Goldstone components. In this gauge, ignoring the weak gauge coupling

effects to leading order, one is left with diagonal Top and Bottom quark Yukawa

couplings where the b quark is decoupled in the yb = 0 limit. This is not a full jus-

tification for keeping the single Higgs field only, and the price to pay is the absence

of feedback from the Goldstone modes into Higgs dynamics. Since the primary

purpose of the initial phase of our Higgs project is to develop a comprehensive
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Higgs lattice toolbox and test its various uses, the limited one-component Higgs

field dynamics will provide very useful information. The next logical step will be

to restore the four components of the Higgs field which requires the b quark, and

break the mass degeneracy moving toward the yb � yt limit.

2.5.3 Phase diagram with chiral overlap fermions

Lattice Yukawa models with staggered and Wilson fermions were studied

before [51, 52, 53]. In this work, we adopted the overlap fermion operator to

represent the chiral Yukawa coupling between the Top quark fermion field and the

Higgs field. Although this is the most demanding choice for dynamical fermion

simulations, staggered and Wilson fermions are not suitable for our goals. We

discussed some difficulties with staggered fermions in section 3. The difficulties

with Wilson fermions are worse. It turns out to be impossible to tune to the critical

surface of the Top-Higgs lattice Yukawa model with Wilson fermions while keeping

the Wilson doublers on the cutoff scale. This is different from QCD applications

of Wilson fermions.

Our massless overlap Dirac operator is defined as a · D = 1 + γ5sign(Hw)

with Hw = γ5Dw where Dw is the usual Wilson-Dirac matrix with a negative mass

which for a = 1 has the form

(Dw)yx = 3δxy −
1

2

∑
µ

(
(1 + γµ)Uµ(x− y)δx,y+µ + (1− γµ)U

†
µ(x)δx,y−µ

)
. (2.38)

Using the modified γ̂5 = γ5(1 − aD) gamma matrix, we define two projection

operators, P± = 1
2
(1± γ5), P̂± = 1

2
(1± γ̂5), and chiral fermion components, ψ̄L,R =

ψ̄P±, ψR,L = P̂±ψ. The scalar and pseudoscalar densities are given by S(x) =

ψ̄LψR + ψ̄RψL = ψ̄(1− a
2
D)ψ and P (x) = ψ̄LψR − ψ̄RψL = ψ̄γ5(1− a

2
D)ψ.

The Top-Higgs Yukawa model with overlap fermions is defined by the Lagrangian

L =
1

2
m2

0φ
2
0 +

1

24
λ0φ

4
0 +

1

2
(∂µφ0)

2 +

ψ̄a0
[
D + y0 · φ0(1−

a

2
·D)

]
ψa0 , (2.39)

where the bare overlap fermion field ψ0 and the overlap Dirac operator D were

introduced earlier. Derivatives are represented by finite lattice differences in Equa-
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Figure 2.5: The vacuum expectation value of the lattice field φ0 is plotted in
lattice spacing units a as a function of the hopping parameter for fixed values of
λ̃0 = 10−4, ỹ0 = 0.35 with 3 colors of the Top quark. The lattice size is 123 × 24
for the plotted data. The complete phase diagram can be mapped out by varying
λ̃0 and ỹ0 to determine κc(λ̃0, ỹ0).

tion (2.39) and summation over a=1,2,3 for Top color is understood. The gauge

link matrices are set to the unit matrix in Equation (2.38).

The starting point for simulations is the phase diagram of the theory in

the bare coupling space of m2
0, λ0, and y0. The actual location of the critical

surface is determined from the condition av0 = 0 in a large set of non-perturbative

lattice simulations. This is shown in Figure 2.5 where the critical critical hopping

parameter for a particular choice of bare couplings is calculated. The Higgs part

of the lattice Lagrangian is parametrized in the simulations as

L = −2κ
∑
µ

φ̃0(x)φ̃0(x+ µ) + φ̃2
0(x) + λ̃0(φ̃

2
0(x)− 1)2 ,

with φ0 =
√

2κφ̃0, and rescaled notation ỹ0 = y0

√
2κ for the Yukawa coupling. The

odd number of colors of the single fermion required the application of the Rational

Hybrid Monte Carlo (RHMC) algorithm for chiral overlap fermion. The first new

code we developed was based on [54, 55]. This is the code which is mostly used

in our Top-Higgs-QCD simulations. We also developed a special FFT version of

the RHMC algorithm which exploited the special structure of the Yukawa coupling

in the overlap Dirac operator of the Top-Higgs model. In the FFT code, Fourier

acceleration is used in the evolution of the molecular dynamics trajectories which
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significantly reduced the autocorrelation time between independent configurations.

The details of our RHMC algorithms will be described elsewhere.

2.5.4 Comparison of large NF and Monte-Carlo results

The algorithm was thoroughly tested in the large NF expansion of the

model where we simulated a sequence of NF fermions, each with 3 colors, which

can also be interpreted as the Top quark with 3NF colors. The NF →∞ limit of

the vacuum expectation value v and the Top mass mt were calculated in rescaled

λ0/NF and y0/
√
NF variables for the finite volumes of the simulations, for fixed

value of m2
0. For a particular choice of the rescaled couplings, v and mt are plotted

in Figure 2.6 as a function of 1/NF .
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Figure 2.6: The vacuum expectation value v of the scaled Higgs filed is plotted on
the left as a function of 1/NF for 3NF fermion degrees of freedom. The blue dot
marks the 1/NF → 0 limit. The right side plot shows the Top mass as a function
of 1/NF with the blue dot marking the calculated 1/NF → 0 limit. The lattice
size was 123 × 24 for every simulation point.

The largest number of fermions was 3NF = 60 in the sequence. The solid

line indicates the scaled asymptotic value of v and mt. The finite NF data were

numerically fitted with an added 1/NF correction term which allows numerical

extrapolation to the 1/NF → 0 limit with perfect agreement. For example, in

the vev test of Figure 2.6 the fitted curve is 1.2562(4) − 0.152(2)/NF and the

large NF calculation gives 1.2555(7) asymptotically, in excellent agreement with

the simulations. The sequence of simulations were done with bare parameters
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y0

√
NF = 0.7184, λ0 · NF = 10−3, and m2

0 = 0.0637. For the same sequence, the

Top quark pole mass mt was fitted on the right side of Figure 2.6 as 0.9727(5) −
0.145(2)/NF . The inverse propagator mass asymptotically is 0.9025 which converts

to pole mass mt = 0.9725 at the finite lattice spacing a of the simulations by the

formula amt = ln2+am
2−am , in perfect agreement between simulations and the large

NF prediction. The complete agreement between the analytic large NF prediction

and the Monte-Carlo results provides a very strong cross-check for the correctness

of our simulation algorithm and the analytic framework.

2.5.5 First results on Higgs mass lower bound

After thorough validation of our algorithm, we turned to a preliminary

determination of the Higgs mass lower bound in the single component Top-Higgs

Yukawa model. The heavy Top quark will constrain the lightest possible Higgs for

any given cutoff in the single component Top-Higgs Yukawa model. The starting

point for simulations is the phase diagram of the theory in the bare coupling

space of m2
0, λ0 and y0. For every choice of the bare parameter set, the vacuum

expectation value v and the Higgs and Top masses take some values in lattice

cutoff units. Keeping both the cutoff and the Top mass fixed in physical vev units,

we explore all allowed bare couplings and find the lightest Higgs the theory can

sustain. Repeating this procedure at various distances from the critical surface

determines how the Higgs lower bound varies with the cutoff. For the Euclidean

path integral to exist, we have to require λ0 ≥ 0 in the model. We could also

consider a more general Higgs action where the constraint λ0 ≥ 0 is relaxed when

positive terms like φ6
0 are added in the higher-dimensional bare coupling constant

space of the bare Lagrangian. For now we do not include such terms which are

part of our ongoing investigations.

Figure 2.7 displays our preliminary results which are not far from what is expected

from the application of the renormalization group. Lattice artifacts will require

additional interpretation in the low momentum cutoff range of the simulations.

Adding the QCD gauge coupling
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Figure 2.7: The lowest Higgs mass is plotted as a function of the lattice momentum
cutoff for three different values of the Top mass. All simulation data are converted
to physical units using v = 246 GeV.

Our algorithm and simulation code has been extended to the Top-Higgs-QCD

code of three coupling constants. The only change is to include the SU(3) matrix

link variables in the Wilson operator of Equation (2.38) in our construction of

the chiral overlap operator. The numerical determination of the phase diagram

and the Higgs mass lower bound in the extended model with λ, y, g3 couplings

(Top-Higgs-QCD model) is part of our ongoing Higgs project.

2.6 Higgs mass upper bound and the heavy

Higgs particle

In this section we will review earlier results on the Higgs mass upper bound

from lattice calculations and illustrate with the higher derivative (Lee-Wick) ex-

tension how a heavy particle might be exhibited without contradictions with elec-

troweak precision data.

2.6.1 Higgs sector as an effective field theory

In the Wilsonian view of section 4, the Standard Model is expected to have

some yet unknown UV completion above a certain energy threshold Λ0. This
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threshold could be as high as Λ0 = MPlanck, or as low as Λ0 = 1 TeV. Below

scale Λ0 the SM is described by the familiar degrees of freedom for the known

particles, including fermions and gauge bosons, in addition to the four-component

Higgs field. For illustration, we will choose Λ0 = MPlanck first in the description

of the Higgs sector without gauge and Yukawa couplings. Generalization to the

full Standard Model does not add to the purpose of the discussion here. Lowering

the cutoff into the TeV range will be part of the discussion. If the Higgs sector

is treated as an effective theory, the regulator is chosen for us as an intrinsic part

of the theory. Euclidean four–momenta are smoothly cut off when their lengths

exceed some scale Λ0. In this way all momentum integrals are made manifestly

convergent, and no infinities are encountered. The simplest choice is an exponential

cutoff function in the propagators,

KΛ(p) = exp

[
− p

2

Λ2
0

]
, (2.40)

which can be built into the Lagrangian L(Λ0) for non-perturbative calculations.

A mass term could have been added to p2 in Eq. (2.40) but we simplified the

notation for this qualitative discussion. The general O(4) Higgs Lagrangian at

scale Λ0 = MPlanck is given by

LHiggs =
1

2
∂µφ

a∂µφa +
1

2
µ2

0φ
aφa +

λ0

4!
(φaφa)2 +

c6
M2

Planck

�φa �φa

+
λ6

M2
Planck

(φaφa)3 +
c8

M4
Planck

�∂µφ
a �∂µφa + ... , (2.41)

where summation is implied over a = 1, 2, 3, 4. Only a few higher dimensional

operators are included for illustration and the exponential cutoff is implicitly un-

derstood in the functional integral built on the Lagrangian of Eq. (2.41).

2.6.2 Higgs mass upper bound from the lattice

The highest allowed Higgs mass from the Lagrangian of Eq. (2.41) was

investigated before, using lattice cutoff with c6, λ6, c8 and all other higher dimen-

sional couplings set to zero. Corrections from the higher dimensional operators

are expected to be small, of the order of powers of mH/MPlanck unless the cou-
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plings c6, λ6, c8, or any of the other higher dimensional couplings are pushed to-

ward asymptotically large values. It is a limit which is considered artificial and far

outside naturalness bounds.

Convincing evidence for the Higgs upper bound and its numerical value

comes from lattice calculations [56, 57] where the derivatives are replaced by finite

lattice differences giving up Euclidean invariance on the Planck scale. The advan-

tage of the lattice approach is that the full λ0 range can be scanned from 0 to

∞. This is important if the Higgs self-interaction is a marginally (logarithmically)

irrelevant operator in the triviality scenario. In the limit of infinite cutoff, the

largest allowed Higgs mass would be driven to zero (triviality of the renormalized

Higgs coupling), but with the cutoff at the Planck scale we will get a definitive

nonvanishing upper bound which is saturated at λ0 = ∞ in the lattice approx-

imation. The renormalized Higgs coupling at low energy can be defined as the

ratio λR = 3m2
H/v

2 where v = 246 GeV is the vev of the Higgs field (the fourth

component of the O(4) field), and mR is a renormalized Higgs propagator mass

which is related in two-loop perturbation theory to the physical Higgs mass by

the relation mH = mR[1 + 1
8192π2λ

2
R]. Based on non-perturbative lattice studies,

we expect that the largest Higgs mass is obtained in the λ0 → ∞ limit. For any

choice of λ0 in the O(N) Higgs model we have

mR = MPlanck · C(λ0) · (β1λR)
−β2

β1 exp
(
− 1

β1λR

){
1 +O(λR)

}
, (2.42)

with β1 = 1
3
(N +8) 1

16π2 and β2 = −1
3
(3N +14) 1

(16π2)2
. The relevant choice is N=4

for the Standard Model. The non-universal amplitude C(λ0) is determined from

matching to lattice calculations in the range 2π ≤ Λ/mH ≤ 100 [56, 57], leading to

the upper bound mH = 145 GeV in the λ0 = ∞ limit, if the cutoff is at the Planck

scale. In principle, the lattice cutoff could be replaced by the exponential cutoff

function of the continuum theory. It would be required to replace the momentum

square in Eq. (2.40) by its lattice version and take the inverse lattice spacing

much larger than Λ0. A new amplitude would emerge which could change the

numerical value of the upper bound without breaking Euclidean invariance at

finite cutoff. This is particularly useful when the cutoff is brought close to the low

energy physical scale. In the discussion of the higher derivative extension of the
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Higgs sector we will show how to insert a heavy continuum cutoff scale in the theory

which was turned into a practical calculation before [18, 19]. This suggests that the

insertion of the exponential cutoff scale might be feasible in practical calculations.

What remains the most interesting question for LHC physics is the lowering the

cutoff from the Planck scale into the TeV range. This will be illustrated next in

the higher derivative extension of the Higgs sector with the scale of new physics in

the TeV range.

2.6.3 Higher derivative (Lee-Wick) Higgs sector

An interesting extension of the Standard Model Higgs sector was proposed

earlier by the addition of higher derivative operators using ideas originally dis-

cussed by Lee and Wick [18, 19, 58, 59]. Recently a complete Standard Model was

constructed on similar principles [20]. Both constructions eliminate fine tuning

in the Higgs sector and require ghost particles on the TeV scale represented by

complex pole pairs in propagators with unusual physical properties. The analysis

of the heavy Higgs particle from [18, 19] will be followed in our discussion.

In the minimal Standard Model with SU(2)L × U(1)Y gauge symmetry

the Higgs sector is described by a complex scalar doublet Φ with quartic self-

interaction as we discussed in section 5. The Higgs potential V (Φ†Φ), as defined in

Equation 2.35, is SU(2)L×U(1)Y invariant. It also has a global O(4) ≈ SU(2)L×
SU(2)R symmetry, larger than required by the SU(2)L × U(1)Y gauge symmetry.

Before the weak gauge couplings are switched on, it is convenient to represent

the Higgs doublet with four real components φa which transform in the vector

representation of O(4).

We will include new higher derivative terms in the kinetic part of the O(4)

Higgs Lagrangian,

LH =
1

2
∂µφ

a∂µφa − cos(2Θ)

M2
�φa �φa +

1

2M4
�∂µφ

a �∂µφa − V (φaφa) , (2.43)

where summation is implied over a = 1, 2, 3, 4. Also, in this subsection and the

next, we use the Minkowski metric and a familiar, convenient form of the Higgs

potential, V (φaφa) = −1
2
µ2φaφa + λ(φaφa)2. The higher derivative terms of the
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Lagrangian in Eq. (2.43) lead to complex conjugate ghost pairs in the spectrum

of the Hamilton operator. The complex conjugate pairs of energy eigenvalues of

the Hamilton operator and the related complex pole pairs in the propagator of the

scalar field ghost particles are parametrized byM = Me±iΘ. The absolute valueM

of the complex ghost mass M will be set on the TeV scale. The Higgs Lagrangian

LH in Equation (2.43) describes a finite field theory without divergences, or fine

tuning. It has a particularly simple form with the special choice Θ = π/4 of the

complex ghost phase,

LH =
1

2
∂µφ

a∂µφa +
1

2M4
�∂µφ

a �∂µφa − V (φaφa) . (2.44)

The Θ → 0 limit in Eq. (2.43) requires special attention. In this limit, the ghost

particle becomes real and to avoid a double real pole in the propagator with prob-

lematic behavior, the choice Θ = 0 requires to drop the 1
2M4 �∂µφa �∂µφa deriv-

ative term in the Lagrangian,

LH =
1

2
∂µφ

a∂µφa − 1

2M2
�φa �φa − V (φaφa) , (2.45)

the starting point of [20].

2.6.4 Gauge and Yukawa couplings

Gauging the Lagrangian (2.44) remained unpublished before [60]. For com-

pleteness, we present the main results. The construction of the higher derivative

U(1) gauge Lagrangian mirrors Eq. (2.44) for the special choice Θ = π/4,

LB = −1

4
FµνF

µν − 1

4M4
�Fµν�F

µν , (2.46)

with U(1) gauge field Bµ and Fµν = ∂µBν − ∂νBµ. In addition to the massless

gauge vector boson, the higher derivative term in Eq. (2.46) will insert a ghost

particle in the spectrum of the Hamiltonian with a complex conjugate pole pair

parametrized by M = Me±iΘ. For a general complex phase Θ an additional term

will appear in the Lagrangian, in close analogy with the construction of Eq. (2.43).

The higher derivative Yang-Mills gauge Lagrangian for the SU(2)W weak

gauge field Wµ will follow a similar construction adding the dimension eight ghost
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term,

LW = −1

4
Ga
µνG

aµν − 1

4M4
D2Ga

µνD
2Gaµν , (2.47)

where the notation Ga
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW b

µW
c
ν is used with the covari-

ant derivative Dab
µ = δab∂µ + gfabcW c

µ. Higher derivative Lagrangians, similar to

Eq. (2.47), were first introduced by Slavnov to regulate Yang-Mills theories [61].

Labeling the components of the complex SU(2)L Higgs-doublet field as Φ =(
Φ+

Φ0

)
the gauged Higgs sector is described by the Lagrangian L = LW +LB+LHiggs

with the Higgs Lagrangian

LHiggs = (DµΦ)†DµΦ +
1

2M4
(DµD

†DΦ)†(DµD
†DΦ)− V (Φ†Φ) (2.48)

where the Higgs potential is V (Φ†Φ) = −1
2
µ2Φ†Φ + λ(Φ†Φ)2 and the gauge-

covariant derivative is DµΦ =
(
∂µ + ig

2
σ ·Wµ + ig

′

2
Bµ

)
Φ. The higher derivative

term in the fermion Lagrangian will take the form

Lfermion = iΨD/ Ψ +
i

2M4
Ψ D/2D/D/2 Ψ. (2.49)

Next we will briefly summarize two important features of the higher deriv-

ative Higgs sector with the ghost mass scale in the TeV range. The RG running

of the Higgs coupling freezes asymptotically and a much heavier Higgs particle is

allowed in extended Higgs dynamics.

2.6.5 Running Higgs coupling in the higher derivative

Higgs sector

This can be illustrated by calculating the scale dependent one-loop β-

function within renormalized perturbation theory in the broken phase of the higher

derivative O(N) Higgs sector [62, 63]. In addition to N-1 massless Goldstone modes,

there is a massive Higgs excitation and a massive complex conjugate ghost pair

appears in all N channels, as a consequence of the new derivative term in the La-

grangian. On a low energy scale µ, when t = log(µ/v) is negative, the β-function

is dominated by the Goldstone modes whose one-loop contribution is N−1
2π2 λ

2(t).

Above the Higgs mass threshold the massive Higgs loop contribution sets in and
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Figure 2.8: Running Higgs coupling in the higher Higgs sector.

the β-function becomes N+8
2π2 λ

2(t) which is the familiar one-loop form in the minimal

mass independent subtraction scheme of the standard O(N) model. As t increases,

the complex ghost loop becomes increasingly important and well beyond the ghost

scale M, for t � log(M/vev), the beta-function will asymptotically vanish. The

running coupling constant λ(t) first will grow as t increases, but eventually it will

freeze at some asymptotic value λ(∞) as shown in Fig. 2.8. Ghost loops in the

higher derivative Higgs model cancel the loops effects from the low-energy SM

particles in the UV region and this ‘anti-screening’ effect opens up the possibility

for such theories to be more strongly interacting than the standard Higgs sector.

2.6.6 Scattering amplitudes

The Higgs particle is defined as the resonance pole in the s-channel Gold-

stone scattering amplitude. The Goldstone amplitude can be calculated in the

higher derivative Higgs sector of the O(N) Lagrangian in the large N approxi-

mation. In addition, the Higgs particle can be investigated directly in lattice

simulations of the higher derivative model, just like in the standard Higgs sector.

In Figure 2.9 we plotted from [62, 64] the cross section as a function of

the
√
s center of mass energy in ghost mass units. The location of the com-

plex Goldstone ghost pair in the scattering amplitude of the first Riemann sheet

is determined by the choice of the phase angle Θ = π/4 in the Lagrangian of
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Equation (2.43). The peak in the cross section corresponds to the complex Higgs

resonance pole on the second sheet of the scattering amplitude.

Also plotted in Figure 2.9 is the scattering phase shift as a function of
√
s.

The phase shift has a sharp rise at the Higgs pole; however the cross section and

the shape of the phase shift do not describe a standard Breit-Wigner shape in

the presence of the ghosts and higher derivative Higgs dynamics. It is ‘unusual’

that the phase shift decreases as the energy gets through the real part of the

ghost mass signaling acausal behavior in the scattering amplitude. It had been

argued by Lee that this acausal behavior would only occur on microscopic scales,

typical of the Compton wave length of ghosts, and it will not lead to macroscopic

acausal observations. In the large N plots of Figure 2.9, the bare parameters were

Figure 2.9: The Goldstone Goldstone scattering cross section and phase shift is
plotted against the center of mass energy in large-N expansion for the Pauli-Villars
higher derivative O(N) theory. The input vev value is v = 0.07 in M units. The
peak corresponds to the Higgs resonance, which is at mH = 0.28 in M units.
The scattering cross section is completely smooth across the so-called ghost pole
locations.

tuned to mH = 1 TeV for the Higgs mass with the ghost threshold located at

3.6 TeV. Lattice simulations confirmed similar strongly interacting heavy Higgs

physics scenarios [62, 63].
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2.6.7 Heavy Higgs particle and the ρ-parameter

We discussed in the introduction that a heavy Higgs particle, beyond the

200 GeV range, is not consistent with electroweak precision data in the perturba-

tive sense. Concerns were raised earlier that the heavy Higgs particle of the higher

derivative Higgs sector will contribute to the electroweak ρ-parameter beyond ex-

perimentally allowed limits [65]. Straightforward application of perturbative loop

W Z

H H

Figure 2.10: Higgs contribution to electroweak vacuum polarization operator.

integrals support this concern. However, with new physics on the TeV scale (rep-

resented by ghost particles) the loop integrals are considerably different. A crude

estimate can be made by evaluating the contribution of the vacuum polarization

tensors ΠH
W ,Π

H
Z to the ρ-parameter,

ρ− 1|Higgs =
ΠH
W

M2
W,tree

− ΠH
Z

M2
Z,tree

= −3

4
g′2
∫
k2<Λ2

d4k

(2π)4

ΣH(k2)

(k2 +M2
W,tree)(k

2 +M2
Z,tree)(k

2 + ΣH(k2))
,

with a sharp momentum cutoff in the TeV range and using the tree level Higgs self-

energy operator ΣH(k2). The reduction is quite large in comparison with the 1-loop

perturbative formula. Replacing the cutoff integral by the Pauli-Villars regulator,

which is appropriate for the higher derivative theory, we get similar reduction.

The effects of the non-perturbative Higgs dynamics represented by a complicated

ΣH(k2) operator would have to be determined by non-perturbative simulations.

If these reduction effects are not sufficient, one might need to add another Higgs

doublet to the extended Higgs sector in the spirit of recent suggestions [66]. To

exhibit a heavy Higgs particle as a broad resonance, with strong interaction and

with acceptable ρ-parameter, remains an interesting challenge for lattice Higgs

physics and model building.
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Chapter 3

Probing Technicolor Theories

with Staggered Fermions

Abstract

One exciting possibility of new physics beyond the Standard Model is that

the fundamental Higgs sector is replaced by a strongly-interacting gauge theory,

known as technicolor. A viable theory must break chiral symmetry dynamically,

like in QCD, to generate Goldstone bosons which become the longitudinal com-

ponents of the W± and Z. By measuring the eigenvalues of the Dirac operator,

one can determine if chiral symmetry is in fact spontaneously broken. We simu-

late SU(3) gauge theory with ns = 2 and 3 staggered flavors in the fundamental

representation, corresponding to Nf = 8 and 12 flavors in the continuum limit.

Although our first findings show that both theories are consistent with dynami-

cally broken chiral symmetry and QCD-like behavior, flavor breaking effects in the

spectrum may require further clarifications before final conclusions can be drawn.

We also compare various improved staggered actions, to suppress this potentially

large flavor breaking.
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3.1 Introduction

The LHC will probe the mechanism of electroweak symmetry breaking.

A very attractive alternative to the standard Higgs mechanism, with fundamen-

tal scalars, involves new strongly-interacting gauge theories, known as technicolor

[67, 68]. Such models avoid difficulties of theories with scalars, such as triviality

and fine-tuning. Chiral symmetry must be spontaneously broken in a technicolor

theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise

electroweak measurements have made it difficult to find a viable candidate the-

ory. It is also necessary to enlarge the theory (extended technicolor) to generate

quark masses, without generating large flavor-changing neutral currents, which is

challenging.

Technicolor theories have lately enjoyed a resurgence, due to the explo-

ration of various techniquark representations [69]. Feasible candidates have fewer

new flavors, reducing tension with electroweak constraints. If a theory is almost

conformal, it is possible this generates additional energy scales, which could help

in building the extended technicolor sector. There are estimates of which theories

are conformal for various representations, shown in Fig. 3.1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, con-

formal and chiral symmetries are broken and the theory is QCD-like. For future

model-building, it is crucial to go beyond these estimates and determine precisely

where the conformal windows are. There have been a number of recent lattice

simulations of technicolor theories, attempting to locate the conformal windows

for various representations [70, 71, 72, 73, 74].

3.2 Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues λ of the Dirac operator and chiral

symmetry breaking is succinctly given in the Banks-Casher relation [75],

Σ = −〈Ψ̄Ψ〉 = lim
λ→0

lim
m→0

lim
V→∞

πρ(λ)

V
. (3.1)
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Figure 3.1: The conformal window for SU(N) gauge theories with Nf techniquarks
in various representations, from [69]. The shaded regions are the windows, for
fundamental (gray), 2-index antisymmetric (blue), 2-index symmetric (red) and
adjoint (green) representations.

To generate a non-zero density ρ(0), the smallest eigenvalues must become densely

packed as the volume increases, with an eigenvalue spacing ∆λ ≈ 1/ρ(0) =

π/(ΣV ). This allows a crude estimate of the quark condensate Σ. One can do

much better by exploring the ε-regime: If chiral symmetry is spontaneously bro-

ken, tune the volume and quark mass such that

1

Fπ
� L� 1

mπ

, (3.2)

so that the pion is much lighter than the physical value, and finite-volume effects

are dominant [76]. The chiral Lagrangian,

L =
F 2
π

4
Tr(∂µU∂µU

†) +
Σ

2
Tr[M(U + U †)], U = exp

[
iπaT a

Fπ

]
(3.3)

is dominated by the zero-momentum mode from the mass term and all kinetic

terms are suppressed. In this limit, the distributions of the lowest eigenvalues

are identical to those of random matrix theory (RMT), a theory of large matrices

obeying certain symmetries [77]. To connect with RMT, the eigenvalues and quark

mass are rescaled as z = λΣV and µ = mΣV , and the eigenvalue distributions also

depend on the topological charge ν and the number of quark flavors Nf . RMT

is a very useful tool to calculate analytically all of the eigenvalue distributions.
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Figure 3.2: The integrated distribution of the two lowest eigenvalue quartets, from
simulations of ns = 2 Asqtad staggered flavors. This is compared to RMT with
Nf = 2 and 8, corresponding to the strong and weak coupling limits.

The eigenvalue distributions in various topological sectors are measured via lattice

simulations, and via comparison with RMT, the value of the condensate Σ can be

extracted. This method has been successfully used in a number of lattice QCD

studies, for example in dynamical overlap fermion simulations [78].

3.3 Simulations and analysis

For SU(3) gauge theory with quarks in the fundamental representation,

various methods suggest that the critical number of flavors separating conformal

and QCD-like behavior is between 8 and 12. In order to study this interesting

region, we simulate ns = 2 and 3 staggered fermion flavors, corresponding to Nf =

8 and 12 flavors in the continuum limit. (We do not take roots of the determinant

of the staggered Dirac operator). We have also simulated SU(3) gauge theory

with Nf = 2 flavors in the 2-index symmetric representation, using dynamical

overlap fermions, which is described in [79]. We use the Asqtad staggered action

[80], which includes improvements to reduce the violations of flavor symmetry
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Figure 3.3: The integrated distribution of the two lowest eigenvalue quartets, from
simulations of ns = 3 Asqtad staggered flavors. This is compared to RMT with
Nf = 3 and 12, corresponding to the strong and weak coupling limits.

(“taste breaking”) at finite lattice spacing. This action is very well tested and has

been heavily used in large scale simulations of lattice QCD [81]. There have been

detailed comparisons of staggered eigenvalues with the Asqtad action to RMT [82],

but only in the quenched approximation.

Because ns = 2 and 3 staggered flavors have not been simulated with this

action before, a large scan of the parameter space of the bare couplings was re-

quired. Hence our first runs were on small volumes 104, where we also gained

experience on the dependence of the Hybrid Monte Carlo algorithm [83] on the

quark mass and the discretization of the trajectory length. Once we generated

large thermalized ensembles, we calculated the lowest eigenvalues of the Dirac op-

erator using the PRIMME package [84]. In the continuum limit, the staggered

eigenvalues form degenerate quartets, with restored flavor symmetry. In Figs. 3.2

and 3.3, we show the integrated distributions of the two lowest eigenvalue quartet

averages, ∫ λ

0

pk(λ
′)dλ′, k = 1, 2 (3.4)

for ensembles with ns = 2 and 3 staggered flavors respectively. Both simulations
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Figure 3.4: Comparison of different improvements of the staggered Dirac operator.
The eigenvalues are calculated on the same ensemble of gauge configurations, which
were generated using the Asqtad action.

have quark mass ma = 0.01, and the respective bare couplings are β = 3.9 and 1.9.

All low eigenvalues have small chirality, with no indication of non-zero topology.

We see that the quark mass is less than the average smallest eigenvalue, which is

necessary to probe the behavior of the eigenvalue distributions in the chiral limit.

To compare with RMT, we vary µ = mΣV until we satisfy

〈λ1〉sim
m

=
〈z〉rmt

µ
, (3.5)

where 〈λ1〉sim is the lowest quartet average from simulations and the RMT average

〈z〉rmt depends implicitly on µ and Nf . With this optimal value of µ, we can predict

the distributions pk(λ
′) and compare to the simulations.

In both cases, we see quite good agreement between simulations and RMT

with the corresponding number of flavors in the continuum limit i.e. Nf = 8 and 12.

This is somewhat surprising. From the eigenvalues themselves, one can directly see

that flavor breaking is significant, since degenerate quartets are not yet formed. A

previous eigenvalue study used unimproved staggered quarks in dynamical fermion

simulations [85]. They found excellent agreement with RMT but only if Nf had

the same value as the number of staggered flavors ns. We also find that, at strong
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Figure 3.5: The lowest eigenvalues calculated on two ensembles with ns = 1 stag-
gered flavor, with stout smearing used both in the sea and valence quark. The
lattice volume is 124.

coupling, RMT with the continuum value Nf = 4ns does not describe the data.

On coarse lattices, the flavor breaking is very large and only one pion can be tuned

to the ε-regime for each staggered flavor. One has to go to weak coupling and finer

lattices, where flavor breaking decreases, to recover the correct number of light

pions.

These results indicate that both the Nf = 8 and 12 flavor theories with

fundamental quarks have a non-zero quark condensate Σ i.e. chiral symmetry is

spontaneously broken. If this conclusion holds against further studies of flavor

breaking effects, our Nf = 8 result will lend considerable support to the findings

of [71, 73], but the Nf = 12 spectrum would be inconsistent with the statement of

[71] that this theory is conformal.

3.4 Staggered improvement

Since flavor breaking can have a dramatic effect on the eigenvalues, we are

investigating various improvements of the staggered action, to bring the simula-
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tions closer to the continuum limit. In Fig. 3.4, we compare mixed actions, with

gauge configurations generated using the Asqtad action, while the eigenvalues are

those of various improved staggered Dirac operators. This figure is for ns = 1 stag-

gered flavor at β = 6.8 and volume 104. The appearance of eigenvalue quartets

which are clearly separated is a clear indication of reduced flavor breaking. Both

HYP-smearing [86] and stout-smearing [87] seem to bring significant improvement

relative to the Asqtad operator, while HISQ fermions [88] do not show as clear an

improvement.

We also show in Fig. 3.5 the effect of using stout-smearing both in the sea

and valence quark. As we go to weaker coupling towards the continuum limit,

the eigenvalue quartet structure emerges clearly. Comparison of the improved

eigenvalues with RMT is ongoing.

3.5 Conclusions

Knowledge of the conformal window is essential to build viable candidates

of strongly interacting physics beyond the Standard Model, and lattice simula-

tions will play a crucial role. Our technique of studying the eigenvalue properties

complements other lattice approaches, such as calculating the beta function of the

renormalized coupling, looking for finite-temperature transitions, or extracting the

mass spectrum. This will hopefully lead to consensus about the nature of these

new theories. Our first study gives an indication that SU(3) gauge theory with

Nf = 8 and 12 flavors are both QCD-like, non-conformal theories. We are investi-

gating various improvements to reduce flavor-breaking lattice artifacts and allow

us to reach a stronger conclusion.

3.6 Acknowledgments

We thank Poul Damgaard for very helpful discussions, and Urs Heller

who stressed the importance of reaching the quartet degeneracy limit. This re-

search was supported by the DOE under grants DOE-FG03-97ER40546, DE-FG02-



60

97ER25308, by the NSF under grant 0704171, by the DFG under grant FO 502/1

and by SFB-TR/55.

Chapter 3, in full, is a reprint of the material as it appears in Proceedings of

Science: Lattice 2008. Zoltan Fodor, Kieran Holland, Julius Kuti, Daniel Nogradi,

and Chris Schroeder, PoS LATTICE2008, 066, 2008. The dissertation author was

a principal investigator and co-author of this paper.



Chapter 4

Chiral Symmetry Breaking in

Nearly Conformal Gauge Theories

Abstract

We present new results on chiral symmetry breaking in nearly conformal

gauge theories with fermions in the fundamental representation of the SU(3) color

gauge group. The number of fermion flavors is varied in an extended range below

the conformal window with chiral symmetry breaking (χSB) for all flavors between

Nf = 4 and Nf = 12. To identify χSB we apply several methods which include,

within the framework of chiral perturbation theory, the analysis of the Goldstone

spectrum in the p-regime and the spectrum of the fermion Dirac operator with

eigenvalue distributions of random matrix theory in the ε-regime. Chiral conden-

sate enhancement is observed with increasing Nf when the electroweak symmetry

breaking scale F is held fixed in technicolor language. Important finite-volume con-

sistency checks from the theoretical understanding of the SU(Nf ) rotator spectrum

of the δ-regime are discussed. We also consider these gauge theories at Nf = 16

inside the conformal window. The importance of understanding finite volume,

zero momentum gauge field dynamics inside the conformal window is pointed out.

Staggered lattice fermions with supressed taste breaking are used throughout the

simulations.

61



62

4.1 Introduction

Our goal in this work to identify chiral symmetry breaking (χSB) below the

conformal window of strongly interacting gauge theories requires the application

and testing of several methods in finite volumes. These include the analysis of the

Goldstone spectrum in the p-regime and the spectrum of the fermion Dirac opera-

tor with eigenvalue distributions of Random Matrix Theory (RMT) in the ε-regime,

within the framework of chiral perturbation theory (χPT). Some critical consis-

tency checks from the theoretical understanding of the SU(Nf ) rotator spectrum

of the δ-regime will be also discussed. We report new results with Nf = 4, 8, 9, 12

flavors with χSB below the conformal window for fermions in the fundamental rep-

resentation of the SU(3) color gauge group. As Nf is increased, chiral condensate

enhancement is observed when the electroweak symmetry breaking scale F is held

fixed in technicolor language. We also discuss the theory inside the conformal win-

dow. The importance of understanding finite volume, zero momentum gauge field

dynamics inside the conformal window is pointed out and illustrated at Nf = 16.

Much of this work is an extension of our pre-conference publication [89] where

we did not report our Nf = 12 results. In our forthcoming publication [90] more

details will be provided on the analysis and results presented here.

It is an intriguing possibility that new physics beyond the Standard Model

might take the form of some new strongly-interacting gauge theory building on

the original technicolor idea [67, 68, 91]. This approach has lately been revived by

new explorations of the multi-dimensional theory space of nearly conformal gauge

theories [92, 93, 69, 94]. Model building of a strongly interacting electroweak

sector requires the knowledge of the phase diagram of nearly conformal gauge

theories as the number of colors Nc, number of fermion flavors Nf , and the fermion

representation R of the technicolor group are varied in theory space. For fixed Nc

and R the theory is in the chirally broken phase for low Nf , and asymptotic

freedom is maintained with a negative β function. On the other hand, if Nf is

large enough, the β function is positive for all couplings, and the theory is trivial.

There is some range of Nf for which the β function might have a non-trivial zero,

an infrared fixed point, where the theory is in fact conformal [95, 96]. This method
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has been refined by estimating the critical value of Nf , above which spontaneous

chiral symmetry breaking no longer occurs [97, 98, 99].

Interesting models require the theory to be very close to, but below, the

conformal window, with a running coupling which is almost constant over a large

energy range [100, 101, 102, 103, 104, 6]. The nonperturbative knowledge of the

critical N crit
f separating the two phases is essential and this has generated much

interest and many new lattice studies [89, 105, 106, 107, 108, 109, 110, 72, 111,

71, 112, 113, 74, 114, 115, 116, 117, 118, 119, 120, 73, 70, 121, 122, 123, 124, 125,

126, 127, 128, 129, 130, 131]. To provide theoretical framework for the analysis of

simulation results, we review first a series of tests expected to hold in the setting

of χPT in finite volume and in the infinite volume limit.

4.2 Chiral symmetry breaking below the confor-

mal window

We will identify in lattice simulations the chirally broken phases with Nf =

4, 8, 9, 12 flavors of staggered fermions in the fundamental SU(3) color representa-

tion using finite volume analysis. We deploy staggered fermions with exponential

(stout) smearing [87] in the lattice action to reduce well-known cutoff effects with

taste breaking in the Goldstone spectrum [132]. The presence of taste breaking

requires a brief explanation of how we apply staggered χPT in our analysis. The

important work of Lee, Sharpe, Aubin and Bernard [133, 134, 135] is closely fol-

lowed in the discussion.

4.2.1 Staggered chiral perturbation theory

Starting withNf = 4 [133], the spontaneous breakdown of SU(4)L×SU(4)R

to vector SU(4) gives rise to 15 Goldstone and pseudo-Goldstone modes, described

by fields φi that can be organized into an SU(4) matrix

Σ(x) = exp
(
i
φ√
2F

)
, φ =

15∑
a=1

φaTa . (4.1)
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F is the Goldstone decay constant in the chiral limit and the normalization Ta =

{ξµ, iξµ5, iξµν , ξ5} is used for the flavor generators. The leading-order chiral La-

grangian is given by

L(4)
χ =

F 2

4
Tr(∂µΣ∂µΣ

†)− 1

2
Bmq F

2Tr(Σ + Σ†) , (4.2)

with the fundamental parameters F and B measured on the technicolor scale ΛTC

which replaced ΛQCD in the new theory. Expanding the chiral Lagrangian in powers

of φ one finds 15 degenerate Goldstone pions with masses given by

M2
π = 2Bmq [1 +O(mq/ΛTC)] . (4.3)

The leading-order term is the tree-level result while the corrections come from loop

diagrams and from higher-order terms in the chiral Lagrangian. The addition of

a2L(6)
χ breaks chiral symmetry and lifts the degeneracy of the Goldstone pions.

Adding correction terms to Eq. (4.3) yields

M2
π = C(Ta) · a2Λ4

TC + 2Bmq

[
1 +O(mq/ΛTC) +O(a2Λ2

TC)
]

(4.4)

where the representation dependent C(Ta) is a constant of order unity. Contri-

butions proportional to a2 are due to L(6)
χ and lead to massive pseudo-Goldstone

pions even in the mq → 0 chiral limit, except for the Goldstone pion with flavor ξ5

which remains massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without derivatives, defining

the potential V(6)
χ , is invariant under flavor SO(4) transformations and gives rise to

the a2 term in M2
π . Terms in L(6)

χ involving derivatives break SO(4) further down

to the lattice symmetry group and give rise to non-leading terms proportional to

a2m and a4. The taste breaking potential is given by

−V(6)
χ = C1Tr(ξ5Σξ5Σ

†) +
C2

2

[
Tr(Σ2)− Tr(ξ5Σξ5Σ) + h.c.

]
+

C3

2

∑
ν

[Tr(ξνΣξνΣ) + h.c.] +
C4

2

∑
ν

[Tr(ξν5Σξ5νΣ) + h.c.]

+
C5

2

∑
ν

[
Tr(ξνΣξνΣ

†)− Tr(ξν5Σξ5νΣ
†)
]

+ C6

∑
µ<ν

Tr(ξµνΣξνµΣ
†). (4.5)
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The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the Goldstone pions form a 15-plet of flavor SU(4) and

are degenerate. On the lattice, states are classified by the symmetries of the trans-

fer matrix, and the pseudo-Goldstone pions fall into 7 irreducible representations:

four 3-dimensional representations with flavors ξi, ξi5, ξij and ξi4, and three 1-

dimensional representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pseudo-Goldstone masses

are given by

Mπ(Ta)
2 = 2Bmq + a2∆(Ta) +O(a2mq) +O(a4) , (4.6)

with ∆(Ta) ∼ Λ4
TC arising from V(6)

χ . Since V(6)
χ respects flavor SO(4), the 15

Goldstone particles fall into SO(4) representations:

∆(ξ5) = 0,

∆(ξµ) =
8

F 2
(C1 + C2 + C3 + 3C4 + C5 + 3C6),

∆(ξµ5) =
8

F 2
(C1 + C2 + 3C3 + C4 − C5 + 3C6),

∆(ξµν) =
8

F 2
(2C3 + 2C4 + 4C6). (4.7)

In the chiral limit at finite lattice spacing, the lattice irreducible representations

with flavors ξi and ξ4 are degenerate, those with flavors ξi5 and ξ45, and those

with flavors ξij and ξi4 are degenerate as well. No predictions can be made for the

ordering, splittings, or even the signs of the mass shifts. Our simulations indicate

that they are all positive with the exponentially smeared staggered action we use,

making the existence of an Aoki phase [133] unlikely. The method of [133] has been

generalized to the Nf > 4 case [134, 135] which we adopted in our calculations

with help from Bernard and Sharpe. The procedure cannot be reviewed here but

it will be used in the interpretation of our Nf = 8 simulations.

4.2.2 Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to identify the chirally

broken phase from finite volume spectra and correlators. For a lattice size L3
s×Lt in
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euclidean space and in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1

select the the p-regime, in analogy with low momentum counting [136, 137].

For arbitrary Nf , in the continuum and in infinite volume, the one-loop

chiral corrections to Mπ and Fπ of the degenerate Goldstone pions are given by

M2
π = M2

[
1− M2

8π2NfF 2
ln

(
Λ3

M

)]
, (4.8)

Fπ = F

[
1 +

NfM
2

16π2F 2
ln

(
Λ4

M

)]
, (4.9)

where M2 = 2B · mq and F,B,Λ3,Λ4 are four fundamental parameters of the

chiral Lagrangian, and the small quark mass mq explicitly breaks the symme-

try [138]. The chiral parameters F,B appear in the leading part of the Lagrangian

in Eq. (4.2), while Λ3,Λ4 enter in next order. There is the well-known GMOR

relation Σcond = BF 2 in the mq → 0 limit for the chiral condensate per unit fla-

vor [139]. It is important to note that the one-loop correction to the pion coupling

constant Fπ is enhanced by a factor N2
f compared to M2

π . The chiral expansion

for large Nf will break down for Fπ much faster for a given Mπ/Fπ ratio. The

NNLO terms have been recently calculated [140] showing potentially dangerous

N2
f corrections to Eqs. (4.8,4.9).

The finite volume corrections to Mπ and Fπ are given in the p-regime by

Mπ(Ls, η) = Mπ

[
1 +

1

2Nf

M2

16π2F 2
· g̃1(λ, η)

]
, (4.10)

Fπ(Ls, η) = Fπ

[
1− Nf

2

M2

16π2F 2
· g̃1(λ, η)

]
, (4.11)

where g̃1(λ, η) describes the finite volume corrections with λ = M · Ls and aspect

ratio η = Lt/Ls. The form of g̃1(λ, η) is a complicated infinite sum which contains

Bessel functions and requires numerical evaluation [137]. Eqs. (4.8-4.11) provide

the foundation of the p-regime fits in our simulations.

4.2.3 δ-regime and ε-regime

At fixed Ls and in cylindrical geometry Lt/Ls � 1, a crossover occurs from

the p-regime to the δ-regime when mq → 0, as shown in Fig. 4.1. The dynamics is
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Figure 4.1: Schematic plot of the regions in which the three low energy chiral ex-
pansions are valid. The vertical axis shows the finite temperature scale (euclidean
time in the path integral) which probes the rotator dynamics of the δ-regime and
the ε-regime. The first two low lying rotator levels are also shown on the vertical
axis for the simple case of Nf = 2. The fourfold degenerate lowest rotator ex-
citation at mq = 0 will split into an isotriplet state (lowest energy level), which
evolves into the p-regime pion as mq increases, and into an isosinglet state repre-
senting a multi-pion state in the p-regime. Higher rotator excitations have similar
interpretations.

dominated by the rotator states of the chiral condensate in this limit [141] which

is characterized by the conditions FLs > 1 and MLs � 1. The densely spaced

rotator spectrum scales with gaps of the order ∼ 1/F 2L3
s, and at mq = 0 the

chiral symmetry is apparently restored. However, the rotator spectrum, even at

mq = 0 in the finite volume, will signal that the infinite system is in the chirally

broken phase for the particular parameter set of the Lagrangian. This is often

misunderstood in the interpretation of lattice simulations. Measuring finite energy

levels with pion quantum numbers at fixed Ls in the mq → 0 limit is not a signal

for chiral symmetry restoration of the infinite system [118].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the system will

be driven into the ε-regime which can be viewed as the high temperature limit

of the δ-regime quantum rotator. Although the δ-regime and ε-regime have an

overlapping region, there is an important difference in their dynamics. In the δ-



68

 0

 0.04

 0.08

 0.12

 0.16

 0  0.01  0.02  0.03  0.04  0.05

 (
a 

M
)2  

 a mq 

Nf = 4
4 Stout
β = 3.80

163 x 32
π

πi5

Figure 4.2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at Nf = 4.

regime of the quantum rotator, the mode of the pion field U(x) with zero spatial

momentum dominates with time-dependent quantum dynamics. The ε-regime is

dominated by the four-dimensional zero momentum mode of the chiral Lagrangian.

We report simulation results of all three regimes in the chirally broken phase

of the technicolor models we investigate. The analysis of the three regimes com-

plement each other and provide cross-checks for the correct identification of the

phases. First, we will probe Eqs. (4.8-4.11) in the p-regime, and follow with the

study of Dirac spectra and RMT eigenvalue distributions in the ε-regime. The

spectrum in the δ-regime is used as a signal to monitor p-regime spectra as mq

decreases. Fig. 4.2 is an illustrative example of this crossover in our simulations.

It is important to note that the energy levels in the chiral limit do not match the

rotator spectrum at the small F · Ls values of the simulations. This squeezing

with F · Ls not large enough for undistorted, finite volume, chiral behavior in the

p-regime, ε-regime, and δ-regime, will be further discussed in our p-regime simu-

lations presented next. We will also describe some methods to put this squeezing

into a more quantitative context.
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Figure 4.3: The Goldstone spectrum and chiral fits are shown for simulations
with lattice size 243 × 32. The left column shows the pseudo-Goldstone spectrum
with decreasing taste breaking as the gauge coupling is varied from β = 3.5 to
β = 3.7. The middle value at β = 3.6 was chosen for chiral fits which are shown
in the right column. The top right figure with fitting range a ·mq = 0.008− 0.025
shows the NLO chiral fit to M2

π/mq which approaches 2B in the chiral limit. Data
points below mq = 0.008 are not in the chiral p-regime and not used in the fitting
procedure.The middle figure on the right is the NLO chiral fit to Fπ in the range
a · mq = 0.008 − 0.02. The bottom right figure is the linear fit to the chiral
condensate with fitting range a ·mq = 0.015− 0.025. The physical fit parameters
B,F,Λ3,Λ4 are discussed in the text.

4.3 P-regime Goldstone spectra at Nf = 4

In this section we describe in some detail the methods we use for successfully

testing chiral symmetry breaking. Our tests in the p-regime have two major com-
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ponents. The primary test is to identify the pseudo-Goldstone spectrum of the

staggered formulation with evidence for recovery from taste symmetry breaking

close to the continuum limit. The secondary test is to probe chiral loop correc-

tions to the tree-level behavior of M2
π and Fπ as the fermion mass a ·mq is varied

at fixed gauge coupling β. The evidence we find for chiral symmetry breaking at

Nf = 4, 8, 9, 12 is common to all flavors. Limitations and ambiguities identified at

Nf = 4 for future improvements are expected to be more pronounced with increas-

ing Nf . Results for each flavor we have simulated in the p-regime are presented in

separate sections beginning here with general discussion and Nf = 4 results.

We have used the tree-level Symanzik-improved gauge action for all simu-

lations. The conventional β = 6/g2 lattice gauge coupling is defined as the overall

factor in front of the three well-known terms of the lattice action. The link vari-

ables in the staggered fermion matrix were exponentially smeared with six stout

steps at Nf = 4 and the RHMC algorithm was deployed in all runs. The results

shown in Fig. 4.3 are from the p-regime of χSB with the conditions Mπ · Ls � 1

and Fπ ·Ls ∼ 1 when the chiral condensate begins to follow the expected behavior

of infinite-volume chiral perturbation theory from Eqs. (4.8,4.9) in next-to-leading

order (NLO) with calculable finite volume corrections from Eqs. (4.10,4.11) which

are negligible at Ls = 24. We have empirical evidence that the Mπ and Fπ data

points are free of finite volume corrections in practically the entire fitting range

of the fermion masses we use at Ls = 24 so that the negligible corrections from

Eqs. (4.10,4.11) can be ignored.

Within some finite volume limitations, which we will address, the Nf = 4

simulations work in the p-regime as expected. The left column of Fig. 4.3 shows

that the pseudo-Goldstone spectrum clearly remains separated from the hadronic

scale of the ρ-meson as β is varied. Moving towards the continuum limit with

increasing β, we see the split pseudo-Goldstone spectrum collapsing into the de-

generate continuum pion spectrum. The true Goldstone pion whose mass will

vanish in the a ·mq = 0 limit at fixed lattice spacing and two additional split states

with small residual masses at a ·mq = 0 are shown to illustrate the trend. a4∆ is

the measure of the small taste breaking in quadratic mass splitting as measured in
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lattice units. The origin of the splittings and the quantum numbers were discussed

in Section 4.2 as shown in Eq. (4.7). The spectrum is approximately parallel as the

bare fermion mass a ·mq is varied at fixed lattice spacing and the gaps appear to

be equally spaced to a good approximation, consistent with earlier observations in

QCD where the C4 term seems to dominate staggered taste breaking for two light

flavors with equally spaced pseudo-Goldstone levels [133]. We selected β = 3.6 for

testing χPT of finite volume Goldstone dynamics in the p-regime. This choice with

small taste breaking is close to the continuum limit without excessive squeeze on

the important product F · Ls which in an ideal simulation of the p-regime should

be large (F is the chiral limit of Fπ as a ·mq → 0 at fixed lattice spacing).

The simultaneous chiral fit of M2
π/mq and Fπ based on Eqs. (4.8-4.11) is

shown in Fig. 4.3 where chiral loops correct the tree-level values of M2
π/mq = 2B

and Fπ. In the fitting range a ·mq = 0.008− 0.025 applied to M2
π/mq we observe

small corrections to the tree-level value of 2B which keeps the fit well within the

range of one-loop χPT. In the fitting range a · mq = 0.008 − 0.02 the Fπ data

are about a factor of two larger than F which indicates how the one-loop fit is

being pushed to its limits. Without loop correction Fπ would not change from its

fitted value of a · F = 0.033(4) in the chiral limit at fixed lattice spacing. The

fitted value of B is a · B = 1.76(7) in lattice units and Mρ/F = 13(1) in the

chiral limit (the linear fit of Mρ = c + d ·mq is used at all Nf values to determine

Mρ(mq = 0)). The fitted value of B/F = 53(6) indicates significant enhancement

of the chiral condensate from its Nf = 2 value [128, 142]. In our simultaneous fits

we get Λ3 = 0.37(5) and Λ4 = 0.51(1) which set the chiral couplings in the NLO

chiral Lagrangian.

The chiral condensate 〈ψψ〉 summed over all flavors is dominated by the

linear term in mq from UV contributions. The linear fit gives 〈ψψ〉 = 0.0191(4) in

the chiral limit which differs from the GMOR relation of 〈ψψ〉 = 4F 2B by about

a factor of two with 4F 2B = 0.008(2) fitted. There are several sources of this

disagreement. The chiral log in 〈ψψ〉 will bring further down the true fitted value

in the chiral limit. Our volumes are not large enough yet to attempt a sensible

chiral log fit to the condensate at small a · mq values. Finite volume squeezing
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effects distort the consistency of the results in our limited range of simulation

volumes. The choice of fitting method to Eqs. (4.8,4.9) can also have some effect

on the results. On the right-hand sides of the equations, the variable pair (M, F )

in the chiral logs can be replaced with the pair (Mπ, Fπ) which is equivalent to a

partial resummation [142]. This will be reported in our more detailed forthcoming

journal publication [90].

Finite volume limitations when measured in F units have the biggest effect

on our chiral analysis. The value F · Ls ≈ 0.8 is not expected to protect against

significant finite-volume squeezing effects for even the largest spatial size Ls = 24

used in the chiral fits at Nf = 4. Larger than optimal NLO corrections in the

chiral fits of Fπ and finite-volume squeezing effects are closely related concerns.

Simulations on larger lattices would increase F · Ls and allow us to drop back in

a ·mq into a more comfortable range with smaller NLO chiral corrections for Fπ.

Finite volume corrections to the rotator spectrum in the δ-regime set some

quantitative measure of squeezing effects on the chiral analysis. The connection is

made by observing that the pion spectrum in the p-regime can be viewed at fixed

spatial volume L3
s as the adiabatic evolution from the energy levels of the rotator

spectrum of the δ-regime as illustrated schematically in Fig. 4.2 for the lowest

Nf = 2 rotator levels. The rotator spectrum for Nf = 2 is given by El = 1
2Θ
l(l+2),

with l = 0, 1, 2, ..., where the moment of inertia is calculated in NLO [143, 144]

as Θ = F 2L3
s(1 +

C(Nf=2)

F 2L2
s

+ O( 1
F 4·L4

s
)). The value of C(Nf = 2) is known to be

0.45 and is expected to grow with Nf . At F · Ls ≈ 0.8 the correction is 70% for

Nf = 2 and probably considerably larger for Nf = 4. The leading-order rotator

gap for arbitrary Nf is given by E1 − E0 =
N2

f−1

NfF 2L3
s

but the coefficient C(Nf )

is an important missing piece in the analysis. Were we to continue the p-regime

Goldstone spectrum at Nf = 4, Ls = 24, and β = 3.6 to the δ-regime adiabatically,

the small value of F · Ls would not allow us to get a reliable estimate of F based

on the chiral rotator spectrum with the collapse of the adiabatic approximation.

This is a quantitative warning sign of the need for considerably larger spatial

volume for robust p-regime results to determine F in the chiral fitting procedure.

In fact, we are going to fit M2
π/mq in the chiral analysis for Nf = 8, 9, 12 with
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better controlled NLO loop corrections, but Fπ will not be fitted. For larger Nf ,

a reliable simultaneous fit requires substantially larger volumes than are realistic

with our current resources.

In summary, the Nf = 4 system passed both tests in the chirally broken

phase and shows significant enhancement of the chiral condensate when measured

in units of the electroweak symmetry breaking scale set by F . This is a relevant

effect to monitor for fermion mass generation in extended technicolor applications

as we begin to approach the conformal window [128].

4.4 P-regime Goldstone spectra at Nf = 8

As we move to the Nf = 8 p-regime simulations, we can clearly identify the

p-regime of the chirally broken phase as summarized in Fig. 4.4. The same lattice

action and algorithm was used for the Nf = 8 p-regime simulations as introduced

earlier for Nf = 4. We can clearly identify the pseudo-Goldstone spectrum which

is separated from the technicolor scale of the ρ-meson. Moving towards the con-

tinuum limit we observe at β = 1.4 the split pion spectrum collapsing toward the

true Goldstone pion with a new distinct feature. The true Goldstone pion, whose

mass will vanish in the a ·mq = 0 limit at fixed lattice spacing, and two additional

split pseudo-Goldstone states appear with considerably different slopes in Fig. 4.4

as mq increases. For small a · mq we find the pseudo-Goldstone spectrum col-

lapsed at fixed gauge coupling. Apparently the NLO operators, the last two terms

in Eq. (4.6), have a stronger effect on the spectra relative to leading-order taste

breaking operators, the generalization of those from Nf = 4 to Nf = 8 as discussed

in Section 2. This somewhat unexpected and unexplained trend is observed for

Nf > 8 as well.

We analyzed the χSB pattern within staggered perturbation theory in its

generalized form beyond four flavors [134, 135]. The simultaneous chiral fit of

M2
π/mq and Fπ based on Eqs. (4.8-4.11) cannot be done at Nf = 8 within the

reach of the largest lattice sizes we deploy since the value of F · Ls is too small

even at Ls = 24, for gauge couplings where taste breaking drops to an acceptable
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Figure 4.4: The Goldstone spectrum and chiral fits are shown for Nf = 8 simula-
tions with lattice size 243×32. The left column shows the pseudo-Goldstone spec-
trum with decreasing taste breaking as the gauge coupling is varied from β = 1.0
to β = 1.8. The middle value at β = 1.4 was chosen in the top right figure with
fitting range a·mq = 0.015−0.03 of the NLO chiral fit to M2

π/mq which approaches
2B in the chiral limit. The middle figure on the right shows the Fπ data with no
NLO fit far away from the chiral limit. The bottom right figure is the linear fit
to the chiral condensate with fitting range a ·mq = 0.02 − 0.04. The physical fit
parameters B,F,Λ3 are discussed in the text.

level. The chiral fit of B,F,Λ3 to M2
π/mq, shown at the top right of Fig. 4.4, is

based on Eq. (4.8) only since the Fπ data points are outside the convergence range

of the chiral expansion. Much larger lattices are required to drop down in mq
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to the region where the simultaneous fit could be made, while maintaining some

control over finite volume and taste breaking effects. The finite volume corrections

were negligible in the fitted a ·mq range and Eqs. (4.10,4.11) were not needed.

At β = 1.4 the fitted value of B is a · B = 2.6(3) in lattice units with

a · F = 0.0166(9) and a · Λ3 = 0.48(5) also fitted. The fitted ρ-mass in the chiral

limit is a ·Mρ = 0.27(2) with Mρ/F = 17(1). The fitted value of B/F = 158(17)

is not very reliable but indicates significant enhancement of the chiral condensate

from its Nf = 4 value without including renormalization scale effects. The chiral

condensate 〈ψψ〉 summed over all flavors is dominated by the linear term in mq

from UV contributions. The linear fit gives 〈ψψ〉 = 0.012(1) in the chiral limit

which differs from the GMOR relation of 〈ψψ〉 = 8F 2B by about a factor of two

with 8F 2B = 0.0058(8) fitted. There are several sources of this disagreement

which were addressed for the Nf = 4 case earlier. The chiral log in 〈ψψ〉 will bring

further down the true fitted value in the chiral limit. Our volumes are not large

enough yet to attempt a sensible chiral log fit to the condensate at small a · mq

values. Finite volume squeezing effects distort the consistency of the results in our

limited range of simulation volumes. Similar observations should also be noted

when the RMT analysis is applied in the ε-regime.

4.5 P-regime Goldstone spectra at Nf = 9

We had two motivations for the Nf = 9 simulation reported here. We

wanted to see whether the rooting procedure (being applied in our project with

two fermions in the sextet representation) will present some unexpected changes

in the analysis and we were also looking for the continued trends in the χSB

pattern. We could not find any noticeable effect from the rooting procedure and

the symmetry breaking pattern was consistent with the Nf = 8 simulations.

As shown in Fig. 4.5 the Goldstone spectrum is still clearly separated from

the technicolor scale of the ρ-meson. The true Goldstone pion and two additional

split pseudo-Goldstone states are shown again with different slopes as a · mq in-

creases. The trends and the underlying explanation are similar to the Nf = 8
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Figure 4.5: The pseudo-Goldstone spectrum and chiral fits are shown for Nf = 9
simulations with lattice size 243×32. The left column shows the pseudo-Goldstone
spectrum with decreasing taste breaking as the gauge coupling is varied from β =
1.6 to β = 2.4. Although the bottom figure on the left at β = 2.4 illustrates the
continued restoration of taste symmetry, the volume is too small for the Goldstone
spectrum. The middle value at β = 2.0 was chosen in the top right figure with
fitting range a·mq = 0.015−0.03 of the NLO chiral fit to M2

π/mq which approaches
2B in the chiral limit. The middle figure on the right shows the Fπ data with no
NLO fit far away from the chiral limit. The bottom right figure is the linear fit
to the chiral condensate with fitting range a ·mq = 0.02 − 0.04. The physical fit
parameters B,F,Λ3 are discussed in the text. Four stout steps were used in all
Nf = 9 simulations.
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case. The chiral fit to M2
π/mq is shown based on Eq. (4.8) only since the Fπ data

points are outside the convergence range of the chiral expansion. At β = 2.0

the fitted value of B is a · B = 2.8(4) in lattice units with a · F = 0.017(2) and

a ·Λ3 = 0.48(9) also fitted. The fitted ρ-mass in the chiral limit is a ·Mρ = 0.233(3)

with Mρ/F = 14(1). The fitted value of B/F = 166(32) is not very reliable but

comparable to the enhancement of the chiral condensate found at Nf = 8 without

including renormalization scale effects. Again, at fixed lattice spacing, the small

chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear term

in mq from UV contributions. The linear fit gives 〈ψψ〉 = 0.0045(7) in the chiral

limit which differs from the GMOR relation of 〈ψψ〉 = 9F 2B by about a factor

of two with 9F 2B = 0.007(2) fitted. Open issues in the systematics are similar to

the Nf = 8 case.

4.6 P-regime Goldstone spectra at Nf = 12

Finally we move to the controversial Nf = 12 case. We find here a similar

chiral symmetry breaking pattern as we found in the Nf = 8, 9 cases with increased

concerns about all the caveats presented before. The Goldstone spectrum remains

separated from the technicolor scale of the ρ-meson. The true Goldstone pion

and two additional split pseudo-Goldstone states are shown again in Fig. 4.6 with

different slopes as a ·mq increases. The trends and the underlying explanation are

similar to the Nf = 8, 9 cases. The chiral fit to M2
π/mq shown at the top right

side of Fig. 4.6 is based on Eq. (4.8) only since the Fπ data points are outside

the convergence range of the chiral expansion. At β = 2.2 the fitted value of B is

a ·B = 2.7(2) in lattice units with a ·F = 0.0120(1) and a ·Λ3 = 0.50(3) also fitted.

The fitted ρ-mass in the chiral limit is a·Mρ = 0.115(15) from a·mq = 0.025−0.045

with Mρ/F = 10(1). The fitted value of B/F = 223(17) is not very reliable but

consistent with the enhancement of the chiral condensate found at Nf = 8, 9

without including renormalization scale effects. Again, at fixed lattice spacing, the

small chiral condensate 〈ψψ〉 summed over all flavors is dominated by the linear

term in mq from UV contributions. The linear fit gives 〈ψψ〉 = 0.0033(13) in the



78

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.01  0.02  0.03  0.04

 (
a 

M
)2  

 a mq 

β = 2.00

243 x 32

π

πi5

πij
ρNf = 12

2 Stout

 3

 3.5

 4

 4.5

 5

 5.5

 0  0.01  0.02  0.03  0.04

 a
 M

π2  / 
m

q

 a mq 

Nf = 12

β = 2.20

mq > 0.033: 243x32
mq < 0.033: 324

2 Stout

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.01  0.02  0.03  0.04

 (
a 

M
)2  

 a mq 

β = 2.20

π
πi5

πij

ρ

mq < 0.033: 324

mq > 0.033: 243x32

Nf = 12
2 Stout

 0.02

 0.04

 0.06

 0.08

 0  0.01  0.02  0.03  0.04

 a
 F

π 
 a mq 

Nf = 12

β = 2.20

mq > 0.033: 243x32
mq < 0.033: 324

2 Stout

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.01  0.02  0.03  0.04

 (
a 

M
)2  

 a mq 

β = 2.40

243 x 32

π
πi5

πij

ρ

Nf = 12
2 Stout

 0

 0.08

 0.16

 0.24

 0.32

 0.4

 0.48

 0.56

 0.64

 0  0.01  0.02  0.03  0.04

 a
3  <

 ψ
 ψ

 >
 

 a mq 

Nf = 12

β = 2.20

mq > 0.033: 243x32

0.0033 (12)

mq < 0.033: 324

2 Stout

Figure 4.6: The pseudo-Goldstone spectrum and chiral fits are shown for Nf = 12
simulations with lattice size 243 × 32 and 324. The left column shows the pseudo-
Goldstone spectrum with decreasing taste breaking as the gauge coupling is varied
from β = 2.0 to β = 2.4. Although the bottom figure on the left at β = 2.4
illustrates the continued restoration of taste symmetry, the volume is too small
for the Goldstone spectrum. The middle value at β = 2.2 was chosen in the top
right figure with fitting range a · mq = 0.015 − 0.035 of the NLO chiral fit to
M2

π/mq which approaches 2B in the chiral limit. The middle figure on the right
shows the Fπ data with no NLO fit far away from the chiral limit. The bottom
right figure, with its additional features discussed in the text, is the linear fit to
the chiral condensate with fitting range a · mq = 0.02 − 0.04. The physical fit
parameters B,F,Λ3 are discussed in the text. Two stout steps were used in all
Nf = 12 simulations.
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chiral limit which came out unexpectedly close the GMOR relation of 〈ψψ〉 =

12F 2B with 12F 2B = 0.0046(4) fitted. Issues and concerns in the systematics are

similar to the Nf = 8, 9 cases.

In summary, we have shown strong evidence that according to p-regime

tests the Nf = 4, 8, 9, 12 systems all exhibit in the Goldstone and hadron spectra

broken chiral symmetry close to the continuum limit. There are some important

features of the Nf = 12 analysis which suggest that the model is not only in the

χSB phase but also close to slow walking of the renormalized gauge coupling. The

bottom right of Fig. 4.6 shows the crossover in the chiral condensate from strong

coupling to the weak coupling regime in the relevant range of mq. In combination

with the nearly degenerate Goldstone spectrum we find it quite suggestive that

around β = 2.2 we are close to continuum behavior. In addition, we observe that

the fitted value of the ρ-mass in the chiral limit hardly changes in this region as

the gauge coupling is varied (at β = 2.0 we fit a ·Mρ = 0.123(10)). If confirmed on

larger lattices, this could be a first hint of a slowly changing gauge coupling close

to the conformal window. Currently we are investigating the important Nf = 12

model on larger lattices to probe the possible influence of unwanted squeezing

effects on the spectra.

Our findings at Nf = 12 are in disagreement with [128]. Lessons from the

Dirac spectra and RMT to complement p-regime tests are discussed in the next

section.

4.7 Epsilon regime, Dirac spectrum and RMT

If the bare parameters of a gauge theory are tuned to the ε-regime in the

chirally broken phase, the low-lying Dirac spectrum follows the predictions of ran-

dom matrix theory. The corresponding random matrix model is only sensitive to

the pattern of chiral symmetry breaking, the topological charge and the rescaled

fermion mass once the eigenvalues are also rescaled by the same factor ΣcondV .

This idea has been confirmed in various settings both in quenched and fully dy-

namical simulations. The same method is applied here to nearly conformal gauge
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models.

The connection between the eigenvalues λ of the Dirac operator and chiral

symmetry breaking is given in the Banks-Casher relation [75],

Σcond = −〈ΨΨ〉 = lim
λ→0

lim
m→0

lim
V→∞

πρ(λ)

V
,

where Σcond designates the quark condensate normalized to a single flavor. To gen-

erate a non-zero density ρ(0), the smallest eigenvalues must become densely packed

as the volume increases, with an eigenvalue spacing ∆λ ≈ 1/ρ(0) = π/(ΣcondV ).

This allows a crude estimate of the quark condensate Σcond. One can do better

by exploring the ε-regime: If chiral symmetry is spontaneously broken, tune the

volume and quark mass such that 1
Fπ
� L � 1

Mπ
, so that the Goldstone pion

is much lighter than the physical value, and finite volume effects are dominant

as we discussed in Section 2. The chiral Lagrangian of Eq. (4.2) is dominated

by the zero-momentum mode from the mass term and all kinetic terms are sup-

pressed. In this limit, the distributions of the lowest eigenvalues are identical to

those of random matrix theory, a theory of large matrices obeying certain symme-

tries [77, 145, 146]. To connect with RMT, the eigenvalues and quark mass are

rescaled as z = λΣcondV and µ = mqΣcondV , and the eigenvalue distributions also

depend on the topological charge ν and the number of quark flavors Nf . RMT is

a very useful tool to calculate analytically all of the eigenvalue distributions [147].

The eigenvalue distributions in various topological sectors are measured via lattice

simulations, and via comparison with RMT, the value of the condensate Σcond can

be extracted.

After we generate large thermalized ensembles, we calculate the lowest

twenty eigenvalues of the Dirac operator using the PRIMME package [84]. In the

continuum limit, the staggered eigenvalues form degenerate quartets, with restored

taste symmetry. The first column of Fig. 4.7 shows the change in the eigenvalue

structure for Nf = 4 as the coupling constant is varied. At β = 3.6 grouping into

quartets is not seen, the Goldstone pions are somewhat still split, and staggered

perturbation theory is just beginning to kick in. At β = 3.8 doublet pairing ap-

pears and at β = 4.0 the quartets are nearly degenerate. The Dirac spectrum is

collapsed as required by the Banks-Casher relation. In the second column we show
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the integrated distributions of the two lowest eigenvalue quartet averages,∫ λ

0

pk(λ
′)dλ′, k = 1, 2 (4.12)

which is only justified close to quartet degeneracy. All low eigenvalues are selected

with zero topology. To compare with RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim
m

=
〈z1〉RMT

µ
, (4.13)

where 〈λ1〉sim is the lowest quartet average from simulations and the RMT average

〈z〉RMT depends implicitly on µ and Nf . With this optimal value of µ, we can

predict the shapes of pk(λ) and their integrated distributions, and compare to the

simulations. The agreement with the two lowest integrated RMT eigenvalue shapes

is excellent for the larger β values.

The main qualitative features of the RMT spectrum are very similar in our

Nf = 8 simulations as shown in Fig. 4.8. One marked quantitative difference is a

noticeable slowdown in response to change in the coupling constant. As β grows

the recovery of the quartet degeneracy is considerably delayed in comparison with

the onset of p-regime Goldstone dynamics. Overall, for the Nf = 4, 8 models we

find consistency between the p-regime analysis and the RMT tests. Earlier, using

Asqtad fermions at a particular β value, we found agreement with RMT even at

Nf = 12 which indicated a chirally broken phase [105]. Strong taste breaking with

Asqtad fermions leaves the quartet averaging in question and the bulk pronounced

crossover of the Asqtad action as β grows is also an issue. Currently we are

investigating the RMT picture for Nf = 9, 10, 11, 12 with our much improved

action with stout smearing. This action shows no artifact transitions and handles

taste breaking much more effectively. Firm conclusions on the Nf = 12 model to

support our findings of χSB in the p-regime will require continued investigations.

4.8 Inside the conformal window

We start our investigation and simulations of the conformal window atNf =

16 which is the most accessible for analytic methods. We are particularly interested
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Figure 4.7: From simulations at Nf = 4 the first column shows the approach to
quartet degeneracy of the spectrum as β increases. The second column shows
the integrated distribution of the two lowest quartets averaged. The solid line
compares this procedure to RMT with Nf = 4.

in the qualitative behavior of the finite volume spectrum of the model and the

running coupling with its associated beta function which is expected to have a weak

coupling fixed point around g∗2 ≈ 0.5, as estimated from the scheme-independent,

two-loop beta function [148]. A distinguished feature of the Nf = 16 conformal

model is how the renormalized coupling g2(L) runs with L, the linear size of the

spatial volume in a Hamiltonian or Transfer Matrix description. On very small
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Figure 4.8: The solid lines compare the integrated distribution of the two lowest
quartet averages to RMT predictions with Nf = 8.

scales the running coupling g2(L) grows with L as in any other asymptotically free

theory. However, g2(L) will not grow large, and in the L→∞ limit it will converge

to the fixed point g∗2 which is rather weak, within the reach of perturbation theory.

There is non-trivial, small-volume dynamics which is illustrated first in the pure

gauge sector.

At small g2, without fermions, the zero-momentum components of the gauge

field are known to dominate the dynamics [149, 150, 151]. With SU(3) gauge

group, there are twenty-seven degenerate vacuum states, separated by energy bar-

riers which are generated by the integrated effects of the non-zero momentum com-

ponents of the gauge field in the Born-Oppenheimer approximation. The lowest-

energy excitations of the gauge field Hamiltonian scale as∼ g2/3(L)/L evolving into

glueball states and becoming independent of the volume as the coupling constant

grows with L. Non-trivial dynamics evolves through three stages as L grows. In

the first regime, in very small boxes, tunneling is suppressed between vacua which

remain isolated. In the second regime, for larger L, tunneling sets in and electric

flux states will not be exponentially suppressed. Both regimes represent small

worlds with zero-momentum spectra separated from higher momentum modes of

the theory with energies on the scale of 2π/L. At large enough L the gauge dy-

namics overcomes the energy barrier, and wave functions spread over the vacuum
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valley. This third regime is the crossover to confinement where the electric fluxes

collapse into thin string states wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed point at

Nf = 16 will have only the first two regimes which are common with QCD. Now

the calculations have to include fermion loops [152, 153]. The vacuum structure

in small enough volumes, for which the wave functional is sufficiently localized

around the vacuum configuration, remains calculable by adding in one-loop order

the quantum effects of the fermion field fluctuations. The spatially constant abelian

gauge fields parametrizing the vacuum valley are given by Ai(x) = T aCa
i /L where

Ta are the (N-1) generators for the Cartan subalgebra of SU(N). For SU(3),

T1 = λ3/2 and T2 = λ8/2. With Nf flavors of massless fermion fields the effective

potential of the constant mode is given by

V k
eff(Cb) =

∑
i>j

V (Cb[µ
(i)
b − µ

(j)
b ])−Nf

∑
i

V (Cbµ
(i)
b + πk), (4.14)

with k = 0 for periodic, or k = (1, 1, 1), for antiperiodic boundary conditions on the

fermion fields. The function V (C) is the one-loop effective potential forNf = 0 and

the weight vectors µ(i) are determined by the eigenvalues of the abelian generators.

For SU(3) µ(1) = (1, 1,−2)/
√

12 and µ(2) = 1
2(1,−1, 0). The correct quantum

vacuum is found at the minimum of this effective potential which is dramatically

changed by the fermion loop contributions. The Polyakov loop observables remain

center elements at the new vacuum configurations with complex values; for SU(N)

Pj =
1

N
tr
(
exp(iCb

jTb)
)

=
1

N

∑
n

exp(iµ
(n)
b Cb

j ) = exp(2πilj/N). (4.15)

This implies µ
(n)
b Cb = 2πl/N (mod 2π) and V k

eff = −NfNV (2πl/N + πk). In

the case of antiperiodic boundary conditions, k = (1, 1, 1), this is minimal only

when l = 0 (mod 2π). The quantum vacuum in this case is the naive one, A = 0

(Pj = 1). In the case of periodic boundary conditions, k = 0, the vacua have

l 6= 0, so that Pj correspond to non-trivial center elements. For SU(3), there

are now 8 degenerate vacua characterized by eight different Polyakov loops, Pj =

exp(±2πi/3). Since they are related by coordinate reflections, in a small volume

parity (P) and charge conjugation (C) are spontaneously broken, although CP is

still a good symmetry [152].
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Figure 4.9: The time evolution of complex Polyakov loop distributions are shown
from our Nf = 16 simulations with 123 × 36 lattice volume. Tree-level Symanzik-
improved gauge action is used in the simulations and staggered fermions with three
stout steps and very small fermion masses.

Our simulations of the Nf = 16 model below the conformal fixed point g∗2

confirm the theoretical vacuum structure. Fig. 4.9 shows the time evolution of

Polyakov loop distributions monitored along the three separate spatial directions.

On the left side, with periodic spatial boundary conditions, the time evolution is

shown starting from randomized gauge configuration with the Polyakov loop at the

origin. The system evolves into one of the eight degenerate vacua selected by the

positive imaginary part of the complex Polyakov loop along the x and y direction

and negative imaginary part along the z direction. On the right, with antiperiodic

spatial boundary conditions, the vacuum is unique and trivial with real Polyakov

loop in all three directions. The time evolution is particularly interesting in the z

direction with a swing first from the randomized gauge configuration to a complex

metastable minimum first, and eventually tunneling back to the trivial vacuum

and staying there, as expected. The measured fermion-antifermion spectra and the

spectrum of the Dirac operator further confirm this vacuum structure. Our plans

include the continued investigation of zero-mode gauge dynamics which should

clarify many important aspects of conformal and nearly conformal gauge theories.
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