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Nonadiabatic dynamics in the semiclassical Liouville

representation: Locality, transformation theory, and the

energy budget

Craig C. Martens

Department of Chemistry, University of California, Irvine, California 92697-2025

Abstract

In this paper, we revisit the semiclassical Liouville approach to describ-
ing molecular dynamics with electronic transitions using classical trajectories.
Key features of the formalism are highlighted. The locality in phase space
and presence of nonclassical terms in the generalized Liouville equations are
emphasized and discussed in light of trajectory surface hopping methodol-
ogy. The representation dependence of the coupled semiclassical Liouville
equations in the diabatic and adiabatic bases are discussed and new results
for the transformation theory of the Wigner functions representing the corre-
sponding density matrix elements given. We show that the diagonal energies
of the state populations are not conserved during electronic transitions, as
energy is stored in the electronic coherence. We discuss the implications
of this observation for the validity of imposing strict energy conservation in
trajectory based methods for simulating nonadiabatic processes.

1. Introduction

Physical phenomena on the molecular scale are described by quantum
mechanics. Solving the time-dependent Schrödinger equation numerically
has become a feasible approach for treating molecular dynamics of signifi-
cant complexity, especially in cases where approximate methods and their
systematic corrections can be applied efficiently [1, 2]. This approach in-
evitably runs into problems, however, due to its unfavorable scaling with
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system size. Alternative methods incorporating additional approximations
must be employed to meet this challenge.

It sometimes works to simply ignore quantum effects completely. Classical
molecular dynamics (MD) is routinely employed to treat many-atom systems
[3, 4]. In a classical MD simulation, an ensemble of trajectories is employed
to represent a quantum mechanical wave packet, thermal distribution, or
other initial equilibrium or nonequilibrium state, and the dynamics of the
state is modeled by propagating the individual trajectories of the ensemble
in phase space under Hamiltonian dynamics [5]. Classical trajectories can
often do a remarkably good job of modeling the statistics and dynamics of
molecular systems and reproducing the results of detailed experiments (see,
e.g. [6]).

A purely classical treatment fails when the Born-Oppenheimer approx-
imation breaks down and the classical nuclear dynamics are accompanied
by intrinsically quantum mechanical nonadiabatic electronic transitions. A
great deal of interest and activity has been focused on developing semiclas-
sical or mixed quantum-classical methods for modeling molecular dynam-
ics with electronic transitions. These include trajectory surface hopping
[7, 8, 9, 10, 11, 12, 13], full multiple spawning [14, 15], semiclassical initial
value representation [16, 17], quantum hydrodynamics [18], mapping Hamil-
tonian [19], and linearized approaches [20, 21], to cite just a few. As part of
this effort, we introduced an alternative approach based on a semiclassical
limit of the quantum Liouville equation in the Wigner representation [22]
which has been developed by us and others [23, 24, 25, 26, 27, 28, 29, 30]. In
general, mixed quantum-classical methods hold great promise, as they allow
the essential quantum features of complex systems to be incorporated within
the computationally less demanding and intuitively appealing framework of
classical mechanics.

In this paper we revisit the semiclassical Liouville formalism [23, 24, 25,
26, 27, 28, 29, 30] from the perspective of ongoing developments in the general
area of treating molecular dynamics with nonadiabatic electronic transitions.
We consider the semiclassical limit of the multistate quantum Liouville equa-
tion in both the diabatic and adiabatic representations with a focus on the
relation between the formal theory describing the evolution of the states—
phase space generalized distribution functions—and methods to implement
the theory with surface hopping trajectory ensembles. In particular, we
discuss the locality of the equations of motion in phase space, nonclassical
features of the dynamics, the transformation theory in the semiclassical Li-
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ouville representation, and the roles of energy conservation and electronic
coherence in the formalism. Recent work has been directed at forging a
connection between the semiclassical Liouville approach and Tully’s fewest
switches surface hopping (FSSH) [27, 11], and the goal of this paper is to
contribute to that ongoing effort to undertand the fundamental challenges of
representing quantum processes in a classical trajectory framework.

2. Formalism

We briefly review the semiclassical Liouville method for describing nuclear
dynamics on coupled electronic states [22, 23, 24, 25, 26]. The starting point
is the quantum mechanical Liouville equation for the density operator, ρ̂(t),
describing dynamics on a single potential surface U(q). For simplicity, we
consider a single classical degree of freedom; the generalization to higher
dimensions is straightforward. The quantum Liouville equation is

i~
∂ρ̂

∂t
= [Ĥ, ρ̂], (1)

where Ĥ = p̂2

2m
+U(q) is the Hamiltonian of the system. The classical limit of

Eq. (1) becomes the classical Liouville equation of non-equilibrium statistical
mechanics [31]:

∂ρ

∂t
= {H, ρ}, (2)

where ρ = ρ(q, p, t) and H = H(q, p) are now functions of the classical phase
space variables (q, p), and we assume that the Hamiltonian does not depend
explicitly on time. The Poisson bracket on the right side of the equation is
given by

{H, ρ} =
∂H

∂q

∂ρ

∂p
− ∂ρ

∂q

∂H

∂p
. (3)

This result can be derived through the Wigner-Moyal expansion of the quan-
tum mechanical Liouville equation [32, 33]. To the lowest order in ~, the
quantum commutator is replaced by the corresponding classical Poisson bracket:

[Ĥ, ρ̂]→ i~{H, ρ}+O(~3). (4)

The density operator is expressed in this representation as the Wigner func-
tion, given by [32, 33]

ρ(q, p) =
1

2π~

∫ ∞
−∞

〈
q − 1

2
y|ρ̂|q + 1

2
y
〉
eipy/~ dy. (5)
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This classical limit can be extended to the case where Ĥ is an N × N
matrix of operators, representing an N state quantum subsystem for which
the classical limit is not taken [22, 23, 24, 25, 26]. For simplicity, our devel-
opment will treat the case N = 2. The Hamiltonian and density operator for
the system can then be represented in a given quantum basis as:

Ĥ =

(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)
(6)

and

ρ̂ =

(
ρ̂11 ρ̂12
ρ̂21 ρ̂22

)
, (7)

respectively. The result is three coupled equations for the operator matrix
elements,

i~
∂ρ̂11
∂t

= [Ĥ11, ρ̂11] + Ĥ12ρ̂21 − ρ̂12Ĥ21 (8)

i~
∂ρ̂22
∂t

= [Ĥ22, ρ̂22] + Ĥ21ρ̂12 − ρ̂21Ĥ12 (9)

i~
∂ρ̂12
∂t

= Ĥ11ρ̂12 + Ĥ12ρ̂22 − ρ̂11Ĥ12 − ρ̂12Ĥ22, (10)

where ρ̂21 = ρ̂†12.

3. Diabatic Representation

We first consider the case of individually Hermitian off-diagonal Hamil-
tonians, so Ĥ12 = Ĥ21 = V̂ . This is appropriate for a diabatic electronic
basis. In the diabatic representation, the kinetic energy operator is diagonal,
while the off-diagonal elements of the Hamiltonian are the function V (q).
The exact quantum equations of motion become

i~
∂ρ̂11
∂t

= [Ĥ11, ρ̂11] + V̂ ρ̂21 − ρ̂12V̂ (11)

i~
∂ρ̂22
∂t

= [Ĥ22, ρ̂22] + V̂ ρ̂12 − ρ̂21V̂ (12)

i~
∂ρ̂12
∂t

= Ĥ11ρ̂12 + V̂ ρ̂22 − ρ̂11V̂ − ρ̂12Ĥ22. (13)

We now take the semiclassical limit of Eqs. (11)–(13) using the Wigner-Moyal
representation of the product of operators in terms of the corresponding
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phase space functions obtained by Wigner transformation. We truncate the
~ expansion at first order, using the result [33]

ÂB̂ = AB +
i~
2
{A,B}+O(~2), (14)

where A(q, p) and B(q, p) are the phase space functions corresponding to the
operators Â and B̂.

With the quantum mechanical operators replaced by the corresponding
classical phase space functions in the semiclassical limit, the multistate semi-
classical Liouville equations in the diabatic representation can be written as
[22, 23, 24, 25, 26]:

∂ρ11
∂t

= {H11, ρ11}+ {V,Re ρ12} −
2V

~
Im ρ12 (15)

∂ρ22
∂t

= {H22, ρ22}+ {V,Re ρ12}+
2V

~
Im ρ12 (16)

∂ρ12
∂t

= {Ho, ρ12} − iωρ12 +
1

2
{V, ρ11 + ρ22}+

i

~
V (ρ11 − ρ22). (17)

The Hamiltonian matrix elements Hij(q, p) and density matrix elements
ρij(q, p, t) are now functions of the classical variables (q, p). The function
H0 = (H11 + H22)/2 is the average of the two uncoupled surface Hamilto-
nians, and the frequency term ω(q) is defined as the difference Hamiltonian
divided by Planck’s constant,

ω(q) =
H11(q, p)−H22(q, p)

~
. (18)

The first term on the right side of Eqs. (15) and (16) corresponds to classical
dynamics of the phase space probability densities, governed by the classical
Hamiltonians H11 and H22. The remaining terms that involve the coupling
matrix element V and the coherence ρ12 correspond to the nonclassical quan-
tum coupling between the states, and include both sink and source terms
that invoke transitions between phase space probability densities ρ11 and ρ22
and nonclassical modifications of the classical-limit Liouvillian dynamics on
each state. In the equation of motion for the coherence, Eq. (17), the first
two terms on the right side corresponds to a generalized classical dynamics,
involving both propagation under the average Hamiltonian H0 and accumu-
lation of a nonclassical phase factor resulting from the imaginary frequency
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term. Unlike the diagonal probability densities, the coherence ρ12 is thus
a complex valued function. The densities ρ11 and ρ22 come in through the
inhomogeneous terms that create and modify the evolving coherence.

The equations of motion for the semiclassical limit density matrix ele-
ments in the diabatic representation are composed of two types of terms.
First, there are trace-preserving terms that do not change the total popula-
tions of the states, Trρ11 and Trρ22, or the total integrated coherence Trρ12,
where Trf ≡

∫∫
f(q, p)dqdp. These terms consist of homogeneous contribu-

tions of the form {H, ρ}, which correspond to the classical dynamics of the
Liouville equation, and the inhomogeneous terms, {V,Reρ12} for the pop-
ulations and 1

2
{V, ρ11 + ρ22} for the coherence, which modify the classical

evolution. In general, for functions f and g, at least one of which vanishes
at the boundaries of the region of integration in phase space, we have

Tr{f, g} =

∫∫ (
∂f

∂q

∂g

∂p
− ∂g

∂q

∂f

∂p

)
dqdp = −

∫∫
f

(
∂2g

∂q∂p
− ∂2g

∂p∂q

)
dqdp = 0.

(19)
Here, we have integrated by parts and used the vanishing of f at the boundary
of phase space. Thus, the terms involving Poisson brackets in the equations
of motion do not result in a change of the trace of the evolving phase space
functions.

The second type of term consists of couplings that are not Poisson brack-
ets, and that in general have a nonzero effect on the total populations and
coherence. For the populations, these are the ±2V

~ Imρ12 terms, while for the
coherence this is the iV

~ (ρ11 − ρ22) term. These act as sink and source terms
in phase space for the evolving probability densities, and in general capture
the dynamics of electronic transitions in the diabatic representation.

An important property of the coupled semiclassical Liouville equations
should be noted: these partial differential equations are local in phase space.
The time rate of change of the generalized distribution function ρij(q, p, t)
at the point (q, p) depends on the full set of functions and their derivatives
at that same point. This may seem an obvious feature of the equations, but
the implications of this natural structure on trajectory-based approaches to
solving them has not been emphasized. In particular, the analysis suggest
that trajectories that undergo a stochastic “hop” between the states should
mirror the locality of the underlying equations for the state. The standard
surface hopping methods do not impose this locality, but rather introduce
nonlocality through momentum rescaling to impose strict energy conserva-
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tion.

4. Adiabatic Representation

The semiclassical Liouville equations can also be formulated in the adia-
batic basis [24, 29]. In terms of the diabatic states |1〉 and |2〉 the quantum
Hamiltonian operator in the position representation is

Ĥ = T̂1 + U(q) =

(
T̂ + E1(q) V (q)

V (q) T̂ + E2(q)

)
, (20)

where T̂ = p̂2/2m = −(~2/2m)∂2/∂q2 is the nuclear kinetic energy operator,
Ej(q) (j = 1, 2) are the diabatic potential curves, and V (q) is the off-diagonal
coupling between the diabatic electronic states. The adiabatic energies E+

and E− and eigenstates |+〉 and |−〉 are found by diagonalizing the potential
energy matrix U(q) at each value of q. The results are

E± =
E1 + E2

2
±

√(
E1 − E2

2

)2

+ V 2 (21)

|+〉 = |1〉 cos(φ/2) + |2〉 sin(φ/2) (22)

|−〉 = − |1〉 sin(φ/2) + |2〉 cos(φ/2), (23)

where the mixing angle φ(q) is given by

tanφ(q) =
2V (q)

E1(q)− E2(q)
. (24)

In the adiabatic representation, the potential energy is diagonal. Off-
diagonal terms in the Hamiltonian result from the nuclear kinetic energy
operator T̂ . We can evaluate the matrix elements of T̂ between the adiabatic
states by expressing them in terms of the coordinate-independent diabatic
states and computing the action of T̂ explicitly. The results are

Ŵ = 〈+| T̂ |−〉 =
i~
2m

φ′(q)p̂+
~2

4m
φ′′(q) (25)

Ŵ † = 〈−| T̂ |+〉 = − i~
2m

φ′(q)p̂− ~2

4m
φ′′(q), (26)
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where prime indicates derivative with respect to q. These are quantum me-
chanical operators that act on functions of the nuclear coordinate q. The
second term proportional to ~2 in each expression results from the second
derivative of the adiabatic state with respect to q, and is needed to give a
Hermitian Hamiltonian by compensating for the noncommutativity of p̂ with
φ′(q). In the semiclassical limit, p̂ → p, the classical canonical momentum,
while the ~2 terms are neglected. The off-diagonal nonadiabatic coupling
then becomes a classical function of q and p: W (q, p) = i~

2m
φ′(q)p. This

function is purely imaginary.
To make connection with standard notation for nonadiabatic dynamics,

we note the relation between our expressions and the so-called nonadiabatic
coupling matrix element d(q), defined as

d(q) ≡ 〈+| ∂
∂q
|−〉 . (27)

This can be easily evaluated for the nonadiabatic states in terms of the
diabatic states and position-dependent angle φ(q), yielding the simple result

d(q) = −φ
′(q)

2
. (28)

In terms of this quantity, the off-diagonal element Ŵ = 〈+| Ĥ |−〉 can be
written as

Ŵ = −i~
2

(
d(q)

p̂

m
+
p̂

m
d(q)

)
(29)

with Ŵ † = 〈−| Ĥ |+〉 = −Ŵ , or in the semiclassical limit,

W (q, p) = −i~ d(q)
p

m
(30)

with W ∗(q, p) = −W (q, p) .
The density operator can also be expressed in the adiabatic representa-

tion:

ρ̂ =

(
ρ̂++ ρ̂+−
ρ̂−+ ρ̂−−

)
. (31)

The quantum Liouville equation is again

i~
∂ρ̂

∂t
= [Ĥ, ρ̂], (32)
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or written out term-by term in the adiabatic representation,

i~
∂ρ̂++

∂t
= [Ĥ++, ρ̂++] + Ŵ ρ̂−+ − ρ̂+−Ŵ † (33)

i~
∂ρ̂−−
∂t

= [Ĥ−−, ρ̂−−] + Ŵ †ρ̂+− − ρ̂−+Ŵ (34)

i~
∂ρ̂+−
∂t

= Ĥ++ρ̂+− + Ŵ ρ̂−− − ρ̂++Ŵ − ρ̂+−Ĥ−−. (35)

We can now perform the Wigner transform to lowest order in ~ using ÂB̂ =
AB + i~

2
{A,B}+O(~2) and W (q, p) = −i~d(q)p/m. We obtain

∂ρ++

∂t
= {H++, ρ++} − 2d

p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

}
(36)

∂ρ−−
∂t

= {H−−, ρ−−}+ 2d
p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

}
(37)

∂ρ+−
∂t

= {Ho, ρ+−}− iωρ+−+d
p

m
(ρ++−ρ−−)− i~

2

{
d
p

m
, ρ++ + ρ−−

}
, (38)

where H++(q, p) = p2/2m + E+(q), H−−(q, p) = p2/2m + E−(q), Ho =
1
2
(H++ + H−−), ω(q) = (E+(q) − E−(q))/~, and again {f, g} is the Pois-

son bracket of f(q, p) and g(q, p).
In the above analysis, we express the quantum Hamiltonian in the adia-

batic representation from the outset, leading to a diagonal potential energy
but a non-diagonal kinetic energy in the basis of adiabatic electronic states.
We then perform the semiclassical limit analysis in that representation. An
alternative approach followed in the literature is to perform the semiclassical
limit first and then represent the quantum-classical equations of motion for
the Wigner function in the adiabatic basis. The basis tranformation and
semiclassical limit do not commute, and the two alternatives yield somewhat
different results. Kapral and coworkers follow the semiclassical limit then adi-
abatic representation path in their development [27], and recently discussed
issues arising in systems with conical intersections exhibiting Berry’s phase
[34]. Ando and coworkers follow the adiabatic then semiclassical approach
that we employ in the present context [29, 30]. We favor this approach, as
the approximations inherent in the semiclassical limit are introduced as the
final, rather than an intermediate, step.
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5. Transformation Theory in the Semiclassical Liouville Represen-
tation

We now investigate the transformation from diabatic to adiabatic elec-
tronic bases in the Wigner representation and derive new results for the
transformation equations.

The adiabatic states ψ+(q), and ψ−(q) are given in terms of the diabatic
states ψ1(q) and ψ2(q) as

ψ+(q) = cos

(
φ(q)

2

)
ψ1(q) + sin

(
φ(q)

2

)
ψ2(q) (39)

ψ−(q) = − sin

(
φ(q)

2

)
ψ1(q) + cos

(
φ(q)

2

)
ψ2(q). (40)

The position representation of the density matrix elements in the adiabatic
representation can then be constructed in terms of the diabatic representation
elements:

ρ++(q, q′) = c(q)c(q′)ρ11(q, q
′) + c(q)s(q′)ρ12(q, q

′)

+ s(q)c(q′)ρ21(q, q
′) + s(q)s(q′)ρ22(q, q

′) (41)

ρ+−(q, q′) = −c(q)s(q′)ρ11(q, q′) + c(q)c(q′)ρ12(q, q
′)

− s(q)s(q′)ρ21(q, q
′) + s(q)c(q′)ρ22(q, q

′) (42)

ρ−+(q, q′) = −s(q)c(q′)ρ11(q, q′)− s(q)s(q′)ρ12(q, q′)
+ c(q)c(q′)ρ21(q, q

′) + c(q)s(q′)ρ22(q, q
′) (43)

ρ−−(q, q′) = s(q)s(q′)ρ11(q, q
′)− s(q)c(q′)ρ12(q, q′)

− c(q)s(q′)ρ21(q, q
′) + c(q)c(q′)ρ22(q, q

′), (44)

where c(q) = cos
(
φ(q)
2

)
, s(q) = sin

(
φ(q)
2

)
, and ρij(q, q

′) = ψi(q)ψ
∗
j (q
′). We

can now compute the Wigner transform of ρ++(q, q′) explicitly:

ρW++(q, p) =
1

2π~

∫ ∞
−∞

ρ++(q − 1
2
y, q + 1

2
y)eipy/~ dy. (45)
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(In this Section, Wigner functions are indicated as ρW to distinguish them
from density matrix elements in the position representation.) The general
term corresponds to the Fourier transform of the product of two functions
of q and y over the variable y, yielding the convolution of the corresponding
Wigner functions with respect to the momentum p:

1

2π~

∫ ∞
−∞

ξij(q, y)ρij(q − 1
2
y, q + 1

2
y)eipy/~dy =

∫ ∞
−∞

ξWij (q, p′)ρWij (q, p− p′)dp′

(46)
where ξij(q, y) is the corresponding product of transformation elements eval-
uated at q ± y

2
.

We now evaluate the transformation explicitly for the case of ρ++. The
resulting expression in terms of the expansion in the diabatic density matrix
has 4 terms. We consider each separately. The first term is

term1 =
1

2π~

∫ ∞
−∞

c(q − 1
2
y)ρ11(q − 1

2
y, q + 1

2
y)c(q + 1

2
y)eipy/~ dy. (47)

The trigonometric factor can be collected as

c(q − 1
2
y)c(q + 1

2
y) =

1

2
cos

(
φ(q − 1

2
y) + φ(q + 1

2
y)

2

)
+

1

2
cos

(
φ(q − 1

2
y)− φ(q + 1

2
y)

2

)
. (48)

To make progress we introduce further approximations by expanding the
arguments of the trigonometric functions in powers of y and keep only the
leading terms. Thus,

φ(q − 1
2
y) + φ(q + 1

2
y)

2
= φ(q) +O(y2) (49)

φ(q − 1
2
y)− φ(q + 1

2
y)

2
= −1

2
φ′(q)y +O(y3) ' d(q)y. (50)

Term 1 can then be written approximately as

term1 '
1

2π~

∫ ∞
−∞

1

2
[cosφ(q) + cos(d(q)y)] ρ11(q − 1

2
y, q + 1

2
y)eipy/~ dy (51)

and evaluated, with the result

term1 '
1

2
ρW11(q, p) cosφ(q) +

1

4
ρW11(q, p+ ~d(q)) +

1

4
ρW11(q, p− ~d(q)), (52)
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where ρW11(q, p) is the Wigner function corresponding to the diabatic density
matrix element ρ11(q, q

′). A similar analysis gives

term2 '
1

2
ρW12(q, p) sinφ(q) +

i

4
ρW12(q, p+ ~d(q))− i

4
ρW12(q, p− ~d(q)) (53)

term3 '
1

2
ρW21(q, p) sinφ(q)− i

4
ρW21(q, p+ ~d(q)) +

i

4
ρW21(q, p− ~d(q)) (54)

term4 ' −
1

2
ρW22(q, p) cosφ(q) +

1

4
ρW22(q, p+ ~d(q)) +

1

4
ρW22(q, p− ~d(q)). (55)

We now summarize the results of the transformations for all of the adiabatic
density matrix elements. Introducing the shorthand notation f = f(q, p)
and f(±) = f(q, p± ~d(q)), we have

ρW++ =
1

4
[ρW11(+) + ρW11(−) + ρW22(+) + ρW22(−)] +

1

2
(ρW11 − ρW22) cosφ

+ Re ρW12 sinφ− 1

2
[Im ρW12(+)− Im ρW12(−)] (56)

ρW+− = −1

2
(ρW11 − ρW22) sinφ+ Re ρW12 cosφ+

i

2
[Im ρW12(+) + Im ρW12(−)]

− i

4
[ρW11(+)− ρW11(−) + ρW22(+)− ρW22(−)] (57)

ρW−+ = −1

2
(ρW11 − ρW22) sinφ+ Re ρW12 cosφ− i

2
[Im ρW12(+) + Im ρW12(−)]

+
i

4
[ρW11(+)− ρW11(−) + ρW22(+)− ρW22(−)] (58)

ρW−− =
1

4
[ρW11(+) + ρW11(−) + ρW22(+) + ρW22(−)]− 1

2
(ρW11 − ρW22) cosφ

− Re ρW12 sinφ− 1

2
[Im ρW12(+)− Im ρW12(−)]. (59)

These results reveal that nonlocal momentum “jumps” appear in the
transformation equations: the phase space density matrix elements in the
adiabatic representation at point (q, p) depend on the diabatic phase space
matrix elements at (q, p) and also at (q, p±~d(q)). The nonadiabatic coupling
matrix element d(q) appears explicitly in the transformations. We emphasize
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that these jumps are not dynamical displacements of the momentum, which
play a role in higher order quantum effects in the evolution of the Wigner
function, but rather are kinematic effects resulting from the transformation
between bases [32].

In the spirit of the semiclassical limit, we can continue to make approxi-
mations by expanding the ~-dependent momentum shifts in a series in ~ and
keep only the first term. For instance, we have

ρW11(q, p+ ~d(q)) ' ρW11(q, p) + ~d(q)
∂ρW11(q, p)

∂p
= ρW11 −

~
2
{φ, ρW11}. (60)

Putting the pieces together, we have the semiclassical limit transformation
law for ρW++:

ρW++ =
1

2

(
ρW11 + ρW22

)
+

1

2

(
ρW11 − ρW22

)
cosφ+ Re ρW12 sinφ+

~
2
{φ, ImρW12} (61)

Using a similar approach, we find:

ρW+− = −1

2

(
ρW11 − ρW22

)
sinφ+ Re ρW12 cosφ+ i Im ρW12 +

i~
4
{φ, ρW11 + ρW22} (62)

ρW−+ = −1

2

(
ρW11 − ρW22

)
sinφ+ Re ρW12 cosφ− i Im ρW12 −

i~
4
{φ, ρW11 + ρW22} (63)

ρW−− =
1

2

(
ρW11 + ρW22

)
− 1

2

(
ρW11 − ρW22

)
cosφ−Re ρW12 sinφ+

~
2
{φ, ImρW12}. (64)

We note that these equations are closely related to the transformation equa-
tions for the diagonal density matrix elements in the adiabatic representa-
tion. For instance, Eq. (41) gives, for q = q′ and defining ρ++ = ρ++(q, q),
ρ11 = ρ11(q, q), etc.,

ρ++ =
1

2
(ρ11 + ρ22) +

1

2
(ρ11 − ρ22) cosφ+ Re ρ12 sinφ. (65)

The other configuration space generalized density equations can be obtained
by ignoring the ~ dependent terms above. The momentum jumps or limiting
forms in terms of Poisson brackets in the Wigner transformed adiabatic trans-
formation equations take into account the effect of the position dependence
of the unitary transformation on the phase space functions.
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We can derive the reverse transformation from the adiabatic to diabatic
representation. We start with the relations

ρ11(q, q
′) = c(q)c(q′)ρ++(q, q′)− c(q)s(q′)ρ+−(q, q′)

− s(q)c(q′)ρ−+(q, q′) + s(q)s(q′)ρ−−(q, q′) (66)

ρ12(q, q
′) = c(q)s(q′)ρ++(q, q′) + c(q)c(q′)ρ+−(q, q′)

− s(q)s(q′)ρ−+(q, q′)− s(q)c(q′)ρ−−(q, q′) (67)

ρ21(q, q
′) = s(q)c(q′)ρ++(q, q′)− s(q)s(q′)ρ+−(q, q′)

+ c(q)c(q′)ρ−+(q, q′)− c(q)s(q′)ρ−−(q, q′) (68)

ρ22(q, q
′) = s(q)s(q′)ρ++(q, q′) + s(q)c(q′)ρ+−(q, q′)

+ c(q)s(q′)ρ−+(q, q′) + c(q)c(q′)ρ−−(q, q′). (69)

These can be obtained from scratch or by noting that by letting φ→ −φ the
reverse transformations are obtained. Thus, we can write down the Wigner
transform relations:

ρW11 =
1

4
[ρW++(+) + ρW++(−) + ρW−−(+) + ρW−−(−)] +

1

2
(ρW++ − ρW−−) cosφ

− Re ρW+− sinφ+
1

2
[Im ρW+−(+)− Im ρW+−(−)] (70)

ρW12 =
1

2
(ρW++ − ρW−−) sinφ+ Re ρW+− cosφ+

i

2
[Im ρW+−(+) + Im ρW+−(−)]

+
i

4
[ρW++(+)− ρW++(−) + ρW−−(+)− ρW−−(−)] (71)

ρW21 =
1

2
(ρW++ − ρW−−) sinφ+ Re ρW+− cosφ− i

2
[Im ρW+−(+) + Im ρW+−(−)]

− i

4
[ρW++(+)− ρW++(−) + ρW−−(+)− ρW−−(−)] (72)

ρW22 =
1

4
[ρW++(+) + ρW++(−) + ρW−−(+) + ρW−−(−)]− 1

2
(ρW++ − ρW−−) cosφ

+ Re ρW+− sinφ+
1

2
[Im ρW+−(+)− Im ρW+−(−)], (73)
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and, in the small ~ limit,

ρW11 =
1

2

(
ρW++ + ρW−−

)
+

1

2

(
ρW++ − ρW−−

)
cosφ− Re ρW+− sinφ− ~

2
{φ, ImρW+−}

(74)

ρW12 =
1

2

(
ρW++ − ρW−−

)
sinφ+Re ρW+− cosφ+i Im ρW+−−

i~
4
{φ, ρW+++ρW−−} (75)

ρW21 =
1

2

(
ρW++ − ρW−−

)
sinφ+Re ρW+− cosφ−i Im ρW+−+

i~
4
{φ, ρW+++ρW−−} (76)

ρW22 =
1

2

(
ρW++ + ρW−−

)
− 1

2

(
ρW++ − ρW−−

)
cosφ+ Re ρW+− sinφ− ~

2
{φ, ImρW+−}.

(77)
The transformation equations between representations introduce a nonlo-

cality in the underlying phase space. For concreteness, consider the transfor-
mation from the diabatic representation to the adiabatic representation given
in Eqs. (56)–(59). Each of the Wigner functions representing the density ma-
trix elements in the adiabatic representation are given at phase space point
(q, p) by the combination of the corresponding diabatic Wigner functions
sampled at 3 distinct phase space points: a local term (q, p) and nonlocal con-
tributions from (q, p+ ~d(q)) and (q, p− ~d(q)). These “momentum jumps”
are not the result of the dynamics of nonadiabatic transitions but rather
come about through the kinematics of the transformation between represen-
tations. In particular, the trigonometric functions of the mixing angle φ(q)
that multiply the density matrix elements ρij(q, q

′) in the position represen-
tation generate sum and difference “frequency” terms via a heterodyne-like
phenomena in the Fourier transform in the definition of the Wigner function.
Similar momentum displacements appear in the inverse transformation from
the adiabatic to the diabatic representation, Eqs. (70)–(73).

These transformation expressions are rigorously invertible. By applying
the transformations sequentially, it can be verified that the nonlocal terms
cancel, leading to the original representation. In the small ~ limit, the jumps
lead to Poisson bracket terms involving the mixing angle φ. In this limit, it
can be shown that the sequential transformations lead to residual terms of
order ~2, consistent with neglecting such terms in approximations made.

6. The Energy Budget in the Nonadiabatic Transitions

We now analyze the total energy of the system and its partitioning be-
tween the coupled states during molecular dynamics with nonadiabatic elec-
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tronic transitions. We consider the system in both the diabatic and adiabatic
representations.

The Hamiltonian and density matrix in the semiclassical limit and the
diabatic representation are given by

H =

(
H11 V
V H22

)
(78)

and

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
, (79)

respectively. The total conserved energy of the system is given by the trace
of the product of H and ρ. In the semiclassical limit, this is given by the
integral over phase space of the sum of the diagonal elements of Hρ. The
matrix is

Hρ =

(
H11ρ11 + V ρ21 H11ρ12 + V ρ22
V ρ11 +H22ρ21 V ρ12 +H22ρ22

)
(80)

and so TrHρ becomes

E = TrHρ =

∫∫
(H11ρ11 +H22ρ22 + 2V Re ρ12)dqdp. (81)

The energy is a sum of three terms: E = E1 +E2 +Ecoh. The first two terms
are the average energies of the system on state 1 and state 2, respectively:

E1 =

∫∫
H11ρ11dqdp (82)

E2 =

∫∫
H22ρ22dqdp (83)

while the third term is a coherence energy that depends on the diabatic
coupling V and the coherence ρ12:

Ecoh = 2 Re

∫∫
V ρ12dqdp. (84)

The sum of the three terms is a constant of the motion. It is important to
note that the diagonal energy contributions E1+E2 is not conserved. Energy
is “stored” in the coherence while the states are interacting and the system
is undergoing transitions.
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In order to establish that conservation of total energy is obeyed by the
semiclassical Liouville formalism in the diabatic representation, we now show
that the time derivative of E vanishes under the semiclassical equations of
motion. We have

dE

dt
=

∫∫ (
H11

∂ρ11
∂t

+H22
∂ρ22
∂t

+ 2V
∂ Re ρ12
∂t

)
dqdp. (85)

This consists of three terms:

dE1

dt
=

∫∫
H11

∂ρ11
∂t

dqdp (86)

dE2

dt
=

∫∫
H22

∂ρ22
∂t

dqdp (87)

dEcoh
dt

= 2

∫∫
V
∂ Re ρ12
∂t

dqdp. (88)

The equations of motion are given by

∂ρ11
∂t

= {H11, ρ11}+ {V,Re ρ12} −
2V

~
Im ρ12 (89)

∂ρ22
∂t

= {H22, ρ22}+ {V,Re ρ12}+
2V

~
Im ρ12 (90)

∂ρ12
∂t

= (L̂0 − iω)ρ12 +
1

2
{V, ρ11 + ρ22}+

i

~
V (ρ11 − ρ22) (91)

or taking real and imaginary parts,

∂ Re ρ12
∂t

= {H0,Re ρ12}+ ω Im ρ12 +
1

2
{V, ρ11 + ρ22} (92)

∂ Im ρ12
∂t

= {H0, Im ρ12} − ωRe ρ12 +
1

~
V (ρ11 − ρ22). (93)

We can evaluate the time derivatives of the energy contributions using the
equations of motion, giving:

dE1

dt
=

∫∫
H11

(
{H11, ρ11}+ {V,Re ρ12} −

2V

~
Im ρ12

)
dqdp (94)
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dE2

dt
=

∫∫
H22

(
{H22, ρ22}+ {V,Re ρ12}+

2V

~
Im ρ12

)
dqdp (95)

dEcoh
dt

= 2

∫∫
V

(
{H0,Re ρ12}+ ω Im ρ12 +

1

2
{V, ρ11 + ρ22}

)
dqdp. (96)

First we note that∫∫
H11{H11, ρ11}dqdp = −

∫∫
ρ11{H11, H11}dqdp = 0 (97)

∫∫
H22{H22, ρ22}dqdp = −

∫∫
ρ22{H22, H22}dqdp = 0 (98)∫∫

V {V, ρ11 + ρ22}dqdp = −
∫∫

(ρ11 + ρ22){V, V }dqdp = 0, (99)

where we have integrated by parts and used the vanishing of ρ11 and ρ22 at
the phase space boundary. We thus have

d

dt
(E1 + E2) = 2

∫∫
(H0{V,Re ρ12} − ωV Im ρ12) dqdp (100)

where we have used H11 +H22 = 2H0 and H11 −H22 = ~ω, and

dEcoh
dt

= 2

∫∫
(V {H0,Re ρ12}+ ωV Im ρ12) dqdp. (101)

The terms d(E1+E2)/dt and dEcoh/dt are separately nonzero. This illustrates
the important fact that the diagonal energy E1 + E2 is not a conserved
quantity in electronic transitions. The total energy however, is rigorously
conserved. Noting that∫∫

V {H0,Re ρ12}dqdp = −
∫∫

H0{V,Re ρ12}dqdp (102)

we see that the total time derivative of E vanishes:

dE

dt
=

d

dt
(E1 + E2) +

dEcoh
dt

= 0 (103)

and so the total energy E = TrHρ is a constant of the semiclassical equations
of motion.
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We can repeat the analysis in the adiabatic representation. The Hamil-
tonian and density matrix in the semiclassical limit are

H =

 H++ −i~d p
m

i~d
p

m
H−−

 (104)

and

ρ =

(
ρ++ ρ+−
ρ−+ ρ−−

)
, (105)

respectively. As before, the total energy of the system is given by the trace
of the product of H and ρ, now in the adiabatic representation:

E = TrHρ =

∫∫
(H++ρ++ +H−−ρ−− − 2~d

p

m
Imρ+−)dqdp. (106)

The energy is a sum of three terms: E = E+ +E−+Ecoh. The first terms are
the average energies of the system on state |+〉 and state |−〉, respectively:

E+ =

∫∫
H++ρ++dqdp (107)

E− =

∫∫
H−−ρ−−dqdp (108)

while the third term is a coherence energy that depends on the adiabatic

coupling −i~d p
m

and the coherence ρ+−.

Ecoh = −2~ Im

∫∫
d
p

m
ρ+−dqdp. (109)

The time derivative of the total adiabatic energy is

dE

dt
=

∫∫ (
H++

∂ρ++

∂t
+H−−

∂ρ−−
∂t
− 2~d

p

m

∂ Im ρ+−
∂t

)
dqdp. (110)

This consists of three terms:

dE+

dt
=

∫∫
H++

∂ρ++

∂t
dqdp (111)

dE−
dt

=

∫∫
H−−

∂ρ−−
∂t

dqdp (112)
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dEcoh
dt

= −2~
∫∫

d
p

m

∂ Im ρ+−
∂t

dqdp. (113)

The equations of motion are given by

∂ρ++

∂t
= {H++, ρ++} − 2d

p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

}
(114)

∂ρ−−
∂t

= {H−−, ρ−−}+ 2
p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

}
(115)

∂ρ+−
∂t

= {Ho, ρ+−}− iωρ+−+d
p

m
(ρ++−ρ−−)− i~

2

{
d
p

m
, ρ++ + ρ−−

}
(116)

or taking real and imaginary parts,

∂ Re ρ+−
∂t

= {Ho,Re ρ+−}+ ω Im ρ+− + d
p

m
(ρ++ − ρ−−) (117)

∂ Im ρ+−
∂t

= {Ho, Im ρ+−} − ωRe ρ+− −
~
2

{
d
p

m
, ρ++ + ρ−−

}
. (118)

We can evaluate the time derivatives of the energy contributions using the
equations of motion, giving:

dE+

dt
=

∫∫
H++

(
{H++, ρ++} − 2d

p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

})
dqdp

(119)
dE−
dt

=

∫∫
H−−

(
{H−−, ρ−−}+ 2

p

m
Reρ+− − ~

{
d
p

m
, Imρ+−

})
dqdp

(120)
dEcoh
dt

= −2~
∫∫

d
p

m

(
{Ho, Im ρ+−} − ωRe ρ+− −

~
2

{
d
p

m
, ρ++ + ρ−−

})
dqdp.

(121)
As in the diabatic representation, simplifications occur due to vanishing
terms, giving

d

dt
(E+ + E−) = −2~

∫∫ (
ω d

p

m
Re ρ+− +H0

{
d
p

m
, Imρ+−

})
dqdp (122)

where we have used H++ +H−− = 2H0 and H++ −H−− = ~ω, and

dEcoh
dt

= 2~
∫∫ (

ω d
p

m
Re ρ+− − d

p

m
{H0, Imρ+−}

)
dqdp. (123)
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Again, the sum of the diagonal energies is not a constant of the motion.
Using ∫∫

d
p

m
{H0, Im ρ12}dqdp = −

∫∫
H0

{
d
p

m
, Im ρ12

}
dqdp (124)

we see that the total time derivative of E vanishes:

dE

dt
=

d

dt
(E+ + E−) +

dEcoh
dt

= 0 (125)

and so the total energy E = TrHρ is a constant of the semiclassical equations
of motion in the adiabatic representation.

7. Discussion

The analysis of the semiclassical limit equations of motion for the den-
sity matrix describing nonadiabatic electronic transitions presented above
highlights a number of key features. We close by discussing these features
from the perspective of trajectory-based methods for simulating molecular
dynamics with electronic transitions.

Locality of the equations of motion in phase space.
The semiclassical Liouville equations, Eq. (15)–(17) for the diabatic rep-

resentation and Eq. (36)–(38) for the adiabatic representation, are local in
phase space. In either representation, the change in time of ρij(q, p, t) at the
point (q, p) depends on the set of functions ρi′,j′ and their derivatives at that
point. For the populations, the terms in the equations of motion that do
not have vanishing phase space trace and therefore induce population trans-
fer between the electronic states exactly mirror each other point-by-point
in phase space. Consider an element of population transfer from state 1 to
state 2 in the diabatic representation. According to Eq. (15), the decrease
of ρ11(q, p, t) at the point (q, p) and time t during the interval ∆t is given
by ∆ρ11 = −2V ρ12(q, p, t)∆t/~. The increase of ρ22(q, p, t) at that point in
phase space during ∆t is given by Eq. (16) as ∆ρ22 = +2V ρ12(q, p, t)∆t/~,
which exactly mirrors the transformation-inducing change of ρ11. (Additional
changes in the diagonal density matrix elements are caused by the {V,Reρ12}
term; this affects both populations equally and does not break the locality
of population transfer).

What does this suggest for a trajectory-based descrption of electronic
transitions? The popular FSSH method represents the evolving phase space
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distribution functions by an ensemble of trajectories, and population transfer
is modeled by stochastic hops of the trajectories between the states. The
point-by-point locality of the underlying equation for the states represented
by that ensemble suggests that these hops should be made locally in phase
space as well. The FSSH algorithm as typically implemented does not do
this. Rather, it rescales the momenta of hopping trajectories to impose strict
energy conservation at the individual trajectory level. The result is a nonlocal
dynamics of population transfer, where probability leaving one surface at
point (q, p) appears on the other surface at a different point (q, p + δp),
where δp is a momentum shift made to impose energy conservation.

Momentum nonlocality in the transformation between electronic representa-
tions.

Nonlocality does appear in the semiclassical theory, not as part of the
dynamics of electronic transition but rather in the transformation equations
relating the diabatic and adiabatic representations of the electronic states.
This arises due to the coordinate dependence of the unitary transformation
between the electronic bases. When the Wigner transform of the density
matrix elements in the position representation is performed, this dependence
causes a heterodyne-like phenomenon that relates Wigner distributions in
different representations nonlocally in phase space. In particular, shifts of
the momentum variable emerge which depend on both Planck’s constant and
the nonadiabatic coupling matrix element d(q).

The energy budget of coherent nonadiabatic dynamics.
The total energy of the evolving coupled system in the semiclassical limit

is given by E = TrHρ, where the trace is the sum of the phase space integrals
of the diagonal elements of the matrix Hρ. This is true in both the diabatic
and adiabatic representations. By employing the semiclassical equations of
motion, we showed above that the total energy is a sum of the diagonal
energies plus a term that we indicate Ecoh, which is a contribution that is
nonzero whenever electronic coherence and coupling are present. This total
energy is a constant of the motion under the semiclassical evolution. Again,
this is true for both diabatic and adiabatic representations.

It is important to note that the sum of the diagonal energies in both cases
is not conserved. During electronic transitions, energy is “stored” in the co-
herence between the states. This observation has important implications for
modeling electronic transitions with trajectories. In particular, the analysis
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suggests that, when designing trajectory-based methods for simulating the
molecular dynamics with electronic transitions, strict energy conservation of
the trajectories should not be imposed during hops between the states. Even
at the ensemble level, the total diagonal energies do not sum to the conserved
total energy, due to the contribution of Ecoh.

The phase space locality of the equations of motion and the absence
of a strict trajectory level requirement for energy conservation suggest that
surface hopping methods without momentum rescaling have a firm theoretical
foundation. The majority of previous work on the surface hopping approach
have assumed the necessity of strict energy conservation at the trajectory
level [7, 8, 9, 10, 11, 12, 13], with the work of Ando and Santer being a
notable exception [30].

In the limit of rapid decoherence, trajectory independence and energy con-
servation are sensible and efficient approximations to make. Indeed, hopping
of independent trajectories with momentum rescaling as commonly practiced
has demonstrated its accuracy and utility in a range of physical systems. For
manifestly quantum coherent processes, however, a more rigorous treatment
becomes important. The use of trajectories to model manifestly nonclas-
sical quantum effects will, of necessity, involve generalizing strict classical
features of the dynamics. We have discussed this previously in the context of
the so-called “entangled trajectory” method for modeling quantum tunneling
[35, 26, 36] or diffusive motion [37, 38]. Although different in detail, nona-
diabatic electronic transitions share with quantum tunneling an intrinsically
nonclassical element. In future publications, we will describe a trajectory-
based approach to nonadiabatic dynamics that implements the formal ideas
outlined in this paper in a quantitative method that is both accurate and
efficient [39].
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