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Scientists too, as J. Robert Oppenheimer once remarked, “live always at the ‘edge

of mystery’ - the boundary of the unknown.” But they transform the unknown

into the known, haul it in like fisherman; artists get you out into that dark sea.
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ABSTRACT OF THE DISSERTATION

Bounded analytic functions on the polydisc

by

David Scheinker

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Jim Agler, Chair

In the paper ‘Distinguished Varieties’ Agler and McCarthy proved several

connections between the theory of bounded analytic functions on the bidisc and

1-dimensional algebraic varieties that exit the bidisc through the distinguished

boundary. In this paper we extend several of their results to the theory of bounded

analytic functions on the polydisc. We give sufficient conditions for a rational

inner function on the polydisc to be uniquely determined in the Schur class of the

polydisc by it’s values on a finite set of points. This follows from giving sufficient

conditions for a Pick problem on the polydisc to have a unique solution. We

demonstrate that our results can be though of as a generalization to the polydisc

of the Schwarz Lemma and Pick’s Theorem on the disc. We establish our results

by studying the Pick problem with Hilbert function space techniques.
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Chapter 1

Introduction

1.1 Overview and statement of main results

Let D denote the unit disc centered at the origin in the complex plane, C,

and let T denote the boundary of D. The theory of bounded analytic functions

on D is elegant and well understood. However, much about the theory on Dn

remains mysterious. In this work, we study the Schur class of Dn, S(Dn), the set

of analytic functions mapping Dn to D. We seek to extend various results about

S(D) to S(Dn).

The classic Schwarz Lemma on D provides a way to introduce our results.

Schwarz Lemma. If f : D → D is analytic and f(0) = 0, then |f(λ)| ≤ |λ| for

every λ ∈ D. Furthermore, if f(λ) = λ for some λ ∈ D r 0, then f(z) = z.

The uniqueness part of the Schwarz Lemma says that the function f(z) = z

is uniquely determined in S(D) by it’s values on two points, 0 and any other point

λ ∈ D. That is, if g ∈ S(D) satisfies g(0) = f(0) and g(λ) = f(λ), then g = f on

D. Our first result, Theorem A below, generalizes the Schwarz Lemma to S(Dn).

Theorem A states that each coordinate function f(z1, ..., zn) = zk is uniquely de-

termined in S(Dn) by it’s values on two “well chosen” points. We use the notation

(z, w) for a point in Cn with z = z1 and w = (z2, ..., zn). For the sake of sim-

plicity, we state the theorem for f(z, w) = z rather than for the general case of

f(z1, ..., zn) = zk.

1
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Theorem A. If f : Dn → D is analytic and f(0, w0) = 0 for some w0 ∈ Dn−1,

then |f(λ,w0)| ≤ |λ| for every λ ∈ D. Furthermore, if f(λ,w0) = λ for some

λ ∈ D r 0, then f(z, w) = z.

Theorem A relates the degree of f(z, w) = z, deg(f) = 1, to the number of

points, N = 2, needed to uniquely determine f in S(Dn). Our other results give

various necessary and sufficient conditions for a function to be uniquely determined

in S(Dn) by its values on a finite set of points, with the number of points depending

on the degree of the function. Our approach to proving these results is based on

Pick’s generalization of the Schwarz lemma in 1916. Pick’s original setup for the

disc is generalized to Dn in the following definition.

Definition 1.1.1. The Pick problem on Dn is to determine, given N distinct

points λ1, ..., λN ∈ Dn and N target points ω1, ..., ωN ∈ D, whether there exists a

f ∈ S(Dn) that satisfies f(λi) = ωi for each i = 1, ..., N .

A Pick problem is called extremal if a solution f satisfying ||f ||∞ = sup
z∈D
|f(z)| = 1

exists and no solution g satisfying ||g||∞ < 1 exists.

A rational function f is called inner if f is analytic on Dn and |f(τ)| = 1 for

almost every τ ∈ Tn.

In 1916 in [28], Pick gave necessary and sufficient conditions for a Pick

problem on D to have a solution and proved that every solvable problem is solvable

by a rational inner function. Pick also showed that a Pick problem on D is extremal

if and only if it has a unique solution. The following is an immediate consequence

of Pick’s results.

Pick’s Theorem. (Pick, [28]) Fix λ1, ..., λN ∈ D. If f is a rational inner function

with less than N zeros on D and g ∈ S(D) satisfies g(λi) = f(λi) for

i = 1, ..., N , then g = f on D.

In terms of the Pick problem on D, Pick’s Theorem states that for a rational inner

function f with less than N zeros on D, the problem with data λ1, ..., λN and

f(λ1), ..., f(λN) has a unique solution.
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In 1988 in [1], Agler gave necessary and sufficient conditions for a Pick

problem on D2 to have a solution and proved that every solvable problem is solvable

by a rational inner function. In [6], Agler and McCarthy showed that if a Pick

problem on D2 is extremal then there exists an algebraic variety on which all

solutions agree. The following is an example of an extremal problem and a variety

on which all solutions agree. The example also shows that on D2, unlike on D, a

Pick problem may be extremal and fail to have a unique solution.

Example 1.1.2 The Pick problem on D2 with data (0, 0), (1
2
, 1

2
) and 0, 1

2
is

extremal and all solutions agree on the variety V = {(z, w) : z−w = 0}. That the

problem is extremal follows from the fact that for all solutions agree on V ∩ D2.

To see that all solutions agree on V , let f be a solution and let F (λ) = f(λ, λ).

Since F ∈ S(D) satisfies H(0) = 0 and F (1
2
) = 1

2
, the Schwarz Lemma implies

that f(λ) = λ. Furthermore, ||f ||∞ ≥ ||f |V ||∞ = ||F ||D = 1 and the problem is

extremal.

The following definition and theorem formalize that Example 1.1.2 is some-

what representative of extremal Pick problems on D2.

Definition 1.1.3. For n ≥ 2, an algebraic variety V ⊂ Cn is called inner if

each of it’s irreducible components Vi meets Dn and exits Dn through the torus, i.e.

Vi ∩ Dn 6= ∅ and Vi ∩ ∂(Dn) ⊂ Tn.

Theorem 1.1.4. (Agler, McCarthy [6]) Given an extremal Pick problem on D2,

there exists a 1-dimensional inner variety V ⊂ C2 such that all solutions agree on

V ∩ D2.

The present work began as an investigation of Theorem 1.1.4. In the re-

mainder of this section we describe our methods and state our main results.

Fix a non-constant rational inner function f on Dn and a one dimensional

inner variety V ⊂ Cn. The restriction of f to V ∩ Dn behaves somewhat like a

function of one variable. Whereas the zero set of f is a (n−1)-dimensional variety,

the restriction of f to V ∩Dn has finitely many zeros. Let F denote the restriction

of f to V ∩Dn. In the special case that V ∩Dn can be parametrized with an analytic

disc, it is possible to identify F with a function on D via the parametrization. In
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this case, the well understood theory of S(D) can be applied to F . However, it is

not always possible to parameterize V ∩Dn with an analytic disc. Our approach is

to use Hilbert function space theory to formalize that for a general 1-dimensional

inner variety V , the function F behaves like a function of one variable. This

approach allows us to generalize several results about S(D) to S(Dn). One of the

first results found using this approach was the following generalization of Pick’s

Theorem to D2 by Jim Agler. Agler’s result was the inspiration for much of the

research in this thesis and is of crucial importance to the results of this work. The

theorem, as stated below, follows immediately from Lemma 3.0.12 in chapter 3.

Theorem 1.1.5. (Agler, private communication) Fix an inner variety V ⊂ D2

and λ1, ..., λN ∈ V ∩ D2 distinct. If f is a rational inner function on D2 with less

than N zeros on V ∩ D2 and g ∈ S(D2) satisfies g(λi) = f(λi) for i = 1, ..., N ,

then ||g||∞ = 1.

In terms of the Pick problem on D2, Theorem 1.1.5 states that for a function f

with less than N zeros on V ∩ Dn, the problem on D2 with data λ1, ..., λN and

f(λ1), ..., f(λN) is extremal.

The present work generalizes Agler’s Theorem 1.1.5 to one dimensional

inner varieties in Cn and strengthens the conclusion.

Theorem B. Fix a one dimensional inner variety V ⊂ Cn and distinct points

λ1, ..., λN ∈ V ∩Dn. If f is a rational inner function on Dn with less than N zeros

on V ∩ Dn and g ∈ S(Dn) satisfies g(λi) = f(λi) for i = 1, ..., N , then g = f on

V ∩ Dn.

In terms of the Pick problem on Dn, Theorem B states that for a function f

with less than N zeros on V ∩ Dn, the problem on Dn with data λ1, ..., λN and

f(λ1), ..., f(λN) is extremal and all solutions agree on V ∩ Dn. The following

example is a typical application of Theorem B.
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Example 1.1.6 Let N ⊂ C2 denote the Niel Parabola, {(z, w) : z3 − w2 = 0},
let N = 6 and fix λ1, ..., λN ∈ N ∩ D2. Rudin’s Theorem 2.1.4 and Theorem F

imply that for a, b 6= 0 with |a|+ |b| < 1, the rational inner function defined by the

following formula has 5 zeros on N ∩ D2.

f(z, w) =
zw + az + bw

1 + b̄z + āw

Theorem B states that if g ∈ S(D2) satisfies g(λi) = f(λi) for each i = 1, ..., N ,

then g = f on N ∩D2. Equivalently, every solution to the Pick problem with data

λ1, ..., λN and f(λ1), ..., f(λN) agrees with f on N ∩ D2.

We mention that since γ(λ) = (λ2, λ3) defines a parameterization of N ∩D2

as an analytic disc, we could have avoided invoking Theorems B and instead ap-

plied Pick’s Theorem to F (λ) = f(γ(λ)). However, Pick’s Theorem is only appli-

cable to analytic discs whereas Theorem B can be applied to any one dimensional

inner variety.

Our next result states that for each rational inner function f on Dn there

exists a finite set of points λ1, ..., λNn such that f is uniquely determined in S(Dn)

by its values on λ1, ..., λNn .

Definition 1.1.7. For a rational inner function f define deg(f), the degree of f ,

by letting f = q
r

for q, r ∈ C[z1, ..., zn] relatively prime and let deg(f) = deg(q).

Theorem C. (Scheinker [31]) Fix n,N ≥ 1. There exists a one dimensional inner

variety V ⊂ Cn and λ1, ..., λNn ∈ V ∩ Dn with the following property. If f is a

rational inner function of degree less than N and g ∈ S(Dn) satisfies g(λi) = f(λi)

for each i = 1, ..., Nn, then g = f on Dn.

Corollary 1.1.8. Fix n,N ≥ 1. There exist points λ1, ..., λNn ∈ Dn such that for

each rational inner function f of degree less than N , the Pick problem with data

λ1, ..., λNn and f(λ1), ..., f(λNn) has a unique solution.

To the best of the author’s knowledge Theorem C was the first result giving

sufficient conditions for a general Pick problem on Dn to have a unique solution.
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To illustrate the significance of a function in S(Dn) being uniquely deter-

mined by its values on a finite set of points, we mention that a function f ∈ S(Dn)

may not be uniquely determined in S(Dn) by its values on a (n − 1)-dimensional

set. To see this, notice that for a generic g ∈ S(Dn) the zero set of f − g is an

(n− 1)-dimensional variety. The following is an example of this.

Example 1.1.9 Fix n ≥ 2, let z = z1 and as a departure from our usual notation

let w denote the product of the other coordinate functions, w = z2 · · · zn. Fix the

(n− 1)-dimensional inner variety V = {(z, w) : z −w = 0} ⊂ Cn, fix a, b 6= 0 with

|a|+ |b| < 1 and consider the following functions.

f(z1, ..., zn) =
zw + az + bw

1 + b̄z + āw
and fε(z1, ..., zn) =

zw + az + bw + ε(z − w)

1 + b̄z + āw + ε(w − z)

The function f is rational inner by Rudin’s Theorem 2.1.4. The function fε satis-

fies fε = f on V ∩ Dn and fε 6= f on Dn. For ε sufficiently small, fε is also inner

and thus in S(Dn).

Our next result formalizes the phenomenon of Example 1.1.9 and can be though

of as a partial converse to Theorem C. The Theorem D states that if the degree of

f is sufficiently high relative to the degree of a (n − 1)-dimensional inner variety

V , then f is not uniquely determined in S(Dn) by it’s values on V .

Theorem D. Fix a rational inner function f with no singularities on Tn. If

V = Zp is an inner variety given as the zero set of a polynomial p and the degree

of p is less than or equal to the degree of f in each variable zi, then there exists a

rational inner function g on Dn that satisfies g = f on V ∩ Dn and g 6= f on Dn.

In terms of the Pick problem on Dn, Theorem D gives sufficient conditions on a

variety V and a function f such that for every positive integer M and any set

of points λ1, ..., λM ∈ V ∩ Dn, there are many solutions to the problem on Dn

with data λ1, ..., λM and f(λ1), ..., f(λM). This is in striking contrast to the one

dimensional case where Pick’s Theorem guarantees that for each rational inner f ,

once enough points λ1, ..., λM ∈ D are chosen, the problem with data λ1, ..., λM

and f(λ1), ..., f(λM) will have a unique solution.

Our next result is a generalization of Pick’s Theorem to S(Dn).
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Theorem E. Fix n,N > 1 and λ1, ..., λN ∈ D distinct. Given a rational inner

function of one variable f(z, w) = F (z) of degree less than N , if g ∈ S(Dn) satisfies

g(λi, w0) = f(λi, w0) for some w0 ∈ Dn−1 and i = 1, ..., N , then g = f on Dn.

In terms of the Pick problem on Dn, Theorem E gives sufficient conditions for the

problem on Dn with data (λ1, w0), ..., (λN , w0) and f(λ1, w0), ..., f(λN , w0) to have

a unique solution.

Our next result establishes a formula for the number of zeros of a rational

inner function f on an inner variety V , which we use to apply Theorems B and C.

Definition 1.1.10. Given a rational inner function f and an inner variety V , let

degV (f) denote the number of zeros of f on V ∩ Dn counted with multiplicity.

Agler and McCarthy discovered a formula for degV (f) in [6]. Although

their original result was for D2 and inner functions with no singularities on T2,

their proof extends easily to general rational inner functions on Tn. Before stating

our generalization of their result we need some definitions.

Definition 1.1.11. For a rational inner function f , define n-deg(f), the n-degree

of f , by letting f = q
r

for q, r ∈ C[z1, ..., zn] relatively prime and let n-deg(f) be

the n-tuple of the degree of q in each coordinate.

Definition 1.1.12. For a rational inner function f and an inner variety V , define

degV (f), the degree of f on V as the number of zeros of f on V ∩ Dn.

Definition 1.1.13. For a one dimensional variety V ⊂ Cn, define the rank of

V to be the n-tuple of the number of points in V over each fixed coordinate at a

regular point of V .

Theorem F. If V is a one dimensional inner variety with rank m = (m1, ...,mn)

and f is a rational inner function with n-degree d = (d1, ..., dn), then

degV (f) ≤ d ·m = d1m1 + ...+ dnmn.

Furthermore, equality holds whenever f has no singular points on V ∩ Tn.
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We close our overview of this thesis with an application of Theorem B.

Given a variety V ⊂ Cn, we say that a function F is analytic on V ∩ Dn if for

every point λ ∈ V ∩Dn there is an open ball θ in Dn containing λ and an analytic

function f of two variables on ’ θ, such that f |V ∩θ = F |V ∩θ. H. Cartan’s celebrated

theorem in [13] implies that every analytic function F on V ∩Dn can be extended

to an analytic function f on Dn. If the function F is bounded, then one can ask

if there exists an extension f that is also bounded. If an extension f satisfying

supDn |f | = supV |F | exists, then we call f a norm preserving extension of F .

If V ∩Dn is the graph of an analytic function m : Dk → Dn−k, i.e. has, after

a permutation of the coordinate functions, the form V ∩Dn = {(λ,m(λ)) : λ ∈ Dk},
then every bounded analytic function F on V ∩Dn has a norm preserving extension

to Dn given by

f(z1, ..., zn) = F (z1, ..., zk,m(z1, ..., zk)).

If V ∩ Dn is not the graph of an analytic function, then one can ask how to

differentiate between those bounded functions on V that do and do not have norm

preserving extensions to Dn, e.g. see Agler and McCarthy’s [5]. Theorem 1.1.14

states that determining whether a rational inner function on a 1-dimensional inner

variety V has a norm preserving extension to Dn is equivalent to solving a Pick

problem on Dn. Here, we call an analytic function F on V ∩ Dn rational if it has

finitely many zeros and inner if it satisfies |F (τ)| = 1 for almost every τ ∈ V ∩Tn.

Theorem 1.1.14. Let V ⊂ Cn be a 1-dimensional irreducible inner variety and

F a rational inner function on V ∩ Dn. The following are equivalent.

a. There exists a f ∈ S(Dn) such that f |V = F .

b. There exists a N greater than the number of zeros of F on V and distinct

λ1, .., λN ∈ V such that the Pick problem with data λ1, .., λN and F (λ1), .., F (λN)

is solvable on Dn.

The implication a→ b is trivial. That b → a follows from Theorem 4.1.1, a

stronger version of Theorem B proved in chapter 4 section 1. We mention that

a key fact used in the proof of Theorem 4.1.1 comes from a theorem in [25] by

Jury, Knese and McCullough. I am thankful to the authors of that paper for the
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discussion in which they explained their result and the subtlety associated with it.

The role of the result from [25] is discussed in more detail in the proof of lemma

3.0.11.

1.2 Organization of the Paper

This work is organized as follows. In chapter 2 we give various background

results on the Pick problems on D and D2, and on reproducing kernel Hilbert

function spaces. In chapter 3 we prove several results about reproducing kernel

Hilbert function spaces on inner varieties. In chapter 4 we prove Theorems A-F

minus C using the results of chapter 3. In chapter 5 we give the proof of Theorem

C from [31].



Chapter 2

Background

2.1 Rudin’s theorem for rational inner functions

In [29], Rudin gave a formula for a general rational inner function on Dn.

We state this result with multi-index notation, using f(z) = zd to denote

f(z1, ..., zn) = zd11 · · · zdnn .

Definition 2.1.1. For a rational inner function f , let f = q
r

for q, r ∈ C[z1, ..., zn]

relatively prime. Define deg(f), the degree of f , to be the degree of q and define

n-deg(f), the n-degree of f , to be the n-tuple of the degree of q in each coordinate.

Given a polynomial q(z1, ..., zn) with n-deg(q) = (d1, ..., dn) define q̃, the

reflection of q through Tn by the formula

q̃(z) = q̃(z1, ..., zn) = zd11 · · · zdnn q
(

1

z1

, ...,
1

zn

)
= zdq

(
1

z

)
(2.1.2)

Theorem 2.1.3. (Rudin [29]) Given a polynomial q that does not vanish on Dn

the rational function
q̃

q
is inner. Furthermore, every rational inner function on Dn

can be written as

f(z) = τzm
q̃

q
, with τ ∈ T (2.1.4)

for some polynomial q that does not vanish on Dn and m = (m1, ...,mn) an n-tuple

of positive integers.

10
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2.2 The Pick Problem on D

Pick’s study of the problem that now bears his name was one of the first

major advancements in the theory of rational inner functions on D. Pick gave a

criteria for the solvability of a Pick problem with data λ1, ..., λn and ω1, ..., ωN in

terms of what is now called the Pick matrix, which we denote P . The Pick matrix

P is a Hermitian N -by-N matrix defined as follows

P =

(
1− ωiωj
1− λiλj

)
.

The following theorem summarizes Pick’s results.

Theorem 2.2.1. (Pick, [28]) On D, the following are equivalent.

a. The problem with data λ1, ..., λn and ω1, ..., ωN has a solution.

b. The Pick matrix P =

(
1− ωiωj
1− λiλj

)
is positive semi-definate.

c. The problem with data λ1, ..., λn and ω1, ..., ωN has a solution that is a rational

inner function f with deg(f) = rank

(
1− ωiωj
1− λiλj

)
.

A Pick problem is called extremal if there exists a solution f with

||f ||∞ = 1 and no solution g of norm less than one exists. One can see that a Pick

problem cannot have a unique solution if it is not extremal as follows. If there

exists a solution g of norm strictly less than one, then adding a small multiple of

a polynomial vanishing at the nodes will result in a second solution, G = g + εp.

The converse follows from Pick’s Theorem 2.2.1; if a Pick problem is extremal,

then the problem has a unique solution. The following theorem summarizes those

consequences of Pick’s Theorem 2.2.1 that we will use in this work.

Theorem 2.2.2. The following are equivalent.

a. The Pick problem with data λ1, ..., λn and ω1, ..., ωN has a unique solution.

b. The Pick problem with data λ1, ..., λn and ω1, ..., ωN is extremal.

c. The Pick matrix P =

(
1− ωiωj
1− λiλj

)
is positive semi-definite and singular.

d. The Pick problem with data λ1, ..., λn and ω1, ..., ωN has a solution that is a

rational inner solution f with deg(f) < N .

Pick’s Theorem in section 1 of chapter 1 is equivalent to the implication d → a in

Theorem 2.2.2.
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2.3 The Pick problem on D2

In [1], Agler generalized Pick’s theorem to the bidisc. Agler gave criteria for

the solvability of a Pick problem on D2 in terms of the existence of two hermitian,

positive semi-definite matrices. Agler also showed that every Pick problem on

D2 that has a solutions has a solution that is a rational inner function. Agler’s

original paper [1] is difficult to find and we recommend the exposition in Agler and

McCarthy’s book [4]. We introduce some notation before stating Agler’s theorem.

Given a Pick problem with data λ1, ..., λn and ω1, ..., ωN , let W, Λ1 and Λ2

denote the following N -by-N matrices.

W = (1− wiwj) Λ1 =
(

1− λ1
iλ

1
j

)
Λ2 =

(
1− λ2

iλ
2
j

)
An admissible kernel K is an N -by-N positive definite matrix, with all the

diagonal entries 1, such that

Λ1 ·K = [(1− λ1
iλ

1
j)Kij] ≥ 0 and Λ2 ·K = [(1− λ2

iλ
2
j)Kij] ≥ 0.

Here · denotes the Schur entrywise product: (A ·B)ij = AijBij.

Theorem 2.3.1. (Agler, [1]) The following are equivalent.

a. The Pick problem with data λ1, ..., λn and ω1, ..., ωN has a solution.

b. The Pick problem with data λ1, ..., λn and ω1, ..., ωN has a solution that is a

rational inner function.

c. There exists a pair of N-by-N positive semi-definite matrices, Γ,∆, such that

W = Λ1 · Γ + Λ2 ·∆ i.e. (1− ωiω̄j) = (1− λ1
iλ

1
j)Γij + (1− λ2

iλ
2
j)∆ij.

d. For every admissible kernel K, the Pick matrix associated with K,

W ·K = [(1− wiwj)Kij], is positive semi-definite.

A Pick problem on D2 cannot have a unique solution if it is not extremal.

To see this, notice that if a Pick problem has a solution f of norm less than one

then adding a small multiple of a polynomial vanishing at the nodes will result in

another solution, F = f+εp. Agler and McCarthy gave criteria for a Pick problem

to be extremal in terms of the singularity of a matrix associated to the problem.
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Theorem 2.3.2. (Agler, McCarthy, [6]) The following are equivalent.

a. The Pick problem data λ1, ..., λn and ω1, ..., ωN is extremal.

b. There exists an admissible kernel K such that the Pick matrix given by,

W ·K = ((1− ωiωj)Kij), is singular.

2.4 Analytic Hilbert function spaces

In [6], Agler and McCarthy study inner varieties using Hilbert function

spaces and reproducing kernels. In this thesis, we use their methods and generalize

several of their results. In this section, we present a very brief introduction to

Hilbert function spaces. For a more extensive discussion see [4].

Given a set X, a Hilbert function space on X is a Hilbert space H(X),

consisting of functions on X, such that evaluation at each point λ ∈ X is a non-

zero continuous linear functional on H(X). The element of H(X) that induces

the linear functional of evaluation at λ, the existence of which is guaranteed by

the Riesz Representation Theorem, is called the reproducing kernel at λ and is

denoted kλ. That is, for each g ∈ H the equality < g, kλ >= g(λ) holds. In this

work, the set X will be Dn or V ∩Dn for a 1-dimensional inner variety V ⊂ Cn, and

H(X) will consist of functions that are analytic on X. The following definition

formalizes two of the properties of such spaces.

Definition 2.4.1. For a Hilbert function space H(X), we call H(X) free if there

do not exist distinct points λ1, ..., λN ∈ X and non-zero scalars a1, ..., aN ∈ C such

that every f ∈ H(X) satisfies

a1f(λ1) + ...+ aNf(λN) = 0. (2.4.2)

If X equals Dn or V ∩ Dn for a 1-dimensional inner variety V ⊂ Cn and H(X)

contains the polynomials, then H(X) is free.

Given a Hilbert function space H(X), we define a kernel function

K : X ×X → C with the formula

K(λ, ξ) = kξ(λ) =< kξ, kλ > for λ, ξ ∈ X.
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For each distinct set of points λ1, ..., λN ∈ X the N by N self-adjoint matrix (Kij),

denoted (kij) and defined by the following formula, is positive semi-definite.

(Kij) = (kij) where kij = K(λi, λj) =< kλj , kλi >

A kernel is called strictly positive if for every choice of points λ1, ..., λN ∈ X,

the matrix (Kij) associated to the points is strictly positive. If the space H(X)

is free, then the kernel K is strictly positive and can be normalized to have all

diagonal entries equal to 1, that is K(λi, λi) = 1 for every λi ∈ X. A kernel K

can be thought of as an infinite positive semi-definite matrix where each entry is

associated to a pair of points in X and the matrix (Kij) can be though of as the

restriction of K to λ1, ..., λN . When there is no danger of confusion, we will use K

to denote the matrix (Kij).

The multiplier algebra of a Hilbert function space H(X), Mult(H(X)), is

the algebra of functions φ on X that satisfy φf ∈ H for every f ∈ H. Addition and

multiplication in Mult(H(X)) are defined in the obvious way. If φ ∈Mult(H(X)),

then it follows from the Closed Graph Theorem that multiplication by φ, denoted

Mφ, is a bounded linear operator on H(X). We will make use of the fact that for

a point λ ∈ X and a multiplication operator Mφ, the evaluation functional kλ is

an eigenvector of M∗
φ, the adjoint of Mφ, with eigenvalue φ(λ). One can see this

as follows. Fix g ∈ H(X).

< g,M∗
φkλ >=< Mφg, kλ >=< φg, kλ >= φ(λ)g(λ) =< g, φ(λ)kλ > .

A particular Hilbert function space that we are interested in is H2(Dn),

the Hardy space on Dn. H2(Dn) is defined as the closure of the polynomials in

L2(Tn, dτ), where dτ is normalized Lesbesgue measure on Tn. Each f ∈ H2(Dn)

is analytic on Dn and can be continuously extended to almost every point on Tn.

Furthermore, the extension of f to Tn is in L2(T n). We summarize this as follows.

H2(Dn) = {f : f is analytic and ||f ||2 =

∫
Tn
|f(τ)|2dτ <∞}.

The space H2(Dn) is free since it contains the polynomials. In H2(Dn), the repro-

ducing kernel for a point λ ∈ Dn is called the Szego kernel and is given by the
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following formula.

kλ(z) =
N∏
i=1

1

(1− λizi)

For f ∈ H2(Dn), the reproducing property of kλ is expressed as follows.

f(λ) =< f, kλ >=

∫
Tn
f(τ)kλ(τ)dτ =

∫
Tn

f(τ)

(1− λ1τ 1)...(1− λnτn)
dτ (2.4.3)

Formula 2.4.3 follows from the Cauchy integral formula for Dn.

The connection between functional analysis on H2(Dn) and function theory

on Dn arrises from the fact that Mult(H2(Dn)) equals H∞(Dn), the Banach algebra

of bounded analytic functions on Dn endowed with the sup norm. Furthermore,

for each φ ∈ Mult(H2(Dn)) the operator ||Mφ|| satisfies ||Mφ|| = ||φ||∞. We

summarize this as follows.

Mult(H2(Dn)) = H∞(Dn) = {f : f analytic on Dn and ||f ||∞ <∞}.

The algebra H∞(Dn) is in turn connected to the Pick problem on Dn since a

function f is in the unit ball of H∞(Dn) if and only if f is in S(Dn), the Schur

class of Dn. Another example of the connection is that for a Pick problem on D
with data λ1, ..., λN and ω1, ..., ωN and two N by N matrices W and K given by

W = (1− ωiωj) and K = (< kλj , kλi >) =

(
1

1− λiλj

)
the classical Pick matrix P equals W · K. Here · denotes the Schur entrywise

product: (A ·B)ij = AijBij.

For a Banach space B we use B1 to denote the unit ball of B. In particular,

Mult1(H2(Dn)) = Ball(Mult(H2(Dn))) and H∞1 (V ) = Ball(H∞(Dn)).



Chapter 3

Hilbert Function Space on V

The generalized Pick problem on a Hilbert function space H(X)

with kernel K is to determine, given distinct nodes λ1, ..., λN ∈ X and ω1, ..., ωN ∈
D, whether there exists a function f in the unit ball of Mult(H), Mult1(H), that

satisfies f(λi) = ωi. Given a Pick problem, we let W and K denote the following

N by N matrices

W = (1− ωiω̄j) and K = (kij) where kij = K(λi, λj) =< kλj , kλi > .

We use · denotes the Schur entrywise product and call W ·K = ((1−ωiω̄j)kij) the

Pick matrix associated to the problem.

It is well known that if the Pick problem with data λ1, ..., λN ∈ X and

ω1, ..., ωN ∈ D has a solution, then the associated Pick matrix W · K is positive

semi-definite, see [4]. In the following theorem we show that if a Hilbert function

space H(X) satisfies certain mild assumptions, then a kind of converse holds. If

the Pick matrix W ·K has a non-trivial kernel, then the associated Pick problem on

H(X) has a unique solution. The proof of the following theorem is a generalization

of a proof in [6].

Theorem 3.0.4. Let H(X) be free Hilbert function space with kernel K and the

property that if a f ∈ H(X) vanishes on an open subset of X, then f = 0 in H(X).

Fix a generalized Pick problem with data λ1, ..., λN ∈ X and ω1, ..., ωN ∈ D that

has a solution. If the Pick matrix W ·K = ((1− wiwj)Kij) is singular, then the

solution is unique.

16
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Proof: Consider a generalized Pick problem with data λ1, ..., λN ∈ X and

ω1, ..., ωN ∈ D and assume that the problem has a solution. Since H(X) is free the

kernel associated to K is strictly positive and we can normalize the kernel K so

that the diagonal entries of K equal 1. Let W ·K be the Pick matrix associated to

the problem and let γ be a non-zero vector in the null space of W ·K. Notice that

not all of the points ωi equal 0, for if they did, then we would have W · K = K

which is strictly positive.

Consider the case where all of the entries of γ are non-zero. Let λN+1 be

any point in X that is not one of the original nodes. Let wN+1 be a possible value

that a solution to the original problem can take at λN+1. Since the Pick problem

with data λ1, .., λN+1 and ω1, ..., ωN+1 is solvable, the matrix [(1−wiwj)Kij]
N+1
1 is

positive semi-definite and for each z ∈ C

〈[(1− wiwj)Kij]
N+1
1

(
γ

z

)
,

(
γ

z

)
〉 ≥ 0. (3.0.5)

Since γ is in the null-space of [(1−wiwj)Kij]
N
1 and each Kii = 1, inequality (3.0.5)

reduces to

2<[z̄
N∑
j=1

(1− w̄jwN+1)KN+1,jγj] + |z|2(1− |wN+1|2) ≥ 0. (3.0.6)

Since equation 3.0.6 holds for all z, it follows that
∑N

j=1(1− w̄jwN+1)KN+1,jγj = 0

and the following gives an implicit formula for wN+1,

wN+1

(
N∑
j=1

w̄jKN+1,jγj

)
=

N∑
j=1

KN+1,jγj. (3.0.7)

Claim: There exists an open set of points λN+1 on which both sides of formula

3.0.7 do not reduce to 0.

Proof of claim: Let āj = w̄jγj and define G ∈ H(X) with the formula

G(x) =
N∑
j=1

ājkλj(x).

Thus defined, G(λN+1) equals the left side of formula 3.0.7,

G(λN+1) =
N∑
j=1

ājkλj(λN+1) =
N∑
j=1

w̄jKN+1,jγj.
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Towards a contradiction, suppose that the left side of formula 3.0.7 equals zero,

i.e. G = 0 in H(X). Take the inner product of G and an arbitrary f ∈ H(X),

0 =< f,G >=< f,

N∑
j=1

ājkλj >=
N∑
j=1

aj < f, kλj >=
N∑
j=1

ajf(λj) (3.0.8)

Since the entries of γ are by assumption non-zero, the scalars ai are non-zero and

formula 3.0.8 contradicts the assumption that H(X) is free. Thus, there exists an

open set on which formula 3.0.7 does not vanish and on this open set wN+1 is given

by the formula

wN+1 =

(
N∑
j=1

KN+1,jγj

)
/

(
N∑
j=1

w̄jKN+1,jγj

)
. (3.0.9)

Since H(X) has the property that if a f ∈ H(X) vanishes on an open subset of X,

then f = 0 in H(X), the existence of a formula for wN+1 on an open set uniquely

determines wN+1.

In the case where γ has exactly M < N non-zero entries, the corresponding

M point subproblem of the original problem has a unique solution. To see this,

proceed as follows. Without loss of generality, assume that the first M entries of

γ are non-zero and consider the M point subproblem of the original Pick problem

with data λ1, ..., λM and ω1, ..., ωM . Let (W · K)M be the M by M Pick matrix

associated to the new problem. Since the last N −M entries of γ are zero,

< (W ·K)MγM , γM >=< W ·Kγ, γ >= 0.

Thus, γM is in the kernel of (W ·K)M . Since γM has only non-zero entries, one can

apply the original argument of the proof to (W ·K)M and γM to conclude that the

solution to the subproblem λi1 , ..., λiM and ωi1 , ..., ωiM is unique. Since the solution

to the original problem solves the subproblem, it is also unique. 2

Given a 1-dimensional inner variety V ⊂ Cn, we will use the previous

theorem to prove Theorem 4.1.1, that a certain type of Pick problem on V ∩ Dn

has a unique solution. To prove Theorem 4.1.1, we first prove Lemma 3.0.11 and

Lemma 3.0.12 below.
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Lemma 3.0.11 states that for each 1-dimensional inner variety V ⊂ Cn there

exists a Hilbert function space of analytic functions on V ∩ Dn that satisfies the

hypotheses of the previous theorem. In [6], Agler and McCarthy established the

existence of the desired Hilbert function space structure for each 1-dimensional

inner variety in C2. A slight modification of their proof extends the result to a

1-dimensional inner variety in Cn. Before stating and proving the result we give

some notation and a well-known lemma, also from [6].

We say that a function F is analytic on V ∩Dn if for every point λ ∈ V ∩Dn

there exists an open ball Ω in Dn containing λ and an analytic function f on Ω, such

that f |V ∩Ω = F |V ∩Ω. We use ∂V to denote the topological boundary of V ∩Dn as a

subset of V , ∂V = V ∩Tn. An analytic function F on V ∩Dn is called inner if for

almost every τ ∈ ∂V , F continues continuously to τ and satisfies |F (τ)| = 1. An

analytic function F on V ∩Dn is called rational if F has finitely many zeros, that

is degV (F ) <∞. If f is a rational inner function on Dn and F is the restriction of

f to V ∩Dn, then F is a rational inner function on V ∩Dn and degV (F ) = degV (f).

We use H∞1 (V ) to denote the unit ball of the Banach algebra of bounded analytic

functions on V ∩ Dn. Given a measure µ, we use H2(µ) to denote the closure of

the polynomials in L2(µ). For S a Riemann surface, Ω an open subset of S and

ν a finite measure on Ω, we let A2(ν) denote the closure in L2(ν) of A(Ω), the

functions that are analytic on Ω and continuous on Ω.

Lemma 3.0.10. Let S be a compact Riemann surface. Let Ω ⊆ S be a domain

whose boundary is a finite union of piecewise smooth Jordan curves. There exists

a finite measure ν on ∂Ω such that evaluation at every λ in Ω is a bounded linear

functional on A2(ν) and such that the linear span of the corresponding evaluation

kernels is dense in A2(ν).

Lemma 3.0.11. Let V ⊂ Cn be a 1-dimensional irreducible inner variety. There

exists a finite measure µ on V ∩ Tn, such that H2(µ) has the following properties.

i. H2(µ) is a free Hilbert function space.

ii. If a f ∈ H2(µ) vanishes on an open subset of V ∩ Dn, then f = 0 in H2(µ).

iii. H∞1 (V ) ⊂Mult1(H2(µ)).
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The existence of µ satisfying conditions i and ii of 3.0.11 follows easily by gen-

eralizing arguments from [6]. Establishing H∞1 (V ) ⊂ Mult1(V ) in condition iii,

however, requires far more delicacy. The fact that H∞1 (V ) is a subset of the clo-

sure of the polynomials is a theorem in [25] by Jury, Knese and McCullough. The

author would like to thank the authors of that paper for a valuable discussion

clarifying the subtlety of this condition.

Proof: Let p1, ..., pr be a set of irreducible polynomials such that V is the in-

tersection of Zp1 , ..., Zpr . Let C be the projective closure of Zp1 ∩ ... ∩ Zpr in CPn

and identify V ∩Dn with a subset of C. Let S be the desingularization of C. This

means S is a compact Riemann surface (not connected if C is not irreducible) and

there is a holomorphic function φ : S → C that is biholomorphic from S ′ onto

C ′ and finite-to-one from S \ S ′ onto C \ C ′. Here C ′ is the set of non-singular

points in C, and S ′ is the preimage of C ′. See e.g. [18] or [22] for details of the

desingularization.

Let Ω = φ−1(V ∩ Dn). Then ∂Ω is a finite union of disjoint curves, each of

which is analytic except possibly at a finite number of cusps. Let ν be the measure

from Lemma 3.0.10 (or the sum of these if Ω is not connected).

The desired measure µ is the push-forward of ν by φ, normalized to have

mass 1 on ∂V := ∂(V ∩ Dn) = V ∩ Tn. In particular, µ is defined by

µ(E) = ν(φ−1(E)).

If λ ∈ V ∩ Dn is a regular point of V , then there exists a unique ζ such that

φ(ζ) = λ and kζ is the reproducing kernel associated to ζ in A2(Ω). The function

kλ = kζ ◦ φ−1 is defined µ almost every where on ∂V and for each f ∈ H2(µ)

satisfies

< f, kλ >H2(µ)=

∫
∂V

f · kζ ◦ φ−1dµ =

∫
∂Ω

f ◦ φ · kζdν =< f ◦ φ, kζ >A2(Ω)= f(λ).

If λ ∈ V ∩Dn is a singular point of V , then there exist finitely many ζ1, ..., ζs such

that φ(ζi) = λ and the function

kλ =
1

s

∑
kζi ◦ φ−1
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is the corresponding reproducing kernel function for λ.

That H2(µ) satisfies conditions i and ii follows from that H2(µ) is the closure of

the polynomials. That H∞1 (V ) ⊂ Mult1(H2(µ)) follows from a theorem in [25]

stating that each φ ∈ H∞1 (V ) is uniformly approximatable by polynomials with

sup-norm 1. 2

The second lemma that we need to prove Theorem 4.1.1 is Lemma 3.0.12

below. The lemma states that for a 1-dimensional inner variety V ⊂ Cn and a

rational inner function F on V ∩ Dn, the rank of the Pick matrix associated to a

Pick problem with solution F is less than or equal to the degree of F . This implies

that if an N point Pick problem has a solution of degree less than N , then the Pick

matrix associated to the problem is singular. This lemma is of crucial importance

to this work and was the inspiration for much of the research in this thesis. It was

discovered by Jim Agler and privately communicated to the author.

Lemma 3.0.12. Let V ⊂ Cn be an irreducible 1-dimensional inner variety, fix

λ1, ..., λN ∈ V distinct and let F be a rational inner function on V ∩ Dn. Let

H2(µ) be a Hilbert function space on V ∩Dn, the existence of which is guaranteed

by Lemma 3.0.11 and let K be the kernel associated with H2(µ). Let ωi = F (λi).

The rank of the N by N matrix W ·K = ((1− wiwj)Kij) is less than or equal to the

number of zeros of F on V counted with multiplicity, i.e. rank(W ·K) 6 degV (F ).

Proof: Fix a measure µ on V ∩ Tn, the existence of which is guaranteed

by lemma 3.0.11, and let H = H2(µ). Consider multiplication by F , denoted MF ,

as a bounded linear operator on H. Since F is inner, MF is an isometry and the

operator 1−MFM
∗
F is a projection onto

P = H 	 FH = {g ∈ H : for each f ∈ H,< g, Ff >= 0} (3.0.13)

The rank of the grammian of a set of vectors is less than or equal to the

dimension of the span of the vectors. Since the dimension of P equals degV (F ),

the rank of the grammian of a set of vectors contained in P is less than or equal

to degV (F ). We claim the Pick matrix associated to the problem, W ·K, equals

the grammian of the vectors {(1−MFM
∗
F )kλi}N1 ⊂ P , i.e.

W ·K = ((1− ωiωj)Kij) = (< (1−MFM
∗
F )kλi), (1−MFM

∗
F )kλi) >). (3.0.14)
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That W ·K equals the above grammian implies that

rank(W ·K) 6 dim(span{(I−MFM
∗
F )kλi}) ≤ dim(image(I−MFM

∗
F )) = degV (F ).

The following calculation establishes equation 3.0.14.

< (I −MFM
∗
F )kλj , (I −MFM

∗
F )kλi >=< (I −MFM

∗
F )kλj , kλi >=

< kλj , kλi > − < M∗
Fkλj ,M

∗
Fkλi >=< kλj , kλi > − < F (λj)kλj , F (λi)kλi >=

< kλj , kλi > −ωiωj < kλj , kλi >= (1− ωiωj)Ki,j

The first equality comes from the fact that I − MFM
∗
F is a projection. The

equalities in the second line come from that that each evaluation functional kλ

is the eigenvector of the multiplication operator MF with eigenvalue F (λ), that is

M∗
Fkλi = F (λi)kλi = ωikλi . 2



Chapter 4

Proof of main results

4.1 Proof of Theorem B

The following theorem implies Theorem B from the introduction. Recall

that H∞1 (V ) denotes the unit ball of H∞(V ).

Theorem 4.1.1. Let n,N > 0, let V ⊂ Cn be an irreducible 1-dimensional inner

variety and let λ1, ..., λN ∈ V ∩ Dn be distinct. If F is a rational inner function

on V ∩ Dn with degV (F ) < N and G ∈ H∞1 (V ) satisfies G(λi) = F (λi) for each

i = 1, ..., N , then G = F on V ∩ Dn.

Proof: Fix λ1, .., λN ∈ V ∩Dn, a rational inner function F on V ∩Dn with

degV (F ) < N and let ωi = F (λi). Let H = H2(µ) be a Hilbert function space on

V ∩Dn, the existence of which is guaranteed by lemma 3.0.11. By Lemma 3.0.12 the

N by N Pick matrix corresponding to the problem, W ·K = ((1− wiwj)Kij), has

rank less than or equal to degV (F ). Since, by assumption, degV (F ) < N it follows

that W ·K is singular and Theorem 3.0.4 implies that F is the unique solution in

Mult1(H) to the Pick problem with data λ1, .., λN and ω1, ..., ωN . Since Lemma

3.0.11 implies that H∞1 (V ) ⊂ Mult1(H)), if G ∈ H∞1 (V ) satisfies G(λi) = F (λi)

for each i = 1, ..., N , then G is also a solution and thus, G = F on V ∩ Dn. 2

Theorem B follows from Theorem 4.1.1, since if F is the restriction of a rational

inner f on Dn to V ∩ Dn, then F is rational, inner and degV (F ) = degV (f).

23
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4.2 Proof of Theorem D

We use the following technical result in the proof of Theorem D. For a

polynomial q, q̃ denotes the reflection of q through Tn given by formula 2.1.2.

Lemma 4.2.1. (Agler, McCarthy and Stankus, [7]) If V ⊂ Cn is an inner variety,

then there exists a polynomial p such that V = Zp and p̃ = p.

The idea of Theorem D is that for a rational inner function f = eq
q
, if the

degree of a polynomial p is less than the degree of q in each variable, then for ε

small the function fε = q̃+εp
q+εp

equals f on the zero set of p and is inner.

Proof: Fix a rational inner function f and assume that it equals zd eq
q
. Fix

V = Zp an inner variety such that the degree of p is less than or equal to the degree

of f in each variable. Since V is inner, we may assume that p̃ = p.

Claim: for ε sufficiently small, the following function is inner and equals f on V .

fε = zd
˜(q + εp)

q + εp

Proof of claim: If q+εp does not vanish on Dn, then fε is inner. If f has no singular

points on Tn, then q does not vanish on Dn and δ = infDn |q| > 0. Choosing

ε < ||p||∞
δ

guarantees that q + εp 6= 0 on Dn. If ˜(q + εp) equals q̃ on the zero set of

p, and this condition is satisfied precisely when the degree of q is greater than or

equal to the degree of p in each variable, then fε equals f on V .

Assume that f =
q∼

q
and that n-deg(q) = (d1, ..., d2) = n-deg(p). By

Rudin’s Theorem 2.1.4 and the fact that p̃ = p, it follows that

fε =
˜(q + εp)

q + εp
=
q̃ + εp

q + εp
.

In the general case let f = zd
q̃

q
, let s = n-deg(q), let m = n-deg(p) and let

fε = zd+s q(
1
z̄
) + εp(1

z̄
)

q + εp
= zd

q̃ + εzs−mp̃

q + εp
= zd

q̃ + εzs−mp

q + εp
.

It follows that fε = f on V and Rudin’s Theorem 2.1.4 implies that fε is inner. 2
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4.3 Proof of Theorems E and A

Fix n,N > 1, λ1, ..., λN ∈ D distinct and γ ∈ Dn−1. Suppose that

f(z1, ..., zn) = F (z1) is a rational inner function of degree less than N .

We want to show that the Pick problem with data (λ1, γ), ..., (λN , γ) and

f(λ1, γ), ..., f(λN , γ) has a unique solution on Dn. We consider the problem as a

generalized Pick problem on H2(Dn). Recall that the kernel function for H2(Dn)

associated with each λ ∈ D2 is the Szego kernel

k(λ,γ)(z, w) =
1

(1− λ1z)
∏N

i=2(1− γizi)
.

Let ωi = f(λi, γ). The Pick matrix associated the the problem, W ·K, is given by

the following formula

W ·K =

(
1− f(λi, γ)f(λj, γ)

(1− λiλj)
∏N

i=2(1− γiγj)

)

By applying the appropriate automorphism to Dn in the variables z2, ..., zn, we may

assume that γ = (0, ..., 0). This implies that the W ·K is given by the following

formula

W ·K =

(
1− F (λi)F (λj)

(1− λ̄iλj)

)
.

Since F is a rational inner function on D of degree strictly less than N , the impli-

cation d → c in Pick’s Theorem 2.2.2 implies that W ·K is singular. Since W ·K
is singular, Theorem 3.0.4 implies that the solution to the problem is unique. 2

Theorem A is an immediate corollary.
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4.4 Proof of Theorem F

Our proof is a slight modification of an argument from [6].

Proof: Let V be a 1-dimensional inner variety with rank m and f a

rational inner function with n-deg(f) = (d1, ..., dn). Since V is 1-dimensional, we

can assume that no point of V has more than one coordinate equal to 0 and that

each point of V that has exactly one 0 coordinate is regular.

Consider the case when f(z1, ..., zn) = zd11 · · · zdnn . At each of the mk

points in V with kth coordinate equal to 0, f has a zero of multiplicity dk. Thus,

degV (zd11 · · · zdnn ) = d ·m = d1m1 + ...+ dnmn.

For a general inner f(z) = τzd+s
q(1

z
)

q(z)
= τzd

q̃

q
, where s = n-deg(q), normal-

ize q so that q(0) = 1 and let

q(z) = 1 +Q(z) and qr(z) = q(rz) = 1 +Q(rz).

Since Q(0, ..., 0) = 0, one can factor a coordinate function out of each term of Q

qr(z1, ..., zn) = 1 + rnz1...znR(rz1, ..., rzn) and fr(z) =
zd + R̃(z)

1 + rnzR(rz)
.

As r increases from 0 to 1, the function fr changes continuously from zd to f(z).

The zeros of fr are bounded away from V ∩ Tn if and only if the zeros of q̃ are.

Since q̃ is the reflection of q through Tn, for a ρ ∈ Tn we have that q̃(ρ) = 0 if and

only if q(ρ) = 0. This implies that the zeros of fr are bounded away from V ∩Tn if

and only if the zeros of q, the singular points of f , are bounded away from V ∩Tn.

Thus, the number of zeros of f equals d ·m whenever f does not have a singular

point on V ∩ Tn. This establishes the case of equality.

Suppose f has a singular point ρ ∈ V ∩ Tn, i.e. q(ρ) = 0 = q̃(ρ). If s(r) is

a zero of fr on V ∩ Dn that approaches ρ as r goes to 1, then 1/s(r) is a singular

point of fr on V that approaches ρ from outside of Dn. That 1/s(r) ∈ V follows

from that V is symmetric with respect to Tn, Lemma 4.2.1. Since V ∩ Dn is 1-

dimensional, the restriction of f to V ∩Dn, denoted F , is locally a function of one

variable. Since F is bounded in a neighborhood of ρ, F has a removable singularity

at ρ and the number of zeros of F on V ∩Dn is less than d ·m by the multiplicity

of the cancellation of the removable singularity of F at ρ. 2



Chapter 5

Theorem C

The following is a refinement of Theorem C. The proof is from [31].

Theorem 5.0.1. (Scheinker [31]) Fix n,N ≥ 1. There exists a one dimensional

inner variety V ⊂ Cn and λ1, ..., λNn ∈ V ∩Dn with the following property. If f is a

rational inner function of degree less than N and g ∈ S(Dn) satisfies g(λi) = f(λi)

for each i = 1, ..., Nn, then g = f on Dn. In particular, V can be taken to be the

union of any M = Nn−1 analytic discs of the following form. For r = 2, ..., n let

τ r1 , ..., τ
r
N ∈ T be distinct and let D1, ..., DM be distinct analytic discs given by

Dk : D→ Dn with Dk(z) = (z, τ 2
i2,k
z, ..., τnin,kz). (5.0.2)

Before prooving Theorem 5.0.1, we introduce some definitions and a technical

lemma.

Definition 5.0.3. For each n,N ≥ 1 let IN(Dn) denote the set of rational inner

functions on Dn of degree strictly less than N .

Definition 5.0.4. For n > m ≥ 1, we call an analytic function E : Dm → Dn an

analytic m-disc. We use E(Dm) to denote the range of E.

Definition 5.0.5. Let f ∈ S(Dn), τ ∈ T and E be an analytic (n-1)-disc

given by E : Dn−1 → Dn with E(z1, ..., zn−1) = (z1, ..., zn−1, τz1) (5.0.6)

We define fE as follows, fE(z1, ..., zn−1) = f(E(z1, ..., zn−1)).

27
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The function fE is in S(Dn−1) and parametrizes the restriction of f to E.

Lemma 5.0.7. For n ≥ m > 1 and τ ∈ T, if f ∈ IN(Dn) and

E(z1, ..., zn−1) = (z1, ..., zn−1, τz1), then fE ∈ IN(Dn−1).

Proof: Since f is inner, the denominator of f has a non-zero constant term and

Rudin’s Theorem 2.1.4 implies that f can be written as follows.

f(z1, ..., zn) = τ
zd1 · · · zdn + r0(z1, ..., zn)

1 + q0(z1, ..., zn)
for some τ ∈ T (5.0.8)

where the degree of f equals d1 + ...+ dn and each term of r0 has degree less than

or equal to di in each zi and less than di in at least one zi. The corollary follows

from substituting f(z1, ..., zn−1, τz1) into equation 5.0.8. 2

5.1 A result on D2

We will use the case n = 2 of Lemma 5.1.2 in the proof of Theorem 5.0.1.

We will use the following technical lemma to prove the case n = 2 of Lemma

5.1.2. We use Bε(z) to denote the ball of radius ε around z and we use mt,a(z) to

denote the automorphism of D given by t z−a
1−āz .

Lemma 5.1.1. Let τ1, ..., τN ∈ T be distinct and E1, ..., EM be analytic discs

given by Ei : D→ D2 with Ei(z) = (z, τiz).

There exist τ ∈ T and ε > 0 such that for every t ∈ Bε(τ) ∩ T and a ∈ Bε(0),

the image of the analytic disc Cmt,a given by

Cmt,a : D→ D2 with Cmt,a(z) = (z,mt,a(z))

intersects each Ei(D) at a distinct point (ri, τiri).

Furthermore, C, defined as the union of every Cmt,a(D) over t ∈ Bε(τ) ∩ T and

a ∈ Bε(0) is a set of uniqueness for analytic functions on D2.
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Proof: Fix τ ∈ T such that τ 6= τi for each i and let ε1 > 0 be small enough

so that for each i, τi 6∈ Bε1(τ). Let Cm = Cmτ,a , with a to be specified later.

The sets Cm(D) and Ei(D) intersect if and only if one of the roots of the equation

τiz = mt,a(z) lies in D. Let ri and si denote the roots. If a = 0 then ri = 0 and

si = ∞ for each i. For sufficiently small ε1 > ε > 0, if a is perturbed away from

zero and remains in Bε(0), then each of the roots ri becomes non-zero and stays

in D. That the roots r1, ..., rM are distinct follows from the fact that they are

non-zero and that τi 6= τj.

To see that C is a set of uniqueness let f be analytic on D2 and suppose

that f |C = 0. Fix x ∈ D, a ∈ Bε(0) and let

Ax = {(x,mt,a(x)) ∈ D2 : t ∈ Bε(τ) ∩ T} ⊂ C.

Since f(x, z) is an analytic function in the single variable z and vanishes on the

arc Ax, f = 0. Since f(x, ·) = 0 for each x ∈ D, f = 0 on D2. 2

If Theorem 5.0.1 holds for n then the following lemma immediately follows

for n. We prove the following lemma for n = 2.

Lemma 5.1.2. Fix N , let f ∈ IN(Dn), let τ1, ..., τN ∈ T be distinct and let

E1, ..., EN be analytic (n-1)-discs given by

Ek : Dn−1 → Dn with Ek(z1, ..., zn−1) = (z1, ..., zn−1, τkz1)

If g ∈ S(Dn) satisfies g = f on each Ek(Dn−1), then g = f on Dn.

Proof of lemma 5.1.2(case n=2): By Lemma 5.1.1 there exists an ana-

lytic disc Cm(D) that intersects each of E1(D), ..., EN(D) at a distinct point

Ri = (ri, τiri). Fix f ∈ IN(D2) and assume that g ∈ S(D2) satisfies g = f on each

Ek(Dn−1). Let fm = fCm and gm = gCm . Notice that gm ∈ S(D) and by Lemma

5.0.7, fm ∈ IN(D). It follows that for i = 1, ..., N ,

gm(ri) = g(Di(ri)) = g(ri, τiri) = f(ri, τiri) = f(Di(ri)) = fm(ri)

Since gm(ri) = fm(ri) for i = 1, ..., N , Pick’s Theorem implies that gm = fm on D
and thus, g = f on each Cm(D). By Lemma 5.1.1, the discs Cm(D) sweep out a

set of uniqueness and thus, g = f on D2. 2
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5.2 Proof of Theorem 5.0.2

In this section we use induction to prove Theorem 5.0.1. The case n = 1 is

Pick’s Theorem. Fix n ≥ 2 and suppose that Theorem 5.0.1 holds for each m < n.

We show that Theorem 5.0.1 holds holds for n in 3 steps.

In the first step we fix N , fix a set of analytic (n-1)-discs

E1, ..., EN , and fix a set of Nn−1 points {λjs} ⊂ Dn−1 to which we will imply the

induction hypothesis. We lift the set {λjs} to the set of Nn points {λkjs} in Dn by

letting λkjs = Ek(λjs).

In the second step we apply the induction hypothesis to show that for each

f ∈ IN(Dn), if g ∈ S(Dn) satisfies g(λkjs ) = f(λkjs ) for k, j, s, then g = f on

E1, ..., EN .

In the third step we use Lemma 5.1.2 (which holds for n−1 by the induction

hypothesis) to show that since g equals f on E1, ..., EN , g = f on Dn.

STEP 1: Fix N and let τ1, ..., τN ∈ T be distinct and E1, ..., EN be analytic

(n-1)-discs given by

Ek : Dn−1 → Dn with Ek = (z1, ..., zm, τiz1).

Let M = Nn−2. For each r = 2, ..., n − 1 let τ r1 , ..., τ
r
N ∈ T be distinct. Let

D1, ..., DNn−2 be the Nn−2 analytic discs given by

Dj : D→ Dn−1 with Dj(z) = (z, τ 2
i2,j
z..., τn−1

in−1,j
z).

For each j, let λj1 , ..., λjN ∈ Dj(D) ⊂ Dn−1 be distinct and lift each point λjs to

Dn, N times, by letting λkjs = Ek(λjs).

STEP 2: Fix f ∈ IN(Dn) and suppose g ∈ S(Dn) satisfies g(λkjs ) = f(λkjs ) for

each k, j, s. For each k, let fk = fEk and gk = gEK . Notice that

gk ∈ S(Dn−1) and by Lemma 5.0.7, fk ∈ IN(Dn−1). It follows that for

k = 1, ...N , j = 1, ..., Nn−2 and s = 1, ..., N ,

gk(λj,s) = g(Ek(λj,s)) = g(λk,j,s) = f(λk,j,s) = f(Ek(λl,s)) = fk(λj,s).

Since for each k, gk(λjs) = fk(λjs) for each j and s, the induction hypothesis im-

plies that gk = fk on Dn−1. Thus, g = f on each Ek.
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STEP 3: If n = 2, then case n = 2 of Lemma 5.1.2 implies that g = f on D2.

Suppose n ≥ 3.

For ρ ∈ T let Cρ be the analytic (n-1)-disc given by

Cρ : Dn−1 → Dn with Cρ(z1, ..., zn−1) = (z1, ..., zn−2, zn−1, ρ̄zn−1).

For each ρ, let fρ = fCρ , gρ = gCρ . Let Iρ,k : Dn−2 → Dn and

Hρ,k : Dn−2 → Dn−1 be analytic (n-2)-discs such that

Iρ,k(Dn−2) = Cρ(Dn−1) ∩ Ek(Dn−1) and Hρ,k(Dn−2) = C−1
ρ (Iρ,k(Dn−2)).

Since g = f on Iρ,1(Dn−2), ..., Iρ,N(Dn−2) it follows that gρ = fρ on

Hρ,1(Dn−2), ..., Hρ,N(Dn−2) and Lemma 5.1.2 (which holds for n−1 by the induction

hypothesis) implies that gρ = fρ. Thus, g = f on Cρ and since Dn =
⋃
ρ∈TCρ, it

follows that g = f on Dn. 2
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