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Abstract 
This paper describes the principles of a research programme 
for cognitive science that exploits recent developments in 
machine learning (ML) to generate novel hypotheses about the 
structure of human cognition.  Current debate over the 
interpretability and explainability algorithms usually focuses 
on the properties of the algorithms themselves in virtue of 
which they are either interpretable or explainable.  However, 
we argue that there is value in conceptualizing these categories 
as inherently psychological constructs.  Given certain 
mathematical features of machine learning algorithms – 
specifically, that many useful ML algorithms are members of 
Rashomon sets – it is possible to exploit their utility to reason 
using a principle of parsimony about the inferential structure of 
certain human cognitive tasks.  Algorithms that do something 
the human mind can do, and are both interpretable and 
explicable could be, we shall argue, inferential homologues of 
certain core cognitive processes.  We illustrate this proposal 
with an example drawn from clustering models used in 
exploratory data analysis, and then conclude with a discussion 
of some of the philosophical limitations of our proposal.   
 

Keywords: philosophy of cognitive science, interpretability, 
explainability, philosophy of machine learning, concept 
acquisition, ethology, comparative psychology, naturalistic 
epistemology, cognitive psychology 

Scientific Background and Context 
The evolutionary pressures of natural selection do not, as a 
matter of principle, conserve the most optimal, efficient, 
rational, or balanced solutions to adaptive behavioral 
problems (West-Eberhard, 2003).  There is therefore no 
general reason, given the evolutionary origins of the human 
cognitive system, to assume that the way the human mind 
forms concepts, abstracts categories from perceptual 
evidence, identifies causes and frames effects, makes 
inferences about future events, forms beliefs about hidden 
processes, reasons about the mind of other people is, from 
either a computational or mathematical or philosophical 
perspective, anywhere near optimal.   

The same reasoning applies in the other direction. There is 
no reason to assume that the cognitive processes which 
implement both those and other centrally important cognitive 
abilities are profoundly sub-optimal.  At best, we are licensed 
to conclude that all these various cognitive capacities are 

imperfectly useful, and that the utility of cognitive functions 
will vary across contexts.   

But this means it is not possible to make accurate 
predictions about the specific structure of human cognitive 
processes on a priori grounds – by defining a particular 
cognitive task, finding out what algorithms can be used to 
solve the task, and then identifying the most efficient of these, 
and concluding that those algorithms are (most probably) the 
ones which are implemented in the human cognitive system 
(Boyd, 2016; Fedyk, 2015). 

An alternative approach finds its home in the study of 
behavioral processes in comparative ethology (Barnett, 1981; 
Hoeschele et al., 2022; Tomonaga & Kawakami, 2022) and – 
slightly more relevantly to our thesis – research in 
developmental psychology that has examined different kinds 
of learning by looking for similarities and differences in the 
cognitive abilities of primates (Csibra & Gergely, 2009; Moll 
& Tomasello, 2007; Southgate et al., 2007; Tomasello, 
2014).  In both cases, researchers construct and evaluate 
hypotheses about cognitive structure based on principles and 
logic of comparative analysis and parsimony: the same 
behavioral pattern or cognitive abilities observed in two 
species with a relatively recent “last common ancestor” 
probably has the same underlying basis.   

Our proposal marries the logic of this basically ethological 
research strategy to David Marr and Tomaso Poggio’s well-
known levels of description for analyzing human cognitive 
processes (Marr & Poggio, 1976; Marr, 2010).  Marr and 
Poggio distinguish between the computational, algorithmic, 
and implementation levels of description.  The computational 
level of description is a high-level analysis of what the 
cognitive process is doing: what its function is, and how or 
why the process achieves (often enough) its function.  
Because of this, computational descriptions of cognitive 
processes usually refer to situational or environmental 
context, agent-based or social goals or ends, and pragmatic or 
conventional constraints.  The algorithmic level of 
description aims to produce a step-by-step account of how 
information (or representations of quanta of information) is 
transformed by calculations to yield new information that can 
be used to implement the relevant function.  Finally, the 
implementation level of description provides an analysis in 
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terms of neurophysiology of how the relevant algorithms 
transformations can be physically realized. 

Below, we argue that advances in machine learning 
research can be a source of hypotheses about the human 
cognitive system at that offer testable candidates for 
experimental investigation at both the computational level of 
analysis and the algorithmic level of description.  The basis 
of this proposal rests in the technical property that many 
useful machine learning models are member of Rashomon 
sets.  But before turning to this idea, we need to introduce 
some of the basic properties of machine learning, and then 
also do a bit of philosophical work with the concepts of 
interpretability and explainability as they apply to machine 
learning algorithms. 

Machine Learning 
We prefer a functional definition of machine learning 
because of its simplicity.  A machine learning model is a 
mathematical formula that can be used to make predictions 
about the content or structure of as yet-unexamined sets of 
data without being explicitly programmed to make those 
predictions.  The formula usually does this by being trained a 
set of data – the training data or sample data – that is 
conventionally excluded from membership in the yet-
unexamined data. 

This definition is useful because it yields taxonomies of 
ML models determined by the kind of data constitutes the 
model’s training data, the specifics of the formulas which 
constitute the model and are the basis of its predictions, in 
terms of constraints that are placed on either the data used by 
or predicted by the model itself, or the usual logical 
combinations of the preceding categories.   

To illustrate – and to introduce some of the resources that 
we will use for our ensuring argument – Cynthia Rudin and 
colleagues (Rudin et al., 2021) provide a table exhibiting 
taxonomy of interpretable ML models (Table 1).1  In the left 
column are customary names of families of ML models and 
algorithms, and in the right column are the kinds of data that 
can be modelled by the relevant formulas.  Crucially, humans 
can reason about all the types of data in the table. 

Not listed in this table are other well-known classes of ML 
algorithms that do not easily lend themselves to questions of 
interpretability or explainability: support vector machines, 
various configurations of neural networks, large language / 
transformer models, and so on.  Because they are not relevant 
to our argument, we will (mostly) not discuss these models 
any further in this paper. 

Rashomon Sets 
In a widely discussed article, Leo Breiman describes two 
different fundamental “philosophies” of statistical analysis, 
the “Data Modelling Culture” and the “Algorithmic 
Modelling” culture (Breiman, 2001).  His aim in introducing 
this distinction was to develop a critique of the first approach, 

 
1 We have edited the table for concision.  Furthermore, Rudin et 

al. do not claim that all ML models in their categories are at present 

which predominates in academic (theoretical) statistics, by 
distinguishing it from the culture of research in machine 
learning, which often aims to address some real-world 
problem.  Echoing a more general argument advanced by 
Richard Levins four decades earlier (Levins, 1966; Weisberg, 
2006), Breiman contends that the two cultures reflect 
different ways of resolving an inherent tradeoff in building 
and using statistical models: predictive accuracy and 
generalizability usually come at a cost of working with 
unrealistic or inscrutable models.  

But that is not the reason we which to build off Breiman’s 
argument.  Instead, in discussing the latter culture, Breiman 
says:   
 

What I call the Rashomon Effect is that there is often a 
multitude of different descriptions [equations f(x)] in a 
class of functions giving about the same minimum error 
rate. The most easily understood example is subset 
selection in linear regression. Suppose there are 30 
variables and we want to find the best five variable linear 
regressions. There are about 140,000 five-variable subsets 
in competition. Usually we pick the one with the lowest 
residual sum-of-squares (RSS), or, if there is a test set, the 
lowest test error. But there may be (and generally are) 
many five-variable equations that have RSS within 1.0% 
of the lowest RSS. The same is true if test set error is being 
measured.  (Breiman, 2001, p. 206) 

   
Breiman continues, after providing examples of the same 
phenomenon in neural networks and decision trees, to argue 
that researchers in the “Algorithm modelling” culture face an 
inherent trade-off between interpretability and accuracy: if a 
set S – call this set the Rashomon set – of very different 
models can be used to generate the same “quality” of  
 

Table 1: Varieties of Interpretable Machine Learning 
Models. 

interpretable, as their aim is to identify “grand challenges” to 
making certain sub-classes of the models interpretable. 

Model Data 
Decision trees / 
decision lists (rule 
lists) / decision sets 
 

Tabular data, usually cleaned, with 
interactions 

Scoring systems 
 

Tabular data, usually somewhat 
cleaned 
 

Generalized 
additive models  

Data represented by variable with 
at most quadratic interactions 
 

Case-based 
reasoning 
 

Any 
 

Disentangled 
neural networks 
 

Raw data, usually representing 
visual images 
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predictions given the same data, but all the models in S are 
either inscrutable to humans or mean different things to 
humans, the models in S cannot therefore be said to be 
interpretable.  Researchers should, according to Breiman, 
instead explore the members of S, seeking to identify models 
with the most predictive accuracy. 

Interpretability and Explainability 
Several researchers have since shown that the Rashomon set 
for many interest types of data can be sorted according to the 
relative interpretability of ML models applicable to the data.  
Actually, that is not quite right: for tabular data, Semenova 
and colleagues (Semenova et al., 2019) demonstrate that the 
larger the Rashomon set, the more likely it is that some of its 
elements are interpretable.  Then, Rudin et al. (Rudin et al., 
2021) explore the various ways in which the kinds of ML 
models that do not take in tabular data can also be structured 
so that they are interpretable without any meaningful loss in 
predictive accuracy, exploiting the fact that, for many of these 
models, Rashomon sets exist. 

We are relying upon (Rudin et al., 2021) as much as we are 
because they provide a definition of interpretability that is 
extremely useful logical contrast case for the argument that 
we want to develop.  Again, for each type of model listed in 
table 1., Rudin et al. provide a deep analysis of what makes 
the model interpretable – but in all cases, it is structural 
features of the model that determine the model’s 
interpretability (e.g., its sparseness).  They do not consider 
the possibility that that the interpretability – and 
explainability – of some ML model is (at least partially, but 
still essentially a) psychological question.  And the basic, 
underlying “intuition” of this paper is that cognitive scientists 
can exploit the fact that Rashomon sets exist for many ML 
models with real-world uses to frame both computational-
level and algorithmic-level hypotheses about cognitive 
function.   

But to cash this intuition out, we need two further 
resources: explicit conceptualizations of the interpretability 
and explainability of classes of ML models that are inherently 
psychological in character. 

Interpretability as Semantic Legibility 
Interpretability is not simply a matter of the constraints on 
working memory; we start with this point because a frequent 
suggestion about what makes a ML model interpretable is 
that it have sufficiently few parameters to make it possible to 
hold the model in working memory.  But it is also obvious 
that people without any mathematical knowledge cannot 
interpret ML models: there is at least a further conceptual 
dimension to interpretability that must be recognized. 

Given this, we propose that the interpretability of an ML 
model be treated as a special case of semantic legibility.  
Semantic legibility is of course a familiar construct in 
cognitive science.  For example, within “East Coast” 
rationalist school (Gopnik, 2009), it refers to the ability to 
compose and infer the meaning of a complex semantic 
expression (“The cat is on the mat”) from its atomic elements 

(“cat”, “mat”, “on”, “the”) and grammatical rules (Chomsky, 
1965; Glanzberg, 2021; Ludlow, 2014).  In this framework 
interpretability is a computational process: some string of 
input is interpretable to the extent that the system doing the 
interpretation can infer the meaning of the whole string from 
the elements or parts of the string.  Length of the input matters 
– strings can be too short just as they can be too long – but so 
too does the structure of the string.  More importantly, the 
elements of the string are objects that can be acted on by 
whatever rules subserve semantic legibility in the human 
cognitive system. 

Please note that, to a good first approximation, this 
definition of ML interpretability corresponds to the 
algorithmic level of description in the Marr-Poggio 
hierarchy. 

Explainability as Epistemic Function 
“Interpretability” and “explainability” are often conflated 

with one another.  But from the perspective of this paper’s 
argument, they are best kept distinct.  Indeed, as Breiman 
remarks, “Doctors can interpret logistic regression.  There is 
no way they can interpret a black box containing fifty trees 
hooked together.” (Breiman, 2001, p. 209)  But they can in 
fact put both to important scientific and clinical uses: 
explainability is not interpretability.   

To make the distinction explicit, we propose that what 
makes a ML model explainable is that people to whom the 
model’s function is relevant can understand how the model 
can generate evidence that is epistemically useful to them.  
Intuitively, this is the idea that the ML model can be used as 
if it is a mechanism that produces reliable information to any 
of its downstream epistemic users, and these “patterns of 
usefulness” can be communicated to other potential users.  In 
more detail: given data with certain properties, the model can 
make accurate predictions according to ‘these’ rules or this 
logic; its ability to do generate accurate predictions breaks 
down in ‘these’ ways or in ‘these’ contexts; and its function 
is subject to ‘these’ limitations and caveats and quirks.  In 
possession of this information, a scientist can use a ML model 
even if the model itself is not semantically legible to the 
scientist.  Here, the model would function as an epistemic 
object (Chang, 2011) that can be put to different uses in 
different contexts, and not as a set of free-floating, abstract 
rules the use of which is determined almost entirely by the 
semantic properties of the rules.   

So, explanation of the model describes its various functions 
– potentially omitting descriptions of the model’s semantic 
properties.  Of course, normally the person generating an 
explanation of a ML model will be able to (semantically) 
interpret the model.  But if the explanation is successful, the 
model itself can be grasped and put to various scientific uses 
by people who nevertheless lack the mathematical concepts 
and experience necessary to interpret it, and these users will 
not thereby be prevented by explaining the model to other 
users despite their inability to interpret the model. 

Again, we ask that you note that, to a good first 
approximation, this definition of ML explainability 
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corresponds to the computational level of description of the 
Marr-Poggio hierarchy. 

Principles of a Research Programme: The 
Method of Searching for Inferential 

Homologues 
We can now leverage the conceptual alignments that have 
emerged to characterize a research programme for cognitive 
psychology that can pose – and hopefully answer – novel 
questions about human cognitive processing.  

The key methodological idea motivating our proposal is 
that ML models that are members of Rashomon sets for some 
set of data and which are both interpretable and explainable 
are interesting starting points for framing hypotheses about 
cognitive function.  Specifically, it may be possible to 
discover that some of these models are inferential 
homologues of cognitive processes.  These inferential 
homologues are philosophically analogous to the intra-
species patterns of behavior which are a traditional focus of 
ethologist. 

In biology, homologues are pairs of traits or structures that 
share a common structure or function and are descended from 
some common ancestral trait or structure.  Cases of homology 
are distinct from case homoplasy, which are structures or 
traits that are the same but are not descended from the same 
common ancestor.  The notion of an inferential homologue, 
then, repurposed both the idea that a pair judgement – one 
human and the other produced by an ML system – could have 
the same function (sorting or classifying the same objects) 
and be ‘descended’ from – that is: derived from, inferred on 
the basis of, or be the output of – the same background 
algorithm.  Put more intuitively, inferential homologues are 
pairs of judgments with the same function that are ‘descended 
from a common algorithm’. 

With this concept in hand, here is how the research 
programme can be summarized: 

1. The goal of the research programme is to identify 
inferential processes that are plausibly sources of inferential 
homologues.  This can be accomplished by   

2. Exploring the Rashomon set for a ML model that can 
perform work that closely resembles capacities that the 
human cognitive system can also perform, and more 
specifically 

3. Identifying in that set ML models that are both 
interpretable and explainable using the definitions we have 
suggested.  Given this,  

4.  Experimental tests can be performed that should drive 
an iterative process of hypothesis formation and subsequent 
updating that allows researchers to determine if the 
interpretable expression of the ML model is a sufficiently 
accurate algorithmic level description of the human cognitive 
process, and if the explanation of the ML model is a 

 
2 For concision, we ignore the fact that many of the relevant ML 

algorithms are NP hard.  While we understand that this leaves us 
open to several difficult philosophical objections to our argument, 
exploring this issue is both beyond the scope of this paper, and an 

sufficiently accurate computational level description of the 
human cognitive process.  Then, if they are, 

5. Researchers can conclude (defeasibly) that they have 
identified an inferential homologue at the intersection of 
machine learning and human cognitive processing, as this is 
prima facie a parsimonious explanation of otherwise distinct 
phenomena (Kitcher, 1981). 

Of course, these are very abstract suggestions; to make 
them more concrete, we will now offer a working example of 
how our proposed methodology can be implemented.  

Working Example 
A common task in machine learning is categorizing large data 
sets by clustering elements or observations in the data 
together.  This of course is comparable to the human ability 
to categorize – or conceptualize – patterns or sets or 
sequences of observations.  A common family of ML 
algorithms used to do this are the k-means algorithms (Bock, 
2007).2  These algorithms categorize data to minimize the 
within-category (within-cluster) variance.  Specifically, 
clusters are formed so that observations are placed in a 
whichever cluster is defined by a mean value closest to the 
observation’s value.  Because of this, the clusters have 
circular shape: data is distributed around centroid means for 
each cluster. 

Is this how the human minds forms categories?  Perhaps.  
When data is clustered using k-means ML algorithms, it 
forms Voronoi diagrams (Figure 1).  It takes little 
imagination to come up with various experimental protocols 
that would investigate whether human participants organize 
data in such a way that they output of they categorization 
inferences and judgments would form a Voronoi diagram. 

But how would we know that human participants used the 
same algorithm as a ML model that produces the same (or 
sufficiently similar) output given the data?  It is here that we 
can exploit our technical definitions of interpretability and 
explainability.  From the principles listed above, we can 
(defeasibly) infer that if an explanation of the ML model’s 
categorizations is sufficiently like participants’ own 
explanations of their inferences and judgments, then the 
cognitive processes used by participants and the ML 
algorithm to have the same epistemic function.  

This does not license the conclusion that, at the algorithmic 
level(s) of cognitive processing, the ML model itself is 
implemented in a sufficiently similar.  But if the ML model 
is interpretable – though not necessarily, as noted above, to 
all the people who can understand its epistemic function – 
then we have a further (defeasible) reason to conclude, on the 
grounds of parsimony, that the ML model is an algorithm that 
is likely a pretty good approximation of the algorithm 
employed by the relevant cognitive process – at least in those 
study participants who can both interpret the model, who 

important outstanding challenge for any research in cognitive 
psychology that takes seriously the computational theory of mind to 
overcome.  
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explain both the model and their own judgments in 
sufficiently similar terms.   

If both these conditions are satisfied, we can claim to have 
discovered a probable inferential homologue. 

Of course, the value of this methodology is that not that it 
will immediately yield evidence of inferential homologues – 
but rather that it is easy enough to vary the various 
experimental parameters to efficiently explore the space at 
the intersection of interpretable and explainable ML models 
that can be used for tasks that the human cognitive system 
can also undertake.   

 

 
 

Figure 1: A greyscale Voronoi diagram (Ertl, 2015)  
 
Put another way, when we discover that some ML model 

can be put to some real-world use, where that application is 
also something similar enough to something the human mind 
can do, then in the Rashomon set for the relevant ML 
algorithm there may be some function that could be analyzed 
and tested to determine if it yields both a computational-level 
and algorithmic-level description of some cognitive process.  

Other Hypotheses  
Despite the popularity of the computational theory of mind 

among cognitive scientists, and the widespread influence of 
the Marr-Poggio framework, it is relatively uncommon to 
find researchers proposing algorithmic accounts of “central” 
cognitive processing – at least compared to more 
“perceptual” capacities and processing.  We believe that 
some of the scientific value of our proposed method is that it 
can either be a source of these accounts, or, if the 
methodology fails, through its failure to clarify what 
scientific and philosophical obstacles there are to converting 
the computational theory of mind from a philosophical 
proposal about the metaphysics of cognition [cf. (Rescorla, 
2015, sec. 6.2; Turing, 1950)] into a larger set of testable 
hypotheses about central cognitive functions that is the 
ancestor of a (much) smaller set of reasonably well confirmed 
hypotheses about the same cognitive functions. 

To that end, let us return to the classes of machine learning 
models listed in Table 1.  As more is learned about how to 
write down specific ML models so that they are interpretable 
– again, see (Rudin et al., 2021) – it will also be possible to 
begin to explore whether these models are inferential 
homologues of human cognitive processing.  To illustrate, 

here are suggestions about what kinds of central cognitive 
processing abilities might be studied using our suggested 
method, where the research in question is a spin-off from 
advances in the family of ML models listed on the left.    

 
• Decisions trees  Voting decisions, bounded 

rationality/irrationality, intertemporal preference 
change and stability 

• Scoring systems  risk, structure of cognitive 
boundaries and constraints 

• Generalized additive models  all the above, causal 
inference about causes embedded in systems 

• Case based reasoning  structure of concepts, 
reasoning about borderline / edge cases, abstraction, 
abductive / inference to the best explanation 

• Disentangled neural networks  perception of 
physical properties, conceptualization of perceptual 
data. 

 
This list clearly only scratches the surface. But it nevertheless 
makes the point that many computational and algorithmic 
hypotheses about central cognitive processes could be 
productively explored using the method we have proposed. 

Conclusion  
We conclude by describing three of the largest limitations 
facing our proposal, and along with this, offering some 
suggestions about how the first and last of these limitations 
might be overcome. 

The first and largest limitation is sociological in nature.  
Most researchers working in machine learning and predictive 
analytics have little exposure to research questions and 
experimental paradigms in cognitive science.  Furthermore, 
given the applied nature of most research in machine 
learning, it is unlikely that a large number of researchers in 
the field would find it interesting to turn some of their 
attention to basic questions about the fundamental 
architecture of human cognition.  This is a critical obstacle of 
course because our proposed method of searching for 
inferential homologues will be fruitful only if a sufficient 
number of researchers in machine learning develop an 
interest in researching the class of ML models that perform 
more or less the same way the human mind performs – an 
unusual motivation, since the primary thrust of machine 
learning research is usually to design models that exceed 
human cognitive capabilities.  

A potential solution to this is to note that the Turing test is 
a special case of a more general problem.  That is: Let system 
A and system B be natural language generating systems, one 
of them a 25-year-old human whose first language is English, 
and another the latest version of ChatGPT (OpenAI, 2022) or 
a similar conversational ML model.  A and B are Turing-
equivalent if, when a sufficiently large number of randomly 
chosen interlocutors who themselves are English speakers, 
can communicate with both A and B, and their guesses about 
whether A or B is human are accurate only by chance.  If A 
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and B are Turing-equivalent, then B is said to “pass” the 
Turing test. 

But note that this is a round-about way of determining that 
ChatGPT implements some computational functions – in the 
Marr-Poggio framework – that are also implemented in the 
human cognitive system, namely those which subserve the 
specific cognitive abilities recruited to engaged in the specific 
kinds of semi-formal, semi-conversational written dialogue 
that are usually exhibited in performed Turing tests.3   

When Turing tests are described this way, it is easy to see 
that they focus only on a subset of human cognitive processes 
– again, those bundles of processes which are invoked in 
semi-formal, semi-conversational written conversation.  This 
insight allows us to explain why the Turing test is a special 
case of a more general problem: the fully generally Turing 
test would have similar structure as the conversational Turing 
test, but with all tasks that the human mind can perform. 

Of course, there is a profound interest in the field of 
machine learning in overcoming the (special case) Turing 
test, and so we suggest that the philosophical motivation to 
spread this enthusiasm to the general form of the Turing test, 
and we propose that the method of searching for inferential 
homologues represents one proposal about how these efforts 
might proceed systematically. 

Moving along, the next significant limitation to our 
approach comes in the form of the objection that it is a 
mistake to search for homologues between engineered 
computational systems and the human mind-brain system 
using a broadly Turing-style computational framework.  
While there is now ample evidence that various biologically 
realistic configurations of neural networks are Turing-
complete (Chung & Siegelmann, 2021; Date et al., 2022; 
Siegelmann & Sontag, 1994), it may nevertheless be a basic 
mistake to assume that the human mind and computing 
machines compute in the same way.  For example, the human 
mind may be a sui generis analog computation system that 
has computational abilities which exceed those of Turing 
machines (Siegelmann, 1998).  If so, this undermines the idea 
that our proposed method is one by which a general theory of 
human cognition could be developed.  

Finally, there is the concern that the Rashomon sets for the 
most cognitively relevant ML models may, upon searching 
them, prove to be too sparse to be the source of interesting 
hypotheses to feed into our proposed methodology – a 
concern which echoes earlier philosophical worries and 
warnings about drawing analogies between the human mind 
and computing machines (Byers, 2022; Dreyfus, 1972, 
1992).   

These are both important objections.  And while there are 
philosophical replies that can be made to each of them, we 
believe it is better that the strength of these objections be 
tested by empirical investigation – perhaps the easiest way to 
do this would be to see what results emerge from trying our 
suggested method out. 

 
3 We stress that the relevant computational functions might be 

about the pragmatics of conversation – e.g., picking the right kind 

With all that said, much of the value of the research 
program we have outlined derives from fact that there are 
families of algorithms and psychological theories that can be 
productively explored, and that there are many different 
methodological principles upon which these explorations can 
be founded.  For example, it may be that parsimony is just the 
wrong criteria to use when inferring that a pair of judgments 
are inferential homologues – perhaps other statistical 
techniques (Bayesian models, maximum likelihood 
estimates, and so on) or other methodological principles 
(reduction, coherency, explanatory interest, novelty) would 
turn out to be more scientifically useful for this task.  Then, 
it could emerge that there are different classes, families, or 
trees of related algorithms or psychological hypotheses that 
are more or less susceptible to generating inferential 
homologues.  For example, it could be that some branches in 
the respective trees contain precisely zero inferential 
homologues, while others contain many rich examples.  
These and similar second-order insights could be 
scientifically interesting, as generating explanations of any 
such second-order findings could reveal deep and novel 
lessons about both the human cognitive system and “non-
human” machine learning systems alike.  
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