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Modeling Discrete and Continuous Entities With Fractions and Decimals

Monica Rapp and Miriam Bassok
University of Washington

Melissa DeWolf and Keith J. Holyoak
University of California—Los Angeles

When people use mathematics to model real-life situations, their use of mathematical expressions is often
mediated by semantic alignment (Bassok, Chase, & Martin, 1998): The entities in a problem situation evoke
semantic relations (e.g., tulips and vases evoke the functionally asymmetric “contain” relation), which people
align with analogous mathematical relations (e.g., the noncommutative division operation, tulips/vases). Here
we investigate the possibility that semantic alignment is also involved in the comprehension and use of rational
numbers (fractions and decimals). A textbook analysis and results from two experiments revealed that both
mathematic educators and college students tend to align the discreteness versus continuity of the entities in
word problems (e.g., marbles vs. distance) with distinct symbolic representations of rational numbers—
fractions versus decimals, respectively. In addition, fractions and decimals tend to be used with nonmetric
units and metric units, respectively. We discuss the importance of the ontological distinction between
continuous and discrete entities to mathematical cognition, the role of symbolic notations, and possible
implications of our findings for the teaching of rational numbers.

Keywords: math cognition, education, fractions, decimals, semantic alignment, symbolic notation

How do people understand abstract mathematic concepts? How do
they select the appropriate mathematical concepts to solve real-life
problems? To help students achieve both goals, mathematics educa-
tors use “word problems”—short stories describing simple real-life
situations involving various entities that can be modeled by the target
mathematical concepts. For example, the mathematical concept of a
fraction is often illustrated with a word problem describing a pizza
that is shared by several children. The pizza is sliced into n equal
slices, and each slice is denoted by the fraction 1/n. Note that in
order to be effective as examples of the target mathematical
concepts, the situations described in the word problems, or “situ-
ation models,” have to be analogous to their mathematical repre-
sentations, or “mathematical models” (Kintsch & Greeno, 1985).
For example, in the above pizza problem, the mathematical con-
cept of a fraction requires that the pizza slices be equal in size.

Semantic Alignment in Understanding
Mathematical Problems

People who have extensive experience with solving word prob-
lems are highly systematic in selecting mathematical models that

correspond to the situation models (e.g., Bassok, Chase, & Martin,
1998; Bassok, Wu, & Olseth, 1995; Dixon, 2005; Dixon, Deets, &
Bangert, 2001; Mochon & Sloman, 2004; Sherin, 2001; Wald-
mann, 2007). But how do students and mathematics educators
decide that particular situations are analogous to particular math-
ematical models? Bassok et al. (1998) have proposed that such
modeling decisions are guided by semantic alignment. The thrust
of the semantic-alignment process is that the entities in a problem
situation elicit semantic relations (e.g., tulips and vases are likely
to evoke the functionally asymmetric “contain” relation), which
people then align with structurally analogous mathematical rela-
tions (e.g., the noncommutative division operation, tulips/vases).
Both children and adults find it easier and more natural to solve or
construct semantically aligned rather than misaligned word prob-
lems (e.g., tulips/vases rather than tulips/roses; Martin & Bassok,
2005), and for many adults the process of semantic alignment is
highly automatic (Bassok, Pedigo, & Oskarsson, 2008; Fisher,
Bassok, & Osterhout, 2010).

In addition to semantic inferences about object relations, the
entities in word problems elicit inferences about the continuity
versus discreteness of these entities, which then affect people’s
modeling decisions. To illustrate, a word problem that describes
constant change in the value of a coin evokes a situation model of
continuous change, whereas a word problem that describes con-
stant change in salary evokes a situation model of discrete changes.
These distinct situation models lead college students to generate
qualitatively distinct solutions to otherwise mathematically iso-
morphic word problems (Bassok & Olseth, 1995). The distinction
between continuous and discrete concepts also influences the
interpretation of graphs and diagrams. For example, line graphs
tend to be interpreted as representing changes in continuous vari-
ables, whereas bar graphs tend to be interpreted as representing
differences among levels of discrete variables (Shah, Mayer, &
Hegarty, 1999; for reviews see Shah & Hoeffner, 2002; Hegarty &
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Stull, 2012). Gestures also show the influence of quantity type.
People produce corresponding continuous “swipe” or discrete
“tap” gestures when describing problems based on continuous
versus discrete variables (Alibali, Bassok, Olseth, Syc, & Goldin-
Meadow, 1999).

The contrast between discreteness and continuity, which is
captured by the linguistic distinction between count and mass
nouns (e.g., marbles vs. water, respectively; see Bloom, 1994;
Bloom & Wynn, 1997), is a basic ontological distinction that
affects how people parse the world. For example, Spelke, Brein-
linger, Macomber, and Jacobson (1992) have argued that young
babies use this distinction to discriminate between objects: Conti-
nuity of motion indicates that a single object is moving in space,
whereas discontinuity indicates the existence of more than one
object. Importantly, this distinction plays a crucial role in the
development of “number sense” (Dehaene, 1997). According to
Dahaene and his colleagues, an approximate sense of magnitude
for mass entities (i.e., a continuous variable) is evolutionarily more
primitive than exact calculations with discrete objects (Feigenson,
Dehaene, & Spelke, 2004; Dehaene, 1997).

Children eventually acquire counting procedures, which consti-
tute a critical basis for the development of number concepts related
to discrete objects (see Rips, Bloomfield, & Asmuth, 2008 for a
review, discussion and commentaries). Counting, or “enumerat-
ing” (Gelman & Gallistel, 1978), is the first opportunity for chil-
dren to explicitly align entities with numbers. The counting pro-
cess involves one-to-one mapping of consecutive integers to
distinct objects (e.g., stickers, chairs), such that a child increments
the integer magnitude simultaneously with the act of moving
through the set of objects, with the last number denoting the set
cardinality (3 stickers, 4 chairs). The use of integers in counting
discrete objects precedes their use in exact quantifications of
continuous entities (2 lbs of sugar, 3 feet), which require explicit
parsing of mass entities into countable measurement units (Miller,
1984; Mix, Huttenlocher, & Levine, 2002a; Boyer, Levine, &
Huttenlocher, 2008; Nunes, Light, & Mason, 1993).

Alignment of Discrete and Continuous Entities With
Fractions and Decimals

Prior research has documented that the solutions of word prob-
lems reflect semantic alignments between the continuity and dis-
creteness of situation and mathematical models. The present set of
studies aimed to examine whether people treat numerical notations
themselves as mathematical models of discrete and continuous
entities. Whereas integers can be readily aligned with either dis-
crete or discretized continuous entities, representing parts of such
entities requires the use of rational numbers, notated as either
fractions or decimals (e.g., [1/2] of the marbles, 0.5 L of water).
The studies we report in the present paper applied the semantic-
alignment framework to examine whether the discreteness versus
continuity of the entities that appear in word problems affects
people’s tendency to represent parts or proportions of these entities
with different mathematical symbols for rational numbers—frac-
tions versus decimals, respectively.

Fractions and decimals are two distinct notations for numbers.
Some fraction can represent any rational number, whereas some
decimal (unbounded in length) can represent any real number
(where the rational numbers are a subset of the reals). When

decimals are bounded (as they are in all experimental work, for
obvious reasons), they cannot exactly express the magnitudes of all
real (or rational) numbers (e.g., 1/3), but can approximate them
closely.

Fractions and decimals are typically used as alternative nota-
tions for the same magnitude, other than rounding error (e.g., 3/8
km vs. 0.375 km). For example, the Common Core State Standards
Initiative (2014) for Grade 4 refers to decimals as a “notation for
fractions.” However, there are conceptual differences between the
two notations that could affect their alignment with parts or por-
tions of discrete and continuous entities (see Figure 1). A fraction
represents the ratio formed between the cardinalities of two sets,
each expressed as an integer; its bipartite format (a/b) captures the
value of the part (the numerator a) and the whole (the denominator
b). A decimal can represent the one-dimensional magnitude of a
fraction (a/b � c) expressed in the standard base-10 metric system.
Whereas a fraction represents a two-dimensional relation, a cor-
responding decimal represents a one-dimensional magnitude (Eng-
lish & Halford, 1995; Halford, Wilson, & Phillips, 1998) in which
the variable denominator of a fraction has been replaced by an
implicit constant (base 10).

The fraction format is well-suited for representing sets and
subsets of discrete entities (e.g., balls, children) that can be
counted and aligned with the values of the numerator (a) and the
denominator (b) (e.g., 3/7 of the balls are red). Also, as is the case
with integer representations, the fraction format can be readily
used to represent continuous entities that have been discretized—
parsed into distinct equal-size units—and therefore can be counted
(e.g., 5/8 of a pizza).1 In contrast, the one-dimensional decimal
representation of such discrete or discretized entities seems much
less natural (�0.429 of the balls are red; 0.625 of a pizza), and may
suggest partition of nondivisible entities (e.g., balls).

The decimal format is well-suited to represent portions of con-
tinuous entities, particularly because unbounded decimals capture
all real numbers (i.e., all points on a number line). This alignment
is likely to be especially strong when decimals (base 10) are used
to model entities that have corresponding metric units (0.3 meters,
0.72 liters). When continuous entities have nonmetric units (e.g.,
imperial measures with varied bases such as 12 in. or 60 minutes),
their alignment with decimals may require computational transfor-
mations. Given that the denominator of a fraction is a variable that
can be readily adapted to any unit base, it may be computationally
easier to represent nonmetric measures of continuous entities with
fractions (2/3 of a foot) than with decimals (0.67 ft). Because
computational ease may interact with the natural conceptual align-
ment of continuous entities with decimals, we predict that metric
units should be predominantly represented with decimals, whereas
imperial units may be represented by fractions.

The above analysis suggests that semantic knowledge about the
discreteness or continuity of entities in word problems will lead
people to select either fractions or decimals as symbolic mathe-
matical models of these entities, with unit type (imperial or metric)
playing a secondary role (yielding an especially strong affinity
between decimals and continuous variables measured in metric

1 Note that “3/4 of the sandwiches” is very natural because each sand-
wich in a set is a discrete object; “3/4 of the sandwich” requires imagining
that a single sandwich has been divided into four equal parts.
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units). In the set of studies reported below, we provide evidence
that educators and highly educated adults adhere to this hypothe-
sized alignment when using fractions and decimals to describe
discrete and continuous entities, respectively. The first study was
an analysis of all the word problems involving fractions or deci-
mals in a commonly used textbook series (Grades K through 8).
These problems were constructed by math educators who, one
would assume, were aiming to help students understand rational
numbers by providing them with situation models that could be
modeled by these numbers. After describing the results of the
textbook analysis, we report results from two experiments in which
undergraduate students constructed word problems involving ei-
ther fractions or decimals (Experiment 1), and selected continuous
or discrete diagrams to represent combinations of rational numbers
and unit types (Experiment 2).

Textbook Analysis

We examined the set of word problems mathematics educators
present to students as situation models of rational numbers, coding
the entities (discrete or continuous) that are modeled by fractions
and decimals.

Method

Materials and Design

We examined the Addison-Wesley Mathematics (1989) textbook
series from grades kindergarten through 8th grade. This particular
textbook series was chosen because it is representative of the
mathematics teaching that most current college undergraduates
would have received in their early education (i.e., during the
1990s). This textbook series has historically had a large market
share (20–25%) and has been widely used across the United States
(Mix, Levine, & Huttenlocher, 1999). Subsequent versions of this
series (titled enVision and Realize, published by Pearson) remain
in widespread use today. The K-8 grade levels were selected
because they cover the main introduction and use of rational
numbers in math curricula before the start of formal algebra. We

analyzed all the problems that involved rational numbers, a total of
874 problems (504 with fractions, 370 with decimals).

Problem Coding

We developed a coding scheme that categorized problems by
their number type (fraction vs. decimal) and entity type (continu-
ous vs. countable). Problems were classified as fraction or decimal
based on the number type that appeared in the problem text or were
called for in the answer. Problems were selected that only con-
tained decimals, or else only contained fractions, enabling us to
separately classify each rational number type. Because we were
not evaluating answers to the problems, if the problem called for
an answer in a particular rational number type, this was not
included in the coding scheme. Problems were classified as con-
tinuous or countable based on the entities in the problems. Con-
tinuous problems involved entities that are referred to linguisti-
cally as “mass nouns” (e.g., weight, volume, length). Importantly,
these continuous entities were treated as wholes (e.g., the length of
a string) and were not explicitly broken down into smaller count-
able pieces (as in a string that was cut into three equal parts). We
also coded the unit type used in the continuous problems (yes/no
base-10) in order to assess whether the base-10 format of decimals
is used more often with readily aligned base-10 units than with
nonbase-10 units.

Countable problems involved either discrete or explicitly dis-
cretized entities. Discrete entities were sets of individual objects
that cannot be broken down into natural equal units (e.g., marbles,
balloons, or grapes). Continuous entities that were parsed into
equal countable parts (e.g., an apple cut into equal slices, or a
rectangle divided into equal squares) were coded as “discretized.”
In addition, the discretized category encompassed collective nouns
(e.g., people, class), which are collections of countable nouns (a
person, a student). Collective nouns thus refer to a mass with
meaningful, discrete units; hence we included collective nouns
with other masses (e.g., apple slices) that are portioned into mean-
ingful units. Examples of the coded problems appear in Table 1.

One research assistant coded all of the problems using the above
coding scheme. In order to assess interrater reliability, a second
researcher coded a random sample of 350 problems (i.e., 40% of
the total problems). The second coder was blind to the original
coder’s judgments. The two coders agreed on 336 (96%) of the
sampled textbook problems. A third researcher, who was blind to
the first two coders’ judgments, then coded the 14 problems on
which the first two coders had differed. These problems were then
placed into whichever category it was assigned by two of the three
coders.

Results and Discussion

The results of the survey of textbook problems are shown in
Figure 2. Of the 874 total problems, 504 used fractions and 370
used decimals. Continuous entities comprised a large majority of
the decimal problems (78%). In a complementary way, countable
entities comprised a majority of the fractions problems (57%). A
chi-square test of independence between number type and conti-
nuity confirmed that the two factors were significantly associated
(�2(2, N � 874) � 115.7, p � .001).

A significant portion of the continuous-entities problems in-
volved currency (for decimal problems, n � 101; for fraction

Figure 1. Hypothesized alignment of fractions and decimals with discrete
and continuous entities. See the online article for the color version of this
figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

49FRACTIONS AND DECIMALS



problems, n � 11). Although currency is technically written in the
form of a decimal, it has different properties than typical decimals
(e.g., colloquially, we refer to $6.10 as “6 dollars and 10 cents,”
not “6.1 dollars”). We performed an additional chi-square test of
independence to test the association between entity type and num-
ber type when currency problems were excluded, again finding
that the two factors are significantly associated (�2(2, N � 762) �
49.79, p � .001). Excluding currency problems, we found a similar
alignment to entity type, with 70% of decimal problems using
continuous entities and 57% of fraction problems using discrete
entities.

Figure 3 shows the distribution of continuous base-10 (n � 215)
and nonbase-10 problems (n � 291) that were represented by
either decimals (n � 288) or by fractions (n � 218). Base-10
problems comprised 70% of the decimal problems, whereas
nonbase-10 problems comprised 94% of the fraction problems. A
chi-square test of independence between number type and unit

type confirmed that there was a significant relationship between
the two factors (�2(4, N � 506) � 354.8, p � .001).

In summary, the textbook analysis revealed a pattern of align-
ment that is consistent with our entering hypotheses: Continuous
entities were more likely to be represented with decimals than with
fractions, whereas countable entities were more likely to be rep-
resented with fractions than with decimals. Also, as we predicted,
the tendency to align continuous entities with decimals rather than
with fractions was much more pronounced for entities measured
with base-10 units (metric units and currency) than for nonbase-10
units (imperial units).

Experiment 1

The textbook analysis revealed that, by and large, math educa-
tors present their students with word problems in which decimals
are paired with continuous entities and fractions are paired with
countable entities, or with continuous entities measured in imperial

Table 1
Examples of Problems With Different Unit Types From the Textbook Analysis

Unit Type Example

Continuous Base-10 measure metric (meter, liter, kilogram),
currency, Celsius

“There are 10.7 liters of water flowing into a bucket per
minute. After 17.1 minutes, how many liters of water are in
the bucket?”

“Ben bought 4 sacks of flour. Each sack weighed 2.3 kg. How
many kilograms of flour did Ben buy?”

“Lou’s temperature was 39.6C when he was sick. After he took
medicine it dropped to 37.9C. How much did it drop?”

Nonbase-10 measure imperial (inch, pound, gallon),
time (seconds, minutes,
hours), Fahrenheit

“If a full 1 gallon jug of water is poured into a 1/2 gallon jug,
how much water is left in the 1 gallon jug?”

“Kari practiced the piano for 1/2 of an hour. Brandon practiced
the piano for 1/3 of an hour. Who practiced longer?”

“A steak weighed 2 1/2 lbs. After the fat was removed it
weighed 2 1/4 lbs. What was the weight of the fat?”

Countable collective nouns (people, class of students), slices of a
mass (pizza, pies, apples), discrete set (marbles,
balloons, grapes, crayons)

“Larry had 12 balloons. He popped 1/3 of them. How many
balloons did Larry pop?”

“If 7/12 of the nations present voted to send aid to flood
victims, would the vote pass by a 2/3 majority?”

“Keiko and Robert each got a pizza. Keiko’s was cut into sixths.
Robert’s was cut into eighths. They ate half of their pizzas.
How many more pieces did Robert eat?”

Figure 2. Percentage of decimal and fraction problems in the textbook
analysis that were continuous or countable.

Figure 3. Percentage of continuous decimal and fraction problems in the
textbook analysis that included either base-10 or nonbase-10 units.
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units. Experiment 1 examined whether adult undergraduates, who
were likely exposed to such problems in their early schooling,
show the same pattern of alignment. To this end, we asked under-
graduate students to generate word problems that contained either
fractions or decimals, and examined the entities (countable vs.
continuous) they described in their problems.

Method

Participants

A total of 130 undergraduates (males � 72; mean age � 19)
from the University of Washington were included in the study,
receiving course credit.2 Half of these participants generated dec-
imal problems and half generated fraction problems.

Materials and Design

The study had one factor: number type (fraction vs. decimal),
which was manipulated between subjects.

Procedure

Participants completed the study using paper and pencil. They
were given a single sheet of paper. At the top, they saw three
examples of simple word problems with whole numbers, two
involving countable object sets (30 marbles, 5 children), and one
involving a mass entity (a 2-pound bag of sugar). All of the
examples were presented with whole numbers, rather than either
type of rational number, so as not to introduce any demand
characteristics for the participants. Participants were then asked to
generate two word problems with their own numbers. Depending
on the condition, they were told that at least one of the numbers in
their problems had to be a fraction (e.g., 1/4, 5/2), or that it had to
be a decimal (e.g., 0.25, 1.3).

Results and Discussion

The constructed fraction and decimal problems were coded for
continuity type and unit type using the same scheme that we had
developed for the textbook analysis reported above. Examples of
the problems generated, and the coding of these problems, are
provided in Table 2. The results are summarized in Figures 4 and
5. As in the textbook analysis, decimal problems (n � 130) more
often included continuous entities (72%). Conversely, fraction
problems (n � 130) more often included countable entities (66%).
A chi-square test confirmed that number type and continuity were
significantly associated (�2(2, N � 260) � 42.0, p � .001). As in
the textbook analysis, we also conducted a chi-square test exclud-
ing currency problems (for decimals, n � 31; for fractions, n � 8),
and still found a significant association between number type and
entity type (�2(2, N � 221) � 33.47, p � .001).

Figure 5 shows the distribution of continuous problems with
base-10 and nonbase-10 units in the decimal and fraction prob-
lems. Overall, students generated more continuous problems with
nonbase-10 units (n � 90) than with base-10 units (n � 48),
perhaps reflecting a general preference of American students for
imperial over metric units. Also, the instructions included an
example with imperial units (pounds), but not one with metric

units, which may have inadvertently primed participants to think of
imperial rather than metric units. This preference was apparent in
both fraction and decimal problems. Nonetheless, in accord with
the hypothesized alignment of continuous unit type with number
type, base-10 units were used more frequently with decimals
(42%) than with fractions (21%), whereas nonbase-10 units were
used more frequently with fractions (79%) than with decimals
(58%). A chi-square test confirmed that, for continuous entities,
unit type and number type were significantly associated (�2(4, N �
138) � 41.8, p � .001).

The results of Experiment 1 closely match the pattern of results
found in the textbook analysis. Much like the word problems
constructed by math educators, college students generate word
problems in which they tend to use decimals to represent contin-
uous entities and fractions to represent discrete or countable enti-
ties. Also, for continuous entities, they are more likely to represent
base-10 units with decimals than with fractions. Overall, these
results indicate that, for both textbook writers and college students,
a distinct pattern of alignment governs how rational numbers are
used to represent particular types of entities.

Experiment 2

In both the textbook word problems and in the word problems
generated by college students (Experiment 1) we found an asso-
ciation between rational number type and entity type. As we noted
in the Introduction, the distinction between continuous and discrete
entities is also reflected in the interpretation of diagrams and
graphs (Bassok & Olseth, 1995; Shah et al., 1999). In Experiment
2 we investigated whether people preferentially associate fractions
and decimals with different types of diagrammatic representations.
We asked college students to choose either a continuous or a
discrete depiction of fractions and decimals, which were paired
with matched continuous or discrete entities. The goal of this study
was to determine whether college students would associate frac-
tions with discrete representations and decimals with continuous
representations. Importantly, we tested whether this association
interacts with the type of unit (metric or imperial) paired with the
rational number. If the impact of unit type is primarily because of
differences in ease of computation, then we might expect this
variable to have less influence in Experiment 3, where the task
does not require any sort of computation.

Method

Participants

The participants were 157 college students, 115 female, from
the University of Washington. Participant ages ranged from 18–25
years (mean age of 19.4 years). All participants were enrolled in an
introductory psychology course and received course credit for their
participation.

2 Originally a larger number of participants (91 in total) were included in
the decimal condition in order to match the sample size with that of an
alternative variant of the fraction condition, which was subsequently
dropped from the design. The final sample of 65 was randomly selected
from the set of 91 so as to equate sample sizes for the decimal and fraction
conditions.
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Materials and Design

The study was a 2 (number type: fraction vs. decimal) � 2
(countable vs. continuous entity type) repeated-measures design.
There were two trials of each type, for a total of eight trials per
participant. Each participant saw eight different expressions, each
including either a fraction or a decimal and either a countable
(pens, sandwich, books, and banana) or continuous (kilometer,
pound, mile, and kilogram) entity type. Four fractions were used
(3/4, 5/8, 4/9, 2/7), and their equivalent decimals (.75, .63, .44,
.29). For example, a participant might see “3/4 km” or “.75
sandwich.” Assignments of entity type and number type were
counterbalanced so that half of the participants received a fraction
with a particular entity (e.g., 3/4 sandwich) and half received the
equivalent decimal with that same entity (e.g., .75 sandwich).
Thus, each participant saw eight of the 16 possible pairings of
number and entity type.

The dependent measure was whether participants selected a
continuous circle representation or a discrete dot representation for
the number type-entity type expressions (see Figure 6). Critically,

the representation options were the same for all of the statements.
Both of the representations depicted the value of 1/2 (.50), which
was not used in any of the fractions or decimals given in the
statements. The choice of representation type thus could only be
guided by its abstract form (continuous or discrete), rather than by
matches of specific values.

Procedure

Participants were given eight expressions that paired number
type and entity type, and shown the two different diagrammatic
representations depicted in Figure 6. For each expression partici-
pants were instructed to choose which type of diagram (circle or
dots) they would prefer to use to represent it.

Results and Discussion

Figure 7 depicts the proportion of total times the continuous
representation versus discrete representation was chosen for a

Table 2
Examples of Problems Generated in Experiment 1 With Different Unit Types

Unit Type Example

Continuous Base-10 measure metric (meter, liter, kilogram),
currency, Celsius

“The cost of a candy bar is $1.25. If tax adds an additional $.10,
how much is the candy bar?”

“There is .7g of salt and 1.4g of sugar. What is the total weight of
the two?”

“If the radius of a cylinder is .5m and the height is 7.2 m, what is
the volume?”

Nonbase-10 measure imperial (inch, pound, gallon),
time (seconds, minutes,
hours), Fahrenheit

“School is 6 1/2 miles away. If I drive 25 miles/hr to get there how
long will it take me?”

“If there is a bag of flour that is 1/4 full and then you add another
bag that is also 1/4 full, how full is your bag after combining
them?”

“A 1 lb ground beef patty is combined with a 1/2 lb lump of pork.
How much does the combination weigh?”

Countable collective nouns (people, class of students), slices of a
mass (pizza, pies, apples), discrete set (marbles,
balloons, grapes, crayons)

“If you have a dozen eggs and your neighbor borrows 1/4 of them,
how many are you left with?”

“If there are 50 marbles in a full container, but 1/2 the container is
gone, how many marbles are left?”

“I cut a whole pizza into 1/4ths. If I eat 1/2 of the slices, how many
slices are left?”

Figure 4. Percentage of decimal and fraction problems in Experiment 1
that were continuous or countable.

Figure 5. Percent of continuous decimal and fraction problems in Exper-
iment 1 that included base-10 or nonbase-10 units.
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given combination of entity type and number type. Collapsing
across entity type, for decimal expressions participants selected the
continuous representation 65% of the time; whereas for fraction
expressions participants chose the discrete representation 59% of
the time. Because each participant received just two items of each
type, we used a nonparametric sign test to evaluate differences in
selecting the continuous versus discrete display for decimals ver-
sus fractions. Of the 157 participants, 85 selected the continuous
display more often for decimal than fraction trials, 38 selected the
continuous display more often for fraction than decimal trials, and
35 showed no preference. A sign test revealed that more partici-
pants showed an overall preference for continuous displays with
decimals versus fractions (Z � �4.15, p � .001).

Collapsing across notation type, participants chose the continu-
ous circle display 60% of the time when given continuous entities,
but chose the discrete dot display 55% of the time when given the
discrete entities. We coded whether each participant selected the
continuous display more for continuous than discrete entities, or
vice versa. Of the 157 participants, 82 selected the continuous
display more often for continuous than discrete entities, 32 se-
lected the continuous display more often for discrete than contin-
uous entities, and 44 showed no preference. A sign test revealed
that there was a significant difference in the preference for con-
tinuous displays with continuous entities versus discrete entities
(Z � �4.59, p � .001).

It is interesting to note that, although we paired fractions and
decimals with both metric and imperial units, unit type of the

continuous entities did not affect participants’ choices of the
continuous versus discrete diagrammatic representations. For con-
tinuous problems with decimals, the continuous representation was
selected 68% of the time when the units were base 10 and 73% of
the time when the units were nonbase 10. For continuous problems
with fractions, the continuous representation was selected 50% of
the time when the units were base 10 and 50% of the time when the
units were nonbase 10. This lack of a unit-type effect indicates that
this variable does not, in itself, affect the perceived continuity
versus discreteness of the situation model. Rather, the effects of
unit type we found in the previous studies (textbook analysis and
Experiment 1) appear to reflect the relative ease of representing
continuous magnitudes with either decimals or with fractions.

The results of Experiment 2 show that, in addition to the direct
impact of entity type on the selection of a continuous versus
discrete representation, the participants in Experiment 2 preferred
to represent decimals with a continuous diagram but preferred to
represent fractions with a discrete diagram. Thus, continuous en-
tities paired with decimals (e.g., .44 km) showed the strongest
preference for the continuous representation, whereas countable
entities paired with fractions (e.g., 4/9 pens) showed the strongest
preference for the discrete representation. These results provide
strong support for the alignment between the perceived continuity
or discreteness of rational numbers (decimals or fractions, respec-
tively) and the continuity or discreteness of the modeled entities.

General Discussion

Results of the textbook analysis and of two experiments with
college students are consistent with our entering analysis of align-
ment between the format of rational numbers and the entity type
these numbers could meaningfully represent. Although the hypoth-
esized alignment was not absolute, decimals were typically used to
represent continuous entities, whereas fractions were more likely
to represent discrete than continuous entities. In the word problems
generated by textbook writers and by college students (Experiment
1), we also found a strong correspondence between unit type of
continuous entities (base-10 vs. nonbase-10) and the format of
rational numbers (decimals vs. fractions). However, unit type had
no effect on participants’ choices of continuous versus discrete
diagrammatic representations (Experiment 2), a task that does not
require mathematical computation. The effect of unit type thus
appears to reflect the relative ease of representing continuous

Figure 6. Options provided to represent continuous (circle) and discrete
(dots) representations in Experiment 2.

Figure 7. Percentage response selection by number type for trials with continuous entities (A) and countable
entities (B) in Experiment 2.
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magnitudes with either decimals or with fractions. In contrast, the
preferential alignment of fractions with discrete representations
and decimals with continuous representations has a conceptual
basis, and hence is found even in a task that does not require
computation.

The results of Experiment 2 also showed that people view
aligned number representations of entity type (e.g., 4/9 pens or
0.44 km) as better exemplars of discreteness or continuity than
misaligned number representations of the same entities (e.g., 0.44
pens or 4/9 km). This pattern of alignments suggests that people
view the symbolic notations of rational numbers as either discrete
(fractions) or continuous (decimals). Although this hypothesis has
yet to be tested directly (e.g., by asking people to select continuous
or discrete representations for numbers without specifying their
units), it is consistent with recent work showing the impact of
notational tools on mathematical reasoning (Braithwaite & Gold-
stone, 2013; Fisher, Borchert, & Bassok, 2011; Landy & Gold-
stone, 2007; Zahner & Corter, 2010).

We motivated the hypotheses tested in the present paper by the
framework of semantic alignment, which postulates that concep-
tual distinctions such as continuity versus discreteness can guide
people’s mappings of mathematical expressions onto situations.
However, an alternative interpretation is that the performance of
college students, and the correspondence between their perfor-
mance and the textbook examples, merely reflects the students’
early exposure to this alignment in the textbook examples. Of
course, this account would have to explain why textbook writers
chose such examples. To the extent that they have attempted,
consciously or unconsciously, to find the best real-life examples
that correspond to the target mathematical concepts, our results
may reflect a cognitively natural alignment between discrete ver-
sus continuous entities and their mathematical representations with
fractions versus decimals. The fact that the alignments we have
identified may have a basis in the mathematical nature of fractions
and decimals (see Footnote 1), and hence may be nonarbitrary,
lends further credence to the semantic-alignment hypothesis.
Nonetheless, further research will be required to resolve the
“chicken and egg” dilemma concerning the basic origin of these
alignments.

As we have pointed out in the introduction, continuity versus
discreteness is a basic ontological distinction that affects children’s
understanding of integers through counting of discrete entities, and
(later on) through measurement of continuous entities that have
been parsed into discrete units (e.g., Mix et al., 2002a, Mix,
Huttenlocher, & Levine, 2002b; Gelman, 1993; Nunes et al., 1993;
Gelman, 2006; Rips et al., 2008). The distinction between conti-
nuity and discreteness is preserved throughout the mathematical
curriculum. As in the initial cases of counting and measurement,
discrete concepts (at least in the typical curricula employed in the
United States) are always taught before their continuous counter-
parts (e.g., first arithmetic progressions, then linear functions).
Consistent with this typical instructional progression, students
learn fractions (kindergarten through 3rd grade) before they are
introduced to decimals (3rd grade). Although mathematics educa-
tors do not make an explicit claim that the transition from fractions
to decimals corresponds to the transition from countable to con-
tinuous entities, our findings strongly suggest that this is the case.

Applications to Instruction

One important application of the present findings concerns how
using fractions and decimals to model discrete and continuous
entities may affect reasoning about such entities. The two formats
of rational numbers, together with their respective alignments to
discrete and continuous entities, are differentially suited for dif-
ferent reasoning tasks. In a recent study, DeWolf, Bassok, and
Holyoak (in press) found that fractions allow people to better
represent bipartite relations between discrete sets than do decimals.
This difference arises because fractions maintain the mapping of
distinct countable sets onto the numerator and the denominator,
whereas decimals obscure this mapping. At the same time, deci-
mals afford direct mapping onto a mental number line and, there-
fore, allow for easier magnitude assessment than do fractions
(DeWolf, Grounds, Bassok, & Holyoak, 2014; Iuculano & Butter-
worth, 2011).

These recent findings, together with the results of the current
study, suggest that it will be useful for educators to be aware of
these alignments when developing word problems or questions in
which rational numbers are used to model proportions of entities.
While we find evidence that such alignments are already reflected
in textbooks, this is not done in a way that explicitly highlights the
connection between the types of entities and different formats for
rational numbers. Making this connection clearer to students may
help them to interpret the goals of modeling such entities, and
clarify how different formats can be used and manipulated to suit
the specific goals of the modeling task. For example, modeling
complex relationships between countable sets may be better car-
ried out with fractions, whereas expressing a measurement from a
ruler may be better suited for decimal notation.

The present findings are also interesting in light of recent
research on the understanding of magnitudes of rational numbers
by both children and adults. A popular test of knowledge of the
magnitudes of rational numbers is a number line estimation task, in
which a participant places a fraction on a continuous number line,
usually ranging from 0 to 1 (Siegler, Thompson, & Schneider,
2011). Both adults and children are more accurate when perform-
ing this task with decimals rather than fractions (Iuculano &
Butterworth, 2011). However, Siegler and his colleagues have
shown that ability to perform well on this task with fractions is
highly predictive of later performance in mathematics (Jordan et
al., 2013; Siegler et al., 2012). Siegler and his colleagues have
argued that asking students to place fractions on a continuous
number line is one of the single best ways to improve students’
understanding of fractions (Siegler et al., 2011; Siegler, Fazio,
Bailey, & Zhou, 2013).

The number line estimation task requires mapping a fraction
onto a continuous entity, which our results suggest would be a
difficult operation. It may be that the process of taking a contin-
uous representation, such as a number line, and parsing it into
meaningful pieces for the purposes of alignment to a fraction, can
help children gain a better understanding of both the magnitude of
the fraction and the relationship between its numerator and de-
nominator. Therefore, it is not necessarily the case that each type
of rational number should only be used with a specific type of
entity.

More generally, understanding of the natural alignment between
entity type and rational numbers, and capitalizing on it, may be
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useful in teaching rational numbers. Given that we know students
are particularly prone to misconceptions with rational numbers
(Stafylidou & Vosniadou, 2004; Ni & Zhou, 2005; Stigler, Givvin,
& Thompson, 2010), making use of this natural alignment may
help students to use their knowledge of entities in the real world to
bootstrap their knowledge of rational numbers. Interestingly, de-
spite the prevalence of this alignment in textbooks across many
grade levels, textbooks never actually address it explicitly. The
alignment seems to be implicit, and is not explicitly taught even for
adults. Teaching with this alignment in mind, and even explicitly
using it, may provide a useful stepping stone for children learning
natural numbers. In addition, having students engage in tasks in
which they need to actively parse a continuous representation, or
conversely sum over a discrete representation to align it with a
decimal value, may provide a useful tool for bolstering understand-
ing of the relation between the representations of entities and the
rational numbers themselves.
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