
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Topological Algorithms for Geographic and Geometric Graphs

Permalink
https://escholarship.org/uc/item/52t311vn

Author
Gupta, Siddharth

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52t311vn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Topological Algorithms for Geographic and Geometric Graphs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Siddharth Gupta

Dissertation Committee:
Professor David Eppstein, Chair

Professor Michael T. Goodrich
Professor Sandy Irani

2018

Chapter 2 c© 2016 ACM
Chapter 3 c© 2017 ACM

Chapter 4 c© 2018 Springer
All other materials c© 2018 Siddharth Gupta

DEDICATION

To my parents Govind Gupta and Vimla Gupta, my sister-in-law Shraddha Gupta and
especially to my brother and best friend Yatharth Gupta for always having faith in me.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Results . 2

2 A Topological Algorithm for Road Networks Evolution 5
2.1 Introduction . 5

2.1.1 Problem Definition . 6
2.1.2 Prior Related Work . 8
2.1.3 Our Results . 10

2.2 Our Algorithm . 11
2.2.1 Labeling Vertices . 11
2.2.2 Choosing Pairs of Starting Nodes . 13
2.2.3 Flood-based Conformal Matching . 15

2.3 Experiments . 19
2.3.1 Preprocessing the Data . 20
2.3.2 Tuning the Seed-labeling Parameter 20
2.3.3 Example Output of Our Algorithm 23
2.3.4 Detailed Analysis . 26

2.4 Conclusion . 28

3 Crossing Patterns in Nonplanar Road Networks 29
3.1 Introduction . 29
3.2 Past work . 31

3.2.1 Nonplanar road networks . 31
3.2.2 Nearly-planar graphs . 32

3.3 Overview of new results . 34

iii

3.3.1 The crossing graph . 34
3.3.2 Empirical experiments . 36
3.3.3 Theory of networks with sparse crossing graphs 37

3.4 Preliminaries . 37
3.4.1 Sparse graph properties . 37
3.4.2 Classification of nonplanarities . 40

3.5 Experiments . 42
3.5.1 Hypothesis . 45
3.5.2 Results . 45
3.5.3 Analysis . 46

3.6 Theoretical Analysis of Graphs with Sparse Crossings 46
3.7 Conclusions . 50

4 Subexponential-Time and FPT Algorithms for C-Planarity Testing 52
4.1 Introduction . 52
4.2 Definitions and Preliminaries . 55
4.3 A Subexponential-Time Algorithm for C-Planarity 61

4.3.1 Generalized h-Simply-Nested Graphs 73
4.4 An MSO2 formulation for C-Planarity . 75
4.5 Conclusions and Open Problems . 77

Bibliography 79

iv

LIST OF FIGURES

Page

1.1 Two different embedded graphs on same set of vertices and edges. 1

2.1 A map of San Francisco from 1915 and one from 2016 6
2.2 Neighbor ordering around a degree-4 node, v1, and its matching node, v2. . . 17
2.3 Histogram plots for Amador County, CA from 2000 to 2006. 19
2.4 Histogram plots for Alameda County, CA from 2000 to 2006. 20
2.5 Change in approximation ratio for Amador County, CA from 2000 to 2006 . 22
2.6 Change in maximum product for Napa, San Francisco, and San Mateo Counties

with road networks from 2000 and 2006 . 23
2.7 First example of a portion of a matching for Del Norte County, CA where k = 3. 25
2.8 Second example of a portion of a matching for Del Norte County, CA where

k = 3 . 25
2.9 Third example of a portion of a matching for Del Norte County, CA where

k = 3. 25
2.10 Fourth example of a portion of a matching for Del Norte County, CA where

k = 3. 26
2.11 Running times for our algorithm on the graphs given in Table 2.1 28

3.1 A 1-planar graph: each edge is crossed at most once. 33
3.2 A drawing of a graph with crossings (top) and its crossing graph (bottom). . 35
3.3 The Robert C. Levy tunnel in San Francisco, in which Broadway passes under

seven other streets without intersecting them 37
3.4 High Five Interchange in Dallas, Texas. 41

4.1 A c-planar drawing . 53
4.2 (a) An embedded flat c-graph C(G, T). (b) A super c-graph of C containing all

the candidate saturating edges of C (thick and colored curves); since vertices
u and v belong to different components of Xµ(f) but to the same connected
component of G(µ), edge (u, v) is not a candidate saturating edge. (c) A
super c-graph of C satisfying Condition (iii) of Theorem 4.2; regions enclosing
vertices of each cluster are shaded. 58

4.3 Transformations for the proof of Lemma 4.2. 59
4.4 (a) Super c-graph C ′ of C . (b) Each component of the blue cluster µ in H lies

inside a simple closed region. (c) Cycle-star S− corresponding to H. (d) The
c-connected c-planar c-graph C∗ obtained by replacing H with S− in C ′ 63

v

4.5 Illustrations of all of the c-graphs constructed by Algorithm TestCP. . . . 66
4.6 A generalized 6-simply-nested graph. 74

vi

LIST OF TABLES

Page

2.1 Results for various counties throughout California 27

3.1 Crossing Graphs (both essential and removable crossings) 43
3.2 Crossing Graphs (essential crossings only) 44

vii

ACKNOWLEDGMENTS

I would like to thank Professor David Eppstein and Professor Michael Goodrich for advising
me during my graduate studies. Additionally, I would also like to thank Professor Sandy Irani
for serving on my dissertation and advancement committees and Professor Amelia Regan
and Professor R. Jayakrishnan for serving on my advancement committee.

I would like to thank all my coauthors, Giordano Da Lozzo, David Eppstein, Michael T.
Goodrich and Manuel R. Torres, it was a pleasure working with you all.

I would like to thank my fellow graduate students and postdocs in the Center for Algorithm
and Theory of Computation for many enjoyable and enlightening conversations over the
past years, especially Giordano Da Lozzo with whom I also had the opportunity to conduct
research.

I would like to thank the Mathematics Department at BITS-Pilani, Goa Campus and in
particular Professor Tarkeshwar Singh for introducing me to the beautiful world of graph
theory.

I would like to thank the Donald Bren School of Information and Computer Science
at University of California, Irvine for their funding support that enabled my research.
Additionally, much of the research in this dissertation was supported by the National
Science Foundation under grants 1228639, 1526631, CCF-1618301, CCF-1616248 and by the
U.S. Defense Advanced Research Projects Agency (DARPA) under agreement no. AFRL
FA8750-15-2-0092. The views expressed in this dissertation are those of myself and my
coauthors and do not reflect the official policy or position of the Department of Defense or
the U.S. Government. I would also like to thank NSF for providing me with travel grant to
attend the ACM SIGSPATIAL conference.

I would like to thank Springer and ACM for giving me permission to include their copyrighted
material in this dissertation. Reference to original sources are given at the beginning of each
chapter containing their copyrighted material.

I would like to thank my family and friends for their love and support. I would especially
like to thank Gagan, Rangoli, Shreeaa and Vinayak for all the fun times we had together
whenever I visited home.

viii

CURRICULUM VITAE

Siddharth Gupta

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, USA

Master of Science in Mathematics 2014
BITS-Pilani, Goa Campus Goa, India

Bachelor of Engineering in Computer Science 2014
BITS-Pilani, Goa Campus Goa, India

RESEARCH EXPERIENCE

Research Visit, INRIA Jun - Jul 2017
Host: Dr Laurent Viennot Paris, France

Research Intern, Northwestern University Jun - Dec 2013
Mentor: Professor Ankit Agrawal Chicago, USA

Research Intern, Indian Institute of Science May - Jul 2012
Mentor: Professor L. Sunil Chandran Bangalore, India

TEACHING EXPERIENCE

Teaching Assistant 2016 - 2017
University of California, Irvine Irvine, USA

Teaching Assistant 2011 - 2013
BITS-Pilani, Goa Campus Goa, India

ix

PUBLICATIONS

Conference Publications

Subexponential-Time and FPT Algorithms for Embed-
ded Flat Clustered Planarity

2018

Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, Siddharth Gupta
International Workshop on Graph-Theoretic Concepts in Computer Science

Crossing Patterns in Nonplanar Road Networks 2017
David Eppstein, Siddharth Gupta
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems

A Topological Algorithm for Determining How Road
Networks Evolve Over Time

2016

Michael T. Goodrich, Siddharth Gupta, Manuel R. Torres
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems

Workshop Publications

A New Parallel Algorithm for Two-Pass Connected
Component Labeling

2014

Siddharth Gupta, Diana Palsetia, Md. Mostofa Ali Patwary, Ankit Agrawal, Alok
Choudhary
IEEE IPDPS Workshop on Multithreaded Architectures and Applications

Papers in Submission

Exact Distance Oracles Using Hopsets 2018
Siddharth Gupta, Adrian Kosowski, Laurent Viennot

C-Planarity Testing for Embedded Flat C-Graphs with
Bounded Embedded-Width

2018

Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, Siddharth Gupta

x

ABSTRACT OF THE DISSERTATION

Topological Algorithms for Geographic and Geometric Graphs

By

Siddharth Gupta

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor David Eppstein, Chair

We study some geographic and geometric graphs namely road networks and clustered graphs

from topological viewpoint, i.e., we consider them as embedded graphs, graphs in which the

ordering of edges (clockwise or anti-clockwise) incident on each vertex is uniquely defined.

A road network is a graph with a vertex at each intersection of roads and an edge for each

segment of road between the intersections. A clustered graph is a graph whose vertices belong

to properly nested clusters. We present algorithms and models for some problems related to

road networks and clustered graphs.

The first problem we consider is how a road network has evolved over time, given two snapshots

from different dates. These graph can also have geometric/geographic information, such as the

GPS coordinates of some vertices or labels identifying road names. As there can be vertices

and edges without such geometric/geographic information, we take a strictly topological

approach for the problem. We propose an algorithm, which runs in polynomial time for non

degenerate-road networks, and outputs portions of the network that remained intact and also

points out added or removed portions. We also analyze our algorithm experimentally taking

US road network data from the TIGER/Line archive of the U.S. Census Bureau as input

data set and show that our algorithm produces good results in practice.

In the second problem, we study the non-planar properties of road networks. We normally

xi

consider road networks as planar graph but they are actually non-planar due to non-

intersecting crossings caused by overpass, underpass, or tunnel. We provide a mathematical

model of nearly-planar graphs and show that the non-planar graphs that fit this model do

have polynomial expansion, i.e., they and all their subgraphs have small separators. We also

analyze the Urban Road Network Data set and show that the model is indeed a good fit for

non-planar road networks.

Finally, we investigate the C-Planarity problem which asks for drawing of a clustered graph

in which each cluster is represented by a simple closed region with no edge-edge crossings, no

region-region crossings, and no unnecessary edge-region crossings. We study C-Planarity for

embedded flat clustered graphs, embedded graphs whose clusters partition the vertex set. We

provide a subexponential-time algorithm to test C-Planarity for these graphs when the face

size is bounded. Further, we also study a variation of tree decomposition in which, for each

face, including the outer face, there is a bag that contains every vertex of the face. We show

that C-Planarity is fixed-parameter tractable with the embedded-width of the underlying

graph and the number of disconnected clusters as parameters.

xii

Chapter 1

Introduction

In this dissertation, we investigate some problems related to road networks and clustered

graphs considering them as embedded graphs. Formally, a graph consists of a set of vertices

and a set of edges connecting the vertices. An embedded graph uniquely defines the cyclic

ordering of edges incident to every vertex. (see Fig. 1.1)

Road networks can be modeled as graphs by placing a graph vertex at each intersection

or terminus of roads, and connecting every two vertex by an edge if there exists a road

segment between them. In addition, these road networks can also have geometric/geographic

information, such as the GPS coordinates of some vertices or labels identifying road names.

When we consider road networks as embedded graphs, we don’t consider the geometric or

geographic information associated with them.

v1

v2

v3

v4

v5

v1

v2

v3

v5

v4

Figure 1.1: Two different embedded graphs on same set of vertices and edges.

1

Formally, a clustered graph (or c-graph) is a pair C(G, T) with an underlying graph G along

with a hierarchical clustering T on it’s vertices. When we consider c-graphs as embedded

graphs, the underlying graph G is an embedded graph.

1.1 Results

In this dissertation, we consider two problems related to road networks and one related to

c-graphs.

Road Network Evolution: In chapter 2, we study the road network evolution problem

which is related to the map alignment problem (see [72, 73]). In the problem of map

alignment, we are given two road networks, including both topological information and

geometric/geographic information, and we are interested in computing a most likely matching

between the two networks. In our problem, we are given only topological information. As

defining the best matching in terms of a maximum common subgraph is unlikely to lead to a

polynomial-time algorithm as then the problem is nothing but the subgraph isomorphism

problem, we introduce the notion of conformal matching as a parameter to define the best

matching between two road networks in our case.

We propose an algorithm that runs in polynomial time for finding conformal matchings

between non-degenerate embedded graphs, which also includes road networks. Our algorithm

uses flood based breadth-first search technique and has mainly two phases. In the first phase,

we find a good pair of starting nodes and in the second phase, we find the conformal matching.

As the pair of starting nodes may not be unique so we choose the pair which minimizes the

probability of wrong matches. As our algorithm is probabilistic in nature, we analyze our

algorithm experimentally and also verify the results using the actual geometric information

of the vertices and show that our algorithm produces good matching between the vertices in

2

practice.

Crossing Patterns in Nonplanar Road Networks: Most of the past work done on road

networks either consider them as planar graphs or planarize them by introducing artificial

intersection points to the roads which cross each other without intersection. Considering

them as planar graphs allows us to develop more efficient algorithms due to planar graphs

properties like planar graph duality and planar graph separator theorems. But as observed

by Eppstein et al. [35], these networks include many crossings and are not actually planar.

In chapter 3, we study crossing patterns in nonplanar road networks. We introduce a new

graph called the crossing graph of a embedded graph G as a graph which has a vertex for each

edge in G and two vertices have an edge between them if the corresponding edges intersect

in G. We provide a mathematical model based on crossing graphs and prove that the graphs

contained in this model have polynomial expansion which can be used to design efficient

separator based algorithms. We also analyze the Urban Road Network Data set and show

that this model fits well to non-planar road networks.

C-Planarity Testing: In chapter 4, we study the problem of C-Planarity which deals with

the existence of clustered-planar (c-planar) drawing of a c-graph. A c-planar drawing consists

of drawing of the underlying graph and drawing of each cluster as a closed curve such that no

two edges may cross each other (i.e. the underlying graph should be planar), no two curves

may cross each other, an edge may only intersect a cluster boundary only when it connects a

vertex inside the cluster to a vertex outside the cluster and it can intersect a cluster boundary

only once. (see Fig. 4.1)

The problem was introduced by Feng et al. [42] in 1995. It is still unknown whether it is

possible to construct c-planar drawings in polynomial time. Although the complexity of the

general problem is unknown, there are many special cases for which polynomial time and

fixed-parameter tractable (FPT) algorithms are known (see e.g. [14,49,61]). In chapter 4, we

3

study the problem for the special case of embedded flat c-graph where the embedding of the

underlying graph is fixed and the clustering is flat i.e. the clusters partition the vertices of

the underlying graph.

We provide two algorithms for these kinds of input. The first algorithm is a separator

based divide-and-conquer algorithm which runs in subexponential time for embedded flat

c-graph with bounded face size. The second algorithm is an FPT algorithm based on

Courcelle’s theorem, parameterized by embedded-width and number of disconnected clusters

of the input graph. Embedded-width is a variant of treewidth (introduced by Borradaile et

al. [16]) in which for each inner face of the underlying graph, there exists atleast a bag in

the decomposition which contains all the vertices of that face. We use a slightly modified

definition in which this property is also true for outer face.

4

Chapter 2

A Topological Algorithm for Road

Networks Evolution1

2.1 Introduction

Road network algorithms are an important topic of study in Geographic Information Systems

(GIS), in that road networks facilitate transportation and are the products of social, geographic,

economic, and political forces. In addition, road networks are interesting data types, in that

they combine both geometric information and graph-theoretic information. (E.g., see [35].)

Formally, we view a road networks as a graph, where we create a vertex for every road

intersection or major jog, and we create an edge for every pair of such vertices that have

a road segment that joins them. In addition, some road networks are annotated with

geometric/geographic information, such as the GPS coordinates of some vertices or labels

identifying road names. Nevertheless, because road networks may contain many vertices and

edges without such geometric/geographic information, we are interested in this chapter in

1This chapter is included with permission from ACM [48].

5

6/13/2016 san_francisco_1915.jpg (2097×1270)

http://www.lib.utexas.edu/maps/historical/san_francisco_1915.jpg 1/1

6/13/2016 OpenStreetMap

http://www.openstreetmap.org/#map=13/37.8045/-122.4275 1/1

http://openstreetmap.org/copyright http://openstreetmap.org

Copyright OpenStreetMap and contributors, under an open license

Figure 2.1: A map of San Francisco from 1915 and one from 2016 (taken from OpenStreetMap).
The left image is in the public domain; the right image is licensed under the Open Database License,
CC BY-SA. Note that most of the roads in both maps are not labeled.

studying road networks from strictly a topological viewpoint, that is, as embedded graphs.

Specifically, we are interested in the problem of determining how road networks evolve over

time, e.g., highlighting places where new roads and bridges are added and where old roads

and bridges are removed. (See Figure 2.1.)

2.1.1 Problem Definition

Viewed topologically in terms of their graph properties, road networks are embedded graphs,

that is, the edges incident on each vertex are given in a particular order (i.e., clockwise or

counterclockwise), which defines a topological structure for the graph known as a rotation

system (e.g., see [76]). Road networks are not typically planar graphs (e.g., see [35]), however,

since there are edge crossings, for example, at overpasses. Thus, we cannot in general apply

algorithms for planar graphs to road networks. Nevertheless, the vertices in road networks

have bounded degrees (since the number of roads that meet at a single junction cannot be

arbitrarily large); hence, a road network with n vertices has O(n) edges.

6

Given two undirected graphs, G1 and G2, an isomorphism of G1 and G2 is a bijection, f ,

from the vertices of G1 to the vertices of G2 such that (u, v) is an edge in G1 if and only

if (f(u), f(w)) is an edge in G2 (e.g., see [66]). In the subgraph isomorphism problem, we

are given two graphs, G1 and G2, and asked to determine whether there is a subgraph of G1

isomorphic to G2. This problem is NP-complete, even if G1 is an embedded planar graph,

by a reduction from the planar Hamiltonian circuit problem [46]. Thus, defining the best

matching between two road networks simply in terms of a maximum common subgraph is

unlikely to lead to a polynomial-time algorithm. So let us restrict the types of matchings we

consider.

Suppose we are given a subgraph, G′1, of a graph, G1, and a subgraph, G′2 of a graph, G2,

such that G1 and G2 are embedded graphs, i.e., having specified rotation systems. Suppose

further that f is an isomorphism from G′1 to G′2. We say that f is conformal if it satisfies

the following conditions:

1. For every vertex v in G′1, v has the same degree in G1 as f(v) has in G2. That is, we

only match vertices having the same degree.

2. For every pair of incident edges, (v, u) and (v, w), in G′1, (v, u) precedes (v, w) in the

clockwise order of edges around v in G1 if and only if (f(v), f(u)) precedes (f(v), f(w))

in the clockwise order of edges around f(v) in G2. That is, we match vertices consistently

with the edge orderings around each vertex.

Since road evolution tends to involve adding or removing whole roads or neighborhoods, we

restrict our notion of road network evolution in this chapter to be defined in terms conformal

matchings. There is still one more restriction that we need to add, however, which deals with

degeneracies that are unlikely to occur in real-world road networks.

Suppose we are given two road networks, G1 and G2, and a maximum-cardinality subgraph,

7

G′1, having a conformal matching, f , to a subgraph of G2 (which is how we determine the

parts of G1 that are the same in G2). We say that G1 and G2 are degenerate if, for any vertex

v in G′1 and edge (v, w) in G1, we can change the assignment, f(w), for w and still have f be a

conformal matching (even allowing for f(w) to be undefined). Since our intended applications

involve the second road network being a newer copy of the first, a maximum-cardinality

subgraph with a conformal matching identifies the portions of the road network that have not

changed over time; hence, the portions outside of this maximum-cardinality subgraph identify

the portions that have changed. Thus, we argue that such applications involve non-degenerate

graphs, since it is unlikely, for example, for us to encounter an 8× 16 grid that evolves into

a grid-like annulus of 64 nodes with radius 8, which would be degenerate. Given that such

configurations are likely to be rare in the real world, we are interested in this chapter only in

finding maximum conformal matchings in non-degenerate pairs of road networks, which is a

problem we refer to as the map evolution problem.

Incidentally, the map evolution problem should not be confused with the map matching

problem (e.g., see [63, 64]), which is the unrelated problem of matching a trajectory of

(possibly noisy) GPS coordinates, as might be produced by a moving vehicle, to the geometry

of the road network in which the trajectory is traveling.

2.1.2 Prior Related Work

As noted above, the map evolution problem is related to the graph isomorphism problem,

which has a rich history (e.g., see [51, 66]), due to the fact that it is not known to be NP-

complete, and the best known worst-case algorithm runs in quasipolynomial time [10], but

the problem tends to be feasible in practice (e.g., see [66]). For the generalized approximate

graph isomorphism problem, which is NP-hard, Arvind et al. [8] give a quasipolynomial

approximation algorithm. Such algorithms are necessarily not taking advantage of any

8

efficiencies, however, that could come from topological considerations like our restrictions to

embedded graphs and conformal matchings.

The map evolution problem is also related to the map alignment problem, which is also

known as GIS conflation (e.g., see [72, 73]). In this problem, one is given two road networks,

including both topological information (such as vertex-edge-face relationships) and geometric

information (such as vertex coordinates and edge directions and lengths), and one is interested

in computing a “most likely” matching between the two networks. Rosen and Saalfeld [72,73]

develop an iterative process involving a human operator based on matchings that use

topology/geometry classifications of the vertices, edges, and faces of the maps. Xiong [81]

extends these topological/geometric approaches using more sophisticated classifications.

Savary and Zeitouni [74] and Zhang [82] extends these approaches further by including

additional properties, such as geographic data, including road names and shapes. Their use

of geometry, however, implies that all of these conflation methods are not strictly topological

algorithms and their performance degrades when roads or vertices lack geometric or geographic

information.

Detecting changes in road networks and geographic regions has also been studied from the

perspective of image processing, e.g., using satellite images (e.g., see [79]). For example,

Zhang and Couloigner [83] use image analysis to extract polylines defining roads and match

them between two images of the same geographic region taken at different times. Such

image-analysis approaches are inherently geometric, however; hence these are also not strictly

topological algorithms and do not apply when image data is not available.

Our topological approach is more closely aligned with the work of Eppstein et al. [36], which

uses a topological approach for approximately matching for quadrilateral meshes used in

computer-generated animations. Our approach differs from their methods, however, in that

we do not consider faces in our matching algorithm (since road network faces can be large

and complex), whereas their method crucially depends on matching faces (which in their

9

application are always quadrilaterals or triangles).

2.1.3 Our Results

In this chapter, we study the map evolution problem, for matching two road network graph

of same area but from different time, by using only topological properties. The primary

motivation for this approach is to show that the map evolution problem problem can be

solved effectively using only topological information. Thus, this gives GIS practitioners a tool

that can be applied for solving the map evolution problem even for problem instances where

geometric and geographic information is missing, such as in older hand-drawn maps, pairs of

maps where only one of them is derived from an image, pairs of maps annotated in different

languages, or maps missing geographic and geometric annotations due to scaling resolution.

We develop an algorithm for the map evolution problem that runs in polynomial time for

finding conformal matchings between non-degenerate embedded graphs, such as real-world

road networks. Our algorithm uses a breadth-first flooding technique that begins each flooding

phase by finding potentially-matching “seed” vertices using a labeling technique similar to

that used in the the Weisfeiler-Leman (WL) graph isomorphism algorithm (e.g., see [51]).

So as to limit the amount of flooding done in subgraphs that ultimately are determined not

to match, our algorithm is probabilistic in nature—when we don’t have any pair of unique

starting nodes, we take the pair which minimizes an estimate of the probability of a wrong

match. We provide verification of our algorithm in experiments and case studies that show

empirically that our algorithm produces good matches in practice.

10

2.2 Our Algorithm

In this section, we describe our topological algorithm for finding a best conformal matching

between two non-degenerate road networks, G1 and G2:

1. Create quasi-unique labels for each vertex, v, in G1 and G2 based on the degrees of

the nodes at distance at most k from v, for an input parameter, k. (We show in our

experimental section that choosing k between 5 and 8 tends to give the best results.)

2. Choose a good pair of starting nodes, s1 ∈ G1 and s2 ∈ G2, with the same quasi-unique

label, L, and, for each such pair having label L, perform the following:

(a) Perform a breadth-first search (BFS) matching of the corresponding portions in

G1 and G2 that are respectively reachable from s1 and s2 according to a greedy

conformal matching that emanates out from these starting nodes.

(b) Save this conformal matching that starts from s1 and s2 if it is the best (highest

cardinality) such matching found so far for this quasi-unique label.

3. Commit the conformal matching that began with s1 and s2, removing all matched

nodes as candidates for starting nodes.

4. Repeat the above process for another good pair of starting nodes, if such a pair of

nodes still remains.

We describe these steps in more detail below.

2.2.1 Labeling Vertices

The first step of our algorithm is to give each vertex, v, in G1 and G2 a quasi-unique label,

based on the degrees of the nodes at distance at most k from v, for a given parameter,

11

k. This approach is similar to a labeling method used in the (exact) graph isomorphism

algorithm by Weisfeiler and Leman (WL) [51]. Specifically, we begin by determining the

degree, deg(v), of each vertex, v. Then we create a list for each vertex, v, which contains its

degree, followed by the degrees of nodes at distance 1 from v, nodes at distance 2 from v, and

so on, up to a distance k, where k is an input parameter for this step. So as to make sure

that these labels are quasi-unique, we add the degrees of these nodes at distance at most k

from v according to a canonical ordering, which in our case is a lexicographically minimum

breadth-first search (BFS) ordering. This BFS ordering sorts the immediate neighbors of

v according to a lexicographically minimum cyclic ordering of v’s neighbors based on their

degrees, and then it performs a BFS from this queue, adding nodes to the queue based on the

cyclic ordering of edges around each vertex so long as they are at distance at most k from v.

We return a dictionary for Gi (for i = 1, 2), which we call masterTable(Gi), such that each

entry in this dictionary is a list of vertices having the same quasi-unique label. That is, the

keys we use to index the (list) entries in masterTable(Gi) are the label[v] lists produced by

our quasi-labeling method.

The pseudocode for this step is given in Algorithm 1.

Algorithm 1: Algorithm for labeling each vertex with a quasi-unique label. The
method, lexicographicBFS(v, k), returns an ordered list of nodes as would be visited a
breadth-first search (BFS) from v, starting with the neighbors of v enqueued according
to a lexicographically minimum cyclic ordering of v’s neighbors based on their degrees.
This BFS explores all nodes at distance at most k from v.

function labelNodes(k,G);
for each v ∈ G do

label[v] = (deg(v)) # label is a list;
for u ∈ lexicographicBFS(v, k) do

Append deg(u) to end of label[v];
end
Add v to masterTable(G) [label[v]];

end

With respect to the efficiency for performing this step, note that the time needed for this step

12

is dominated by our doing a BFS from each node, v, to explore those other nodes at distance

k from v. Since the vertices of a road network have degree bounded by some parameter, d,

this step takes worst-case time O(dkn), for a road network of n nodes. In practice, k is a

constant, d is usually 3 or 4, and the graph is rather sparse; hence, this step runs in O(n)

time in practice.

2.2.2 Choosing Pairs of Starting Nodes

After we have labeled each vertex of G1 and G2 with quasi-unique labels, we need to choose

a pair of starting nodes in G1 and G2 with the same label to start the matching process. If

we are able to find a unique pair of nodes having the same label, then we can take them

as starting nodes and start our matching. But it may happen that we don’t have any such

unique pair of nodes; that is, it might be the case that there are at least 3 nodes from G1∪G2

for each quasi-unique label of vertices in the master table.

For each distinct label, L, let n1(L) denote the number of vertices in G1 with label L and let

n2(L) denote the number of vertices in G2 with label L. As mentioned above, if we have a

label, L, such that n1(L) = n2(L) = 1, then we choose the unique pair of vertices, s1 ∈ G1

and s2 ∈ G2, with label L as a good pair of starting vertices.

Otherwise, we would like to choose a pair, s1 ∈ G1 and s2 ∈ G2, that maximizes the

probability that there is a large conformal matching of the connected components of G1 and

G2 respectively containing s1 and s2, such that s1 and s2 have the same quasi-unique label, L.

For any such label, L, the number of such candidate pairs is n1(L) ·n2(L); hence, to maximize

the probability of finding a good pair of starting nodes, we choose a pair, s1 and s2, that

minimizes the product, n1(L) · n2(L), since the probability such a pair actually correspond to

corresponding nodes in G1 and G2, conditioned on their having the same label, L, is at least

1/(n1(L) · n2(L)).

13

We then perform a flooding-based search from each such s1 and s2 with label L, committing

to the pairing that results in the largest matched components in G1 and G2. Then, we remove

all the matched vertices in G1 and G2 from consideration (since they are now matched), and

we repeat our search for another good pair of starting seed vertices.

In order to perform such searches and updates quickly, we use an auxiliary priority queue

data structure that stores each quasi-unique label, L, according to its priority, n1(L) · n2(L).

Such products can be found by taking the product of lengths of both lists for each label

used as a key in masterTable. As we are performing our greedy matching processes, we also

need to update these lists by removing each matched pair of nodes. Of course, this will also

change the product for each label, so we have to update labels in our priority queue to now

have new priorities. Since these products are always integers in the range [1, C], for some

parameter, C ≤ n2, let us use a van Emde Boas tree [77,78] (vebTree) for storing non-zero

products, n1(L) · n2(L), for each label, L, as well as a hash table, productTable, that gives

us the product for any existing label, L. This allows us to perform searches, updates, and

finding of labels with minimal product values in O(log logC) time.

Every time the algorithm needs a pair of starting nodes, it finds a label, L, with minimum

product, n1(L) · n2(L), from vebTree. If there are multiple labels having that product, we

randomly choose any one of them. After finding the required label, we take a pair of nodes

having the same label from the masterTable. After finding the starting pair of nodes, we

update these data structures, and the productTable, so that we don’t consider this pair of

nodes again. Note this approach works even when we have unique pair of nodes having the

same label. In that scenario, the product will be 1 and that will be minimum product in

vebTree.

With respect to efficiency, we can do all the setup for this step in O(n log logC) time. Moreover,

we can determine already at this point what is the maximum product, n1(L) · n2(L), over all

labels, L, for a given value of k. Since k is a constant for real-world road networks and there

14

is an inverse relationship between k and the size of these products, we can perform a (binary)

search to choose k so that the maximum product size is bounded by some constant, C. The

running time of this search would be O(n) for constants k and C.

There is a tradeoff, however, between using a large value for k and getting good matches,

since two starting nodes are paired only if their quasi-unique labels are the same, that is,

if the respective portions of the road network at distance k from these nodes is the same.

Since we are considering road networks that are evolving, we therefore don’t want to set too

high a value for k. Thus, we would like to choose k as small as possible so that the products,

n1(L) · n2(L), are bounded by a constant, C. (Say, C ≤ 24.) As we note in the experimental

section of this chapter, choosing k between 5 and 8 seems to work well in practice for this

purpose.

2.2.3 Flood-based Conformal Matching

After finding a starting pair of nodes, we start our greedy BFS matching process. We begin by

marking the starting nodes as matched and we add them to our current tentative matching.

As we perform our BFS matching process, we will tentatively be matching up additional

pairs of nodes from G1 and G2, updating our supporting data structures as we go, e.g., to

tentatively remove each such pair from consideration in vebTree. Moreover, if a starting node

has more than one lexicographically minimum ordering of the degrees of its neighbors, then

we also consider each such ordering of the edges, performing our BFS matching process for

each. Tentative matchings are compared on the basis of number of matched nodes and the

matching with maximum number of matched nodes is taken as best matching.

This raises an important implementation detail, which we should probably discuss before

going on to other details. Our matching algorithm considers different pairs of starting vertices

(and even possibly different starting orientations of their incident edges), looking for the pair

15

that produces the largest portions of matching subgraphs. Thus, we may have tentative

matches that need to be undone so that other tentative matches can be considered.

There are at least two possible ways to deal with this branch-and-bound element in our

conformal matching algorithm. One way is to checkpoint our supporting data structures, like

vebTree, masterTable, and productTable, saving the version that produced the best tentative

match so far. This is the method we use, for example, in the version of our algorithm that we

implemented for our experiments, since it is easy to implement. Another way is to perform a

two-phase commit, where we perform updates to global copies of these data structures, but

keep a history of the updates we have performed during a tentative matching, so that we

can then roll back these updates if we do not commit to that tentative matching (because

there is another one that gave a larger number of matched vertices). This is the version of

our algorithm that we analyze for our theoretical analysis.

Given that there is some method that allows us to roll back to an earlier state of our

supporting data structures, vebTree, masterTable, and productTable, let us discuss in more

detail how our conformal BFS proceeds.

Once we map the neighbors around a pair of starting nodes, as discussed above, we flood-

search both graphs using a conformal-matching BFS. When we reach any other node except

a starting node in the flooding, we know the edge we are coming from and as we are following

clocking ordering around any node, there will be exactly one ordering around that node in

which we can traverse and map the neighbors with another graph, so as to be forming a

conformal matching. Figure 2.2 shows an example.

For matching any two nodes, v1 ∈ G1 and v2 ∈ G2, that are not starting nodes, they should

satisfy following properties:

• Both v1 and v2 should be unmatched.

16

(a)

v11

2

3

4

(b)

v21

5

6

7

Figure 2.2: Neighbor ordering around a degree-4 node, v1, and its matching node, v2. In this
example, node 1 in G1 matches with node 1 in G2, and we know that the we reached the matched
nodes v1 and v2 through the respective nodes, 1, so now their clockwise ordering is fixed and the
mapping of neighbors will be (4, 7), (3, 6), (2, 5).

• The degree of v1 should be same as v2.

If any of these two conditions fail, we don’t match v1 and v2 and we terminate that branch of

the BFS. If both the conditions are satisfied, then we mark v1 and v2 as matched, add them

to current matching and the queue for the BFS. Then we remove them from masterTable,

vebTree and productTable, so that they are not considered again in the matching process.

The pseudocode for this step in our algorithm is given as Algorithm 2.

Algorithm 2: Algorithm to process nodes in BFS.

function processNodes(u1, u2);
add (u1, u2) to matching;
mark u1 and u2 as matched;
add corresponding neighbors of u1 and u2 to bfsQueue;
update masterTable, vebTree and productTable to remove u1 and u2;

When there is no further branch that can be matched, our BFS search terminates. If this

is the best tentative matching for the given quasi-unique label, L, then we tentatively save

the matching corresponding to this BFS to the total matching. Then we check if there is

still any remaining pair of seed nodes having this same label. If so, then we perform another

conformal BFS for this next pair of seed vertices. Once we have completed performing a

tentative matching for each pair of seed nodes having the same quasi-unique label, L, we

commit to the matching for this label that produced the largest match.

17

Then we check if vebTree is empty or not. If vebTree is empty, we terminate the algorithm

and return the total matching. If not, we repeat our search for a quasi-unique label, L, having

the smallest product, n1(L) · n2(L), and repeat the above conformal BFS for that label.

The pseudocode for this step in our algorithm is given as Algorithm 3.

Algorithm 3: Our flood-based conformal matching algorithm.

function matching(masterTable,G1, G2);
create productTable and vebTree;
totalMatching = [];
while vebTree is not empty do

minProd = vebTree.min();
startingLabel = productTable[minProd];
startingPairs = (masterTable(G1) [startingLabel], masterTable(G2) [startingLabel]);
find all mappings of neighbors around each pair in startingPairs;
for each of the mappings in a startingPair do

matching = [];
(s1, s2) = this instance of startingPair[0],startingPair[1];
bfsQueue = ();
processNodes(s1,s2);
while bfsQueue is not empty do

v1, v2 = pop(bfsQueue);
if v1 and v2 are both unmatched then

if deg(v1) = deg(v2) then
processNodes(v1,v2);

end

end

end
checkpoint this matching if it’s best for this startingPair;

end
add the best matching found to totalMatching;

end

Each time we explore subgraphs of G1 and G2 for a particular starting pair, s1 and s2, that

are in the starting label set of pairs for some quasi-unique label, L, and one of the deg(s1)

possible orientations of edges, we traverse subgraphs of some size at most, n(L) ≤ n, where

n(L) is the size of the largest match for the label L. Thus, the running time of this part

of our algorithm is at most O(n(L) log logC), where C is the maximum value of a product,

18

n1(L′) · n2(L′), for some label, L′. If d is the maximum degree in a road network (e.g., d ≤ 8),

then the total worst-case running time of our BFS matching algorithm is therefore

O

(
dC
∑
L

n(L) log logC

)
= O(dCn log logC),

since
∑

L n(L) ≤ n, because the maximum amount of nodes we can ultimately match in a

pair of non-degenerate road networks is n. Combining this with the theoretical analysis of

the other steps in our matching algorithm implies that the total running time of our entire

algorithm is O(dkn+ dCn log logC), where d is the maximum degree of a road network, k is

the distance we choose for producing quasi-unique labels, and C is the maximum value of a

product, n1(L) · n2(L), for any label, L. Thus, in the practical case when d, k, and C are

constants, our matching algorithm runs in O(n) time.

(a) k = 1 (b) k = 5

Figure 2.3: Histogram plots for Amador County, CA from 2000 to 2006.

2.3 Experiments

In this section, we provide an empirical evaluation of our topological flood-based matching. All

of our experiments were ran on data from the U.S. TIGER/Line road network database [18].

19

(a) k = 1 (b) k = 7

Figure 2.4: Histogram plots for Alameda County, CA from 2000 to 2006.

2.3.1 Preprocessing the Data

The TIGER/Line database provides the road networks in two different file formats: shapefile

and TIGER/Line ASCII format. The data the shapefile format provides allows a graph to

be created that not only has a node for every intersection of two roads, but also nodes to

indicate the curvature of a road. That is, the format allows for curved roads to be represented

as a sequence of many two-degree vertices. Therefore, for the preprocessing of files in the

shapefile format, we simply take the first and the last vertex for each road to avoid introducing

unnecessary two-degree vertices. With this approach to processing files in the shapefile format

and fact that the TIGER/Line ASCII format lends itself to easy conversion to the definition

of a road network given in the introduction, our algorithm performs well on both file formats.

2.3.2 Tuning the Seed-labeling Parameter

Let us consider the choice of the value for k, the parameter that is input to Algorithm 1 that

defines the distance to which to perform a lexicographic BFS so as to improve the uniqueness

of vertex labels. To characterize this uniqueness factor, let us define the approximation ratio

20

of a labeling as a/b, where a is the number of pairs of nodes with the same label and b is the

minimum of the number of nodes in the two graphs. Note that, this is different from the

approximation ration of an algorithm which is the ratio between cost of the output obtained

by the algorithm and the optimal solution cost. Intuitively, if k is small, there will likely be

many pairs of nodes (u, v) with u in G1 and v in G2 that both have label L where n1(L) ·n2(L)

is large. For example, labels like “44444”, which indicates a four-way intersection that leads

to four other four-way intersections, are likely to be common, and many other examples

like this are likely from real-world. As many of these products are expected to be large, we

would expect the approximation ratio to be larger for smaller value for k, because we could

be possibly finding many pairs of vertices with the same label that should not actually be

matched. For instance, we might find two vertices labeled “44444” even though they are not

similar beyond their immediate neighbors. We expect to run into this situation only when

the product is large since our algorithm matches the pair of vertices for a given label that

maximizes the number of nodes matched.

As we increase the value of k, we would expect that the approximation ratio to decrease.

That is, if k is large, we expect there to be more labels L′ such that n1(L′) · n2(L′) is small

or even 1, as the labels should become more distinct as k increases. Because the labels are

expected to be more distinct in this case, it should be less likely to find pairs of vertices with

those labels, causing the approximation ratio to decrease.

The histograms in Figures 2.3 and 2.4 exemplify the preceding interpretation of the parameter

k. The x-axis indicates the physical distance between every node and its pair partner(s)

with the same quasi-unique label, L, using the longitude and latitude values given from the

database. The distance is determined using the haversine formula, which yields the shortest

distance between two points on a sphere [75]. (Although our algorithm doesn’t use geometric

information to determine matching pairs, we used geometric information in this experiment

to empirically validate our approach.) Ideally, all pairs should be at distance 0 from each

21

other.

As we expected, larger k values minimize the physical distances between pairs of nodes with

the same label, which gives us a more accurate matching; hence, it reduces the number of false

pairs that our algorithm needs to consider. A histogram that is highly skewed is desirable, as

that implies that the number of incorrect nodes being falsely matched is small. Note that

the Amador County data from 2000 and 2006 in Figure 2.3 included 6,970 and 6,784 nodes,

respectively, and the Alameda County data from 2000 and 2006 in Figure 2.4 included 52,566

and 51,054 nodes, respectively.

Figure 2.5 shows the change of the approximation ratio with respect to the change in k

for Amador County. The decrease in the approximation ratio with the increase in k again

matched our intuition. The plot with the same x-axis and y-axis values for Alameda County

started at a similar approximation ratio and decreased at a similar rate, so it was omitted.

Figure 2.5: Change in approximation ratio for Amador County, CA from 2000 to 2006

We also plot the change in the maximum product with respect to k in Figure 2.6.

As described in Section 2, the maximum product is the value max{n1(L) · n2(L) :

L is a label generated by Algorithm 1}. As expected, the maximum product decreases as

22

k increases. Note that only for San Francisco County does the maximum product reach 1.

This is due to the fact that for the other counties, there are labels that do not change as k

increases as the nodes the labels correspond to are in small connected components e.g. “121”

is the cause of this in San Mateo County.

Figure 2.6: Change in maximum product for Napa, San Francisco, and San Mateo Counties with
road networks from 2000 and 2006

2.3.3 Example Output of Our Algorithm

In this subsection, we provide a visualization of the matching our algorithm created for Del

Norte County, CA. We performed the matching with k = 3 and then took four snapshots of

the matching to enlarge the details. For Figures 2.7, 2.8, 2.9, and 2.10, a node is colored blue

if it was matched and red otherwise. Furthermore, a node with a white box above it from

23

the first image containing number i matches the node with a white box above it containing

the number i from the second image.

First, consider Figure 2.7. Solely based off of geographic location, it is clear that the nodes

are being matched to the correct area. After further inspection, it can be seen that the

graph has remained nearly the same around the white boxes containing “1”, “3”, “7”, and

“8”. Near each of these white boxes, our matching algorithm has matched the correct nodes,

indicated by all of the blue nodes surrounding said boxes. Figure 2.7 also demonstrates the

issue of using a small value for k. The yellow boxes in Figure 2.7b indicate nodes that have

been matched to other nodes in the graph from Figure 2.7a that are not included in the

image. This incorrect matching is due to the fact that when k is small, as mentioned earlier,

it is likely that many nodes will end up with the same label, yielding a higher likelihood of

incorrectly matching two nodes that should not be matched.

Second, consider Figure 2.8. The white boxes in these figures are here to indicate that the

matching algorithm is performing properly in many parts of the graph. As we are just using

topological features, we also get some unexpected matching as shown in Figure 2.8. The

two yellow boxes in Figure 2.8a are matched to the two yellows boxes in Figure 2.8b. A

new vertex was added in the 2006 graph that caused the matching of the vertices under the

yellow boxes to occur in the wrong place. Because we are only using topological features,

our matching algorithm cannot distinguish between the new vertex and the old one that it

should be matching to.

Last, consider Figures 2.9 and 2.10. Many more white boxes were included to show the

success of our matching algorithm in these portions of the graph.

24

(a) 2000 (b) 2006

Figure 2.7: First example of a portion of a matching for Del Norte County, CA where k = 3.

(a) 2000 (b) 2006

Figure 2.8: Second example of a portion of a matching for Del Norte County, CA where k = 3

(a) 2000 (b) 2006

Figure 2.9: Third example of a portion of a matching for Del Norte County, CA where k = 3.

25

(a) 2000 (b) 2006

Figure 2.10: Fourth example of a portion of a matching for Del Norte County, CA where k = 3.

2.3.4 Detailed Analysis

We ran our algorithm on 40 different counties in California ranging from small counties to

big counties. The results for our experiments are shown in Table 2.1. Each row gives analysis

about one particular county where G1 is obtained from TIGER/Line ASCII format from

the year 2000 and G2 is obtained from TIGER/Line ASCII format from the year 2006. The

column titled “seed time” indicates the time taken to find the seed vertices for the given

value of k and the column titled “match time” indicates the amount of time taken for the

topological flood-based matching algorithm. We ran the experiments on a machine with 3.1

GHz Intel Core i7 CPU and 16 GB of RAM and report the timings in seconds. The last

column titled “thresh. ratio” is the ratio of number of pairs of matched vertices within 5

miles of each other to the total number of pairs of matched vertices which gives up the quality

of matching. We can see from the table that thresh. ratio is always greater than 0.9 which

tells us that our algorithm performs well on all kinds of inputs.

Figure 2.11 plots the experiments in Table 2.1 with the total running time (seed time plus

match time) as the y-axis and the size of the smaller graph as the x-axis. The red line

represents the function 0.003n log log n. Therefore, it seems that the variable C defined in

Section 2 is much less than n, which is good for the running time of our algorithm.

26

county k nodes
of G1

nodes
of G2

edges
of G1

edges
of G2

seed
time
(sec-
onds)

match
time
(sec-
onds)

approx.
ratio

thres.
ratio

Alameda 9 40752 40242 67226 66644 778.544 7.686 0.9777 0.9997

Alpine 5 1448 1427 1838 1811 0.536 0.311 0.9439 0.9985

Amador 5 6970 6784 9198 8991 3.017 0.764 0.9553 0.9998

Butte 8 19856 21304 27896 29955 66.540 34.509 0.6878 0.9963

Calaveras 8 13770 13043 18141 17690 23.050 1.185 0.0400 0.9196

Colusa 5 5039 5700 7285 8589 4.231 8.106 0.8106 0.9867

Contra Costa 9 37148 36564 55555 54750 323.512 70.794 0.9482 0.9995

Del Norte 5 5383 7034 7386 9785 3.861 39.562 0.4811 0.9258

El Dorado 9 24248 24103 33331 33271 108.336 10.559 0.9766 0.9991

Fresno 9 51006 50614 83081 82640 744.009 346.011 0.9796 0.9992

Imperial 8 18104 18105 28716 28639 92.026 1.481 0.9592 1.0

Kings 8 11842 15328 18775 25521 87.083 7.071 0.3541 0.9978

Lake 8 12437 18500 17486 26176 47.485 391.934 0.1331 0.9553

Lassen 8 16216 19519 24024 28044 57.645 241.791 0.3804 0.9837

Madera 8 16936 16633 25164 24842 77.837 4.864 0.9633 0.9998

Marin 8 13733 13455 19722 19372 44.946 1.231 0.9446 1.0

Mariposa 5 9241 10538 12033 13830 4.558 119.975 0.5746 0.9546

Mendocino 9 22326 26153 30231 36142 107.554 403.188 0.3761 0.9901

Merced 8 16576 19619 25266 29568 78.726 9.331 0.6058 0.9940

Modoc 8 13304 17408 19674 24889 44.782 3.998 0.3229 0.9837

Mono 5 9159 11345 13203 16178 6.440 30.914 0.6179 0.9595

Monterey 9 31887 33831 48204 51313 324.838 350.278 0.7654 0.9978

Napa 5 6932 6827 10054 9867 4.813 19.717 0.9491 0.9933

Nevada 8 15903 15268 21729 20935 30.650 6.726 0.9135 0.9994

Placer 9 25365 25437 35603 35913 116.914 41.591 0.9287 0.9996

San Benito 5 7555 10311 10421 14649 5.801 30.310 0.5597 0.9503

San Francisco 5 9803 11570 20313 24218 20.241 0.977 0.7138 1.0

San Mateo 9 21571 21101 35132 34532 288.204 5.469 0.9666 0.9997

Santa Cruz 8 14374 14063 20545 20142 48.941 19.229 0.9694 0.9997

Shasta 9 25436 33824 35129 47588 163.593 431.638 0.1867 0.9732

Sierra 5 4809 6522 6603 8912 3.273 5.000 0.3559 0.8603

Siskiyou 9 28210 38150 39682 52616 140.771 705.416 0.1442 0.9528

Solano 8 15930 31249 24859 46954 106.300 63.848 0.1398 0.9654

Stanislaus 8 18254 19240 29327 31094 110.927 1.703 0.5786 0.9962

Sutter 5 6311 6164 9670 9494 4.293 0.319 0.9704 1.0

Tehama 8 15399 19177 21756 27353 53.793 13.337 0.3802 0.9844

Trinity 8 12042 11944 15501 15434 15.961 77.516 0.9780 0.9945

Tulare 9 27555 27302 42308 42257 269.419 10.146 0.9632 0.9993

Tuolumne 9 14830 17135 19985 23283 47.406 131.849 0.2621 0.9809

Yuba 5 9354 9267 13529 13407 5.791 4.158 0.9840 0.9995

Table 2.1: Results for various counties throughout California

27

Figure 2.11: Running times for our algorithm on the graphs given in Table 2.1

2.4 Conclusion

We have given a purely topological algorithm for determining the changes that occur between

two road networks, and we have provided both theoretical and experimental analysis to show

that our algorithm is effective and efficient. We therefore feel that this algorithm provides a

good tool for solving the map evolution problem when geometric or geographic features are

missing from one or both of the road networks being considered.

28

Chapter 3

Crossing Patterns in Nonplanar Road

Networks1

3.1 Introduction

Road networks are often modeled graph-theoretically, by placing a graph vertex at each

intersection or terminus of roads, and connecting vertices by edges that represent each segment

of road between two vertices. Thus, each vertex is naturally associated with a coordinate on

the earth’s surface.

Much past work on algorithms for road networks has either assumed that these networks are

planar (that is, that no two roads cross without forming an intersection at their crossing point)

or has added artificial intersection points to roads that cross without intersection, to force

these networks to be planar. Planar graphs have many convenient properties, including planar

graph duality and planar graph separator theorems [22, 62] that allow natural and important

problems on these networks to be solved more quickly. For instance, for planar graphs,

1This chapter is included with permission from ACM [39].

29

it is known how to compute shortest paths in linear time, based on the planar separator

theorem [59], in contrast to the situation for general graphs where shortest paths are slower

by a logarithmic factor. Unfortunately, as Eppstein et al. [35] observed, the available data

for real-world road networks shows that these networks are not actually planar: they include

many crossings. This discovery naturally raises the question of how to model nonplanar road

networks, in a way that allows efficient algorithms to be based on their properties.

In this context, one would like a model of road networks that is in some sense near-planar

(after all, road networks have few points where roads cross without intersecting, although

their number is not zero), that is realistic (accurately modeling real-world road networks),

and that is useful (leading to efficient algorithms).

One clear property of road networks is that they are sparse: the number of road segments

exceeds the number of road intersections by only a small factor, half of the average number of

segments that meet at an intersection. Since the vast majority of intersections are the meeting

point of three or four road segments, this means that the number of road segments should

be between 1.5 and 2 times the number of intersections. Researchers in graph algorithms

and graph theory have developed a sophisticated hierarchy of classifications of sparse graph

families centered around the intuitive notion of sparseness. Many of these types of sparseness

imply general algorithmic meta-theorems about the properties that can be computed efficiently

for graphs in the given family. In particular, many of the known algorithms for planar graphs

can be extended to the class of graphs of polynomial expansion, a property that was originally

defined using graph minor theory but that has a more natural equivalent definition (for

classes of graphs closed under taking subgraphs) in terms of the existence of sublinear-size

separators [34, 68]. Graphs of polynomial expansion support efficient separator-based divide-

and-conquer algorithms, as well as more sophisticated pattern matching algorithms based on

their graph minor properties. We would like to show that road networks, too, have small

separators, and therefore that they can support all of these algorithms.

30

In this chapter, we provide a mathematical model of non-planar road networks in terms of the

sparseness of their crossing graphs, graphs representing pairs of road segments that cross in the

network. We analyze the Urban Road Network Data set and show that, indeed, it is a good

fit for the model. Additionally, we prove that networks within this model have polynomial

expansion, from which it follows that the linear-time planar shortest path algorithm of Klein

et al [59] can be adapted to work on these networks, despite their non-planarities.

3.2 Past work

3.2.1 Nonplanar road networks

The past work by Eppstein et al. [35, 37, 38] has attempted to model nonplanarities in planar

road networks in two different ways. In [35] the authors posited that road networks are

subgraphs of the intersection graphs of systems of disks (the disks centered at each intersection

of roads with radius equal to half the length of the longest segment of roads meeting at that

intersection) and that, with a small number of exceptional high-radius disks, these disks have

low ply (at most a constant number of non-exceptional disks cover any point of the Earth’s

surface). They performed an empirical analysis of road network data showing that this model

fits actual road networks reasonably well, and they used the assumption to develop efficient

road network algorithms. Unfortunately, the class of networks defined by this model does

not fit well into the theory of sparse networks, because of its handling of the exceptional

disks. Because these disks could be arbitrary, they could in principle heavily overlap each

other, producing dense subgraphs that prevent the graphs defined in this way from having

polynomial expansion or other good sparseness properties. This misbehavior seems unlikely

to happen in actual road networks, but this mismatch between theory (where these graphs

can have dense subgraphs) and practice (where dense subgraphs are unlikely) indicates that

31

it should be possible to replace their model of road networks by another model that more

accurately matches the sparsity properties of real-world road networks.

Later work of the same authors [38] attempted to justify the low number of crossings in

road networks by showing that randomly chosen lines (modeling, for instance, a highway

cutting across an older city grid) typically have a sublinear number of crossings with other

roads. Another paper [37] used this observation of few crossings per line as the basis for a

very weak assumption about road networks, that the total number of crossings is smaller

than the number of intersections by a sufficiently large non-constant factor. This assumption

allows some algorithms to be performed efficiently; notably, the crossings themselves can all

be found in linear time. However, it is not strong enough to imply the existence of small

graph separators for arbitrary subgraphs of road networks, a property that is required by fast

separator-based graph algorithms. Additionally, this paper’s assumptions about the sparsity

of crossings are on dubious ground from an empirical point of view: what reason is there to

believe that the ratio of intersections to crossings in large street networks is non-constant

rather than a large constant?

3.2.2 Nearly-planar graphs

The graph theory literature includes many natural generalizations of planar graphs that we

may choose from. Among these, the k-apex graphs have been defined as the graphs that can

be made planar by the removal of k vertices [58]; however, in road networks, the number of

vertices that would need to be removed would typically be proportional to the number of

crossings, a large enough number that it is not reasonable to treat it as a constant. Similarly,

the k-genus graphs are the graphs that can be embedded without crossings into a surface of

genus at most k [30]. A road network can be embedded without crossings on a surface with a

handle for each overpass or tunnel, and this surface would have genus proportional to the

32

Figure 3.1: A 1-planar graph: each edge is crossed at most once. Although more general than
planar graphs, this class of graphs does not adequately model real-world road networks.

number of overpasses and tunnels, but again this number would be too large to treat as a

constant. These two graph families form minor-free graph families: families of graphs that,

like the planar graphs, have some forbidden graphs that cannot be formed from contractions

or deletions of graphs in their family. However, there is no reason to expect any particular

forbidden minors in road networks.

Among the many generalizations of planar graphs that have been studied in the graph theory

literature, another one seems more promising as a model for road networks: the 1-planar

graphs [71] or more generally k-planar graphs [33, 50, 70]. A 1-planar graph is a graph in

which every road segment has at most one crossing (Figure 3.1). More generally a k-planar

graph is a graph in which every road segment has at most k crossings. Many of the sparsity

properties of these graphs follow directly from planarization: if one replaces each crossing

with a vertex, one obtains a planar graph in which the number of vertices has been blown

up only by a factor of O(k). Based on this principle, it is known that these form sparse

families of graphs, and in particular they obey a separator theorem like that for planar

33

graphs but with a dependence on k as well as on the number of vertices in the size of the

separator [33]. Although k-planar graphs are NP-hard to recognize from their graph structure

alone [11,50], that is not problematic for their application to road networks, because in this

case an embedding with few crossings would already be known: the actual embedding of the

roads on the surface of the earth.

Therefore, it is tempting to model road networks as 1-planar or k-planar graphs. However,

the restriction on the number of crossings per edge may be too restrictive to model real-world

road network graphs. As we show, the assumption that road networks are 1-planar does not

fit the actual data, because real-world road network data includes road segments that have

many crossings. In particular, a long segment of highway may have many crossings between

interchanges. However, despite the poor fit of this model to the data, we may take inspiration

from 1-planar graphs in finding a more general class of graphs with few crossings per edge

in some more general sense, that still maintains the other desirable properties of this graph

class and that allows the algorithms from the theory of 1-planar graphs to be applied to road

networks.

3.3 Overview of new results

3.3.1 The crossing graph

The main new idea of this chapter is to study crossings in road networks by introducing a

new auxiliary graph, the crossing graph of the road network.

Definition 3.1. We define the crossing graph of an embedded graph G to be an undirected

graph, different from G itself. Each edge of G becomes a vertex in the crossing graph. When

two edges of G cross each other. we connect the two corresponding vertices of the crossing

graph (the ones representing the two segments) by an edge representing the crossing.

34

a b c d

e f g h

af
ab bc cd

ef fg gh

ae dh

de

ch

bh

dg

Figure 3.2: A drawing of a graph with crossings (top) and its crossing graph (bottom). The eight
isolated vertices of the crossing graph correspond to the eight uncrossed edges in the upper graph.

This concept is illustrated in Figure 3.2. In particular, for a road network, each vertex of the

crossing graph represents a segment of road, and each edge of the crossing graph represents

two road segments that cross without meeting at an intersection.

This structure allows many natural properties of the underlying road network can be read off

directly from the crossing graph. For instance, a segment of road is uncrossed if it corresponds

to an isolated vertex (one without any incident edges) in the crossing graph. A road network

is crossing-free (planar) if and only if all its segments are uncrossed, if and only if the vertices

of the crossing graph are all isolated, if and only if the crossing graph itself is an independent

set.

For a more complex example, a road network can be modeled as a 1-planar graph (each edge

has at most one crossing) if and only if the crossing graph has maximum degree one; that

is, if its crossing graph is a matching. Similarly, the road network is k-planar if its crossing

35

graph has maximum degree k.

Our hypothesis is that the crossing graph is a sparse graph (although possibly not one with

constant maximum degree) and that its structure can be used to investigate the graph-

theoretic structure of the road network itself. We study this question both empirically (by

computing and examining the structure of crossing graphs for actual large-scale road networks)

and theoretically (by proving that certain types of sparsity in the crossing graph imply the

existence of small separators and efficient algorithms for the underlying road networks).

3.3.2 Empirical experiments

We investigate empirically the graph structure of the crossing graph, by constructing this

graph for the 80 of the most populated urban areas in the world given by the Urban Road

Network Dataset [57].

Our investigations show that the degree of the crossing graph is small, but not necessarily small

enough to consider to be a constant: we found vertices of degree up to 166 (road segments

with up to 166 other segments crossing them, none of the crossings forming an intersection).

However, we found that the crossing graphs tend to have much smaller degeneracy, a number

d such that every graph in a given family of graphs (closed under taking subgraphs) has at

least one vertex of degree at most d. For instance, trees are exactly the connected graphs of

degeneracy one, and our work found that many of the connected components of the crossing

graph are trees. More generally, the maximum degeneracy that we found in the crossing

graph of any road network was 6.

36

Figure 3.3: The Robert C. Levy tunnel in San Francisco, in which Broadway (orange) passes
under seven other streets (L–R: Hyde, Cyrus Pl., Leavenworth, Jones, Taylor, Himmelmann Pl.,
and Mason) without intersecting them. CC-BY-SA image from OpenStreetMap.

3.3.3 Theory of networks with sparse crossing graphs

Based on our empirical investigations, we undertook a theoretical study of the networks

whose crossing graphs have bounded degeneracy. We prove theoretical results showing that

these networks are closed under subgraphs and that (like the k-planar graphs) they always

have small separators. Therefore, they form a new family of graphs of polynomial expansion.

3.4 Preliminaries

Before detailing our experimental and theoretical results, we provide some necessary

definitions.

3.4.1 Sparse graph properties

All graphs in this chapter are finite. Although road networks are typically directed (by the

direction of traffic on one-way streets and divided highways), the direction of the edges does

not matter for the crossing pattern and separator properties considered here. Therefore, we

treat these graphs as undirected.

37

Definition 3.2. The degree of a vertex in a graph is the number of edges touching that

vertex. The minimum degree δ(G) and maximum degree ∆(G) of a graph G are the minimum

and maximum, respectively, of the degrees of the vertices in G. A family F of graphs has

bounded degree if all graphs in F have maximum degree O(1); that is, if there is an upper

bound on the maximum degree that may depend on F itself but that does not depend on

the choice of a graph within F .

Definition 3.3. The degeneracy of a graph G is the maximum, over subgraphs of G, of the

minimum degree of the subgraph.

A concept equivalent to degeneracy (but differing from it by one) was originally called the

coloring number by Erdős and Hajnal [40]. For instance, the graphs of degeneracy one are

exactly the forests. A graph has degeneracy at most d if and only if its vertices can be ordered

in such a way that every vertex has at most d later neighbors. For, given such an ordering,

every subgraph of G has a vertex of degree at most d, namely the first vertex of the subgraph

to appear in the ordering. Given a graph of degeneracy d, an ordering with this property can

be found by greedily removing the minimum degree vertex from each remaining subgraph.

This greedy removal process can be performed in linear time and allows the degeneracy to be

computed in linear time [65].

Definition 3.4. As with degree, we define a family F of graphs to have bounded degeneracy

if all graphs in F have degeneracy O(1).

That is, family F has bounded degeneracy if there is an upper bound on the degeneracy of

the graphs in F that may depend on F itself but that does not depend on the choice of a

graph within F .

Definition 3.5. The hop count from a vertex u to vertex v in a graph is the minimum

number of edges between them. The radius of a graph or subgraph is the smallest number r

such that there exists a vertex within hop count of r of all other vertices. An r-shallow minor

38

of a graph G is a graph obtained from G by possibly deleting some edges and/or vertices of G,

and then contracting some radius-r subgraphs of the remaining graph into supervertices. A

family F of graphs has bounded expansion if, for all choices of the parameter r, the r-shallow

minors of the graphs in F have bounded edge/vertex ratio. More strongly, family F has

polynomial expansion if this edge/vertex ratio is bounded by a polynomial in r.

In particular, for r = 0 the shallow minors are just the subgraphs, so a family of graphs with

bounded expansion or polynomial expansion must have subgraphs with bounded edge/vertex

ratio. This implies that they necessarily also have bounded degeneracy. The graphs of

polynomial expansion include the k-apex graphs, k-genus graphs, and k-planar graphs [68],

described in our earlier discussion of near-planar families of graphs (Section 3.2.2).

Graph families of polynomial expansion can also be characterized in terms of separators,

small sets of vertices that partition the graph and form the basis of many divide-and-conquer

graph algorithms.

Definition 3.6. For an n-vertex graph G and a constant c < 1 we define a c-separator to

be a subset S of vertices of G such that every connected component of G \ S (the subgraph

formed by deleting S from G) has at most cn vertices. We say that a family F of graphs

has sublinear separators if there exist constants c, d, and e, with c < 1 and e < 1, such that

every n-vertex graph in F has a c-separator of size (number of vertices) at most dne.

For instance, the famous planar separator theorem states that planar graphs have 2/3-

separators of size O(
√
n), so we can take c = 2/3, d = O(1), and e = 1/2 [62]. A separator

hierarchy is formed by taking separators recursively, until all remaining components have

size O(1); for planar graphs it can be constructed in linear time [47], and enables linear-time

computation of shortest paths [59], among other problems.

Then, for a family F of graphs that is closed under taking subgraphs (every subgraph of

a graph in F is also in F), F has polynomial expansion if and only if F has sublinear

39

separators [34]. The graphs of polynomial expansion have other important algorithmic

properties, not directly deriving from their separators; for instance, for every fixed pattern

graph H it is possible to test whether H is a subgraph of a graph in a family of bounded

expansion (the subgraph isomorphism problem) in linear time. More generally, one can test

any property that can be formulated in the first-order logic of graphs, for members of a family

of graphs of bounded expansion, in linear time [68].

3.4.2 Classification of nonplanarities

We distinguish between two kinds of nonplanarity in a road network.

Definition 3.7. An embedding of a graph is a mapping from its vertices to points and its

edges to curves, such that the vertices at the ends of each edge are mapped to the points at

the ends of the corresponding curve. A crossing is a point where two edge curves intersect

that is not a common endpoint of both curves. A removable crossing is a crossing between two

edges in an embedding of a graph that can be removed (without introducing other crossings)

by making only local reroutings in the embedding.

Such a crossing may occur, for instance, when an actual segment of road follows a curved path,

passing between segments of other roads without crossing them, but the network segment

representing it follows a different straight path that crosses nearby road segments. In such a

case, re-routing the segment to follow the actual path of the road will cause these crossings

to go away.

Definition 3.8. An essential crossing is a crossing between two edges in an embedding of a

graph that represent disjoint (non-intersecting) road segments and that cannot be removed

by local changes.

40

Figure 3.4: High Five Interchange in Dallas, Texas. CC-BY image File:High Five.jpg by
fatguyinalittlecoat from Wikimedia commons.

Such a crossing may be caused, for instance, when one road follows a tunnel that crosses

under several other roads (Figure 3.3), or by the multiple crossing segments of a highway

interchange (Figure 3.4).

It is possible to remove the essential crossings of a road network by replacing each crossing by

an artificial intersection point, one that exists in the graph but not in the actual road network

that it represents. We call a planar network constructed in this way the planarization of

the road network. Indeed, the TIGER data set, commonly used for experiments on road

networks, has been planarized in this way. If the edges in this data set are drawn as straight

line segments, instead of following the curves of the actual roads that the edges represent,

some crossings may arise from the straightening, but the underlying graph of this data set is

planar. For this reason, our experiments use a different data set, the Urban Road Network

Dataset, that has not already been planarized [57].

However, planarized networks cannot be used to obtain correct results for many road network

computations. For instance, using the planarization of a road network in a shortest path

41

routing algorithm would potentially create routes that turn from one road to another at the

artificial intersections added in planarization, which do not form usable routes in the real-world

network. For this reason, it is problematic to use algorithms designed specifically to work in

planar networks, such as the known linear-time planar graph shortest path algorithms [59], on

road network data. Instead, we must show that despite their non-planarities, road networks

have the underlying properties necessary to support generalized versions of these efficient

algorithms.

3.5 Experiments

In this section, we examine the sparsity of crossing graphs experimentally, on real-world road

networks. We compute and analyze the crossing graphs for the 80 of the most populated

urban areas in the world. Our analysis uses the Urban Road Network Dataset [57].

The Urban Road Network Dataset includes graphs with self-loops and parallel edges. We

removed self-loops and parallel edges before processing the data. The data contains both

essential and removable crossings.

To find the crossings in the Urban Road Network Dataset, we used a plane sweep algorithm

for line segment intersection detection [15], as implemented in the CGAL computational

geometry library [41]. Although theoretically-faster algorithms are known for the type of

data considered here, in which the segments form a connected geometric graph with few

crossings [37], CGAL’s plane sweep is practical and usable, and the slight superlinearity of

its time bound is not problematic for the problem sizes we tested.

Because a perfect identification of essential crossings would require the solution of the NP-hard

problem of minimizing the number of crossings in graph embeddings [45], our experiments

determined whether a crossing is essential or removable heuristically, by using the fact that

42

City Roads Crossings Uncrossed
roads

Degener-
-acy

Degree Trees Non-
trees

Ankara 111054 2713 107943 3 16 643 126
Atlanta 381649 7505 372135 4 33 2501 236

Bangdung 26154 537 25555 2 23 140 16
Bangkok 188069 9940 178225 5 38 1637 354
Barcelona 296969 13218 281762 4 38 3309 483

Beijing 110115 13491 98339 5 71 1915 525
BeloHorizonte 94207 2797 91221 4 23 531 101

Bengaluru 200828 3102 197273 4 36 846 100
Bogota 199846 5929 194621 5 166 960 110
Boston 470360 9324 458955 5 25 2830 295

BuenosAires 435039 5344 429340 6 60 1083 201
Calcutta 90283 991 88995 3 18 374 21
Chengdu 25847 3278 23076 4 100 412 118

Chongqing 27251 3899 23207 4 18 658 215
Dalian 18017 1169 16638 3 21 292 60
Dallas 548721 15287 532025 4 52 3136 746
Delhi 76240 1853 74240 3 24 364 94

Detroit 390597 8163 381056 4 34 2070 304
Dhaka 19922 477 19445 2 20 120 8

Dongguan 11076 1773 9557 4 28 183 96
Fuzhou 16093 1948 14496 4 23 247 83

Guangzhou 69410 9765 60238 4 26 1234 570
Hangzhou 28270 3433 25238 4 26 459 164

Harbin 14805 1383 13465 3 38 195 76
HoChiMinh 110953 1627 109087 3 13 469 50

Houston 632289 13337 616864 4 28 3255 633
Hyderabad 172822 2461 169948 3 166 701 36
Istambul 380466 12002 368090 4 56 2059 421
Jacarta 105318 4811 100998 4 159 620 126

Johannesburg 267193 6715 259424 4 38 1710 247
Karachi 55362 1091 54236 3 38 206 29
Lahore 41115 1506 39689 3 61 188 35
London 376437 9015 365645 4 23 2757 231

LosAngeles 552690 17905 532472 5 50 4140 591
Madrid 511910 23482 487090 5 49 4349 790
Manila 328623 5518 321984 4 26 1664 122

Medellin 33310 1118 32174 4 20 225 46
Miami 312082 6396 304945 5 41 1387 281
Milan 262466 8512 252789 4 25 2227 309

Moscow 940251 20469 916398 4 40 6185 462
Mumbai 61299 2085 58976 3 20 514 66

Table 3.1: Crossing Graphs (both essential and removable crossings)

43

City Roads Crossings Uncrossed
roads

Degener-
-acy

Degree Trees Non-
trees

Ankara 111054 1041 110053 3 9 144 89
Atlanta 381649 2081 379231 4 14 533 131

Bangdung 26154 175 25976 2 21 37 8
Bangkok 188069 6902 181482 5 35 956 296
Barcelona 296969 5048 291548 4 36 1118 262

Beijing 110115 10772 101255 5 71 1314 450
BeloHorizonte 94207 1047 93155 3 11 187 54

Bengaluru 200828 1158 199700 3 35 190 59
Bogota 199846 3270 197517 5 18 357 65
Boston 470360 3668 466144 5 23 916 182

BuenosAires 435039 3217 431874 6 60 559 156
Calcutta 90283 363 89894 2 15 70 15
Chengdu 25847 2385 23951 4 99 257 89

Chongqing 27251 2163 25020 4 11 368 154
Dalian 18017 757 17126 3 21 186 44
Dallas 548721 7694 541247 4 40 966 587
Delhi 76240 836 75437 3 10 100 71

Detroit 390597 3123 387062 4 10 709 182
Dhaka 19922 247 19711 2 7 56 5

Dongguan 11076 1162 10133 4 26 101 70
Fuzhou 16093 1228 15134 3 14 130 64

Guangzhou 69410 6817 63105 4 25 752 489
Hangzhou 28270 2462 26166 3 23 305 133

Harbin 14805 896 13973 3 38 113 51
HoChiMinh 110953 616 110325 3 12 116 33

Houston 632289 6769 625518 4 19 894 537
Hyderabad 172822 998 171967 2 166 89 14
Istambul 380466 4391 376409 4 31 573 272
Jacarta 105318 2338 103588 4 158 171 76

Johannesburg 267193 1871 265257 3 38 379 130
Karachi 55362 460 54931 3 28 76 21
Lahore 41115 523 40632 3 57 49 22
London 376437 4946 370890 4 23 1350 147

LosAngeles 552690 8941 543170 5 16 1683 412
Madrid 511910 8734 503015 5 47 1598 383
Manila 328623 2276 326260 4 19 505 72

Medellin 33310 635 32765 3 12 82 32
Miami 312082 2707 309459 5 13 294 235
Milan 262466 4297 258068 4 25 887 216

Moscow 940251 9686 930967 4 37 1947 302
Mumbai 61299 1218 60081 3 20 224 50

Table 3.2: Crossing Graphs (essential crossings only)

44

the data associated with each road segment in the Urban Road Network Dataset indicates

whether it is a bridge or tunnel. Our heuristic is that when a crossing occurs between two

road segments neither of which is a bridge or a tunnel, then it is removable. However, the

Urban Road Network Dataset only includes this bridge and tunnel labeling for a subset of

the cities that it covers. For this reason, we restricted our experiments to this subset.

We used the NetworkX Python package [53] to study the structure of the crossing graphs we

constructed.

3.5.1 Hypothesis

Based on our intuitions concerning bridges and tunnels in real-world road networks, we

expected the crossing graphs to include some vertices of moderate degree, but otherwise

to be very sparse. For instance, we considered it to be possible that all of the connected

components of the crossing graph would be trees.

3.5.2 Results

The results of our experiments can be seen in Table 3.1 and 3.2. We have given some of the

key properties of the crossing graphs of road networks for 41 out of 80 cities in the table. The

table columns labeled “Roads” and “Crossings” give the total number of nodes and edges,

respectively, in each crossing graph; that is, the numbers of road segments and crossings

in the original road network. The column giving the number of uncrossed roads lists the

number of nodes in the crossing graph which have no incident edges; that is, the number of

uncrossed road segments. These isolated nodes constitute the vast majority of crossing graph

nodes. Table 3.1 captures both essential and removable crossings whereas Table 3.2 captures

only essential crossings.

45

The columns labeled “Degeneracy” and “Degree” give the degeneracy and maximum degree,

respectively, of the crossing graph, as defined in Section 3.4.1. The remaining columns detail

the number of components that are trees and the number of components that are not trees,

respectively, in the crossing graph.

3.5.3 Analysis

The table show that indeed these graphs are sparse. More specifically, our hypothesis

that the degeneracy would be significantly smaller than the maximum degree held up in

the experiments. Although it is not true that (as we hypothesized) all components of the

crossing graphs are trees, most of them are. The remaining non-tree components all have low

degeneracy (at most 6).

3.6 Theoretical Analysis of Graphs with Sparse Cross-

ings

Both our experimental results, and our consideration of nonplanar tunnels and interchanges

forming essential crossings in (non-planarized) real road networks, motivate the following

question. Suppose that, as the experiments appear to show, road networks have sparse crossing

graphs. More precisely, suppose that their crossing graphs have bounded degeneracy, but not

necessarily bounded degree. What does this imply about the graph-theoretic properties of

road networks? Do they have bounded degeneracy? Polynomial expansion? Here we give

positive answers to both of these questions.

First, let us formalize the notion of a graph with a sparse crossing graph.

46

Definition 3.9. We define a nice embedding to be a mapping of the vertices of the graph to

points in the plane, and the edges to curves, such that the following conditions are all met:

• Each edge is mapped to a Jordan arc (a non-self-intersecting curve) whose endpoints

are the images of the endpoints of the edge.

• If an edge and a vertex are disjoint in the graph, their images in the plane are disjoint.

• If two edges are mapped to curves that intersect, then that intersection consists of a

single point, and is either a shared endpoint of both edges or a point where their two

curves cross.

• No three edges have curves that all cross at the same point.

Let Cd denote the family of embedded graphs with nice embeddings, such that the crossing

graphs of these embeddings have degeneracy at most d.

Definition 3.10. We say that a graph G is d-crossing-degenerate if it belongs to Cd.

In order to apply the equivalence between separator theorems and polynomial expansion of

Dvořák and Norin [34], we need to verify that the class of graphs we care about is closed

under subgraphs.

Lemma 3.1. Every subgraph of a graph in Cd also belongs to Cd.

Proof. Let G be in Cd and let H be a subgraph of G. Embed H by deleting the edges

and vertices of G \H from the embedding of G. Then the crossing graph of the resulting

embedding of H is an induced subgraph of the crossing graph of the embedding of G. Since

taking induced subgraphs cannot increase the degeneracy, the degeneracy of the crossing

graph of H is at most d. Therefore, H belongs to Cd. �

47

Next, we examine the number of crossings that a graph in this family can have. As we show

below, a linear bound on the crossing number follows directly from the assumption of low

crossing graph degeneracy.

Lemma 3.2. For the graphs in Cd, a graph with m edges has at most dm crossings.

Proof. We can reduce any graph in Cd to one with no edges (and no crossings) by repeatedly

removing an edge that is crossed by at most d other edges, using the assumption that the

crossing graph is d-degenerate and therefore that there exists an edge that is crossed at most

d times. This process eliminates at most d crossings per step and takes m steps, so there are

at most dm crossings in the given graph. �

In contrast, graphs with many edges are known to have many crossings per edge. We use the

following well-known crossing number inequality of Ajtai, Chvátal, Newborn, Szemerédi, and

Leighton [1, 60,69]:

Lemma 3.3. Let G be an embedded graph with n vertices and m edges, with m ≥ 4n. Then

G has Ω(m3/n2) crossings.

This allows us to show that the d-crossing-degenerate graphs are sparse.

Lemma 3.4. Every n-vertex embedded graph G in Cd has O(n
√
d) edges.

Proof. Let the number of edges in G be γn
√
d, for some parameter γ. Then by Lemma 3.3

the number of crossings is Ω(n(γ
√
d)3) and the number of crossings per edge is Ω((γ

√
d)2) =

Ω(γ2d). However, by Lemma 3.2 the number of crossings per edge is also at most d. For

these two things to both be true, it must be the case that γ = O(1), so the number of edges

in G is O(n
√
d). �

48

Definition 3.11. Given a nicely embedded graph G, we define the planarization P (G) to

be the planar graph that has a vertex for each vertex or crossing point of G, and an edge for

each maximal segment of an edge curve of G that does not contain a crossing point.

It follows from our previous lemmas that d-crossing-degenerate graphs have small planariza-

tions.

Lemma 3.5. For the graphs in Cd, every n-vertex graph G has a planarization with O(nd3/2)

vertices and edges.

Proof. This follows immediately from the already-proven facts that G itself has O(n
√
d)

edges (Lemma 3.4) and an average of at most d crossings per edge (Lemma 3.2). �

Using these lemmas, we can prove our main result, that these graphs have sublinear separators.

Theorem 3.1. The graphs in Cd have sublinear separators and polynomial expansion. A

sublinear separator hierarchy for these graphs can be constructed from their planarizations in

linear time.

Proof. To prove the existence of sublinear separators, we apply the planar separator

theorem [62] to the planarization P (G) of a graph G in Cd. By Lemma 3.5 P (G) is larger

than G by at most a factor depending only on d, so (treating d as a constant for the purposes

of O-notation) P (G) has separators of size O(
√
n). One application of the separator theorem

may produce components of P (G) that are larger than the number n of vertices in G,

but recursively applying the separator theorem a bounded number of times will produce

components that are smaller than n by a constant factor. The resulting separators have

vertices in P (G), corresponding to crossings in G; they can be transformed into separators in

G itself by replacing each crossing vertex in the separator by the set of four endpoints of the

corresponding crossing edges in G. This replacement only increases the separator size by a

constant factor.

49

Since this method uses only planarization and planar separators, we may apply the linear

time method for constructing planar separator hierarchies to P (G) [47], to get a separator

hierarchy to G as well.

The fact that these graphs have polynomial expansion follows from the existence of sublinear

separators, and from the fact that Cd is closed under subgraphs (Lemma 3.1). �

By applying the method of [59], we obtain:

Corollary 1. If we are given the planarization of a graph G in Cd, we can compute shortest

paths in G itself in linear time.

In conjunction with known fast algorithms for finding planarizations [37], this leads to a

linear-time algorithm for shortest paths whenever the number of crossings is sufficiently

smaller than the overall number of road segments (as it was in our experiments).

3.7 Conclusions

We have performed a computational study of the removable crossings in large-scale planarized

road network data. Our study shows that these crossings form a crossing graph that has

high-degree vertices (up to degree 166), but that most connected components of the crossing

graph are trees and that the few remaining components have maximum degeneracy six.

Based on our study, we developed a model of nearly-planar graphs, the d-crossing-degenerate

graphs, consisting of the graphs that can be embedded with d-degenerate crossing graphs.

We showed that this family of graphs is closed under the operation of taking subgraphs. In

addition, for constant values of d, these graphs have a linear number of crossings, a linear

number of edges, and separators of size proportional to the square root of the number of

vertices. In addition, a separator hierarchy for these graphs can be constructed in linear time,

50

and applied in separator-based divide and conquer algorithms for shortest paths and other

computational problems on road networks.

51

Chapter 4

Subexponential-Time and FPT

Algorithms for C-Planarity Testing1

4.1 Introduction

A clustered graph (or c-graph) is a pair C(G, T) with underlying graph G and inclusion tree

T , i.e., a rooted tree whose leaves are the vertices of G. Each internal node µ of T represents

a cluster of vertices of G (its leaf descendants) which induces a subgraph G(µ). A c-planar

drawing of C(G, T) (Fig. 4.1) consists of a drawing of G and of a representation of each

cluster µ as a simple closed region R(µ), i.e., a region homeomorphic to a closed disc, such

that: (1) Each region R(µ) contains the drawing of G(µ). (2) For every two clusters µ, ν ∈ T ,

R(ν) ⊆ R(µ) if and only if ν is a descendant of µ in T . (3) No two edges cross. (4) No edge

crosses any region boundary more than once. (5) No two region boundaries intersect.

An interesting and challenging line of research in graph drawing concerns the computational

complexity of the C-Planarity problem, which asks to test the existence of a c-planar

1This chapter is included with permission from Springer [28].

52

Figure 4.1: A c-planar drawing

drawing of a c-graph. This problem is notoriously difficult, particularly when (as in Fig. 4.1)

clusters may be disconnected, faces may have unbounded size, and the cluster hierarchy may

have multiple nested levels. No known subexponential-time algorithm solves the (general)

C-Planarity problem, and it is unknown whether it is NP-complete, although the related

problem of splitting as few clusters as possible to make a c-graph c-planar was proved NP-

hard [6]. Thus, there is considerable interest in subexponential-time, slice-wise polynomial,

and fixed-parameter tractable algorithms, besides polynomial-time algorithms for special

cases of C-Planarity.

C-Planarity was introduced by Feng, Cohen, and Eades [42], who solved it in quadratic

time for the c-connected case when every cluster induces a connected subgraph. Similar

results were given by Lengauer [61] using different terminology. Dahlhaus [29] claimed a

linear-time algorithm for c-connected C-Planarity (with some details later provided by

Cortese et al. [25]). Goodrich et al. [49] gave a cubic-time algorithm for disconnected clusters

that satisfy an “extroverted” property, and Gutwenger et al. [52] provided a polynomial-time

algorithm for “almost” c-connected inputs. Cornelsen and Wagner showed polynomiality for

completely connected c-graphs, i.e., c-graphs for which not only every cluster but also the

complement of each cluster is connected [24]. FPT algorithms have also been investigated [14,

21]. For additional special cases, see, e.g., [3–5,9, 20,32].

53

A c-graph is flat when no non-trivial cluster is a subset of another, so T has only three levels:

the root, the clusters, and the leaves. Flat C-Planarity can be solved in polynomial time

for embedded c-graphs with at most 5 vertices per face [31, 44] or at most two vertices of

each cluster per face [19], for embedded c-graphs in which each cluster induces a subgraph

with at most two connected components [55], and for c-graphs with two clusters [13,44,54] or

three clusters [2]. At the other end of the size spectrum, Jeĺınková et al. [56] provide efficient

algorithms for 3-connected flat c-graphs when each cluster has at most 3 vertices. Fulek [43]

speculates that C-Planarity could be solvable in subexponential time for more general

embedded flat c-graphs.

New Results. In this chapter, we provide subexponential-time and fixed-parameter tractable

algorithms for broad classes of c-graphs. We show the following results:

� C-Planarity can be solved in subexponential time for embedded flat c-graphs with

bounded face size (Section 4.3).

� C-Planarity is fixed-parameter tractable for embedded flat c-graphs with embedded-

width and number of disconnected clusters as parameters (Section 4.4).

Our first result uses divide-and-conquer with a large but subexponential branching factor. It

exploits cycle separators in planar graphs and a concise representation of the connectivity

of each cluster in a c-planar drawing. This method also leads to an XP algorithm for

generalized h-simply nested graphs, which extend simply-nested graphs with bounded face size

(Section 4.3.1). Recall that, XP (short for slice-wise polynomial) is the class of parameterized

problems with input size n and parameter k than can be solved in O(nf(k)) time, where f is

a computable function.

We obtain our second result by expressing c-planarity in extended monadic second-order logic

for embedded flat c-graphs and applying Courcelle’s Theorem. The graphs to which this

54

result applies, with bounded treewidth and bounded face size, include the nested triangles

graphs, a standard family of examples that are hard for many graph drawing tasks, the dual

graphs of bounded-treewidth bounded-degree plane graphs [17], and the buckytubes, graphs

formed from a planar hexagonal lattice wrapped to form a cylinder of bounded diameter.

4.2 Definitions and Preliminaries

The graphs considered in this chapter are finite, simple, and connected. A graph is planar

if it admits a drawing in the plane without edge crossings. A combinatorial embedding is

an equivalence class of planar drawings, where two drawings of a graph are equivalent if

they determine the same rotation at each vertex, i.e, the same circular orderings for the

edges around each vertex. A planar drawing partitions the plane into topologically connected

regions, called faces. The bounded faces are the inner faces, while the unbounded face

is the outer face. A combinatorial embedding together with a choice for the outer face

defines a planar embedding. An embedded graph (plane graph) is a planar graph with a fixed

combinatorial embedding (fixed planar embedding). The length of a face f is the number of

occurrences of edges encountered in a traversal of f . The maximum face size of an embedded

graph is the length of its largest face.

A graph is connected if it contains a path between any two vertices. A cut-vertex is a vertex

whose removal disconnects the graph. A separation pair is a pair of vertices whose removal

disconnects the graph. A connected graph is 2-connected if it contains at least 3 vertices

and does not have a cut-vertex, and a 2-connected graph is 3-connected if it contains at

least 4 vertices and does not have a separation pair. The blocks of a graph are its maximal

2-connected subgraphs. Any (subdivision of a) 3-connected planar graph admits a unique

combinatorial embedding (up to a flip) [80].

55

Tree-width and Embedded-width. A tree decomposition of a graph G is a tree T whose

nodes, called bags, are labeled by subsets of vertices of G. For each vertex v the bags

containing v must form a nonempty contiguous subtree of T , and for each edge uv at least

one bag must contain both u and v. The width of the decomposition is one less than the

maximum cardinality of any bag, and the treewidth tw(G) of G is the minimum width of any

of its tree decompositions.

Recently, Borradaile et al. [16] developed a variant of treewidth, specialized for plane graphs,

called embedded-width. According to their definitions, a tree decomposition respects an

embedding of a plane graph G if, for every inner face f of G, at least one bag contains all

the vertices of f . They define the embedded-width emw(G) of G to be the minimum width of

a tree decomposition that respects the embedding of G. We will use the following result [16].

Theorem 4.1 ([16], Theorem 2). If G is a plane graph where every inner face has length at

most `, then emw(G) ≤ (tw(G) + 2) · `− 1.

Borradaile et al. do not require the vertices of the outer face to be contained in a same bag.

In our applications, we modify this concept so that the tree decomposition also includes a bag

containing the outer face, and we denote the minimum width of such a tree decomposition as

emw(G). We have the following.

Lemma 4.1. If G is a plane graph whose maximum face size (including the size of the outer

face) is `, then emw(G) = O(` · tw(G)).

Proof. To prove the statement, we can proceed as follows.

We augment G to a graph G′, by embedding G in the interior of a triangle ∆ and by identifying

one of the vertices of the outer face of G with a vertex of ∆. Clearly, tw(G′) = max(tw(G), 2)

and G′ has maximum face size `′ = O(`). Also, we have that emw(G) ≤ emw(G′), since

G ⊆ G′ and since all the vertices incident to the same face in G are also incident to

56

the same face in G′. Thus, the statement follows from the fact that, by Theorem 4.1,

emw(G′) ≤ (tw(G′) + 2) · `′ − 1. �

Clustered Planarity. Recall that, in a c-graph C(G, T), each internal node µ of T

corresponds to the set V (µ) of vertices of G at leaves of the subtree of T rooted at µ. Set

V (µ) induces the subgraph G(µ) of G. We call the internal nodes other than the root clusters.

A cluster µ is connected if G(µ) is connected and disconnected otherwise. A c-graph C(G, T)

is c-connected if every cluster is connected.

A c-graph is c-planar if it admits a c-planar drawing. Two c-graphs C(G, T) and C ′(G′, T ′)

are equivalent if both are c-planar or neither is. If the root of T has leaf children, enclosing

each leaf v in a new singleton cluster produces an equivalent c-graph. Therefore, we can

safely assume that each vertex belongs to a cluster. A c-graph is flat if each leaf-to-root path

in T has exactly three nodes. The clusters of a flat c-graph form a partition of the vertex set.

An embedded c-graph C(G, T) is a c-graph whose underlying graph has a fixed combinatorial

embedding. It is c-planar if it admits a c-planar drawing that preserves the embedding of G.

In what follows, we only deal with embedded flat c-graphs. Therefore, we will refer to such

graphs simply as c-graphs.

We define the candidate saturating edges of a c-graph C(G, T) as follows. For each face f

of G, let G(f) be the closed walk composed of the vertices and edges of f . For each cluster

µ ∈ T , consider the set Xµ(f) of connected components of G(f) induced by the vertices of µ

and, for each component ξ ∈ Xµ(f), assign a vertex of f belonging to ξ as a reference vertex

of ξ. We add an edge inside f between the reference vertices of any two components in Xµ(f)

if and only if such vertices belong to different connected components of G(µ); see Figs. 4.2a

and 4.2b. A c-graph obtained from C(G, T) by adding to C a subset E+ of its candidate

saturating edges is a super c-graph of C .

57

u

v
f

(a)
u

v
f

(b)
u

v
f

(c)

Figure 4.2: (a) An embedded flat c-graph C(G, T). (b) A super c-graph of C containing all the
candidate saturating edges of C (thick and colored curves); since vertices u and v belong to different
components of Xµ(f) but to the same connected component of G(µ), edge (u, v) is not a candidate
saturating edge. (c) A super c-graph of C satisfying Condition (iii) of Theorem 4.2; regions enclosing
vertices of each cluster are shaded.

Di Battista and Frati [31] gave the following characterization.

Theorem 4.2 ([31], Theorem 1). A c-graph C(G, T) is c-planar if and only if:

(i) G is planar;

(ii) there exists a face f in G such that when f is chosen as the outer face for G no cycle

composed of vertices of the same cluster encloses a vertex of a different cluster in its

interior; and

(iii) there exists a super c-graph C ′(G′, T) of C such that G′ is planar and C ′ is c-connected

(see Fig. 4.2c).

Conditions (i) and (ii) of Theorem 4.2 can be easily verified in linear time. Therefore, we can

assume that any c-graph satisfies these conditions. Following [31] we thus view the problem

of testing c-planarity as one of testing Condition (iii).

A cluster-separator in a c-graph C(G, T) is a cycle ρ in G for which some cluster µ ∈ T has

vertices both in the interior and in the exterior of ρ but with V (µ)∩V (ρ) = ∅. Condition (iii)

immediately yields the following observation.

Observation 1. A c-graph that has a cluster-separator is not c-planar.

58

u

v

w
w2

w1

u

v

(a)

v

(b)

Figure 4.3: Transformations for the proof of Lemma 4.2.

In the next sections, it will be useful to only consider c-graphs which are at least 2-connected

(Section 4.3) and 3-connected (Section 4.4). The next lemma, conveniently stated in a stronger

form2, shows that this is not a loss of generality.

Lemma 4.2. Let C(G, T) be an n-vertex c-graph with maximum face size `. There exists an

O(n)-time algorithm that constructs an equivalent c-graph C∗(G∗, T ∗) with |V (G∗)| = O(n)

such that: 1. G∗ is 3-connected, 2. the maximum face size κ of G∗ is O(`), and 3. the c-graph

C�(G�, T �) obtained by augmenting C∗(G∗, T ∗) with all its candidate saturating edges is such

that tw(G�) = O(emw(G)).

Proof. To prove the statement, we can proceed as follows.

First, we transform c-graph C(G, T) into an equivalent c-graph C ′(G′, T ′), by applying the

transformation in Fig. 4.3a to every edge, such that |V (G′)| = O(|V (G)|), every vertex of

G′ has degree at least 3, the maximum face size `′ of G′ is O(`), tw(G′) = tw(G), and each

vertex u of G′ is incident to at least three edges in each block u belongs to.

Second, we transform c-graph C ′(G′, T ′) into an equivalent c-graph C∗(G∗, T ∗), by applying the

transformation in Fig. 4.3b to every vertex, such that |V (G∗)| = O(|V (G′)|), G∗ is 3-connected,

the maximum face size `∗ of G∗ is O(`′), and the c-graph C�(G�, T �) obtained by augmenting

C∗(G∗, T ∗) with all its candidate saturating edges is such that tw(G�) = O(` · tw(G)), which

implies that tw(G�) = emw(G), since emw(G) = O(` · tw(G)) by Lemma 4.1.

2In Section 4.4, we exploit all the properties of the lemma. In Section 4.3, we only exploit the existence
of an equivalent 2-connected c-graph with maximum face size κ = O(`).

59

We now describe each of the transformations in detail.

First, initialize C ′ = C . For every vertex c of G, let (c, x) be any edge incident to c. Add to

G′ vertices w1 and w2 and embed paths (c, w1, x) and (c, w2, x) in the interior of each of the

two faces of G′ edge (c, x) is incident to; also, subdivide edge (c, x) with a vertex w, add

edges (w1, w) and (w2, w), and assign vertices w1, w2, and w to the same cluster of T ′ (T)

vertex c belongs to. Refer to Fig. 4.3a. By construction, all the newly added vertices have

degree at least 3. In particular, observe that each cut-vertex of G′ is incident to at least three

edges in each of the blocks such a cut-vertex belongs to. It is easy to see that C ′ and C are

equivalent. Also, the maximum face size `′ of G′ is O(`). Further, tw(G′) = max(tw(G), 3),

as the transformation replaces edges with subgraphs of treewidth 3.

Second, initialize C∗ = C ′ . For every vertex c of G′, we subdivide each edge (c, xi) incident to

c with a dummy vertex vi. Denote such a graph by G+. Also, add an edge between any two

vertices vi and vj such that edges (c, xi) and (c, xj) are consecutive around c in the unique face

shared by vi and vj in G+. Finally, assign each vertex vi to the same cluster of T ∗ (T ′) vertex

c belongs to. Refer to Fig. 4.3b. The equivalence between C∗(G∗, T ∗) and C ′(G′, T ′) is again

straightforward. Clearly, |V (G∗)| = O(|V (G′)|) and `∗ = O(`′). Also, by the observation

that the cut-vertices of G′ are incident to at least three edges in each of the blocks such

cut-vertices belong to, the applied transformation fixes the rotation at all the vertices of G∗.

Since each vertex of G∗ has minimum degree 3 and G∗ has a fixed combinatorial embedding

(up to a flip), by the result of Whitney [80], we have that G∗ is 3-connected. Furthermore,

emw(G∗) = O(emw(G′)), since G∗ is obtained by subdividing each edge of G′ twice, thus

obtaining a graph G+ with the same tree-width as G′ and maximum face-size in O(`′), and

by adding edges between some of the vertices incident to the faces of G+. Since G� is the

graph obtained by adding all the candidate saturating-edges of G∗ (recall that such edges only

connect vertices in the same face of G∗), we have that tw(G�) = O(emw(G∗)) = O(emw(G′)).

Since, by Lemma 4.1, emw(G′) = O(`′ · tw(G′)) and since `′ = O(`) and tw(G′) = O(tw(G)),

60

we have that tw(G�) = O(` · tw(G)). This concludes the proof of the lemma. �

4.3 A Subexponential-Time Algorithm for C-Planarity

In this section, we describe a divide-and-conquer algorithm for testing the c-planarity of

2-connected c-graphs exploiting cycle separators in planar graphs.

The “conquer” part of our divide-and-conquer uses the following operation on pairs of c-graphs.

Let G1 and G2 be plane graphs on overlapping vertex sets such that the outer face of G1 and

an inner face of G2 are bounded by the same cycle ρ. Merging G1 and G2 constructs a new

plane graph G from G1 ∪G2 as follows. We remove multi-edges (belonging to cycle ρ) and

assign each vertex v a rotation whose restriction to the edges of G2 (of G1) is the same as

the rotation at v in G2 (in G1). This is possible as cycle ρ bounds the outer face of G1 and

an inner face of G2. We say that G is a merge of G1 and G2. Now consider two c-graphs

C1(G1, T1) and C2(G2, T2) such that (i) G1 ∩G2 = ρ is a cycle, (ii) for each vertex v ∈ V (ρ),

vertex v belongs to the same cluster µ both in T1 and in T2, and (iii) cycle ρ bounds the

outer face of G1 and an inner face of G2 (when a choice for their outer faces that satisfies

Condition (ii) of Theorem 4.2 has been made). Merging C1 and C2 is the operation that

constructs a c-graph C(G, T) as follows. Graph G is obtained by merging G1 and G2. Tree

T is obtained as follows. Initialize T to T1. First, for each cluster µ ∈ T2 ∩ T1, we add the

leaves of µ in T2 as children of cluster µ in T , removing duplicate leaves. Second, for each

cluster µ ∈ T2 \ T1, we add the subtree of T2 rooted at µ as a child of the root of T . We say

that C(G, T) is a merge of C1(G1, T1) and C2(G2, T2).

In the “divide” part of the divide-and-conquer, we replace subgraphs of the input by smaller

planar components called cycle-stars that preserve their c-planarity properties. Let G be a

connected plane graph that contains a face whose boundary is a cycle ρ. We say that G is a

61

cycle-star if removing all the edges of ρ makes G a forest of stars; refer to Fig. 4.4c. Also, we

say that cycle ρ is universal for G and we say that a vertex of G is a star vertex of G if it

does not belong to ρ. Clearly, the size of G is O(|ρ|).

For a c-planar c-graph C(G, T) and a cycle separator ρ, we denote by C+
ρ (G+, T +) (by

C−ρ (G−, T −)) the c-graph obtained from C by removing all the vertices and the edges of G that

lie in the interior of ρ (in the exterior of ρ). Consider a super c-graph C ′(G′, T) of C satisfying

Condition (iii) of Theorem 4.2, which exists since C is c-planar. We now give a procedure, which

will be useful throughout the chapter, to construct two special c-planar c-graphs C−(S−,K−)

and C+(S+,K+) associated with C ′ whose properties are described in the following lemma.

Lemma 4.3. C-graphs C−(S−,K−) and C+(S+,K+) are such that:

1. graph S− (S+) is a cycle-star whose universal cycle is ρ,

2. cycle ρ bounds the outer face of S− (an inner face of S+),

3. each star vertex of S− (S+) and all its neighbours belong to the same cluster in K−

(K+), and

4. the c-graph Cout (Cin) obtained by merging C−(S−,K−) and C+
ρ (G+, T +) (by merging

C+(S+,K+) and C−ρ (G−, T −)) is c-planar.

We describe how to construct C−(S−,K−) from C ′ ; refer to Fig. 4.4. The construction of

C+(S+,K+) is symmetric.

First, for each cluster µ such that V (µ) ∩ V (ρ) = ∅, we remove all the vertices in V (µ)

lying in the interior of ρ together with their incident edges. By Observation 1, the resulting

c-graph is still c-planar and c-connected. Also, we remove edges in the interior of ρ whose

endpoints belong to different clusters. Clearly, this simplification preserve c-connectedness.

We still denote the resulting c-graph as C ′ .

62

ρ

(a) C ′

ρ
c1µ

c2µ

c3µ

(b) H

ρ
s1µ

s2µ

s3µ

S−

(c) S−

s1µ
s2µ

s3µ

S−

(d) C∗

Figure 4.4: (a) Super c-graph C′ of C . (b) Each component of the blue cluster µ in H lies inside a
simple closed region. (c) Cycle-star S− corresponding to H. (d) The c-connected c-planar c-graph
C∗ obtained by replacing H with S− in C′ .

Second, consider the c-graph H consisting of the vertices and of the edges of C ′ lying in the

interior and along the boundary of ρ. For each cluster µ and for each connected component

ciµ of µ in H, we replace all the vertices and edges of ciµ lying in the interior of ρ in C ′ with a

single vertex siµ, assigning it to the same cluster µ and making it adjacent to all the vertices

in V (ciµ)∩ V (ρ). Let C∗ be the resulting c-graph. It is easy to see that such a transformation

preserves c-connectedness and planarity. Therefore C∗ is a c-connected c-planar c-graph. By

construction, each vertex v ∈ V (ρ) is adjacent to a single vertex siµ, where µ is the cluster

vertex v belongs to; thus, the vertices and the edges in the interior and along the boundary

of ρ in C∗ form c-graph C−(S−,K−) whose underlying graph S− is a cycle-star satisfying

Properties (1), (2) and (3) of Lemma 4.3. Further, since the subgraph of C∗ consisting of

the vertices and of the edges lying in the exterior and along the boundary of ρ coincides

with C+
ρ (G+, T +), we have that C∗ is a c-planar c-connected super c-graph of Cout. Thus, by

Condition (iii) of Theorem 4.2, Property (4) of Lemma 4.3 is also satisfied.

Let C−∆(R−,J −) (C+
∆(R+,J +)) be a c-graph obtained by augmenting the c-graph C−(S−,K−)

(C+(S+,K+)) of Lemma 4.3 by introducing new vertices, each belonging to a distinct cluster,

and by adding edges only between the vertices in V (S−) (V (S+)) and the newly introduced

vertices in such a way that cycle ρ bounds a face of R− (R+) and all the other faces of R−

(R+) are triangles. From the construction of Lemma 4.3, we also have the following useful

63

technical remark.

Remark 1. The c-graph obtained by merging C−∆(R−,J −) and C+
ρ (G+, T +) (by merging

C+
∆(R+,J +) and C−ρ (G−, T −)) is c-planar.

We now describe a divide-and-conquer algorithm based on Lemma 4.3, called TestCP, that

tests the c-planarity of a 2-connected c-graph C(G, T) and returns a super c-graph C∗(G∗, T)

of C satisfying Condition (iii) of Theorem 4.2, if C is c-planar. See Fig. 4.5 for illustrations of

the c-graphs constructed during the execution of the algorithm.

We first give an intuition on the role of cycle-stars in Algorithm TestCP.

Let C(G, T) be a c-planar c-graph and let ρ be a cycle separator of G. By Lemma 4.3, for

each c-connected c-planar super c-graph C ′ of C , we can injectively map the super c-graph I−

of C−ρ (G−, T −), composed of the vertices of G− and of the edges in the interior and along the

boundary of ρ in C ′ , with a cycle-star S− whose universal cycle is ρ. This is due to the fact that

there exists a one-to-one correspondence between the connected components of I− induced

by the vertices of each cluster in T − and the star vertices of S−. Similar considerations hold

for the super c-graph I+ of C+
ρ (G+, T +). Although the c-planarity of C+

ρ and C−ρ is necessary

for the c-planarity of C , it is not a sufficient condition, as the connectivity of clusters inside ρ

in I− (internal cluster-connectivity) and the connectivity of clusters outside ρ in I+ (external

cluster-connectivity) must also together determine the c-connectedness of C ′ . The role of

cycle-stars S− and S+ in the algorithm presented in this section is exactly that of concisely

representing the internal cluster-connectivity of I− and the external cluster-connectivity of

I+, respectively, to devise a divide-and-conquer approach to test the c-planarity of C .

Outline of the algorithm. We overview the main steps of our algorithm below.

• If n = O(`), we test c-planarity directly, as a base case for the divide-and-conquer

64

recursion. Otherwise, we construct a cycle-separator ρ of G and test whether ρ is a

cluster-separator. If so, C cannot be c-planar (Observation 1), and we halt the search.

• We generate all cycle-stars S−i with universal cycle ρ. A cycle-star S−i represents

a potential connection pattern of clusters inside ρ. For each cycle-star S−i we apply

Procedure OuterCheck to test whether this pattern could be augmented by additional

connections outside ρ to complete the desired cluster-connectivity. That is, we test

whether C+
ρ admits a c-connected c-planar super c-graph whose internal cluster-

connectivity is represented by S−i . To test this, we replace the subgraph G− of G

in C with an internally-triangulated supergraph R−i of S−i to obtain a c-graph C+ and

recursively test C+ for c-planarity. It is important to observe that, the triangulation

step prevents C+ from having saturating edges inside ρ, thus enforcing exactly the

same internal-cluster connectivity represented by S−i (Remark 1). If C+ is c-planar,

the procedure returns a c-connected c-planar super c-graph C+
con of C+. If no cycle-star

passes the test, C is not c-planar by Lemma 4.3. We call all the cycle-stars that passed

this test admissible.

• We then apply Procedure InnerCheck to verify whether the internal-cluster con-

nectivity represented by some admissible cycle-star S−i can actually be realized by

a c-connected c-planar super c-graph of C . For each admissible cycle-star S−i , the

procedure applies the construction of Lemma 4.3 to obtain a cycle-star S+
i representing

the external cluster-connectivity of C+
con. Then, it tests whether C−ρ admits a c-connected

c-planar super c-graph C−con whose external cluster-connectivity is represented by S+
i .

This is done similarly to Procedure OuterCheck, by triangulating the exterior of

ρ and recursively testing c-planarity of a smaller graph. If Procedure InnerCheck

succeeds for any admissible cycle-star S−i , then we can merge the subgraphs of C−con and

of C+
con induced by the vertices inside and outside ρ, respectively, to obtain a c-connected

c-planar super c-graph of C , and we halt the search with a successful outcome. It might

65

C(G, T)

ρ

G+

G−

S−i

ρ

G+
R−i

ρ

G+

C+(G+
i , T +

i)

Gout

R−i

ρ

C+con(H+
i , T +

i)

S+
i

R−i

ρ

R−iR+
i

ρ

R+
i

ρ

G−

C−(G−i , T −i)

Gin

R+
i

ρ

C−con(H−i , T −i)

Gin

Gout

ρ

C∗(G∗, T ∗)

Figure 4.5: Illustrations of all of the c-graphs constructed by Algorithm TestCP.

be the case that C−con has a different internal-cluster connectivity than that represented

by S−i , but this is not a problem, because the different cluster connectivity (which

necessarily corresponds to a different admissible cycle-star) still provides a c-planar

drawing of the whole graph.

• If no admissible cycle-star passes Procedure InnerCheck, C is not c-planar.

It is crucial in this algorithm that ρ be a cycle-separator. Because it is a cycle, no candidate

saturating edges can connect vertices in the interior of ρ to vertices in the exterior of ρ,

as such vertices do not share any face. That is, the interaction between G−ρ and G+
ρ only

happens through vertices of ρ. This allows us to split the instance into smaller instances

recursively along ρ and model the interaction via cycle-stars (by Lemma 4.3 and Remark 1)

whose universal cycle is ρ.

The complete listing of Algorithm TestCP is given on the next page.

1The merging operations are well defined as cycle ρ bounds the outer face of R−
i and an inner face of G+,

as well as an inner face of R+
i and the outer face of G−.

2As C+(G+
i , T

+
i) and C−(G−

i , T
−
i) are 2-connected,TestCP can be recursively applied.

66

Algorithm TestCP(c-graph C(G, T)):

Base case

If |V (G)| = O(`), then we can test C-Planarity for C(G, T) in O(1) time when ` is a constant,

by performing a brute force search to find a subset E′ of the candidate saturating edges of C such

that c-graph C′(G ∪ E′, T) satisfies Condition (iii) of Theorem 4.2.

Recursive step

1. Select a cycle separator ρ of G. If ρ is a cluster-separator, then return NO; otherwise, construct

c-graphs C+
ρ (G+, T +) and C−ρ (G−, T −) as defined in Lemma 4.3.

2. OuterCheck

(a) Construct the set S of all cycle-stars such that, for every S ∈ S, it holds that (i) ρ is

the universal cycle of S, (ii) ρ bounds the outer face of S, and (iii) every star vertex of

S is incident only to vertices of ρ belonging to the same cluster.

(b) For each cycle-star S−i ∈ S:

i. Construct a c-graph C−(S−i ,K
−
i) as follows. First, initialize K−i to the subtree of T

whose leaves are the vertices of S−i . Then, for each star vertex v of S−i , assign v to

the cluster µ ∈ K−i to which all its neighbours belong.

ii. Augment C−(S−i ,K
−
i) to an internally triangulated c-graph C−∆(R−i ,J

−
i) by intro-

ducing new vertices, each belonging to a distinct cluster, and by adding edges

only between vertices in V (S−i) and the newly introduced vertices (that is, no two

non-adjacent vertices in S−i are adjacent in R−i).

iii. Merge C−∆(R−i ,J
−
i) and C+

ρ (G+, T +) to obtain a c-graph C+(G+
i , T

+
i)1.

iv. Run TestCP(C+(G+
i , T

+
i)) to test whether C+(G+

i , T
+
i) is c-planar2.

(c) If no c-graph C+(G+
i , T

+
i) is c-planar, then return NO; otherwise, initialize S ′ as the set

of admissible cycle-stars, i.e., the cycle-stars in S whose corresponding c-graph C+ is

c-planar.

67

3. InnerCheck

(a) For each admissible cycle-star S−i ∈ S ′:

i. Let C+
con(H+

i , T
+
i) be the c-planar c-connected super c-graph of C+ returned by

TestCP(C+(G+
i , T

+
i)) (step 2(b)iv). Apply the construction of Lemma 4.3 to

c-graph C+
con and cycle ρ to obtain a c-graph C+(S+

i ,K
+
i) satisfying Properties (2,

3) of the lemma.

ii. Augment C+(S+
i ,K

+
i) to a c-graph C+

∆(R+
i ,J

+
i) by introducing new vertices, each

belonging to a distinct cluster, and by adding edges only between the vertices in

V (S+
i) and the newly introduced vertices in such a way that cycle ρ bounds an

inner face of R+
i and all the other faces of R+

i are triangles.

iii. Merge C+
∆(R+

i ,J
+
i) and C−ρ (G−, T −) to obtain a c-graph C−(G−i , T

−
i)1.

iv. Run TestCP(C−(G−i , T
−
i)) to test whether C−(G−i , T

−
i) is c-planar2.

v. If 3(a)iv returns YES, then construct a c-planar c-connected super c-graph C∗(G∗, T)

of C(G, T) as follows. Let C−con(H−i , T
−
i) be the c-planar c-connected c-graph

returned by TestCP(C−(G−i , T
−
i)). Remove all the vertices and edges of H−i in

the exterior of cycle ρ, thus obtaining a new c-graph Cin(Gin, Tin) in which cycle ρ

bounds the outer face. Similarly, remove all the vertices and edges of H+
i in the

interior of cycle ρ, thus obtaining a new c-graph Cout(Gout, Tout) in which cycle ρ

bounds an inner face. Finally, merge Cin and Cout to obtain c-graph C∗(G∗, T) and

return YES along with c-graph C∗(G∗, T).

4. return NO if no c-graph C−(G−i , T
−
i), constructed at step 3(a)iii, is c-planar.

Base Case of the algorithm. The base case occurs when C+(G+
i , T

+
i) and C−(G−i , T

−
i) are no

longer smaller than C(G, T).

Observe that, we obtained G+
i (G−i) by merging G+ (G−) and R−i (R+

i) along cycle ρ, which has

size s(n). The size of G+ and G− is bounded by 2n
3 + s(n), while the size of R−i and R+

i is bounded

by 3s(n). Therefore, since cycle ρ is shared by all the mentioned graphs by construction, we have

68

that the size of G+
i and G−i is at most 2n

3 + 3s(n). Thus, with s(n) ≤ 2
√
`n [67], we can set the

base case of Algorithm TestCP when n ≤ 2n
3 + 6

√
`n, that is, n ≤ 324`.

Correctness of the algorithm. We show that, given a 2-connected c-graph C(G, T), Algorithm

TestCP returns YES, which happens when both procedures OuterCheck and InnerCheck

succeed, if and only if C(G, T) is c-planar.

(⇒) Suppose that OuterCheck and InnerCheck succeed for a cycle-star S−ω ∈ S constructed

at step 2a. We show that C(G, T) is c-planar. Consider the c-graph C∗(G∗, T) constructed at

step 3(a)v from C−con(H−ω , T −ω) and C+
con(H+

ω , T +
ω). The proof of this direction follows by the next

claim about C∗ and from Theorem 4.2.

Claim 1. C-graph C∗(G∗, T) is a c-planar c-connected super c-graph of C(G, T).

Proof. Graphs Gin and Gout are planar, as they are subgraphs of H−ω and H+
ω , respectively

(step 3(a)v). By construction, cycle ρ bounds an inner face of Gout and the outer face of Gin.

Therefore G∗, obtained by merging Gin and Gout, is planar. Also, observe that, Gin and Gout are

supergraphs of G− and G+, respectively, therefore graph G∗ is a super graph of G.

We now show that C∗ is c-connected, that is, for each cluster µ ∈ T , graph G∗(µ) is connected.

First, let µ be a cluster in T such that V (µ) lies in the interior of ρ in G. Since C−con(H−ω , T −ω)

is c-connected, we have that H−ω (µ) is connected. Also, V (µ) lie in the interior of ρ in H−ω . By

construction, Gin contains all the vertices and the edges in the interior of ρ, therefore we also have

that Gin(µ) is connected. Hence, G∗(µ) is connected. The proof that graph G∗(µ) is connected, for

each cluster µ in T such that V (µ) lies in the exterior of ρ in G, is analogous.

Then, let µ be a cluster such that V (µ) ∩ V (ρ) 6= ∅. Clearly, if V (µ) ⊆ V (ρ), then G∗(µ) is

connected since both Gin(µ) and Gout(µ) are connected. Otherwise, the following three cases are

possible: either Gin(µ) is disconnected, or Gout(µ) is disconnected, or both Gin(µ) and Gout(µ) are

disconnected.

We show that all the vertices in Gin(µ) and in Gout(µ) are connected in G∗(µ).

69

We first prove that all the vertices in Gin(µ) are connected in G∗(µ).

Consider two connected components c′ and c′′ of Gin(µ). Observe that, by construction, c-graph

C−con(H−ω , T −ω) (step 3(a)v) is a merge of Cin(Gin, Tin) and of C+
∆(R+

ω ,J +
ω). Since C−con is c-connected

and since R+
ω is an augmentation of cycle-star S+

ω such that edges in E(R+
ω) \E(S+

ω) do not have

endpoints in the same cluster, the c-graph C#(G#, T #) obtained by merging Cin and C+(S+
ω ,K+

ω) is

also c-connected. Since C# is c-connected, the vertices of c′ and c′′ are connected via star vertices of

S+
ω and vertices of Gin belonging to cluster µ in G#(µ). Observe that, by construction, c-graph

C+
con(H+

ω , T +
ω) is a merge of Cout(Gout, Tout) and of C−∆(Rω,Jω). Further, S+

ω has been obtained by

applying the construction of Lemma 4.3 to c-graph C+
con(H+

ω , T +
ω) (step 3(a)i) and cycle ρ. Therefore,

each connected component of µ in Gout corresponds to a star vertex of S+
ω . Hence, we have that the

vertices of c′ and c′′ are also connected in G∗ via vertices of Gout and Gin belonging to cluster µ.

Now, we prove that all the vertices in Gout(µ) are connected in G∗(µ).

Consider two connected components c′ and c′′ of Gout(µ). Observe that, as shown above, each

connected component of µ in Gout corresponds to a star vertex of S+
ω . Recall that C# is c-connected.

Therefore, the star vertices of S+
ω corresponding to c′ and c′′ are connected via other star vertices of

S+
ω and vertices of Gin belonging to cluster µ in G#(µ). Hence, the vertices of c′ and c′′ are also

connected in G∗ via vertices of Gout belonging to connected components of µ corresponding to star

vertices of S+
ω and vertices of Gin belonging to cluster µ in G∗(µ). �

(⇐) Suppose that C(G, T) is c-planar. We show that Procedure OuterCheck and InnerCheck

succeed. Since C(G, T) is c-planar, there exists a super c-graph C∗(G∗, T) of C such that G∗ is

planar and C∗ is c-connected, by Theorem 4.2. By using the construction of Lemma 4.3 on c-graph

C∗, we can obtain a cycle-star S− whose universal cycle is ρ that represents the connectivity of

clusters inside ρ in C∗. The proof of this direction follows from the next claim.

Claim 2. Procedures OuterCheck and InnerCheck succeed for S−i = S−.

Proof. Procedure OuterCheck succeeds if, for a cycle separator ρ of G selected at step 1 of

the algorithm, there exists a cycle-star S−i whose universal cycle is ρ such that the corresponding

70

c-graph C+(G+
i , T

+
i), constructed at steps 2(b)i, 2(b)ii, and 2(b)iii of the algorithm, is c-planar.

Recall that, cycle-star S− has the following properties: 1. Cycle ρ is the universal cycle of S− and

bounds the outer face of S−, and 2. for each star vertex v of S−, the neighbours of v belong to the

same cluster µ ∈ K−vertex v belongs to. Since, steps 2a and 2(b)i construct all c-graphs C−(S−i ,K
−
i)

with the above properties, when S−i = S− we are guaranteed to compute c-graph C−(S−,K−). First,

observe that the c-graph obtained by merging c-graphs C−(S−,K−) and C+
ρ (G+, T +) is c-planar,

since S− has been obtained by applying the construction of Lemma 4.3 to a super c-connected

c-planar c-graph C∗ of C . This together with Remark 1 imply that c-graph C+(G+
i , T

+
i) is c-planar.

Thus, the invocation of TestCP on C+(G+
i , T

+
i) at step 2(b)iv will return YES. Hence, Procedure

OuterCheck succeeds.

Procedure InnerCheck succeeds if, there exists a c-graph C−(G−i , T
−
i), constructed at steps 3(a)i,

3(a)ii, and 3(a)iii of the algorithm, that is c-planar. By Theorem 4.2, a c-graph C−(G−i , T
−
i) is

c-planar if and only if there exists a super c-graph C′(G′, T −i) of C−(G−i , T
−
i) such that G′ is planar

and C′ is c-connected. As Procedure OuterCheck succeeds, the c-graph C+(G+
i , T

+
i) corresponding

to S− is c-planar. Therefore, Procedure OuterCheck provides us with a c-planar c-connected

c-graph C+
con(H+

i , T
+
i) (see steps 2(b)iv and 3(a)i) that is a super c-graph of C+(G+

i , T
+
i). Consider

the c-graph C+(S+
i ,K

+
i) constructed at step 3(a)i by applying the construction of Lemma 4.3 to

C+
con. Observe that, the c-graph obtained by merging C+(S+

i ,K
+
i) and C−∆(R−i ,J

−
i) is a c-connected

c-planar c-graph. This is due to the fact that, since R−i is internally triangulated, there exists no

edge in the interior of ρ in H+
i that belongs to H+

i and does not belong to R−i , that is, no candidate

saturating edges connect two vertices in the interior of ρ in C+
con. Since S+

i ⊆ R
+
i , we also have that

the c-graph obtained by merging C+
∆(R+

i ,J
+
i) (constructed at step 3(a)ii) and C−∆(R−i ,J

−
i) is a

c-connected c-planar c-graph. Also, since each of the vertices added to obtain R−i from S− belongs

to a different cluster and since the edges added to internally triangulate S− do not connect vertices

of the same cluster, we have that the c-graph obtained by merging C+
∆(R+

i ,J
+
i) and C−(S−,K−) is

also a c-connected c-planar c-graph.

Let A be the subgraph of G∗ induced by the edges in the interior and on the boundary of ρ in

C∗. Since S− exactly represents the cluster connectivity of A, the c-graph obtained by merging

71

C+
∆(R+

i ,J
+
i) and A is also a c-connected c-planar c-graph. The fact that, such a c-graph is a

super c-graph of C−(G−i , T
−
i) shows that C−(G−i , T

−
i) is c-planar. Hence, Procedure InnerCheck

succeeds. �

We are finally ready to present the main result of the section.

Theorem 4.3. The C-Planarity problem can be solved in 2O(
√
`n·logn) time for n-vertex c-graphs

with maximum face size `.

Proof. Given an n-vertex c-graph C(G, T) with maximum face size `, by Lemma 4.2, we can

construct in linear time a 2-connected, in fact 3-connected, c-graph C′ equivalent to C . Therefore,

we can apply Algorithm TestCP to C′ to determine whether C is c-planar.

We now argue about the running time.

Since G′ is 2-connected and since, by Lemma 4.2, |V (G′)| = O(|V (G)|) and the maximum face size

`′ of G′ is O(`), we can construct a cycle separator ρ of G of size s(n) = O(
√
`n) that separates

the vertices in the interior of ρ from the vertices in the exterior of ρ in such a way that both such

sets contain at most 2n
3 vertices [67]. Also, since all cycle-stars whose universal cycle is ρ have size

O(s(n)) and the augmentations at steps 2(b)ii and 3(a)ii can be done by introducing at most s(n)

new vertices, graphs G+
i (step 2(b)iv) and G−i (step 3(a)iv) have O(2n

3 + O(s(n))) size. Further,

by construction, G−i and G+
i are 2-connected and their maximum face size is `′; thus, the cycle

separators of G−i and G+
i have size bounded by s(|V (G−i)|) and by s(|V (G+

i)|), respectively.

Moreover, observe that each cycle-star S−i ∈ S satisfying the properties described at step 2a can

be constructed in O(s(n)) time. Also, each cycle-star S−i is in one-to-one correspondence with a

non-crossing partition of a set containing s(n) elements. This is due to the fact that each vertex of

ρ is incident to at most a star vertex of S−i and that, by the planarity of S−i , the neighbours of any

two star vertices do not alternate along ρ. The number of all such partitions is expressed by the

Catalan number Cs(n) ≤ 4s(n).

The non-recursive running time f(n) is bounded by the time taken by steps 1 and 3(a)i, that is, O(n)

72

time. In fact, the cycle-separator of an n-vertex graph can constructed in O(n) time [67]. Testing

whether a cycle is a cluster-separator can be done by performing a visit of the graph to detect if

there exist a cluster whose vertices lie inside and outside of ρ, but not along ρ; this can clearly be

done in O(n) time. Finally, applying the construction of Lemma 4.3 to obtain a cycle-star only

requires finding the connected components of each cluster inside (or outside) ρ and their respective

connections to cycle ρ, which can be done in O(n) time by performing a DFS-visit of G− (or G+).

By the above arguments, the running time of Algorithm TestCP is expressed by by the following

recurrence:

T (n) = 2Cs(n)

(
T
(2n

3
+O

(
s(n)

))
+ f(n)

)
(4.1)

Since equation (4.1) solves to T (n) = 2O(
√
`n·logn) for s(n) = O(

√
`n), Cs(n) = 4s(n), f(n) = O(n),

the statement follows. �

In the next section, we show how to adapt algorithm TestCP to obtain an XP algorithm with

parameter h for generalized h-simply nested graphs, which extend simply-nested graphs with

bounded face size.

4.3.1 Generalized h-Simply-Nested Graphs

A plane graph is h-simply-nested if it consists of nested cycles of size at most h and of edges only

connecting vertices of the same cycle or vertices of adjacent cycles; refer to Fig. 4.6. We extend the

class of h-simply-nested graphs to the class of generalized h-simply-nested graphs, by allowing the

inner-most cycle to contain a plane graph consisting of at most 2h vertices in its interior and the

outer-most cycle to contain a plane graph consisting of at most 2h vertices in its exterior.

See [23] for a related graph class, in which the vertices in the interior of the inner-most cycle can

73

ρ

Figure 4.6: A generalized 6-simply-nested graph.

only form a tree, there exist no other vertices in the exterior of the outer-most cycle, and chords are

not allowed for the remaining cycles.

Let G be a generalized h-simply-nested plane graph with n > 5h vertices. We have the following

simple observation about the structure of G; refer to Fig. 4.6.

Observation 2. Graph G contains a cycle ρ with |V (ρ)| ≤ h that separates G into two generalized

h-simply-nested graphs G+ and G− with |V (G+)| ≤ n
2 and |V (G−)| ≤ n

2 such that G+ (G−) does

not contain any vertex in the exterior (interior) of its outer-most cycle (inner-most cycle). Further,

such a cycle can be computed in O(n) time.

By Observation 2, we can use a cycle separator of size at most h in Algorithm TestCP to test the

c-planarity of a c-graph whose underlying graph is a generalized h-simply-nested plane graph G

(instead of a cycle separator of size O(
√
`n), where ` is the maximum face size of G). Observe that,

graphs G+
i and G−i obtained at steps 2(b)iii and 2(b)iii of the algorithm, respectively, also belong

to the family of generalized h-simply-nested plane graphs. Therefore, Observation 2 also holds for

such graphs. Altogether, we obtain the following recurrence relation for the running-time:

T (n) = 2Ch

(
T
(n

2
+O(h)

)
+O(n)

)
(4.2)

74

Equation (4.2) immediately implies the following theorem.

Theorem 4.4. The C-Planarity problem can be solved in nO(h) time for n-vertex c-graphs whose

underlying graph is a generalized h-simply-nested graph.

4.4 An MSO2 formulation for C-Planarity

In this section, we show that the property of a c-graph of admitting a c-planar drawing can

be expressed in extended monadic second-order (MSO2) logic. We use this result and the

fact that graph properties definable in MSO2 logic can be verified in linear time on graphs

of bounded treewidth, by Courcelle’s Theorem [26], to build an FPT algorithm for testing

the c-planarity of embedded flat c-graphs.

First-order graph logic deals with formulae whose variables represent the vertices and edges of a

graph. Second-order graph logic also allows quantification over k-ary relations defined on the vertices

and edges. MSO2 logic only allows quantification over elements and unary relations, that is, sets of

vertices and edges. Given a graph G and an MSO2 formula φ, we say that G models φ, denoted by

G |= φ, if the logic statement expressed by φ is satisfied by the vertices, edges, and sets of vertices

and edges in G. We will apply Courcelle’s theorem not to the underlying graph G of the clustered

planarity instance, but to the supergraph G� of G that includes all the candidate saturating edges

of G. This will allow us to quantify over sets of candidate saturating edges, but in exchange we

must show that G�, and not just G, has low treewidth (Lemma 4.2).

Let H be a graph and let E1, E2 ⊆ E(H). The following logic predicates can be expressed in MSO2

logic (refer, e.g., to [12,27] for their detailed formulation):

� planarH(E1, E2) := the subgraph (V (H), E1 ∪ E2) of H is planar, and

� connH(U,E1, E2) := vertices in U ⊆ V (H) are connected by edges in E1 ∪ E2.

75

Let C(G, T) be a c-graph and let E∗ be the set of all the candidate saturating edges of C . By

Property(iii) of Theorem 4.2, c-graph C admits a c-planar drawing if and only if there exists a super

c-graph C′(G′, T) of C such that G′ is planar and C′ is c-connected. Testing Property(iii) amounts

to determining the existence of a set E+ ⊆ E∗ such that (i) the subgraph G′ of G� obtained by

adding the edges in E+ to G is planar and (ii) graph G′(µ) is connected, for each cluster µ ∈ T .

We remark that in an MSO2 formula it is possible to refer to given subsets of vertices or edges of a

graph, provided that the elements of such subsets can be distinguished from the elements of other

subsets by equipping them with labels from a constant finite set [7]. Therefore, in our formulae

we use the unquantified variables Vi to denote the set of vertices belonging to cluster µi, for each

disconnected cluster µi ∈ T , E∗ to denote the set consisting of all the candidate saturating edges

of C , and EG to denote E(G).

Let c be the number of disconnected clusters in T . We have the formula:

c-planarC(G,T)≡ ∃(E+ ⊆ E∗)
[
planarG�(EG, E

+) ∧
c∧
i=1

connG�(Vi, EG, E
+)
]

It is easy to see that formula c-planarC(G,T) correctly expresses Condition(iii) of Theorem 4.2

only if G admits a unique combinatorial embedding (up to a flip). In fact, if G has more than one

embedding, formula c-planarC(G,T) might still be satisfiable after a change of the embedding, as

formula planarG�(EG, E
+) models the planarity of an abstract graph rather than the planarity of

a combinatorial embedding. We formalize this fact in the following lemma.

Lemma 4.4. Let C(G, T) be a c-graph such that G has a unique combinatorial embedding and let

C�(G�, T �) be the c-graph obtained by augmenting C with all its candidate saturating edges. Then,

C is c-planar iff G� |= c-planarC(G,T).

Since changes of embedding are not allowed in our context, as we aim at testing the c-planarity

of a c-graph given a prescribed embedding, we combine Lemmata 4.2 and 4.4, and then invoke

Courcelle’s Theorem to obtain the following main result.

76

Theorem 4.5. The C-Planarity problem can be solved in f(emw, c)O(n) time for n-vertex

c-graphs with c disconnected clusters and whose underlying graph has embedded-width emw,

where f is a computable function.

Proof. To test that C(G, T) admits a c-planar drawing with the given embedding we proceed as

follows. First, we apply Lemma 4.2 to obtain a c-graph C∗(G∗, T ∗) that is equivalent to C(G, T)

such that G∗ is 3-connected. Note that, the 3-connectivity of G∗ implies that it has a unique

combinatorial embedding (up to a flip) [80]. Then, we construct formula φ = c-planarC∗(G∗,T ∗)

and the super c-graph C�(G�, T �) of C∗ obtained by augmenting C∗ with all its candidate saturating

edges. Finally, we use Courcelle’s Theorem to test whether G� |= φ. The correctness immediately

follows from Lemmata 4.2 and 4.4.

We now argue about the running time. By Lemma 4.2, c-graph C∗(G∗, T ∗) can be constructed in

O(n) time. Let κ be the maximum face size of G∗. The number of candidate saturating edges of C∗

is O(κ2n). By Lemma 4.2, κ = O(`). Hence, we can augment C∗(G∗, T ∗) to obtain C�(G�, T �) in

O(`2n) time.

By Courcelle’s theorem [26], it is possible to verify whether G� |= φ in g(tw(G�), len(φ))O(|V (G�)|+

|E(G�)|) time, where g is a computable function. By Lemma 4.2, |V (G�)| = |V (G∗)| = O(n)

and tw(G�) = emw(G). Also, by the discussion above, |E(G�)| = O(`2n) and, by definition of

embedded-width, ` = O(emw); thus, |E(G�)| = O(emw2n). Further, formula φ can be constructed

in time proportional to its length len(φ), which is O(c). Therefore, the overall running time can be

expressed as f(emw, c)O(n), where f is a computable function. �

4.5 Conclusions and Open Problems

In this chapter, we provide subexponential-time, XP, and FPT algorithms to test C-Planarity of

fairly-broad classes of c-graphs.

77

Several interesting questions arise from this research: (1) Can our results be generalized from flat to

non-flat c-graphs? (2) Is there a fully polynomial-time algorithm to test C-Planarity of c-graphs

whose underlying graph is a generalized h-simply-nested graph? (3) Are there interesting parameters

of the underlying graph such that C-Planarity is FPT with respect to a single one of them

(e.g., outerplanarity index, maximum face size, notable graph width parameters)? (4) Are there

interesting parameters of the c-graph such that C-Planarity is FPT with respect to a single one

of them (e.g., number of clusters, number of vertices of the same cluster incident to the same face3,

maximum distance between two faces containing vertices of the same cluster)?

3This question has also been previously asked by Chimani et al. [19]

78

Bibliography

[1] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In Theory
and Practice of Combinatorics, volume 60 of North-Holland Mathematics Studies, pages 9–12.
North-Holland, 1982.

[2] H. A. Akitaya, R. Fulek, and C. D. Tóth. Recognizing weak embeddings of graphs. In A. Czumaj,
editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 274–292. SIAM, 2018.

[3] P. Angelini and G. Da Lozzo. Clustered planarity with pipes. In S. Hong, editor, 27th
International Symposium on Algorithms and Computation, ISAAC 2016, volume 64 of LIPIcs,
pages 13:1–13:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[4] P. Angelini, G. Da Lozzo, G. Di Battista, and F. Frati. Strip planarity testing for embedded
planar graphs. Algorithmica, 77(4):1022–1059, 2017.

[5] P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and V. Roselli. Relaxing the
constraints of clustered planarity. Comput. Geom., 48(2):42–75, 2015.

[6] P. Angelini, F. Frati, and M. Patrignani. Splitting clusters to get c-planarity. In D. Eppstein
and E. R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, Revised
Papers, volume 5849 of LNCS, pages 57–68. Springer, 2009.

[7] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12(2):308–340, 1991.

[8] V. Arvind, J. Köbler, S. Kuhnert, and Y. Vasudev. Approximate graph isomorphism. In
B. Rovan, V. Sassone, and P. Widmayer, editors, 37th Symp. on Mathematical Foundations of
Computer Science (MFCS), pages 100–111, 2012.

[9] J. C. Athenstädt and S. Cornelsen. Planarity of overlapping clusterings including unions of
two partitions. J. Graph Algorithms Appl., 21(6):1057–1089, 2017.

[10] L. Babai. Graph isomorphism in quasipolynomial time. arXiv preprint arXiv:1512.03547, 2015.

[11] M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity of 1-planarity. In
13th Int. Symp. Algorithms and Data Structures, volume 8037 of Lect. Notes in Comput. Sci.,
pages 97–108. Springer, 2013.

[12] M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings of
graphs with bounded treewidth. In C. A. Duncan and A. Symvonis, editors, GD 2014, volume
8871 of LNCS, pages 210–221. Springer, 2014.

79

[13] T. Biedl. Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report
RRR 13-98, Rutcor Research Report, 1998.

[14] T. Bläsius and I. Rutter. A new perspective on clustered planarity as a combinatorial embedding
problem. Theor. Comput. Sci., 609:306–315, 2016.

[15] J.-D. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting segments. SIAM J.
Comput., 29(5):1401–1421, 2000.

[16] G. Borradaile, J. Erickson, H. Le, and R. Weber. Embedded-width: A variant of treewidth for
plane graphs, 2017.

[17] V. Bouchitté, F. Mazoit, and I. Todinca. Treewidth of planar graphs: connections with duality.
Electronic Notes in Discrete Mathematics, 10:34–38, 2001.

[18] U. S. Census Bureau. Tiger/line shapefiles and tiger/line files. https://www.census.gov/

geo/maps-data/data/tiger-line.html.

[19] M. Chimani, G. Di Battista, F. Frati, and K. Klein. Advances on testing c-planarity of
embedded flat clustered graphs. In C. A. Duncan and A. Symvonis, editors, Graph Drawing
- 22nd International Symposium, GD 2014, Revised Selected Papers, volume 8871 of LNCS,
pages 416–427. Springer, 2014.

[20] M. Chimani, C. Gutwenger, M. Jansen, K. Klein, and P. Mutzel. Computing maximum c-planar
subgraphs. In I. G. Tollis and M. Patrignani, editors, Graph Drawing, 16th International
Symposium, GD 2008, Revised Papers, volume 5417 of LNCS, pages 114–120. Springer, 2008.

[21] M. Chimani and K. Klein. Shrinking the search space for clustered planarity. In W. Didimo
and M. Patrignani, editors, Graph Drawing - 20th International Symposium, GD 2012, Revised
Selected Papers, volume 7704 of LNCS, pages 90–101. Springer, 2012.

[22] F. R. K. Chung. Separator theorems and their applications. In B. Korte, L. Lovász, H. J.
Prömel, and A. Schrijver, editors, Paths, Flows, and VLSI-Layout, volume 9 of Algorithms and
Combinatorics, pages 17–34. Springer-Verlag, 1990.

[23] R. J. Cimikowski. Finding hamiltonian cycles in certain planar graphs. Inf. Process. Lett.,
35(5):249–254, 1990.

[24] S. Cornelsen and D. Wagner. Completely connected clustered graphs. J. Discrete Algorithms,
4(2):313–323, 2006.

[25] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia. C-planarity of
c-connected clustered graphs. J. Graph Algorithms Appl., 12(2):225–262, 2008.

[26] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[27] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[28] G. Da Lozzo, D. Eppstein, M. T. Goodrich, and S. Gupta. Subexponential-time and FPT
algorithms for embedded flat clustered planarity. In WG ’18, LNCS, 2018. To Appear.

80

https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/geo/maps-data/data/tiger-line.html

[29] E. Dahlhaus. A linear time algorithm to recognize clustered graphs and its parallelization. In
C. L. Lucchesi and A. V. Moura, editors, LATIN ’98: Theoretical Informatics, Third Latin
American Symposium, Proceedings, volume 1380 of LNCS, pages 239–248. Springer, 1998.

[30] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized
algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–893,
November 2005.

[31] G. Di Battista and F. Frati. Efficient c-planarity testing for embedded flat clustered graphs
with small faces. J. Graph Algorithms Appl., 13(3):349–378, 2009.

[32] W. Didimo, F. Giordano, and G. Liotta. Overlapping cluster planarity. J. Graph Algorithms
Appl., 12(3):267–291, 2008.

[33] V. Dujmović, D. Eppstein, and D. R. Wood. Genus, treewidth, and local crossing number. In
Proc. 23rd Int. Symp. Graph Drawing and Network Visualization, volume 9411 of Lect. Notes
in Comput. Sci., pages 87–98. Springer, 2015.

[34] Z. Dvořák and S. Norin. Strongly sublinear separators and polynomial expansion. Electronic
preprint arxiv:1504.04821, 2015.

[35] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an algorithmic
lens. In ACM Conf. on Geographic Information Systems (GIS), pages 16:1–16:10, 2008.

[36] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf. Approximate topological matching of
quad meshes. The Visual Computer, 25(8):771–783, 2009.

[37] D. Eppstein, M. T. Goodrich, and D. Strash. Linear-time algorithms for geometric graphs with
sublinearly many crossings. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms,
pages 150–159. Society for Industrial and Applied Mathematics, 2009.

[38] D. Eppstein, M. T. Goodrich, and L. Trott. Going off-road: transversal complexity in road
networks. In ACM Conf. on Geographic Information Systems (GIS), pages 23–32, 2009.

[39] D. Eppstein and S. Gupta. Crossing patterns in nonplanar road networks. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017, pages 40:1–40:9, 2017.

[40] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Math. Hung.,
17(1–2):61–99, 1966.

[41] A. Fabri and S. Pion. CGAL: The Computational Geometry Algorithms Library. In Proc.
17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems, pages
538–539, 2009.

[42] Q. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In P. G. Spirakis, editor,
Algorithms - ESA ’95, Third Annual European Symposium, Proceedings, volume 979 of LNCS,
pages 213–226. Springer, 1995.

[43] R. Fulek. C-planarity of embedded cyclic c-graphs. In Y. Hu and M. Nöllenburg, editors, Graph
Drawing, LNCS 9801, pages 94–106, 2016.

81

[44] R. Fulek, J. Kyncl, I. Malinovic, and D. Pálvölgyi. Clustered planarity testing revisited. Electr.
J. Comb., 22(4):P4.24, 2015.

[45] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic
Discrete Methods, 4(3):312–316, 1983.

[46] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit problem is
NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[47] M. T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. System Sci.,
51(3):374–389, 1995.

[48] M. T. Goodrich, S. Gupta, and M. R. Torres. A topological algorithm for determining how
road networks evolve over time. In Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS 2016, Burlingame, California,
USA, October 31 - November 3, 2016, pages 31:1–31:10, 2016.

[49] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert clustered graphs. In
P. Healy and N. S. Nikolov, editors, Graph Drawing, 13th International Symposium, GD 2005,
Revised Papers, volume 3843 of LNCS, pages 211–222. Springer, 2005.

[50] A. Grigoriev and H. L. Bodlaender. Algorithms for graphs embeddable with few crossings per
edge. Algorithmica, 49(1):1–11, 2007.

[51] M. Grohe. Isomorphism testing for embeddable graphs through definability. In 32nd ACM
Symp. on Theory of Computing (STOC), pages 63–72, 2000.

[52] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. Advances in
c-planarity testing of clustered graphs. In S. G. Kobourov and M. T. Goodrich, editors, Graph
Drawing, 10th International Symposium, GD 2002, Revised Papers, volume 2528 of LNCS,
pages 220–235. Springer, 2002.

[53] A. Hagberg, P. Swart, and D. Schult. Exploring network structure, dynamics, and function
using NetworkX. In Proc. 7th Python in Science Conf., pages 11–15, 2008.

[54] S.-H. Hong and H. Nagamochi. Simpler algorithms for testing two-page book embedding of
partitioned graphs. Theoretical Computer Science, 2016.

[55] V. Jeĺınek, E. Jeĺınková, J. Kratochv́ıl, and B. Lidický. Clustered planarity: Embedded
clustered graphs with two-component clusters. In I. G. Tollis and M. Patrignani, editors, Graph
Drawing, 16th International Symposium, GD 2008, Revised Papers, volume 5417 of LNCS,
pages 121–132. Springer, 2008.

[56] E. Jeĺınková, J. Kára, J. Kratochv́ıl, M. Pergel, O. Suchý, and T. Vyskocil. Clustered planarity:
Small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl., 13(3):379–422, 2009.

[57] A. Karduni, A. Kermanshah, and S. Derrible. A protocol to convert spatial polyline data to
network formats and applications to world urban road networks. Scientific data, 3, 2016.

[58] K. Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. 50th IEEE
Symp. on Foundations of Computer Science, pages 639–648, 2009.

82

[59] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. In Proc. 26th ACM Symposium on Theory of Computing, pages 27–37, 1994.

[60] F. T. Leighton. Complexity Issues in VLSI. Foundations of Computing Series. MIT Press,
Cambridge, MA, 1983.

[61] T. Lengauer. Hierarchical planarity testing algorithms. J. ACM, 36(3):474–509, 1989.

[62] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math.,
36(2):177–189, 1979.

[63] K. Liu, Y. Li, F. He, J. Xu, and Z. Ding. Effective map-matching on the most simplified road
network. In ACM Conf. on Geographic Information Systems (GIS), pages 609–612, 2012.

[64] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for low-sampling-
rate gps trajectories. In ACM Conf. on Geographic Information Systems (GIS), pages 352–361,
2009.

[65] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, 1983.

[66] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic Computation,
60:94–112, 2014.

[67] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput.
Syst. Sci., 32(3):265–279, 1986.

[68] J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, volume 28
of Algorithms and Combinatorics. Springer, 2012.

[69] J. Pach, R. Radoičić, G. Tardos, and G. Tóth. Improving the crossing lemma by finding more
crossings in sparse graphs. Discrete Comput. Geom., 36(4):527–552, 2006.

[70] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427–439,
1997.

[71] G. Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg, 29:107–117,
1965.

[72] B. Rosen and A. Saalfeld. Match criteria for automatic alignment. In 7th Symp. on Computer-
Assisted Cartography (Auto-Carto), pages 1–20, 1985.

[73] A. Saalfeld. Conflation automated map compilation. International Journal of Geographical
Information System, 2(3):217–228, 1988.

[74] L. Savary and K. Zeitouni. Automated linear geometric conflation for spatial data warehouse
integration process. In 8th AGILE Conference on GIScience, 2005.

[75] B. Shumaker and R. Sinnott. Astronomical computing: 1. computing under the open sky. 2.
virtues of the haversine. Sky and Telescope, 68:158–159, 1984.

[76] S. Stahl. The embeddings of a graph – a survey. Journal of Graph Theory, 2(4):275–298, 1978.

83

[77] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters, 6(3):80–82, 1977.

[78] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Mathematical systems theory, 10(1):99–127, 1976.

[79] A. Ventura, A. Rampini, and R. Schettini. Image registration by recognition of corresponding
structures. IEEE Trans. on Geoscience and Remote Sensing, 28(3):305–314, 1990.

[80] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

[81] D. Xiong. A three-stage computational approach to network matching. Transportation Research
Part C: Emerging Technologies, 8(1):71–89, 2000.

[82] M. Zhang. Methods and implementations of road-network matching. PhD thesis, Technical
University of Munich, 2009.

[83] Q. Zhang and I. Couloigner. Automatic road change detection and GIS updating from high
spatial remotely-sensed imagery. Geo-Spatial Information Science, 7(2):89–95, 2004.

84

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Results

	A Topological Algorithm for Road Networks EvolutionThis chapter is included with permission from ACM DBLP:conf/gis/GoodrichGT16.
	Introduction
	Problem Definition
	Prior Related Work
	Our Results

	Our Algorithm
	Labeling Vertices
	Choosing Pairs of Starting Nodes
	Flood-based Conformal Matching

	Experiments
	Preprocessing the Data
	Tuning the Seed-labeling Parameter
	Example Output of Our Algorithm
	Detailed Analysis

	Conclusion

	Crossing Patterns in Nonplanar Road NetworksThis chapter is included with permission from ACM DBLP:conf/gis/Eppstein017.
	Introduction
	Past work
	Nonplanar road networks
	Nearly-planar graphs

	Overview of new results
	The crossing graph
	Empirical experiments
	Theory of networks with sparse crossing graphs

	Preliminaries
	Sparse graph properties
	Classification of nonplanarities

	Experiments
	Hypothesis
	Results
	Analysis

	Theoretical Analysis of Graphs with Sparse Crossings
	Conclusions

	Subexponential-Time and FPT Algorithms for C-Planarity TestingThis chapter is included with permission from Springer degg-sfefcg-conf-17.
	Introduction
	Definitions and Preliminaries
	A Subexponential-Time Algorithm for C-Planarity
	Generalized h-Simply-Nested Graphs

	An MSO2 formulation for C-Planarity
	Conclusions and Open Problems

	Bibliography

