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Abstract of the Thesis

Learning a simplicial structure using sparsity

by

John Flynn

Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Alan Loddon Yuille, Chair

We discuss an application of sparsity to manifold learning. We show that the

activation patterns of an over-complete basis can be used to build a simplicial

structure that reflects the geometry of a data source. This approach is effective

when most of the variability of the data is explained by low dimensional geomet-

rical structures. Then the simplicial structure can be used as a platform for local

classification and regression.

ii



The thesis of John Flynn is approved.

Frederic Paik Schoenberg

Ying Nian Wu

Alan Loddon Yuille, Committee Chair

University of California, Los Angeles

2014

iii



to my family

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The geometry of the l1 penalty . . . . . . . . . . . . . . . . . . . . 4

2.1 l1 penalized regression . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Geometry of l1 penalized regression . . . . . . . . . . . . . . . . . 6

3 Sparse coding and activated simplices . . . . . . . . . . . . . . . . 9

3.1 Sparse coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Activated simplices . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Projection onto hyperspheres . . . . . . . . . . . . . . . . . . . . 16

4 Computation and synthetic datasets . . . . . . . . . . . . . . . . 18

4.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 3d poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Faces under varying illumination . . . . . . . . . . . . . . . . . . 26

5.3 Digits from Semeion . . . . . . . . . . . . . . . . . . . . . . . . . 27

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



List of Figures

1.1 Points from a spiral and a plane, together with a simplicial structure. 3

2.1 Regression coefficients β̂i versus λ. . . . . . . . . . . . . . . . . . . 5

2.2 An example of CX where there in an non unique β̂ for some y . . 7

2.3 The convex hull CX of [X,−X], with the projection Xβ̂ of y onto

a facet of ||β̂||1CX . Positions 1 and 3 are activated. . . . . . . . . 8

3.1 A sparse coding of 14× 14 image patches. . . . . . . . . . . . . . 10

3.2 A sparse coding for data sampled from two ellipses in R3. The

bases lie on the surface S2 and congregate under the major axes of

the ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Multiple folds of the data manifold over the same point on the

sphere. This complicates the relationship between a sparse basis

and the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The green circles represent points sampled from a spiral; the red

points are a sparse basis. The sparse basis was constructed on

S3 ⊂ R4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 A conceptual drawing to illustrate that more bases are required at

areas of high curvature. The black curve represents the data source,

the black dots are vertices of CX . . . . . . . . . . . . . . . . . . . 14

3.6 When there are many bases ‖y −Xβy‖2 ≈ 1− ‖βy‖1. . . . . . . . 14

3.7 Stereographic projection from the north pole onto the equatorial

plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 Offset radial projection from a hyperplane onto the hypersphere . 17

4.1 Cross section of the spiral ribbon and the hyperplane patch . . . . 20

vi



4.2 Simplicial structure from 30 bases with λ = 0.25. . . . . . . . . . 21

4.3 Simplicial structure from 50 bases with λ = 0.25. . . . . . . . . . 21

4.4 Simplicial structure from 50 bases with λ = 0.55. . . . . . . . . . 22

4.5 Simplicial structure from 50 bases with λ = 0.75. . . . . . . . . . 22

4.6 Simplicial structure from 50 bases with λ = 0.1. . . . . . . . . . . 23

5.1 Histograms of reconstruction errors for 3d pose reconstruction, when

poses are reconstructed using the simplicial structure (red), and

when poses are reconstructed as penalized combinations of the

bases (blue). The simplicial structure is better. . . . . . . . . . . 26

5.2 A conceptual illustration showing a polytope CX learned from train-

ing data corresponding to the two red circles. Any face of the poly-

tope can be activated by l1 penalized regression, but only the one

dimensional simplices under the circles correspond to the training

data. The wireframe outlines the faces of the polytope. . . . . . . 27

vii



Acknowledgments

I’m very grateful to Alan Yuille, Ying Nian Wu, and Chunyu Wang for their

assistance. However any errors or misconceptions are very much mine!

viii



CHAPTER 1

Introduction

There is a vibrant literature on the use of sparsity for learning. Some well known

examples include Tibshirani’s lasso [Tib96] for variable selection, Olshausen and

Field’s [Oo96] use of a sparse coding model to describe image patches, and Tao and

Candes [CT05] work on sparse signal recovery. More recently Wu et al. [WSG10]

use sparse coding in generative models for images and for object detection and

recognition and Wang et al. [WWL12] use sparse coding in an application to 3d

pose reconstruction. These are only a few samples from a very extensive literature.

The application here is to data sources where the variability comes mostly

from geometry, where the data lies close to a small number of low dimensional

structures. In that situation the activations of a sparse coding are manageable

and lead to a low dimensional simplicial structure that echoes the geometrical

structure of the data.

The method produces a simplicial structure in the same ambient Euclidean

space as the data. Similar to k-means there is an assignment of training data

points to parts of the structure, but here points are assigned to simplices rather

than to point centers. The simplicial structure is derived from faces of a convex

polytope constructed from the bases found in a sparse coding of the training data.

We haven’t explored how, in a formal sense, the topology of the simplicial

structure reflects the topology of the data. Carlsson and de Silva explore topo-

logical approximation by small simplicial complexes in [CD03]. They build their

simplicial structure using a neighborhood structure based on an estimate, like
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isomap uses, of geodesic distances, and they make formal comparisons with other

simplicial structures such as the Čech and Rips complexes. While we haven’t

made formal comparisons our method seems to capture the geometrical essentials

of the arrangement of the data.

The practical applications of our method might be similar to those where

arrangements of hyperplanes are used to capture the geometry of the data [CPR12,

PRA13, EV13]. We examine similar applications, to 3d pose recovery from 2d

images, and to digit classification and faces under various lighting. In these data

most of the variability comes from geometry.

The simplicial structure can be used as a platform for local exploration of the

data. In some applications to classification it might turn out that the simplices

are fairly pure, that is, that one class predominates on each simplex, but in more

complicated situations the local simplicial coordinate system might be used for

regression or classification on each simplex.

Since the simplicial structure is built from an overcomplete basis there are only

two parameters, that is, the usual parameter for the l1 penalty and the number

of bases. There is no need for an a priori estimate of intrinsic dimension, or an

assumption that the data manifold has a single geometrical component, or that

the geometrical components have the same dimension.

We apply this construction to some synthetic data as a proof of concept. In

Figure 1.1 the green circles are random samples from a spiral and a plane, the

blue points are a sparse basis and the green simplices are the simplicial structure

coming from the activations of the sparse coding.

The document is arranged as follows. Chapter 2 has a discussion of the geome-

try of the l1 penalty. Chapter 3 describes the construction of a simplicial structure

and Chapter 4 discusses some applications.
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Figure 1.1: Points from a spiral and a plane, together with a simplicial structure.
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CHAPTER 2

The geometry of the l1 penalty

It is well known that the l1 penalty induces sparsity, and that it conveys some

robustness to noise. Here, we discuss some geometry associated with the penalty.

There is a sophisticated discussion of this geometry in [Don05].

2.1 l1 penalized regression

The standard l1 penalized regression is the convex minimization problem

min
β

(
1

2
||y −Xβ||22 + λ||β||1

)
(2.1)

where y ∈ Rd is a vector of outcomes, X ∈ Rd×p is a matrix of predictors, and

λ ∈ R≥0 is a penalty parameter. The minimizer β̂ ∈ Rp is the vector of regression

coefficients. It is common to standardize the columns of X, so that each column

has l2 norm one. We assume this standardization here.

It is well known that while the solution to the unpenalized problem may have

no zero entries, the solution β̂ becomes sparse as λ increases. Indeed if λ >

||X ty||∞ then β̂ = ~0, [OPT00]. Figure 2.1 shows a plot of coefficients β̂ against

λ — notice the increasing sparsity and shrinkage. We call the locations of the

non-zero entries of β̂ the activations.

Tibshirani discusses some uniqueness questions in [Tib13]. The solution β̂ may

not be unique; however it is when X is in general position. Thus if X is perturbed

by small random noise then the solution for the perturbed system is unique with

probability 1. Tibshirani establishes that, when λ > 0, all solutions have the same

4



Figure 2.1: Regression coefficients β̂i versus λ.

norm ||β̂||1 and the same projection Xβ̂. We’ll revisit the uniqueness question

later.

It is intuitive that ||β̂||1 decreases with λ. To see this suppose that λ1 < λ2

and denote the corresponding minimizers by β̂1 and β̂2. Since β̂1 is the minimizer

for 1
2
||y −Xβ||22 + λ1||β||1 we obtain

1

2
||y −Xβ̂1||22 + λ1||β̂1||1 ≤

1

2
||y −Xβ̂2||22 + λ1||β̂2||1

thus

λ1(||β̂2||1 − ||β̂1||1) ≥ 1

2

(
||y −Xβ̂1||22 − ||y −Xβ̂2||22

)
.

Similarly, since β̂2 is the minimizer for 1
2
||y −Xβ||22 + λ2||β||1, we obtain

λ2(||β̂1||1 − ||β̂2||1) ≥ 1

2

(
||y −Xβ̂2||22 − ||y −Xβ̂1||22

)
.

Adding the last two inequalities we obtain

(λ2 − λ1)(||β̂1||1 − ||β̂2||1) ≥ 0,

thus ||β̂1||1 ≥ ||β̂2||1.

5



2.2 Geometry of l1 penalized regression

We now relate l1 penalized regression to the geometry of the convex hull of the

columns of [X,−X]. Denote this hull by CX . We’ll see that the projection Xβ̂

corresponding to a minimizer β̂ lies on a facet of ||β̂||1CX .

First we observe that for any β ∈ Rp, there is a vector z in the convex hull CX

such that

Xβ = ||β||1z.

To see this, denote the columns of X by x1, . . . , xp. Then

Xβ = β1x1 + · · ·+ βpxp

= ||β||1z, where z =

(∑
i:βi≥0

|βi|
||β||1

xi +
∑
i:βi<0

|βi|
||β||1

(−xi)
)

and z ∈ CX since ∑
i:βi≥0

|βi|
||β||1

+
∑
i:βi<0

|βi|
||β||1

= 1.

Next we establish that Xβ̂ lies on a facet of the convex polytope ||β̂||1CX when

β̂ 6= 0, (when β̂ = 0 the polytope ||β̂||1CX doesn’t have any facets!) Towards this,

observe that CX is centrally symmetric (that means that −z ∈ CX whenever

z ∈ CX), therefore the points on the facets of CX are exactly those points that

lie in CX but not in rCX for any r < 1. Similarly the facets of ||β̂||1CX are

comprised of those points that lie in ||β̂||1CX but not in rCX for any r < ||β̂||1.

Finally, notice that Xβ̂ does not line in rCX for any r < ||β̂||1, since if Xβ̂ = Xβ1

with ||β1||1 < ||β̂||1 then

1

2
||y −Xβ1||22 + λ||β1||1 =

1

2
||y −Xβ̂||22 + λ||β1||1

<
1

2
||y −Xβ̂||22 + λ||β̂||1,

but this a contradiction since β̂ minimizes 1
2
||y −Xβ||22 + λ||β||1.
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This gives an understanding of the possible activation patterns for penalized

regressions on X. The possible activations are the combinations of signed columns

of X such that the convex hull of these signed columns is contained in a facet of

CX . Combinations of columns of X where the convex hull lies in the interior of

CX are not activated by any y or λ.

In [Don05] Donoho discusses possible activation patterns with a view to sparse

signal recovery. He calls a polytope k-neighborly if the convex hull of any k vertices

spans a face. In that situation any pattern of k can be activated. He discusses

the asymptotics of k-neighborliness for random matrices.

This geometric perspective on the l1 penalty gives us an understanding of the

possible uniqueness of β̂. If X is in general position then CX is simplicial and

every point on a facet is expressible in a unique way as convex combination of

vertices. To construct a matrix X such that for some y and λ the minimizer β̂ is

not unique, build a polytope in the sphere such that some facet is not a simplex,

see Figure 2.2.

Figure 2.2: An example of CX where there in an non unique β̂ for some y

But we are wandering from our path! To summarize our geometrical un-

derstanding. We’ve seen that the minimizer β̂ is unique for matrices that are

constructed from some continuous random process. The activation pattern in β̂

corresponds to the vertices on a proper face of the polytope CX . This is depicted

in Figure 2.3. This understanding of activation will be important in the sequel.
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x1

−x1

x2

x3

−x3

−x2

y

r
=
||β̂
|| 1Xβ̂

||y −Xβ̂||2

Figure 2.3: The convex hull CX of [X,−X], with the projection Xβ̂ of y onto a

facet of ||β̂||1CX . Positions 1 and 3 are activated.
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CHAPTER 3

Sparse coding and activated simplices

3.1 Sparse coding

Sparse coding is a widely used technique for compression of high dimensional

data. Olshausen and Field observe in [Oo96] that the receptive fields of V1 cells

in the cerebral cortex resemble an over-complete basis for image patches. Figure

3.1 shows a sparse coding of 14 × 14 image patches from images of scenes in

nature. Baraiuik et al. [BCD10] and Huang et al. [HZM11] discuss structured

sparse coding, which uses activation patterns of an overcomplete basis to improve

reconstruction. One might argue that understanding activation patterns in sparse

coding is key to understanding datasets in high dimensions. We build a simplicial

structure on naive activation statistics. This is a useful approach for data on low

dimensional structures in moderate dimensional ambient spaces.

We now establish a framework for a discussion of sparse coding. Suppose we

have a set of n samples Y from a data source in Rd. A sparse coding of Y , using p

sparse bases and at penalty level λ > 0, is one part, X, of an approximate solution

to the minimization

min
X,β

∑
y∈Y

(
1

2
‖y −Xβy‖2

2 + λ‖βy‖1

)
(3.1)

where X ∈ Rd×p is restricted in the minimization to have columns with l2 norm

bounded by 1, and β is unrestricted in Rp×n. In non-degenerate situations (where

each column of X is non-zero and has a non-zero coefficient in some βy, that is,
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Figure 3.1: A sparse coding of 14× 14 image patches.

where λ is not too large and the sparse bases are not too numerous) the minimizer

X has columns with l2 norm exactly 1.

To see this, suppose that X doesn’t have this normalization; let X̃ be the

corresponding matrix with normalized columns and let β̃y be the corresponding

coefficient vector, but with the coefficients scaled so that Xβy = X̃β̃y, then ‖y −
Xβy‖2 = ‖y − X̃β̃y‖2, but ‖β̃y‖1 ≤ ‖βy‖1, so X̃, β̃ is a better solution to (3.1).

We assume this non-degeneracy from now on. Then a sparse basis consists of p

points on the hypersphere Sd−1 in Rd.

The minimization 3.1 is difficult — it is a non-convex problem that is convex

in each variable X, β, when the other is held fixed. We’ll discuss this more later.

We might think of a sparse coding as a well positioned basis that allows an

efficient sparse expression for each training point y. Indeed the coefficients βy are

the l1 penalized regression coefficients for regression of y on X. We continue to

use the language of activations as before, we say that a set of bases is activated

by y if the corresponding entries of βy are non-zero.

10



The relationship between the geometry of X and the training data Y is com-

plicated, without some further assumptions on Y . Figure 3.2 shows a sparse basis

on S2 ⊂ R3 learned from points sampled from the union of two orthogonal ellipses

in R3, each with eccentricity 3. Notice that the bases congregate under the major

axes of the ellipses. This effect occurs because, for fixed X, the penalty

min
βy

(
1

2
‖sy −Xβy‖2

2 + λ‖βy‖1

)
scales super-linearly with s for s > 1. Thus the bases tend to congregate in the

learning process to reduce errors for distant points. There are also congregating

effects when a non-uniform is induced by the projection of the data onto the

hypersphere. The relationship is further complicated if many folds of the data lie

over the same points on the hypersphere. Figure 3.3 illustrates this.

Figure 3.2: A sparse coding for data sampled from two ellipses in R3. The bases

lie on the surface S2 and congregate under the major axes of the ellipses.
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Figure 3.3: Multiple folds of the data manifold over the same point on the sphere.

This complicates the relationship between a sparse basis and the data.

Assumption: To simplify the relationship between the data and sparse basis,

and to ensure that the sparse basis is directly comparable to the data, we now

assume that the training data Y lies on the sphere Sd−1 ⊂ Rd.

This is not a restrictive assumption. Many data sets are normalized in this

way; for example, image patches are often contrast normalized. However in some

situations a direct normalization of Y is inappropriate, but then, there are more

benign approaches to map the data onto a hypersphere. We’ll discuss something

like stereographic projection below. This approach preserves the geometry of the

data quite well. Figure 3.4 shows data sampled from a spiral, together with a

sparse basis. The spiral was mapped into a hypersphere S3 in R4 by a radial

projection from a hyperplane; the sparse basis was constructed in S3 and then

mapped back into the original ambient space of the data. Notice that the bases

are intermingled among the training data.

It might be tempting to speculate that the sparse bases reflect the density of

the data on the hypersphere, but this isn’t quite right. A better understanding

might be that the bases are positioned so that the faces of the polytope CX provide

an efficient projection of the data. Areas of high curvature require many bases

for efficient reconstruction, but near planar areas can be reconstructed efficiently

12



Figure 3.4: The green circles represent points sampled from a spiral; the red points

are a sparse basis. The sparse basis was constructed on S3 ⊂ R4.

with fewer bases. See Figure 3.5 for a conceptual illustration.

We would like to understand the sparse basis in terms of projection onto the

polytope CX , however it is somewhat more complicated. In fact, as we saw in the

previous chapter, the projection Xβy is onto a scaling ‖βy‖1CX of the polytope,

and the amount of scaling depends on y.

We now advance an argument to show that when p is large the quantity ‖βy‖1

is approximately constant. When the number of bases is large, the bases activated

by a training point y are typically not far away. Therefore the projection error ||y−
Xβy||2 is approximately 1−‖βy‖1. See Figure 3.6. Therefore ||βy||1 approximately

13



Figure 3.5: A conceptual drawing to illustrate that more bases are required at

areas of high curvature. The black curve represents the data source, the black

dots are vertices of CX .

minimizes
1

2
(1− r)2 + λr

and hence ||βy||1 ≈ 1− λ and ||y−Xβy||2 ≈ λ. Our experiments show that these

estimates are reasonable in practice.

xixj

y

Xβ̂

||β̂||1

||y −Xβ̂||2

Figure 3.6: When there are many bases ‖y −Xβy‖2 ≈ 1− ‖βy‖1.

Note that this approximation is invalid if y is out-of-sample. These estimates

help in understanding the arrangement of sparse bases. In the learning process

the polytope CX adjusts so that low dimensional faces of λCX are close to the

training data.
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3.2 Activated simplices

We’re now ready to construct activated simplices from a sparse basis X learned

from training data Y .

Let y be a training data point; we say that y activates the simplex

〈sgn(βi1)xi1 , . . . , sgn(βik)xik〉

if the non-zero locations of β = βy are i1, . . . , ik. We know from the discussions

of the previous chapter that this simplex is a face of the polytope CX .

The simplicial structure built from the activation statistics is the set of

activated simplices, but with some simplices dropped when they have very low

activation rates.

It is hard to make precise statements about the reconstruction error in using

the simplicial structure as a surrogate for the data source. We argued above that

the bases X are adjusted in the learning process so that faces of CX efficiently

reflect the training data. However, it is unreasonable to expect that the training

data is close to the activated simplices of CX when λ is large, since the dimen-

sion of the activated simplices may be small in that situation. But the simplicial

structure may still capture some essentials of the arrangement of the data — for

example, it may be topologically equivalent to the data source. It is known that

in practice sparse coding gives good a reconstruction for certain data types (for

example, image patches) and since the simplicial structure is merely a description

of the activation of the sparse bases, it should give good reconstruction in similar

situations. In summary, the effectiveness of the simplicial structure as a recon-

struction of the data may depend on the data source and λ, but the structure

should be more resilient as a qualitative summary.

15



3.3 Projection onto hyperspheres

The problem of embedding data from Rd into a hypersphere is a matter of car-

tography. The geometry of the hypersphere is different from that of Eulcidean

space, but small patches of Euclidean space can be embedded in the hypersphere

without much distortion.

The standard stereographic projection (Figure 3.7) maps the Euclidean space

Rd into the hypersphere Sd ⊂ Rd+1. It distorts geometry only a little on small

patches.

N

Q

P

Figure 3.7: Stereographic projection from the north pole onto the equatorial plane

We’ve used what might be called offset radial projection in our experiments.

See Figure 3.8. Offset radial projection is the map

x ∈ Rd 7→ (x, offset) ∈ Rd+1 7→ (x, offset)

||(x, offset)||2
∈ Sd

It is revealing to describe this map in terms of a projection onto the tangent

plane T d of the hypersphere at the point (0, . . . , 0, 1)

x ∈ Rd 7→ (x, offset) ∈ Rd+1 7→ (x, offset)

offset
∈ T d 7→ (x, offset)

||(x, offset)||2
∈ Sd

The map onto the tangent plane is simply a rescaling. If ‖x‖2
offset

is small then (x,offset)
offset

is close to (0, . . . , 0, 1) and for such x the map from T d to Sd distorts only a little.

16



o�set

Tangent plane

Figure 3.8: Offset radial projection from a hyperplane onto the hypersphere

If the dataset lies in a disk of radius R in Rd, and R
offset

is small, then the dataset

will be embedded in the hypersphere without much distortion. In practice nothing

terrible happens when R
offset

is as large as 1.

These projections onto spheres have the disadvantage that they distort planes:

a hyperplane will be bent somewhat in the projection. However since sparse basis

constructions are essentially local these projections are benign.
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CHAPTER 4

Computation and synthetic datasets

4.1 Synthetic Data

We performed some experiments on synthetic data as a proof of concept. We

experimented with some data sampled from from the union of a hyperplane and a

spiral ribbon. The data was mapped into S3 ⊂ R4 using the offset radial projection

described in Section 3.3. A sparse bases was learned for the data on the sphere,

and the bases and active simplices were projected back to R3. The sparse bases

were learned from an initialization using a subset of the training data selected

uniformly at random.

We are interested in the effects of the parameters p and λ, and on the ability

of the simplices to distinguish the two geometrical components of the data source.

It is unsurprising that more sparse bases is better, and that a larger lambda

activates lower dimensional simplices. For the dataset here, it seems that the sets

of sparse bases found for different λ are qualitatively similar, but the activation

patterns, and the simplicial structure that describes activations were different. It

is interesting to speculate about the stability of the polytopes CX , but this is

hard to formalize; the higher dimensional activated faces of CX seem to stable for

ranges of λ.

Most activated simplices lie in a single geometrical component (which suggests

that these simpicicial structures may be useful for some classification problems).

The intrinsic dimension of the data is 2 and not too many 3 dimensional simplices

18



are activated, even at small λ.

Figure 4.1 shows the cross-section of the spiral ribbon and planar section at z =

0. Figure 4.2 shows the simplicial structure learned with 30 bases and λ = 0.25,

and the corresponding histogram of activations. Though the intrinsic dimension

of the data is 2 we do see a small number of activations of a 3-simplex. When there

are only 30 bases some parts of the spiral ribbon are explained by a 1-simplex.

Figure 4.3 shows a simplicial structure learned with 50 bases and λ = 0.25,

and the corresponding histogram of activations. The simplicial structure is more

accurate with more bases, though it still has some difficulty separating the end of

the ribbon from the planar part.

Figure 4.4 shows a simplicial structure learned with 50 bases but now with

λ = 0.55. Now no 3d simplex is activated and more of the data is explained by

1d simplices.

Figure 4.5 shows a simplicial structure learned with 50 bases and with λ = 0.75.

The activations of 2d simplices are now rare. Most of data is explained by 1d

simplices. Interestingly it seems that the sparse bases and the polytope CX are

very similar for the various values of λ. We see a dramatic change in the activations

but not in the polytope.

Finally Figure 4.6 shows a simplicial structure learned with 50 bases and with

λ = 0.1. We see more activations of 3d simplices that occurred for λ = 0.25, but

the differences are not dramatic.

4.2 Computation

We’ll say only a little about computation since there is a well developed literature

on the computational aspects of dictionary learning. There are two computational

challenges — the computation may be slow, and the computation may converge on
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Figure 4.1: Cross section of the spiral ribbon and the hyperplane patch

an undesirable local minimum. Mairal’s SPAMS package [MBP09] was efficient for

the type of data we were interested in, but the problem of initialization, in order

to avoid undesirable local minima remained. The standard initialization of the

sparse code is to use a subset of the training data selected uniformly at random. A

k-means++ initialization [AV07] seems to improve on this. Our intuition is that

extreme positions among the training data are good locations for bases and the

k-means++ initialization was better than a uniform random selection at placing

bases near these locations.
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(a) Simplicial structure

(b) Histogram of activa-

tions

Figure 4.2: Simplicial structure from 30 bases with λ = 0.25.

(a) Simplicial structure

(b) Histogram of activa-

tions

Figure 4.3: Simplicial structure from 50 bases with λ = 0.25.
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(a) Simplicial structure

(b) Histogram of activa-

tions

Figure 4.4: Simplicial structure from 50 bases with λ = 0.55.

(a) Simplicial structure

(b) Histogram of activa-

tions

Figure 4.5: Simplicial structure from 50 bases with λ = 0.75.
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(a) Simplicial structure

(b) Histogram of activa-

tions

Figure 4.6: Simplicial structure from 50 bases with λ = 0.1.
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CHAPTER 5

Applications

We now discuss some practical applications of the simplicial construction. Suppose

we have a simplicial structure ∆, constructed from a sparse coding X of training

data Y at l1-penalty level λcons. We associate a new data point y with a simplex

in ∆ by minimizing the unpenalized l2 distance from y to simplices in ∆:

δ(y) = arg minδ∈∆ d2(y, δ) (5.1)

This might be a costly minimization since it involves a search over all simplices

in ∆. The quantity d2(y, δ) is

d2(y, δ) = min
α1,...,αd

‖y − (α1v1 + · · ·+ αdvd)‖2 (5.2)

where v1, . . . , vd are the vertices of δ and α1, . . . , αd are constrained to be non-

negative and sum to 1. But one might restrict the search to simplices δ that share

some vertices with an l1 penalized projection of y on X, projected using some

small penalty λsearch.

The reconstruction error for ∆ is estimated as the mean, over test data, of

d2(y, δ(y)); in other words, it is the average distance of test data from the simplices.

In our practical applications, regression and classification are carried out by

local classification or regression on the simplices of ∆. Thus, for classification

applications, a data point y is classified using some local classification scheme on

δ(y). This local scheme might simply be nearest neighbor classification on δ(y),

or it might involve a logistic regression built on the simplicial coordinates of δ(y).
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We experiment on some real data where the intrinsic dimension is reasonable

and the variability is strongly explained by geometry. We experimented with

datasets of 3d poses, of faces under different lighting conditions, and of handwrit-

ten digits. These applications are comparable to those in Pitelis at al. [PRA13]

and the results are competitive. We only give an overview of results of these ap-

plications here because our computations are still quite raw. The details will be

presented in another publication.

5.1 3d poses

In [WWL12] Wang et al. discuss the recovery of human 3d poses from a single

image with unknown camera viewpoint. They use an overcomplete basis to model

3d poses and estimate a 3d pose from an image by simultaneously estimating the

camera parameters and pose to minimize a distance of the projection from the 2d

joint positions inferred from the image.

We experimented with restricting the activations of sparse combinations of

pose bases to those that had been activated in training, that is, we used the

simplicial structure ∆ as a model for 3d poses. We found that this improves

the reconstruction of poses in some experiments with data with known ground

truth. Figure 5.1 shows histograms of the reconstruction errors when poses are

restricted to the activated simplices, and of the reconstruction errors when poses

are reconstructed as more general combinations of the bases.

We can understand this in terms of the polytope CX . When the training data

has low intrinsic dimension only certain low dimensional faces of the polytope are

activated. However any face of CX can occur as an outcome of l1 penalized re-

gression. The faces that aren’t activated during training correspond to unrealistic

combinations. Figure 5.2 is a conceptual illustration. It shows two red circles

representing the training data, and it shows a wireframe for the polytope CX .
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Figure 5.1: Histograms of reconstruction errors for 3d pose reconstruction, when

poses are reconstructed using the simplicial structure (red), and when poses are

reconstructed as penalized combinations of the bases (blue). The simplicial struc-

ture is better.

Only the simplices corresponding to line segments under the circles are activated

in training. However any face of CX can be activated by l1 penalized regression.

5.2 Faces under varying illumination

It is well known that images generated from a single face, in a fixed pose, but

with varying lighting, lie very close to a 9 dimensional hyperplane in image space.

In [EV13] Vidal has a graphic showing the decay of the singular values for data

coming from a single face, pose, under varying lighting. It shows that most of the

variation from lighting is captured by the first few principal directions.

When images are generated from a small number of face-poses, under different

lighting, the data is explained well by a union of low dimensional hyperplanes (one

hyperplane per face-pose). Thus most of variability in this data can be explained

by low dimensional geometrical structures.
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Figure 5.2: A conceptual illustration showing a polytope CX learned from train-

ing data corresponding to the two red circles. Any face of the polytope can be

activated by l1 penalized regression, but only the one dimensional simplices under

the circles correspond to the training data. The wireframe outlines the faces of

the polytope.

Elhamifar et al, [EV13], Pitelis at al. [PRA13] and others explore some clas-

sification experiments on this kind of data. In similar experiments we classify

images by the nearest neighbor classification on the nearest active simplex, and

obtain competitive results.

5.3 Digits from Semeion

The Semeion digit dataset is a small dataset of 1593 16 × 16 grey scale images

of handwritten digits. We explore classification experiments similar to those in

[EV13] and [PRA13] and obtain competitive results, using nearest neighbor clas-

sification on the nearest active simplex.
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