
UC Berkeley
UC Berkeley Previously Published Works

Title
A critical examination of compound stability predictions from machine-learned formation 
energies

Permalink
https://escholarship.org/uc/item/52r1r2bm

Journal
npj Computational Materials, 6(1)

ISSN
2057-3960

Authors
Bartel, Christopher J
Trewartha, Amalie
Wang, Qi
et al.

Publication Date
2020

DOI
10.1038/s41524-020-00362-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52r1r2bm
https://escholarship.org/uc/item/52r1r2bm#author
https://escholarship.org
http://www.cdlib.org/


1 
 

A critical examination of compound stability predictions from 
machine-learned formation energies 

 

Christopher J. Bartel1*, Amalie Trewartha1, Qi Wang2, Alex Dunn1,2, Anubhav Jain2, Gerbrand Ceder1,3* 
 

1Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA 94720, USA  
2Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 
*correspondence to cbartel@berkeley.edu, gceder@berkeley.edu 
 

 

 
Abstract 
 Machine learning has emerged as a novel tool for the efficient prediction of materials 

properties, and claims have been made that machine-learned models for the formation energy of 

compounds can approach the accuracy of Density Functional Theory (DFT). The models tested in 

this work include five recently published compositional models, a baseline model using 

stoichiometry alone, and a structural model. By testing seven machine learning models for 

formation energy on stability predictions using the Materials Project database of DFT calculations 

for 85,014 unique chemical compositions, we show that while formation energies can indeed be 

predicted well, all compositional models perform poorly on predicting the stability of compounds, 

making them considerably less useful than DFT for the discovery and design of new solids. Most 

critically, in sparse chemical spaces where few stoichiometries have stable compounds, only the 

structural model is capable of efficiently detecting which materials are stable. The non-incremental 

improvement of structural models compared with compositional models is noteworthy and 

encourages the use of structural models for materials discovery. This work demonstrates that 

accurate predictions of formation energy do not imply accurate predictions of stability, 

emphasizing the importance of assessing model performance on stability predictions, for which 

we provide a set of publicly available tests. 
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Introduction 
 
 Machine learning (ML) is emerging as a novel tool for rapid prediction of material 

properties.1–6 In general, these predictions are made by fitting statistical models on a large number 

of data points.  Because of the scarcity of well-curated experimental data in materials science, this 

input data is often obtained from Density Functional Theory (DFT) calculations housed in one of 

the many open materials databases.7–12 In principle, once these models are trained on this immense 

set of quantum chemical data, the determination of properties for new materials can be made in 

orders-of-magnitude less time using the trained models compared to computationally expensive 

DFT calculations.  

Of particular interest is the use of machine learning to discover new materials. The 

combinatorics of materials discovery make for an immensely challenging problem – if we consider 

the possible combinations of just four elements (A, B, C, D), from any of the ~80 elements that are 

technologically relevant, there are already ~1.6 million quaternary chemical spaces to consider. 

This is before we consider such factors as stoichiometry (ABCD2, AB2C3D4, etc.) or crystal 

structure, each of which add substantially to the combinatorial complexity. The Inorganic Crystal 

Structure Database (ICSD) of known solid-state materials contains ~105 entries,13 several orders 

of magnitude less than the 1010 quaternary compositions identified as plausible using 

electronegativity- and charge-based rules.14 This suggests that 1) there is ample opportunity for 

new materials discovery and 2) the problem of finding stable materials may resemble the needle-

in-a-haystack problem, with many unstable compositions for each stable one. The immensity of 

this problem is a natural fit for high-throughput machine learning techniques. 

In this work, we closely examine whether recently published machine learning models for 

formation energy are capable of distinguishing the relative stability of chemically similar materials 

and provide a roadmap for doing the same for future models. We show that although the formation 

energy of compounds from elements can be learned with high accuracy using a variety of machine 

learning approaches, these learned formation energies do not reproduce DFT-calculated relative 

stabilities. While the accuracy of these models for formation energy approaches the DFT error 

(relative to experiment), DFT predictions benefit from a systematic cancellation of error15,16 when 

making stability predictions, while ML models do not. Of particular concern for most ML models 

is the high rate of materials predicted to be stable that are not stable by DFT, impeding the use of 
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these models to efficiently discover new materials.  As a result, we suggest that more critical 

evaluation methods for machine learning methods are developed.  

 

Results and Discussion 

The relationship between formation energy and stability 

A necessary condition for a material to be used for any application is stability (under some 

conditions). The thermodynamic stability of a material is defined by its Gibbs energy of 

decomposition, ΔGd, which is the Gibbs formation energy, ΔGf, of the specified material relative 

to all other compounds in the relevant chemical space. Temperature-dependent thermodynamics 

are not yet tractable with high-throughput DFT and have only sparsely been addressed with ML,17 

so material stability is primarily assessed using the decomposition enthalpy, ΔHd, which is 

approximated as the total energy difference between a given compound and competing compounds 

in a given chemical space.15,16,18,19 For the purpose of this study we will directly compare ML 

predictions and DFT calculations of ΔHd, hence the lack of entropy contributions is not an issue.   

The quantity ΔHd is obtained by a convex hull construction in formation enthalpy (ΔHf)-

composition space. Figure 1a shows an example for a binary A-B space, having three known 

compounds, A4B, A2B, and AB3. The convex hull is the lower convex enthalpy envelope which lies 

below all points in the composition space (blue line). Stable compositions lie on the convex hull, 

and unstable compositions lie above the hull. A4B is unstable (above the hull), so ΔHd > 0 and is 

calculated as the distance in ΔHf between A4B and the convex hull of stable points. AB3 is stable 

(on the hull), so ΔHd < 0 and is calculated as the distance in ΔHf between AB3 and a hypothetical 

convex hull constructed without AB3 (dashed line). |ΔHd| is therefore the minimum amount that 

ΔHf must decrease for an unstable compound to become thermodynamically stable or the 

maximum amount that ΔHf can increase for a stable compound to remain stable. We used ΔHd in 

this work instead of the more common, “energy above the hull”, because the former provides a 

distribution of values for stable compounds whereas the latter is equal to 0 for all stable 

compounds. The convex hull construction, described here for a binary system, generalizes for 

chemical spaces comprised of any number of elements.  

Hence, while ΔHf quantifies to what extent a compound may form from its elements, the 

thermodynamic quantity that controls phase stability is ΔHd and arises from the competition 

between ΔHf for all compounds within a chemical space. As we show later, while formation 
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enthalpies can be of the order of several eV the value of ΔHd is typically 1-2 orders of magnitude 

smaller.  In addition, thermodynamic stability is highly nonlinear in ΔHd around zero, as negative 

values indicate stable compounds, whereas positive values are unstable or metastable compounds. 

Although ΔHd determines stability, the standard thermodynamic property that is predicted by ML 

models is the absolute ΔHf.20–29 This is in large part because ΔHf is intrinsic to a given compound, 

whereas ΔHd inherently depends upon a compound’s stability relative to neighboring 

compositions, making ΔHd less robust to learn directly. 

Using data available in the Materials Project (MP),16 we applied the convex hull 

construction to obtain ΔHd for 85,014 inorganic crystalline solids (the majority of which are in the 

ICSD) and compare ΔHd to ΔHf in Figure 1b. It is clear that effectively no linear correlation exists 

between ΔHd and ΔHf, except for the trivial case where only a single compound exists in a chemical 

space (ΔHd = ΔHf), which is true for only ~3% of materials in MP. While ΔHf somewhat uniformly 

spans a wide range of energies (mean ± average absolute deviation = -1.42 ± 0.95 eV/atom), ΔHd 

spans much smaller energies (0.06 ± 0.12 eV/atom), suggesting ΔHd is the more sensitive or subtle 

quantity to predict (a histogram of ΔHf and ΔHd is provided in Figure S1). Still, while no linear 

correlation exists between ΔHd and ΔHf, and ΔHd occurs over a much smaller energy range, it 

would be possible for ΔHf models to predict ΔHd as long as the relative differences in ΔHf within 

a given chemical space are predicted with accuracy comparable to the range of variation in ΔHd or 

if they would benefit from substantial error cancellation when comparing the energies of 

compounds with similar chemistry. 

 
Figure 1. a) Illustration of the convex hull construction to obtain the decomposition enthalpy, ΔHd, from 
the formation enthalpy, ΔHf. b) The decomposition enthalpy, ΔHd, shown against the formation enthalpy, 
ΔHf, for 85,014 ground-state entries in Materials Project, indicating effectively no correlation between the 
two quantities. The strong linear correlation that is present at ΔHd = ΔHf arises for chemical spaces that 
contain only one compound (~3% of compounds). These compounds were excluded from the correlation 
coefficient, R2, determination. 
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Learning formation energy from chemical composition 

 Machine learning material properties requires that an arbitrary material is “represented” by 

a set of attributes (features). This representation can be as simple as a vector corresponding to the 

fractional amount of each element in the compound (e.g., Li2O = [0, 0, 2/3, 0, 0, 0, 0, 1/3, 0, 0, 

…], where the length of the vector is the number of elements in the periodic table), or a vector that 

includes substantial physical or chemical information about the material. In the search for new 

materials, the structure is rarely known a priori, and instead a list of compositions with unknown 

structure is screened for stability, i.e., the possibility that a thermodynamically stable structure 

exists at that composition. In this case, the material representation is constructed only from the 

chemical formula without including properties such as the geometric (i.e., lattice and basis) or 

electronic structure. These models, which take as input the chemical formula and output 

thermodynamic predictions, are henceforth referred to as compositional models here. 

In this work, we assessed the potential for five recently introduced compositional models 

– Meredig,20 Magpie,21 AutoMat,22 ElemNet,23 and Roost24  – to predict the stability of compounds 

in MP. Meredig, Magpie, and AutoMat include chemical information for each element in their 

material representations from quantities such as atomic electronegativities, radii, and elemental 

group. Each of these compositional models were trained using gradient-boosted regression trees 

(XGBoost30). ElemNet and Roost differ in that no a priori information other than the stoichiometry 

is used as input. For ElemNet, a deep learning architecture maps the stoichiometry input into 

formation energy predictions. For Roost, the stoichiometric representation and fit are 

simultaneously learned using a graph neural network. In addition, we included a baseline model 

for comparison, ElFrac, where the representation is simply the stoichiometric fraction of each 

element in the formula, trained using XGBoost30. Because compositional models necessarily make 

the same prediction for all structures having the same formula, all analysis in this work was 

performed using the lowest energy (ground-state) structure in MP for each available composition. 

Additional details on the training of each model and the MP dataset is available in the Methods 

section. 

Parity plots comparing ΔHf in MP (ΔHf,MP) to machine-learned ΔHf (ΔHf,pred) for each 

model are shown in Figure 2. It is clear that each published representation substantially improves 

upon the baseline ElFrac model, decreasing the mean absolute error (MAE) by 27-74%. This 

increased accuracy is attributed to the increased complexity of the representation. For most models, 
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the MAE between MP and these ML models is comparable to the expected numerical disagreement 

between MP and experimentally obtained ΔHf,8,16,31–33 implying a substantial amount of the 

information required to determine ΔHf is contained in the composition (and not the structure). The 

success of ML models for predicting ΔHf is not surprising considering the historical context of 

simple heuristics that perform relatively well at predicting the driving force for the formation of 

compounds from elements – e.g., the Miedema model.34  

 

 
Figure 2. Parity plot for formation enthalpy predictions using six different machine learning models that 
take as input the chemical formula and output ΔHf. ElFrac refers to a baseline model that parametrizes each 
formula only by the stoichiometric coefficient of each element. Meredig, Magpie, AutoMat, ElemNet, and 
Roost refer to Refs. 20–24, respectively. ΔHf,pred corresponds with ML predictions for aggregated hold-out 
sets during five-fold cross-validation of the Materials Project dataset (see Methods for details). ΔHf,MP  

refers to the formation energy per atom in the MP database. The absolute error on ΔHf is shown as the 
colorbar and the mean absolute error (MAE) is shown within each panel.   
 

Implicit stability predictions from learned formation enthalpies 

 While the mean absolute error of the ML-predicted ΔHf  approaches the mean absolute 

error between DFT and experiment for this quantity (~0.1-0.2 eV/atom)8,16,31,32,35, the use of ΔHf 

for stability predictions requires that the relative ΔHf between chemically similar compounds is 
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predicted more accurately. To assess the accuracy of the relative ΔHf, we reconstructed, for each 

ML model, the convex hulls for all chemical spaces using ΔHf,pred. Parity plots for ΔHd are shown 

in Figure 3. Even though the quantity ΔHd is on average much smaller than ΔHf, the MAE in 

predicting it is almost identical to the error in predicting ΔHf (Figure 2), indicating very little error 

cancellation for the ML models when energy differences are taken in a chemical space, which is 

in contrast to the beneficial error cancellation for stability predictions with DFT.15,16 In contrast to 

ΔHf, where all representations substantially improve the predictive accuracy from the baseline 

ElFrac model, for ΔHd, four of the five models (all except Roost) only negligibly improve upon 

the baseline model with MAE of ~0.11-0.14 eV/atom. Importantly, for the purposes of predicting 

stability, a difference of ~0.1 eV/atom can be the difference between a compound that is readily 

synthesizable and one that is unlikely to ever be realized.36,37  

DFT calculations benefit from a systematic cancellation of errors that leads to much smaller 

errors for ΔHd than for ΔHf, with MAE for ΔHd  as low as ~0.04 eV/atom for a substantial fraction 

of decomposition reactions.16 Unfortunately, ML models do not similarly benefit from this 

cancellation of errors and instead appear to learn clusters in material space that have similar ΔHf, 

but they are generally unable to distinguish between stable and unstable compounds within a 

chemical space. It is notable that Roost substantially improves upon the other models. However, 

there are still strong signatures of inaccurate stability predictions in its parity plot (Figure 3), most 

notably in the ~vertical line at ΔHd,pred  = 0 and ~horizontal line at ΔHd,MP = 0. These two lines 

indicate substantial disagreement between the actual and predicted stabilities for many 

compounds, despite the relatively low MAE. 
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Figure 3. Parity plot for decomposition enthalpy predictions. ΔHd,MP results from convex hulls constructed 
with ΔHf,MP (Fig. 2). ΔHd,pred is obtained from convex hulls constructed with ΔHf,pred (Fig. 2). The 
annotations are the same as in Fig. 2. 
 

The inability for compositional models to properly distinguish relative stability is further 

demonstrated by assessing how well the models classify compounds as stable (on the convex hull) 

or unstable (above the hull), as shown in Figure 4. 60% of the compounds in the MP dataset are 

not on the hull, so the classification accuracy of a naïve model that states that everything is unstable 

would be 60%. Five of the six models (all except Roost) only marginally improve upon this 

extremely naïve model accuracy (58-65%). Strikingly, Roost considerably outperforms the other 

compositional models (76% accuracy), despite using stoichiometry alone as input. Plausibly, this 

superior performance is due to the use of weighted soft attention mechanisms during training of 

the representation.38 Although only the nominal chemical composition (element fraction) is used 

as input, the model learns a more meaningful representation of this input composition on a case-

by-case basis during training. This is in contrast to the other compositional models, which have 

fixed stoichiometric representations and either include hand-picked elemental attributes such as 

electronegativity (Meredig and Magpie) or use deep learning (ElemNet). Notably, AutoMat uses a 

two-step process: first it rationally selects the most relevant elemental attributes from a large list 
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using a decision tree model and then fits a regression model with the reduced feature space. 

Considering the modest classification accuracy by AutoMat (65%), despite the wide range of 

elemental attributes considered in its optimization, we speculate that further improvements in the 

clever selection of these attributes is unlikely to lead to transformative improvements in predicted 

stabilities. Instead, major improvements to compositional formation energy models will likely 

result from qualitative changes in model architecture, as in Roost, and not from optimizing the 

selection of elemental attributes.  

While Roost improves considerably upon other compositional models, the accuracy, F1 

score, and false positive rate taken together do not inspire much confidence that any of these 

models can accurately predict the stability of solid-state materials (Figure 4). Of particular concern 

is the high false positive rates of 25-38%. This metric provides the likelihood that a compound 

predicted to be stable will not actually be. Further aggravating this situation is that the false positive 

rate reported here for the models is greatly underestimated compared to the false positive rate that 

is expected for new materials discovery. The MP database is largely populated with known 

materials extracted from the ICSD, and this results in ~40% of the entries in MP being on the hull. 

The fraction of all conceivable hypothetical materials (from which new materials will be 

discovered) that are stable is likely several orders of magnitude lower than 40%. This necessitates 

that searches for new materials cover a huge number of possible compounds, and false positive 

rates in excess of 25% would lead to an enormous amount of predicted materials which are not 

stable, limiting the ability for these ML models to efficiently accelerate new materials discovery. 

A key consideration when discussing the accuracy in classifying compounds as stable or 

unstable is the choice of threshold for stability, which we have chosen to be ΔHd = 0. In materials 

discovery or screening applications, compounds are often considered potentially synthesizable 

even for ΔHd > 0 to consider potential inaccuracies in the predicted stabilities and account for a 

range of accessible metastability.36,37 To probe the effects of moving this threshold for stability to 

higher or lower values of ΔHd, we show the receiver operating characteristic (ROC) curves for 

each model in Figure S2. As the threshold for stability moves to larger positive values, increases 

in model accuracy are concomitant with increases in the rate of false positives and a decrease in 

the confidence that the compounds predicted to be stable are actually accessible. Conversely, as 

the threshold decreases below zero, the accuracy and false positive rate decrease together as less 
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and less compounds meet this stricter threshold for stability. Ultimately, the conclusions we draw 

from setting a stability threshold of ΔHd = 0 are not affected by alternative stability thresholds. 

 

 
Figure 4. Classification of materials as stable (ΔHd ≤ 0) or unstable (ΔHd > 0) using each of the six 
compositional models. “Correct” predictions are those for which the ML models and MP both predict a 
given material to be either stable or unstable. The histograms are binned every 5 meV/atom with respect to 
ΔHd,MP to indicate how the correct and incorrect predictions and the number of compounds in our dataset 
vary as a function of the magnitude above or below the convex hull. Acc is the classification accuracy. F1 
is the harmonic mean of precision and recall. FPR is the false positive rate. The moving average of the 
accuracy (computed within 20 meV/atom intervals) as a function of ΔHd,MP is shown as a blue line (right 
axis). As expected, the accuracy is lowest near the chosen stability threshold of ΔHd,MP = 0. 
 

Predicting stability in sparse chemical spaces 

 While quantifying the accuracy of ML approaches on the entire MP dataset is instructive, 

it does not resemble the materials discovery problem because it assesses only the limited space of 

compositions that have been previously explored and therefore have many stable compounds. In 

order to simulate a realistic materials discovery problem, we identified a set of chemical spaces 

within the MP dataset that are sparse in terms of stable compounds. Lithium transition metal (TM) 

oxides are used as the cathode material for rechargeable Li-ion batteries and have attracted 
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substantial attention for materials discovery in recent years. In particular, Li-Mn oxides have been 

considered as an alternative to LiCoO2 utilizing less or no cobalt: e.g., spinel LiMn2O4,39 layered 

LiMnO2,40 nickel-manganese-cobalt (NMC) cathodes,41 and disordered rock salt cathodes.42 For 

this work, the quaternary space, Li-Mn-TM-O with TM ∈{Ti, V, Cr, Fe, Co, Ni, Cu}, is an 

attractive space to test the efficacy of these models, as it contains only 9 stable compounds and 

258 more that are unstable in MP. We tested the potential for ML models to discover these stable 

compounds by excluding all 267 quaternary Li-Mn-TM-O compounds from the MP dataset and 

repeating the training of each model on ΔHf with the remaining 84,747 compounds. We then 

applied each trained model to predict ΔHf for the excluded Li-Mn-TM-O compounds and assessed 

their stability. Importantly, we are again concerned with DFT-calculated stability at 0 K, so we are 

not considering the potential for compounds in this quaternary space to be stabilized due to 

entropic effects (e.g., configurational disorder).  

 The ΔHf parity plot for these 267 Li-Mn-TM-O compounds is shown in Figure S3 and 

reveals that all models have a higher accuracy predicting ΔHf for this subset of materials than for 

the entire dataset (Figure 3). The improved prediction of ΔHf is likely because the compounds in 

this subset have strongly negative ΔHf and are well-represented by the thousands of transition 

metal and lithium-containing oxides that comprise the MP dataset. Despite this improved accuracy 

on ΔHf, the models all have alarmingly poor performance in predicting ΔHd. In Figure 5, we show 

that none of the models are able to correctly detect more than three of the nine stable compounds, 

and even for the most successful model by this metric (AutoMat), the three true positives come 

with 24 false positives. It is noteworthy that in this experiment, the models are given a large head-

start towards making these predictions because the composition space under investigation is 

restricted to those compounds that have DFT calculations tabulated in MP, which is biased towards 

stability compared to the space of all possible hypothetical compounds. 



12 
 

 
Figure 5. Re-training each model on all of MP minus 267 quaternary compounds in the Li-Mn-TM-O 
chemical space (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}) and obtaining ΔHd using the predicted ΔHf for each of 
the excluded compounds (ΔHd,pred) and comparing to stabilities available in MP, ΔHd,MP. FP = false positive, 
TP = true positive, TN = true negative, FN = false negative. 
 

To account for the MP stability bias and more closely simulate a realistic materials 

discovery problem, we assessed the potential for these models to identify the nine stable MP 

compounds when considering a much larger composition space. Using the approach defined in 

Ref. 14, we produced 13,392 additional quaternary compounds in these seven Li-Mn-TM-O 

chemical spaces that obey simple electronegativity- and charge-based rules. For this expanded 

space of quaternary compounds, we used each compositional model (trained on all of MP minus 

the 267 Li-Mn-TM-O compounds) to predict ΔHf and assessed their stability (Table 1). The 

compositional models each predict ~4-5% of these compounds to be stable, and all of the models 

fail to accurately predict the stability of more than one of the nine compounds that are actually 

stable in MP. A remarkable 159 compounds are predicted to be stable by all six models and 1,294 

unique compounds are predicted to be stable by at least one model. While it is likely that the space 
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of stable quaternary compounds in the Li-Mn-TM-O space has not yet been fully explored in MP 

(or by extension, the ICSD), our intuition suggests it is highly unlikely that the number of new 

stable materials in this well-studied space is orders of magnitude larger than the number of known 

stable materials. The false positive rates obtained on the entire MP dataset shown in Figure 4 

suggest ~25-38% of these predicted stable Li-Mn-TM-O compounds are not actually stable, and 

these rates are likely underestimated, as discussed previously. The magnitude of compounds 

predicted to be stable by the ML models, and their false positive rates, imply that these models 

will inevitably identify a large number of unstable materials as candidates for further analysis 

(either with DFT calculations or experimental synthesis). This substantially impedes the capability 

of these formation energy models to accelerate the discovery of novel compounds that can be 

synthesized. 
 
Table 1. Predictions in the expanded Li-Mn-TM-O (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}) composition space. 
Candidate compounds were generated by combining all quaternary MP compounds in this space along with 
quaternary compounds generated by the approach described in Ref. 14, resulting in 13,659 candidates. 
Among these candidates, 9 compounds are calculated to be stable in MP. The stability of all candidates was 
assessed using each compositional model for ΔHf. Note that while all models correctly predict 1 of 9 MP-
stable compounds to be stable, this compound is not the same for all models. 
 

  ElFrac Meredig Magpie AutoMat ElemNet Roost 

candidate compounds 13,659 13,659 13,659 13,659 13,659 13,659 
stable compounds in MP 9 9 9 9 9 9 

compounds predicted stable 685 528 619 541 470 507 
% predicted stable 5.0 3.9 4.5 4.0 3.4 3.7 

pred. stable and stable in MP 1 1 1 1 1 1 
 

Direct training on decomposition energy 

 An alternative approach to consider is to train directly on ΔHd instead of using ML-

predicted ΔHf to obtain ΔHd through the convex hull construction. Note that direct training on ΔHd 

is complicated by the fact that ΔHd for a given compound is dependent upon ΔHf for other 

compounds within a given chemical space. This is unlike ΔHf, which is intrinsic to a single 

compound. To assess the capability of each representation to directly predict stability, we repeated 

the analysis shown in Figures 3-5 and Table 1 but training each model on ΔHd. The performance 

of each model on the MP Li-Mn-TM-O dataset is shown in Figure 6, the performance on the 

expanded Li-Mn-TM-O space in Table S1, and results for ΔHf and ΔHd on the entire MP dataset 
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are shown in Figure S3 and Figures S4-S5, respectively. While the prediction accuracy (MAE 

and stability classification) on the entire MP dataset is typically comparable to or slightly better 

when training on ΔHd (Figures S4-S5) instead of ΔHf (Figures 3-4), the capability of the trained 

model to predict stability in sparse chemical spaces is even worse than when training on ΔHf 

(Figure 6, Table S1). None of the models are able to identify even one of the nine MP-stable 

quaternary compounds from the set of 267 Li-Mn-TM-O compounds in MP, and every model 

predicts all 267 Li-Mn-TM-O compounds to be unstable (Figure 6). It is especially notable that 

for all models except Roost and ElemNet, the predictions for all 267 quaternary compounds fall in 

a very small window (0.040 eV/atom < ΔHd,pred < 0.082 eV/atom), suggesting the models only 

learn that all compounds in this space should be within the vicinity of the convex hull and do 

nothing to distinguish between chemically similar compounds. When the space of potential 

compounds is expanded to 13,659 compounds, only Roost and ElemNet predict any compound to 

be stable, but again, none of the nine MP stable compounds are predicted to be stable by any model 

(Table S1). Beyond the poor performance associated with these models, the direct prediction of 

ΔHd is difficult to physically motivate because unlike ΔHf, ΔHd is not an intrinsic property of a 

material but depends on the energy at other compositions with which it may be in competition.  

This non-locality of ΔHd  also depends on the completeness of a given phase diagram: as new 

materials are discovered in a chemical space, ΔHd is subject to change for any compound in that 

space, even if that compound’s energy itself does not change, complicating the application of ML 

models trained on ΔHd. 
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Figure 6. Re-training each model directly on ΔHd on all of MP minus 267 quaternary compounds in the Li-
Mn-TM-O chemical space (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}). Stability is determined by these direct 
predictions of ΔHd,pred and  compared to stabilities available in MP, ΔHd,MP. FP = false positive, TP = true 
positive, TN = true negative, FN = false negative. 
 

Revisiting stability predictions with a structural representation 

 In addition to compositional models, representations that rely on the crystal structure for 

predicting formation energy have also received substantial attention in recent years.25,27–29,43–45 

These models perform a different task than compositional models because they evaluate the 

property of a material given both the composition and the structure. Nevertheless, it is interesting 

to assess whether these structural models can predict stability with improved accuracy relative to 

models that are only given composition.  

Here we take the crystal graph convolutional neural network (CGCNN)25 as a 

representative example of existing structural models. CGCNN is a flexible framework that uses 

message passing over the atoms and bonds of a crystal (see Methods for training details). In 
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Figure 7, we show the performance of CGCNN on the same set of analyses as were shown for the 

compositional models in Figures 2-5: learning ΔHf (Figure 7a), constructing convex hulls with 

those predicted ΔHf to generate ΔHd (Figure 7b), assessing the capability of these ΔHd,pred values 

to classify materials as stable or unstable (Figure 7c), and probing the ability for this model to 

predict stability in the sparse Li-Mn-TM-O space (Figure 7d). It is clear that CGCNN improves 

substantially upon the direct prediction of ΔHf (Figure 7a) and the implicit prediction of ΔHd 

(Figure 7b), reducing the MAE by ~50% compared with the best performing compositional model 

(Roost). The extremely inaccurate predictions of ΔHd near ΔHd,pred = 0 or ΔHd,MP = 0 that are 

observed in Figure 3 for most compositional models, is also no longer present with CGCNN 

(Figure 7b). CGCNN displays an improved classification accuracy (80%) and a narrow 

distribution of incorrect stability predictions, only disagreeing with MP regarding the stability of 

compounds within the vicinity of ΔHd,MP = 0 (Figure 7c). Most impressively, CGCNN is relatively 

successful at finding the needles in the excluded Li-Mn-TM-O haystack, recovering five of the 

nine stable compounds with only six false positives (Figure 7d). In addition to the improved 

predictive accuracy, the parity plot for this excluded set looks fundamentally different than for the 

compositional models. In the compositional models (Figure 5), the parity plot is scattered, and 

there is effectively no linear correlation between the actual and predicted ΔHd, whereas for 

CGCNN, there is a strong linear correlation (Figure 7d). It is not clear whether this improved 

correlation arises from beneficial error cancellation within each chemical space or from reducing 

the overall MAE from ~0.06 eV/atom (for the best performing compositional model – Roost) to 

~0.03 eV/atom (for CGCNN). 

 The non-incremental improvement in stability predictions that arises from including 

structure in the representation is a strong endorsement for structural models and also sheds insight 

into the structural origins of material stability. While the thermodynamic driving force for forming 

a compound from its elements (formation energy) can be learned with high accuracy from only the 

composition, the structure dictates the subtle differences in thermodynamic driving force between 

chemically similar compounds and enables accurate machine learning predictions of material 

stability (decomposition energy). However, the glaring limitation of this approach is that it requires 

the structure as input, and the structure of new materials that are yet to be discovered is not known 

a priori. For example, because we do not know the ground-state structure for an arbitrary 

composition, we cannot repeat the test where we assess the ability of the ML model to find the 
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stable Li-Mn-TM-O compounds among a large set of candidate compositions. While CGCNN 

shows substantially improved performance in predicting material stability, these results are 

obtained using the DFT-optimized ground-state crystal structures as input.  

 
Figure 7. a) Repeating the analysis shown in Figure 2 using CGCNN. Annotations are as in Figure 2.  
b) Repeating the analysis shown in Figure 3 using CGCNN. Annotations are as in Figure 3.  
c) Repeating the analysis shown in Figure 4 using CGCNN. Annotations are as in Figure 4.  
d)  Repeating the analysis shown in Figure 5 using CGCNN. Annotations are as in Figure 5. 
 

Outlook 

 There have been a number of recent successes in the application of machine learning for 

materials design problems. These models have given the impression that ML can predict formation 

energies with near-DFT accuracy.20,23,46 However, the critical question of whether this implies that 

compound stability can be predicted by ML has not been rigorously assessed. In this work, we 

show that while indeed existing ML models can predict ΔHf with relatively high accuracy from 

the chemical formula, they are insufficient to accurately distinguish stable from unstable 

compounds within an arbitrary chemical space. The error in predicting DFT-calculated ΔHf by ML 

models is often compared favorably to the error DFT makes in predicting ΔHf relative to 

experimentally obtained values. This comparison neglects the fact that the DFT-calculated ΔHf 

differs systematically with experiment, whereas ML predictions do not. For DFT calculations, this 

leads to substantially lower errors for stability predictions (ΔHd) than for ΔHf. A similar 

cancellation of errors does not occur for ML models and the errors in ΔHd are comparable to ΔHf, 

inhibiting accurate predictions of material stability. Hence, while the claim that ML-predicted 
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formation energies have similar errors as DFT compared to experiment is technically correct, it 

does not imply that in their current state ML models are as useful as DFT, or that ML can replace 

DFT for the computationally guided discovery of novel compounds. As new ML models for 

formation energy are developed, it is imperative to assess their viability as inputs for stability 

predictions and, most critically, for problems that resemble how the models would be implemented 

to address emerging materials design problems. In this work, we present a set of tests that facilitate 

this assessment and allow for direct comparison to existing ML models. All data and code required 

to repeat this set of stability analyses for the models shown in this work or any new model is 

available at https://github.com/CJBartel/TestStabilityML. 

  

Methods 
Materials Project data 

 All entries in the Materials Project (MP)9 database were queried on July 26, 2019 using the 

Materials Project API.47 This produced 85,014 unique non-elemental chemical formulas. For each 

chemical formula, we obtained the formation energy per atom, ΔHf, for all structures having that 

formula, and used the most negative (ground-state) ΔHf for training the models and obtaining ΔHd 

by the convex hull construction. MP applies a correction scheme to improve the agreement 

between DFT-calculated thermodynamic properties (ΔHf and ΔHd) and experiment.15,48,49 

Additional details on the MP calculation procedure can be found at 

https://materialsproject.org/docs/calculations.  

 Although the MP database contains a wide range of inorganic crystalline solids, it is an 

evolving resource that periodically includes more and more compounds as they are discovered or 

calculated by the community. As such, the calculated ΔHd that were used for training and testing 

each model are subject to change over time as new stable materials are added to the database. This 

fact is not unique to MP and is inherent in all open materials databases that would be considered 

for training and evaluating machine learning models on large datasets of DFT calculations. 

 

General training approach 

 Five-fold cross validation was used to produce the model-predicted ΔHf,pred shown in 

Figure 2. Each predicted value corresponds with the prediction made on that compound when it 

was in the validation set (i.e., not used for training). ΔHf,pred was then used in the convex hull 
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analysis to generate ΔHd,pred shown in Figure 3, from which stability classifications were made as 

shown in Figure 4. For the Li-Mn-TM-O examples (Figure 5 and Table 1), each model was 

trained on all MP entries except those 267 quaternary compounds belonging to the Li-Mn-TM-O 

chemical spaces. An analogous approach was used when training on ΔHd instead of ΔHf to generate 

the results shown in Figure 6, Figure S4-S5, and Table S1. 

 

Compositional model training 

Three of the compositional models—ElFrac, Meredig,20 and Magpie21—were 

implemented using matminer50 and trained using gradient boosting as implemented in XGBoost30 

with 200 trees and a maximum depth of 5. Preliminary tests showed XGBoost and these 

hyperparameters led to the highest accuracy of tested algorithms. AutoMat22 was used as 

implemented in Ref. 22. Roost24 was trained for 500 epochs using an Adam optimizer with an initial 

learning rate of 5⨯10-4 and an L1 loss function. ElemNet was implemented as described in Ref. 23 

using the Keras machine learning framework51. ElemNet was trained using an initial learning rate 

of 10-4 with an Adam optimizer for 200 epochs. 10% of the input data was set aside for validation, 

and the model weights from the epoch with best loss on the validation set were used for predictions. 

The code used to train and evaluate all models is available at 

https://github.com/CJBartel/TestStabilityML. 

 

CGCNN training 

We used a nested five-fold cross-validation to train the CGCNN25 model for the MP ΔHf 

dataset. As a general procedure for cross-validation, the dataset was split into five groups and each 

group was iteratively taken as a hold-out test set. For each fold, we split the training set to 75% 

training and 25% validation, thus the overall ratio of training, validation, and test was 60%, 20%, 

and 20%, respectively. The CGCNN model was iteratively updated by minimizing the loss (mean 

squared error, MSE) on the training set, and the validation score (mean absolute error, MAE) was 

monitored after each epoch. After 1000 epochs, the model with the best validation score was 

selected and then evaluated on the hold-out test set. Results of the five-fold hold-out test sets were 

accumulated as the final predictions of the dataset.  

        For the Li-Mn-TM-O case in which the test set is defined, we split the remaining compounds 

into five groups and iteratively took each group as the validation set (20%) and the remaining as 
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the training set (80%). The best CGCNN model of each fold was selected as the one with the best 

validation score (MAE). We then applied the five CGCNN models to the 267 Li-Mn-TM-O test 

compounds and used the average of the predicted ΔHf for each model. 
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Supplementary Information 

 

 
Figure S1. Distribution of ΔHf and ΔHd in Materials Project, with 85 bins and normalized such that the 
integral of the distribution is equal to 1.  
 
 

 
Figure S2. Receiver operating characteristic (ROC) curves for each model trained on ΔHf. TPR is the true 
positive rate and FPR the false positive rate. The colorbar indicates the stability threshold – i.e., a compound 
is classified as “stable” if ΔHd is less than the stability threshold. Note that the models are trained on ΔHf 
and are therefore insensitive to this changing threshold. Instead, the choice of threshold simply allows for 
an expanded analysis of the ΔHf model performance on ΔHd predictions.  
 



26 
 

 
Figure S3. Re-training each model on all of MP minus 267 quaternary compounds in the Li-Mn-TM-O 
chemical space (TM ∈ {Ti, V, Cr, Fe, Co, Ni, Cu}) and predicting ΔHf for each of the excluded compounds 
(ΔHf,pred) and comparing to MP, ΔHf,MP. All annotations are the same as in Figure 2. 
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Figure S4. Reproducing Figure 3 but training on ΔHd instead of ΔHf. All annotations are the same as in 
Figure 3.  
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Figure S5. Reproducing Figure 4, but training on ΔHd instead of ΔHf. All annotations are the same as in 
Figure 4.  
 
Table S1. Reproducing Table 1 but training on ΔHd instead of ΔHf. 
 

  ElFrac Meredig Magpie AutoMat ElemNet Roost 

candidate compounds 13,659 13,659 13,659 13,659 13,659 13,659 

stable compounds in MP 9 9 9 9 9 9 
compounds predicted stable 0 0 0 0 5 299 

% predicted stable 0 0 0 0 0 2.2 
pred. stable and stable in MP 0 0 0 0 0 0 

 




