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ABSTRACT OF THE THESIS

Design and Implementation of an Encryption Framework for APCO
P25 using an open source SDR platform in an OSSIE Environment

by
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Professor William Hodgkiss, Chair

Secure and reliable communication is one of the most important issues in

the public safety domain. For public safety and emergency response organiza-

tions such as the Police and Fire departments, reliability and security of their

communications is fundamental and requires both authentication of users as well

as encryption of voice and data communication. Project 25 (P25) public safety

waveform is the waveform of choice for most public safety and emergency response

organizations in Northern America and includes features to enhance reliability and

security of communications. This thesis describes the design and implementation

of an encryption framework for a P25 waveform in a Software Communication Ar-

chitecture (SCA) environment on an open-source Software Defined Radio (SDR)

xii



platform. The design and implementation of the framework which starts with a

high level modeling of its state machine using pseudocode, goes through a bit-

true intermediate implementation and ends with the final cycle-true and bit-true

platform-specific implementation is discussed. This thesis proposes an encryption

framework that is feasible for implementing the P25 encryption specifications and

can be rapidly prototyped in an SCA environment on a cheap off-the-shelf SDR

platform involving multiple processors.
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Chapter 1

Introduction

Public safety and emergency response operations often require coordination

across multiple government and civilian agencies. These operations are often ge-

ographically distributed, as different teams or agencies could be spread out over

the region of operation carrying out specialized tasks while the command center

may be situated in a remote location. Since different participating agencies may

use different communication systems, a communication bottle neck may develop

that can negatively impact activities essential to the emergency response or se-

curity operation. Interoperability has, therefore, become one of the most critical

requirements for public safety radio systems.

A key component of the solution to interoperability is the capabilities pro-

vided by Software Defined Radio (SDR). SDR provides increased flexibility in

interoperation and the ability to adapt to evolving technologies. These SDR ca-

pabilities allow key radio operating parameters to be controlled through software,

leading to tremendous flexibility in the radio (e.g., changing frequency bands on-

the-go or upgrading capabilities by downloading software over-the-air) [1].

By adopting SDR technology, different radio form factors from different

manufactures can support multiple waveforms. Achieving this objective requires

the use of a standardized open architecture – the Software Communication Archi-

tecture (SCA), which defines the common interfaces of waveform components [2].

The SCA is an architectural framework that was designed to maximize portabil-

ity, configurability of the software (including changing waveforms) [3] and enable

1
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software reuse, hence, reducing the development time and associated costs.

The Association of Public-Safety Communications Officials-International

(APCO) Project 25 (P25) came into existence to address the issue of interoper-

ability amongst government and civilian agencies.

1.1 What is APCO P25?

APCO P25 is the standard for the design and manufacture of interoper-

able digital two-way wireless communications products. It was developed as a

collaborative effort between state, local and federal representatives and Telecom-

munications Industry Association (TIA) governance [2]. P25 has gained worldwide

acceptance for public safety, security, public service, and commercial applications

due to the benefits it offers. The project specifies a narrowband waveform with

two phases of implementation which take different approaches to the Vocoder and

Channel access schemes. Phase 1 waveform uses a 12.5 kHz bandwidth channel,

with Frequency Division Multiple Access (FDMA) access methods and the Im-

proved Multi-Band Excitation (IMBE) voice codec while the Phase 2 waveform

uses a 6.25 kHz bandwidth channel with a 2-slot Time Division Multiple Access

(TDMA) access scheme and the Advanced Multiband Excitation (AMBE)+2 voice

codec for a reduced bitrate.

Among the many benefits of P25 is secure communications. Public safety

radio systems are vulnerable to eavesdropping and can easily be exploited by crim-

inals [4]. Readily available scanners can be used to receive voice communications

on public safety radio systems, potentially exposing sensitive information to unau-

thorized listeners. To ensure that sensitive information is shared only among au-

thorized individuals or organizations, the confidentiality of sensitive radio traffic

needs to be ensured. This is typically accomplished through voice encryption [4].

APCO P25 supports secure communication through the use of encryption,

key management and equipment authentication. This thesis focuses on the imple-

mentation of an encryption framework that meets the requirements of the APCO

P25 encryption specifications.
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1.2 Overview

An overview of the thesis document is presented next with a brief descrip-

tion of the topics discussed in each chapter.

1.2.1 Background

Chapter 2 presents and discusses the concepts of Encryption and SDR. It

describes the SDR environment used in this thesis and also describes the P25

implementation on which the encryption framework is built.

1.2.2 Encryption Framework

Chapter 3 discusses the software and hardware architecture of the Encryp-

tion framework and describes the software implementation. The discussion on the

architecture and design of the framework covers the specifications and constraints

imposed by the requirements, the P25 Encryption state machine and multiproces-

sor design. The discussion on implementation covers the usage of the OpenSSL

Library, integration of the Encryption framework into the existing P25 implemen-

tation and discusses various issues encountered during this stage as well as the

functional and performance tests that were performed.

1.2.3 Summary

Chapter 4 presents a summary of the work done in this thesis. It presents

its conclusions and provides recommendations for possible future work.



Chapter 2

Background

2.1 Encryption

Encryption is defined as the process of changing information from one form

to another in an attempt to hide its meaning. In the context of data communi-

cations, encryption is the process of transforming raw data ”plain text” to cipher

text in order to make the data unintelligible to unauthorized persons [5]. Encryp-

tion is achieved by applying a specified algorithms to a block of data. The reverse

process of converting cipher text back into its original ”plain text” format is called

decryption. Encryption and decryption are facilitated by the use of a piece of

information referred to as a key. A key is unique information, known only to the

message originator and the intended receiver, which is used to control the encryp-

tion process, thus yielding unique cipher text that can only be decrypted using the

key. Encryption keys selected at random and of sufficient length are considered

almost impregnable [5]. To give an idea of how impregnable an encryption key

could be using a brute force attack, a key length of 128 bits which is equivalent

to 16 characters selected from the 256 available ASCII characters could take far

longer than 15 billion years to decode, assuming that the attacker was attempting

100 million different key combinations per second.

In many contexts, encryption implicitly refers to the process of decrypting

the cipher text. Two classes of encryption exist today. They are:

4
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• Symmetric encryption, which requires the same key for both encryption

and decryption and

• Asymmetric encryption also referred to as public-key cryptography, which

requires a pair of keys; one for encryption and the other for decryption.

Encryption is used to protect the confidentiality of data in transit and data

at rest. It is incorporated in many applications where confidentiality of transmit-

ted messages is of importance such as the data networks and mobile telephones.

Encrypting data in transit aids with security as it can be difficult to physically se-

cure all access to the channels on which the data is communicated. For encryption

to be effective as a security measure, it must be applied at the time of message

composition on the originating device to avoid the possibility of tampering. Oth-

erwise a message could be intercepted and tampered with at any point between

the sender and the encryption agent.

It is easy to see why encryption is important and beneficial as part of the

security suite for applications involving homeland security and public safety. Un-

encrypted communication on radio systems for public safety missions could prove

disastrous if critical information is intercepted by an unauthorized eavesdropping

intruder. Project 25 specifies and standardizes three encryption algorithms that

could be implemented to enhance security. They are the Data Encryption Standard

(DES), the Triple Data Encryption Algorithm (TDEA) or Triple DES (TDES)

and the Advanced Encryption Standard (AES). The encryption framework im-

plemented in this thesis meets the P25 specifications for DES and AES block

encryption schemes only but could easily be extended to include the TDES.

2.2 Software Defined Radio

Components of radio communication systems such as filters, mixers, modu-

lators and demodulators have, traditionally, been implemented in special-purpose

hardware with predetermined functionality due to the need to meet certain timing

constraints. These hardware based radio devices limit cross-functionality and reuse

since modifications to any aspect of the radio would require physical intervention.



6

Figure 2.1: Generic SDR Architecture

With the emergence of computationally powerful General Purpose Proces-

sor (GPP), it has become increasingly feasible to implement, in software, many of

the radio components that have typically been developed in special-purpose hard-

ware. This is the concept of a SDR system. Simply stated, SDR can be defined as

radio in which some or all of the physical layer functions are software defined [6].

SDR refers to radio system technologies where one hardware unit can re-

ceive, process and decode multiple signals in software. These signals can vary

largely in frequency and protocol. The bulk of the signal processing is usually per-

formed on a GPP. Figure 2.1 shows a generic SDR architecture with three main

parts: an analog RF frontend component, an IF component, responsible for Ana-

log to Digital and Digital to Analog conversions as well as Digital up and down

conversions, and finally, a baseband processing component responsible for all other

processing such as framing/defaming data. Listed below are some of the benefits

associated with SDR:

• It enables the implementation of multiple radio systems using a common

platform architecture.

• A single SDR system can be programmed with multiple functionality, that

can be switched on-the-go.

• Software components can be reused across radio systems, dramatically re-

ducing development costs.

• SDR systems are highly configurable with over-the-air reprogramming, allow-

ing new features and capabilities to be added while the radio is in service,

and reducing the time and costs associated with operation and maintenance.

The focus of this thesis is on the implementation of an Encryption archi-
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tecture that meets the requirements for the encryption of voice data as laid out

in the P25 specifications. A detailed discussion of the P25 implementation upon

which the encryption framework is built can be found in section 2.5.

The P25 implementation used was developed on an open source multi-

processor SDR platform built with off-the-shelf components. The SDR platform

can be divided into Software and Hardware environments. The software envi-

ronment consisted of multiple Linux operating systems, the OSSIE open-source

SCA implementation, the Universal Hardware Driver (UHD) library, theDigital

Voice Systems, Inc. (DVSI) AMBE+2TM Vocoder library, OpenEmbedded and TI

DSP/BIOS Link Library. The hardware environment consisted of an x86 GPP, a

Gumstix Overo Tide Computer on Module with TI OMAP processor, a Gumstix

Tobi Expansion Board and a Universal Software Radio Peripheral (USRP) N210

with WBX RF daughter-board. Figure 2.2 shows the SDR environment and how

the components of the software and hardware environments are related. These

components are described in greater detail in the following section.

2.3 SDR Hardware Environment

The hardware environment is made up of specific hardware that define the

physical architecture of the SDR and in turn the physical architectures of the P25

radio system and the Encryption framework.

OpenEmbeddedOpenEmbedded

DELL Precision PC (GPP)

Ubuntu Linux 11.10

UHDUHD OSSIEOSSIE

ARM TI DSP Bios

DVSI 
AMBE 
Library

DSP

Ångstrom Linux

TI DSP/Bios Link

Ångstrom Linux

TI DSP/Bios Link

Gumstix Tobi/Overo Tide

WBXWBX

USRP N210

Software Environment Hardware Environment

Figure 2.2: SDR Hardware and Software Environment.
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(a) Dell Precision 690 PC (b) USB Audio device

Figure 2.3: GPP Components

2.3.1 GPP

A Dell Precision 690 Desktop PC shown in Figure 2.3a was used as the GPP

in the SDR platform. Configured with a single Dual core Intel Xeon 5100 Processor

clocked at 2.33 GHz, 6 GB of RAM and a Gigabit Ethernet port, it proved to be

a more than capable GPP for the SDR platform. A generic USB audio device was

substituted for the PC’s inbuilt audio device, as it was discovered that the USB

audio device performed more reliably in terms of its interaction with the Linux

ALSA audio driver and its sampling consistency.

2.3.2 Overo Tide COM and Tobi Expansion board

The Overo Tide is a Computer On Module (COM) board from Gumstix

configured with a TI OMAP 3530 Applications Processor, 512 MB of RAM and

a microSD card slot for storage expansion. The TI OMAP 3530 processor is a

multicore system on chip (SoC) for portable and mobile media applications. This

processor combines a general-purpose 720 MHz ARM Cortex-A8 processor core

and a 520 MHz TMS320C64x+ DSP core into a single package.

The Overo Tide COM requires an expansion board that provides power and

other peripherals. In this SDR platform an Overo Tobi Expansion board was used

for that purpose. The Tobi board provides a 140 pin dock for the Overo Tide COM

from which the COM gains access to the Tobi’s 10/100BaseT Ethernet port, USB

ports, DVI display port and audio card. Figure 2.4 shows images of the Overo Tide

COM and the Tobi Expansion board. The Overo Tide could also be considered

a GPP component in this environment and is used only for the purposes of voice
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(a) Tobi Expansion board (b) Overo Tide COM

Figure 2.4: Gumstix Boards

data encoding and decoding.

2.3.3 USRP N210 and WBX RF Daughterboard

The USRP is an open-source host-based radio platform designed and sold

by Ettus Research that is intended to be an inexpensive hardware platform for

software defined radio. It is commonly used by hobbyists and in research environ-

ments. The USRP N210 is one of the products from the USRP product family

and is fitted with a Xilinx Spartan-3A DSP 3400 FPGA, a Gigabit Ethernet in-

terface, one dual 100 MS/s, 14-bit, analog-to-digital converter and one dual 400

MS/s, 16-bit, digital-to-analog converter. It also offers flexible clocking and syn-

chronization using external clock sources. The N210 connects to a host computer

using the Gigabit Ethernet interface. This interface is used by software on the host

computer to send/receive data from the USRP and also load/reload the firmware

on the FPGA. Ettus Research provides an API library (see Section 2.4.4) and a

set of programs for these purposes.

(a) USRP N210 (b) WBX RF Daughterboard

Figure 2.5: USRP Components
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The USRP N210 employs a modular design that enables it to operate be-

tween DC and 6 GHz. A motherboard provides the host interface, FPGA, ADC,

DAC as well as clock generation and synchronization functionality, while a daugh-

terboard, that attaches to the motherboard, provides the up/down conversion

to and from a specified carrier frequency, filtering and other signal conditioning.

Figure 2.5 shows the USRP N210 and the WBX RF daughterboard used in this

SDR environment. The WBX provides 40 MHz of bandwidth capability and has

an operating frequency range of 50 MHz to 2.2 GHz which makes it suitable for

Land-Mobile Radio (LMR) communication applications, such as the narrowband

P25 waveform, which operate in the UHF and VHF bands. The WBX also has

two antenna ports: a dedicated receiver port and a transceiver port. In this SDR

platform, the USRP N210 and WBX are used for up and down conversion of the

P25 complex baseband signals to and from the carrier frequency.

2.4 SDR Software Environment

The software environment is made up of mostly open-source software that

define the logical architecture of the SDR and in turn the logical architectures of

the P25 radio system and the Encryption framework.

2.4.1 OSSIE SCA Implementation

SCA is an open architecture framework developed by the U.S. Department

of Defense Joint Tactical Radio System (Joint Tactical Radio System (JTRS)) as

a way to ensure portability and interoperability of protocols on different radios. It

provides specifications on how hardware and software components of an SDR are to

operate together. The SCA defines a Core Framework (CF) which is the essential

set of open application-layer interfaces and services that provide an abstraction of

the underlying system software and hardware [3]. These interfaces and services

cover the deployment, management and interconnection of software components

in the SDR.

OSSIE SCA is an open source implementation effort of the SCA CF from
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Virginia Tech. It includes a set of tools for rapid development of SCA components

and waveform applications and also includes a library of pre-built components and

waveform applications. Although it is not necessary that a waveform such as P25

be developed in an SCA environment, it is beneficial to the rapid porting and de-

ployment of the waveform on other SDR systems supporting an SCA environment.

OSSIE SCA has also often been referred to as being ”SCA-like” since it is not a

complete implementation of the JTRS SCA specification.

The OSSIE SCA implementation runs within the Ubuntu Linux operating

system on the GPP. It directly interacts with the USB audio card and the Overo

Tide COM which houses the vocoder.

2.4.2 DVSI AMBE+2TM Vocoder Library

The DVSI AMBE+2TM Vocoder library is the latest iteration of enhanced

vocoders for P25 and is fully interoperable with the current 7200 bps IMBE vocoder

specified in the P25 standard. It is a proprietary vocoder and as such is closed-

source. In addition to voice encoding and decoding, the software library includes

other features such as DTMF and single tone detection and voice activity detection

(VAD). The Vocoder expects as input PCM speech sampled at 8 kHz and outputs

synthesized speech at the same rate after decoding. Forward Error Correction

(FEC) encoding is applied to the encoded speech frames and FEC decoding is

applied to received FEC encoded speech frames before decoding and synthesizing

the speech.

The AMBE+2TM vocoder library is packaged as a dual-rate vocoder with

full-rate (7200 bps) and half-rate (3600 bps) modes. Both bit rates use a 20 ms

frame consisting of two 10ms subframes. Each 20 ms frame equates to 160 samples

of an 8 kHz sampled PCM speech. The samples are represented as 16 bit signed

integers resulting in a total of 320 bytes for each 20 ms frame. The vocoder encodes

the speech frames and produces a quantizer-frame of compressed data whose bit

length depends on the rate mode of the vocoder. The full-rate mode produces

144 bits per frame (88 voice data bits and 56 FEC bits) while the half-rate mode

produces 72 bits per frame (49 voice data bits and 23 FEC bits) [7]. The P25
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standard Phases 1 and 2 both use the full-rate mode while the AMBE+2TM can

also operate at half-rate for Phase 2.

DVSI offers multiple hardware and software products that implement the

AMBE/IMBE vocoders. The particular library used in this SDR platform was

compiled for the TI C6x DSP series and is the only reason for the addition of the

Gumstix Overo Tide and Tobi boards to this SDR platform. An x86 version of

the library would have been preferred but the cost of acquiring that version of the

library was quite steep. Open source vocoder projects exist, such as codec2.org,

that implement a vocoder that can easily be substituted in place of the proprietary

AMBE/IMBE vocoder but these were not viable options for the P25 implemen-

tation used on this SDR platform since one of its aims was to show ability to

communicate with off-the-shelf P25 Handsets.

The AMBE+2TM Vocoder Library provides separate Voice coding and FEC

coding functions which is necessary for the implementation of P25 encryption. Ac-

cording to the P25 standard, encryption of voice data must occur after voice encod-

ing and before FEC is applied. Conversely, FEC decoding must occur on encrypted

voice data before decryption of the data. Since these operations must be carried

out one after the other, it would make sense to have the Vocoder and encryption

components reside physically and logically close together. But for radio systems

such as those used by the military and the agencies involved in Homeland Security,

the National Security Agency has specified minimum physical distances between

components and wires processing or carrying red (unencrypted signals) and black

(encrypted signals). In this case, encryption may happen in another module on

the same processor or on an entirely different device or processor within the same

radio and this would require the transfer of encoded voice data to the encryption

device, returning the encrypted voice data for FEC encoding before it is transmit-

ted. The encryption framework proposed in this thesis does precisely this due to

the architectures of the open-source SDR platform and the P25 implementation

used.
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2.4.3 OpenEmbedded, BitBake and TI DSP/BIOS Link

OpenEmbedded (OE) is an open-source cross-compilation environment for

building embedded Linux distributions. It offers support for many hardware ar-

chitectures including ARM. Its advantages include easy customization and rapid

build out of an embedded Linux environment. In order to perform its build tasks,

OE requires a tool called BitBake which is a simple tool for task execution and is

most commonly used to build packages. It is the basis for OE. A set of rules and

instructions called a ”recipe” have to be generated to build an application for a

specific environment or architecture. These specify the location of source code for

the application, options used during the configuration and build phase, etc.

OE was installed on the GPP (Dell desktop machine) and used to cross-

compile the Angstrom Linux distribution for the ARM processor on the Overo

Tide COM. DSP/BIOS Link from Texas Instruments, a foundation software for

inter-processor communication across GPP-DSP boundary, was also configured and

packaged for the ARM processor using OE. DSP/BIOS Link is an open-source

library providing a generic API that abstracts the underlying characteristics of

the physical link between the ARM and DSP. The provision of such a library

eliminates the need to develop a communication API from scratch and allows for

development of higher level abstraction interfaces such as Remote Procedure Calls.

Using DSP/BIOS Link an asynchronous data transport protocol was built to move

audio and control data between the ARM and the DSP on the OMAP processor.

2.4.4 Universal Hardware Driver (UHD) library

The UHD library is an open-source multi-platform hardware driver for the

open-source USRP hardware. It provides the host driver and API that allows

applications on a host PC send application data and control messages to and

from the USRP. The UHD library resides on the GPP (Host PC) and allows it to

interface directly with the USRP.
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2.5 P25 Implementation

The Encryption Framework discussed in Chapter 3 was developed as part of

a project sponsored by the Joint Program Executive Office (JPEO) JTRS through

SPAWAR Systems Center Pacific. The project aimed at the rapid development,

implementation and porting of a P25 Phase 1 waveform across multiple SDR plat-

forms ranging from Spectrum Signals Processing’s SDR 4000 Integrated Develop-

ment System for SDR Application Development to the open-source SDR platform

described in earlier in this Chapter. Part of goals of the project was to demonstrate

the ability to rapidly prototype a waveform using SCA and SDR methodologies

on a cheap open-source platform. Due to the complexity of the P25 standards and

time constraints a subset of the entire standard was chosen for implementation.

The subset of P25 functionality chosen was guided by SPAWAR such that the final

implementation would be able to perform basic group and unit-to-unit voice calls

with any off-the-shelf P25 hand-held radio.

The P25 implementation began with initial waveform development using

a methodology that first required the waveform to be modeled in Matlab as a

platform agnostic executable waveform. An intermediate implementation was then

produced using open tools on a generic Linux platform before the final platform

specific implementation on the SDR 4000. This initial work is discussed in greater

detail in [8].

2.5.1 Development of components and modifications

The result of the initial P25 development effort was a basic P25 implemen-

tation allowing group and unit-to-unit voice calls. This implementation was then

ported to the open-source SDR platform described here using the same develop-

ment methodologies mentioned earlier. Although most of the code in the previous

implementation was written in C (with the exception of the FPGA code) and could

fairly easily be ported to the open-source platform, quite a number of modifica-

tions had to be made for the port to work due to major differences in hardware

and software architecture of the platforms. The following is a list of high level
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changes that had to be made:

1. Communication across multiple hardware devices and processors had to be

implemented since these components were not as integrated as was the case

with the SDR 4000 which came with quicComm, Spectrum’s hardware ab-

straction layer and API library.

2. Functions that previously existed in the FPGA on the SDR 4000 had to

be relocated and re-implemented on the GPP since the open-source SDR

platform did not readily have a user accessible FPGA.

3. The software vocoder had to be integrated into the open-source SDR platform

and tested whereas this was not the case with the SDR 4000 environment

where a hardware vocoder solution from DVSI was used.

4. Differences in the implementation of the SCA CF in OSSIE and the imple-

mentation in the comprehensive proprietary version that came with the SDR

4000 plus a less intuitive and not as feature rich component design tool for

OSSIE made it difficult to simply move SCA components and devices from

the SDR 4000 environment into the open-source SDR environment.

Figure 2.6 shows a block diagram of the P25 implementation (without en-

cryption) on the open-source SDR platform. The three main hardware components

of the platform are shown as separate blocks connected by red colored arrows

which represent IP socket connections. The PC is connected to the USRP using

UDP sockets and to the OMAP (Overo Tide) using TCP sockets. The modules

within the OSSIE CF communicate using CORBA. The communication between

the OSSIE CF and the C4FM Modem is established using Named Pipes (FIFO)

while the communication between OSSIE CF and the Java GUI component is es-

tablished using TCP sockets. In SCA contexts, such as in OSSIE CF, modules

that act as interfaces to hardware devices or external modules are referred to as

Devices (red blocks) while autonomous modules within the CF that provide their

own functions for data processing are referred to as Components (blue blocks).

The Java GUI represents the radio’s User Interface and allows a user ma-

nipulate the configuration of radio parameters such as the Unit ID (UID) of the

radio, Destination ID in the case of a unit-to-unit voice call, the Network Access



16

�⇥⇤⌅⇧
⌃⌥�⌅ ⌥⌦

�⇥⇤⌅⇧
↵��⇤

⌦�⇧⇤⌥✏
⌃⌥�⌅ ⌥

⇣⌘⌘✓◆↵�

↵⇧�⌫�⇧⇠⌦��⇤⌦
↵⇧�⇡⌅⇢⇥��⌫⌅⇧�

�⌧�⌦
�����✏⌅⌫⌫⌥�

�⌧�⌦
 ⌥ ⌥⌅�⌥�

!✓⌦
⌃⌥�⌅ ⌥"���⌦#!✓ $↵⌦%⌦�✓⌦%⌦$⌘⌃

�◆↵⌦◆� ⇧⇤⌅�⇢

!&⇥�⌫⇥⌦$⌅�⇥'⌦(()(*⌦⇣⌘⌦+⌦,⇣⌘�⌦�↵

�⌧�⌦↵%%⌦���✏⌥-⇧�.

!⌘ �↵/��⌦
�⇧⇤⌥✏

⇣���

��⇢�⌫�⇧✏⌦$⌅�⇥'⌦⇣⌘⌦� �⌦0⌦

⌃⌘���1◆⌦
⌃⌥ ⇧⇤⌥�⌦

2↵⌦�◆↵⌦
◆� ⇧⇤⌅�⇢⌦

2↵⌦�◆↵⌦
⌃⌥ ⇧⇤⌅�⇢

��1◆⌦
◆� ⇧⇤⌥�⌦

⌦⌦⌦⌦⌦�↵⇣���⌦↵⇣��)

2⇧ ⇧⇤⌥�
⌃⌥�⌅ ⌥⌦

$↵⌦%⌦�✓⌦%⌦$⌘⌃
⌦�◆↵⌦⌃⌥ ⇧⇤⌅�⇢

2⇧ ⇧⇤⌥�
⌃⌥�⌅ ⌥⌦

Figure 2.6: Block Diagram of P25 Implementation without Encryption

Code (NAC), etc. It is also the driver for the radio system using a Push-To-Talk

(PTT) button to switch the radio between transmit and receive modes. Pressing

the PTT button causes the emission of a control packet to the OSSIE CF that

results in the activation of the Vocoder Device, to accept data from the Audio

Device, and the generation of FEC encoded Link Control (LC) information using

data from the control packet. The Vocoder Device routes the audio data to the

OMAP processor where it undergoes AMBE encoding and FEC encoding before

being sent back to the Vocoder Device. The encoded voice data is then assembled

into P25 frames, in the P25 Transmitter component, along with the LC and other

control information. These frames are sent to the C4FM modem for baseband

processing and modulation before they are sent to the USRP for transmission.
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The C4FM modem is a compound component consisting of a bits-to-symbol

conversion module and a modulator/demodulator module. A P25 frame bitstream

enters the bits-to-symbol conversion module at a rate of 9600 baud. The bits are

converted to symbols with 2 bits to a symbol, 10 times upsampled and filtered using

a raised cosine filter. The bits-to-symbol module produces an output bitstream

at 48 Kilo-Symbols per second (KSps) or 96 Kbps. This bitstream enters the

modulator/demodulator module where it is frequency modulated and resampled

to 200 KSps before exiting to the USRP to be upconverted and sent over the air.

The C4FM modem outputs baseband complex IQ signal to the USRP.

On the Receiver path, the USRP downconverts the received signal from

the carrier frequency to 200 KSps and sends it to the modulator/demodulator

module where it is resampled to 48 KSps and demodulated. The demodulated

signal is forwarded to the bits-to-symbol module where a synchronization search

takes place. Once the synchronization has been determined, the bits-to-symbol

module decodes the symbols to bits and forwards the resulting P25 frame bitstream

to the P25 Receiver component which then extracts the LC information, other

control information and the voice data. The voice data is sent to the Vocoder

Device from where it is eventually routed to the OMAP for FEC decoding and

AMBE decoding. The OMAP sends back the resulting synthesized PCM audio

data which is forwarded to the Audio Device for playback. The LC and other

control information extracted from the P25 frame are sent to the UI Device to

update the Java GUI.

This P25 implementation is the basis of the Encryption Framework dis-

cussed in the next Chapter. Most of the Encryption Framework is concerned with

P25 components in the OSSIE CF and the OMAP processor.



Chapter 3

Encryption Framework

In this chapter the architecture, design and implementation of an encryption

framework for an implementation of Project 25 on the open-source SDR platform

discussed previously is presented. A discussion of the problems encountered and

the solutions implemented is also presented.

3.1 P25 Encryption Specifications

The P25 Encryption specification is designed to be compatible with voice

messages and data packets on both trunked and conventional radio systems. Three

different encryption processes are currently standardized in the P25 specifications.

They are DES, TDEA and AES. All three encryption processes are used in the

Output Feed Back (OFB) mode and are denoted as DES-OFB, TDEA-OFB and

AES-OFB respectively. The DES algorithm uses a block length n = 64 bits with

a key variable of length k = 64 bits. The TDEA algorithm uses 3 chained DES

encryption/decryption cycles with a key bundle consisting of 3 separate 64-bit

DES key variables (K1, K2, and K3) for each encryption/decryption operation.

The AES algorithm uses a block length n = 128 bits and a key length k = 256

bits.

In OFB mode keystream blocks are generated, which are then XORed with

the plaintext blocks to get the ciphertext. Due to the symmetry of the XOR oper-

ation, the encryption and decryption processes are exactly the same hence the P25

18
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Figure 3.1: Output Feedback (OFB) Mode Encryption

standard specifies that OFB operation shall always use the encrypt mode for both

the transmitter and receiver. That is, both encryption of plaintext and decryption

of ciphertext should be performed using the encrypt mode for the algorithms. Fig-

ure 3.1 shows a block diagram of the OFB mode of encryption where the plaintext

and ciphertext blocks have a length equal to the blocksize n of the particular al-

gorithm. To recover the plaintext, the roles of the ciphertext and plaintext blocks

only need to be reversed as shown. For streams of bits greater than the blocksize

n of the chosen algorithm, the stream is broken into segments of length n and the

encryption algorithm is iterated until the last segment is processed. Zero-padding

may be applied to the last segment if its length does not equal the required block-

size n for that algorithm.

Furthermore, the P25 standard specifies that encryption and decryption

functions should generally take place near the end points of a message path in a

system which means that encryption and decryption functions should be provided

at the points were voice information is AMBE encoded or decoded. Hence en-

cryption must be performed before FEC is applied to the encoded voice data and

decryption performed after FEC decoding of encoded voice data is done. This does

not necessarily pose a problem when dealing with an SDR system where all com-

ponents reside on a single processor but could become a challenge when the SDR

system has components distributed over multiple processors as is the case with the

open-source SDR platform used here. In this case, the encryption module resides

in a separate processor on a separate hardware device from the Vocoder requiring
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the coordination of data transfer in order to achieve optimum performance while

meeting the timing constraints of the P25 standard.

A clock schedule is specified for synchronization of the encryption state ma-

chine on the transmitter and receiver. The clock schedule specifies the generation

of a new Initialization Vector (IV) using a Linear Feedback Shift Register (LFSR)

that is clocked 64 times to generate its next state from its present state. The IV

is sent out regularly to help the receiver synchronize its encryption state machine.

An encryption schedule for the sequence of input bits for encryption is also speci-

fied in the standard and is discussed in the next section. More details on the P25

Block Encryption specifications can be found in [9].

3.1.1 P25 Encryption Schedule

The P25 Encryption schedule specifies which bits from the P25 superframe

structure are encrypted and the order they are encrypted in. Figure 3.2 shows

the frames that typically make up a P25 message transmission. Each superframe

contains 360 ms of voice data.

A superframe is made up of two Logical Link Data Unit (LDU) frames

referred to as LDU1 and LDU2. The superframe repeats until a Terminator Data

Unit (TDU) frame which signifies the end of a message. The Header Data Unit

(HDU) frame is an optional frame that signifies the start of a message. It contains

control information about the message it precedes such as the Talk Group ID

which the receiver looks at to determine if the frames of the message should be

processed. The HDU also contains an information field that signifies to that a

message is either encrypted or unencrypted. If the message is encrypted, this field

signifies the Algorithm in use. The ID of the Key being used for encryption at the

Figure 3.2: P25 Superframe
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Figure 3.3: P25 LDU1 and LDU2 frame details

transmitter and the current IV are also part of the HDU. The HDU frame is an

optional frame because the information it carries is repeated and updated in the

subsequent superframes.

Each LDU frame, as well as the other frame types, begins with a Frame

Synchronization (FS) sequence followed by a Network ID (NID). This allows re-

ceivers to enter ”late” into a conversation in the event that the receiving radio was

turned on after a message had begun. Both LDU1 and LDU2 frames contain 9

Voice Codewords (VCs) as depicted in Figure 3.3. A VC is generated using an FEC

encoding schedule that takes in a 20 ms block of AMBE encoded audio, 88 bits

in length, and transforms it into a 144 bit error protected voice codeword. LDU1

and LDU2 frames contain different control information. Some of the control infor-

mation contained in these frames is also contained in the HDU. The LDU1 frame

contains the LC, a 240 bit block of FEC encoded information about the source and

destination of the superframe. The LC contains other information bits that are

not necessarily relevant in the P25 implementation used here. The LDU2 frame

contains the Encryption Sync (ES) control information. Also a 240 bit block, the

ES is FEC encoded but contains only information pertinent to encryption which

are the Key ID (KID), Algorithm ID (ALGID) and the Message Indicator (MI).

The encryption sync information could be used to support a multi-key encryption
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system but is also used for single key and clear messages. The LDU frames also

carry a Low Speed Data (LSD) field. The LSD information consists of 4 bytes.

The first two bytes are sent in LDU1 and the last two bytes are sent in the LDU2.

The LSD is designed to be used by radio manufacturers for proprietary signaling

or applications that require low data rates such as GPS location reporting.

The P25 Encryption Schedule is such that it repeats every 213 octets, 112

octets for LDU1 and 101 octets for LDU2. The discrepancy in the number of octets

required for the LDUs is due to the ES control information not being encrypted

in LDU2. This allows ”late” entry into encrypted conversations. A radio entering

”late” into a conversation can receive the KID, ALGID and MI and synchronize

its encryption state machine with that of the transmitter to receive and decrypt

the rest of the message. Table 3.1 shows the break down of encrypted information

for one P25 superframe. A byte level detailed encryption schedule for both LDU1

and LDU2 frames showing the input and output block boundaries for DES (n =

64) and AES (n = 128) encryption can be found in [9]. It is necessary to note that

the input and output block boundaries in the P25 encryption schedule sometimes

straddle as many as three VCs but are always aligned at the end of an LDU. That

is, at the end of every 9 VCs in the encryption schedule, the bits are aligned such

that no padding is necessary to meet up the required blocksize for a particular

algorithm. The straddling of multiple VCs to form an input block increases the

complexity of the Encryption Framework state machine as the correct number of

Table 3.1: P25 Superframe Encrypted Information

Name Size (octets)

Reserved 3
Link Control Information 8
IMBE frames 1 - 8 88
Low Speed Data 2
IMBE frames 9 - 17 99
Low Speed Data 2
IMBE frame 18 11

Total 213
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VCs must be available to produce one output encrypted or decrypted VC.

3.2 Architecture and Design

The Encryption framework architecture is constrained by the architecture

of the SDR platform and the P25 implementation in which it must exist. Hence,

the framework is divided into three components; one component exists as an SCA

Encryption Device in the OSSIE CF on the GPP (Host PC), another component

resides on the ARM processor and the final component on DSP processor. The

latter two components are embedded within the GPP-ARM communication in-

frastructure on the ARM and the AMBE Encoder/Decoder modules respectively.

These components of the Encryption framework provide the awareness of Encryp-

tion capabilities to the modules they reside in and are primarily responsible for

maintaining the state of the Encryption framework in those modules. Figure 3.4

shows a block diagram of the P25 implementation with the encryption framework.

The Vocoder Device is shown as two separate devices to simplify the block diagram

and aid understanding of the flow of data.

When encryption is requested from the GUI, control information must be

sent to the framework components on the ARM and the AMBE Encoder/Decoder

modules to notify them of the encryption request. This forces AMBE encoded

voice data to be sent back to the Host PC for encryption before being FEC en-

coded in the case of transmission and forces encrypted AMBE encoded voice data

to be sent back for decryption before AMBE decoding in the case of reception.

When encryption is not requested, the entire encryption framework is bypassed.

The exchange of control and data packets between the Framework components is

facilitated by the inter-processor communication fabric developed for the respec-

tive processors on which they reside. These facilities are augmented to understand

and interpret special control messages that turn encryption mode on and off.

The Encryption Framework is designed to be as modular and reconfigurable

as possible given the constraints of the SDR platform and the P25 implementation.

It is designed such that platform specific communications are separated from the
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Figure 3.4: Block Diagram of P25 Implementation with Encryption

core encryption and data processing functions. The design of the framework also

allows for easy drop-in replacement of the encryption algorithm as long as the

algorithm does not apply non-linear transformations to the plaintext to generate

ciphertext.

3.2.1 GPP (Host PC) Encryption Component

The Encryption device, which is the main component of the Encryption

Framework, directly interacts with only four components in OSSIE. They are the

UI device, the Vocoder device, the P25 Transmitter and P25 Receiver components.

The latter two components have the functions of constructing or deconstructing

valid P25 frames. The two components together are also interchangeably referred

to as the Packetizer. The Encryption device is implemented as an SCA device
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instead of a component since there are cases, as described earlier, when a radio

system might have separate encryption hardware that performs the encryption and

decryption tasks.

Data of a few different types are processed by the Encryption device; VCs

from the Vocoder device and LC information, LSD and MI from the Packetizer.

The Encryption device reads and writes the Packetizer data (LSDs, LCs, MIs) in

both Transmit and Receive modes using separate read and write FIFO buffers. A

set of buffers is shared between the Transmitter and Receiver components since

the P25 system is implemented as a half duplex system and can only be in either

Transmit or Receive mode at any point in time. Separate buffers are used for

reading and writing VCs from the Vocoder device. The actual tasks of encryption

and decryption, which follow the P25 encryption schedule in [9], are performed in

the Encryption device. The device is dependent on the state of the P25 system and

sits in Standby mode until it receives a control message from either the Transmitter

or Receiver components, in which case it switches to either Transmit mode or

Receive mode, respectively. At the end of an encrypted transmission, the device

returns to Standby mode once all of its buffers have been emptied. An internal

state machine, specific to the P25 encryption schedule, is also maintained within

the Encryption device.

Figure 3.5 shows the important blocks of the Encryption device. A total of

six processing threads, shown in green, are instantiated on the Encryption device.

Two threads handle data input from the Transmitter and Receiver components and

put received data into a single Packetizer input FIFO. Another thread handles the

data input from Vocoder Device and puts the received data into a Vocoder input

FIFO. One thread handles the main task; pulling data from the Input FIFOs

for encryption or decryption depending on radio mode and putting data into two

output FIFOs. The last two threads handle sending encrypted or decrypted data

from the output FIFOs back to the Vocoder device, the Transmitter and Receiver

components. Modifications to the original Vocoder device were necessary since

it must not just receive, in the case of Transmit mode, the final AMBE encoded

and FEC encoded VCs from the OMAP but must also be prepared to receive,
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Figure 3.5: Encryption Device Block Diagram

intermediately, AMBE encoded audio data to be encrypted and sent back to the

OMAP. To this effect, two threads are added to the Vocoder device; one to receive

data from the OMAP and forward it to the Encryption device and the other

to receive data from the Encryption device and forward it to the OMAP. These

threads interact with the OMAP processor using a shared TCP socket connection

and are bypassed completely, along with the Encryption device, when encryption

is not required. These threads comprise the Host PC side of a logical channel that

connects the DSP Encryption component to the Encryption device.

3.2.2 OMAP Encryption Component

The OMAP Encryption component is composed of ARM and DSP compo-

nents which work together to provide the Encryption device the required number

of VCs at each point in the Encryption Framework state machine based on the

P25 Encryption scheduled. However, these components do not communicate di-

rectly with the Encryption device but are interfaced through the Vocoder device.

The ARM and DSP encryption components exchange data using DSP/BIOS Link.

Figure 3.6 shows a block diagram of the OMAP Encryption component. As with
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Figure 3.6: Omap Encryption Component Block Diagram

the Encryption device, this component is completely bypassed when the radio

transmission does not require encryption.

OMAP ARM Encryption Component

The ARM Encryption Framework component is the ARM side of the logical

channel that links the DSP and the Host PC Encryption components. It simply

monitors the output from the DSP encryption component using a DSP/BIOS Link

Channel and forwards any data it receives to the Vocoder device. It also listens to

the Vocoder device using a TCP socket connection and forwards received data to

the DSP encryption component. Both tasks are performed using a single thread

and two connection resources that are multiplexed for either task. Though the

ARM Encryption component is data driven it maintains an internal state machine

that determines how much data it should expect to send or receive to and from

the DSP component or the Vocoder device.
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OMAP DSP Encryption Component

The DSP Encryption component is the originator of packets on the logical

channel that connects it to the Encryption device on the Host PC. It maintains a

similar state machine as is in the ARM Encryption component which allows it to

manage, precisely, the data driven encryption and decryption processes. The DSP

Encryption component does not buffer the voice data that must be encrypted or

decrypted but instead, in the case that the radio is in Transmit mode, sends the

AMBE encoded voice packet to the Encryption device as soon as it is encoded,

receives back the encrypted voice data and proceeds with forward error correction.

The same applies in the case that the radio is operating in receive mode.

The next section discusses the details of the Encryption Framework imple-

mentation. Ultimately, the encryption and decryption processes are implemented

in series with the AMBE encoding/decoding functions and the forward error cor-

rection encoding and decoding processes such that for each packet of voice data

that is sent out for encryption or decryption, one data packet of encrypted or

decrypted voice data must be received before processing can continue. The excep-

tions are at the beginning and end of an LDU frame where two voice data packets

are sent and received.

3.3 Implementation

The Encryption Framework was implemented first for the DES algorithm

only and then extended to include the AES algorithm. The framework was imple-

mented in C and C++ and the process broken into three phases. In phase one,

the encryption framework was prototyped in pseudo code as a first step in defining

the state machines for the encryption and decryption process chains based on the

P25 Encryption Schedule. In phase two, a standalone version of the framework

containing only the essential encryption/decryption functions was developed to

solidify the state machines and to verify a compliant encrypted output bitstream

given a test input sequence. In the third and final phase, the encryption framework

was implemented on the SDR platform incorporating hooks for data injection and
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extraction to and from the relevant modules to construct valid input bitstreams

and send valid output streams. These three phases are discussed in Sections 3.3.2,

3.3.3 and 3.3.4, but first a discussion on the selection of an open-source implemen-

tation of the AES and DES algorithms is presented.

3.3.1 OpenSSL Cryptography Library

As mentioned in the previous chapter, the P25 Encryption specifications

provide support for the DES, TDES and AES algorithms. The Encryption Frame-

work proposed in this thesis is focuses on the DES and AES algorithms only.

Performing encryption or decryption of data using these algorithms requires ac-

cess to a verified implementation of the algorithms. For this reason, the decision to

use an open-source implementation of the encryption algorithms was made instead

of developing a new implementation from specifications.

There are several open-source cryptography libraries, written in C and

C++, that exist today but only a small number of seemingly popular libraries

were considered. They include Crypto++, libgcrypt, libmcrypt and OpenSSL. A

few considerations are taken into account in choosing a cryptography library. These

considerations include the speed of the implementation, resistance to well-known

cryptographic attacks, the adoption level of the library and community support

for the library (bug fixes, security fixes, etc).

The OpenSSL cryptography library was chosen over the others as it ap-

peared to perform better than the other libraries considered. The OpenSSL Project

is a collaborative effort to develop a robust, commercial-grade, full-featured, and

Open Source implementation of the Secure Sockets Layer (SSL v2/v3) and Trans-

port Layer Security (TLS v1) protocols. As a security minded toolkit it also pro-

vides a full-strength general purpose cryptography library as well. The project is

maintained by an active worldwide community of volunteers and is one of the most

widely used cryptography libraries. The OpenSSL library does not implement as

many algorithms as some of the other libraries considered but the algorithms it

does implement, which include DES and AES, have been optimized heavily for

speed. The library also has lower level functions that give the user complete con-
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trol over the cryptography process and allow access to some of the state variables

of the AES and DES encryption algorithm implementation.

The OpenSSL cryptography library plugs into the core of the Encryption

device. Two functions from the library are used for the cryptography tasks. The

EVP Encrypt Update() function is used for AES encryption and decryption, in

OFB mode, while the DES ofb64 encrypt() function is used for DES encryption

and decryption, also in OFB mode. These functions allow the appropriate block

size of data to be passed to them along with an output buffer in which the en-

crypted or decrypted data is returned. The setup and initialization of the library

is discussed within the next few sections along with the implementation stages of

the Encryption Framework.

3.3.2 Phase One: Pseudo Code

The first step toward the realization of the Encryption Framework was to

develop a state machine for the DES and AES algorithms according to the P25

encryption schedule. The following is C pseudocode written as a model of the state

machine for the DES algorithm in the Encryption Framework. The DES algorithm

uses a blocksize of n = 64 bits or 8 bytes.

l oad enc rypt i on key ( keyID ) ;

s t a t e = STATE INITIAL ;

while ( in encrypt ion mode ) {
switch ( s t a t e ) {

case STATE INITIAL :

i f ( i n r e c e i v e mode ) {
r e c v p u b l i c m i ( publ ic mi , 8 ) ;

}
i n i t l f s r ( pub l i c mi ) ;

output word count = 1 ;
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// run DES OFB once .

// increment output word count

xcrypt ( publ ic mi , p r iva te mi ) ;

s t a t e = STATE PROCESSING;

break ;

case STATE PROCESSING:

switch ( output word count ) {
case 2 :

memset ( buf , 0 , 3 ) ;

recvLC ( buf +3 ,5) ;

xcrypt ( buf , output ) ;

sendLC ( output +3 ,5) ;

break ;

case 3 :

recvLC ( buf , 3 ) ;

recvVCW( buf +3 ,5) ;

xcrypt ( buf , output ) ;

sendLC ( output , 3 ) ;

sendVCW( output +3 ,5) ;

break ;

case 14 :

recvVCW( buf , 3 ) ;

recvLSD ( buf +3 ,2) ;

recvVCW( buf +5 ,3) ;

xcrypt ( buf , output ) ;

sendVCW( output , 3 ) ;

sendLSD ( output , 2 ) ;

sendVCW( output , 3 ) ;

i f ( in transmit mode ) {
new publ ic mi = generate MI ( ) ;
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sendMI ( new publ ic mi ) ;

}
break ;

case 27 :

recvLSD ( buf , 2 ) ;

recvVCW( buf , 6 ) ;

xcrypt ( buf , output ) ;

sendLSD ( output , 2 ) ;

sendVCW( output , 6 ) ;

break ;

case 28 :

recvVCW( buf , 5 ) ;

memset ( buf +5 ,0 ,3) ;

xcrypt ( buf , output ) ;

sendVCW( output , 5 ) ;

s t a t e = STATE IV ;

break ;

default : // a l l o ther cases

recvVCW( buf , 8 ) ;

xcrypt ( buf , output ) ;

sendVCW( output , 8 ) ;

break ;

}
break ;

case STATE DONE:

default :

s t a t e = STATE INITIAL ;

break ;

}
}
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The state machines for both encryption and decryption are identical ex-

cept for subtle differences in STATE INITIAL and STATE PROCESSING case 14. In

encryption mode, a public MI is generated and sent out at the beginning of the

encryption cycle and at the end of each LDU1 frame. In decryption mode, a public

MI is received at the beginning of every superframe and used to decode the entire

superframe. The public MI generated at the end of each LDU1 frame is not used

for encryption until the beginning of the next superframe where it is used as the

Initialization Vector (See Figure 3.1).

The STATE PROCESSING state is made up of several substates which, mostly,

represent special cases in the P25 encryption schedule where the cryptography

input blocks are formed using bits from multiple input fields. The AES state

machine, although similar in structure to the DES state machine, differs in the

number of substates it requires in the STATE PROCESSING state because its blocksize

of n = 128 bits is twice as large as the DES blocksize of n = 64 bits and its input

and output block boundaries are different from those for the DES algorithm. In

each substate of the STATE PROCESSING state, the correct input block is constructed

by pulling the appropriate bits of VCs, LC or LSD from the respective components

according to the P25 encryption schedule.

3.3.3 Phase Two: As Standalone executable

The pseudocode shown in the previous section defines, generally, the state

machine of the Encryption Framework. In phase two, the same pseudocode is

transformed into a standalone executable version of the Encryption Framework

implemented with all the functions necessary for the cryptography process. The

standalone executable allowed for easy validation of the state machine and verifi-

cation of a compliant output bitstream given the right input bitstream. Again the

standalone implementation was developed first for the DES algorithm and later

extended to include the AES algorithm. For access to the entire source code for

the combined DES and AES standalone implementation please see Appendix A.1.

The implementation features four communications based functions named

send crypto pktizer(), recv pktizer crypto(), send crypto vocoder() and



34

recv vocoder crypto() which are used as interfaces to read and write data from

the input and output FIFO buffers. A structure, P25 ENC SCHED STATE, was intro-

duced in this implementation to track the internal state machines of the OpenSSL

DES and AES encryption functions. It is initialized using in the function init -

eState() which is also where the OpenSSL DES and AES libraries are initialized.

Two functions, init lfsr() and lfsr new mi() manage the LFSR func-

tionality, initializing the LFSR and producing new MIs respectively. The Encryp-

tion Framework state machine is contained within the cryptography process()

function and integrates both DES and AES substate machines. This implementa-

tion also includes the simulate data() function which populates the input FIFOs

with test data for encryption, the reverse data() function which transfers data

from the output FIFOs into the input FIFOs for decryption and the dump() func-

tion which prints the contents of a given FIFO buffer. These functions allow enable

testing and debugging of the Encryption Framework.

The standalone implementation facilitated modularizing parts of the Frame-

work such as the LFSR MI generator and the MI Expander used to expand a DES

64 bit MI to a 128 bit MI for the AES algorithm as specified in [9]. The modular-

ized parts were easily tested individually for required functionality and together

as a Framework and helped simplify the task of porting this implementation to

the SDR platform, which was the end goal. The implementation was tested using

a test encryption key, MI and input bitstream provided in the P25 encryption

standard. The following properties of the framework were verified:

1. The LFSR MI generator produced the correct sequence of MI outputs for

each iteration given a particular IV.

2. The LFSR MI Expander produced the correct sequence of expanded MI

outputs for each iteration give a particular IV.

3. The correct output bitstream is produced for both DES and AES algorithms

given the correct input bitstream sequence. Note that this standalone im-

plementation does not take timing into account and assumes the input data

is readily available since the it is hard-coded into the respective buffers.
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3.3.4 Phase Three: On SDR Platform

The third phase of the Encryption framework implementation involved de-

veloping the ARM and DSP Encryption components as well as importing the

standalone framework from the previous implementation phase into the SCA envi-

ronment on the SDR. This implementation phase also involved connecting together

multiple components in the SCA environment and connecting some of those com-

ponents to the ARM and DSP Encryption components through physical and logical

channels. First the development and modifications in the OMAP environment are

discussed and then those in the SCA Environment are discussed. The discussions

make reference to the final implementation of the Encryption Framework which is

available online. Please see Appendix A.2 for access to the relevant source code.

OMAP development and Modifications

The ARM and DSP Encryption components were developed according to

the architecture laid out in Figure 3.6. The ARM Encryption component is re-

sponsible for connecting the DSP Encryption component to the Encryption device

on the Host PC through a logical data channel. This component is contained

within the arm ambe module that is responsible for controlling all data flow from

the Host PC (SCA components) to the DSP and vice versa. The ARM encryption

component manages two dedicated data channels CHNL ID CINPUT and CHNL ID -

COUTPUT for input and output respectively. These channels carry voice data and

control packets to and from the DSP. When the P25 radio system is in Transmit

mode and encryption is requested CHNL ID CINPUT is used to receive AMBE en-

coded bits that will be sent to the Host PC for encryption and CHNL ID COUTPUT

is used to send encrypted AMBE encoded bits back to the DSP. When the radio

is in Receive mode and decryption is requested, CHNL ID CINPUT is used to receive

encrypted AMBE encoded bits that will be sent to the Host PC for decryption

and CHNL ID COUTPUT is used to send decrypted AMBE encoded bits back to the

DSP. The ARM encryption component connects to the Host PC using a TCP/IP

socket connection that is completely data driven.

The DSP Encryption component is responsible for routing, to the Encryp-
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tion device, all voice data packets requiring encryption or decryption depending on

the current mode of the P25 radio system. This component is contained within the

dsp ambe module, which interfaces directly with the DVSI AMBE+2TM library,

and is responsible for processing PCM audio data or AMBE encoded data from

the Host PC (SCA components). Two DSP Link Channels, one for input and

the other for output, are added to the dsp ambe module to provide a dedicated

communications link for cryptography related packets to and from the ARM En-

cryption component. The channels are implemented using the SIO interface of the

TI DSP BIOS operating system as are the other two channels on the module that

are used to transport PCM audio data to and from the other ARM components.

These channels, labeled inCryptStream and outCryptStream, carry both voice

data and control packets, that specify the configuration parameters for the current

encryption or decryption mode and sometimes act as acknowledgment packets.

The channels are linked to the CHNL ID CINPUT and CHNL ID COUTPUT channels in

the ARM encryption component.

The DSP and ARM encryption components operate together to ensure the

cryptography services for the vocoder. After AMBE encoding is performed, the

encoded audio data is sent up to the Encryption Device using the dedicated cryp-

tography logical channel. The encryption had to be implemented in series with

the AMBE Voice coding and FEC coding functions due to the fact that on the

Receiver path, the FEC decoder computes some information that must be passed

to the AMBE Voice decoder for error mitigation. Without implementing the en-

cryption in this fashion, the error mitigation information would have to either be

stored while the voice packet is being decrypted and passed to the AMBE voice

decode function when the voice packet returns for FEC decoding or it would have

to be forwarded alongside its corresponding voice packet as it travels through the

Encryption Framework.

Implementing the first of the latter two solutions would have required the

maintenance of a buffer that would need to be synchronized across multiple threads.

The second solution would have required the propagation of excess data, that has

nothing to do with the encryption process, through the Encryption Framework.
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The solution implemented was to perform the encryption process in series with the

AMBE Voice coding and FEC coding functions. This means that each voice packet

of 20 ms audio data is FEC decoded and sent to the Encryption device, putting

the DSP in a semi-blocking mode. The vocoder does not process any further voice

data but waits until the decrypted voice packet is returned from the Encryption

device before continuing. This ensures that the FEC information from each FEC

decode operation is used with the corresponding block of audio data. This solution

appeared to be the simplest as there was no need for synchronization of buffers

across multiple threads or unnecessary passing around of extra data. This solution

is only necessary for the Receiver path, where FEC decoding is performed, since

it is the path affected by the initial problem but for the sake of uniformity and

consistency in the code, this solution was applied to the Transmitter path.

Implementing the encryption process in series with the AMBE Voice coding

and the FEC coding functions, combined with the cross-VC input and output word

boundaries in the P25 encryption schedule, led to a dependency in the Encryption

Framework that required a certain number of voice packets to be sent to the

Encryption device at certain points in the encryption or decryption process for

the data to keep moving through the state machine. In some cases an output

from the Encryption device can only be generated if part or all of the next VC is

provided (See table 5-5 and table 5-6 in [9]). To remedy this situation, in the case

of a transmission, the DSP Encryption component sends two initial VCs to the

Encryption device in order to get the output stream started and then it successively

receives one encrypted VC, while sending a single VC for every received VC until

the end of an LDU, or 9 VCs have been processed (See Figure 3.7). At this point

the encryption output block boundaries and LDU boundaries line up and the DSP

receives two VCs back from the Host PC. This process is repeated until the end

of the transmission.

The ARM and DSP encryption components both implement the described

state machine which allows them operate in sync. The state machine is also help-

ful in the cleanup and shutdown process on the OMAP at the end of either an

encrypted radio transmission or reception by ensuring that each component has
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Figure 3.7: State machine in ARM and DSP Encryption components.

received all the data it expects and is not sitting in an intermediate state.

In the DSP implementation of the state machine, certain context variables

of the DVSI AMBE+2TM Vocoder library have to be buffered since the correspond-

ing AMBE Voice coding and FEC coding are offset by at least 1 and at most 2

VCs. This is because both the AMBE Voice encoder and AMBE FEC decoder

functions maintain some state variables which are used by the respective functions

in successive calls. For each call to the AMBE Voice encoder or FEC decoder, the

current context of the call is saved to be used on the successive corresponding call

to FEC encoder or the AMBE Voice decoder respectively.

SCA development and Modifications

The Encryption components in the Host PC (SCA Environment) were im-

plemented according to the framework architecture depicted in Figure 3.5. The

standalone implementation from phase two was directly ported to the Encryption

device in the OSSIE CF. A skeleton for the Encryption device was first created

using OSSIE tools and most of the Encryption Framework functionality from the
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previous phase were dropped into the device skeleton. Some new functionality was

added to allow the device interoperate with other components in real time. They

included adding multiple threads to manage the separate input and output FIFO

buffers along with the appropriate semaphores and mutexes. New functionality

also included setting up communication ports to and from the Vocoder device,

Transmitter and Receiver components.

The Vocoder device was modified to incorporate functionality for the logical

channel that connects the Encryption device to the DSP Encryption component.

This included establishing a TCP/IP socket connection to the ARM processor and

two pushPacket ports (using CORBA) to the Encryption device. A separate thread

was instantiated to coordinate data transfers on the logical channel. Additional

modifications were made to allow the Vocoder device compress and uncompress

data from the DSP and Encryption device respectively. This was needed because

the output data from the AMBE+2TM Library functions are represented using

short (16 bits wide) representation but only the least significant 8 bits contain

valid data and so the output data needs to be compressed from 16 bits to 8 bits in

order to create a continuous stream for the Encryption device. The reverse process

is performed to expand data received from the Encryption device back to 16 bits

before sending to the ARM processor.

The P25 Transmitter and Receiver components were also modified to send

the MI, LC and LSD to the Encryption device. Prior to adding encryption func-

tionality, the Transmitter component assembled and FEC encoded the LC at the

start of a transmission. This encoded LC was then saved for reuse with each su-

perframe since the information contained in the LC is static for the duration of a

transmission. With the addition of encryption functionality, the P25 Transmitter

(and Receiver) had to be modified to encode (or decode) the LC separately for

each superframe after sending the LC to the Encryption device for encryption (or

decryption). Other modifications were made to the Transmitter and Receiver com-

ponents to send and request the MI and LSD to and from the Encryption device

respectively.

Having verified the correctness of the output bitstream of the Encryption
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Framework in implementation phase two, the focus of tests in this implementation

phase was verifying the correctness of timing. The intent was to verify that the

correct bits of information were available to the Encryption device when they were

needed. It was discovered, while testing and debugging this real time implementa-

tion of the Encryption Framework that there existed a deadlock situation between

the Packetizer and the Encryption device. The deadlock situation occurred only

in the states where the LSD was required to produce an output word from the

cryptography process and was caused by a lack of synchronization between the

Packetizer state machines and the Encryption Framework state machine. For in-

stance when transmitting an encrypted LDU1 frame, the Packetizer requests 9

VCs from the Vocoder device and blocks waiting for the request to get filled. The

vocoder device starts sending PCM audio data to the DSP for AMBE encoding.

The encoded voice data is then sent back to the Encryption device for encryption.

When the process gets to the 14th input block to the encryption algorithm, the

P25 encryption schedule requires that the input block be constructed using bits

from the 8th VC, 9th VC and LSD. The problem is that for the Packetizer to send

the LSD bits to the Encryption device, it needs to receive the 9 VCs it initially

requested so it can continue on to send the LSD but this cannot happen since the

Encryption device needs the LSD in order to produce the 8th and 9th VC. This

results in a deadlock situation.

One solution that could have been implemented in an attempt to resolve

this issue would have been sending the LSD, to the Encryption device, along with

the LC at the beginning of the LDU frame, since it is independent of the VCs, and

at the same time, modifying the state machines in the ARM and DSP to send the

8th and 9th VCs together at the end of an LDU and receive the 7th, 8th and 9th

VCs together from the Encryption device. The second, and implemented, solution

was to send the LSD as suggested in the first proposed solution, and then take

advantage of the fact that the DES-OFB and AES-OFB algorithms use an XOR,

a linear operation, to transform the plaintext into ciphertext. This fact allows

encryption, decryption to be performed on blocks of plaintext that are partially

complete providing flexibility in the state machine of the Encryption Framework.
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Figure 3.8: OFB Mode XOR operation workaround

With this solution, when the state machine gets to the 14th input block, it has

both the 8th VC and the LSD but even though it doesn’t have the 9th VC, it

can encrypt the parts it has by padding the input plaintext block with zeros and

ignoring that portion of the output ciphertext block (See Figure 3.8). The state

of the encryption algorithm is saved before the encryption is carried out and the

encrypted bits are sent off to their respective components. When the 9th VC

becomes available, the previous encryption state is loaded and the bits from the

9th VC that are required for the 14th output block are encrypted in the same way,

using zero padding for the other bits.

This solution meant that extending the Encryption Framework DES-OFB

state machine to incorporate the AES-OFB algorithm was only a matter of per-

forming the proper bit manipulations at the right locations in the P25 encryption

schedule. Encryption input blocks that spanned multiple VCs could be constructed

using this method without having to change the DSP or AES state machines. This

also means that incorporating the TDES-OFB algorithm, or any algorithm that

performs only linear operations on the input plaintext to generate the output ci-

phertext, could be done quite easily without modifying the state machines of the

ARM and DSP. However, it is necessary to note that the penalty for using this so-

lution could be high depending on how many fragments the input plaintext needs

to be broken into to, as this influences how many times the cryptography function

will be called. In our case, the penalty for performing the cryptography function

twice instead of once is not great as timing constraints for the P25 waveform are

still met. This penalty could be drastically reduced by storing the output of the

OFB mode algorithm (before the XOR operation) and then performing the XOR

operations as many times as required.
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Figure 3.9: Data path of Encrypted Voice Transmission

Figure 3.9 shows the path of voice data packets through the Encryption

Framework during the transmission of an encrypted message. This data path is

identical to the data path during the reception of an encrypted message. In the

case of transmission, the Encryption device is activated by the P25 Transmitter

component. On activation, it initializes the LFSR with a previously saved IV

(Public MI). Note that in the current implementation the IV is hard-coded but

could easily be randomly generated for added security. The LFSR goes through

one iteration to produce the Private MI that will be used in the actual encryption

algorithm. The Encryption device also requires activation from the Vocoder device

and waits to be activated before it begins processing data from the respective

sources. Once activated by the Vocoder device, it requests LC/LSD data from the

Transmitter component and VCs from the Vocoder device.

The Vocoder device, after being activated by the P25 Transmitter, first

sends a control packet down to the ARM informing it of the encryption mode.

The ARM forwards the same instruction to the DSP. An acknowledgment is re-

ceived from the DSP, and propagated up to the Vocoder device, audio packets are

streamed down to the DSP through the ARM. A FIFO in the ARM allows for

buffering of a number of PCM data packets. The PCM data packets contain 160
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16-bit audio samples (320 bytes). The buffered PCM data is fed to the DSP where

it is AMBE encoded. The output of the encoding is 88 bits (11 bytes) with each

byte represented as a short which gives a total of 22 bytes. The 22 bytes are chan-

neled through the ARM back to the Vocoder device where they are compressed

from short representations to char (single byte) representations and forwarded

to the Encryption device. At the same time, the P25 Transmitter sends the LC

and LSD information bits to the Encryption device where they are assembled into

plaintext input blocks according to the P25 encryption schedule. The Encryption

device loads the appropriate encryption key for this transmission as instructed by

the user through the provision of a Key ID in the GUI. In receive mode, the Key

ID is extracted from the HDU or LDU2 and is used to load the appropriate key

for decryption.

After encryption, the output from the encryption algorithm is disassembled

and the constituent bits are sent to their respective source components. Public MIs

are generated and sent to the Transmitter component at the end of a processing

round for one LDU worth of VCs. These Public MIs are encoded in the unencrypted

ES information. A Public MI is also sent to the Transmitter component at the

beginning of a transmission and is encoded in the HDU. The encrypted VCs are

expanded from char representation to short representation and sent through the

ARM to the DSP where FEC encoding occurs before the VCs are sent, again,

to the Transmitter component through the Vocoder device. The highlighted area

of Figure 3.9 shows the paths that are specific to Encryption Framework. These

path are completely bypassed in unencrypted transmissions as the AMBE Voice

Encoder sends its output directly to the FEC encoder whose output is immediately

forwarded to the Transmitter component.

3.4 Integration

The integration of the Encryption Framework components was not compli-

cated since the components were designed to have well defined interfaces with the

goal of integrating them together. It was in fact quite straightforward and was
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performed in parallel with phase three of the implementation. In the OSSIE CF,

the use of standard pushPacket ports provided the advantage of having already

defined, tested and proven communication architecture for the Encryption compo-

nents. Integrating the Host PC encryption components with the OMAP encryption

components was also straightforward using a standard TCP/IP socket connection.

A message structure was developed to facilitate easier exchange of data and con-

trol messages across the TCP connection. Communication between the ARM and

DSP encryption components was facilitated through the use of DSP Link Channels

and the SIO interface of the DSP BIOS operating system. A message structure

already being used for unencrypted voice transmissions was extended and used for

sending and receiving control and voice data messages between the DSP and ARM

processors.

3.5 Testing

Testing of the Encryption Framework was divided into two categories; func-

tional tests and performance tests. The functional tests were designed to check

that the functional requirements of the P25 Encryption Specification were met

while the performance tests were designed to check that the timing constraints for

the P25 waveform were met.

3.5.1 Functional Tests

Functional tests were performed at two points during the implementation

and integration of the Encryption Framework components. First a functional test

was performed during implementation phase two, on the standalone version, to

verify that the sequence of MIs produced by the LFSR MI Generator was correct.

This was performed using the P25 specified test sequences and verifying that the

sequence produced by the Encryption Framework matched exactly. The LFSR MI

Expander was also tested in the same way as was the final encrypted bitstream.

The resulting encrypted bitstream was fed back into the Encryption Framework to

simulate reception of an encrypted transmission and the output matched the orig-
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inal input bits verifying that both encrypting plaintext and decrypting ciphertext

using the Framework worked. The same functional tests were performed after the

implementation and integration of the Encryption Framework on the open-source

SDR platform. The test input bitstream were hard-coded into the different En-

cryption components and the results were exactly the same as in the standalone

version.

A Final functional test performed was to transmit an encrypted voice mes-

sage to an off-the-shelf P25 Handset and receive an encrypted voice message from

the same Handset. These two tests were successful as the Handset was able to

decrypt and playback the encrypted voice message from the open-source SDR

platform while the SDR platform was able to decrypt and playback the encrypted

voice transmission from the P25 Handset. These tests verified that the Encryption

Framework does what is expected of it.

3.5.2 Performance Tests

The performance of the implementation in terms of execution time was

measured to verify the conformance of the implementation to the timing constraints

of the P25 waveform specifications. According to [10], a P25 system could have

a maximum Receiver Unsquelch Delay of up to 460 ms (when both talk groups

and encryption are used), a maximum Receiver Unsquelch Delay of up to 370

ms (when either talk groups or encryption is used, not both) and a maximum

Receiver Unsquelch Delay of up to 125 ms (when neither talk groups or encryption

is used). A maximum Transmitter Power and Encoder Attack Time of 100 ms is

also specified [10]. Since the open-source SDR platform is not a well integrated

SDR solution it is somewhat difficult to verify that it does meet these timing

constraints. Instead an attempt is made to measure the average time it takes to

perform AMBE Voice coding followed by cryptography and then FEC coding, in

both transmit and receive modes, including traversal of the relevant communication

paths. The average times provide an idea of the percentage of the timing constraint

spent on this portion of the system. The average times measured for encrypted

mode are also compared with the average times measured in unencrypted mode.
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Table 3.2: P25 Encryption Framework Timing Performance Measurements

Radio mode Encryption Avg. Vocoding Time Time Remaining

Transmit mode AES 27.3 ms 72.7 ms
Transmit mode DES 27.3 ms 72.7 ms
Transmit mode None 4.5 ms 95.5 ms
Receive mode AES 28.5 ms 341.5 ms
Receive mode DES 26.0 ms 344.0 ms
Receive mode None 20.9 ms 349.1 ms

The time taken to traverse the encryption path (the highlighted paths in

Figure 3.9) was measured using the gettimeofday() function in C++. For Trans-

mit mode, the timer was started in the Vocoder device, just before the 20 ms PCM

audio packet from the Audio device in OSSIE is sent to through a TCP socket to

the OMAP for AMBE Voice encoding and stopped when the same audio packet,

as an FEC encoded VC, is received again in Vocoder device. The measurement

results are shown in Table 3.2. Average Vocoding time was computed on 60 secs

of audio data (3000 VCs). Time Remaining is the difference between the P25

specification time constraint for that mode of operation and the Average Vocoding

time.

These results are quite crude, but give an estimate of the performance of the

encryption framework in light of the P25 timing constraints. These measurements

are dependent upon the speed of the processors involved in voice coding and en-

cryption and is also dependent on the speed of the communication interfaces over

which data must travel.

3.6 Issues and Fixes

A few issues were experienced during the implementation and integration

stages of the Encryption Framework and solutions to those issues were immediately

considered and implemented. In this section, a summary of the issues experienced

and the fixes implemented is recapped.

The first issue encountered was the propagation of required FEC decode in-
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formation to the AMBE Voice decoder function in encrypted transmission mode.

A few solutions were considered including the option of appending the FEC de-

code information to the corresponding voice packets, which would increase traffic

through the communication channels, and buffering the FEC decode information

in a shared buffer, which might have resulted in thread synchronization issues. The

implemented solution was to perform the decryption in series with the AMBE Voice

coding and FEC coding functions. This implementation forces the voice packets

to be encrypted and returned right away allowing the Vocoder to proceed without

sending extra information through the Framework or dealing with synchronization

issues. More details are found in Section 3.3.4.

The next issue encountered was the misalignment in timing between the

order of the bits in the P25 encryption schedule and the arrival of LSD and VC

bits from the respective components. One solution considered was to modify the

Transmitter implementation to encode bits in a certain order and modify the state

machines in the ARM and DSP to cater to this specific misalignment. This solution

would be problematic as it removes the generalization from the ARM and DSP

state machines that would make it easy to incorporate more encryption algorithms

into the Framework. The implemented solution took advantage of the fact that an

XOR operation, a linear operation, was the transforming function from plaintext

to ciphertext allowing the P25 encryption bit schedule to be broken down into

smaller pieces based on available bits in order not to stall the encryption process.



Chapter 4

Summary

This thesis described and discussed the design, architecture and implemen-

tation of an Encryption framework for the P25 public safety waveform on an open-

source SDR platform in an OSSIE environment. The SDR platform comprises of

a Host PC (GPP), a Gumstix Overo Tide with an OMAP processor (ARM/DSP)

on a Tobi expansion board and a USRP front-end. The framework is designed to

support the encryption algorithms standardized by the P25 specifications which

are DES, TDES and AES but only implements state machines for the DES and

AES algorithms.

The Encryption Framework was implemented in three incremental phases

beginning with a pseudocode implementation phase, going to a stand alone im-

plementation and finally implementation on the SDR platform. Each phase built

upon the implementation from the previous phase. The Framework has three main

components:

1. The Encryption device implemented in the OSSIE CF which is the core of the

Encryption framework. It receives audio data for encryption or decryption

from the Vocoder device , also in the OSSIE CF, and sends the results back

to the Vocoder device. The Encryption device also receives other data to be

encrypted or decrypted from the Packetizer (P25 Transmitter and Receiver

also in the OSSIE CF) and performs encryption based on a schedule of bits

that interleaves data from the Packetizer with those from the Vocoder device.

48
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2. The ARM encryption component implemented on the ARM processor in the

OMAP. It is the ARM side of the logical channel that connects the AMBE

Voice encoder and FEC decoder to the Encryption device in the OSSIE CF.

Its primary duty is to monitor the input channels from the Encryption device

and the DSP encryption component and forward data from one component

to the other.

3. The DSP encryption component implemented on the DSP processor in the

OMAP. it runs along side the AMBE Voice coders and FEC coders and routes

data to be encrypted or decrypted through the ARM encryption component

to the Encryption device. This component maintains a state machine that

tracks its current location on in the P25 encryption schedule allowing it to

send and receive the right number of voice packets at each state.

The Encryption Framework was tested for functionality and performance

and was found to function correctly and perform within the constraints of the P25

standard. Various conclusions were drawn up after the completion of implementa-

tion, integration and testing, namely:

• A functional P25 Encryption Framework supporting current P25 encryption

standards was successfully implemented with the capability of supporting

other similar encryption algorithms.

• A simple and inexpensive open-source SDR platform could be used for rapidly

prototyping System components such as the P25 Encryption Framework

without loss of functionality.

4.1 Future Work

Based on the work done in this thesis and the conclusions from the work,

several recommendations for future work are presented.
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4.1.1 Encryption Framework Enhancements

The P25 encryption standard specifies that the transmitter and receiver

LFSR are to be synced using the Public MI. It does not specify what should be

done in the case that the internally generated Public MI differs from the received

Public MI. There is an opportunity here to enhance the robustness of the encryp-

tion framework by implementing various schemes to determine and mitigate error

situations that stem from bit errors in the received bit stream. For example, one

of such schemes could be storing the last three received Public MIs, computing the

next two Public MIs based on the first stored Public MI and comparing the results

with the stored Public MIs. This detects which Public sequence is wrong since

the likelihood of bit errors in the received Public MI producing correct successive

Public MI sequences is very low. With such a scheme, the Framework can decide

to discard the received Public MIs for a number of frames based on the Public MI

sequence that was found to be wrong.

4.1.2 Alternate SDR Architectures

The Encryption Framework could also be ported to alternate SDR archi-

tectures as a test of its portability. Some alternate architectures implementations

are proposed below.

Implementing vocoder on E100

The E100 is an Ettus USRP much like the N210 used in this thesis except it

incorporates the Gumstix Overo Tide and Tobi expansion boards into an integrated

SDR solution. This eliminates the need for a Host PC as the ARM on the OMAP

fills this role. With the vocoder and OSSIE CF sitting back to back, porting the

Encryption Framework to this platform should not present too many challenges.
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Implementing Encryption module on a separate device for increased

security

There are alternate SDR architectures that could benefit from an implemen-

tation of the Encryption Framework. One such architecture is an SDR architecture

which incorporates a separate physical device for encryption and physically sepa-

rates encrypted data from unencrypted data. Since this is the preferred method

for most government organizations requiring secure communications, porting the

Encryption framework to such an architecture would be beneficial.

4.1.3 Key Management

Key management is a very important issue in the security of encryption

algorithms requiring keys. The security of the data is directly dependent on how

protected the encryption/decryption key is. In this thesis, the encryption key used

was hard-coded into the Encryption framework since communications were only

tested with one off-the-shelf P25 Handset which had the same key installed in

it. One extension of this thesis would be to implement a simple Key management

system allowing multiple keys to be stored in P25 radio system. The system should

have unique ID’s for keys, be re-programmable and, most importantly, should allow

keys be assigned to different Talk Group IDs or Unit IDs.

Another extension of this work could be to implement the Over The Air

Rekeying (OTAR) function as standardized in P25. OTAR allows the transfer

of encryption keys via radio. This remote rekey ability means that radios don’t

have to be physically handled to install a new or replacement key and keys can

be installed on-the-go. OTAR signaling is sent as Packet Data Units over the

Common Air Interface and hence the P25 system would need to have a working

implementation of the P25 Packet Data specification.

4.1.4 TripleDES and other encryption algorithms

Another outlook of the thesis is the support for other encryption options

including TDES which is part of the supported algorithms by the P25 encryption
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standard. The Encryption framework is designed to be easily adaptable to other

encryption algorithms as long as the transformation of plaintext to ciphertext is

performed using only linear operations. Algorithms that perform more complex

transformations on the plaintext can still be incorporated into the Encryption

framework but would require more effort.



Appendix A

Source code

A.1 Standalone Implementation of Encryption

Framework

The source code listings for the standalone implementation of the Encryp-

tion Framework can be obtained at http://mesh.calit2.net/junnytony/p25_

ef/.

A.2 P25 Implementation with Encryption on an

open-source SDR platform in OSSIE envi-

ronment

The source code listings for the final released implementation can be ob-

tained from the files section of JTRS Open Information Repository at http:

//gforge.calit2.net/gf/project/jtrs_open_ir/frs/. Select Package named

P25 Calit2-JTRS v1.3 USRP-OSSIE.
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