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Abstract

The lineage relationships among the hundreds of cell types generated during development are 

difficult to reconstruct. A recent method, GESTALT, used CRISPR-Cas9 barcode editing for large-

scale lineage tracing, but was restricted to early development and did not identify cell types. Here 

we present scGESTALT, which combines the lineage recording capabilities of GESTALT with 

cell-type identification by single-cell RNA sequencing. The method relies on an inducible system 

that enables barcodes to be edited at multiple time points, capturing lineage information from later 

stages of development. Sequencing of ~60,000 transcriptomes from the juvenile zebrafish brain 

identifies >100 cell types and marker genes. Using these data, we generate lineage trees with 

hundreds of branches that help uncover restrictions at the level of cell types, brain regions, and 

gene expression cascades during differentiation. scGESTALT can be applied to other multicellular 
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organisms to simultaneously characterize molecular identities and lineage histories of thousands of 

cells during development and disease.

Recent advances in single-cell genomics have spurred the characterization of molecular 

states and cell identities at unprecedented resolution1–3. Droplet microfluidics, multiplexed 

nanowell arrays and combinatorial indexing all provide powerful approaches to profile the 

molecular landscapes of tens of thousands of individual cells in a time- and cost-efficient 

manner4–8. Single-cell RNA sequencing (scRNA-seq) can be used to classify cells into 

“types” using gene expression signatures and to generate catalogs of cell identities across 

tissues. Such studies have identified marker genes and revealed cell types that were missed 

in prior bulk analyses9–15.

Despite this progress, it has been challenging to determine the developmental trajectories 

and lineage relationships of cells defined by scRNA-seq (Supplementary Note 1). The 

reconstruction of developmental trajectories from scRNA-seq data requires deep sampling of 

intermediate cell types and states16–20 and is unable to capture the lineage relationships of 

cells. Conversely, lineage tracing methods using viral DNA barcodes, multi-color fluorescent 

reporters or somatic mutations have not been coupled to single-cell transcriptome readouts, 

hampering the simultaneous large-scale characterization of cell types and lineage 

relationships21,22.

Here we develop an approach that extracts lineage and cell type information from a single 

cell. We combine scRNA-seq with GESTALT23, one of several lineage recording 

technologies based on CRISPR-Cas9 editing24–28. In GESTALT, the combinatorial and 

cumulative addition of Cas9-induced mutations in a genomic barcode creates diverse genetic 

records of cellular lineage relationships (Supplementary Note 1). Mutated barcodes are 

sequenced, and cell lineages are reconstructed using tools adapted from phylogenetics23. We 

demonstrated the power of GESTALT for large-scale lineage tracing and clonal analysis in 

zebrafish but encountered two limitations23. First, edited barcodes were sequenced from 

genomic DNA of dissected organs, resulting in the loss of cell type information. Second, 

barcode editing was restricted to early embryogenesis, hindering reconstruction of later 

lineage relationships. To overcome these limitations, we use scRNA-seq to simultaneously 

recover the cellular transcriptome and the edited barcode expressed from a transgene, and 

create an inducible system to introduce barcode edits at later stages of development (Fig. 1). 

We apply scGESTALT to the zebrafish brain and identify more than 100 different cell types 

and create lineage trees that help reveal spatial restrictions, lineage relationships, and 

differentiation trajectories during brain development. scGESTALT can be applied to most 

multicellular systems to simultaneously uncover cell type and lineage for thousands of cells.

RESULTS

Droplet scRNA-seq identifies cell types and marker genes in the zebrafish brain

To identify cell types in the zebrafish brain with single-cell resolution, we dissected and 

dissociated brains from 23–25 days post-fertilization (dpf) animals (corresponding to 

juvenile stage) and encapsulated cells using inDrops4 (Fig. 2a and Supplementary Fig. 1). 
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We used manually dissected whole brains and forebrain, midbrain and hindbrain regions. In 

total, we sequenced the transcriptomes of ~66,000 cells with an average of ~22,500 mapped 

reads per cell (see Methods and Supplementary Data 1 for details of animals used). After 

filtering out lower quality libraries, we generated a digital gene expression matrix 

comprising 58,492 cells with an average of ~3,100 detected unique transcripts from ~1,300 

detected genes per cell. We used an unsupervised, modularity-based clustering approach5,29 

to group all cells into clusters (Fig. 2b) and initially identified 63 transcriptionally distinct 

populations. All clusters were supported by cells from multiple biological replicates.

To classify each cluster, we systematically compared differentially expressed genes with 

prior annotations of gene expression in specific cell types or brain regions in the literature 

and the ZFIN database30,31. Initial analysis identified 45 neuronal subtypes, 9 neural 

progenitor classes, 3 oligodendrocyte clusters, microglial cells, ependymal cells, blood cells 

and vascular endothelial cells (Supplementary Fig. 2, 3 and Supplementary Data 2). We 

were able to resolve all but three neuronal clusters (clusters 0, 24 and 31), with cluster 0 

likely corresponding to nascent neurons mostly from the forebrain, as it displays high levels 

of tubb5 expression and moderate levels of neurod1 and eomesa. We captured multiple cell 

types that each comprised less than 1% of all profiled cells. These include aanat2+ neurons 

from the pineal gland (cluster 62), representing 0.04% of captured cells; sst1.1+ and npy+ 

neurons in the ventral forebrain (cluster 53, 0.34% of data); aldoca+ Purkinje neurons in the 

cerebellum (cluster 43, 0.65% of data); and fluorescent granular perithelial cells (cluster 54, 

0.33% of data), a population of perivascular cells recently described in zebrafish32. Using 

known marker genes and gross spatial information from manually dissected brain regions, 

most clusters could be assigned to specific brain regions (e.g. hypothalamus in forebrain and 

cerebellum in hindbrain) (Fig. 2c, Supplementary Fig. 1 and Supplementary Data 3). 

Spatially restricted transcription factors were enriched in specific clusters, including dlx2a, 

dlx5a, emx3 and foxg1a in forebrain clusters; barhl2, gata2a, otx2, and tfap2e in midbrain 

clusters; and phox2a, phox2bb, and hoxb3a in hindbrain clusters. Thus, regional location in 

the brain was a strong contributor to gene expression differences and drove clustering 

outcomes.

To identify cell types that might have been masked when analyzing the whole dataset in 

bulk, we performed a second round of clustering on the larger neuronal clusters 

(Supplementary Data 4 and Supplementary Fig. 4). For example, reanalysis of the eight 

initial hindbrain and cerebellum clusters identified 17 transcriptionally distinct groups (Fig. 

2d, 2e). After removing five subclusters that did not separate further from the original 

clusters or had no clear gene markers, we classified the 12 remaining subclusters. For 

example, cluster 23 (hindbrain) split into three subclusters enriched in hoxb3a (s9), hoxb5b 
(s10) and pou4f1 (s15). Combined with the whole-dataset clustering results, iterative 

analyses identified a total of 102 transcriptionally distinct cell types in the brain.

A large subset of sequenced cells (~13%, 8 clusters) was composed of neural progenitors 

(Fig. 2b), consistent with the continuous growth and neurogenesis in the zebrafish brain33. 

Among the distinct categories of progenitor clusters, we identified radial glia cells, which 

are the neural stem cells of the brain and express gfap, fabp7a and s100b (clusters 25, 33, 

48). Astrocytes have not been described in zebrafish, but the close relationship and shared 
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transcriptomes of radial glia and astrocytes raises the possibility that some of the cells 

assigned as radial glia are astrocytes or astrocyte progenitors. Additional progenitor clusters 

corresponded to intermediate progenitors expressing proneural transcription factors such as 

ascl1a, neurog1 and insm1a (8, 17); and highly proliferative progenitors expressing pcna, 

mki67 and top2a (clusters 19, 22, 44) (Fig. 2f). Although three progenitor clusters could be 

assigned to specific regions, gene expression profiles suggested that most progenitors were 

more closely related to other progenitors than to their differentiated neighbors (Fig. 2c).

Differential gene expression identified previously unrecognized marker genes (Fig. 2g). For 

example, aplnra and aplnrb, G-protein-coupled receptors that are involved in cell 

migration34, were highly enriched in oligodendrocyte precursor cells (OPC). Subpopulations 

of quiescent and dividing radial glia cells, as well as OPCs, expressed ptgdsb.1 and ptgdsb.2, 

enzymes that regulate synthesis of prostaglandin D2. npb (neuropeptide b) and gem (GTP 

binding protein overexpressed in skeletal muscle) transcripts were detected in subclusters of 

optic tectum and pallium cells, respectively.

Taken together, these results provide the first global catalogue of progenitor and mature cell 

types in the zebrafish brain and provide a resource for the study of specific cell populations 

and marker genes in a vertebrate brain.

Inducible Cas9 expression enables late barcode editing

Neurogenesis occurs after the onset of gastrulation, making lineage trajectories in the brain 

most informative after this developmental stage. In our initial implementation of GESTALT, 

all editing reagents (Cas9 protein and sgRNAs) were injected into one-cell stage embryos, 

thus centering barcode editing on pre-gastrulation stages23. To enable recording of lineages 

at later stages, we added two novel components to our system: inducible Cas9 activity and 

genomic sgRNA expression. We generated transgenic zebrafish wherein Cas9 activity could 

be induced using a promoter activated by heat shock and sgRNAs (sgRNAs 5–9) were 

constitutively and zygotically expressed via U6 promoters. We then combined all these 

components such that editing activity could occur both early and late (Fig. 3a): we crossed 

the GESTALT barcode transgenic to the inducible Cas9 transgenic and injected single-cell 

embryos with Cas9 protein and sgRNAs 1–4. This strategy initiates an “early” round of Cas9 

activity that edits barcodes at target sites 1–4 and results in the zygotic expression of 

sgRNAs 5–9 from U6 promoters. We then heat shocked the embryos at 30 hours post-

fertilization (hpf) to induce ubiquitous expression of transgenic Cas9. To evaluate this “early 

+ late” editing strategy, we extracted genomic DNA from 55 hpf control and edited double 

transgenic embryos, and amplified and sequenced GESTALT barcodes23. We observed no 

substantial editing of the barcode when Cas9 and sgRNAs were not injected or expressed in 

the embryo (Fig. 3b). Injection of Cas9 protein alone resulted in low editing at sites 5–9 

prior to heat shock (average editing rate = 25%, n=5, Fig. 3b). Upon heat shock-mediated 

induction of Cas9, mutations were predominantly confined to sites 5–9 of the barcode, and 

average editing rates were higher (65%) than with Cas9 protein injection alone (Fig. 3b, 

Supplementary Fig. 4). As expected, after injection and expression of all editing reagents, 

barcodes contained edits in “early” sites 1–4 and “late” sites 5–9. We found that all 

recovered barcodes were edited (100% editing frequency) with a median of 4 independent 
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edits per barcode. Each embryo had a median of 1,504 distinct barcodes (range 731 to 

2,213), demonstrating the efficiency of the editing strategy for generating barcode diversity.

To quantify the diversity of barcodes resulting from early and late editing, we compared 

editing outcomes in different embryos (n = 8). Only 63 of the 12,277 distinctly edited 

barcodes (0.5%) were present in more than one embryo, demonstrating that nearly unique 

sets of barcodes are generated in each animal (Fig. 3c). To assess the spectrum of barcode 

repair products, we profiled the nature (insertion, deletion) and frequency of edits within all 

24,360 recovered barcodes. The landscape of intra-site (edits within a site) and inter-site 

(edits that span two or more sites) deletions varied highly among the different target sites, 

revealing a large “sequence space” available for DNA repair outcomes from early and late 

editing (Fig. 3d–f and Supplementary Fig. 5).

The addition of late edits to earlier edits predicts increased barcode diversity. Indeed, full 

barcodes containing both early and late edits were higher in number and less clonal 

compared to the early edited barcodes (Fig 3g). 4,141 early barcodes diversified to 12,277 

full barcodes. Each early barcode was observed in on average 2.97 distinct late barcodes 

(range 1 to 534). The diversity and editing efficiency was higher in the early sites as 

compared to the late sites (Fig. 3b, c). Later edits also resulted in more inter-site deletions. 

This difference might reflect the activity of distinct DNA repair pathways35,36 during 

development or susceptibility to re-cleavage from the extended presence of Cas9-sgRNA 

ribonucleoprotein during slower cell cycles at later stages. Collectively, these results show 

that Cas9-mediated editing is inducible at later stages of development, and in combination 

with early editing generates thousands of different barcodes.

scRNA-seq simultaneously recovers single-cell transcriptomes and lineage barcodes

To implement our goal of embedding both lineage and cell type information in a cell’s 

transcriptome, we introduced the barcode into the 3′ UTR of a heat shock-inducible DsRed 

transgene (Fig. 3a). Upon heat shock, the edited barcode is expressed as part of the DsRed 

mRNA and can be isolated with the cellular transcriptome. To test this technology 

(scGESTALT), we performed early and late editing at the one-cell stage and at 30 hpf and 

dissected whole brains at 23–25 dpf. Single cells were processed by inDrops (transcriptome 

clustering analysis shown in Fig. 2), enabling hybridization of endogenous mRNAs and 

lineage barcode mRNAs to oligodT primers on hydrogels. Barcode libraries were prepared 

by PCR enrichment of lineage barcode cDNAs (see Methods) and sequenced, resulting in 

barcode recovery from 3,731 cells from three (see Supplementary Data 1; animals referred 

henceforth as ZF1, ZF2, ZF3) juvenile zebrafish brains (750, 2,605 and 376 cells; 

corresponding to 6%–28% of all profiled cells per animal). To test if barcode recovery might 

be biased to specific cell types, we compared the cell types identified by scRNA-seq with the 

identity of cells with recovered barcodes. Strikingly, scGESTALT barcodes overlapped 

nearly all broadly defined cell types (62/63 broad clusters), indicating that the lineage 

transgene is widely expressed in the brain. We obtained a range of 150 to 342 distinct 

barcodes per animal, with a median of 1 (ZF1 and ZF3) or 3 (ZF2) cells, and found no 

shared barcodes between animals. The spectrum of barcode editing patterns was similar to 

those obtained from DNA (Fig. 3b, f and Supplementary Fig. 6). These results establish 
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scGESTALT as a technology that enables the simultaneous recovery of edited barcodes and 

transcriptomes from single cells.

Reconstructed lineage trees reveal relationships between neural cell types

To determine if scGESTALT can reveal lineage relationships, we reconstructed lineage trees 

for the recovered barcodes using a maximum parsimony approach (see Methods) that 

anchored the tree with edits at sites 1–4 and extended it with edits at sites 5–9. scGESTALT 

generated highly branched multi-clade lineage trees. For example, the smaller ZF1 and ZF3 

lineage trees comprised 25 and 23 major clades (marked by at least one early edit) that 

diversified into 193 and 150 late nodes with 341 and 256 branches, respectively (Fig. 4 and 

Supplementary Fig. 7; largest tree (ZF2) available online). Most late edits defined a single 

node branching from an earlier-marked node, but we also detected as many as 24 late nodes 

branching from an early-marked node. Thus, late edits greatly increased the branching of the 

lineage tree. These results provide the proof-of-concept that scGESTALT can reconstruct 

lineage trees from single-cell transcriptomes.

To determine the relationship of cells with respect to their cell type and position, we 

inspected the tree vis-à-vis the identity of cells. Analysis of groups of 4 or more cells with 

the same barcode revealed that descendants of single ancestral progenitors were spatially 

enriched in forebrain or midbrain or hindbrain (Fig. 5a and Supplementary Fig. 8). Such 

local enrichment is consistent with classical single-cell labeling studies that followed cells 

from gastrulation to day 1 of development37. Notably, however, some barcodes were broadly 

distributed across the brain, e.g. in hindbrain and midbrain (Fig. 5a and Supplementary Fig. 

8), suggesting that ancestors of these cells may have been barcoded relatively early in 

development or that some embryonic progenitors can give rise to descendants that migrate 

across brain regions38. Although barcodes were mostly regionally enriched, they were not 

neural cell-type restricted; single progenitors that acquired a specific barcode gave rise to 

descendants that mapped to multiple different clusters (Fig. 5b), suggesting that ancestral 

progenitors were multipotent. In contrast to neural cells, we found more pronounced cell 

type enrichment for non-neural cells, consistent with previous studies23. For example, 

endothelial and microglial cell lineages that shared edits with neural lineages, subsequently 

diverged from the neural lineages during the early barcode editing period (Supplementary 

Fig. 8).

Despite the generally broad contribution of individual progenitors to multiple neural cell 

types, close inspection of the lineage trees also revealed divergent lineage trajectories. For 

example, we found that the hypothalamus/preoptic area, a brain region involved in complex 

behaviors such as thermoregulation, hunger and sleep, contains cell types with distinct 

lineage relationships. In particular, analysis of 6 barcodes across 95 cells in ZF1 indicated 

that there are at least two distinct neural lineages in this region: sst3+ neurons39 (cluster 27) 

were clonally related to penkb+ neurons40 (cluster 30), while fezf1+ neurons (cluster 20) and 

hmx3a+ neurons (cluster 28) were clonally related to each other (Fig. 5c, d). Inspection of 

the ZF1 lineage tree revealed a late barcode editing event that marked the segregation 

between fezf1+ neurons (cluster 20) versus sst3+ (cluster 27) and penkb+ neurons (cluster 

30) (Fig. 5e). Notably, these cells were all lineage related to cluster 2 that comprised 
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GABAergic and a small population of glutamatergic neurons in the ventral forebrain, 

revealing a shared common progenitor. In ZF2, 8 barcodes across 113 cells supported a 

similar lineage restriction (Fig. 5c and Supplementary Fig. 8). This analysis suggests a 

lineage split after gastrulation between progenitors that give rise to distinct cell types in the 

hypothalamus/preoptic area. These results demonstrate the promise of scGESTALT to 

uncover the complex lineage relationships of cells with respect to cell type and position.

Inheritance of edited barcodes tracks gene expression cascades during differentiation

The zebrafish brain maintains widespread neurogenic activity41, raising the possibility that 

scGESTALT could generate edited barcodes that are still shared between progenitors and 

differentiated cells at the time of cell isolation. Indeed, the most abundant barcodes, which 

comprised ~10%–26% of profiled cells, displayed broad cell type distributions 

(Supplementary Fig. 9) and included 15%–28% progenitor cell types (OPCs, radial glia, 

intermediate progenitors) (Fig. 6a). This observation indicates that single cells marked 

during embryogenesis gave rise to descendants that developed both into differentiated cell 

types and into progenitors that maintained their capacity for neurogenesis. Although it is 

unknown if such late neurogenic progenitors are transcriptionally identical to the ancestors 

in which the inherited lineage barcodes were generated, the observed lineage relationships 

raised the possibility of using shared barcodes to support potential gene expression 

trajectories deduced from scRNA-seq data. By ordering single cells in oligodendrocyte-

related clusters, which comprise progenitors and differentiated cells, by gene expression 

signatures, we identified a trajectory from OPC to oligodendrocytes, as previously described 

in mouse11,42 (Supplementary Fig. 9). Similarly, cerebellar granule cell clusters followed a 

trajectory from atoh1c+ progenitors (cluster 19) to pax6b+ neurons (cluster 6) and then to 

gsg1l+ neurons (cluster 26) (Fig. 6b, c) that was accompanied by waves of gene expression 

changes (Fig. 6d). Strikingly, several barcodes were recovered from cells transiting through 

these states, raising the possibility that the ancestor of these cells gave rise to progenitor 

pools that continued to produce differentiated descendants (Fig. 6c and Supplementary Fig. 

9). These results indicate the potential of combining scGESTALT with gene expression 

trajectories during differentiation.

DISCUSSION

Classic studies using markers such as viral DNA barcodes or fluorescent dyes have provided 

fundamental insights into clonal expansion and lineage relationships during 

development21,22. The recent application of DNA editing technologies to introduce 

cumulative, combinatorial, permanent and heritable changes into the genome has enabled 

the reconstruction of lineage trees at unprecedented scales but has been limited by the lack 

of high-resolution cell type information and the restriction of editing to early 

embryogenesis23,24,28. Here we begin to overcome these limitations by establishing a system 

for expressing both Cas9 and sgRNAs after zygotic activation, thus enabling early and late 

editing and applying scRNA-seq to identify both the identity and lineage of cells. We apply 

this technology, scGESTALT, to zebrafish brain development and establish its potential to 

simultaneously define cell types and their lineage relationships at a large scale.
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The power of this approach rests on the high efficiency and diversity of barcode editing, the 

ubiquitous expression of the compact barcode, the ability to introduce mutations both early 

and late, the unequivocal profiling of the single-copy compact barcode from individual cells 

without the need for inference, the high-confidence reconstruction of lineage trees, and the 

simultaneous recovery of cellular transcriptomes to identify the associated cell types (Fig. 3 

and 4). We foresee many immediate applications of scGESTALT in zebrafish and other 

model systems applying the framework introduced in this study. For example, it is now 

feasible to define dozens of cell types by profiling tens of thousands of cells from tissues 

such as spinal cord, liver, or skin using scRNA-seq and then use barcode editing to mark 

thousands of cells and reveal their lineage relationships. Variations of this approach can also 

be used to uncover cell type diversity and lineage relationships during tissue homeostasis 

and regeneration or during tumor formation and metastasis. While scGESTALT is widely 

applicable, several optimizations can be foreseen. First, barcode editing is still restricted to 

two timepoints and leads only to thousands of different barcodes. To record the full 

complexity of vertebrate lineage trees, future implementations will need to enable 

continuous editing over long time periods and generate millions or billions of differently 

edited barcodes. Second, the recovery of all cells and all barcodes from a single animal 

remains elusive, restricting the isolation of rare cell types and the reconstruction of cellular 

pedigrees. Current droplet-based approaches recover only a minority of cells, and 

scGESTALT currently recovers the edited barcode in fewer than 30% of transcriptomes. The 

lineage barcode recovery rate could have several causes including low expression level of 

the barcode, inefficient capture of barcode transcript within droplets, or amplification 

bottlenecks during sequencing library preparation. In addition, current scRNA-seq 

technologies and computational approaches require high coverage to define rare cell types. 

For example, not all previously described hypothalamic or habenular cell types are defined 

by sequencing ~60,000 cells. Thus, the comprehensive and definitive construction of lineage 

trees will necessitate improvements in both cell and barcode recovery. Finally, although 

marker genes allowed us to assign isolated cells to broadly defined regions (Fig. 2, 5), tissue 

dissociation results in the loss of precise spatial information. Future iterations of 

scGESTALT will need to identify high-resolution marker genes and create gene expression 

atlases to assign isolated cells to specific anatomical sites29,43–46.

The application of scGESTALT to brain development illustrates the potential of this 

approach to analyze lineage relationships in complex tissues. Our scRNA-seq analyses of the 

juvenile zebrafish brain identified more than 100 different cell types, provides a unique 

resource to identify marker genes and associated cell types, and lays the foundation to 

generate a complete catalogue of cell types in a vertebrate brain (Fig. 2). In combination 

with GESTALT, scRNA-seq generates hypotheses for potential developmental trajectories. 

For example, our results suggest that most descendants of an individual embryonic neural 

progenitor are enriched in spatial domains but constitute multiple cell types (Fig. 4, 5). 

Interestingly, however, we also observed that some descendants appear to acquire a broad 

spatial distribution and some lineage branches separate cell types located in similar 

anatomical regions (Fig. 5). For example, differentially barcoded embryonic progenitors 

contributed to distinct neurotransmitter, neuropeptide and transcription factor-expressing 

neurons in the hypothalamus/preoptic area. Many barcodes found in progenitor pools of 
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juvenile animals were shared with differentiated cell types, suggesting that ancestral cells 

marked during embryogenesis were destined to contribute to long-term, self-renewing 

progenitor pools as well as differentiated cells. Such inheritance of barcode edits raises the 

possibility to combine lineage recordings and transcriptome data to support the 

reconstruction of developmental trajectories and the associated gene expression cascades 

(Fig. 6). The future combination of reconstructed large-scale lineage trees with inferred 

molecular developmental trajectories has the potential to uncover the developmental 

statistics that generate complex multicellular assemblies.

scGESTALT lays the foundation for combining lineage recordings with single-cell 

measurements to reveal cellular relationships during development and disease. The finding 

that barcode mutations can be induced during a specific time window by an environmental 

signal (heat) also establishes the concept that this editing system can be rendered signal-

dependent25,26,47. This observation opens the possibility to record endogenous or exogenous 

events by barcode editing; just as evolutionary history is recorded in genome sequence 

changes, a cell’s history might be recorded by barcode sequence edits.

ONLINE METHODS

Zebrafish husbandry

All vertebrate animal work was performed at the facilities of Harvard University, Faculty of 

Arts & Sciences (HU/FAS). This study was approved by the Harvard University/Faculty of 

Arts & Sciences Standing Committee on the Use of Animals in Research & Teaching under 

Protocol No. 25–08. The HU/FAS animal care and use program maintains full AAALAC 

accreditation, is assured with OLAW (A3593-01), and is currently registered with the 

USDA.

Constructs for transgenesis

The GESTALT barcode transgenic vector pTol2-hspDRv7 was constructed as follows. The 

v7 barcode sequence23 was cloned into the 3′ UTR of a DsRed coding sequence under 

control of the heat shock (hsp70) promoter. This cassette was placed in a Tol2 transgenesis 

vector containing a cmlc2:GFP marker, which drives expression of GFP in the heart48.

The heat shock inducible Cas9 transgenic vector (pTol2-hsp70l:Cas9-t2A-GFP, 

5xU6:sgRNA) was constructed as follows. Individual gRNAs (Supplementary Table 1) 

targeting sites 5–9 of the GESTALT array were cloned into five separate U6x:sgRNA 

(Addgene plasmids 6245–6249) plasmids, as described previously49. The U6x:sgRNAs were 

assembled into a contiguous sequence in the pGGDestTol2LC-5sgRNA vector (Addgene 

plasmid 6243) by Golden Gate ligation. The resulting 5xU6:sgRNA sequence was PCR 

amplified and ligated into the backbone of pDestTol2pA2-U6:gRNA50 (Addgene plasmid 

63157) after the vector was first digested with ClaI and KpnI (U6:gRNA cassette of this 

vector was removed in the process) to generate the pDestTol2pA2-5xU6:sgRNA plasmid. 

The final construct was generated with multisite Gateway with p5E-hsp70l (Tol2 kit51), 

pME-Cas9-t2A-GFP (Addgene plasmid 63155), p3E-polyA (Tol2 kit) and 

pDestTol2pA2-5xU6:sgRNA.
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Plasmids are available from Addgene - https://www.addgene.org/Alex_Schier/

Generation of transgenic zebrafish

To generate GESTALT barcode founder fish, one-cell embryos were injected with zebrafish 

codon optimized Tol2 mRNA and pTol2-hspDRv7 vector. Potential founder fish were 

screened for GFP expression in the heart at 30 hpf and grown to adulthood. Adult founder 

transgenic fish were identified by outcrossing to wild type fish and screening clutches of 

embryos for GFP expression in the heart at 30 hpf. Single copy “heat shock GESTALT” F1 

transgenics were identified using qPCR, as described previously23,52.

To generate inducible Cas9 founder fish, one-cell embryos were injected with Tol2 mRNA 

and the pTol2-hsp70l:Cas9-t2A-GFP, 5xU6:sgRNA vector. Injected embryos were heat 

shocked at 8 hpf and potential founder fish were screened for GFP expression at 24 hpf and 

grown to adulthood. F1 transgenic “inducible Cas9” fish were identified by outcrossing 

potential founders to wild type fish and screening clutches of embryos for whole body GFP 

expression after heat shock at 24 hpf.

Early and late barcode editing

sgRNAs specific to sites 1–4 of the GESTALT array were generated by in vitro transcription 

as previously described23. Single copy “heat shock GESTALT” F1 transgenic adults were 

crossed to “inducible Cas9” F1 transgenic adults and one-cell embryos were injected with 

1.5 nl of Cas9 protein (NEB) and sgRNAs 1–4 in salt solution (8 μM Cas9, 100 ng/μl pooled 

sgRNAs, 50 mM KCl, 3 mM MgCl2, 5 mM Tris HCl pH 8.0, 0.05% phenol red). Injected 

embryos were first screened for GFP heart expression at 30 hpf to identify the “heat shock 

GESTALT” transgene These embryos were then heat shocked for 30 min at 37 C to induce 

Cas9 expression. Double transgenic embryos (1/4 of progeny, as expected from the genetic 

cross) were identified by GFP expression in the whole body. Cas9 protein injected into one-

cell embryos does not persist until 23–25 dpf when inDrops experiments were performed. 

Cas9 protein expression from the heat shock transgene at 30 hpf is also expected to be 

absent by 23–25 dpf.

Preparation of GESTALT genomic DNA libraries

Genomic DNA from edited and unedited double transgenic 55 hpf embryos were extracted 

using the DNeasy kit (Qiagen). Samples were UMI tagged and PCR amplified using primers 

flanking the barcode as previously described23. Sequencing adapters, sample indexes and 

flow cell adapters were incorporated by PCR, and libraries were quantified using the 

NEBNext Library Quant kit (NEB). Libraries were sequenced using NextSeq 300 cycle mid 

output kits (Illumina).

Whole brain inDrops

Wild type and two-timepoint edited 23–25 dpf zebrafish brains were similarly processed for 

inDrops single-cell transcriptome barcoding4,53 except that two-timepoint edited zebrafish 

were first heat shocked for 45 min at 37 C to induce scGESTALT barcode mRNA 

expression. Whole brains were dissected and dissociated using the Papain Dissociation Kit 

(Worthington), according to the manufacturer’s instructions with the following modifications 
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to ensure high quality cell isolation for scRNA-seq54. Brains were dissociated with 900 μl of 

10 units/ml of papain in Neurobasal media (Life Technologies) and incubated at 34 C for 

20–25 min with gentle agitation. Samples were then gently triturated with p1000 and p200 

tips until large pieces of tissues were no longer visible. Dissociated cells were washed 2x 

with DPBS (Life Technologies) at 4 C and sequentially filtered through 35 μm (BD Falcon) 

and 20 μm (Sysmex) mesh filters. Cells were resuspended in 300–400 μl DPBS and counted 

using an automated Bio-Rad counter. Cells were then diluted to ~100,000 cells/ml in 18% 

optiprep/DPBS solution. Cells were loaded onto the inDrops device and encapsulated at a 

rate of 10,000–20,000 per hour. Transcriptomes were obtained for ~70% of cells introduced 

into the device.

inDrops transcriptome library prep

Transcriptome libraries were prepared as previously reported53 with minor modifications. 

The product of the in vitro transcription (IVT) reaction was cleaned up using 1.3X AMPure 

beads (Beckman Coulter), eluted in 25 μL of RE Buffer (10 mM Tris pH7.5, 0.1 mM EDTA) 

and analyzed on an Agilent RNA 6000 Pico chip. 9 μL of the post-IVT product was used to 

proceed with standard RNA-fragmentation and (untargeted) transcriptome library 

preparation. The remainder of the post-IVT product was left unfragmented and processed in 

parallel to generate scGESTALT-targeted library preps (see below). A subset of libraries 

were prepared using ‘V3’ inDrops barcoded hydrogels and corresponding sequencing 

adapters. V3 inDrops libraries are sequenced with standard Illumina sequencing primers in 

which the biological read is from paired end read1, cell barcodes are from paired end read2 

and index read1, and library sample index is from index read2.

inDrops scGESTALT library prep

To generate scGESTALT libraries, inDrops samples post IVT were reverse transcribed as 

follows. Reactions with 5 μl IVT aRNA, 1.5 μl 50 μM random hexamer, 1 μl 10mM dNTP 

and 3.5 μl water were incubated at 70 C for 3 min, followed by addition of a reverse 

transcription mix (4 μl 5X PrimeScript buffer, 3.5 μl water, 1 μl RNase inhibitor [40U/μl], 

0.5 μl PrimeScript RT enzyme). The reaction was incubated at 30 C for 10 min, 42 C for 60 

min and 70 C for 15 min, and then cleaned up using 1.2X AMPure beads (Beckman Coulter) 

and eluted in 20 μl DS buffer (10 mM Tris pH8, 0.1 mM EDTA). scGESTALT cDNAs were 

PCR amplified in a two-step reaction involving: 1. GP6 and PE1S4 primers (Supplementary 

Table 1) and Q5 polymerase (NEB), and 2. GP12 and PE1S primers (Supplementary Table 

1) and Phusion polymerase (NEB). The Q5 reaction (98C, 30s; 61C, 25s; 72C, 30s; 15 

cycles) was cleaned up with 0.6X AMPure beads and eluted in 20 μl DS buffer. 8 μl of the 

eluate was used in the Phusion reaction (98C, 30s; 60C, 25s; 72C, 30s; 9 cycles). PCR 

products were once again cleaned up with 0.6X AMPure beads and eluted in 20 μl DS 

buffer. Finally, sequencing adapters, sample indexes, and flow cell adapters were 

incorporated as described for the V3 transcriptome libraries. Libraries were quantified using 

the NEBNext Library Quant kit (NEB).

Sequencing inDrops libraries

inDrops V2 and V3 transcriptome libraries were sequenced using NextSeq 75 cycle high 

output kits. 15% PhiX spike-in was used for V2 libraries. Sequencing parameters for V2 
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libraries: Read1 35 cycles, Read2 51 cycles, Index1 6 cycles. Custom sequencing primers4 

were used. Sequencing parameters for V3 libraries: Read1 61 cycles, Read2 14 cycles, 

Index1 8 cycles, Index2 8 cycles. Standard sequencing primers were used. scGESTALT V3 

libraries were sequenced using MiSeq 300 cycle kits and 20% PhiX spike-in. Sequencing 

parameters: Read1 250 cycles, Read2 14 cycles, Index1 8 cycles, Index2 8 cycles. Standard 

sequencing primers were used.

Bioinformatic processing of raw reads from transcriptome and scGESTALT inDrops 
libraries

Sequencing data (FASTQ files) were processed using the inDrops.py bioinformatics pipeline 

available at https://github.com/indrops/indrops. Transcriptome libraries were mapped to a 

zebrafish reference built from a custom GTF file and the zebrafish GRCz10 (release-86) 

genome assembly. Bowtie version1.1.1 was used with parameter –e 200; UMI quantification 

was used with parameter –u 2 (counts were ignored from UMIs split between more than 2 

genes). GESTALT libraries were processed in parallel up to the mapping step with modified 

Trimmomatic settings (LEADING: “10”; SLIDINGWINDOW: “4:5”; MINLEN: “16”). For 

both scGESTALT and transcriptome libraries, error-corrected cell barcode sequences were 

retained for each cell to enable direct comparisons of transcript and lineage information in 

downstream steps. Transcriptome libraries were further processed by removing UMI counts 

associated with low-abundance cell barcodes. Within each biological sample UMI counts 

tables (transcripts x cells) were assembled.

Cell type clustering analysis

In total, we sequenced 6,759 cells (replicate f1), 7,112 cells (replicate f2), 15,172 cells 

(replicate f3), 12,128 cells (replicate f4), 9,923 cells (replicate f5) and 6,026 cells (replicate 

f6) from whole brain samples. In addition, we sequenced 3,632 cells, 3,909 cells and 1,511 

cells from manually dissected forebrain, midbrain and hindbrain regions, respectively. This 

resulted in a total of 66,172 single-cell transcriptomes, which were further filtered and used 

for clustering analysis as described below. scGESTALT libraries were prepared from whole 

brain replicates f3 (750 cells recovered), f5 (2,605 cells recovered) and f6 (367 cells 

recovered) and were designated as ZF1, ZF2 and ZF3, respectively for the purposes of 

lineage barcode analysis. Supplementary Data 1 summarizes all transcriptome and lineage 

barcode stats for each animal used in this study. Clustering analysis was performed using the 

Seurat v1.4 R package5,29 as described in the tutorials (http://satijalab.org/seurat/). In brief 

digital gene expression matrices were column-normalized and log-transformed. Cells with 

fewer than 500 expressed genes, greater than 9% mitochondrial content or very high 

numbers of UMIs and gene counts that were outliers of a normal distribution (likely 

doublets/multiplets) were removed from further analysis. Variable genes (2,843 genes) were 

selected for principal component analysis by binning the average expression of all genes into 

300 evenly sized groups, and calculating the median dispersion in each bin (parameters for 

MeanVarPlot function: x.low.cutoff = 0.01, x.high.cutoff = 3, y.cutoff = 0.77). The top 52 

principal components were used for the first round of clustering with the Louvain modularity 

algorithm (FindClusters function, resolution = 2.5) to generate 63 clusters. These initial 

clusters were compared pairwise for differential gene expression (parameters for 

FindAllMarkers function: min.pct = 0.18, min.diff.pct = 0.15). Since the initial clustering 
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contains many non-neuronal and progenitor cells, several of the top principal components 

were comprised of genes in those cell types. Thus, to more finely resolve transcriptional 

differences between neuronal clusters, select large clusters were again subjected to variable 

gene selection, principal components analysis, Louvain clustering and differential gene 

expression using the same strategy as above. This approach has been shown to uncover 

additional heterogeneities42,55. At most 12 principal components were used in these 

analyses. Clusters with no discernible markers or less than 10 differentially expressed genes 

were merged together and classified as “unassigned” clusters.

Cell trajectory (pseudotime) analysis

Oligodendrocyte and granule cell populations were ordered in pseudotime using the 

Monocle 2 package56. The list of differentially expressed genes in each of these clusters 

identified by Seurat was used as input for temporal ordering in Monocle 2. The root of each 

trajectory was defined as the precursor (oligodendrocyte precursor cells) or progenitor 

(upper rhombic lip progenitors of granule cells) cell types in each of these two groups of cell 

populations.

scGESTALT barcode analysis

Sequencing data from genomic DNA and inDrops scGESTALT libraries were processed 

with a custom pipeline (https://github.com/aaronmck/SC_GESTALT) as previously 

described23 with the following modifications. InDrops scGESTALT reads were grouped by 

the inDrops cell identifiers, trimmed with the Trimmomatic software to remove low quality 

bases, and processed using a script designed for single-end read data. A consensus sequence 

was called for each single cell by jointly aligning all of its reads using the MAFFT aligner57. 

Consensus sequences were aligned to a reference sequence for the scGESTALT amplicon 

using the NEEDLEALL aligner57 with a gap open penalty of 10 and a gap extension penalty 

of 0.5. Aligned sequences were required to match greater than 85% of bases at non-indel 

positions, to have the correct PCR primer sequence at the 5′ end, and to match at least 90 

bases of the reference sequence. Target sites were considered edited if there was an 

insertion, deletion or substitution event present within 3 bases upstream of each target’s 

PAM site, or if a deletion spanned the site entirely. We noted that some larger inter-site 

deletions were misaligned or unaligned with the above parameters. These deletions were 

reanalyzed using the aligner from the ApE software, which searches for specified lengths of 

exact matching blocks of sequence, and then performs a Needleman-Wunsch alignment of 

the sequences between the blocks. The inDrops scGESTALT barcode for each cell was 

matched to its corresponding cell type (t-SNE cluster membership) assignment using the 

inDrops cell identifier.

To determine the stochastic nature of barcode editing, pairwise comparisons of samples were 

performed using cosine similarity.

Construction of lineage trees from scGESTALT barcodes

To create the two-time-point lineage trees, scGESTALT barcodes were filtered to the editing 

outcomes (indels) that could only occur through the activity of Cas9 complexed to sgRNA 1 

through 4 (precluding events that may start in the first 4 targets but extend into targets 5 to 
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9). All unique barcodes were then encoded into a paired event matrix and weights file, as 

described previously23, and were processed using PHYLIP mix with Camin-Sokal 

maximum parsimony58. In the second stage, we repeated this process for the full barcode 

set: each node’s descendants (barcodes that contain the identical events over the first 4 

targets) were used to create a sub-tree representing the second round of editing. The original 

node was then replaced by this generated subtree. After the subtrees were attached, we 

eliminated unsupported internal branching by pruning parent-child nodes that had identical 

barcodes, unless this node was the junction point between the first stage node and one of its 

subtree members. Individual cells and their annotations were then added to the 

corresponding terminal barcodes. The resulting tree was converted to a JSON object, 

annotated with t-SNE cluster membership, and visualized with custom tools using the D3 

software framework.

Statistical parameters—The exact sample size used in each analysis is given in the 

legends. All inDrops and GESTALT libraries were generated from multiple independent 

animals. The “bimod” likelihood ratio test in Seurat was used for differential gene 

expression analysis (Supplementary Data 2, 4). All calculated P-values are two-sided and no 

adjustments were made for multiple comparisons.

Life Sciences Reporting Summary—Further information on experimental design is 

available in the Life Sciences Reporting Summary.

Code availability

Computational scripts and analysis pipelines are available at https://github.com/aaronmck/

SC_GESTALT and https://github.com/indrops/indrops.

Data availability

The high-throughput datasets generated for this study have been deposited in the Gene 

Expression Omnibus under accession number GSE105010. Lineage trees are available for 

exploring at http://krishna.gs.washington.edu/content/members/aaron/fate_map/

harvard_temp_trees/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. scGESTALT: Simultaneous recovery of transcriptomes and lineage recordings from 
single cells
During development, CRISPR-Cas9 edits record cell lineage in mutated barcodes (a,b,c,d). 

Barcode editing occurs at early (T1, blue) and late (T2, yellow) timepoints during 

development. Simultaneous recovery of transcriptomes and barcodes from the same cells can 

be used to generate cell lineage trees and also classify them into discrete cell types (c1 – c6).
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Figure 2. Cell type diversity in the juvenile zebrafish brain
a. Juvenile zebrafish brains were dissected, dissociated and processed by inDrops.

b. t-SNE plot of 58,492 cells (n=6 independent animals for whole brain analysis, n=6 

independent animals for forebrain samples, n=4 independent animals for midbrain samples 

and n=6 independent animals for hindbrain samples; also refer to Supplementary Data 1) 

clustered into 63 cell types. Progenitor cell types highlighted.

c. t-SNE plot with cell clusters labeled with inferred anatomical regional location. FGP, 

fluorescent granular perithelial cells. Hind, hindbrain. Hyp, hypothalamus/preoptic area. 

Mid, midbrain. Thal, thalamus. Torus Long, torus longitudinalis. Vent. Fore., ventral 

forebrain. Cells of unknown origin or broad distribution are colored in grey.

d. Iterative clustering of cells from the hindbrain/cerebellum are shown as an example. Inset 

highlights these eight clusters within initial t-SNE plot. Main panel, t-SNE plot of the 
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resulting subclusters. Subclusters colored light grey either did not partition further or had no 

clear markers. Also refer to Supplementary Fig. 4 and Supplementary Data 4 for additional 

analysis.

e. Dotplot of gene expression patterns of select marker genes (columns) for each subcluster 

(rows) from the hindbrain/cerebellum (n=8,330 cells) are shown as an example. Dot size 

represents the percentage of cells expressing the marker; color represents the average scaled 

expression level. Initial cluster numbers are indicated to the left of the subcluster (s) number. 

Clusters colored blue were subdivided by iterative analysis.

f. Heat map of scaled gene expression of representative marker genes across cells within 

eight neural progenitor clusters. Original cluster numbers are indicated on the bottom. 

Marker genes are categorized according to the cell types they label (pink text). Inset 

highlights these eight clusters within initial t-SNE plot.

g. Gene expression patterns of novel cell type markers. Cells within each t-SNE plot 

(n=58,492 cells) are colored by marker gene expression level (grey is low, red is high). 

Dotted boxes highlight clusters where markers are enriched.
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Figure 3. An inducible CRISPR-Cas9 system for late barcode editing
a. Zebrafish that express the GESTALT barcode as polyadenylated (pA) mRNA were 

crossed to zebrafish that express heat shock-inducible Cas9 along with gRNAs 5–9. 

Resulting embryos were injected with Cas9 and gRNAs 1–4 at the one-cell stage (blue bars; 

early editing), and heat shocked at 30 hpf to induce transgenic Cas9 for a second round of 

editing (yellow bars; late editing).

b. Mutations within the nine CRISPR target sites of the GESTALT barcode for three editing 

conditions (2 animals per condition). Red lines represent deletions, blue lines represent 

insertions.

c. Pairwise comparisons using cosine dissimilarity of early and late edit patterns from eight 

doubly-edited embryos.

d. Edit type at each target site within the barcode from all eight doubly-edited embryos.
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e. Chord diagram of the nature and frequency of deletions within and between target sites. 

Each colored sector represents a target site. Links between target sites represent inter-site 

deletions; self-links represent intra-site deletions. Link widths are proportional to the edit 

frequencies.

f. Heat map of the frequency (log10 scale) of inter-site and intra-site deletions within and 

across the barcode target sites.

g. Cumulative frequency of each barcode across all cells pooled from 8 embryos, 

considering only early barcode edits (blue), only late barcode edits (yellow) and full 

barcodes (grey).
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Figure 4. A lineage tree of a zebrafish brain generated using scGESTALT
An example of a reconstructed lineage tree from a single juvenile zebrafish brain. 376 

barcodes recovered from ZF3 using scRNAseq were assembled into a cell lineage tree based 

on shared edits using a maximum parsimony approach. Black nodes indicate early barcode 

edits; red nodes indicate late edits. Dashed lines connect individual cells to nodes on the 

tree. Cell types (identified from simultaneous transcriptome capture) are color coded as 

indicated in the legend. The barcode for each cell is displayed as a white bar with deletions 

(red) and insertions (blue). Tree depth is higher for the early editing events (maximum of 4 

tiers), while late editing events generate a maximum of two tiers. A larger lineage tree 
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obtained for ZF1 is shown as Supplementary Fig. 7. Interactive trees and the very large 

lineage tree for ZF2 can be found at: http://krishna.gs.washington.edu/content/members/

aaron/fate_map/harvard_temp_trees/
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Figure 5. Lineage relationships of cell types in the juvenile zebrafish brain
a. Barcodes are enriched within regions of the brain. Heat map of the distribution of ZF1 

barcodes (rows, clone size >= 4 cells, n=27 barcodes, 524 cells) for each region of the brain 

(columns). Cell types were classified as belonging to the forebrain, midbrain or hindbrain, 

and the proportions of cells within each region were calculated for each barcode. Region 

proportions were scaled by row and colored as shown in the legend.

b. Mini tree showing lineage branches and cluster contributions from clade a within brain 

ZF1. Black nodes indicate early edits; Red nodes, late edits. Each square represents a cell 

colored by cell type. Right, t-SNE plots with highlighted cell types: Yellow/brown 

(forebrain), blue (midbrain), green (hindbrain). Asterisk, progenitor cell types. Double 

asterisk, ependymal cells. Grey lines, additional branches of the tree.

c. Lineage biases within the hypothalamus/preoptic area. Heat map of the distribution of 

ZF1 (6 barcodes, 95 cells) and ZF2 barcodes (8 barcodes, 113 cells) across indicated cell 

types within the hypothalamus/preoptic area, plotted as above. Insufficient recovery of 

barcodes from these cell types in ZF3 precluded analysis.

d. Bar plots showing the distribution of descendant cells from two ZF1 barcodes into cell 

types of the hypothalamus/preoptic area.

e. Mini tree showing ZF1 clade b descendants. Subclade c1 was marked during the early 

round of editing. Clones A, B, C and D were marked during the late round. Clone E was not 

edited in the late round. The mini tree highlights branches where cluster 20 cells (D) 

separated from clusters 27 and 30 cells (C) during late barcode editing. Right, t-SNE plots 

showing barcode distributions across cell types.
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Figure 6. Barcodes shared between progenitor and differentiated cell types
a. Left, t-SNE plot showing clustering of neural progenitors and oligodendrocyte cell types 

only. Inset highlights these clusters within the initial t-SNE plot from Fig. 2. Right, 

progenitor cells from the largest barcode clone in two animals ZF1 (blue) and ZF2 (pink) are 

displayed on the t-SNE plot. These clones were characterized by cells of multiple stem/

progenitor cell types.

b. Trajectory of cerebellar granule cell differentiation generated with Monocle 2. Cells are 

colored by pseudotime. Inset highlights these clusters within the initial t-SNE plot.

c. Cells along the trajectory are colored by cluster: 19 (progenitor); 6 and 26 (differentiated). 

The distribution of several cells containing one of three different scGESTALT barcodes from 

ZF1 (red square, red triangle) and ZF2 (black circle) are shown as examples to highlight 

barcodes found along the trajectory.
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d. Heat map of gene expression changes of selected markers during granule cell 

differentiation. Rows are marker genes, columns are single cells arranged in pseudotime, 

representative transcription factors colored in blue.
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