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Impact of Introgression on Adaptation and Range Expansions

Abstract

Gene flow between diverged populations is often deleterious (e.g. due to genetic incompatibil-

ities or local adaptation), but introgression can also be a source of rapid adaptation, especially to

novel niches. My thesis focuses on the evolutionary outcomes of these opposing selection forces on

introgressed ancestry, the repeatability of these outcomes across admixed populations, and the con-

sequences for species niches. I have developed novel population genetics methods to detect selection

in admixed populations, and applied these methods to disentangle how demography and selection

have shaped the evolution and range expansions of two very different species: scutellata-European

hybrid honey bees and highland maize.

For my first dissertation chapter, I conducted a cross-continental comparison of the outcomes

of admixture and selection in scutellata-European honey bees. Scutellata honey bees from South

Africa were introduced to the Americas in the 1950s, but soon escaped, and through interbreeding

with European honey bees, formed a highly successful and invasive hybrid population that spread

at ∼300km/year across the Americas. This is a great system to study the adaptive potential and

the limitations of admixture in facilitating rapid range expansions, with natural replication in North

and South America. For this research, I collected and sequenced 300+ bees from two nearly 1000

km transects, one in California and one in Argentina, to compare ancestry patterns across their

genomes. I found evidence of convergent selection favoring African scutellata honey bee ancestry

at a number of loci in the genome in North and South America. These loci are strong candidates

for contributing to the high fitness and success of scutellata-European hybrid honey bees. Because

these bees are highly defensive, their continued spread is an agricultural and public health concern.

I found parallel clines in genomewide ancestry between continents at similar latitudes, despite much

larger dispersal distances to reach California from the origin of the invasion, evidence that many

loci across the genome are currently preventing spread to temperate zones.

For my second dissertation chapter, I analyzed the outcome of introgression between maize and

its wild highland ‘teosinte’ relative, mexicana, which may have facilitated maize’s range expansion

from the valleys where it was domesticated up to 3000m in the mountains of Mexico. Using a
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novel method that accounts for background patterns of ancestry variance and covariance between

populations (e.g. due to gene flow or shared drift post-admixture), I found strong evidence for

adaptive introgression from mexicana into maize, especially among the highest elevation popula-

tions, consistent with introgression facilitating maize’s colonization of the highlands. I also found

loci (including a newly identified inversion) where selection maintains steep ancestry clines across

elevation. I demonstrated evidence of selection against introgression, removing mexicana ancestry

from near domestication genes and lower recombination regions of the genome (due to linked selec-

tion). One surprising finding is that despite observations of hybrids in the field, and opportunities

for gene flow from locally adapted mexicana that grows side-by-side with contemporary maize, I

found little evidence for recent locally sourced haplotypes genomewide or at loci with high local

introgression. Rather, the majority of introgression is from over 1000 generations ago, and has

subsequently diverged within the maize background and been sorted by selection along an eleva-

tional cline and within individual populations. This work has broader impacts for understanding

the longer term effects of introgression on range expansions and aiding in the discovery of key loci

associated with high-elevation adaptations, which may be crucial for future breeding of maize, a

global staple, under climate change.

Overall, this thesis adds to our knowledge of the role of introgression in range and niche ex-

pansions, and provides in-depth genomic analyses of selection and admixture in two agriculturally-

important species.
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CHAPTER 1

Selection and hybridization shaped the rapid spread of African

honey bee ancestry in the Americas

Erin Calfee1,2, Marcelo Nicolás Agra3, Maŕıa Alejandra Palacio3,4, Santiago R. Ramı́rez1,2, and

Graham Coop1,2

1 Center for Population Biology, University of California, Davis, United States of America

2 Department of Evolution and Ecology, University of California, Davis, United States of America

3 Instituto Nacional de Tecnoloǵıa Agropecuaria (INTA), Balcarce, Argentina

4 Facultad de Ciencias Agrarias, Universidad de Mar del Plata, Balcarce, Argentina

Abstract

Recent biological invasions offer ‘natural’ laboratories to understand the genetics and ecology

of adaptation, hybridization, and range limits. One of the most impressive and well-documented

biological invasions of the 20th century began in 1957 when Apis mellifera scutellata honey bees

swarmed out of managed experimental colonies in Brazil. This newly-imported subspecies, native to

southern and eastern Africa, both hybridized with and out-competed previously-introduced Euro-

pean honey bee subspecies. Populations of scutellata-European hybrid honey bees rapidly expanded

and spread across much of the Americas in less than 50 years. We use broad geographic sampling

and whole genome sequencing of over 300 bees to map the distribution of scutellata ancestry where

the northern and southern invasions have presently stalled, forming replicated hybrid zones with

European bee populations in California and Argentina. California is much farther from Brazil, yet

these hybrid zones occur at very similar latitudes, consistent with the invasion having reached a

climate barrier. At these range limits, we observe genome-wide clines for scutellata ancestry, and

parallel clines for wing length that span hundreds of kilometers, supporting a smooth transition
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from climates favoring scutellata-European hybrid bees to climates where they cannot survive win-

ter. We find no large effect loci maintaining exceptionally steep ancestry transitions. Instead, we

find most individual loci have concordant ancestry clines across South America, with a build-up

of somewhat steeper clines in regions of the genome with low recombination rates, consistent with

many loci of small effect contributing to climate-associated fitness trade-offs. Additionally, we

find no substantial reductions in genetic diversity associated with rapid expansions nor complete

dropout of scutellata ancestry at any individual loci on either continent, which suggests that the

competitive fitness advantage of scutellata ancestry at lower latitudes has a polygenic basis and that

scutellata-European hybrid bees maintained large population sizes during their invasion. To test

for parallel selection across continents, we develop a null model that accounts for drift in ancestry

frequencies during the rapid expansion. We identify several peaks within a larger genomic region

where selection has pushed scutellata ancestry to high frequency hundreds of kilometers past the

present cline centers in both North and South America and that may underlie high-fitness traits

driving the invasion.

Author Summary

Crop pollination around the world relies on native and introduced honey bee populations, which

vary in their behaviors and climatic ranges. Scutellata-European hybrid honey bees (also known

as ‘Africanized’ honey bees) have been some of the most ecologically successful; originating in a

1950s experimental breeding program in Brazil, they rapidly came to dominate across most of the

Americas. As a recent genetic mixture of multiple imported Apis mellifera subspecies, scutellata-

European hybrid honey bees have a patchwork of ancestry across their genomes, which we leverage

to identify loci with an excess of scutellata or European ancestry due to selection. We additionally

use the natural replication in this invasion to compare outcomes between North and South America

(California and Argentina). We identify several genomic regions with exceptionally high scutellata

ancestry across continents and that may underlie favored scutellata-European hybrid honey bee

traits (e.g.Varroa mite resistance). We find evidence that a climatic barrier has dramatically

slowed the invasion at similar latitudes on both continents. At the current range limits, scutellata

ancestry decreases over hundreds of kilometers, creating many bee populations with intermediate
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scutellata ancestry proportions that can be used to map the genetic basis of segregating traits (here,

wing length) and call into question the biological basis for binary ‘Africanized’ vs. European bee

classifications.

Introduction

Diverging lineages often spread back into secondary contact before reproductive isolation is

complete, and so can hybridize. In hybrid zones, multiple generations of admixture and backcrossing

create a natural experiment in which genetic variation is ‘tested’ in novel ecological and genomic

contexts. The mosaic of ancestries in hybrid zones has allowed researchers to uncover the genetic

loci associated with reproductive barriers (e.g. [1,2,3]) and to identify rapidly introgressing high-

fitness alleles (e.g. [4,5,6,7]). One promising way forward is to compare ancestry patterns across

multiple young hybrid zones and test how repeatable the outcome of hybridization is across these

evolutionary replicates.

In this study, we use this powerful comparative framework to better understand the genomic

basis of fitness and range limits of scutellata-European hybrid honey bees, with replicate routes

of invasion into North and South America. The range of the western honey bee (Apis mellifera)

has expanded from Africa, Europe, and western Asia [8] across much of the globe, assisted by

colonialism and the ecological diversity of honey bee subspecies [9]. While the Americas have many

species of native bees and a long cultural history of beekeeping with honey-producing stingless

bees (Meliponini), colonists as early as the 1600s imported European honey bee subspecies for

their own apiculture and agriculture uses [10], setting off the first honey bee invasion of the Amer-

icas [11]. Through a combination of human-assisted migration and swarming, European honey

bees spread across the continent and founded feral populations [10]. Then in 1957, swarms from a

newly-imported honey bee subspecies from southern and eastern Africa, Apis mellifera scutellata,

escaped from an experimental breeding program in Brazil and rapidly dispersed. Widely success-

ful, scutellata honey bees both out-competed and hybridized with European-ancestry populations,

creating a rapidly advancing scutellata-European admixed population that expanded north and

south across the Americas at 300-500 km/year [12].
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Colonies of scutellata-European hybrids are likely to respond more strongly to disturbances than

colonies with European ancestry (measured as number of stings per minute, reduced time to sting,

and longer pursuit distances [13,14,15]). The spread of these more defensive bees (sensationalized

as ‘killer bees’, see critiques [16,17,18,19]) have created new challenges for beekeepers and public

health [16,20]

Control efforts have been largely unsuccessful in slowing the invasion or preventing the spread of

scutellata ancestry into commercial colonies [12,16]. However, even without intervention, scutellata

ancestry is unlikely to outcompete European ancestry in the coldest regions of the Americas because

scutellata-European hybrid honey bees from the neotropics have low overwinter survival in climates

where European bees thrive [21,22]. Models based on winter temperatures and the physiological

cost of thermo-regulation predict northern range limits for the invasion that vary from the Central

Californian Coast [23, 24] up to the border with Canada [25]. Thus, the expected impact of

scutellata ancestry on agriculture and queen bee production in the United States is still poorly

defined. Broad surveys show that scutellata-like mtDNA and phenotypes are common in northern

Argentina and the southern US, and drop off towards more temperate latitudes, indicating that the

rapid spread of these traits has dramatically slowed, if not stopped, on both continents [23,26,27,

28,29,30,31]. However, we lack a genome-wide view of the range limits of scutellata ancestry and

do not know whether individual high-fitness alleles have already introgressed into higher latitudes.

Previous genomic work on the invasion has shown that scutellata-European hybrid honey bees

are a genetic mixture of three major genetic groups: A from Africa, C from eastern Europe and

M from western Europe [32,33,34,35,36,37]. Historical sources indicate that the A ancestry is

from A. m. scutellata [38,39], while both M and C ancestries are mixtures of multiple subspecies

imported from Europe, e.g. A. m. ligustica (C), A. m. carnica (C), A. m. mellifera (M), and A. m.

iberiensis (M) [10]. Many names have been used previously to refer to scutellata-European hybrids

in the literature, including ‘African honey bees’, ‘African hybrid honey bees’, or ‘Africanized honey

bees’, and the ambiguous acronym ‘AHB’, with these names being used to describe bees identified

as having scutellata ancestry on the basis of behavior, morphology, mtDNA, or a range of scutellata

autosomal ancestry. Given the wide range of scutellata-European ancestry that we find in this study,

and that A. m. scutellata is only one of at least 10 ecologically diverse Apis mellifera subspecies
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native to Africa [38], we will simply use the label scutellata-European hybrids for individuals whose

autosomal genome is comprised of a mixture of these ancestries.

While the key genes remain unknown, scutellata-European hybrid honey bees diverge from

European-ancestry bees on a number of traits that may have given them a selective advantage

during the invasion: they have higher reproductive rates (including faster development times,

proportionally higher investment in drone production and more frequent swarming to found new

colonies [12]), they have higher tolerances to several common pesticides [40], and they prove less

susceptible to Varroa mites, a major parasite [41, 42, 43, 44, 45]. Population monitoring studies

show that Varroa mites are a strong selective force in the wild and that mite infestations in the

1990s likely contributed to the rapid genetic turnover of feral nest sites from European to scutellata-

European hybrid colonies in Arizona and Texas [28, 29, 36]. European ancestry may have also

contributed to the success of the invasion; a recent study of scutellata-European hybrid bees in

Brazil revealed some European alleles at exceptionally high frequency, but this work was under-

powered to detect high-fitness scutellata alleles due to elevated genome-wide scutellata ancestry

(84%) in the Brazilian population [37].

There are also a number of candidate traits that distinguish scutellata-European hybrid honey

bees from European bees and plausibly contribute to a climate-based range limit for the invasion.

Smaller bodies [46] and higher metabolic rates [25], for example, could give honey bees with high

scutellata ancestry a competitive advantage in the tropics but come at a cost in cooler climates [24].

In addition to physiological traits, heritable behaviors may also contribute to fitness trade-offs:

scutellata-European hybrid bees from Venezuela to Arizona preferentially forage for protein-rich

pollen (vs. nectar), which supports rapid brood production, but risks insufficient honey stores to

thermo-regulate over winter [24,47,48].

Other traits associated with scutellata ancestry are of central importance to beekeepers, but

their role in the invasion is less clear. Stronger colony-defense behaviors have been reported across

much of the range of scutellata-European hybrid honey bees [16,39] (with some local exceptions,

see [49,50]). The fitness consequence of these behaviors will depend on the costs of both predation

and defense. Similarly, more frequent absconding (leaving a nest site to find another) is undesirable

in managed apiaries, but may be adaptive in some environments, e.g. to escape predators or local
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resource shortages [51]. Selection for these traits is likely to vary across the range of scutellata-

European hybrid honey bees, depending on the natural and human-mediated environment.

Here we conduct the first comparative study of the scutellata-European hybrid honey bee

invasion in North and South America. First, we use broad geographic sampling and whole genome

sequencing to map the present-day ancestry clines on both continents, and assess the evidence for a

climatic barrier preventing the further spread of scutellata ancestry. Next, we use genetic diversity

within scutellata ancestry to study the shared bottleneck within and amongst populations due to

the rapid expansion during the invasion. Finally, we develop a null model that includes recent drift

and use this model to test for outlier loci that may underlie high-fitness scutellata-European hybrid

honey bee traits and climatic barriers.

Results

To survey the current geographic distribution of scutellata ancestry in the Americas, we sampled

and sequenced freely foraging honey bees across two latitudinal transects, one in California and

one in Argentina, formed from the northern and southern routes of invasion out of Brazil (Fig

1.1). We generated individual low-coverage whole-genome sequence data for 278 bees, and added

to this data set 35 recently published high-coverage bee genomes from 6 additional California

populations sampled 3-4 years prior [34]. We inferred genome-wide ancestry proportions for each

individual using NGSAdmix [52] assuming a model of 3 mixing populations, which clearly map to

the scutellata (A), eastern European (C), and western European (M) reference panels (Figs 1.1 and

1.9). We leveraged the fact that admixed scutellata-European honey bee populations were formed

through a recent mixture of known genetic groups to infer the mosaic of A, C and M ancestry tracts

across the genome of each bee. For each population, we applied a hidden Markov model that jointly

infers the maximum likelihood single-pulse approximation for the generations since mixture and

posterior probabilities for local ancestry state, based on read counts from low-coverage sequence

data (ancestry hmm [53]). The average local ancestry estimates within individuals agree closely

with the NGSAdmix genome-wide ancestry estimates (Fig 1.10, Pearson’s r ≥ 0.985), with the

HMM estimating slightly higher minor ancestry for low admixture proportions, likely as a result of

some miscalled blocks. Time estimates vary by population, with a median of 47.6 generations in
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the 62 years since the initial dispersal of scutellata queen bees out of São Paulo (see Fig 1.12 for all

time estimates). In this section, we first focus on the distribution of genome-wide ‘global’ ancestry

patterns across the two clines, which we will later compare to the variation in local ancestry at

individual loci.

We observe wide hybrid zones mirrored in North and South America. In Argentina, we find

the cline in ancestry spans nearly 900km, from 77% scutellata (A) ancestry in the north to less

than 5% to the south in Buenos Aires Province. The current geographic range of A ancestry in

South America is broadly consistent with prior studies using a smaller number of genetic markers

(e.g. [26,27,35,59]), though the geographic and genetic resolution of these studies is too limited

for detailed comparison. In North America, we find that honey bees in California have up to 42%

A ancestry in the south, tapering down to approximately 0% in Davis, our northernmost sampling

site. In comparison, earlier extrapolations based on mitochondrial surveys may have somewhat

overestimated genome-wide A ancestry in California (e.g. 65% of foraging bees in San Diego

County [30] and 17% in Monterey County [31] carry A mtDNA haplotypes). We also find excess

A-like mtDNA diversity in California. While this finding is potentially consistent with scutellata

maternal lines being favored during the expansion into Southern California, this pattern is not

strongly replicated in South America and even in North America, A mitochondria do not appear

to have introgressed far past the northern range limit for nuclear A ancestry (Fig 1.33).

Alongside our genomic cline, we find a corresponding phenotypic cline in worker fore wing size:

closer to the equator, sampled bees have increasing A ancestry and shorter wings (Fig 1.2). By

fitting a linear model to predict wing length from genome-wide ancestry, we find that A ancestry

can explain a difference of -0.72mm, approximately an 8% reduction in wing length (P = 3.65 ×

10−23, R2 = 0.31, n = 269; see Fig 1.14). We tested for a main effect and an interaction term

for the South American continent, and found no significant differences in wing length (P = 0.81)

or its association with ancestry (P = 0.86) between the two clines. Thus, in contrast to the rise

of dispersal-enhancing traits in other recent invasions (e.g. [60, 61, 62, 63]), we see no evidence

of a bias for longer wings at larger dispersal distances (California). Genetic crosses have shown

that wing length differences between ancestries have a genetic basis [15] and the wing length

patterns we observe here are consistent with expectations of an additive polygenic cline based on
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Figure 1.1. Spread of scutellata ancestry in the Americas. Map of hybrid
zones in California and Argentina, with cartoon arrows depicting the two routes of
scutellata-European hybrid honey bee invasion out of Rio Claro, São Paulo, Brazil.
Dates of first occurrence along the routes of invasion are from [12] [54] and [55],
with approximate GPS locations extracted from google maps. Insets zoom in on
each hybrid zone to show the mean GPS coordinates for each sampled population.
Sampling spanned 646km in California and 878km in Argentina in the north-south
direction. Genome-wide scutellata (A), eastern European (C), and western Euro-
pean (M) ancestry inferred using NGSAdmix for each bee are shown in a bar chart
at the bottom, where each vertical bar is one bee and colors indicate proportion
ancestry. Populations are arranged by latitude, with samples closest to Brazil on
the right. Light fading indicates that a bee comes from the previously published
California data set [34] and was collected in the field 3-4 years prior to the bees from
this study. These earlier California samples include one island population, Avalon
(Catalina Island), indicated by a yellow triangle. Bees from Avalon have majority
M ancestry, in contrast to all mainland California bees which have predominantly
A and C ancestry. The underlying maps were created by plotting geographic data
from the CIA World DataBank II [56] in R [57] using ggplot [58].
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genome-wide ancestry alone (Fig 1.2). However, these phenotypic clines could alternatively be

caused purely by developmental plasticity or sorting of within-ancestry genetic variation along a

latitudinal gradient. Preliminary evidence that other factors may contribute to the wing length

clines observed here comes from a 1991 survey showing that wing length was positively correlated

with latitude in California’s feral bee populations before the reported arrival of scutellata-European

hybrid honey bees [64]. From field-based sampling alone, it remains unclear what portion of the

observed phenotypic clines are ancestry-driven. We performed admixture mapping to test for

genetic loci underlying ancestry-associated differences in wing length and did not identify any loci

meeting genome-wide significance (Fig 1.16).

Our genomic results indicate that the geographic distribution of scutellata ancestry is presently

constrained by climatic barriers, not dispersal. Historical records document an initial rapid spread

of scutellata-European hybrid honey bees from their point of origin in Rio Claro, São Paulo, Brazil,

followed by the formation of seemingly stable hybrid zones at similar latitudes in North and South

America. Yet to reach this same latitude, northern-spreading bees had to travel more than five

times the distance as southern-spreading scutellata-European hybrid honey bee populations.

To more precisely infer the current shape and position of the two hybrid zones, we fit a classic

logistic cline model to inferred genome-wide individual scutellata ancestry proportions [65,66,67]:

(1.1) Ai =
M

1 + e−b(xi−c)
,

where Ai is the genome-wide scutellata ancestry proportion inferred for the ith individual bee,

xi is their latitude, M is the asymptotic maximum scutellata ancestry approaching the equator,

which is set at 0.84 (i.e. frequency in Brazil [37]), c is the cline center, and w = |4/b| is the cline

width (i.e. the inverse of the steepest gradient at the center of the cline).

Each degree latitude corresponds to approximately 111km and presents a natural way to com-

pare cline position and shape between the two zones. We fit this model in R using non-linear

least squares (although maximum likelihood or Bayesian estimation are generally preferred when

the errors can be fully parameterized, here least squares allows for unknown drift variance in ad-

dition to binomial sampling variance). We find that the two hybrid zones have strikingly similar
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Figure 1.2. Clines across latitude. Genome-wide ancestry estimates (top) and
fore wing lengths (bottom) for individual bees, plotted across absolute latitude and
colored by continent. Shading indicates the 95% confidence intervals for loess curves
of the raw data. We also overlay several model-fitted clines: In the top panel, solid
curves show the North and South American logistic cline fits for ancestry predicted
by latitude, with dotted vertical lines marking the latitude at which bees have
predicted 50% scutellata (A) ancestry, based on these curves. Samples from Avalon
are displayed as orange triangles; Catalina Island has a distinct ancestry composition
from mainland California populations and low A ancestry for its latitude. In the
bottom panel, dashed curves show the expected phenotypic cline if wing lengths
were fully determined by the clines in ancestry depicted in the top panel. To get
these predicted wing lengths, we used the mean ancestry cline as input to the best-
fit linear model between ancestry and wing length. Note that the y-axis for wing
lengths is reversed (smaller wings are higher) to simplify visual comparisons between
the top and bottom panels.
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positions (Fig 1.2), with cline centers that differ by less than half a degree (32.72°N vs. 32.26°S),

and no statistically significant difference in cline steepness. To better understand the mechanisms

underlying this parallelism between continents, we tested four possible explanatory climate vari-

ables to see if we could identify a better predictor for scutellata ancestry across our two zones than

latitude: Mean annual temperature (°C), mean temperature of the coldest quarter (°C), minimum

temperature of the coldest month (°C), and mean annual precipitation (cm) (downloaded from

WorldClim.org [68]). We fit clines for both hybrid zones jointly using these four environmental

variables in turn as predictors in Eq 1.1 in place of xi, and compared these results to fits based on

absolute latitude and, as a neutral dispersal model, distance from São Paulo.

We find that latitude is the best individual predictor of genome-wide global ancestry, and mean

annual temperature the second-best predictor, as assessed by AIC (see Table 1.2). While latitude

provides the best-fitting cline, we find it unlikely that latitude or daylight per se is the relevant

selection gradient. Temperature and precipitation are closely coupled to latitude across our transect

in Argentina, so nearly all of our resolution to disentangle latitude from environmental gradients

comes from micro-climates within California, and for precipitation, the contrast between continents

(Fig 1.13). However, we failed to identify specific environmental variables that may be driving the

relationship with latitude, either because we did not include the relevant environmental variable(s)

or because the climate data does not reflect the selection environment of sampled bees, e.g. due to

mismatches in scale or selective habitat use by bees within a foraging range.

Despite limited resolution on the climate variables driving the latitudinal gradient, our com-

parative framework allows us to firmly reject a neutral model based on distance from the point of

introduction in Brazil, because a single dispersal rate cannot generate predictions that simultane-

ously fit the clines in North and South America well (see Table 1.2).

In addition to these global ancestry estimates, we measure variation in local ancestry frequencies

across the genome, which are informative about recent evolutionary history. Scutellata ancestry

frequencies at individual loci will vary around their genome-wide mean due to finite sampling,

but also evolutionary processes, including drift and selection. If two populations have shared gene

flow post-admixture, at loci where one population has higher than average scutellata ancestry

frequencies, the second population will also tend to have higher than average scutellata ancestry.
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We capture this genetic signature in an ancestry covariance matrix, where each entry represents how

much a pair of populations co-deviate in locus-specific scutellata ancestry away from their individual

genome-wide means (Fig 1.3). We expect ancestry co-variances to build up along each route of the

scutellata-European hybrid honey bee invasion as a result of shared drift post-admixture. Indeed,

we do observe positive ancestry covariances for nearby populations within each hybrid zone. We

attribute this pattern to shared demographic history, but also note that weak selection for a specific

ancestry at many loci genome-wide could also generate these positive covariances. Unexpectedly,

we find that populations in more temperate North and South America, i.e. at opposite ends of

the expansion, have higher ancestry correlations with each other than with populations situated

between them. This robust signal is a general pattern that holds true on average across chromosomes

(Fig 1.21), and so isn’t driven by individual outlier loci, and persists across recombination rate bins

(Fig 1.22). These similar ancestry patterns in geographically distant populations are potentially

consistent with a genome-wide signature of convergent selection to cooler climates or convergent

selection by beekeepers at higher latitudes. Another possible explanation is recent long-distance

migration (e.g. international bee exports); however, we investigated genetic covariance patterns

within A, C, and M ancestries and found no clear evidence of gene flow between the high-latitude

cline endpoints (see methods).

Genetic basis of the climate barrier. To identify loci that may be contributing to a cli-

mate barrier, we looked for loci with steeper than expected ancestry clines across latitude in South

America. We estimated best-fitting logistic ancestry clines at ∼542k single nucleotide polymor-

phisms (SNPs) across the genome by re-fitting eqn. 1.1, where xi is the population latitude and

Ai is the population-mean local scutellata ancestry at a focal SNP, and the maximum scutellata

ancestry M is 1. Similar cline models have been fit using likelihood methods under some sim-

plifying assumptions about the form of the errors (e.g. [66, 67]). We instead use non-linear least

squares to fit cline parameters without specifying a full error model and then quantify the effects of

more complex unmodeled errors (including ancestry variances and covariances) through simulation.

We simulated data for 100,000 independent loci undergoing drift, which we used to estimate the

expected distribution of neutral clines and calculate false-discovery rates. For each simulated lo-

cus, we independently drew a vector of population ancestry frequencies from a multivariate-normal
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Figure 1.3. Correlated ancestry across populations. Shared drift in ancestry
shown as an ancestry correlation matrix (see methods). Populations are ordered by
latitude and diagonals are left blank (within-population correlations = 1). Low and
high A ancestry regions of each hybrid zone are defined relative to the estimated
latitude of the cline center for genomewide ancestry. About half of the sampled
South American populations, and all of the North American populations, fall in the
‘low A’ half of their respective hybrid zones.

model of drift, A ancestry ∼ MVN(α,K), where α is the vector of population mean genome-wide

scutellata (A) ancestry proportions, and the K matrix measures the expected variance and covari-

ance in ancestry away from this mean (Fig 1.3), and is empirically calculated using all loci across

the genome (see methods for additional details). We limit the analysis of clines at individual loci to

South America where, unlike North America, we have samples spanning both halves of the hybrid

zone to inform parameter estimates. While cline analyses can be used to identify both adaptive in-

trogression and barriers to introgression (by analysing cline center displacement in addition to cline

steepness [69]), here we focus on barrier loci and approach identifying positively selected loci using

alternative methods that can be applied to both hybrid zones (see “Scan for ancestry-associated

selection”).
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We find no evidence to support a simple genetic basis or environmental threshold to the climate

barrier. Ancestry clines in South America are reasonably concordant across most SNPs; 95% of cline

centers fall within a 1.6 degrees latitude range, with a long tail that appears to be due to adaptively

introgressing loci (identified as outliers below, see Fig 1.17). We find no strongly selected individual

barrier loci that exceed our 5% false-discovery-threshold for cline steepness, set by MVN simulation

of background ancestry patterns. On average, individual SNP clines in South America are 960km

wide (w = 8.65 degrees latitude), and the steepest cline in the genome still takes approximately

555km (w = 5 degrees latitude) to fully transition from scutellata to European ancestry. These

wide clines, coupled with the evidence for parallel genome-wide clines in North and South America,

are consistent with selection tracking smooth climate transitions over broad geographic regions

rather than a discrete environmental step. Furthermore, concordance in clines across SNPs in

South America suggests that many loci are associated with climate-based fitness trade-offs. Under

a polygenic climate barrier, we expect locally-adapted loci to be found across the genome but

steeper clines to be more commonly maintained in regions with low recombination rates. This is

because selected loci create stronger barriers to gene flow when there is tight genetic linkage than

when selection acts on each locus independently [70]. We test this theoretical prediction in South

America and find enrichment for steeper clines in regions of the genome with low recombination.

The empirical top 5% steepest clines in South America are found on all 16 chromosomes and are

enriched in regions of the genome with low recombination. Steep clines comprise 12.7% CI95[8.4%-

16.5%] of loci from the lowest recombination rate quintile vs. only 3.3% CI95[3.0%-3.6%] of loci from

the highest recombination rate quintile. The average effect of recombination is a 50km decrease

in mean cline width between the highest and lowest recombination rate quintiles (∆b = 0.028,

[0.017-0.038]).

Diversity and rapid expansion. From their point of origin in Brazil, scutellata-European

hybrid honey bees invaded much of the Americas in less than 50 years [39]. Such rapid expansion

can lead to high rates of drift in the continually bottle-necked populations at the front of the wave

of expansion, i.e. those populations sampled furthest from Brazil. To test this expectation, we

calculated nucleotide diversity, π, for each sampled population (Fig 1.4). Despite much further

distances traveled to the northern hybrid zone, we do not observe a more pronounced bottleneck
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in California than in Argentina, suggesting that the expanding wave of scutellata-European hybrid

honey bees maintained large population sizes (and did not experience strong ’allele surfing’ [71]).

Figure 1.4. Allelic diversity (π) across the hybrid zones. For each popula-
tion, we estimated allelic diversity genome-wide and within high-confidence homozy-
gous ancestry states. Horizontal lines show the genome-wide diversity within the
reference panels. Vertical lines show the 95% confidence interval for each estimate,
based on a simple block bootstrap CI using 1cM blocks. For several populations
in the tails of the cline, we do not show A and/or C within-ancestry estimates be-
cause these populations have too few high-confidence ancestry blocks for accurate
estimation (see methods). The low diversity outlier at 33.34 degrees latitude in
the N. American cline is the 2014 Avalon sample, which comes from a small island
population off the coast of California.

Scutellata-European hybrid bee populations are consistently more diverse than reference bee

populations because they are genetic mixtures of these diverged groups. We do, however, observe

a drop in diversity in the tails of both hybrid zones starting at approximately 34.5°latitude from

the equator. We tested whether this drop in diversity is necessarily the result of a bottleneck or

can be explained solely by a cline in mean ancestry composition from more diverse scutellata and

highly admixed genomes to less diverse European stock. To test this alternative, we predicted

population diversity from a simple weighted average of A, C, and M reference allele frequencies and
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the observed population ancestry proportions. We find that based on ancestry composition alone,

we do expect a drop in diversity across the hybrid zones, although the observed drop is slightly less

than our predictions (Fig 1.32).

Levels of diversity within European C and M ancestries are similar to the reference panels and

stable across latitude, evidence that a diverse population of European ancestry bees hybridized with

scutellata bees as they expanded away from Brazil. We also find high diversity within A haplotypes

in both hybrid zones, again consistent with no bottleneck associated with the rapid expansion.

However, the diversity in the A ancestry background does decline in populations furthest from

the equator, which is consistent with either strong filtering of scutellata haplotypes by selection or

stochastic haplotype loss due to small scutellata-ancestry population sizes in the tails of the clines.

Scan for ancestry-associated selection. We identified loci with unusually high A ancestry

frequencies, a signal of natural selection, using our MVN simulations of background covariance

in ancestry to set a false discovery rate. The ancestry covariances are important to account for

when testing for putative selected loci that depart from genome-wide background ancestry patterns,

because deviations in ancestry are correlated across populations. Although many population pairs

have only small positive ancestry covariances, the cumulative effect on the tails of the distribution

of A ancestry frequencies in the larger sample is striking. These covariances can confound outlier

tests for selection which only consider variance from sampling (e.g. Poisson-binomial, e.g. [37]).

We find that by incorporating background patterns of shared drift (or weak genome-wide selection)

into our null model, we can match the bulk of the observed ancestry distributions across the genome

(Fig 1.5).

Loci important to the successful invasion of scutellata-European hybrid honey bees are likely to

have an excess or deficit of scutellata ancestry across both continents. Thus, we tested separately

for high and low A ancestry outliers on each continent, and then identified overlapping outliers

between the two hybrid zones. We find evidence of selection favoring scutellata ancestry at 0.34%

of loci in N. America and 0.13% of loci in S. America, across 14 chromosomes (Fig 1.6A). From

these outliers, we find 13 regions with an excess of A ancestry in both hybrid zones at less than

a 10% false-discovery-rate (top right corner of Fig 1.5). The majority (11/13) of shared outliers

co-localize within a ∼1.5Mb region on chromosome 1, but within this region outliers separate into
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Figure 1.5. Local ancestry outliers compared across hybrid zones. We plot
mean A ancestry frequency in North vs. South America for 425k SNPs across the
honey bee genome. SNPs are binned for visualization, and colored by the number of
SNPs within each hexagon. The orange ellipse shows the approximate 99% highest
posterior density interval (HPDI) based on the full MVN model, which accounts for
drift in ancestry both within and between populations. Using the same axes, we
show the marginal histograms of A ancestry for each continent separately (top and
right panels). Imposed on these histograms we plot density curves for 3 possible null
distributions for ancestry frequencies: the full MVN model, a variance-only MVN
model which only accounts for drift within populations, and a Poisson binomial
model which only includes sampling variance. Most of the genome is consistent
with neutrality under a MVN normal model of drift (98.6% of SNPs fall within the
orange ellipse), but there are also some clear outliers. SNPs in the top right, with
higher than expected A ancestry proportions in both hybrid zones, are our best
candidates for loci underlying adaptive scutellata-ancestry associated traits. Note:
While SNPs are thinned for LD, large outlier regions span many SNPs, which creates
the streak-like patterns in the scatterplot.
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multiple distinct peaks (Fig 1.6B). One way a cluster of A ancestry peaks could form is if favored

scutellata alleles experience additional indirect selection from being in linkage disequilibrium with

other favored scutellata alleles at nearby loci, thereby increasing the total effective selection in

a region [70]. While ancestry-informative markers (AIMs) with fixed or nearly fixed differences

between scutellata (A) and both European (C & M) ancestries are relatively rare, we were able to

confirm the highest A peak within this cluster using AIMs outside of the local ancestry inference

SNP set (Fig 1.27). A alleles at this main peak appear to have introgressed to high frequency

hundreds of kilometers past the hybrid zone centers in both North and South America, but not

reached fixation in any population (Fig 1.7). The rapid rise and slow fixation of A ancestry at

this locus is potentially consistent with dominant fitness benefits. How far these A alleles have

introgressed past the present hybrid zones is currently unknown because they exceed our range of

sampling.

Our goal was to identify regions of the genome where high fitness is broadly associated with

scutellata ancestry, but an alternative explanation for high A ancestry at a locus is that a very

recent adaptive mutation just happened to fall on an A haplotype, initiating a classic ‘hard sweep’.

For shared high A-ancestry outlier regions, we distinguished between these two scenarios using

population differentiation (FST) within A ancestry. We analyzed differentiation across the large

cluster of shared high A-ancestry outlier peaks on chromosomes 1 and across a smaller region on

chromosome 11 that contains the other two high A ancestry outliers shared between continents.

We did not find high allelic differentiation between North and South American A ancestry tracks

and the scutellata A reference panel from Africa (Figs 1.29 and 1.30), suggesting that scutellata

ancestry in general, and not one particular haplotype, was favored by natural selection at these

loci.

We used previous literature and gene orthologs to identify possible adaptive functions for regions

of the genome where selection has favored scutellata ancestry. There are 3 major quantitative

trait loci (QTLs) associated with defense behaviors (e.g. stinging) in genetic crosses of defensive

scutellata-European hybrid honey bee colonies and low-defense European colonies [15, 72], none

of which overlap any signatures of selection from this study. No studies have mapped the genetic

basis of elevated Varroa defense in scutellata-European hybrid (vs. European) bees, but we were
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Figure 1.6. Genomic location of ancestry outliers. (A) Mean scutellata (A)
ancestry in each hybrid zone at SNPs across the genome, with outliers colored by
their false-discovery-rate. Genome-wide mean A ancestry in each zone is indicated
with a dashed line. Shared peaks for high A ancestry are seen on chromosomes 1 and
11; there are no shared peaks for low A ancestry. (B) Zoomed in view of cluster of
shared high A ancestry outliers on chromosome 1, with European ancestry separated
into eastern (C) and western (M) subtypes. Genome-wide mean frequencies for each
ancestry are shown with colored lines. Outlier regions meeting a 10% FDR for high
A ancestry are shaded in grey. Shared outliers between continents overlap between
the top and bottom panels. (C) Zoomed in view of the high M European ancestry
outlier region found in South America. Outlier regions for low A ancestry (<10%
FDR) are shaded in grey. Note: The x-axis scale differs between plots.

able to compare our results to quantitative trait loci (QTLs) associated with anti-Varroa hygiene

behaviors [73, 74, 75] and defensive grooming [76] more generally. The cluster of peaks for high

shared A ancestry on chromosome 1 overlaps a putative QTL associated with removal of Varroa-

infested brood [75], but there are a number of large QTLs in the genome. A total of 104 genes
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Figure 1.7. Ancestry clines at outlier SNPs. At two top outlier SNPs, we
show the clines for mean population scutellata (A) ancestry across latitude in North
(top) and South (bottom) America. To the left, we show the ancestry cline for the
SNP with the highest A ancestry in the combined sample, located within the top
peak on chromosome 1 for high shared A ancestry across continents. To the right, we
show the ancestry cline for the SNP with the lowest A ancestry in South America,
located within the large outlier region on chromosome 11 for high M and low A
ancestry. Genome-wide mean local ancestry calls for each population are shown for
comparison as black circles.

overlap high A ancestry outlier peaks. Predicted functions for these genes (primarily based on

fly orthologs) are not significantly enriched for any Gene Ontology (GO) categories, which may

simply reflect that many outlier regions are broad and contain many genes, most of which are

likely unrelated to their rise in ancestry frequency. A smaller set of 37 genes with high A ancestry

have signatures of selection on both continents. For these, we searched the literature and found
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that two have been associated with Varroa in previous studies: a myoneurin (LOC725494) that

is overexpressed in the brains of Varroa infected worker bees compared to Nosema infected bees

and controls [77] and an uncharacterized protein (LOC725683) that is over-expressed in parasitized

drones compared to non-parasitized drones [78]. While these are potentially intriguing candidates

for selection, Varroa is only one of many possible selective pressures, and more work is needed to

link the signals of selection we find here to adaptive functions.

In contrast to high A ancestry outliers, we do not find any shared outliers for European ances-

try. However, the most striking example of a single-zone selection event is a large 1.4Mb region

on chromosome 11 with excess European ancestry in South America (bottom middle of Fig 1.5).

This region was previously identified to have low A ancestry in scutellata-European hybrid honey

bee populations from Brazil [37]. We independently identify this region as a low-A ancestry out-

lier across Argentina, using different A/C/M reference bees, ancestry calling algorithm, and bee

samples than the previous paper. We find that populations across the South American hybrid zone

have reduced A ancestry at this locus, but that North American populations do not appear to

have experienced selection (Fig 1.7). By including C-lineage diversity in our admixture analysis,

we additionally show that this region is specifically elevated for M haplotypes, and not European

haplotypes more broadly (Fig 1.6C). This region has many diverged SNPs between the three an-

cestry groups beyond the SNPs included in our ancestry hmm analysis, which we use to confirm

high rates of M introgression (Fig 1.28). It does not appear that a new mutation or narrow set of

haplotypes was favored within M because we see little differentiation between the M ancestry in

this selected region compared to the M reference panel. Additionally, within the selected region

we find a peak of high FST between A, C, and M reference panels (Fig 1.31), which is consistent

with this region having historically been under selection within these ancestry groups. Finally,

the California bees do not have a significant deficit of A ancestry like the Argentinian bees do,

but they do have two narrow peaks of excess M ancestry within this region, in the top 3% and 7%

empirical percentiles for M ancestry genome-wide. Our data support a scenario in which a diversity

of M haplotypes carrying the favored allele were driven to high frequency in South America after

scutellata-European hybrid honey bees spread north of Brazil. Potential candidate genes specific to

this large M-ancestry outlier region on chromosome 11 are previously described by [37]. In total,
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we find 186 genes that overlap low-A ancestry outlier peaks (<10% FDR). These genes are not

functionally enriched for any Gene Ontology (GO) categories.

Discussion

The introduction of scutellata honey bees to Brazil in the 1950s sparked one of the largest and

best studied biological invasions known to date, with scutellata-European hybrids spreading from a

single point of release over much of the Americas in less than 50 years. We add to this literature the

first comparative study of the invasions in North and South America, with genome-wide resolution

on the present distribution of scutellata (A) ancestry.

The parallel alignment of the genome-wide cline with latitude in both continents, despite very

different length dispersal routes, strongly supports the view that scutellata ancestry has reached

a stable climatic range limit. Because our transect in California only covered the upper half of

the North American cline, the full shape for this genome-wide cline is uncertain, and may be

asymmetrical because one signature of a moving hybrid zone is elongation of the lagging tail [79].

In contrast, we have strong evidence for convergence in the low-A portions of these two genome-wide

clines, which are not expected to be distorted by cline movement, and reflects similar latitudinal

range limits for scutellata ancestry in North and South America. Global warming trends could

shift the location of the observed clines towards the poles, as has been documented for other hybrid

zones sensitive to climate change [80]. While we currently lack temporal data with comparable

genomic and geographic resolution, our results can be used as a baseline for future study.

Significant effort has been focused on finding an environmental isocline that divides regions

where scutellata-European hybrid honey bees are expected to dominate and regions where they

cannot overwinter (e.g. [23,24,25,26]). However, we observe ancestry clines that are hundreds of

kilometers wide, not the narrow clines created by strong selection across a discrete environmental

transition. Theoretically, these broad clines could be consistent with neutral diffusion of ancestry

by migration over tens of generations. However, a scenario of neutral diffusion is inconsistent with

external evidence of the rapid spread of the invasion and strong fitness trade-offs with climate: the

high competitive advantage and very rapid advance of scutellata-associated traits and A mitochon-

dria in the tropics in the face of considerable interbreeding with European bees and, conversely,
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documented low fitness of scutellata-European hybrids in cooler climates, with low overwinter sur-

vival and maladaptive metabolic efficiency, foraging preferences and nesting behaviors (see [24] for

a review). Thus, we conclude that honey bee fitness is more likely to be tracking environmental

variables with smooth transitions over broad geographic regions (e.g. climate), which may create

intermediate environments where ancestry intermediates have higher fitness, thus broadening the

observed hybrid zones. These proposed dynamics are similar to well-studied cases in other systems

where bounded hybrid superiority and/or local adaptation to continuous environments maintain

adaptive clines across broad geographic regions (e.g. [81,82,83]).

As a null model, we expect phenotypic clines to match the scale of the observed ancestry clines,

with smooth transitions in mean phenotype over hundreds of kilometers. Many phenotypes of

interest, e.g. defensive behavior or Varroa tolerance, are expressed or measured at the colony-

level and so we could not assess these in our survey of freely foraging bees. Future phenotypic

surveys could be compared with our genomic clines to ascertain if key phenotypes diverge from

this expected pattern, e.g. due to strong selection beyond that experienced by the rest of the

genome. Indeed we see that wing length, a trait hypothesized to be associated with latitudinal

body-size adaptation following Bergmann’s rule [64], has a geographic distribution consistent with

the genome-wide ancestry cline. This suggests that while wing length, which is strongly correlated

with body size [46, 84], may well have fitness trade-offs with climate, selection for these traits

does not appear to be strong enough compared to average selection for ancestry to deviate from

background genomic patterns over a short time scale.

We observe relative uniformity at the climate barrier, with no individual loci showing steeper

ancestry clines than what can be produced by a null model accounting for background patterns

of variation in ancestry frequencies shared across populations. Nor do we observe any loci that

have below 10% frequency of A ancestry in California, despite the large distance and climatic range

traveled over by this portion of the invasion. If the invasive ability of scutellata-European hybrid

honey bees were due to a small number of loci we would expect scutellata ancestry to have been

swamped out at many unlinked neutral loci in the genome due to interbreeding at the front of the

advancing wave of expansion [85]. Instead, relative genomic cohesion points to a polygenic basis

for the high fitness and rapid spread of scutellata ancestry as well as the fitness costs in cooler
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climates underlying the parallel range limits observed across continents. However, we note that

the distinction between so-called ‘Africanized’ and ‘non-Africanized’ honey bees is likely to further

blur over time. Genetic barriers are strengthened when selection is distributed across many loci,

but they are still easily permeated by adaptive alleles [86]. Furthermore, given high recombination

rates in honey bees, we predict only loci tightly associated with climate-based fitness trade-offs will

remain geographically bounded over long periods of time.

Our findings add to the genomic evidence that scutellata-European hybrid honey bees can-

not be treated as a single genetically and phenotypically cohesive group. We show that bees

have intermediate scutellata ancestry proportions over large geographic areas, with no evidence

that scutellata-European hybrid honey bees share any defining scutellata ancestry loci (including

mtDNA). Colonies within these wide hybrid zones have largely unknown colony-defense behaviors

and are likely to show high variance in many traits, overlapping with variation within European

bees. These bees defy ‘Africanized’ (vs. ‘non-Africanized’) labels currently used by researchers,

beekeepers, and policy makers. While more precise ancestry information is becoming increasingly

available, it’s important to understand the limitations for trait prediction. Importantly, there is

no one-to-one mapping between A ancestry and colony defense. Recent findings show that both

scutellata and M European ancestry contribute to defensiveness segregating in scutellata-European

hybrid populations in Brazil [87]. Additionally, ‘gentle Africanized honey bees’ in Puerto Rico

show that scutellata-European hybrid honey bee populations can evolve low defense while main-

taining scutellata ancestry and other associated traits [49,50]. Future research could improve upon

ancestry-based trait predictions by identifying genetic markers for agriculturally undesirable and

beneficial traits segregating in scutellata-European hybrid honey bee populations.

Scutellata-European hybrids provide a promising source of genetic variation for breeding in

light of the vulnerability of European lineages to current environmental stressors and associated

bee declines [88]. Scutellata-European hybrid honey bees have high competitive fitness and, we

show here, maintained high genetic diversity despite their rapid expansion. In this study, we have

taken a first step towards mapping the genetic basis of the high fitness of scutellata-European

hybrid honey bees by identifying loci where selection has favored scutellata or European ancestry

in both North and South America. We identify several loci with convergently high A ancestry on
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both continents, and many more across the genome with evidence of selection favoring A ancestry

in one hybrid zone. In contrast, with the exception of one striking outlier for high M ancestry in

South America, we find little evidence that European ancestry or admixture per se contributed

broadly to the success of scutellata-European hybrid honey bees. We attribute this difference in

results from a previous study of scutellata-European hybrid honey bees in Brazil [37] to a more

appropriate null model that accounts for shared variance in ancestry across populations. While

our population genetics approach is trait-blind, our results can be compared to future functional

and genetic mapping studies to look for overlap between trait-associated and positively selected

loci. Applying similar methods to other systems, especially where replicated hybrid zones can be

sampled, holds great promise for revealing loci important to adaptation.

Materials and Methods

Statistical results and figures were created in R [57] with use of the tidyverse [58] packages.

Other scripts were run using GNU parallel [89].

Sampling. We sampled individual foraging honey bees across two hybrid zones, located at the

transitions to temperate climates in North and South America. We sampled at least 10 bees each

from 12 populations in California and 21 populations in Argentina (see maps, Fig 1.1).

For each population, we hand-netted individual foraging bees within a sampling radius of ap-

proximately 15km. Because commercial colonies are often temporarily relocated for the spring

pollination season, we sampled in summer, when foraging bees are more likely to come from res-

ident populations. We additionally included in our analyses 35 high-coverage published genomes

of freely foraging bees collected from 6 populations between September 2014 and January 2015:

Davis, Stebbins, Stanislaus, Avalon (Catalina Island), Placerita, and Riverside (Sky Valley and

Idyllwild) [34]. While these sampled bees come from an unknown mixture of local feral and do-

mesticated colonies, previous surveys from California have found that freely foraging bees tend to

closely match feral sources, based on mtDNA composition [30]. Consistent with this view, eight

of our sequenced bees from different populations in Argentina were collected close to a feral nest

(< 5m), but do not appear to be ancestry outliers for their sampling locations. More specifically,

we fit a general linear model (logit(A ancestry) ∼ absolute latitude + feral nest) using glm with
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gaussian errors in R and found no significant effect on A ancestry of sampling near a feral nest

(P = 0.97). Based on these results and our seasonal timing, the bees in this study are likely

sourced primarily from local feral populations, with some contribution from resident domesticated

bee colonies.

Lab work and sequencing. We selected a subset of 279 bees from our North and South

American hybrid zones for whole genome sequencing, 8-9 bees per sampled population (see Table

1.1). For each bee, we dissected wing flight muscles from the thorax and extracted DNA using QIA-

GEN DNeasy Blood and Tissue kits. We followed a new high-throughput low-volume DNA library

preparation protocol (see [90] for details, “Nextera Low Input, Transposase Enabled protocol”).

Briefly, we prepared individual Nextera whole-genome shotgun-sequencing DNA libraries using en-

zymatic sheering and tagmentation. Then we PCR-amplified and barcoded individual libraries

using the Kapa2G Robust PCR kit and unique custom 9bp 3’ indices. Finally, we pooled libraries

within each lane and ran bead-based size-selection for 300-500bp target insert sizes. We targeted

4-6x coverage per bee based on a preliminary analysis of our power to replicate local ancestry calls

from one of the published high coverage populations (Riverside 2014) using simulated low coverage

data (Fig 1.11). We multiplexed our samples across 5 Illumina HiSeq4000 lanes for paired-end 2 x

150bp sequencing. In total, we generated 5.1x mean coverage per bee for 278 samples. The 279th

sample was excluded from all analyses for having extremely low (<0.1x) sequence coverage.

Alignment and SNP set. In addition to the sequence data produced by this study, we

downloaded Illumina raw read sequences for 35 previously published California genomes (PR-

JNA385500 [34]) and a high-quality reference panel of A. m. scutellata (A, n = 17), A. m. carnica

(C, n = 9), and A. m. mellifera and A. m. iberiensis (M, n = 9) honey bee genomes (PR-

JNA216922 [91] and PRJNA294105 [8]) from the NCBI Short Read Archive. For all bees, we

mapped raw reads to the honey bee reference genome HAv3.1 [92] using Bowtie2 very-sensitive-

alignment with default parameters [93]. We then marked and removed duplicate reads with PI-

CARD and capped base quality scores using the ‘extended BAQ’ option in SAMtools [94]. Using

the software ANGSD [95], we identified a set of SNPs with minor allele frequency ≥ 5% in the

combined sample based on read counts (-doMajorMinor 2 -doCounts 1). We excluded unplaced
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scaffolds (<5Mb total) and applied standard quality filters for SNP calling (base quality ≥ 20,

mapping quality ≥ 30, total read depth ≤ 5500 (∼2x mean), and coverage across individuals ≥

50%). We calculated the genetic position (cM) for each SNP using a 10kb-scale recombination

map [96] and linear interpolation in R (approxfun). We assumed constant recombination rates

within windows and extrapolated positions beyond the map using the recombination rate from the

nearest mapped window on that chromosome.

We identified SNPs on the mitochondria (HAv3.1 scaffold NC 001566.1) using the same pipeline

as nuclear DNA above, but allowing for extra read depth (up to 100000000x). We then called

consensus haploid genotypes at these SNPs for all individuals using ANGSD (-dohaplocall 2 -

remove bads 1 -minMapQ 30 -minQ 20 -doCounts 1 -minMinor 2 -maxMis 174).

Global ancestry inference. We estimated genome-wide ancestry proportions for each bee

using methods designed for low-coverage sequence data. Briefly, we combined bee genomes from

the hybrid zones with reference genomes for scutellata (A), eastern European (C) and western

European (M) bees. To reduce linkage disequilibrium (non-independence) between our markers

for global ancestry inference, we thinned to every 250th SNP (∼14k SNPs at 19kb mean spacing)

before calculating genotype-likelihoods for each bee using the SAMtools method in ANGSD (-GL

1). We first ran a principal components analysis in PCAngsd [97] to confirm that genetic diversity

in the hybrid zones is well-described by 3-way admixture between A, C, and M reference panels

(Fig 1.8). We then estimated genome-wide ancestry proportions for all bees using NGSAdmix (K

= 3) [52].

Local ancestry inference. We inferred the mosaic of scutellata vs. European ancestry across

the genome of each bee using a hidden Markov inference method that can account for scutellata

(A), eastern European (C) and western European (M) sources of ancestry within low-coverage

scutellata-European hybrid honey bee genomes (ancestry hmm v0.94 [53]). For local ancestry

inference, we enriched for ancestry-informative sites by filtering for ≥ 0.3 frequency in one or

more reference population (A, C, or M) and at least 6 individuals with data from each reference

population. We subsequently thinned markers to 0.005cM spacing, because at that distance linkage

disequilibrium within ancestries is expected to be low (r2 < 0.2 [33]), leaving a final set of 542,655
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sites for ancestry calling, or ∼ 1/7 of the original SNP set. Individual bees sequenced in this

study and previously published California bees have 5.42x and 14.5x mean coverage, respectively,

across this final SNP set. For each population, we jointly estimated time since admixture and

ancestry across the genome of each individual, using read counts from the hybrid zone and allele

frequencies for A, C and M reference populations at each SNP. To generate major/minor allele

counts for each reference population, we used ANGSD to call genotypes (-doPost 1) using a minor

allele frequency prior (-doMaf 1) and the SAMtools genotype likelihood (-GL 1), after quality

filtering (map quality ≥ 30, reads matching major/minor allele ≥ 60%, and read depth ≥ 6x). As

additional inputs to ancestry hmm, we used NGSAdmix results as a prior for population ancestry

proportions and set the effective population size to Ne = 670, 000 [37]. We modelled a simple

three-way admixture scenario: starting with C ancestry, we allowed for a migration pulse from

M and a second, more recent, migration pulse from A. Timing of both migration pulses were

inferred from the range 2-150 generations, with priors set at 100 and 60 generations. To calculate

a point estimate for each individual’s ancestry proportion at a SNP, we marginalized over the

posterior probabilities for homozygous and heterozygous ancestry from the ancestry hmm output

(i.e. A = p(AA) + 1/2(p(CA) + p(MA)).

Ancestry covariance matrix. To explore how populations vary and covary in their scutellata

ancestry along the genome we calculated the empirical population ancestry variance-covariance

matrix (K), an admixture analog of a genotype coancestry matrix (e.g. [98]). The K matrix is

calculated using population scutellata (A) ancestry frequencies inferred by the local ancestry HMM,

e.g. for populations i and j with mean ancestry proportions αi and αj , and ancestry frequencies at

a locus anci,l and ancj,l, their ancestry covariance calculated across all L loci genome-wide is

K[i, j] =
1

L

L∑
l=1

(anci,l − αi)(ancj,l − αj).

Ancestry correlations between the high-latitude cline endpoints. To more formally

test for excess ancestry correlations between more geographically distant (but climatically similar)

populations, we grouped populations by dividing each hybrid zone into low- and high-A ancestry

regions relative to the estimated latitude for the genome-wide cline center. The southernmost 11

28



(out of 20) of the South American populations, and all of the sampled North American populations,

fall in the ‘low A’ half of their respective hybrid zones. We calculated mean ancestry covariances

(K matrices) separately for each chromosome, using the genome-wide mean ancestry as α, then

summarised across populations by taking the mean correlation for each type of pairwise comparison,

within and between continents and regions. We tested whether, on average across chromosomes,

low-A South American populations share higher ancestry correlations with low-A North American

populations than with geographically closer high-A South American populations and repeated this

test excluding chromosomes 1 and 11 which contain large outlier regions (Fig 1.21). We also tested

the same group comparison across recombination rate quintiles instead of chromosomes (Fig 1.22).

To investigate whether recent long-distance migration likely generated the elevated ancestry

correlations we observe between low-A South America and low-A North America, we looked at

patterns of allelic covariance within ancestry. Specifically, for each ancestry we estimated a genetic

covariance matrix in PCAngsd for all individuals sampled from the hybrid zone, based on allelic

diversity within high-confidence homozygous ancestry tracts (posterior >0.8). Under recent migra-

tion, we would expect the excess A ancestry correlations between the two ends of the hybrid zones

to be mirrored by allelic covariances within all three ancestries. Instead, we find that the two most

prevalent ancestries, A and C, both have low or negative genetic covariances between continents

(Fig 1.24). In contrast, M ancestry does show an excess of cross-continent covariance, and we fol-

lowed up to determine if this is uniquely American covariance (i.e. the result of shared drift within

the Americas) or could have been imported from Europe. Adding reference individuals to these

within-ancestry analyses, we find that M ancestry in the Americas imported pre-existing struc-

ture from Europe, with more Poland-like (Apis mellifera mellifera) than Spain-like (Apis mellifera

iberiensis) M ancestry at the temperate ends of the clines (Figs 1.25 and 1.26).

Simulated ancestry frequencies. At various points in the results we compare our outliers to

those generated by genome-wide null models of ancestry variation along the genome. We simulated

variation in ancestry frequencies at SNPs across the genome under three models: (1) A Poisson-

binomial model that only accounts for sampling variance, not drift (e.g. [37]); (2) a multivariate-

normal model with covariances set to zero, which accounts for effects of both sampling and drift

within-populations (e.g. [99]); and (3) a multivariate-normal model with covariances to additionally
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account for shared drift in ancestry between populations. For each model, we simulated in R neutral

A ancestry frequencies at 100,000 independent loci [100,101]. The full multivariate-normal model

is used for comparison to the results, while the first two models are only used to show the effects

of ignoring covariances.

In the Poisson-binomial simulation, for each bee we sampled 2 alleles from a binomial distri-

bution with mean equal to the individual’s genome-wide ancestry proportion inferred by ances-

try hmm.

For the variance-only MVN simulation, we empirically calibrated an independent normal dis-

tribution for each population that can exceed binomial ancestry variance (e.g. due to drift). This

model is equivalent to the full MVN model below, but sets all off-diagonal entries of the K ancestry

variance-covariance matrix to zero.

In our full multivariate-normal model, we account for non-independent ancestry within and

between our sampled populations:

A ancestry ∼ MVN(α,K),

where α is the vector of genome-wide mean population ancestry frequencies and K is the em-

pirical population ancestry variance-covariance matrix. Because the MVN models are not bounded

by 0 and 1, but real frequency data is, we set all simulated individual population frequencies ex-

ceeding those bounds (5.2% low and 0.09% high) to the bound. Truncation has little effect on the

distribution in general and no effect on the frequency of high A ancestry outliers, but does make

extremely low outliers (attributed to some populations having simulated negative frequencies) less

likely (Fig 1.18). For more details on model approximations to the observed data, see Figs 1.19

and 1.20.

Cline models. To better understand the role of dispersal and selection maintaining the cur-

rent geographic range limits of scutellata ancestry, we fit a logistic cline model to the individual

genome-wide ancestry proportions estimated by NGSAdmix. We estimated continent-specific c

and b parameters to test for a difference in cline center (degrees latitude from the equator) and/or

slope between the northern and southern invasions. Then we fit a joint model with a single cline

to see how well absolute latitude or climate can consistently predict A ancestry frequencies across
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both continents. Specifically, we tested four environmental variables that likely contribute to vary-

ing fitness across space: mean annual temperature (°C), mean temperature of the coldest quarter

(°C), minimum temperature of the coldest month (°C) and mean annual precipitation (cm). We

downloaded mean climate observations for 1960-1990 [68] from WorldClim.org at 30 second map

resolution (≈ 1 km2 at the equator) and then averaged within a 5km radius around each bee’s

sample coordinates. We compared climate and latitude-based selection models to a neutral disper-

sal model, where genome-wide A ancestry is predicted solely based on the distance (km) traveled

from Ŕıo Claro, São Paulo, Brazil, the point of origin for the scutellata-European hybrid honey

bee invasion (estimated from GPS coordinates using “distGeo” in R [102]). For each model, we

substituted latitude, distance, or climate for xi in Eq 1.1 and we used AIC to compare model fits.

We then fit individual-SNP clines to the mean population ancestry frequencies in South Amer-

ica, where our samples span the full cline. We tested for individual outlier loci that may underlie

a climate barrier by fitting the same logistic cline model to a set of simulated population ances-

try frequencies for S. America (see MVN simulation), and comparing observed cline slopes to this

null distribution. In addition, we tested for enrichment of the empirical top 5% of steep clines in

regions of the genome with low recombination rates. We divided the genome into 5 equal-sized

recombination rate bins ([0, 2.92], (2.92, 21.6], (21.6, 31.7], (31.7, 38.6] and (38.6, 66.9] cM/Mb)

and used 10,000 block bootstraps [103] to calculate basic bootstrap confidence intervals for each

recombination rate quintile while accounting for spatial correlation in both cline slopes and recom-

bination rates across the genome. For the bootstrap, we divided the genome into 0.2cM blocks,

we re-sampled these blocks with replacement, and for each recombination bin we calculated mean

b and the proportion of SNPs in the top 5% steepest slopes from our bootstrap sample. When

fitting non-linear least squares in R for both genomewide and individual snp clines, we used multi-

ple random starting values to make sure we searched across all local minima and found the global

optimum solution (nls.multstart [104]). Starting values were drawn from uniform distributions: b

∼ Unif(-5, 5) and ∼ Unif(min, max) across the observed range for latitude and climate variables.

Wing morphology. We imaged a slide-mounted fore wing and measured wing length to the

end of the marginal cell using imageJ (Fig 1.15). We included 269 bees in the wing analysis (only
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bees sequenced by this study had wings preserved and n = 9 bees were excluded for wing tatter or

damage).

We also measured fore wing lengths for A, C, and M reference bees in the Oberursel Collection

sampled from their native range (n = 52 [105]). While the effect of ancestry on wing length is

similar in magnitude and direction in both datasets, we found that the mean wing lengths for the

European reference bees (C & M) fell below the mean for our American bees with close to 100%

European ancestry, perhaps reflecting phenotypic plasticity. Thus we do not incorporate these

measurements of A, C, and M reference bees into the subsequent analyses.

We tested various models of the relationship between wing length, ancestry and geography.

First, we fit a linear model to predict wing length in our sample from genome-wide ancestry. We

visually compared our wing measurements to what we would expect if the cline in wing length

across latitude were fully described by this linear relationship between ancestry and wing length

and our best-fit clines for genome-wide ancestry (Fig 1.2). We additionally tested for differences

between continents by adding a main effect and an interaction term for South America to our linear

model.

We performed admixture mapping of wing length to test if the ancestry state at any individual

SNP predicts residual variation in wing length. To do this, we first regressed wing length on

genome-wide A ancestry, to correct for background ancestry effects. We then took the residual

wing lengths from this linear model fit and regressed these on A ancestry allele counts at each

locus in turn (using the maximum a posterior probability (MAP) estimates from the local ancestry

HMM). We set a genome-wide significance threshold of p < 1.1 × 10−6 to control for multiple

testing at a 5% family-wise error rate, using an analytical approximation for admixture mapping,

calculated assuming 47.6 generations since admixture [106,107].

Identifying ancestry outlier regions and genes. To identify loci underlying ancestry-

associated fitness differences, we tested SNPs for an excess or deficit A ancestry within each hybrid

zone. We calculated 1%, 5% and 10% false-discovery rates (FDR) by using our MVN simulation

results to set the number of false-positives we expect under a neutral model for high and low A

ancestry within each continent separately (one-tailed outlier tests). We then compared the overlap

in outliers between hybrid zones to identify SNPs with signatures of selection on both continents.
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In addition to local ancestry, we used ancestry-informative markers with fixed or nearly fixed

differences to verify high-introgression regions. We defined ancestry informative markers as SNPs

with coverage for at least 5 individuals from each reference panel and >0.95 allele frequency differ-

ences between the focal ancestry and both other ancestries. We estimated allele frequencies at each

ancestry-informative marker using ANGSD, polarized SNPs so the focal ancestry has the highest

MAF, and only included markers with coverage in all sampled populations. Ancestry-informative

markers for A (n = 4,302) are relatively rare compared to markers for C (n = 17,384) and M (n

= 15,626) because European populations each experienced a historical bottleneck differentiating

them from the other two groups. Because of LD-thinning before local ancestry inference, 88% of

these ancestry-informative markers were not included in the ancestry hmm SNP set, and therefore

provide separate support for high-introgression regions.

We identified a set of candidate genes that overlap regions of the genome with exceptionally

high or low A ancestry (<10% FDR) using BEDtools [108]. For this analysis, we downloaded gene

annotations for the HAv3.1 genome assembly from NCBI (accessed 7/22/19). 72 out of 104 genes

overlapping high A ancestry peaks and 131 out of 186 genes overlapping low A ancestry peaks have

associated BEEBASE gene IDs. For these high and low gene sets, we tested for enrichment of Gene

Ontology (GO) terms compared to a background of all honey bee genes, using DAVID 6.8 [109] and

a Benjamini-Hochberg corrected FDR of 5% [110]. To find out what is previously known about the

37 genes that overlap regions with high A ancestry on both continents, we conducted a literature

search using the NCBI gene search tool and google.

We additionally checked if our candidate selected loci overlap regions of the genome previously

associated with defensive or anti-Varroa behavioral traits (QTLs and associated marker sequences

from [15,72,73,74,75,76,111,112,113]). We estimated genome coordinates for QTLs by blasting

marker sequences to HAv3.1 and keeping the best BLASTn [114] hit with an E-value <0.01 (see

Table 1.5). When assessing physical overlap between genome annotations and ancestry outliers, we

assumed ancestry calls for a SNP apply to the short genomic window around that SNP, spanning

midway to the next ancestry call. When visualizing and counting the number of selected regions in

the genome, we further merged near-adjacent (<10kb) significant ancestry windows into contiguous

regions.
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Population diversity. We calculated allelic diversity (π) for each population and our A,

C, and M reference panels. First, we calculated a simple unbiased population allele frequency

in ANGSD based on a weighted average of observed read counts (counts -8) for each SNP. For

this analysis, we included all SNPs ascertained in the combined sample (see ‘Alignment and SNP

set’ above) but excluded SNPs from a population’s estimate when fewer than two individuals had

coverage. Using these allele frequency estimates, and a finite-sample size correction (n = 2× number

of individuals with data at a site), we calculated mean per-SNP heterozygosity. To approximate

uncertainty in our estimates, we divided the genome into 5,254 non-overlapping 1cM blocks, re-

calculated our diversity estimates for 10,000 block bootstrap samples, and calculated a 95% simple

bootstrap confidence interval. Finally, to get per-bp diversity, we scaled our per-SNP diversity

estimates by the density of SNPs in the genome, using the same coverage and depth quality filters

in ANGSD as in our SNP pipeline to count total mappable sites.

For within-ancestry diversity estimates, we used our ancestry calls to identify contiguous tracts

with high posterior probabilities (>0.8) of homozygous A, C, or M ancestry. We used these tracts

to divide the genome into high confidence A, C, and M ancestry states, and filter for reads that

mapped within these states. We then repeated the estimation and block bootstrap procedure

above using only the reads associated with a particular ancestry. To estimate within-ancestry

diversity for a population, we required data for at least 75 1cM blocks spread across at least 15

of the 16 chromosomes, which excludes 6 populations with too little A ancestry in the tails of

both clines and 8 populations with too little C ancestry in the S. American cline for accurate

estimation. We compared observed and predicted heterozygosity for each population based on

expected allele frequencies calculated by multiplying population-specific admixture proportions by

reference population allele frequencies for each ancestry.

To test whether selection had favored specific haplotypes, or scutellata ancestry more generally,

within shared outlier regions for high A ancestry, we calculated population differentiation (FST)

between the A reference panel and A haplotypes within each hybrid zone. We also calculated

within-ancestry FST between the two hybrid zones, to assess whether the same A haplotypes rose

in frequency on both continents. Likewise, for the large high M outlier on chromosome 11, we

calculated pairwise differentiation within M ancestry between North America, South America, and
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the M reference panel. We similarly calculated FST for all three contrasts between A, C, and

M, reference panels across these outlier regions, to test for signatures of historical selection and

divergence between these ancestry groups. For FST calculations, we estimated within-ancestry

allele frequencies for North and South America using the same method described above for within-

ancestry π, except pooling individuals by hybrid zone rather than population. We used Hudson’s

estimator for FST (Eq 10 in [115]), calculated the average per-SNP FST within sliding 50kb windows

stepping every 1kb across ancestry outlier regions, and only included SNPs with coverage for at

least two individuals for both populations in the contrast and windows with at least 10 SNPs.
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Supporting Information

Data Availability. Raw Illumina sequence data generated by this study is available through

the NCBI Short Read Archive, PRJNA622776. Access information for all previously published

genomic resources used in this study: HAv3.1 reference genome and gene annotations (NCBI

PRJNA471592), recombination map (available by request from Jones et al.), bee genomes from

California (NCBI PRJNA385500) and A, C, and M reference populations (NCBI PRJNA216922

and PRJNA294105). Bee metadata, including GPS locations and measured wing lengths are in-

cluded in Table 1.1 below. Wing images generated by this study are available through Data Dryad:

https://doi.org/10.25338/B8T032. Wing images for museum samples of A, C, and M bees are

available by request from the Morphometric Bee Data Bank, Institut für Bienenkunde, Oberursel,

Germany (https://de.institut-fuer-bienenkunde.de). All climate data was downloaded from World-

Clim.org. Scripts are available at https://github.com/ecalfee/bees.

Table 1.1. Sample information. Geographic sampling information (population, location,

date, whether collected by a feral nest), approximate sequencing coverage, global ancestry esti-

mates and wing lengths for bees sequenced in this study and reference bees. See supplemental file

Table 1.1 Sample information.txt
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Table 1.2. Cline model comparison. Model rankings between logistic cline fits for genome-

wide scutellata (A) ancestry predicted by climate and distance variables.

predictor df.residual deviance dAIC weight

1 Latitude 311 2.69 0.00 1.00

2 Mean temperature 311 3.63 93.60 0.00

3 Mean temperature of coldest quarter 311 5.25 208.60 0.00

4 Minimum temperature of coldest month 311 7.04 300.70 0.00

5 Distance to Sao Paulo 311 9.55 396.10 0.00

6 Annual precipitation 311 15.21 541.80 0.00

Table 1.3. Ancestry outlier regions. Genome coordinates for outlier regions with high or low

scutellata (A) ancestry. Adjacent and near adjacent (within 10kb) ancestry windows meeting <10%

FDR have been combined into contiguous regions and are labelled with the lowest FDR within the

region. Note that shared high A outlier regions, by definition, will overlap high A South American

and high A North American outlier regions, with bp and percent overlap listed. NA signifies not

significant for that hybrid zone. See supplemental file Table 1.3 Ancestry outlier regions.txt

Table 1.4. Ancestry outlier genes. List of genes overlapping ancestry outliers at 1%, 5%,

and 10% FDR thresholds. Minimum FDR for each continent listed separately. NA signifies not

significant for that hybrid zone. See supplemental file Table 1.4 Ancestry outlier genes.txt

Table 1.5. Approximate QTL coordinates HAv3.1. Approximate coordinates (HAv3.1)

for regions of the genome previously associated with defensive behaviors or Varroa tolerance. See

supplemental file Table 1.5 Approximate QTL coordinates HAv3.1.txt

Table 1.6. Invasion dates and locations. Approximate locations and dates of first arrival

for the spread of scutellata-European hybrid honey bees as plotted in Fig 1.1. We estimated GPS

coordinates for each historical observation using google maps and the available location description.

See supplemental file Table 1.6 Invastion dates and locations.txt
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Figure 1.8. PCA. Principal components analysis generated in PCAngsd using
genotype likelihoods from the same thinned set of 14,044 autosomal SNPs used
in global admixture analysis. The major axes of diversity separate out C ances-
try (PC1) and M ancestry (PC2). Consistent with 3-way admixture, all sampled
bees from North and South America are intermediate on the PCA, in the triangle
formed by reference panels for Apis mellifera scutellata from southern and eastern
Africa (A), A. m. carnica from eastern Europe (C) and A. m. mellifera and A. m.
iberiensis from western Europe (M).

39



Figure 1.9. Ancestry in reference panels. Results of NGSAdmix global admix-
ture analysis for reference populations from the combined analysis of all populations
(K = 3). These results were used to assign the unlabelled ancestry components out-
put by NGSAdmix to A, C, and M groups, based on a clear mapping to the three
reference populations. We see a small amount of admixture between C and M within
our reference populations, which is consistent with limited gene flow from secondary
contact within Europe.
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Figure 1.10. Comparison of local and global ancestry results. (A) Com-
parison of the mean genome-wide ancestry estimate from NGSAdmix (x-axis) and
ancestry hmm (y-axis) for each bee, with one-to-one line drawn in grey. The mean
for the HMM is calculated by marginalizing the posterior over all ancestry states
and taking a mean across SNPs. The individual-level ancestry estimates between
the two methods agree strongly (Pearson’s correlation: 0.997 A, 0.999 C, 0.985 M),
but the HMM estimates slightly higher minor ancestry for bees with low admixture
proportions. (B) Population mean summarises for the same comparison of NGSAd-
mix vs. ancestry hmm genome-wide ancestry estimates, with one-to-one line drawn
in gray. Because the population mean ancestry proportions from NGSAdmix are
used as a prior for the population-specific mixing proportions in ancestry hmm, this
panel can also be interpreted as the prior (x-axis) and posterior (y-axis) of the local
ancestry HMM for population-level admixture proportions.
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Figure 1.11. Power to call local ancestry. (A) Correlation between high-
coverage and low-coverage ancestry calls, across different simulated depths of cov-
erage (1-10x). (B) Proportion of high-confidence ancestry calls from high-coverage
data that were replicated in analyses of low-coverage data, with different simu-
lated depths of coverage (1-10x). These results are from a preliminary analysis
of the power to call local ancestry accurately, used to inform target sequencing
depth for this study. For this preliminary study, we used a published SNP set
with data for A, C, and M reference populations [8] based on earlier versions of
the honey bee genome (Amel4.5 [116]) and recombination map [33]. We enriched
for ancestry-informativeness and thinned for linkage disequilibrium (≥ 0.2 MAF in
at least one reference population and r2 < 0.4 within the A reference population),
leaving 161k SNPs. First we ran ancestry hmm [53] using called genotypes from a
high-coverage admixed population with intermediate admixture proportions (River-
side 2014 (n=8): 40% C, 20% M, 40% A ancestry). We simulated lower coverage
data from this same population by generating a binomial sample of n reads for each
locus, based on the individual’s genotype. To simulate realistic variance in coverage
across the genome, n for each site and individual was generated from a negative
binomial distribution with variance 3x the mean [117]. We additionally simulated
a 1% sequencing error rate. Running local ancestry inference on the high coverage
data, we inferred high confidence ancestry states for 81% of sites. First we calcu-
lated a point estimates for A ancestry (p(AA) + 1/2(p(CA) + p(MA))) at every site
for each individual and used these estimates to calculate a correlation between the
high coverage ancestry calls and low coverage ancestry calls. Then we calculated
the percent of high confidence calls that were replicated with high confidence (>0.8
posterior) in the low coverage data for the same ancestry state (”correct”) or a
different ancestry state (”incorrect”). Call to the HMM for simulated low-coverage
data: ancestry hmm -e 3e-3 -a 3 0.4 0.2 0.4 -p 0 100000 0.4 -p 1 -100 0.2 -p 2 -60 0.4
–tmax 150 –tmin 2 –ne 670000. For original high coverage data we used genotype
calls rather than read counts (-g) and a lower error rate (-e 1e-3).
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Figure 1.12. Estimated generations post-admixture. Inferred timing of mi-
gration pulses from A ancestry (left) and M ancestry (right). Each population’s
admixture timing is estimated separately, during local ancestry inference (ances-
try hmm), and results are plotted across latitude. We allowed a range of 2-150
generations, so the highest time estimates are truncated at 150 generations. Admix-
ture with scutellata (A) ancestry began in 1956, 62 years before sampling in 2018.
We have little prior information about the timing of M into C admixture, which
likely varies across the Americas, but in general should pre-date admixture with A.
The number of generations per year for feral honey bee populations is uncertain.

43



Figure 1.13. Climate variables across latitude. Bioclim climate variables
for all sample sites plotted against latitude: (A) Mean annual temperature (B)
Mean annual precipitation (C) Mean temperature coldest quarter (D) Minimum
temperature coldest month. Two adjacent climate outliers in the N. American
sample can be seen in the top two panels and represent bees from an inland desert
(hot and dry) and a high altitude sampling site (cold and wet) at similar latitudes
in Riverside County, CA. Bees from this same high altitude site are also outliers in
the bottom two panels, having the coldest mean and minimum winter temperatures
of all sites.
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Figure 1.14. Wing length predicted by ancestry. Individual honey bees are
represented as points, with wing lengths plotted along the x-axis and genomewide
A ancestry proportions (NGSAdmix results) along the y-axis. We draw the best-fit
regression line (slope = -0.72 mm, F (1, 267) = 119, P = 3.65 × 10−23, R2 = 0.31,
n = 269). We also include wing lengths for A, C and M reference bees from the
Oberursel Collection, which we assume have none or full A ancestry. These reference
bees are plotted slightly outside the range [0,1] and with jitter to facilitate viewing
individual points that would otherwise all cluster on the boundaries.
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Figure 1.15. Wing length measurement. Fore wing image cropped and anno-
tated to show length measurement taken. A full length to the tip of the wing is the
standard measurement, but we use this alternative because many of our samples
have significant wing tatter.

Figure 1.16. Admixture mapping analysis. We plot the p-value for each SNP
across the genome, based on independent tests of association between A ancestry at
that SNP and wing length. The red dashed line marks the genome-wide significance
threshold for a family-wise error rate of 0.05, using a two-tailed test. In admixture
mapping, SNPs are correlated, and the number of independent statistical tests de-
pends on the number of generations recombination has had to break up ancestry
blocks. Here we use an analytical approximation for the significance threshold based
on 47.65 generations of admixture (population median estimate).
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Figure 1.17. Distribution of ancestry clines in South America across
SNPs. A logistic cline model was fit to observed and simulated population ancestry
frequencies across latitude for S. America. Estimated cline parameters, center and
width (w = |4/b|), are presented as violin plots. Units for both cline center and
width are degrees latitude. We additionally partition observed SNPs by outlier and
non-outlier status, set by 10% FDR for high or low A ancestry in South America.
Individual SNP clines were only fit in South America, where we observed the full
cline.
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Figure 1.18. Effect of truncating MVN simulated ancestry frequencies.
(A) Percent of simulated population A-ancestry frequencies exceeding lower (left)
and upper (right) bounds, and thus truncated to [0,1] range. Each population is a
point and the populations most affected by truncation are low-A ancestry popula-
tions with mean A-ancestry proportions close to the bound at 0. (B) QQ-plot com-
paring the quantiles for mean A ancestry before and after truncation in N. America
(left) and S. America (right). The distribution of mean A ancestry is mostly unaf-
fected by restricting simulated population A ancestry frequencies to the [0,1] range,
but truncation does reduce model predictions of very low A-ancestry frequencies in
N. America, where mean A ancestry is already low.
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Figure 1.19. Simulated vs. observed A ancestry quantiles. QQ-plots com-
paring observed quantiles for mean A ancestry in North America (top) and South
America (bottom) to the quantiles generated by three simulated distributions (left-
to-right): MVN, MVN with zero covariances, and Poisson binomial model. Only
the MVN model, allowing for covariances between populations, matches the bulk of
the observed distribution.
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Figure 1.20. Overlay of 2D density plot for observed A ancestry fre-
quencies in North and South America compared to simulated A ancestry
frequencies under a multivariate-normal model.
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Figure 1.21. Mean ancestry correlation by chromosome across popula-
tions. Mean ancestry covariances (K matrices) were calculated separately for each
chromosome, using the genome-wide mean ancestry as α, then correlations were
summarised by taking the mean for each type of population comparison, within
and between continents and low vs. high A regions. Error bars show the normal-
approximated 95% confidence intervals around these means. We divided populations
in South America into low A and high A groups relative to the cline center. Low
A populations are found at higher latitudes and correspondingly cooler climates.
All North American samples come from the low-A side of the cline. On average
across chromosomes, low-A South American populations share higher ancestry cor-
relations with low-A North American populations than with geographically closer
high-A South American populations (0.032: CI95[0.011, .053], P = .005, paired 2-
sided t-test). Two chromosomes harbor large outlier regions consistent with their
elevated correlations shown here: Chromosome 1 has a large cluster of loci with high
A ancestry in North and South America while chromosome 11 has a wide region of
low A ancestry exclusive to South America. The results do not change qualita-
tively if these two outlier chromosomes are both removed from the analysis (0.035:
CI95[0.022, 0.047], P = 4.8x10−5, paired 2-sided t-test).
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Figure 1.22. Mean correlation for population pairs by recombination
rate. Mean ancestry covariances (K matrices) were calculated separately for each
of the 5 recombination rate quintiles, using the genome-wide mean ancestry as α,
then correlations were summarised by taking the mean for each type of population
comparison, within and between continents and low vs. high A regions. About
half of the South American populations, and all of the sampled North American
populations come from the low-A side of the hybrid zone (relative to the estimated
cline center). The genomewide mean is additionally shown as an X. On average
across recombination bins, low-A South American populations share higher ances-
try correlations with low-A North American populations than with geographically
closer high-A South American populations (0.049: CI95[0.021, .078], P = .009, paired
2-sided t-test)
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Figure 1.23. Ancestry covariances across populations. Ancestry covariance
matrix (see methods). Populations are ordered by latitude, with high and low A
sides of each hybrid zone defined relative to the estimated genomewide cline center.
Within-population variances (left) are shown separately from between-population
covariances (right) because of the drastically different scales. Populations near the
cline center have higher ancestry variances (most clearly seen in the diagonal ele-
ments) because they have A ancestry proportions closer to 50%. Drift and finite
sample sizes also contribute to the observed ancestry variances. The third lowest
latitude population in the North American cline with exceptionally high ancestry
variance is Avalon, sampled from Catalina Island off the coast of California. The ob-
served excess covariance between the two distant ends of these clines is unexpected
under a simple model of spread North and South out of Brazil.
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Figure 1.24. Genetic covariance within ancestry. Genetic covariances within
A (top), C (middle) and M (bottom) ancestry. Colors represent the population
mean genetic covariance between individuals, and the range of values varies by
ancestry (note: color bars have different scales). While kinship creates strictly posi-
tive covariances, here we observe some negative values because we can only calculate
co-variation around the empirical mean combined sample allele frequency, not the
true ancestral allele frequency (which is unknown). Population mean covariances
were summarised from an individual-by-individual covariance matrix generated us-
ing PCAngsd from bam files filtered to only include regions of the genome with high
confidence homozygous ancestry calls for the focal ancestry (posterior >0.8 from
ancestry hmm). High and low A sides of each hybrid zone are defined relative to
the estimated genomewide cline center
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Figure 1.25. Principle components analysis of genetic variation within
ancestry. PCA analysis of A (top), C (middle) and M (bottom) ancestry. Analysis
was performed using PCAngsd using all reference samples of the focal ancestry and
sequence data from the hybrid zones filtered to only include regions of the genome
with high confidence homozygous ancestry calls for the focal ancestry (posterior>0.8
from ancestry hmm). Each bee is a point, colored by sample location. The two hy-
brid zones form somewhat separable clusters for European (C and M) ancestry, but
not scutellata (A) ancestry. The major axis of genetic diversity within M ancestry
in the Americas (PC1) mirrors pre-existing population structure within Europe be-
tween Apis mellifera mellifera (Poland) and Apis mellifera iberiensis (Spain), two
well-known honeybee subspecies that may have different historical import rates to
different regions.
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Figure 1.26. Genetic variation within ancestry by latitude. Here we plot
the first principal component for genetic diversity within A (top), C (middle) and M
(bottom) ancestry against absolute latitude of sampling location within the hybrid
zone (see Fig 1.25 for original PCA). Each bee is a point and reference bees are
plotted to the side (not at their actual latitude). Bees are colored by sample location.
Note that bees with very low amounts of the focal ancestry (higher latitudes A
ancestry or lower latitudes C ancestry) fall close to zero on PC1 (dashed line), which,
despite using a method designed to account for low coverage data (PCAngsd), may
simply be an artifact of low information per individual bee for genetic diversity
within a low-frequency ancestry. A ancestry shows very little population structure
along PC1 by continent or latitude. C is the dominant ancestry at higher latitudes
in both zones and shows greater separation between the two ends of the zones
(higher absolute latitude for both) than within South America. M ancestry at lower
latitudes in South America is more similar to Apis mellifera iberiensis (Spain) than
M ancestry elsewhere in the Americas.
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Figure 1.27. Ancestry and AIM frequencies for high shared A outliers
on chr1. Zoomed-in view of the region on chromosome 1 with a cluster of high
A ancestry peaks in both North America (left) and South America (right), with
shared outlier regions meeting a 10% FDR for high A ancestry on both continents
shaded in grey. (Top) Scutellata (A), western European (M) and eastern European
(C) local ancestry estimates at each HMM marker. (Bottom) Mean frequency of
ancestry informative markers AIMs (see methods), most of which were not included
in the ancestry hmm inference (‘AIM only’) due to thinning.
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Figure 1.28. Ancestry and AIM frequencies for low A outlier region on
chr11. Zoomed-in view of the 1.4Mb region on chromosome 11 with high western
European ancestry (M) in South America (right) but not in North America (left),
with the outlier region meeting 10% FDR highlighted in grey. (Top) Scutellata (A),
western European (M) and eastern European (C) local ancestry estimates at each
HMM marker. (Bottom) Mean frequency of ancestry informative markers AIMs (see
methods), most of which were not included in the ancestry hmm inference (‘AIM
only’) due to thinning.
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Figure 1.29. Differentiation across shared high A outliers on chr1. FST

across the region on chromosome 1 with shared high A ancestry outliers. Outlier
regions meeting a 10% FDR in both hybrid zones are highlighted in darker grey,
while those meeting a 10% FDR in only one hybrid zone are highlighted in lighter
grey. Per-SNP FST is averaged within sliding 50kb windows. In addition to the
three ancestry reference panels (A, C, & M), we include contrasts for the subset of
individuals in each hybrid zone with high-confidence homozygous A ancestry.
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Figure 1.30. Differentiation across shared high A outliers on chr11. FST

across the region on chromosome 11 with shared high A ancestry outliers. Outlier
regions meeting a 10% FDR in both hybrid zones are highlighted in darker grey,
while those meeting a 10% FDR in only one hybrid zone are highlighted in lighter
grey. Per-SNP FST is averaged within sliding 50kb windows. In addition to the
three ancestry reference panels (A, C, & M), we include contrasts for the subset of
individuals in each hybrid zone with high-confidence homozygous A ancestry.
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Figure 1.31. Differentiation across low A outlier region on chr11. FST

across the 1.4Mb region on chromosome 11 with high western European ancestry (M)
in South America but not in North America (left), with the outlier region meeting
10% FDR highlighted in grey. Per-SNP FST is averaged within sliding 50kb windows.
In addition to the three ancestry reference panels (A, C, & M), we include contrasts
for the subset of individuals in each hybrid zone with high-confidence homozygous
M ancestry. Windows are dropped if fewer than 10 SNPs have 2 individuals with
data, which produces gaps in the contrasts with N. American M ancestry because
this hybrid zone does not have elevated M ancestry in this region and at many SNPs
very few individuals have high-confidence homozygous M ancestry. Top peaks in M
vs. C, M vs. A, and C vs. A contrasts seen within this region reach the 99.5, 98.0,
and 99.8 percentiles (respectively) for 50kb windows genome-wide.
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Figure 1.32. Comparison of observed and predicted diversity. (A) Ob-
served and predicted allelic diversity (π) for each population across latitude. To
predict π for a specific population, we calculated the expected allele frequency based
on a mixture of A, C, and M reference population allele frequencies, weighted by
the population’s estimated admixture fractions of these three ancestries. (B) Plot
of predicted vs. observed π for each population for direct comparison to the 1-to-1
line (dashed). Avalon (California 2014, marked as a triangle) is a clear outlier, with
low diversity for its admixture fraction.
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Figure 1.33. Mitochrondrial clines. Out of 82 SNPs on the mitochrondria, we
identified two with more than 80% estimated frequency difference between scutel-
lata (A) and European (C & M) reference panels. Estimated allele frequencies at
these SNPs for each population in North America (left) and South America (right)
are plotted in color. For comparison, population mean genomewide A ancestry pro-
portions (NGSAdmix) are plotted as open black circles. At both SNPs, estimated
M and C allele frequencies are zero (not shown) and estimated A allele frequencies
are high but not at fixation (plotted as pink dashed lines). Bees sequenced in this
study have low coverage across most of the mtDNA sequence, which prevented us
from constructing a phylogenetic tree for full mitochondrial haplotypes and creates
uncertainty in our allele frequency estimates here. To reflect this uncertainty, points
are shaded by the sample size (i.e. the number of mtDNA haplotypes in a population
for which we were able to call a consensus base).
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Abstract

While often deleterious, hybridization can also be a key source of genetic variation and pre-

adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing

selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte

relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may

have facilitated maize’s global range expansion, in particular to challenging high elevation regions

(> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana

individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the
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elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hy-

brids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local

adaptation, we find that the majority of mexicana ancestry tracts introgressed >1000 generations

ago.

This mexicana ancestry seems to have maintained much of its diversity and likely came from a

common ancestral source, rather than contemporary sympatric populations, resulting in relatively

low FST between mexicana ancestry tracts sampled from geographically distant maize populations.

Introgressed mexicana ancestry is reduced in lower-recombination rate quintiles of the genome

and around domestication genes, consistent with pervasive selection against introgression. However,

we also find mexicana ancestry increases across the sampled elevational gradient and that high

introgression peaks are most commonly shared among high-elevation maize populations, consistent

with introgression from mexicana facilitating adaptation to the highland environment. In the other

direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into

sympatric mexicana at many loci across the genome, suggesting that maize also contributes to

adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize,

in addition to high introgression regions we find many genomic regions where selection for local

adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including

at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a new 3 Mb

inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high

mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and

so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct

outcomes of introgression in different contemporary maize landrace populations.

Introduction

Interbreeding between partially diverged species or subspecies can result in admixed individuals

with low fitness, e.g. due to hybrid incompatibilities [118,119,120]. Consistent with the view that

hybridization is often deleterious, a growing number of species show evidence of pervasive selec-

tion against introgressed ancestry [121,122,123,124,125,126,127,128,129,130]. At the same

time, introgression can be a source of novel genetic variation and efficiently introduce haplotypes
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carrying sets of locally adapted alleles, with the potential for rapid adaptation to new ecological

challenges [131]. Indeed, admixture has been linked to adaptive species radiations and/or rapid

niche expansions in a number of natural systems, including mosquitoes [132], Drosophila [133],

butterflies [126], cichlids [134], sunflowers [135], wild tomatoes [136] and yeast [137, 138]. In

addition, introgression from wild relatives has facilitated the broad range expansions of multiple

domesticated crops (reviewed in [139] and [140]), and gene flow from crops back into their wild

relatives has in some cases opened up novel ‘weedy’ niches [141].

Maize (Zea mays ssp. mays) is an ideal system to study selection on admixed ancestry and

the effects on range expansion, as it has colonized nearly every human-inhabited ecosystem around

the world [142] and interbreeds with a number of wild relatives genetically adapted to distinct

ecologies [143, 144]. In Mexico, highland maize represents an early major niche expansion that

may have been facilitated by introgression. Approximately 9 thousand years ago, maize (Zea mays

ssp. mays) was domesticated in the Balsas River Valley in Mexico from a lowland-adapted sub-

species of teosinte (Zea mays ssp. parviglumis [145]), which grows readily at sea level and up to

about 2000 meters [146]. In contrast, Zea mays ssp. mexicana, which diverged from parviglumis

about 60 thousand years ago [147], is endemic to highland regions in Mexico (∼1500-3000 meters

in elevation) where it has adapted to a number of ecological challenges: a cooler, drier climate with

higher UV intensity, different soil nutrient composition, and a shorter growing season necessitating

earlier flowering times [148,149,150,151,152].

Maize was introduced as a crop to the mountains of Mexico around 6.2 thousand years ago [153],

and it is thought that gene flow from mexicana assisted in adaptation to high elevation selection

pressures. Highland maize and mexicana share a number of putatively adaptive phenotypes [154,

155], including earlier flowering times for the shorter growing season [151], purple anthocyanin-

based pigmentation which shields DNA from UV damage [156] and increases solar heat absorption

[157], and macrohairs on the leaf and stem sheath, which are thought to increase herbivore defense

[158] and/or heat maintenance in colder environments [159]. Earlier studies using 50K SNP-chip

data for highland populations [5] or genomewide data for a small number of individuals [160,161],

have shown that highland maize landraces have experienced significant admixture from mexicana,

reaching high frequency at some loci, consistent with adaptive introgression.

66



While some highland and locally-adapted alleles may be beneficial to maize, many introgressed

mexicana alleles, especially those affecting domestication traits, should be selected against by farm-

ers growing maize landraces. In addition, maize alleles introgressed into mexicana should be selected

against because maize has accumulated genetic load from reduced population sizes during domes-

tication [160] and because domestication traits generally reduce fitness in the wild [162,163,164],

e.g. loss of disarticulation and effective seed dispersal [154].

In this study, we generate whole genome sequencing to investigate genomic signatures of admix-

ture and selection in paired maize landrace and sympatric mexicana populations, sampled from 14

locations across an elevational gradient in Mexico. This expanded sampling of sympatric maize and

mexicana populations across Mexico, combined with genomewide data and a well-parameterized

null model, improves our ability to more formally test for adaptive introgression and identify likely

source populations. The source of introgression is of interest, as teosinte demonstrates local adap-

tation to different niches within the highlands and there is significant genetic structure between

mexicana ecotypes [149,154,165,166,167]. Thus we can test whether local mexicana populations

are the ongoing source for geographically-restricted locally adaptive haplotypes. We use this com-

prehensive genomic dataset to characterize the bi-directional timing and origin of introgression and

evaluate the patterns and scale of natural selection for and against admixture between these taxa.

Results and Discussion

Genomewide mexicana ancestry is structured by elevation. We sampled paired sym-

patric populations from 14 geographically dispersed locations to assess the extent of gene flow

between maize and mexicana in Mexico. Maize today is grown across the entire elevational range

of its wild relatives, from sea-level up to 4000 meters [168]. Our sampled sites range from 1547-

2600 meters in elevation, which spans a large portion of mexicana’s range and exceeds the upper

elevational range for maize’s wild ancestor, parviglumis (Fig 2.1). For each of 14 maize/mexicana

sympatric sample locations, we resequenced 7-15 individuals per subspecies. We additionally se-

quenced 43 individuals from 3 mexicana reference populations, totalling 348 low-coverage genomes

(mean ∼1x). Two of these reference populations are documented to have no adjacent maize agri-

culture within the past 50 years, while a third higher elevation population (Amecameca) was chosen
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because it grows above the elevational range of parviglumis, and thus outside of the historical range

of maize. For simplicity, we refer to these three populations as an ‘allopatric’ mexicana reference

panel, in contrast to our sympatric population pairs, but we note that maize has been grown exten-

sively across Mexico and thus gene flow from maize into mexicana is possible in recent generations

at Amecameca, and historically at all three locations. We asses gene flow into these mexicana

reference populations below. For an allopatric maize reference population, we added 55 previously

published high-coverage genomes from Palmar Chico [169], which sits below the elevational range

of mexicana.

Figure 2.1. Sampled sympatric maize/mexicana populations compared
to distribution of teosintes (A) Elevational range of teosintes based on historical
occurrence data (1842-2016) from [146]. (B) Geographic location and elevation of
contemporary sympatric maize and mexicana population pairs sampled across 14
sites in Mexico.
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Principal components analysis of genetic diversity clearly separates maize and mexicana, with

putative admixed individuals from sympatric populations having intermediate values along PC1

(PCAngsd, Fig 2.9).

To estimate genomewide ancestry proportions for each individual, we ran NGSAdmix [52] with

K=2 genetic clusters and genotype likelihoods for all maize and mexicana individuals. The two

genetic clusters clearly map onto maize and mexicana ancestry, with no indication of gene flow into

the allopatric maize reference population but small amounts of maize ancestry in two of the three

allopatric mexicana populations (Fig 2.2A).

Furthermore, we find a positive association between ancestry proportion and elevation (km),

with higher mexicana ancestry at higher elevations in both sympatric maize (β = 0.196, P =

1.42× 10−29) and sympatric mexicana (β = 0.197, P = 4.38× 10−19) individuals (Fig 2.2B).

Increasing mexicana ancestry at higher elevations is consistent with selection favoring mexi-

cana ancestry at higher elevations, but could also be due to purely demographic processes, e.g.

a higher density of (wind-dispersed) mexicana pollen at higher elevations, or increased gene flow

from non-admixed maize populations at lower elevations. While most populations have admixture

proportions well-predicted by their elevation, outlier populations may be the result of recent colo-

nization histories for some locations or adaptation to other environmental niches. Within teosintes,

elevation is a major axis of niche separation between parviglumis (the ancestor of maize) and mex-

icana [166], but genetic differentiation also correlates with soil nutrient content and at least four

principal components constructed from climatic variables [150].

Origin and timing of introgression. If mexicana ancestry found in contemporary lan-

drace genomes facilitated maize’s colonization of the highlands approximately 6.2 thousands years

ago [153], we would expect introgressed ancestry tracts to be short, due to many generations of

recombination, and possibly to be derived from an ancient source population common to many

present-day maize populations. To test these predictions, we estimated local ancestry across the

genome for individuals from each sympatric maize and mexicana population using a hidden Markov

model (HMM) based on read counts ( [53] see methods). For each admixed population, this HMM

simultaneously estimates local ancestry and, by optimizing the transition rate between different

(hidden) ancestry states, the generations since admixture.
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Figure 2.2. Distribution of mexicana ancestry by elevation (A) Genome-
wide ancestry estimates (NGSAdmix) for allopatric maize and mexicana reference
individuals, grouped by sampling location. (B) Genomewide mexicana ancestry es-
timates (NGSAdmix) for sympatric maize and mexicana individuals (n = 305) along
an elevational gradient, colored by sampling location. Lines show best linear model
fit for mexicana ancestry by elevation for each subspecies separately.

Admixture is generally old, with median estimates of 1203 generations for sympatric maize

populations and 718 generations for sympatric mexicana populations (Fig 2.10).
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Because this HMM fits a single-pulse model to what was almost certainly multiple admixture

events over time, we caution against over-interpretation of exact dates. Multiple pulses or ongoing

gene flow biases estimates towards the more recent pulse(s) [170, 171] and even old estimates do

not exclude the possibility of limited more recent admixture.

These single-pulse approximations do, however, provide evidence that a large proportion of the

introgression, especially into maize, is found on short ancestry tracts and therefore relatively old.

To identify likely source population(s) for introgressed ancestry, we compared FST between all

sympatric populations using only reads from high-confidence homozygous ancestry tracts (posterior

> 0.8) for maize and mexicana ancestry separately. We find that most mexicana ancestry in maize

resembles other mexicana ancestry introgressed into other maize populations, rather that mexi-

cana ancestry from the local sympatric mexicana population (Fig 2.3). This finding is consistent

with most introgressed ancestry being drawn from a communal source population, but none of the

sympatric mexicana populations have low enough FST to tracts introgressed into maize to be a

recent source. While we cannot rule out recent introgression from an unsampled source population,

the timing of our admixture estimates is more consistent with divergence of mexicana ancestry,

once introgressed into a maize background, from its original source population(s) (Fig 2.10). Ad-

ditionally, mexicana ancestry tracts in maize have only slightly reduced genetic diversity (π, Fig

2.11), meaning many mexicana haplotypes have introgressed into maize at any given locus, with

no evidence of a strong historical bottleneck.

Two lower elevation maize populations are an exception to this general pattern: Ixtlan and

Penjamillo. These populations have higher FST between their introgressed ancestry tracts and

other mexicana tracts in maize (Fig 2.3), more recent timing of admixture estimates (Fig 2.10),

and reduced genetic diversity (Figs 2.11-2.12). These patterns could be caused by small population

sizes and more recent independent admixture, although FST does not identify a likely mexicana

source population. Consistent with this interpretation, we have evidence that local maize at Ixtlan is

at least partially descended from recently introduced commercial seed (relayed by local farmers [5]).

The lack of a clear reduction in FST for mexicana ancestry tracts between sympatric popula-

tion pairs, combined with older timing of admixture estimates, indicates that while contemporary
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Figure 2.3. FST between ancestry tracts from different populations Pair-
wise FST between maize ancestry tracts from population 1 (x-axis) and population
2 (y-axis) are shown in the upper left triangle, while FST estimates for mexicana
ancestry tracts are shown in the lower right triangle. Populations are sorted by
subspecies, then elevation. Local sympatric maize-mexicana population pairs are
highlighted with a white dot and do not show reduced FST relative to other (non-
local) maize-mexicana comparisons. Additionally, introgressed mexicana ancestry
shows low differentiation between maize populations (creating a light-colored maize
block in the lower right triangle) and no potential mexicana source populations show
especially low FST with this block. Light coloring generally across the upper left
triangle reflects the low differentiation within maize, providing little information to
distinguish between potential maize ancestry sources.

hybridization may occur in the field between maize crops and adjacent mexicana populations, this

is not the source for the bulk of the introgressed ancestry segregating in highland maize.
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Instead, we propose that the majority of mexicana ancestry in maize derives from admixture

over 1000 years ago, possibly from a diverse set of mexicana source populations over a large geo-

graphic and temporal span, and the resulting ancestry tracts are now distributed across different

contemporary maize populations. These genomewide average FST results, however, do not exclude

the possibility that particular regions were introgressed from one or more distinct, possibly local,

source populations.

While we also analyzed FST within high-confidence maize ancestry tracts, we found that maize

ancestry is too homogeneous to make inferences about potential admixture source populations of

maize into mexicana (Figs 2.3, 2.12).

Selection against introgression genomewide. When there is widespread selection against

introgressing variants at many loci across the genome, selection will more efficiently remove linked

ancestry in regions of the genome with lower recombination rates, which creates a positive relation-

ship between local recombination rate and the proportion of introgressed ancestry [121,122,123,

124,125,126,127,128,129,130,172]. To test whether such negative selection is shaping patterns

of introgression genomewide in sympatric maize and mexicana, we first divided the genome into

quintiles based on the local recombination rates for 1 cM windows. We then ran NGSAdmix on the

SNPs within each quintile separately, using K=2 clusters, to estimate maize and mexicana ancestry

proportions. We used a recombination map from maize [173], which is likely to be correlated with

other Zea subspecies at least at the level of genomic quintiles, but a limitation of this analysis is

that we do not have a recombination map for hybrid populations which means that e.g. segregating

structural inversions will not necessarily show low recombination rates.

Our results from sympatric maize landraces are consistent with selection against mexicana

introgression at many loci genomewide, resulting in lower introgressed ancestry in regions of the

genome with lower recombination rates (Fig 2.4A). We find a positive Spearman’s rank correlation

between recombination rate quintile and mean introgressed mexicana ancestry proportion (ρ =

1, CI95[0.85, 1.00]), reflecting the fact that introgression increases monotonically across quintiles.

A similar analysis using f4 statistics replicates this result (see methods, Fig 2.13-2.15 and Table 2.4).

The higher elevation maize populations show this pattern most starkly; while all individuals have

low mexicana ancestry for the lowest recombination rate quintile, some high elevation populations
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have individuals with over 40% introgressed ancestry for the highest recombination rate quintile

(Fig 2.4B). Using a linear-model fit, we found a significant interaction between recombination rate

quintile and the slope of ancestry across elevation in sympatric maize (Table 2.5). This is again

consistent with low-recombination rate regions having a stronger effect of linked selection reducing

mexicana ancestry, with higher elevation maize landraces either experiencing larger amounts of

gene flow or retaining more ancestry due to adaptive processes in high recombination regions (Fig

2.16).

Because recombination rate is positively correlated with gene density in Zea [174], we also

tested the Spearman’s rank correlation between quintiles defined by coding base pairs per cM and

their proportion introgressed mexicana ancestry. Again we found evidence supporting pervasive

selection against introgression (Fig 2.17, ρ = −1, CI95[−1, −0.85]).

In contrast, sympatric mexicana shows an unexpected negative relationship between recombi-

nation rate and introgression from maize, with more mexicana ancestry (lower introgression) in the

highest recombination rate regions of the genome (ρ = 1, CI95[0.9, 1]). Correlations with coding

bp per cM and based on f4 statistics corroborate this pattern (see 2.17-2.19 and Table 2.6). While

one possible explanation is that introgressing maize ancestry is overall beneficial, not deleterious, a

similar pattern could also be produced from a number of different distributions of fitness effects for

maize alleles, including for example if most maize alleles are deleterious but some have strong ben-

eficial consequences. While maize ancestry in general is not predicted to provide adaptive benefits

in teosinte, invasive mexicana in Europe shows selective sweeps for maize ancestry at multiple loci

that have contributed to its establishment as a noxious weed [175] and we speculate that maize

could be a source of alleles adapted to human-modified landscapes.

We repeated these analyses using local ancestry calls as our introgression estimates and found

a non-significant Spearman’s rank correlation between mexicana ancestry and recombination rates

for 1 cM windows in sympatric maize (Fig 2.20, ρ = 0.011, CI95[−0.039, 0.062]) and a negative

rank correlation between mexicana ancestry and recombination rate in sympatric mexicana (ρ =

−0.473, CI95[−0.512, −0.432]). Contrasting results between global and local ancestry methods

could be a reflection of true evolutionary differences across different time periods; local ancestry

methods capture patterns from more recent gene flow that comes in longer ancestry blocks while
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Figure 2.4. (A) Mexicana ancestry by recombination rate. Inferred mex-
icana ancestry in allopatric reference populations (left) and sympatric maize and
mexicana populations (right) using NGSAdmix (K=2) by recombination rate quin-
tiles. Group mean and 95% confidence interval based on bootstrap percentiles (n
= 100) are depicted in black. Ancestry estimates for each individual are shown as
points, colored by subspecies, and points are jittered for better visualization. (B)
Slopes of mexicana ancestry across elevation for each recombination rate quintile,
based on NGSAdmix estimates. Each point is a sympatric maize or mexicana indi-
vidual and lines show the best-fit linear model for ancestry by elevation (with shaded
95% confidence interval) estimated separately for each quintile and subspecies.

STRUCTURE-like algorithms (NGSAdmix) and f4 statistics are based on allele frequencies that

collapse information across ancestry blocks of any size, capturing a longer evolutionary time scale.

75



This interpretation would suggest that mexicana has experienced stronger selection against more

recent maize gene flow than historical gene flow. However, we caution that local ancestry methods

may also have subtle biases in power that are sensitive to local recombination rates and make them

less reliable for comparing ancestry patterns across recombination rate quintiles.

Overall, we find support for widespread selection against introgression into maize and mixed

results from similar tests of this hypothesis in mexicana.

High introgression peaks shared across populations. To assess adaptive introgression

in our sympatric populations, we identified introgression ‘peaks’ where minor ancestry exceeds the

genomewide mean by more than 2 standard deviations. We find no strong reduction in average

diversity (π) for mexicana ancestry at high introgression peaks (Fig 2.11). This maintenance of

diversity implies that selection at most peaks has favored multiple mexicana haplotypes, and hard

sweeps for a recent beneficial mutations on a specific haplotype are rare.

We observe that many high mexicana ancestry peaks are shared across subsets of our 14 maize

landrace populations (see e.g. chr4, Fig 2.5). While most outlier peaks are unique to a single

population, many peaks are shared across 7 or more of the populations (Fig 2.21). To a lesser

extent, we also observe sharing of high-introgression peaks for maize ancestry in sympatric mexicana

populations (Fig 2.22).

High introgression peaks in many independent populations would be very unexpected by chance.

However, our sampled populations do not provide independent evidence for adaptive introgression,

due to shared gene flow and drift post-admixture (e.g. long-distance human-assisted dispersal of

maize seed). To estimate the rate of peak sharing we should expect from demographic processes

alone, we simulated 100,000 unlinked loci under a multivariate normal distribution parameterized

with the empirical ancestry variance-covariance matrix K (see methods). These simulations preserve

the ancestry variance across loci within populations and non-independence in ancestry between

populations.

For both sympatric maize and mexicana, every population shares an excess of high introgression

peaks with all other populations compared to expectations set by our MVN null model. However,

peak sharing is most elevated among high elevation maize populations (with the exception of Co-

cotilan, see Fig 2.6). To investigate the origins of population-specific peaks of introgression, we
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Figure 2.5. Introgression in maize landrace populations across chromo-
some 4. Local introgressed ancestry frequency for each maize landrace population
compared to their genomewide mean. Populations are ordered from high to low
elevation (top to bottom). High introgression peaks with more than 2 standard de-
viations above the population mean introgressed mexicana ancestry are highlighted
in blue. Vertical black lines show the previously identified endpoints for a large
inversion (Inv4m coordinates from Fig 3 of [166]). For local ancestry on other
chromosomes and for sympatric mexicana, see Figs 2.23-2.41

.

calculated FST between homozygous mexicana ancestry in local maize and in each mexicana popu-

lation for these genomic regions. Patterns of FST between local sympatric pairs at local introgres-

sion peaks differed little from background FST (Fig 2.42), offering little support for the idea that

population-specific peaks arose from recent, locally sourced, adaptive introgression. Instead, pat-

terns in maize are consistent with introgressed mexicana ancestry tracts from old shared admixture

being favored by natural selection, and thus rising to high frequency, in a subset of landraces.

This lack of local adaptive introgression is perhaps surprising given the genetic structure in

mexicana associated with different ecotypes [165] and evidence for local adaptation within teosinte
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Figure 2.6. Introgression peaks shared across populations Networks for
sympatric maize (top) and mexicana (bottom), where each node is a sampled popu-
lation labelled by location and ordered by elevation. Edges connecting a pair of pop-
ulations represent the percent of SNPs within shared ancestry peaks (introgressed
ancestry > 2 s.d. above each population’s mean ancestry). Sharing between all pairs
of populations exceeds expectations based on multivariate-normal simulations that
model genomewide covariance in ancestry. The relatively darker thicker lines con-
necting the high elevation maize populations (except for Cocotilan), indicate that
these populations share high introgression peaks at especially high frequencies.
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across elevation [148,166,167]. However, mexicana also has substantial standing variation and we

find little evidence for hard sweeps, so one possibility is that local maize and local mexicana are

adapting to the same environment by different available genetic paths, or even the same causal SNP

on a different set of haplotype backgrounds. Older introgressed tracts may also offer more accessible

paths for maize adaptation, having already purged some of their linked deleterious variation. Ad-

ditionally, local exitinction and re-colonization by mexicana is common [154] and may contribute

to a lack of local sourcing of adaptive haplotypes from contemporary mexicana populations.

Genomewide scan for selection on introgressed ancestry. We scanned the genome for

two types of widespread selection on introgressed ancestry: consistent selection across populations

creating an overall excess or deficit of introgression and fitness trade-offs creating steep clines in

mexicana ancestry across elevation. We used our MVN simulated ancestry frequencies to set false-

discovery-rates for excess and deficits of mexicana ancestry as well as steeper than expected slopes

between mexicana ancestry and elevation (see Fig 2.43 for model fit).

We find several regions with high introgression in both directions that are unlikely to be ex-

plained by shared demographic history alone (Fig 2.7). These regions of adaptive introgression (<

5% FDR) are spread across the genome and cover a small fraction (<0.5%) of the genome in both

subspecies. We do not have power to determine if individual genes or regions are barriers to intro-

gression because zero introgressed ancestry is not unusual under our simulated neutral model, given

both low genomewide introgression and positive ancestry covariance between admixed populations

(Fig 2.7).

Additionally, we identify outlier loci across the genome where mexicana ancestry forms steep

clines across elevation (Fig 2.7). Our top candidate for strong associations between introgression and

elevation in maize is Inv4m, a large 14 Mb inversion on chromosome 4 previously identified to have

introgressed into high elevation maize landraces [5,160,161,178]. This inversion maintains steep

elevational clines within teosintes [166], overlaps QTLs for leaf pigmentation [159] and macrohairs

[159], and is associated with increased yield in maize at high elevations and decreased yield at low

elevations [178], but has thus far eluded functional characterization of genes within the inversion

[178].
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Figure 2.7. Genomewide scan for selection on mexicana ancestry. (A)
Mean mexicana ancestry in sympatric maize and mexicana populations. (B) Slope
of mexicana ancestry proportion over a 1 km elevation gain in sympatric maize
and mexicana populations. In both (A) and (B) the blue lines shows the 5% false
discovery rates, set using multi-variate normal simulations. Observing mexicana
ancestry of 0% in sympatric maize or 100% in sympatric mexicana was not unex-
pected based on simulations. Positions for Inv4m [166] and the mhl1 locus [176]
were converted to the maize reference genome v4 coordinates using Assembly Con-
verter (ensembl.gramene.org). Chromosome numbers are placed at the centromere
midpoint (approximate centromere positions are from [177]).
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Our second strongest association co-localizes with macrohairless1 (mhl1 ), a locus on chromo-

some 9 that controls macrohair initiation on the leaf blade [176] and is associated with a major

QTL explaining 52% of macrohair variation between high and low elevation teosinte mapping par-

ents [159]. Within teosintes, populations of the lowland ancestor of maize, parviglumis, show

convergent soft sweeps at the mhl1 locus not shared by mexicana [149]. Macrohairs are character-

istic highland phenotypes in teosinte and maize and are thought to confer adaptive benefits through

insect defence and/or thermal insulation [158,159]. We identified a 3 Mb outlier region within the

larger mhl1 QTL which we analyzed further using PCA. We found three genetic clusters along the

first principal component, evidence that an inversion polymorphism (hereafter Inv9f ) maintains

differentiation between maize/parviglumis and mexicana haplotypes across this region (Figs 2.44,

2.45). Additionally, principal component two at this inversion separates haplotypes genotyped in

maize vs. those genotyped in mexicana, consistent with the mexicana allele at this inversion in-

trogressing into maize long enough ago to accumulate maize-specific variation, and subsequently

sorting in frequency across contemporary maize populations.

The clinal patterns of admixture that we observe at inversions Inv4m and Inv9f suggest they

contribute to elevation-based adaptation in maize, with variation in their fitness impacts even

within the historic elevational range of mexicana.

While our highest peaks localize with regions previously associated with characteristic highland

phenotypes, many additional outlier regions with steep increases in mexicana ancestry across ele-

vation have undiscovered associations with local adaptation to elevation. Additionally, outliers for

steep ancestry slopes across elevation in sympatric mexicana suggest that introgression from maize

into mexicana may facilitate adaptation in mexicana to the lower end of its elevational range.

Selection at candidate domestication genes. We hypothesized that domestication genes

will be barriers to introgression bilaterally between maize and mexicana [5]. While we do not have

power to identify individual outlier genes that have low introgression, we can test for enriched

overlap between ‘introgression deserts’ and a set of putative domestication genes spread across the

genome.

We examined introgression for a sample of 15 well-characterized domestication genes from

the literature (see Table 2.8), and compared them to the regions of the genome with the lowest
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5% introgression genomewide across all sympatric maize or mexicana populations (‘introgression

deserts’). A small but enriched subset of these domestication genes overlap with introgression

deserts in sympatric maize (7, P < 0.001) and likewise in sympatric mexicana (7, P < 0.001).

Among these candidates, we find that teosinte branched1 (tb1 ), a key transciption factor that

regulates branching vs. apical dominance [179,180], overlaps introgression deserts in both maize

and mexicana, consistent with tb1 ’s role at the top of the domestication regulatory hierarchy [181].

We also find evidence for reduced introgression into both maize and mexicana at teosinte glume

architecture1 (tga1 ) [182, 183] and brittle endosperm2 (bt2 ) [184], which are associated with

‘naked’ edible grains and starch biosynthesis, respectively. Another eight domestication genes

[184,185,186,187,188,189,190] have low introgression in one direction only.

Among these, sugary1 (su1 ) in the starch pathway has low maize ancestry in mexicana but

shows a steep increase in introgressed mexicana ancestry with elevation in maize (< 5% FDR), which

suggests this gene has pleiotropic effects on non-domestication traits in maize, with fitness trade-offs

across elevation. Sugary1 mutations modify the sweetness, nutrient content and texture of maize

kernels (e.g. sweet corn), but also affect seed germination and emergence at cold temperatures [191],

candidate pleiotropic effects that could be more deleterious at higher elevations.

The remaining four domestication genes do not overlap introgression deserts in either sub-

species despite evidence for their role in domestication: zfl2 (cob rank) [192,193,194], ba1 (plant

architecture) [195], ZmSh1-5.1+ZmSh1-5.2 (seed shattering) [190] and pbf1 (storage protein syn-

thesis) [196]. Despite evidence of introgression at many domestication loci, maize landraces retain

all of the classic domestication traits, and mexicana populations maintain ‘wild’ forms. Epista-

sis for domestication traits [163] could help explain this discrepancy if compensatory effects from

other loci contribute to maintaining domestication traits in admixed highland maize, or key do-

mestication alleles segregate at moderate frequencies within mexicana (but do not have the same

phenotypic effects in a teosinte background).

Selection within the flowering time pathway. Flowering earlier is adaptive in high-

elevation environments where days are cooler and there are fewer total growing degree days in

a season. We therefore expect an excess of introgressed mexicana ancestry at flowering time genes

that may contribute to adaptive early flowering in highland maize. The mexicana allele at High
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PhosphatidylCholine 1 (HPC1 ) has been shown to reduce days to flowering, confers a fitness benefit

in maize at higher elevations, and is introgressed in modern flint maize cultivars from Northern

Europe and America [197]. Here we show that HPC1 also overlaps an outlier region with one of the

steepest increases in mexicana ancestry with elevation across sympatric maize populations (+0.91

mexicana ancestry proportion/km, FDR < 5%), consistent with a role in adaptive earlier flowering

at higher elevations in Mexican landraces. HPC1 has low introgression from maize into sympatric

mexicana across the elevational range of this study, suggesting either that the high-elevation mex-

icana allele does not confer fitness tradeoffs in the teosinte background or alternative segregating

mexicana alleles maintain fitness at lower elevations.

We also tested for selection within the flowering time pathway more broadly using a set of 849

candidate flowering time genes [198,199]. Only 1/43 genes from the core flowering time pathway

(ZMM5 ) [198] and 15/806 other candidate flowering time genes [199] (+/- 20kb) overlap outlier

regions with steep increases in mexicana introgression with increasing elevation (< 5% FDR) in

sympatric maize, which matches expected overlap by chance (∼2%, P = 0.76). Thus the steep

clinal introgression pattern at HPC1 in sympatric maize, indicative of strong fitness trade-offs

across elevation, is the exception, not the rule, for flowering-time related genes. While for HPCI

the effect of the mexicana allele on reducing flowering time has been confirmed by CRISPR [197],

a limitation for other less-characterized genes is that we simply assume the mexicana allele reduces

flowering time. In addition, flowering time is a highly polygenic trait [200], which could reduce the

strength of selection at individual genes with smaller effect sizes than HPC1 to below what we can

detect using steep ancestry clines. While it is alternatively possible that mexicana alleles would

show adaptive benefits across the entire range sampled (moderate to high elevation), we find that

only 2/849 candidate flowering time genes overlap high mean mexicana introgression outliers at a

5% FDR (P = 0.23).

Conclusion

We conclude that the majority of mexicana ancestry introgressed into maize over 1000 genera-

tions ago and has subsequently been sorted across an elevational gradient, and by selection within

individual populations. Differentiation of mexicana haplotypes within maize genomewide (FST ) and
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at individual introgressed outlier loci (e.g. Inv9f at the mhl1 locus (PCA)) corroborate this time-

line. Despite contemporary observations of F1 hybrids in the field [154], there is little evidence of

significant recent gene flow in either direction between sympatric maize-mexicana population pairs.

Intrinsic genetic incompatibilities and partial temporal isolation (offset flowering times) clearly cre-

ate an incomplete barrier to gene flow. However, while hybrids are very challenging to identify and

weed out from maize fields at early life stages, farmers can easily distinguish between maize and

hybrids when choosing which cobs to plant for the next season. In the other direction, hybrids in

most locations are expected to be partially temporally isolated from mexicana and hybrid seeds

that do not disarticulate are farmer-dependent for successful dispersal and reproduction, although

first-generation backcrosses to mexicana have been observed [154].

Consistent with domestication loci acting as barriers to introgression, in both maize and mex-

icana an enriched subset of candidate domestication genes overlap ‘introgression deserts.’ More

generally, we find introgressed mexicana alleles are on average deleterious in maize, but less ev-

idence for a genomewide effect of selection against introgression into mexicana, possibly because

epistasis masks the impact of maize alleles in a mexicana background [163]. Some loci show ex-

ceptional ancestry patterns consistent with selection favoring introgression in multiple populations,

especially for mexicana ancestry in the highest elevation maize. While these shared signatures of

adaptive introgression are the most striking, the majority of ancestry peaks are exclusive to a sin-

gle population. Despite this signature of geographically-restricted local adaptation from mexicana

ancestry, there is no evidence of local population sources for locally adapted haplotypes at these

peaks. Thus both broad and local adaptation of maize throughout the highlands appears to have

been driven primarily by the sorting of old introgression.

Materials and Methods

Population sampling. We used maize and mexicana seed accessions sampled from locations

across Mexico in 2008 [5] and currently stored at UC Davis. We included 14 maize and 14 mexicana

accessions that are paired populations sampled in sympatry from the same locations: Ixtlan*, Am-

atlan, Penjamillo, Puruandiro*, Nabogame*, El Porvenir*, Santa Clara*, Opopeo*, Xochimilco*,

Cocotilan, Tlapala, San Pedro*, Jicaltepec and Tenango del Aire* (see Table 2.1). A previous
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study of crop-wild admixture genotyped different maize and mexicana individuals from 9 of these

locations (marked with *), using the Illumina MaizeSNP50 Genotyping BeadChip [5]. In addition,

we chose three population accessions to sequence as a mexicana reference panel: Puerta Encantada

and Malinalco were chosen because they have no record of contemporary maize agriculture nearby

and a third population, Amecameca, was added as a complement to these two reference populations

because it grows at a higher elevation, beyond the historical range of parviglumis.

At each sampling location, multiple ears from maternal plants were collected for seed. Popu-

lation accessions varied in the number of maternal plants with viable seeds. When available, we

planted multiple seeds within each ear but only randomly selected one individual for sequencing

from the plants that successfully germinated in the greenhouse.

DNA extraction and sequencing. We extracted DNA from leaf tissue and then prepared se-

quencing DNA libraries using a recently published high-throughput protocol (“Nextera Low Input,

Transposase Enabled protocol” [90]) with four main steps: (1) DNA shearing and tagmentation by

the Nextera TD enzyme, (2) PCR amplification (Kapa2G Robust PCR kit) and individual sample

barcoding (custom 9bp P7 indexing primers) (3) library normalization and pooling, and (4) bead-

based clean-up and size-selection of pooled libraries. We sequenced the resulting pooled libraries

using multiple lanes on Illumina HiSeq 4000 and Novaseq 6000 machines (paired-end 150 bp reads).

To address low sequencing output from some libraries, we re-sequenced 26 libraries (and merged

output) and replaced 53 lower-coverage libraries with a higher-coverage library prepared from an-

other seed grown from the same half-sibling family. We excluded 7 samples from analysis because

their final libraries did not yield sufficient sequencing output (<0.05x coverage after filtering reads

for mapping quality). We additionally removed one lane of sequencing (58 samples) from the study

after determining a labelling error had occurred for that plate.

In total, we obtained whole genome sequences for 348 individuals (1.0x average coverage, range:

0.1-2.4x). Of these samples, 43 are mexicana from three allopatric populations, with a total of 34.1x

combined coverage. The remaining samples are maize and mexicana from sympatric populations,

262 of which have sufficient coverage for local ancestry inference (≥ 0.5x, 6-12 per sympatric

population, see Fig 2.8). Raw sequencing reads for these low-coverage maize and mexicana genomes

are available at NCBI (PRJNA657016).
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Reference genome and recombination map. We used version 4 of the B73 maize ref-

erence genome [177] (Zea mays.B73 RefGen v4.dna.toplevel.fa.gz, downloaded 12.18.2018 from

Gramene).

To find local recombination rates, we converted marker coordinates from a published 0.2 cM

genetic map [173] to the v4 maize genome using Assembly Converter (ensembl.gramene.org). We

removed any markers that mapped to a different chromosome or out of order on the new assembly,

and extended the recombination rate estimates for the most distal mapped windows to the ends

of each chromosome. From this map, we used approx() in R (v3.6.2 [201]) to estimate the cM

position for any bp position, based on linear interpolation.

Read mapping and filtering. First, we checked read quality using fastQ Screen (v0.14.0

[202]) and trimmed out adapter content from raw sequencing reads using the trimmomatic wrap-

per for snakemake (0.59.1/bio/trimmomatric/pe) [203]. We mapped trimmed reads to the maize

reference genome using bwa mem (v0.7.17 [204]). We then sorted reads using SAMtools (v1.9 [94]),

removed duplicates using picardtools (v2.7.1) MarkDuplicates and merged libraries of the same in-

dividual sequenced on multiple lanes using SAMtools merge. In all subsequent analyses in the

methods below we filtered out reads with low mapping scores (< 30) and bases with low base

quality scores (< 20).

High-coverage Tripsacum genome sequencing. In addition to low-coverage genomes for

maize and mexicana, we selected a Tripsacum dactyloides individual as an outgroup and sequenced

it to high coverage. This individual is an outbred ‘Pete’ cultivar (rootstock acquired from the Tall-

grass Prairie Center, Iowa, USA). We extracted genomic DNA from leaf tissue using the E.Z.N.A.®

Plant DNA Kit (Omega Biotek), following manufacturer’s instructions, and then quantified DNA

using Qubit (Life Technologies). We prepared a PCR-free Truseq DNA library and sequenced it

with an Illumina HiSeq2500 rapid run (paired-end 250 bp reads). We generated a total of 136.53

Gb of sequencing for this individual, available at NCBI (SRR7758238). For the following analyses

that use Tripsacum as an outgroup, we randomly subsampled 50% of reads using seqtk, for approx-

imately 30x coverage. We mapped reads to the maize reference using the pipeline described above,
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and additionally capped base quality scores with the ‘extended BAQ’ model in SAMtools [205],

which reduces the influence of bases with lower alignment quality.

Additional genomes from published sources. For an allopatric maize reference popula-

tion, we used 55 previously published high-coverage maize genomes from a Tuxpeño landrace grown

near Palmar Chico (NCBI: PRJNA616247 [169, 206]). This maize population grows at 983 m,

below the elevational range for mexicana.

For a parviglumis reference population, we used 50 previously published high-coverage lowland

individuals sampled from the ‘Mound’ population at 1,008 m near Palmar Chico [169, 206, 207]

(NCBI: PRJNA616247, see Table 2.2). We mapped and filtered reads for these individuals using

the pipeline described above and capped base quality scores using BAQ.

SNP calling. We called SNPs using a combined panel of the 348 low-coverage genomes se-

quenced in this study for sympatric maize, sympatric mexicana, and allopatric mexicana, and the 55

high-coverage allopatric maize reference genomes described above. We used ANGSD (v0.932 [95])

to identify variant sites with minor allele frequencies ≥ 5% in the total sample based on read counts

(‘angsd -doMajorMinor 2 -minMaf 0.05 -doCounts 1 -doMaf 8’). In addition to mapping and base

quality filters (‘-minMapQ 30 -minQ 20’), we capped base qualities using the extended per-Base

Alignment Quality algorithm (‘-baq 2’ [205]) and removed sites that did not have at least 150

individuals with data or had sequencing depth exceeding 2.5x the total sample mean depth. To

apply this total depth filter, we estimated mean depth (‘angsd -doCounts 1 -doDepth 1 -maxDepth

10000’) for 1000 regions of length 100bp randomly sampled using bedtools (v2.29.0 [108]). In total,

we identified 52,118,357 SNPs on the assembled chromosomes. In conjunction with SNP calling,

we produced genotype likelihoods for each individual at these variant sites using the SAMtools GL

method [94] implemented in ANGSD (‘-GL 1 -doGlf 2’).

Global ancestry inference. To estimate genetic relationships between populations and their

genomewide ancestry proportions, we used methods specific to low-coverage data that rely on

genotype likelihoods, rather than called genotypes. Because these methods are sensitive to SNPs

in high linkage disequilibrium (LD), we thinned genotype likelihoods to every 100th SNP (∼4kb

spacing) [208]. To confirm that maize and mexicana subspecies form a major axis of genetic
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variation in our sample, we estimated the genetic covariance matrix between individuals using

PCAngsd (v0.98.2 [97]) and visualized principal components computed using eigen() in R. We

then estimated global ancestry proportions using the same thinned genotype likelihood files as

input to NGSAdmix [52], using K = 2 clusters. Clusters clearly mapped onto the two reference

groups, which we used to label the two ancestry components as ‘maize’ and ‘mexicana’.

Local ancestry and timing of admixture. We inferred local ancestry across the genome

using a hidden Markov model that is appropriate for low-coverage data because it models genotype

uncertainty down to the level of read counts for all admixed individuals (ancestry hmm [53]). This

method relies on allele counts from separate reference populations to estimate allele frequencies for

each ancestry. Because some of our reference individuals have too low of coverage to accurately call

genotypes, we randomly sampled one read per individual to get unbiased frequency estimates for

major and minor alleles at each site (‘angsd -doCounts 1 -dumpCounts 3’). To maximize ancestry-

informativeness of sites in this analysis, we identified SNPs with allele frequency differences of at

least 0.3 between subspecies (‘angsd -doMajorMinor 3 -GL 1 -baq 2 -doMaf 1’) estimated from

at least 44 reference maize and 12 reference mexicana individuals with sequencing coverage at a

site. We then calculated genetic distances between SNPs using the maize recombination map and

filtered our enriched variants to have minimum 0.001 cM spacing between adjacent SNPs .

Running ancestry hmm jointly infers local ancestry for each individual and the time since

admixture. This HMM method assumes a neutral demographic history in which a constant-size

admixed population was formed by a single admixture event t generations in the past, and finds the

t that maximize the likelihood of the observed read counts and hidden local ancestry state across

each admixed individual’s genome. The timing of admixture defines the generations for possible

meiotic recombination between ancestry tracts, and therefore scales the transition probabilities

between hidden ancestry states. In addition to t, the HMM outputs the posterior probabilities for

homozygous maize, homozygous mexicana, and heterozygous ancestry for each individual at every

site. We analysed each sympatric maize and mexicana population separately, using the population’s

mean NGSAdmix global ancestry estimate as a prior for mixing proportions, 100 generations as a

prior for admixture time (range: 0-10000), an approximate effective population size (Ne) of 10,000

individuals, genetic positions for each SNP based on the maize linkage map, and an estimated
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sequencing base error rate of 3×10−3. We ran ancestry hmm with an optional setting to bootstrap

100 random samples of 1,000-SNP genomic blocks to estimate uncertainty around the estimated

generations since admixture (t). To test the sensitivity of the HMM to our choice of Ne, we re-ran

ancestry hmm with two other Ne’s that differ by an order of magnitude (Ne = 1k, 100k), but

did not analyze these results further after finding high correspondence for both local ancestry and

timing estimates.

To get a single point estimate for local ancestry at a site for an individual, we computed a

sum of mexicana ancestry from the different possible ancestry states, weighted by their poste-

rior probabilities: mexicana ancestry proportion = P(homozygous mexicana) + 1/2P(heterozygous

maize-mexicana). In addition, for analyses that require ancestry tract positions, we assumed that

the estimated ancestry at a focal site extends halfway to the next site with a local ancestry estimate.

Diversity within ancestry. Using mexicana ancestry estimates from the HMM, we identified

high-confidence homozygous ancestry tracts for both maize and mexicana ancestry (posterior >

0.8). We filtered individual bams for reads that overlap these tracks and used the resulting filtered

bams to calculate diversity within both maize and mexicana ancestry, separately. We estimate

diversity using the ANGSD/realSFS framework which is appropriate for low-coverage sequence

data it takes into account uncertainty in both genotypes and variant sites. We created a concensus

fasta sequence for Tripsacum (‘angsd -doFasta 2’) to use as the ancestral state for polarizing the

unfolded site frequency spectrum in these analyses.

For each population and ancestry, we estimated the site allele frequencies (‘angsd -doSaf 1 -GL

1’) and subsequently estimated the genomewide site frequency spectrum (SFS). We then used this

SFS as a prior to estimate within-ancestry pairwise diversity (π) genomewide from the site allele

frequencies (‘realSFS saf2theta’).

For each pair of populations and ancestry, we additionally used realSFS to estimate the two

dimensional SFS from the individual population site allele frequencies genomewide. We then used

this 2D SFS as a prior to estimate genomewide within-ancestry FST between the two populations

(‘realSFS fst index -whichFst 1’). This call uses Hudson’s FST estimator [209] as parameterized

in [210].
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Effect of local recombination rate on introgressed ancestry. To estimate the effects

of linked selection and recombination rate on genomewide introgression patterns, we compared

mexicana ancestry estimates across genomic quintiles. Based on a 0.2 cM-resolution recombination

map [173] for maize, we merged adjacent recombination windows into larger 1 cM non-overlapping

windows and calculated each window’s mean recombination rate and overlap with coding base

pairs (bedr ‘coverage’) [211]. We retrieved coding regions (‘CDS’) using gene annotations from

Ensembl (ensemblgenomes.org, Zea mays.B73 RefGen v4.41.chr.gff3.gz, dowloaded 11.6.2018). We

sorted windows into quintiles for either recombination rate or coding density (bp/cM). Each quintile

covers approximately 1/5 of the genome based on physical bp.

i. NGSAdmix estimates. To estimate ancestry proportions for each recombination rate

quintile, we first reduced LD by thinning to 1% of SNPs (every 100th) and ran NGSAdmix 5 times

separately (once per quintile) with K=2 clusters. We assigned ‘maize’ and ‘mexicana’ labels to

the ancestry clusters based on majority assignment to the respective allopatric reference panels.

To bootstrap for uncertainty, we re-sampled 1 cM windows with replacement from each quintile

100 times, and re-ran NGSAdmix on the resulting bootstrap SNP sets. Using these results, we

calculated 95% percentile bootstrap confidence intervals for the estimated admixture proportions,

and the Spearman’s rank correlation between the recombination rate (or coding bp per cM) and

admixture proportion ranks for each quintile. We also tested for a difference in ancestry slopes with

elevation across different recombination rate quintiles by fitting a linear model with an elevation

by recombination quintile interaction term: mexicana ancestry ∼ elevation + r + elevation*r.

Using lm() in R, we fit this model for sympatric maize and sympatric mexicana separately, treating

quintiles as a numeric scale 0-4.

f4 estimates. In a complementary analysis, we used a ratio of f4 statistics as an alternative

method to estimate ancestry proportions by quintile. The f4 statistic measures shared genetic drift

(allelic covariance) between populations in a phylogeny, due to either shared branch lengths or

admixture events in the evolutionary history relating these populations. Excess shared drift with

one population from a pair of sister populations in the tree is a signature of admixture, analogous
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to the ABBA-BABA test [212], and a ratio of two f4 statistics can be used to quantify the admix-

ture proportion. Assuming the basic phylogenetic tree (((parviglumis, allopatric maize), allopatric

mexicana), Tripsacum) in Fig 2.13, we can estimate α, the proportion of ancestry inherited from

mexicana in an admixed population, as follows [212,213]:

α =
f4(Tripsacum, parviglumis; X, allopatric maize)

f4(Tripsacum, parviglumis; allopatric mexicana, allopatric maize)
.

The denominator of this statistic estimates the branch length leading to parviglumis and allopatric

maize that separates these sister subspecies from allopatric mexicana; the full ratio estimates the

proportion of this branch that separates sympatric population X from parviglumis and allopatric

maize, i.e. the mexicana ancestry in X. Because the f4 statistic is sensitive to additional unmodeled

admixture within the tree, we limited our allopatric mexicana group to individuals from just one

of the three reference populations (Amecameca), which showed no evidence of admixture in our

global ancestry analysis (see Fig 2.2).

For each 1 cM window across the genome, we used ANGSD to calculate ABBA-BABA statistics

from observed read counts for the 4 populations in the numerator and denominator of the α

estimator separately (‘angsd -doabbababa2 1 -remove bads 1 -minMapQ 30 -minQ 20 -doCounts 1

-doDepth 1 -maxDepth 10000 -useLast 1 -blockSize 5000000’). From the resulting output files, we

summed the negative of the ABBA-BABA numerator (‘Num’) and divided by the total number of

included sites (‘nSites’) across all 1 cM windows within a quintile to get the f4 statistic [214].

We then calculated the Spearman’s rank correlation between the recombination rate quintiles

and admixture proportion ranks for these quintiles. We calculated simple bootstrap confidence

intervals for our ancestry estimates and correlations by re-sampling 1 cM windows within quintiles

with replacement 10,000 times and re-calculating the f4 ratios and resulting rank correlation across

quintiles to construct 95% percentile confidence intervals. We repeated this analysis using quintiles

based on coding bp per cM in place of recombination rate (cM/Mbp).

ii. Local ancestry estimates. We also calculated the Spearman’s rank correlation between

local recombination rate (or coding bp per cM) and local ancestry proportion at the level of individ-

ual 1 cM windows. For each window, we averaged local ancestry estimates from the HMM across

all individuals within sympatric maize, and separately, sympatric mexicana. We then calculated
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simple bootstrap confidence intervals for our local ancestry estimates and local recombination rate

(or coding bp per cM) by re-sampling 1 cM windows across the genome with replacement 10,000

times and re-calculating the rank correlation across windows to construct 95% percentile confidence

intervals.

Local ancestry simulations. We simulated mexicana ancestry population frequencies using

a multivariate-normal null model:

mexicana ancestry ∼ MVN(~α,K)

where ~α is the vector of mean mexicana ancestry frequencies genomewide for each sympatric pop-

ulation and K is the empirical ancestry variance-covariance matrix relating these 14 populations.

The diagonal entries of the K matrix capture the expected variation in local ancestry across the

genome within populations due to drift and random sampling. The off-diagonals capture ances-

try covariances between populations created by shared gene flow and drift post-admixture: at

loci where one population has an excess of introgression, other admixed populations with shared

demographic history will also tend to have an excess of introgression.

To construct K, we calculated the covariance in ancestry between each pair of populations i

and j using all L loci with local ancestry calls genomewide:

K[i, j] =
1

L

L∑
l=1

(Anci,l − αi)(Ancj,l − αj).

Above, Anci,l and Ancj,l are local ancestry frequencies at a locus l while αi and αj are the

mean local ancestry frequencies across the genome for populations i and j.

For sympatric maize and sympatric mexicana separately, we calculated the empirical K matrix

between populations from all 14 sympatric locations, and then took 100,000 independent draws

from their MVN distribution, thereby simulating mexicana ancestry for all populations at 100,000

unlinked loci. Because ancestry frequencies are bounded at [0,1] but normal distributions are not,

we truncated any simulated values outside of this range.
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Introgression peaks shared between populations. To characterize introgression peak

sharing between individual populations, we defined ‘ancestry peaks’ as sites where a population

has over 2 standard deviations more introgressed ancestry than the genomewide mean. We counted

the number of peaks that are shared between all pairs and combinations of populations. To com-

pare these results to our null model, we also counted the number of introgression peaks shared by

populations in our simulated dataset, using the 2 s.d. cutoff set by the empirical data to define

peaks.

Because mexicana ancestry shows significant diversity, we additionally characterized diversity

for mexicana ancestry peaks introgressed into maize. For all introgressed ancestry outlier regions in

a focal maize population, we used ANGSD to estimate pairwise diversity within the population (π)

and differentiation (FST ) between the focal sympatric maize populations and their local sympatric

mexicana population. We focused on the mexicana ancestry within peaks by limiting our diversity

estimates to only include high-confidence homozygous mexicana ancestry tracts (posterior > 0.8).

For these analyses, we pooled information across outlier peaks, but distinguish between introgression

peaks exclusive to the focal population and introgression peaks shared between the focal population

and at least 3 other sympatric maize populations. We used global estimates of the SFS and 2D

SFS as priors to estimate π and FST for the subsets of the genome within introgression peaks, and

otherwise followed the same methods listed above in ‘Diversity within ancestry’.

Genomewide scan for ancestry outliers. For sympatric maize and mexicana separately,

we calculated the mean mexicana ancestry across all individuals at a locus, and fit a linear model

using lm() in R to estimate the slope of mexicana ancestry frequencies for sympatric populations

across elevation (km): mexicana ancestry ∼ elevation. We then repeated these summary statistics

for every locus with an ancestry call in the empirical data and each simulated locus in the MVN

simulated data.

We calculated 5% false-discovery-rate (FDR) cutoffs for high and low mexicana ancestry using

the Benjamini-Hochberg method [110] and simulation results to estimate the expected frequency of

false-positives under our null MVN model (one-tailed tests). We repeated this approach to identify

outlier loci with steep positive (or negative) slopes for mexicana ancestry across elevation at a 5%

FDR.
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Test for reduced introgression at domestication genes. To test whether domestication

genes are unusually resistant to introgression, we first defined ‘introgression deserts’ as regions with

the lowest 5% of introgression genomewide across all sympatric maize (or, separately, sympatric

mexicana) populations. We then looked up v4 coordinates on Ensembl.org for genes associated with

maize domestication in the literature (Table 2.8), and used bedtools ‘intersect’ to identify which

of these genes ±20 kb overlap introgression deserts. To test for significance, we randomly shuffled

the gene positions across the genome (bedtools ‘shuffle’) 1000 times and re-calculated overlap with

introgression deserts for each permuted data set.

Test for selection within the flowering time pathway. We identified a list of 48 core

flowering time pathway genes from the literature [198], and a broader list of 905 flowering time

candidate genes [198,199]. From the combined set, we included 849 total genes (43 core pathway)

which we were able to localize on assembled autosomes of the v4 reference genome using MaizeGDB

gene cross-reference files [215]. We counted the number of genes±20 kb that intersected with outlier

regions for steep increases in mexicana introgression with elevation (and, separately, high mexicana

introgression) in sympatric maize populations (< 5% FDR) using bedtools ‘intersect’, then tested

for significance by repeating this analysis with 1000 randomly shuffled gene positions.

Analysis pipeline and data visualization. We constructed and ran bioinformatics pipelines

using snakemake (v.5.17.0 [216]) within a python conda environment (v3.6). We analyzed and

visualized data in R (v3.6.2 [201]) using the following major packages: tidyverse (v1.3.0 [58]),

viridis (v0.5.1 [217]), bedr (v1.0.7 [211]), boot (v.1.3 25 [218, 219]), gridExtra (v2.3 [220]),

ggupset (v0.3.0 [221]) and tidygraph (1.2.0 [222]). All scripts can be found on our gitHub repos-

itory, https://github.com/ecalfee/hilo, which also includes a full list of software and versions (see

envs/environment.yaml).
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Supporting Information

Table 2.1. Population metadata.

Subspecies Group Location Country Elev.
(m)

Latitude Longitude Accession

mexicana allopatric Puerta
Encantada

Mexico 1658 18.9725 -99.0298 RIMME0033

mexicana allopatric Malinalco Mexico 1887 18.9531 -99.503 RIMME0020

mexicana allopatric Amecameca Mexico 2467 19.139 -98.7733 RIMME0022

maize sympatric Ixtlan Mexico 1547 20.1683 -102.373 RIMMA0371

maize sympatric Amatlan Mexico 1658 18.9719 -99.0551 RIMMA0369

maize sympatric Penjamillo Mexico 1705 20.1176 -101.93 RIMMA0361

maize sympatric Puruandiro Mexico 1915 20.1076 -101.49 RIMMA0370

maize sympatric Nabogame Mexico 2020 26.2465 -106.915 RIMMA0360

maize sympatric El Porvenir Mexico 2094 19.6789 -100.64 RIMMA0363

maize sympatric Santa Clara Mexico 2173 19.4184 -101.642 RIMMA0362

maize sympatric Opopeo Mexico 2213 19.4181 -101.613 RIMMA0368

maize sympatric Xochimilco Mexico 2237 19.2861 -99.0827 RIMMA0374

maize sympatric Cocotilan Mexico 2269 19.2244 -98.8427 RIMMA0367

maize sympatric Tlapala Mexico 2272 19.2351 -98.8368 RIMMA0365

maize sympatric San Pedro Mexico 2459 19.0886 -98.4935 RIMMA0372

maize sympatric Jicaltepec Mexico 2587 19.3764 -99.6303 RIMMA0366

maize sympatric Tenango
del Aire

Mexico 2609 19.1197 -99.5896 RIMMA0373

mexicana sympatric Ixtlan Mexico 1547 20.1683 -102.373 RIMME0029

mexicana sympatric Amatlan Mexico 1658 18.9719 -99.0551 RIMME0027

mexicana sympatric Penjamillo Mexico 1705 20.1176 -101.93 RIMME0019

mexicana sympatric Puruandiro Mexico 1915 20.1076 -101.49 RIMME0028

mexicana sympatric Nabogame Mexico 2020 26.2465 -106.915 RIMME0018

mexicana sympatric El Porvenir Mexico 2094 19.6789 -100.64 RIMME0021

mexicana sympatric Santa Clara Mexico 2173 19.4184 -101.642 RIMME0034

mexicana sympatric Opopeo Mexico 2213 19.4181 -101.613 RIMME0026

mexicana sympatric Xochimilco Mexico 2237 19.2861 -99.0827 RIMME0035

mexicana sympatric Cocotilan Mexico 2269 19.2244 -98.8427 RIMME0025

mexicana sympatric Tlapala Mexico 2272 19.2351 -98.8368 RIMME0023

mexicana sympatric San Pedro Mexico 2459 19.0886 -98.4935 RIMME0030

mexicana sympatric Jicaltepec Mexico 2587 19.3764 -99.6303 RIMME0024

mexicana sympatric Tenango
del Aire

Mexico 2609 19.1197 -99.5896 RIMME0031
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Table 2.2. Parviglumis SRA IDs.

Run Isolate Run (cont.) Isolate (cont.)

SRR11448802 PC M59 ID1 SRR13207117 PC J01 ID1

SRR11448838 PC I05 ID1 SRR11448791 PC N48 ID1

SRR11448793 PC N13 ID1 SRR11448812 PC L08 ID1

SRR11448797 PC N09 ID1 SRR11448834 PC I50 ID1

SRR11448799 PC N07 ID1 SRR13207120 PC O08 ID1

SRR11448800 PC N04 ID1 SRR11448794 PC N11 ID1

SRR11448803 PC M58 ID1 SRR11448804 PC M15 ID1

SRR11448805 PC M05 ID1 SRR11448807 PC L56 ID1

SRR11448809 PC L14 ID1 SRR13207095 PC J08 ID1

SRR11448811 PC L12 ID1 SRR13207116 PC O59 ID1

SRR11448814 PC K60 ID1 SRR13207160 PC J14 ID1

SRR11448816 PC K54 ID1 SRR13207149 PC J48 ID1

SRR11448818 PC K02 ID1 SRR13207138 PC K55 ID1

SRR11448819 PC J51 ID1 SRR13207131 PC L06 ID1

SRR11448820 PC J50 ID1 SRR13207130 PC L10 ID1

SRR11448823 PC J13 ID1

SRR11448824 PC J12 ID1

SRR11448825 PC J10 ID1

SRR11448827 PC J04 ID1

SRR11448830 PC I58 ID1

SRR11448832 PC I52 ID1

SRR11448836 PC I08 ID1

SRR11448837 PC I06 ID1

SRR13207106 PC J07 ID1

SRR13207118 PC O51 ID1

SRR13207119 PC O10 ID1

SRR13207121 PC N60 ID1

SRR13207122 PC N58 ID1

SRR13207123 PC N57 ID1

SRR13207124 PC N56 ID1

SRR13207125 PC N14 ID1

SRR13207126 PC N10 ID1

SRR13207127 PC L48 ID1

SRR13207128 PC I53 ID1

SRR13207129 PC I11 ID1
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Table 2.3. Spearman’s rank correlation between mexicana ancestry (NGSAdmix)

and recombination rate (or coding bp per cM) quintiles

group feature Spearman’s ρ 2.5% 97.5%

allopatric maize recombination rate (cM/Mb) -0.36 -0.90 0.67

allopatric mexicana recombination rate (cM/Mb) 0.40 0.10 1.00

sympatric maize recombination rate (cM/Mb) 1.00 0.85 1.00

sympatric mexicana recombination rate (cM/Mb) 1.00 0.90 1.00

allopatric maize coding bp per cM 0.62 -0.30 1.00

allopatric mexicana coding bp per cM -0.40 -0.90 -0.20

sympatric maize coding bp per cM -1.00 -1.00 -0.85

sympatric mexicana coding bp per cM -0.90 -1.00 -0.80

Table 2.4. Spearman’s rank correlation between ancestry (f4 ratio) and recombina-

tion rate (or coding bp per cM) quintiles in sympatric maize

group feature Spearman’s ρ 2.5% 97.5%

sympatric maize recombination rate (cM/Mb) 1.00 0.30 1.00

sympatric maize coding bp per cM -0.90 -1.00 0.10

Table 2.5. Ancestry by elevation and recombination rate quintile. Best-fitting linear

models for ancestry proportion predicted by an elevation by recombination rate interaction: mex-

icana ancestry ∼ elevation + r + elevation*r. Here, r is the recombination rate quintile, treated

as numeric [0-4]. This model only uses ancestry estimates for sympatric individuals and is fit

separately for maize and mexicana samples.

group term estimate std.error statistic p.value

sympatric maize intercept -0.122 0.027 -4.512 7.67E-06

sympatric maize elevation (km) 0.083 0.013 6.596 9.01E-11

sympatric maize r quintile -0.110 0.011 -9.896 1.50E-21

sympatric maize elevation*r quintile 0.074 0.005 14.399 8.27E-41

sympatric mexicana intercept 0.270 0.035 7.710 3.35E-14

sympatric mexicana elevation (km) 0.270 0.016 16.590 4.52E-54

sympatric mexicana r quintile 0.119 0.014 8.309 3.57E-16

sympatric mexicana elevation*r quintile -0.045 0.007 -6.735 2.94E-11

Table 2.6. Spearman’s rank correlation between ancestry (f4 ratio) and recombina-

tion rate (or coding bp per cM) quintiles in sympatric mexicana

98



group feature Spearman’s ρ 2.5% 97.5%

sympatric mexicana recombination rate (cM/Mb) 1.00 0.80 1.00

sympatric mexicana coding bp per cM -1.00 -1.00 -0.90

Table 2.7. Spearman’s rank correlation between mean mexicana local ancestry and

recombination rate (or coding bp per cM) at 1 cM genomic window resolution. Confi-

dence intervals are constructed using the percentile method and 10,000 bootstrap replicates created

by randomly re-sampling 1 cM windows within quintiles.

group feature Spearman’s ρ 2.5% 97.5%

sympatric maize recombination rate (cM/Mb) 0.011 -0.039 0.062

sympatric maize coding bp per cM 0.014 -0.038 0.066

sympatric mexicana recombination rate (cM/Mb) -0.473 -0.512 -0.432

sympatric mexicana coding bp per cM 0.339 0.292 0.384
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Figure 2.8. Number of individuals sequenced per location. Number of
maize (top) and mexicana (bottom) individuals sequenced by this study with min-
imum 0.05x WGS coverage. Amecameca, Malinalco and Puerta Encantada have
no paired maize samples and are used as a reference panel for mexicana ancestry.
For sympatric maize and mexicana, only individuals meeting a more stringent 0.5x
coverage threshold (shown in darker shading) are included in analyses based on local
ancestry inference.
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Figure 2.9. PCA. First and second principal components from the genomewide
genetic covariance matrix relating sympatric and allopatric maize and mexicana
individuals (PCAngsd). PC1 separates maize and mexicana subspecies while PC2
differentiates genetic clusters within mexicana.
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Figure 2.10. Time since admixture. Estimated generations since admixture
under a single-pulse model for each sympatric maize and mexicana population,
with 95% percentile confidence intervals based on 100 bootstrap samples of genomic
blocks (1,000 SNPs per block). Estimates and bootstraps were produced during
ancestry hmm model fitting for local ancestry inference. Populations are ordered
left to right by increasing elevation.
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Figure 2.11. Diversity (π) within mexicana ancestry Each point summarises
pairwise genetic diversity (π) for genomic regions with high-confidence homozygous
mexicana ancestry, calculated separately for the maize and mexicana populations
at each sampled location. Within-mexicana ancestry π is calculated and plotted
separately for three subsets of the genome: introgression peaks (> 2 s.d. above the
mean) found in the focal maize population only, peaks shared between the focal
maize and at least 3 other maize populations, and a genomewide estimate.
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Figure 2.12. Diversity (π) within maize ancestry Each point summarises
pairwise genetic diversity (π) for regions genomewide with high-confidence homozy-
gous mexicana ancestry, calculated separately for the maize and mexicana popula-
tions at each sampled location.
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Figure 2.13. Population tree Phylogenetic tree assumed when estimating the
ratio of f4 statistics. The pink branch represents the shared drift between maize
and parviglumis that is introduced to the focal sympatric population via admixture
of proportion 1−α. We used only plants from the Amecameca site in our mexicana
reference group for this analysis because that site showed no evidence of previous
admixture.
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Figure 2.14. f4 ancestry in maize by recombination rate. Estimated mexi-
cana ancestry in sympatric maize landrace samples using f4 ratio. Mean ancestry
per recombination rate quintile and 95% percentile bootstrap confidence interval (n
= 10,000) are depicted in black. Violin plots show the density of ancestry estimates
for individual bootstraps re-sampled within quintiles.
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Figure 2.15. f4 ancestry in maize by coding bp per cM. Estimated mexicana
ancestry in sympatric maize landrace samples using f4 ratio. Mean ancestry for
each coding bp/cM quintile and 95% percentile bootstrap confidence interval (n =
10,000) are depicted in black. Violin plots show the density of ancestry estimates
for individual bootstraps re-sampled within quintiles.

108



Figure 2.16. Mexicana ancestry across recombination quintiles by eleva-
tion. Estimated linear relationship between proportion mexicana ancestry (NGSAd-
mix) and recombination rate quintile for each sympatric population, colored by el-
evation. Linear models were fit using lm() in R on individuals’ ancestry estimates
per quintile.
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Figure 2.17. Mexicana ancestry by coding bp per cM. Inferred mexicana
ancestry in allopatric reference populations (left) and sympatric maize and mexicana
populations (right) using NGSAdmix (K=2) by coding density quintiles. Group
mean and 95% percentile bootstrap confidence interval (n = 100) are depicted in
black. Ancestry estimates for each individual are shown as points, colored by Zea
subspecies, and points are jittered for better visualization.
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Figure 2.18. f4 ancestry in maize by recombination rate. Estimated mex-
icana ancestry in sympatric mexicana samples using f4 ratio. Mean ancestry per
recombination rate quintile and 95% percentile bootstrap confidence interval (n =
10,000) are depicted in black. Violin plots show the density of ancestry estimates
for individual bootstraps re-sampled within quintiles.
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Figure 2.19. f4 ancestry in mexicana by coding bp per cM. Estimated
mexicana ancestry in sympatric mexicana samples using f4 ratio. Mean ancestry
for each coding bp/cM quintile and 95% percentile bootstrap confidence interval (n
= 10,000) are depicted in black. Violin plots show the density of ancestry estimates
for individual bootstraps re-sampled within quintiles.
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Figure 2.20. Local mexicana ancestry in 1 cM windows by recombination
rate. Estimated mexicana ancestry in sympatric maize and mexicana samples using
ancestry hmm. Each point is a 1 cM genomic window and the line shows the best
linear model fit for mean mexicana ancestry by recombination rate on a log scale.
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Figure 2.21. High introgression peaks shared across sympatric maize
populations Here we show the 75 most common combinations of populations that
share ancestry peaks (introgressed ancestry > 2 s.d. above each population’s mean
ancestry). Bar height represents the percent of SNPs genomewide within peaks
shared by the populations highlighted in blue below. Populations are ordered from
high (top) to low elevation. See 2.22 for sympatric mexicana equivalent visualiza-
tion.
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Figure 2.22. High introgression peaks shared across sympatric mexicana
populations Here we show the 75 most common combinations of populations that
share ancestry peaks (introgressed ancestry > 2 s.d. above each population’s mean
ancestry). Bar height represents the percent of SNPs genomewide within peaks
shared by the populations highlighted in blue below. Populations are ordered from
high (top) to low elevation.
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Figure 2.23. Introgression in maize landrace populations across chromosome 1

Figure 2.24. Introgression in maize landrace populations across chromosome 2
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Figure 2.25. Introgression in maize landrace populations across chromosome 3

Figure 2.26. Introgression in maize landrace populations across chromosome 5
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Figure 2.27. Introgression in maize landrace populations across chromosome 6

Figure 2.28. Introgression in maize landrace populations across chromosome 7
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Figure 2.29. Introgression in maize landrace populations across chromosome 8

Figure 2.30. Introgression in maize landrace populations across chromosome 9
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Figure 2.31. Introgression in maize landrace populations across chromo-
some 10

Figure 2.32. Introgression in mexicana populations across chromosome 1
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Figure 2.33. Introgression in mexicana populations across chromosome 2

Figure 2.34. Introgression in mexicana populations across chromosome 3
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Figure 2.35. Introgression in mexicana populations across chromosome
4 Vertical lines indicate the coordinates for Inv4m.

Figure 2.36. Introgression in mexicana populations across chromosome 5
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Figure 2.37. Introgression in mexicana populations across chromosome 6

Figure 2.38. Introgression in mexicana populations across chromosome 7
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Figure 2.39. Introgression in mexicana populations across chromosome 8

Figure 2.40. Introgression in mexicana populations across chromosome 9
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Figure 2.41. Introgression in mexicana populations across chromosome 10
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Figure 2.42. Differentiation (FST ) between introgressed ancestry tracts
and local mexicana Each point summarises FST between mexicana ancestry tracts
within a focal maize population and mexicana ancestry tracts within the local mex-
icana population sampled at the same site. Within-mexicana ancestry FST is pre-
sented separately for three subsets of the genome: introgression peaks found in the
focal maize population only, peaks shared between the focal maize and at least 3
other maize populations, and a genomewide estimate.
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Figure 2.43. Quantile comparison of observed data vs. MVN normal
null model (A) QQ-plot of simulated vs. observed mean ancestry at individual
loci across all sympatric populations. (B) QQ-plot of simulated vs. observed slopes
from the linear model mexicana ancestry ∼ elevation at individual loci.
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Figure 2.44. Ancestry slope with elevation at mhl1 locus. Slope of in-
trogressed mexicana ancestry proportion in sympatric maize over a 1 km gain in
elevation, zoomed in on the mhl1 QTL region on chromosome 9. Coordinates for
the 3 Mb outlier region within this QTL are 9:108640415-111788150.
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Figure 2.45. PCA of putative mhl1 inversion. Principal components analysis
of all SNPs in the 3 Mb outlier region within the mhl1 QTL region that shows a steep
increase in introgressed mexicana ancestry across elevation (>5% FDR). This region
on chromosome 9 is a putative inversion (9:108640415-111788150), separating out
into three clusters across PC1: individuals homozygous for the common mexicana
inversion allele (left), heterozygous individuals (middle) and individuals homozygous
for the common maize inversion allele (right; includes all allopatric maize).
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quences for biodiversity. Écoscience. 2016;12(3):289–301.

[10] Crane E. The world history of beekeeping and honey hunting; 1999.

[11] Levine JM. Biological invasions. Current biology : CB. 2008;18(2):R57–60.

[12] Winston ML. The biology and management of Africanized honey bees. Annual Review of Entomology.

1992;37:173–193.

[13] Stort AC. Genetic Study of Aggressiveness of two Subspecies of Apis Mellifera in Brazil 1. Some Tests to

Measure Aggressiveness. Journal of Apicultural Research. 1974;13(1):33–38.

[14] Collins AM, Rinderer TE, Harbo JR, Bolten AB. Colony Defense by Africanized and European Honey Bees.

Science. 1982;218(4567):72–74.

130



[15] Hunt GJ, Guzman-Novoa E, Fondrk MK, Page RE. Quantitative trait loci for honey bee stinging behavior and

body size. Genetics. 1998;148(3):1203–1213.

[16] Winston ML. Killer bees. The Africanized honey bee in the Americas. Cambridge, MA: Harvard University

Press; 1992.

[17] Roell A, Whitehead H, Van Wyk J. Why the term Africanized bees is problematic in a racist society; 2020.

Available from: https://doi.org/10.6084/m9.figshare.12735452.v1.

[18] Tsing AL. Empowering nature, or: some gleanings in bee culture. In: Yanagisako S, Delaney C, editors.

Naturalizing Power. New York, NY: Routledge; 1995. p. 113–143.

[19] Ksiazek P. Africanized honey bees; 2007. Press release, Zak Gallery.

[20] Schumacher MJ, Egen NB. Significance of Africanized Bees for Public Health: A Review. Archives of Internal

Medicine. 1995;155(19):2038–2043.

[21] Woyke J. Experiences with Apis mellifera adansonii in Brazil and in Poland. Apiacta. 1973;.

[22] Villa JD, Koeniger N, Rinderer TE. Overwintering of Africanized, European, and hybrid honey bees in Germany.

Environmental Entomology. 1991;20(1):39–43.

[23] Taylor Jr OR, Spivak M. Climatic limits of tropical African honeybees in the Americas. Bee World.

1984;65(1):38–47.

[24] Harrison JF, Fewell JH, Anderson KE, Loper GM. Environmental physiology of the invasion of the Americas

by Africanized honeybees. Integrative and Comparative Biology. 2006;46(6):1110–1122.

[25] Southwick EE, Roubik DW, Williams JM. Comparative energy balance in groups of Africanized and European

honey bees: ecological implications. Comparative Biochemistry and Physiology. 1990;97(1):1–7.

[26] Sheppard WS, Rinderer TE, Mazzoli JA, Stelzer JA, Shimanuki H. Gene flow between African- and European-

derived honey bee populations in Argentina. Nature. 1991;349(6312):782–784.

[27] Agra MN, Conte CA, Corva PM, Cladera JL, Lanzavecchia SB, Palacio MA. Molecular characterization of Apis

mellifera colonies from Argentina: genotypic admixture associated with ecoclimatic regions and apicultural

activities. Entomologia Experimentalis et Applicata. 2018;166(9):724–738.

[28] Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS. Africanization in the United States: replacement

of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics. 2005;170(4):1653–1665.

[29] Loper GM, Fewell J, Smith DR, Sheppard WS, Schiff N. Changes in the genetics of a population of feral

honey bees (Apis mellifera L.) in S. Arizona after the impact of tracheal mites (Acarapis woodi), Varroa mites

(Varroa jacobsoni) and Africanization. In: Hoopingarner R, Connor L, editors. Apiculture for the 21st Century.

Cheshire, CT: Wicwas; 1999. p. 47–51.

[30] Kono Y, Kohn JR. Range and frequency of Africanized honey bees in California (USA). PLoS ONE.

2015;10(9):e0137407.

131

https://doi.org/10.6084/m9.figshare.12735452.v1


[31] Lin W, McBroome J, Rehman M, Johnson BR. Africanized bees extend their distribution in California. PLoS

ONE. 2018;13(1):e0190604.

[32] Kadri SM, Harpur BA, Orsi RO, Zayed A. A variant reference data set for the Africanized honeybee, Apis

mellifera. Scientific Data. 2016;3:160097.

[33] Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, et al. A worldwide survey of genome se-

quence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nature Genetics.

2014;46(10):1081–1088.

[34] Cridland JM, Ramı́rez SR, Dean CA, Sciligo A, Tsutsui ND. Genome sequencing of museum specimens re-

veals rapid changes in the genetic composition of honey bees in California. Genome Biology and Evolution.

2018;10(2):458–472.

[35] Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, et al. Thrice out of Africa:

ancient and recent expansions of the honey bee, Apis mellifera. Science. 2006;314(5799):642–645.

[36] Bozek K, Rangel J, Arora J, Tin M, Crotteau E, Loper G, et al. Parallel genomic evolution of parasite tolerance

in wild honey bee populations. bioRxiv. 2018;doi:10.1101/498436.

[37] Nelson RM, Wallberg A, Simões ZLP, Lawson DJ, Webster MT. Genome-wide analysis of admixture and

adaptation in the Africanized honeybee. Molecular Ecology. 2017;26:3603–3617.

[38] Ruttner F. Honeybees of Tropical Africa. In: Biogeography and Taxonomy of Honeybees. Berlin: Springer;

1988. p. 199–227.

[39] Schneider SS, DeGrandi-Hoffman G, Smith DR. The African honey bee: Factors contributing to a successful

biological invasion. Annual Review Entomology. 2004;49(1):351–376.

[40] Danka RG, Rinderer TE, Hellmich RL, Collins AM. Comparative toxicities of four topically applied insec-

ticides to Africanized and European honey bees (Hymenoptera: Apidae). Journal of Economic Entomology.

1986;79(1):18–21.

[41] Guzman-Novoa E, Vandame R, Arechavaleta ME. Susceptibility of European and Africanized honey bees (Apis

mellifera L.) to Varroa jacobsoni Oud. in Mexico. Apidologie. 1999;30(2-3):173–182.

[42] Vandame R, Morand S, Colin ME, Belzunces LP. Parasitism in the social bee Apis mellifera: quantifying costs

and benefits of behavioral resistance to Varroa destructor mites. Apidologie. 2002;33(5):433–445.

[43] Guerra J, Goncalves LS, De Jong D. Africanized honey bees (Apis mellifera L.) are more efficient at removing

worker brood artificially infested with the parasitic mite Varroa jacobsoni Oudemans than are Italian bees or

Italian/Africanized hybrids. Genetics and Molecular Biology. 2000;23(1):89–92.

[44] Moretto G, de Mello LJ. Varroa jacobsoni infestation of adult Africanized and Italian honey bees (Apis mellifera)

in mixed colonies in Brazil. Genetics and Molecular Biology. 1999;22(3):321–323.

132



[45] Medina-Flores CA, Guzman-Novoa E, Hamiduzzaman MM, Aréchiga-Flores CF, López-Carlos MA. Africanized
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