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* DUAL RESONANCE MODELS FOR VECTOR CURRENTS

" J. H. Weis
Lawrence Radiation Laboratory

-University of California
Berkeley, California

May 6, 1970

ABSTRACT

'vReéenﬁ work oﬁ dual Reéééized fésonance modeis for vector
currenfs is discussed. The pfobértiés vector current aﬁplitudes in K
such mbdels are expected to possess are first despribed in some detail;
i.e.,.(i) factorization, (ii) divergence conditions, and (iii) good
large-q2 behavior. Presently existing models fall into two classes:
factoriéable models that emphasize (i) and (ii) at the expense‘of (iii)’
and phenomenological models that emphasize (ii) at the expense of (i)
and (ii). These models are discussed and a new phenomenoiogical model
is pr&posed that incorporates exponentially falling form factors, a |
property we believe dual resonance models should possess. We find the
partial sﬁccesses described here a source of optimism for an eventual

complete solution of the problem.



,‘;

“

I. INTRODUCTION
The recently developed.Reggeized dual resonance model (DRM)
for the strong 1nteractions promlses to- be a very useful theoretical
tool, if not also a good phenomenologlcal model, since it exhibits a
large number of properties that phy31cal scattering amplitudes are

believed to possess. Clearly 1t would be desirable to -extend this

: model1x>1nclude the electromagnetic and weak 1nteractions of the hadrons

(see Sec. II). Here we discuss recent attempts to construct a DRM
for the vector currents.
.In-any'attempt to construct a model for vector currents three

1mportant types of phys1cal properties should be kept in mind (see

Sec. III) (i) Bootstrap con31stency conditions (factorization)--the

spectrum of resonances occurring as poles 1n.energy variables and in
current masses" (q ) should be consistent with the spectrum of the
purely hadronic amplitudes. :(ii) Divergence conditions implied by
current conservation and, 1f4de31red, current algebra should be |
satisfied. (iii) ' The large q2 behavior should be "good," i.e.,
as suggested by experiment and tbeoretical considerationsg. In a complete
bootstrep theory, we 'expect that condition (i) will completely determine
the currents and thus the divergence conditions (ii) and the large-r
q2 behavior (iii). However, here we put aside the question of
uniqueness and investigate oniy the existence of'currents with accept-
able properties (1) - (111) : |

Presently existing models empha51ze one or more of. the above

properties at the expense of the others. One class.of models attempts



ﬁo satisfy factorization (i) and the divergence conditions (ii) but
has bad large—qg.behaVidr (1i1) (see Sec. TV). TIf the infinite set
of uni&efsaily coubled‘vector mesons are inéluded'as‘poles in qg,
amplitudes safiéfying currént algebfa énd factorizing on thelvM
highest_trajectories can be constructed for a form factor falling like
(qE)—M”' quever, it is fouﬁd that‘complete factorization cannot be
obtained if the current couplés only to the universal vector mesons.

*. The othef.clasé of present ﬁodels attemﬁts to obtain good
large-qg Behéviof (iii) and.sometimes (ii); but has bad factorization
(i) properties (see Sec. V).. Tt is possible to generalize previously
proposed models in order to obtain amplitudes with‘form factofs that
fall faster than any power, which We.believe should be the case in the
DRM. .Thése amplitudes have all'the good large-q2 behaviors discussed
in Sec. III.

Although none of the present models satisfies all the expected
propeffies, we find the partial successes outlined above reason for opti-
mism about obtaining a full solution to the problem. In the concluding

section we‘suggest what we believe may be fruitful directions for

future work on obtaining such a solution.




II. DUAL RESONANCE MODELS
The prominent hadronic resonanceégenerally.have rather narrow

widths; appear to lie on fairlyvlinéar Regge trajectories,vand account
for most of the obsefved scattering Cross sections; These empirical
facts and theoretical'considérétibns on composife‘partidles led Mandel-
stam to propose a dynamical model fof the sfrong ihﬁéractibns in which
scattefiné amplitudés are ddmihafed by zero-Widfh resonances iying on
linearly rising'Regge trajectories.l’2 Suéh a model is duai in the sense
that anyvamplitude can be expressed, uéing unsubtraéted dispersion
relations (USDR), equivalently as aAsum over resonance poies in any
given éhannél or in its crossed.¢haﬁhels; The:requirement of consistency
betweenbthése equivaleht eXpre;sioﬁsbis hoped.td determine the resonance
maéses'ahd couplings, neglecting unitarity correctioﬁs.

| The dominance of the hadronic amplifuaés'by narrow resbnancesv
leads one to expect that the‘singulafiﬁiés in q2 in éufrent amplitudes
afe also dominated by narrow.zl'esonanic'és.5 Conversely, thé rigorous
validity of resonance domination in q2 requires resonance domination
in energy variables, since otherwise dispersion relations in q2. have
contributions from cuts whose discontinuities are not determined by
resonance amplitudes. Since, furthermore,.electromagnetic form factors
are experimentally observed, and theoretically e_xpected,l to decrease
rapidly for large negative q2 and presumably satisfy USDR, it is
natural_to extend the DRM to amplitﬁdes'involving the electromagnetic
and weak currents by assuming that they can be expressed as a sum over

. 2 . - . L
resonance-poles in q as well as in energy variables. In such a
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ﬁéotstrap theory of currents,5 the couplings of the résoﬁaﬁces to the
currents are presumabiy défermined by crossing symmetfy and consisfency
with the hadronic amplitudes.

| Work on the hadronicvprobleﬁ received considerable impetus by
Veneziano‘s probdsal of a simple function as a prototype dual amplitude.

7

Veneziaho's model and its generélizations assume a particdlar type of
dvality cailed planar duality. The N-body scattering amplitude is
decomposed intb.a sﬁm of terms, one for each permutation of £he external
mbﬁenﬁa (pi)a ' Each term haé>reé§nance poles in subenergies correspon-
ding to'adjacentvmomenta [e.g., the term for the permutationx o
pi,pé,---,pN has poles in sij = (pi + Py b oeon +-pj)2] and also
Regge beha&ior in these subenergies; it is therefore dual in the sense
described abo&e.‘ We shall assume fhat the current_amplifudes also have
such a dual decomPOSifion.--At pfesent there is no fundamental reason
for assumiﬁg planér duaiity§ the oniy Justification we.offer is
sim.plicity.8 | ‘. |

The simplest present hadronic model for the meson bootstrap, and
the one we shall demand our currents be consistent with here, takes for

each term in the dual decomposition the product of an "orbital factor”

B(pl,pe,-'?,pN) (N-point beta function9), and an "internal symmetry
210,11 1
" 5

“which hés in addition a "spin factor."ll This model has a better

factor, Tr(TiTgn--TN).'.Mandelstam has proposed a model
particle spectrum and includes the baryons as well as the mesons.
Perhaps the most seripUs difficulty with these and other models for

N-body amplitudes is that,amplitudes involving pions do not vanish as
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the pioh moﬁenta go to zsro; ‘Thig means fhat we cannot obfain
physicaliy reasonable paptiélly conéerved axialQVector currents
consistent with thése hadronic models. We therefore restrict our
considergtiéné to.vectof.currénts in this paper. We thus make the
tacit aséumptEOn that the zero-width limit can bé éssumed independenfly
of the SU(é) & su(2) symmetric iimit; there seems to be no reaéon
why thiQNShould not be bossibie. | | |

PAil existing hadronic ﬁodels are rather coﬁjecturéi at the
moment;ﬂof.course, and it may bé possible‘that bnly models other than
the simpie‘one considered here will admit consistent vector currents.
Furthermore at present it is by no meaﬁs clear to‘what extent the
hadronic énd current amplitudes are uniquely bootstrapped in thebzero—

width_approximation. Supplementary assumptions like requiring a

minimal number of states may be necessary in order to specify a unique

solution. .In fact one should keep in mind the possibility that the
existénce of physically acceptable current amplitudes might be a
necessary condition for determining the hadronic amplitudes, although
such a situation is contrary to the bootstrap philosophy discussed

above.
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III.V PROPERTIES OF.VECTOR CURRENT ' AMPLITUDES

Iﬁ this section we discuss the basié properties that‘vectér
currentvamplitudes in dual résénance models should have. Some of these
prdpefties follow direcfly ffoﬁ fhé Zeré-width.épprqximation, duélity,
and the conserved vecﬁor current hypothesis (CVC);l2 for example, the
divergence.conditions on the full ampiitﬁdevare éhown to give conditions
on ééch;sééarate term in fhe dual decompbsitioh. Other properties are
suggesiéd.by experiment and field theory models; for example, thé
reiationsﬂip of the'éomﬁoSitenesé'of'thé hadrons to the absence of
certain fixed poles and the asjmptotic behavior of form factors, the
behavior of electroprodﬁctién stfucture functions, etc. We stress
that it should be kept in mind that most of the field théér& results
caﬁ bniy be regardea as sﬁggéstive since many ére dé;iVed by considering
onl& a:éubset‘of Feynman diagrams and treét croséed‘channéls inﬂant
ﬁhéymmétric maﬁner; For Simpliéity we discuss the aﬁplitudes fof
N spiﬁless hédrons aﬁd one current [VM(q)] or tw6 currents -
[ (q;,a,)].

(i) Bootstrap Consistency Conditions (Factorization)

Strong restrictions are imposed on the current amplitudes by
the requirement that the spectrum of resonances occurring as poles
in_ q2 and in energy variables be the same as the spectrum of the
purely hadronic amplitudes. These consistency'conditibns, shown
diagrammatically in Figé. l'gnd 2, include éeneralized vector-meson
dominance [Figs. 1(a) and 2(a)] and factorization in the various

several particle channels [Figs. 1(b), 2(b), and 2(c)]. According to
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the bootstrap philosophy,5’12 the current amplitudes are believed to
be completély detérmined by‘these éonditions. Quadratic factorizétion
[Fig. 2(¢)] is éxpeétéd to play the crucial role, since the single-
currént7amplitudes ﬁust be restricted so as'to yield acceptable two-

13

current’amplitudes. We eﬁphasiZe that due to quadratic factorization-
and USDR,"the two-current émplitudes are complétely determined by the
single-current ampliﬁudes; this fact will be heavily exploited in

See. IV.

(ii) Divergence Conditions and High-Energy Behavior

We first consider}thé implicationsl? offcurrenf éonsérvation.for
the single;current amplitudes and two-current amﬁlitudes. We then
discuss the consequencés Qf cuprent algebra and the possibility of
non-Regge terms in the asymptotic behavior.

| Each isospin invariant'ampliﬁude of V“(q) has a dual
deéomposition as described in Sec. II and is divergenceless. Each
term in the decomposition has poles in a differéntvset of variables,
and thérefore there is no possibility of cancellation between them in
the divergence. Since duality rules out terms without singularities
in the full set of variables, each term must itself be divergencelesslh

(see Fig. 3),

a, VM@ =0 . (5.1)

Here P specifies the'permutation P of the hadron momenta and i
specifies that the current is to the left of pP(i)°' From now on we

consider only the hadron ordering pl’...’pN and drop the subscript P.



Current conservation has pafticularly interesting consequences
for qM —aO; In this limit thevdominant éoptribﬁtions to the amplitude
come from the soft pole terms orvexternal line insertions (ELT)--see
Fig. 4. First, we remafk thét in our génefaiized vector-meson doﬁinance
model nbnzero ELT ére ﬁost ﬁafurally obtained through the existence of
at least one vector meson which couples universally to the hadrons.

If a single Qector meson doﬁinates,-it'ggig couple_universally to
provide nonzero ELI. If the hadronic specﬁrum does not include such .
univeréally coupled mesons, physically’ reasonable consistent vector
currents w;ll be - -difficult to obtain. Second, we note that ViH has
only tWo ELI, i.e., those corresponding to 'pi_l and Py ‘at

(q + pi_l)2 = mi—l? and (q + pi)2 = mig.‘ Since for a, — 0 these
are the only possible'coht?ibutions to (3.1), the residues of these

poles must be equal and opposite,

vy (@) = 5 5 - 5~ % | Pnadronic
- (q + pi"l) - mi-l (q + pi) - ml )

| (5.2)
From nqw on the Viu will always be understood to havé their ELI
poles ndrmalized as in (3.2).

Let us discuss further the structure of VM as qLL —- 0 and
its internal symmetry properties before festricting ourselves to the
case Qf no exotlic resonances. It 1s particularly convenient to
represent the isospin state of each hadron, p;, as a direct product
of isospin one-half spinors--"quarks" or "antiquarks,”" i.e. lower
indices ai’ai"'°’di(k) Bi(z)

and upper indices Bi’Bi’°"’ (one




may'requife sbme symmetry and traééleésness conditions but we may
ignore £his inessential complicatiﬁn). The number of upper and lower
indices of»én amﬁiitude can‘alﬁays-be ﬁade equél by using thé raising
and lowe?iné métri#: Ca?. Since .Sae .is the only in;ariant tensor

in SU(?); an amplitude can always be éxbanded as a’sﬁm of terms, each
cbnsisﬁihg of a product of 8's and an isospih invariant amplitude.ll
Each such.term has a natural diagrammatic representation--see Fig. 5(a)
for an_example bf a purely hadronic amplitude. Each term in a dval
decompoéition has a similar expansion}1.For theée it'ié convenient to
draw the lines around the periphery of the diagram--compare Figs. 5(a)

and 5(b)

Now consider for 31mp11c1ty an 1sovector current (currents with

other isospins can be ea31ly treated in a similar manner) with splnor

1nd1ces o and B where the 1sosp1n one part is obtained by using the

projéctionkoperator A }: (Ta)aB. The ELI's for 'V“ are then given
o CQ,p :

by

© 5 ()

Bre Py g +o2p” B, (f)
O Z“)(m)A —(m) (k)

(q + 1 )2

oy 0y &y * Oy

S )., (), ()
Bloo. -oo N Bi
- LA (x) ("), (n)

n al"'aﬁ

One can easily verify that the vanishing of the divergence for qu -0

. (3.3)

is assured by the isospin invariance of A:
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’viii. ai(m) 31';’BN(£) .
(7y) (m) A = (m) (k)

. : . s e oX,
‘i,m &y * i

...Oi\l

(8) ()

1

‘ BloooBi'n ...BN
- Z A (x) (o) my = O
i 1 ] i

Now consider a particular isospin invariant amplitude. . For

definitehess suppose 1t corresponds'to 6.

only the 'S'S" inVolving'éurfents have been explicitly shown and_‘a.

By

.
ceeB, B

6---6 s where
*

a,
J

dJ

and Bk are any indices for pj and Py s respectively. Each term in

the dual decomposition of this isospin invariant amplitude of course

satisfies (3.1). This condition and the requirement that the full ELI

contribution be given by (3.3) can easily be shown to imply that the

amplitude has the fbrm

k

o B R
5"...5a kga.B.,.a“ E Vi“(q) . } (3.4)

i=j+l

In terms of diagrams, this means that in Vi“ the current coupies

(by Ta) to each "quark line" passing between p, and p, --see

Fig. 6. We therefore see that current conservation, duality, and

isospin invariance require the amplitude to have a very particular

form as qu — O with the current in a sense probing the guark-like

isospin structure of the amplitude.

It should be emphasized that (3.4)

only specifies the ELI structure; an arbitrary contribution containing

no soft poles can always be added.
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The isospin analysis for the two;current amplitudes proceeds in
a'Very éiﬁilar manner but‘there is an important new feature which has
to do with the ELI and the terms in the dual decomposition with adjacent
currents. JLét us denote by Mijuv(ql,qg) the term in the dual
decompoéitionvcdrresponding to the permutation pi,---, ﬁi-l’ a5
(or similarly for i > j). For adjacent

P.

1’{.°’pj—l’ Ao Pj:"';PN

currents, 1 = j, we let 'Mii~ denote the term with a5 to the left
of q, and ‘Mii denote the term for gq) to the right of gq,. The
tefms with nonadjacent currents have two ELI's fér'each current and
thus may be taken to be indiVidually divergeﬁceléss, at least for
giu —aQ;  quever, the adjacent ;urrent terms have only one ELI each:
both Miiuy(ql,qg) and Mé?v(ql,q2) are needed to supply the usual

. two ELI on pi—l. and P, - The existence of only one ELI means that

these amplitudesvcannot be divergenceless'as qi“ - 0; specifically,

we find v
| (#) | —
B, B (04
wv 1 N E: X
9, M3 ap (k)(ql’qQ) 3. 0 (73)q,
‘ 04 1p o X
. X .

Ly

Blo . .BN(z)

al...ax.,.aN

X v. .V

i3b (k) (3 + )

= (2)
. B ...B ...B . B
By Oy " Oy y

wheré the sums are over all quark lines between Py and P -
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Thg impo;fant result that Mii”v. has a fixed’singﬁlarify in
addition to_tﬁe usual Regge poles in the'tﬁo-current channel (t éhannel)
follows from Eq. (3.5), éurfeﬁt'conservétion,vénd quadratic factoriza-
tion. To see this, cénéider ény chanhel éi [see Fig. 2(c)]. Cﬁrrent
cohserﬁation and‘quadratic féctorization iﬁply fhaf qlpM“V ﬁas no 

poles in this channel and so it must behéverlike a polynomial in éi.

Since the right-hand side of (3.5) is nonvanishing, we conclude that the

constanﬁ'?erm is‘noﬁVanishing'at least for qu =0 and q22 =t in
those amplitudesnot multiplied by qiv{ ’This’impliés'that”'Mii“V also -
has fixed power behavior as s; == and thus some fixed singularities
in the ﬁAchanhél.15 This reéulf is sfrongér théﬁ that.which obtains
without»d@ality5'since,it applies to Mii ocqurring in ﬁhe dual.
'decomposifion of isospin éymﬁetrié émplitudes‘(e.g.,.fér‘physiéal
photong):as'well as isospin antisymmetric amplitudes (where the ﬁsual
currenf‘aigébra fixed pole occurs). In particular it implies the
existenée’of wrohg-signature fixed poles in thé iSospin‘éymmetric
amplitudes at least at the‘special poinf qu = O. and q22 = t.l6

a For the remainder of this péper we assumg the absence of exotic

(1 >1) resonances. Then, by a trivial generalization of the results

of Chan and Paton,lo we must have the dual decomﬁositions,

v.,Ra) = T ¢ e LI C)
a 2 P(1) P(i-1)'2 P(i) P ,P
Z; T 0 7" e

and
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s
My (99595

1 o o . 1 ;
= jg:: 2 Tr[Tp(l)'“’TP(i-l)(E Ta)TP(i)”'TP(j—l)(é' Tb)TP(j)'_"TP(N)J

g/ | i%j,P

o ML;LL; P(ql’qQ)
- 1 |
LBy () B TG ) Te() e M p(00%)

]MV“

1 1
3 Irlr b)(§ a’Tp(1) T Te(w) M P(q2’ql)'

. (l
P(1) " TP(i-1)'2

1

(5.7)

We note that the absence of exotic resonances and Bose statistics for the
| g : VL

currents have been used to replace My (ql,qg) by M. (qg,ql). The

divergence conditions (3.5) on the two-current amplitudes now become

simply (see Fig. 7);

v R . . ] |
and
12 _ v
| (3.9)
v
! ll P(q2’ql)qlu = -Vi,P (ql + Q.g) 2

and similarly for - These hold exactly for qlu - 0 and to within

. . . 2 2
terms which vanish as qlu -0 for all qlu with 9, = 0 and 9y = t.
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Ir we further assume the Gell-Mann current algebraJ (3. 8)
and (3 9) hold for all ql and q; df course accordlng to the
bootstrap phllosophy, the bootstrap condltlons are belleved to determine
completely the current amplltudes and therefore the current algebra. v @
Slnce we are unable to fully implement these condltlons here we shall.
boften assume CVC and current algebra as addltlonal requlrements.

Several comments on the dlvergence condltlons for the two.current
amplitudes are in order.. Flrstly, there is no necessary contradlctlon
between current'algebra'andvduaiity; i.e., (3}8) and (3.9) do not .
requlre that any 1nvar1ant amplltude not satlsfy USDR.17.

Secondly, in order to dispel possible confusion, we should
remark on the‘relationShip.of our program to the theorems proving
that ph&sically acceptable SOlutions of current.algehra uithout.states
of'spaCelike momenta do not exist.18 of course, there is the possibility
that the solution'to the bootstrap conditions does not correspond to
any current algebra§l9vthere'is then obViously no contradiction with
the theorems. ‘Even if the currents do satisfy current algebra, it has
recently been shown that the theorems can be crrcumvented with a particle.
spectrum similar to that considered here either through the presence
of Schwinger terms in the time-time commutators or through the existence
of ghost states of negative norm.20 Both of these possibilities are
possibie in our model, in fact it is well known that the N-point beta ' —
function has ghosts.21

Finally, it should be noted that the presence of the fixed

poles required by (3.9) implies that certain sums must converge




nonuniformly: (a) Since the purely hadronic vector-meson amplitudes
do not (and cannot) have fixed power behavior as s; —®, the sum over

vector mesons [Fig. E(a)] must converge nonuniformly in . s; SO that

the limit'vs:.L — o« cannot be taken inside. (b) The sum rule for the

fixed pqle residue is of the form, assuming current algebra,

faos muts 65 0% 07 = a09%87 < F) . a0)
. T m
Since Rﬁ. is preportiohel‘to the prodﬁct'of ferm factors, ﬁe expect
it to'decrease rapidlysée qu — . Thus the sum (3.10) must converge
hoﬁuniformly in qig. These nonuniformities are exhibited by the
fuﬁdtions discﬁssed.in Sec. V.

We have seen that the divergence conditions (3 L) requlre the
ex1stence of flxed s1ngular1t1es in the t- channel angular momentum

plane of the two-current amplltude. However, we do not expect fixed

singularities in any other channel or in any other amplitude, if the

DRM does indeed correspond to infinitely composite particles as one

suspects. This expectation is based on the results of certain field
theory and potential theory model calculations.22’25' For example,
Rubenstein et al.® show that [see Fig. 8(a)], if particle ¥ 1is a
compoeite of fwo particies, the highest fixed pole possible in the
s channel is absent. If X is»a composite Qf more particles, lower
fixed poles are also absent. Similarly, we might expect fixed poles

in the s channel of the two-current amplitude to be absent, if the

hadron is composite [see Fig. 8(b)]. Thus there are two suggested ways
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in which the compositenees of the hadrons manifests itself in the
nonstrong 1nteract10ns. ‘(a) the absence of fixed poles except in the
two- current channel.and.(b) the rapld decrease of form factors (see
Ref. l and ‘the following subsectlon). The functlens dlscussed in
Secs. IV‘andeV illustrate the close eonhecfion between these two
features: = the faster the ferﬁ factors fali,vthe iower the extra fixed
poleséu-—in the 1imit of exponential form factors (Sec. V) only the
f-ehaﬁnei'fixed pele remains. | |

(iii) Large-q2 Behavior

Hefe we discuse'some.features of the behavior of curfentf
amplitudes'forblarge q2 whlch are uggested by theory (usually fleld
theery) énd expeiimént From the exp11c1t examples given in Sec. V, 1t
appears that the DRM is capable of 1ncorporat1ng all of them.u

Mandelstam has suggested that in a theery with infinitely
rising Regge‘trajectories form‘factors sﬁould fall faster thaﬁ any
power'é;s:q2 éam;l Further support:for “expeneetial" form fecfors comes
from Harte's bootsfrep model for infinitely composite particles.25 He
finds that form factors must behave like e*(ﬁq?)r, 0<y< é, to
withih powers of 'q2, in brder to satisfy his bootstrap equations.
Field theory models for composite particles also give rapidly decreasing
form fac£ors.26 We thus expect that in the DRM form factors should
fall faster than any power. The results of Secs. IV and V give some
support'to this belief.

The field theory models also make an interesting prediction

about the asymptotic spin dependence of form factors.26 They predict
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that the form factor falls faster the larger the spins J, and J,
of the particles involved, |

Jy+d -

177t 2

(1) (q) . (12) B, (3.11)

q

whereb iv 1ébels fhe various ambigﬁudeé'[see Eq. (5.15) for a precise
definitibn]. .In these calculgtions,‘ F(qe) has an‘asymptotic power
beha&ior fhét depénds on the spééific model. Rdﬁghly speaking, this

behaviof’can be understood as é manifestation of the behavior of the

bound-state wave function at the origin.

We now turn to the twq-current amplitudes. The Bjorken limit27
gives an interesting‘connectiOnAbetween the large q2k behavior and the
currenf commutation relations, if such exist. .Defiping q = %(ql - qg)
and Q = (ql‘+ dy) and taking the limit EN —>m"with 4, @, and

the hadronic momenta fixed, we have
S i i N

ab !qol-’m 90 2

-Lgf@ |17 40,5 D), 7,0, D1 e
q

+ ++- + polynomial in q, , , | (3.12)

where «a and B vrepresent hadronic states. We note that in this
limit that s; @ also whereas t = Q2 is fixed. Equation (3.12).
is very useful for determining what current commutation relations

amplitﬁdes correspond to. To avoid possible confusion about the’



applicatibhiof (%3.12), we nofe that;since _M”V, has.Regge behavibr
(si)a(t), iﬁ general one can only eipeétga to be able to cérry the
expaﬁsipn,(i.lQ) to as many terms as correspondffd fixed poles above
a(t). 'if an-attempt is made to carry it further;vthevremainder
term willvdivefge. Any given term can, of course, be obtained by
choosing“,f sufficiently negative, since «a(t) 'is infinitely falling
in our médei, (or, in'generél,.by subtracting out fhe divergence).
Récent éxperiments on deeply inelastic électron scattering have
generafgd much interest in the behavior of the two—currenf amplitude

with two hadrons in the limit q° — - with o= - SZ% . _ 20V

2 2
. . v 29,30 29 a . .
and t°(= 0) fixed. Experiment and theory 7’ suggest that typical.

invariaht amplitudes behave - like

M —=(-a) T r,t) . (3.13)
q > : C :

0,t fixed

: where.Ki is a small negative integer. 1In Reggé behaved‘models one

30

also expééts
. Oc(t)-ni L,
m £, (0,t) —=>0. . - (G

p—

It shoﬁld be.emphasized that so far experiment bnly suggests the
behaviors (3;15) and (3.14) for the diffractive (PQmeranchén) contribu-
tion With  aP(O) = l.h It could well bé, as conjectured by'Harari,h
that the contribution of the othefb(dual) trajectories vanishes very
rapidly as ' q2 — - and only the Pomeranchon has the.weak ‘q2

dependence (3.13). We remark that the amplitudes discussed in Sec. V
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have the above behaviors for all trajectories just as do the field
theory models.50
~-The behavior of fi(p,t) at threshold seems to be.related to

the asyﬁptotic behavior of thé elastic form factofs.' Drell and Yan51

have pointed out that, in their field theory model, if the elastic form

factor has the asymptotic powef behavior
2 2.r .
F(a7) ~—~~ ("), S (3.15a)
. qz_)w o ,
one has. the threshold behavior

I £(0,0) ~_ (o - 1)°2T1 - (3.15b)

p— 1
for a specific amplitude (VWE). The existence of relationshipé'of
this form is probably quite model independent. ' :

This concludes-our discussion of the propertiesvwe should like
vector cuffent amplitudes to satisfy. In the next two sections we
discuss dual resonance models which attempt té satisfy them. Although
there does_not yet exist a model having all the above propertiés, there

is no indication that any of them are inconsistent with the DRM.
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Iv. FACTORIZABLE‘MDDELS

In thls section ne dlscuss models whlch attempt to satisfy
(i) the factorlzatlon condltlons,vln partlcular, cons1stency w1th the
simple N-point beta function hadronic model described in Sec. II, and
(ii) the divergence conditions. The discussion is.a summary of the
work of Brower and Weis.B?’55

: As noted above,'a physically acceptable yector-meson dominated
conserved ‘current suggests the existeénce of at least one unlversally
coupled Vector meson., Fortunately, such vector mesons are in fact
present 1n the hadronlc spectrum 32 S there is one at each mass
ing =-m2 +1+4 (2 = 0,1,2, ) 35 Slnce the low~ly1ng tragectorlesv
in the DRM have. a large degeneracy,au these vector mesons are only a
small fractlon of the total but they play a partlcularly v1tal role
in models for currents.

'Applying vector—neson dominance for the universally coupled
mesons, we give belOW'onef'and,tno-current:amplitudes that (i) obey
' current algebra, (ii) factorize on the M highest trajectories, and
(iii) have form factors that fall like (qg)fM. On the other hand, if
only leading trajectory factorization is‘required, the current algebrab
condition can be satisfied for arbitrary form factors--see Appendix B
of Ref;”55. . We feel that these results give a godd indication of the
power of'factorization in determining the structure of currents and
suggest that in a full solution to the problem form factors will fall

E

'exponentially.
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Howevef, the limif. M ->w of theee amplitudes does;not lead to
a full soiution. 'Indeed, thevrequiremenﬁs of coﬁplete factorizatien
and USDR in ’qg for the eingle curfent amplitudes do imply exponential
form_factors; but the two-current amplitudes constructed from the single-
cufrenf amplitudes using completevquadratic factorizatien are found to
possess unphysical singu}arities whieh ﬁiolate_linear factorization.
Therefere full factorization cannot be obtained if‘only the.universally
coupledvveeter mesone are included; approximate solutions are the most
that can ee obtained with this restriction. However, a comblefely
factorizabie solution may be obtainabie if seme or all of the other
vectorvmesons are included The major difficulty w1th this lies in the
tremendous number of ex1st1ng parameters, 'fn,A whlch are apparently
quite arbltrary if only single-current amplltudes are considered, but
are in fact severely.constralned in a nonobvious manner by the connection
of these amplitudes to the two—current amplltudes through quadratic
factorizatioﬁ. |

'Before_delving info the details of this model, we make a
general comment on the method used to obtain conserved currents.
Consider the amplitude coupling a current to N spinless particles of
lowest-ﬁass (fscalars"). Current conservation (3.1) is equivalent
to the statement that the divergence of the current does not couple

"M oy identically

to N scalars, i.e., it is either a "spurious state
zero. The problem of finding conserved currents is thus closely
related to the problem of finding spurious states. For example, in

our model this amplitude is given by (see Fig. 9),
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W) = F@)0](Vaag ) + a)lp) G
with - |
p) = v(py) DR,sy) V(py)eeV(py_,)10)

where we have used the operatof notation of Fubini, Gordon, aﬁd
Véﬁézianoc36 The form factor ’F(qg) gives poles at o+ 1+ 4 and
the residues are proportional to amplitudes for universally coupled

vector mesons. The divergence of v is proportional to

(Ol (V2a-agy +a°) = (0lsa) = (o

which is‘ﬁhe first spurious state geherated by the épuridus state
0perator;j7v_s(q), and thus by definition does not couple to the
N-scalar state lp), i-e., (Oslp> = O.

In order to exhibit the absence of spurious intermediate
states, lxs), in (4.1) we should replace V(p) by V(p) which has

no couplings to spurious states
T = V)a) = o . | (k.2)

This has no effect in the all scalar amplitude (4.1) but is necessary
-tO'asspre that the current has a conserved coupling to an arbitrary

excited state [A)s

0, [P (Va o) + ) T[] = o . %) ;
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One observes from (4.2) and (4.3) thét thefe is‘a‘one-to;one correspon-.
dence between current cOnservatiqn andbthe‘elimination of spurious
intefmediaﬁe states. Roughiy~sﬁeaking this is because the divergence
-has_its_cbﬁpling proportibnal to a spurious state and thus can_only

39

couple'to other spurious states. If such states are eliminated, so
is the_divergenceQ
In the.partially factorizabie‘current-algebra parametérization,

A

we use a modified vertex, VM’ obtained by terminating the expansion

for V after M terms,

i - ( _) <<k)-m> Ck+p>-m>

(b.h)

and the specific form factor,

M-1

‘ » 2 -1 2 | o A
ENCON /lT Rt D I o C oS Y
; :  4=0 m f l,+ £ o 2=0
—~~ (qg)-M . | (4.5)

q — o
The amplitude for a single current, N - 1 scalars, and one excited

state is thenhl

H _ 2 B Hy & ;
v.F(a) = Fy(a®) (0] (V2 a1y + @) Vy(py) D(R,sq) Vlpy)-o-vlpy )00
(4.6)
It is conserved for states A\ 1lying on trajectories displaced less

than M units below the leading one and also factorizes for such
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intermediate states but not for. lower trajectories. For future use we
note that the coupling of the current to a scalar and an excited state

on -a trajectory k units below the leading one in general behaves like

R (@) (@) s (@) ()

q - &

This behavior is cleéfly quite different from the field theory suggestion

(3.11) in that the asymptotic behavior depends on the trajectory a
particle lies on and not its spin{ ‘In general it appears very diffi-
cult to obtain behavior like (B;ii) when form factors are introduced

in the multiplicative way (%.6). Such simple multiplicative form

factors ére also responsible for bad large-q2 behavior of the two-current

amplitudes.

WegnOW'discuss thé‘two¥currént émplitﬁdes. Amplitudés'for two
nonadjadent universal-vectbr mesons a?é automaticélly conserved32 and
thus amplitudes satisfying (3.8) are constructed by just multiplying
by the fbrm féctoré as‘in (ﬁQl). Thus the nonadjacent terms need not
be considered further. Amplitudes for adjacent currents satisfying
(3.9) are éonstructed by a generalization of the work of Brower and
Halpefn.ho We write

MV (ay,9,) = M (a,9,) Mg (ag5ay) M (e 09,) (4.8)
where MH“VV and MM are purely Regge behaved, MHHV contain; all

c

the vector-meson poles and M Ky

C

divergence. The exact current algebra divergence comes from pruv

cancels its unwanted Regge behaved

which has fixed singularities in Jt;



vThe "hadronic aﬁplitude“, MH“V, is constructed us1ng V
-‘ HV- 'f' . _A» 2 mff:i v o Vigrfon . ..;
My(a,95) = Ryl Yol(¥2 a7 + ay")V(py) D(R,s,)

“‘D.(R"’Sﬁ;ﬁ Ty(e) (V2 o) + 91007 0,)

m + 1 ~--(m + M), M Y 1 p‘ M . M+l
+ L " ) )M_ < (l) W(l) + 2g V(u + Mu )>N+2 » |
y - | (1.9)
where :
éL(l) = 9" +2mY + Zpyuy o+ lpy (wy ey 1) ’
9

. the ui .are the usual intggration variables

[u = (ulug' * 'uN_l)]’

and the bracketts ({ )R) represent an integral,.”'Jr du Iﬁ, over ‘the

usual integrand for the R-point function.9 This term factorizes
(without spurious states) on trajectories displaced by less than M

~

units below the leading one, since VM assures this for the first term
and the second term contributes only to lower trajectories due to the
.factorr uM;

The other two terms are given by

My,

=
|_v

fz(m + 1 +z)

Olt-

’V + (q2 +2q1 )u][‘?/(l) + (q," + 29, )u]

1

4 )
i
O

X (1 - u)[’>N+2 (k.10)

and
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o Ll e m® +1+2)
WWia,,a,) = R
Mpp (9759 G -1 -7

£=0 t

X <[’2/(1)V + (q, + 2q) >uu”/ v ()Y + 20 (2 - w)

v F(t) g“V<l>N+l ,

where the vfz are determined by (h}5). The divergences have the

properties described above, since

qlu‘Mﬁ“V(ql,qg} = -ap, MM (a5a,)
', igg + l)-u(m2 + M) ( M ﬁbf v Vo vy MHL
i HCEEE A gy (e ?ql ) >N+2 ’
and
qlu'MFPg?(ql’qE) - F(t)(ﬁDfl)V(ql tay)y,y = Ve +ay).

The sum M HY 4 MFPMV has poles in Ss determined by

M-l (m + 1+ 2) -1

ﬂ .
B R e S R

4=

e}

which due to (4.5) is proportional to uM and so contfibutes only to

trajectories displaced by at least M units. iherefore, since linear
factorization is always trivially satisfied, the two-current amplitude
factoriéés oﬁ all trajectories dispiaced less than M units below the

leading one as asserted.
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We have seen the Mbu?v+ MFPHV contributes.only toitrajectories
displaced by at least M‘ uﬁiﬁs-;this contributioh’is nonfactorizable.
Furthermbre, since fhis piece has no poleé in q2, it correspdndsvto
subtractibns ih q2 diépersion relations contrary to éur requiremeﬁts.
This fact ‘along with (4.7) means tﬂat the cﬁfrent algebra sum rule (3.10)

is Saﬁisfied uniformly in q2 and is saturated for large q2 by the

loWQiying nonfactorized poleé. This unphysical feature [see Sec. III

(ii)] gives a hint of the source of the failure of this parameterization
as M -w. In fact in this limit M,

si. Since it is Regge Behaﬁed for S5 — - and nonzero, it must have

HY +‘MFP“V would have no poles in

nonpower behavior for s, = oo
Let us point out several other features of the amplitudes (4.9)

to (k.11). First, the only fixed power behavior in addition to that
_ . S

. associated with the current algebra fixed pole is t as t —w

and comeé_f?om Mff“v. The faster the form factor'falis the lower this
power beha.vior.zl‘L Secondly, these amplitudés,barticularly the nonadja-
cent cﬁrrént térms,'havé very bad behavior for deeply inelastic electron
scattering as one can readily verify (see Ref. 46 below). As noted above,
this can be traced to the simple multiplicative nature of the form |
factors;

We-believe‘that more general parameterizations with the M
highest trajectorieS‘faétdrizing can be constructed with only the condi-
tion that F(qg) decrease at least as rapidly as (qg)-M.' This connec-
tion between the asymptotic behavior of form féctors and factorization is
very suggestive--but only suggestive, due to the ndnexistence proof

mentioned above which we now discuss.

;
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A likely candidate for the completely factorized single-current
amplitude is
Heg) = e > B gy § D(R.s. )% b
vMa) = ) ol(v2 (1) *¢ ) V(py) D(R,sy) = V(py_y)]0) SOR

~

since V eliminates spurious states and makes. V}\u -exactly conserved.
Indeed, assuming unsubtracted dispersion relationé in q2 and requiring

. S . v 5 5
the absence of spurious states !xs> on-mass-shell (pk =m + J)

2
[or, alternatively, current conservation on-mass-shell (p}\2 =m + J)]
we find (4.12) is the required amplitude provided F(qg) falls faster
than any power, i.e., '
o

2 n ... N
: fz(m +1+2) =0, n =1,2,3%, . (k.13)
=0 ‘ : -
Some examples of form factors satisfying (4.13) are given in Appendix A.

The two current amplitudes are determined from (4.12) through

quadratic factorization and USDR. It should not be surprising that the

result is [compare with (4.9)],

WV(ay,a,) = Fla%) BV(a ,a,) Fla,)) (4.14)

where

guv(ql’qz) = '<O|(}V§-a(1)v‘+ qzv)G(Pl)D'--G(pN)(ﬁfg-a(l)“++ a;,")10).

The structure of this amplitude is most easily studied using
its integral representation which is readily obtained using the explicit

form for A.38 We find




Flapey) = By, o a)

7 v %, ' ﬁ ) ' : 4 i , .5
i {(@{l) ¥ ok Bu')(%l)“‘“ T )

2 ( 2
m + 1 - 9 -m- o+ 1 - 9

i
+ 2u gHV} EFl(mE +1 - qlg,img +1 - q22; e + 13 u')lu,=u

~ We examine the singularities in the two-current (t) channel.
They arise from divergences_of ﬁhe integrand as u -1 [i.e.,

-a, -1

Iy a (L - u)

behavior

] whereAthefhypergebmetric function has the
| ,
N
- | |
. ' o) 2 - o
2Fl(m2 +1l-q ,m +1- q22; m o+ 13 u) :

o 2 2
r(m™ + 1) I_‘(ql2 +9q, - mo- 1)

r(e,”) r(a,”)

2 2 2 . 2 2 2 2
X oF(m +1 - Q@ om +l-gy3m +2-9° -q, ;31 - u)

2 2 D 2 o 2 2
q; "+, fm -1 r(m” +1) r(m” + 1 - 9" - 9 )

+ (1 -u) 5

)

2 2 2
Pm™ +1-99)(m +1-aq,

2

2 2, .2 2 _
X oFe7,9,75 90" #¢," - m 31-w) . | (k.16)

The first term yields the usual poles on the trajectory ay and its

'daughters. The second term, however, gives poles at
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(94 - 2.
t - 94

are clearly unphysical since their positions depend on the current
"masses" qig. The presence of these anomalous singularities in place

of the desired fixed pole can be undefétood, if we notice that our

amplitude (4.14) has vanishing divergence, 9, B = 0. As we argued

in Sec. iII, the absence of an unphysical J = l’ intermediate state at
t = q22 'implies a nonvanishing divergence MY 5vY for (O

Rt hy 7

which, when combined with quadratic factorization, implies a fixed pole.
Our anomaléus singularity violates the conditions of this theorem by
providiﬁé just such an unphysicél étate.ug

The origin of the vanishing divergence of our M"Y can Be ééen
clearly in (4.12). While, if the invariant amplitudes are evaluated

on-mass-shell at 83 =‘m2 + J, the infinite series for v vterminates

2

-2 R
NN ), holds, it is clear

and the basic equation, q, qu(q) oc (p
 that (4.12) as it stands represents a certain off-shell continuation
which is divergenceless everywhere. Since in our case the two-current

amplitude can be rewritten in terms of this off-shell continuation,

D IR AR R
AN
it is obvious that MY has vanishing divergence. We note that fhis
off-gshell continuation is never needed in our derivation of MFV, since
it obeys USDR in S: 5 but unhappily it provides an equivalent formula-
tion. This appears to be the origin of the difficulty with the

universally coupled vector meson approximation.

.- q22 + m2 +1 = 2ql‘ qQ, +1 = 0,1,2,-++. BSuch singularities
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V. PHENOMENOLOGICA# MODELS
fhe‘ferm df dual resenehee;demihetedkamplitudes for cufrents is

ceftainly‘extremely nonunique if factorization and consistency with the
hadronic empiitudes are notvrequired. Nevertheless, if may be useful to
femporéfily Seﬁ aside these fequirements and-study thevgeneral-structure
of dual‘feeenance dominated functions heving goodviafge-qg behavior and;
if pdééible, eéfiefying the reqﬁiremehﬁs of cufrent‘eonsefvatien and
'current.algebra; Perhaps the most imbortant outcome of such a study
could be an improved uﬁderstanding of.the iole of hiéh mass vector
mesoﬁs whieh could then help solve the factorization problem, but.such
functions.afe alsojinterestiﬁgAand usefui from a sﬁrictly phenomenologi—
cal point of view.

"A number of such phenoﬁenologicai functions have- previously

43-48

,been proposed by various authors. We feel that their chief virtue

is better 1arge-q2 behavior than the functions discussed in the

Lh3-_46,48

precediﬁé section, since ih most cases current conservation and
current elgebra have been enforced in a very ad hoc manner if at all
and their factorization ﬁroperties are very bad. These functions will
be discussed further at the end of the section.

A1l the above functiené have power behaved form factors whereas
ﬁe have already remarked several times that one exﬁects exponentially
decreasing form factors in models with linear trajectories. Here we
propoee e new class of functions ﬁhiéh have such'exponential form

factors. It is very intriguing that these functions also exhibit all

the properties suggested by field theory discussed in Sec. III (iii).
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We therefore believe that they are particularly interesting functions
aithough no attempt is made to satisfy the divérgence conditions.

In order to motivate our pfoposal for‘cufrent amplitudes we

recall the basic features of the N-point beta fuhction9v
1 1
ces -1
B(py,**,p,) = oo dgldue duNlé u_?iJ (5.1)
1’ i\ N ' J(ui) v ij ?
0 /0 0 _ ij

where aij = (pi + pi+l + e + pj)2 - m2 and J 1is an appropriate
Jacobian factor depending on the choice of the N - 3 1independent - uy
from the full set of EXEE:—ll dependent ﬁij' The u;y are con-
strained so that, if . Uy -1, the ui;j, for at least one oveflapping
trajectory must vanish. Thus the behavior for ai. — -, which is
determined by the behavior for U 5 ~ 1, depends upon the Qi 50 for
some overlapping trajectory,
' » aile
B 7~ v’ (a,.)

- 3
aij—a 0 ij

i.e., Regge behavior.

These functions can be modified to yield functions appropriate
for currents by introducing two ficticious "lepton'" lines for each
current (éee Fig. 10). There are then a number of ficticious trajec-~

tories corresponding to one lepton line and several hadron lines

(¥,%',8, etc. in Fig. 10) that have no physical meaning. The ficticious

trajectories were taken to be -1 in Refs. L4 and 47 and the expression
(5.1) itself was used. As discussed above we expect terms in the

asymptotic behavior of a given variable corresponding to the various
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ovérlapping ”trajectories,” thus,.if the ficticious trajectories: are
set equal to constanfs, we!obtain‘fixed powers as well as Regge powers

o ‘ a
in the energy variables, e.g., ¥ a23s’ etc. as well as « 2>

%2 as Yo7
a:§2, fprrthe amplitude of Fig. 10. Further we gee that the form
faétérs'are’power behaved;:since as q2 . havé (o 2)x, (x 2)x',
ete.  We ﬁéte that the powef behévior 6f fhé‘form factorsqis correlated
with thé pfesehcevéf fixed ﬁoﬁers’invthe subeneréies juét és is suggested
by field‘théory [sée Sec. TIII (ii)];<in facf‘one can verify that the

connection is between precisely the same form factors and subenergies

as is the case in field théory (i.e.,rfixed poles are absent in channels
consiéting of a current and a hadron with an exponential form factor--
see, e.g., Fig. 8).

- In general the factors in (5.1) corresponding to ficticious
o -0, -1
trajectories, wu,. J
: o 1J
g(uij). - The asymptotic behavior of form factors and high energy behavior

, can be replaced by an arbitrary fuhction;

are determined by the behavior of g(uij) as - uij — 0. Exponential
form factors obtain g(uij) vanishes faster than any power, for
example,
' 1
glu,,) ~ exp {- ——=1}|, ©P>o.
1J (u )P

‘ |
To obtéin.form factors that satisfy USDR we must further réstrict P
to 0<P<1 (see Appendix A). This behavior will also guarantee -
the absence of the undesired fixed poles. We can rigorously prove the
existence of only the desired Regge powers for subenérgies approaching

infinity in their left-half plane (Re aij < 0). The behavior in the
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right-halfinlane (Re oL, j > O) is much more difflcult fo determine
as it 1nvolves the analytlc contlnuatlon of (5 l) through contour
deformat1ons, we conJecture that the same Regge behavior obtains at
least for P <.l.h9 |

In'the case of amnlitudes involying several currents there is
anotherﬁtype of variable ﬁij rwherev i and bj correspond to the
lepton llnes of two dlfferent currents.?o If the currents‘are nonadja—
cent we make the same replacement as above; If they are'adjacent we use

h(ulJ) 3'\256 u-k_l ‘where k is an integer and i and J correspond
- )

to adjacent ”lepton" lines of the two dlfferent currents. These
replacements thus give amplitudes with exponential form factors and
fixed poles only in the two-curfent (t) channel,

We now 1nvest1gate the propertles of such amplltudes in more
detall by studylng somevs1mple examples. Actually, we shall use a
somewhat different prescrlptlon from the above 1n order to obtain simpler
funcnlons. For each current, we take all uij_ in the set S corres-
ponding to one of its "lepton" lines.and any nonzero number of adjacent
hadron momenta or any nonzero number of adjacent hadron momenta and a
single lepton line of another (necessarily nonadjacenf) current and

insert a factor
expl- 1/@r; )71,  o<P<1 - (5.2)
S

in (5.1). For variables corresponding to adjacent "lepton" lines of
adjacent currents we simply set aij -k, an integer. One can readily

convince himself that this gives a behavior of the integrand for



-35-

1d

u,. »0 .similar to the above yielding the same general properties
for the amplitudes.

- Let us study as an‘example a typical invariant amplitude for

two adjaceht_currents and two hadrons,

M = duldu2 ul (1 - ul) 
- o , A
-1 " : -B+7HO, -3+,
X u, 2 (1 - ug) r-1 (1 - uul) t (1 - uu ) t
o —k+2$-o¢t ‘ 1-uy u, l - uulu2 P
k- g, ew -\ 75— ) | |- —f-—ag— ’
‘ o0<P<1, (5.3)

which”reduces to the -amplitude (5.1) shown in Fig. 11 for P = 0. 1In
(5.3), o, = qu -t - 1, and 7, 8, k are arbitrary negative parameters.
The elastic form factor obtained from the residue of the pole at - as =0

is clearly exponential (see also Appendix A),51

1
,F(qg) = du u-a-l(l - u)—Y;l exp - 1

P
o (1 - )
' Y=lP

- 1 f Pgi T ( >P+l oo | -2 + 1) (_—)Pﬂ (5..)+) .

One may readily verify that the only fixed power high energy

behavior is (as)k-n (n = 0,1,2,-+-), at least for aé’at - =, a8

discussed above. This is most conveniently done using the "Veneziano -
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52

transform,"” " a Mellin-like transform particularly suited to functions

of the form (5.1) and (5.3). We write

. : -c+iw , .
Lo 1 ~ ) )
Alag,x) = Fx do A(o,x) B(-0,a ) , (0 <e<1)
) : -€~io .
R <=M+l
i~ 1 .
A(o,x) = F= do  A(ag,x) B(o + 1, a  +1),

=N-ie v .
R (0 <n<1)

where x“ represents all the other variables in A. If A has the
form
o 1 1
 :{A(O%,x) = du u (:? OJ,X)V,
o _ 0 |

then"
1

_ §(0,x)< = Cdu(l - u)ccz(u;x)‘; ; (5.5)
, 0 :

In our case, A ‘will generally be given by a sum of poles

N ri(x) :

Hom = ) v=e
aﬁd‘thué

Kagm) = Y () Bleo(x), ]

i

| 0 (%)
G TLe(] o) (o) T, (5-6)
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where 06 is the pole furthest to the right. 'The advantage of this

method is. that it is rather easy to flnd the poles in (5 5)
We thus find for (5 3) the Regge powers («1 ) and
‘(-at) as. ag,at - -o. and in addltlon the leadlng fixed power

behavior .

a - =00

M /"\/(-a) P(k)[ fd.xdxxYl(l- )'5+kl

e : -0, +28-k
-1=1 . -0+k-1 . t. ’
x‘ Xe '(l - xl)b (l - Xlxg)_
o P ] - - P
Bt ] o [ 1 xlxe]
RA -] T TR
1 . ' -
d.X dx R (Xl)X23 t) = (-OC ) R (t) ‘) ] (57)
5 . .

corfespohding fo é fixed pole in thé fwo-current channelf The residue
Of'thié fixed pole is not equal to the elastic form factor (5.4) as is
the case in current aglebra although it is independent of ql2 and
q22 .and exponentially behayed as Qg - -o. The absence of poles in
qi2 is a manifestation of the fact that the single current amplitudes
obtained‘by taking the residue of a pole in Q. or 0 of (5.3) are
consistént with the prescription (5.2) and indeed have‘no fixed poles.
Since it appears that (5.3)'can‘be written entirely in terms of its

poles in ai’ this means that the sum over vector mesons converges

nonuniformly as discussed in Sec. III.55 Aiso, if there is indeed
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power behaviof for Qg - +w, the sum rule for the fixed pole (5.7)
converges nonuniformly in 'qg ~as discussed in Sec. III.)j

We_how discuss the behavior of (5.3) for deeply inelastic
q 2 =q 2 = qg-—)—m, p = - S =1 fixed and
1 2 2q2

t fixed. Since aé = q2(l -p) - % ~ qg(l - o) becomes infinite in

electron scattering:

this limif, formally this corresponds to a Begge-like limitu6 in the
leftmost link of é "multiperipheral’ diagram like Fig. 11 when the

"leptons" of the second current are taken as the‘inéoming lines.. The
corresﬁbnding "momentum transfer" trajectory is k . so we expect a
behavior' (qg)k. as given in (3.13). 1Indeed the asymptotic 1limit gs

easily calculated by chéngihg variables to those appropriate to this

"multiperipheral” configuration,

v . f
_ e -, -1 T S
-y-1 % :
X vv;’. (1 - v5) (L-vv) & a- vavs) t
-0l 40L_+5=T 1-vv NP : P
2 s 12 1
X G- o [ -(22) Jem|- () |

L 1 .1
S (-g0)F | ax,ax 0 - % § ;
o) -q ) 170 ‘(i _ xl)(l _ xg) - p] Rk(xl’XZ, t) ’
0] 0 :

Q"> -
p fixed (5.8)

1 1 o -1 '

-k-1 1T <%-1 -r-1
| //'dvldvngB vy (1 - vl) v, .(l - VE)
0 0 '

where a - further change of variables has been made to obtain the final
expression. We note that the Bjorken limit (3.12) corresponds to

o —» 0 and that in this limit there is near identity of (5.8) to the
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flxed pole in t (5 7) in'general we see fhatvthe assignmént of the
power k ‘to the channel contalnlng one lepton from each of two adjacent
yqurrents is. the mechanism which produces both the desired fixed poles
and the good électrépfoduction‘limit (5.8); there is thus a strong
correlatlon between these two behav1ors in thls model

| Asbnoted above oﬁr preécrlétlon ylelds amplltudes for nonadga—
cent currents w1th no flxed poles. They also vanlsh exponentially in
the q2 — =0 electroproductlon llmlt. Thus in our model the only
nbﬁtfivial scaling coﬁtributioﬁ éomes from the adjécent current terms.
We see that both the adjacent and'nonadjacent terms exhibit a close
connéctibn between asymptotic power’ﬁehé?iof and the eiectroproduction
Limit.O |

Let us examine the behavior of (5.8) in more detail in the case

k = -1. This choice would be approprigfe for the amplitude M. which

1

contains the current algebra fixed pole and gives the dominant
v . 5

contribution in electroproduction experiments (Wé =2 Im Mi).
' b ¢

55
. . . - 2,-1
The scaling function, i.e., the coefficient of (-q7) ~, becomes,

after some changes of variables,

o - 3 g e @) T )T
0, T2 o - W
' 1 -(w-1)
B palor 0 -5+
x w4+ v+ 1 . t (fﬁj- v + lj) ¢ w41t+28+l
2 - 2

. P ' P
- 2 2
exp {—(:W_:;g_:—i~ exp - ﬁf:f%‘:‘i:) } . (5.9)
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This expression exhibits clearly the physical cut in p for 1 <p < w,

This cut 1s, of course, only an asymptotlc approx1mat10n since

itself has only poles and no cuts. For large p we obtain the

conjectured behavior (3.14), since then large w dominates in (5.9)

and we obtain
[0

Im f(p,t) /p’;\;” o)

t'n

x o[- 5 | e[ (&

Re £(p,t) 3z (-0)" By (5) .

_ The threshold behavior of f(p,t) 152t
1

U 27-1 : 2y-71-1
() 737 [ - 1] az(1 - 2°)7"
| L .

- Z

IR

X xp[ (== z3> S (EEEe z>)
o e oG

- _ 5
S P(P + 15[5(9

)

(5.10)

(5.11)

Comparing (5.11) and (5.4) for P = 0 we see that the relationship of

Drell and Yan o (3.15) is exactly satisfied. For exponential form

factors the two behaviors are related through the parameter

P:
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5 . . o _a(_qg)P“f‘l
F(a7) o~ e /
(5.12)
e P
. 7 -1
Im f(p,t.). {_:{ e

‘LFinallyawe discuss the spin dependence of the‘asymptotic
behavior of form factqrs‘[see'(j.ll)]. Form factors for one scalar
particls ahd ons parficle with arbitrary spin can bévextracted from
(5 3) by taklng the re51dues at poles ag = N."However,'ws wouid like
to dlscuss the general case of form factors for two resonances of .
arbltrary spin. These form factors can be obtained by con31der1ng,for

example, the amplltude for one current and four scalars (Fig. 12),

REREPS | n |
I B -5-1 -a— 0 -r-1
M = du u (1 - [ f duldu2 ul (1 ul)

- J0 o ' '

_ e -, +TH -Q
‘)( u, (1 u2) -1 (1 - uul) 2k (1 - uu2) 13
( P
L o+, 0L, =O 1 - uyu )
23 713 2L
X @ -, eXP A~ Q[T - uul)(l ST

| | (5.13)
When (5.13) is factorized at poles Qs = Nl’ aéu = N2 the overlapping
energy'variables correspond to

S5 St St S a7 €

aeu e ] €l . q’

Q.. @ q €

13 2’
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where ei. are the polarization vectors of the resonances. Thus a

particle of spin J

1

requires Jl factors of €, in the residue

and thus :Jl vpowers of « or a2h' Furfher one finds that there

23

are extra powers of the integration variables assoclated with these

aij’ thus (5.13) always contains the combinations

q25uulg2; Q) 0l 5 alBuugA . : (5.14)

Note that the powers of 'u, and u, in (5.14) assure that a particles
of spin* Ji only occurs if the appropriate « 1is greater than Ji.
The factors of u are very intérestiﬁg because they cause the corre-

sponding form factors to fall more rapidly for .[qglv—am. Thus one

easlly sees that if the form factor is expanded as (see Amati, et al.,

Ref. 26)
mln(Jl)Jg) ’
, o . (1) (i),.2
o - T F7(a7) ,(5.15)
p,-oop, ;V vy ] u..-“ ;V ceey JJ
1 I Is T 1 g1 J, “1°2 ‘ .
where
(1) :
T . = g g ceeg q <eeq q ceeq
HyootHg sVyeeevy HiVy HoVo Hivi Hip My Via L S
1 2 1 z
then
~1 : _——L
. =8=1+(J,+J,-1) P
i 2 -0~-1 172 1l-u
D% - | awa e - ) e ) 2y L (5.16)
1v2
0

For P = 0 and power behaved form factors, (5.16) yields
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(J1+J2 1) o

(l) (q ) N (qg) ) S o (5.17)

F(q

which is precisely the result of Amati et al., 26 (5.11) simplified to

scalaf currents. For expoﬁential form factors the spin dependence of

(5.17) is weakened by a fraction (:P i lj) as one éees from (5.4).

| The preceding discussion has shown that functions of the form
proposediabove (fhose of Refs. hh 47 are spec1al cases of these) have
tﬁé»l&rgé-qg behavior éxpected on the basis of other theoreticai
considérations.56 We have not attempted‘to satisfy the divergence
cohditibn# for:consefved currehts.or current algebra. In‘Refs. hf, 46,
and 48 this waé aﬁtempted, 5ut the methods do ﬁot éeém to give much
promise of 1eading to a complete soiuﬁionAfor general cﬁrrent'amplitﬁdes.
We note however that the "hybrid" amplitudes given in Ref. 16 do satisfy
CVC and current élgebra and have ail the good ié.rge-q2 behaviors
diécusséd'here for a power-behavéd forﬁ factor o
F(qg) =’[l - qg/(rh2 + l)]_l; Fréedman47 has combiﬁed the divergence
idéntity teéhniques used in'Sec. IV with amplitudes of the form proposed
in Refs. hh and 45 to obtain an elegant model for current algebra with
one vector current and one scala? current. In Appendix B we present a
generalization of this model to exponential form factors. However,
only the scalar current has nonfri#ial structure like that discussed in
this section; the vector current haé trivial multiplicative form factors
_like those considered in Sec. IV and therefore bad large-qg_behavior.‘
Therefére; as yet the vector naturé of the current has not been
: succeszully combined with a current struéture sufficiently complicatéd

to give good large-q2 behavior.
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We have also not attempted to satisfy the factorization condi-
tidﬁs (Figs. 1 and 2) for these amplitudes. Tt can easgily be séen
that the contribution bf the leading trajectofieSvih models of the type
suggéstea hére is factorizable (i.e., nondegéneréte) for the same
reason as for the N-point beta function (5.i).57 However, as discﬁgsed
by Freedmahu7 for the case of power behaved form faétofs, the lower
trajectofies’will-haQe'a much greater degeneracy thén (5.1). This in
itself would'not be a fatal flaw because there exists the possibility
of modifyihg the hadronic amplitudes, since these are not yet firmly
established. However, the spectrum of such current amplitudes is
internally inconsistent: it is differéﬁt in different channels.u7

Even leaving aside the problem of factorization, we believe
furthef development of models‘of the form propoégdvhere would be very
uéeful. it could give important suggestions on the role of.high mass
vectof mesons in giving good largé-q2 behavior and satisfying the

divergehcé conditions. Furthermore, functions of this form could be

useful for phenomenological applicationé.
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VI. CONCLUSION

Although there are a very large number of phys1cal properties
that dual resonance amplltudes for vector currents should satlsfy,
we feel“that the partial sucbeéses discusSed above give a good deal
of hope for the dlscovery of a full solution to the problem. The two
dlfferent partlal approaches to the problem discussed in Secs. IV and
V'both point up the.important role that must be played by the high mass
' vector meeons. The rast number of vector mesons exiéting in the bRM
ie at onee‘e source of optimiém; since the greet freedom it allows mep.
be e,crncial fector in being able-to obtain avsolntion, and a source
, of‘diffieulty, due to the great complexity it.introduces. Clearly some
.guide to selecting the appropriate currentiis needed; We‘mention two
approaches that may yleld this guide. o

First, one could attempt to formulate the problem in a more
algebraic. manner°35‘ The fundamental object in a zero-width model for
.currents“ie the vertex for a current and two arbitrary resonances. The
current algebra_divergence conditions have a natural algebraic expres-
sion in terms of this vertex, but, at the present, the conditions that
duality imposes are not well-understood° Generally, one would like
to be able to see directly how the singularities in dual channels
(e.g;, s; and t) are related. This would help circumvent diffi-
culties like-fhose.encountered5in Reff 33 (see Sec. IV) where ak
solution of factorization in one chammel (si) was found to give
unfactorizable singularities in the dual channel (t). We anticipate

that a deeper understanding of duality will allow a concise vertex
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formulatioﬁ of tﬁe conditions on curréﬂté and ﬁhué,give insight into
their veétor—meson structure. | |

A second approach 1s to temporarlly 1gnore the factorization
constralnts ‘and explore 1n more detall dual models having good large-q
.behaV1or such as those dlscussed in Sec. V. If a model with these
propertles could be ‘found which also satlsfled the dlvergence conditions
and factorlzes on Just the leading tragectorles, much could probably

be learned about the role of the hlgh mass vector mesons. -
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APPENDIX A. EXPONENTIAL FORM _‘:FAC‘,‘TVORS
Invfhis appendix we give some simplevekémples of narrow-
resonanée-ddminated fof@'factors which satisfy dispérsion relations
and decrease féster:fhah any‘pdwer for: 1q21 ~®, e.8., "exponential"
form factors.
 Form faéfors”with these properties can éasily be constructed

from elementary functions.  For example, consider the class of

funcﬁionsb:., o
o2 2 , '
F (@) = 6 (@7)/c () , . (n>2 and even)
oY n n
where
o ) 1 \
6.(07) = T (A.1)
n" S
' §n-l Tt 2rik\n
/L‘/‘cos §(oc e )
Lo 5
and
o = qg,- m2 -1 .

One canégsily vefify that the only singularities of Fn(qg) are.
,simﬁle ?Oies at positive integralvvalues'of o} [thé apparent cuts’are
absent siﬁce the product is invariént undef a —>ae2ﬂi}, that.it
decreéses exponentially |

1
R (a%) £ empl-a(-a")"]

q - ‘
and that it satisfies an USDR. We note if we were to take n =2,

2 - 1 :
Gp(@7) = ————x ,
COs 5 [0




(A.2) is

=k9-

Fgﬁqg) wquid not sgtisfy_UéDR since it does gqﬁ_decreasg for
Re.q2 — 4w, Im q2 fixedf

| It is very‘convenieﬁﬁ to represent form faétors by an integral
representétion.of the form.considered in Sec. V,

o 1
F(a®) = | avu

-0-1
u -

fla) . IR (4.2)

The poles in qg are then determined by the béhavior of f(u) mnear
u = 0. whereas thé,asymptotic behavior for q‘2 in the left-half plane
is determined by the behavior of f(u) near u = 1. We remark that

(A.2) can easily be:qasf in the form of a Laplace transform
‘w

B = [oa ™ EE (.3)

where F(z) = £(e™?). This expression may be useful for studying the

conditions on f(u) necessary to assure a given behavior of F(qEL
since the known properties of Laplace transforms can be used.

A simple example of an exponential form factor in the form

1

T \P
-a-1 (;—u)

Fng) du u

. | - (A.4)

One finds using standard techniques



F(q) N _ﬁ_:_ﬂ)

Iq |-%oo

[ "-ﬁ%ﬁﬁlj P
. . i \2(P+1 : : -17™N\P+1l -
e-lﬁCﬂ(G___eP ) exp|- (P + 1)(056P )

X { S oo e-imx :

i
- e

' §P+2)
1~ 2(P+L lﬂ P+l
11(05 (cxe ) exp (P + l)(

-1na

Therefore, for Ol< P <1, vF(qg) is‘exponentially falling ‘in the
whole complex q plane and satlsfles USDR.
Exponentlal form factors satlsfy an 1nf1n1te set of super-

,convergence relatlons. If

o [o o)
. ) f :
Pa®) = ) 5
S z=o"1'--7?;3—4—4~
m +1 %+ £
then
w .
2 N
Y ol e+t -0, w=1,83,. . (4.5)
4=0

These relations are easily proved by noting that (q2)N F(qg) also
satisfies an unsubtracted dispersion relation. The great wealth of
such form factors is illustrated by the theorem of Atkinson and

Halpern:58

Given one exponential form factof, e.g., a solution to
(A.5), an infinite number of other solutions to (A.5) can be

constructed.
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'APrENDIX B.' MODEL FOR ONE VECTOR AND ONE SCALAR CURRENTS

Freedmans s model for one vector current and one scalar
current satlsfylné current algebrau7 is generalized to exponential
(or arbitrary) form factors. In this model the vector current (qg)
vlS 1ntroduced using the dlvergence 1dent1ty technlques discussed
in Sec. v and the scalar current (ql) is 1ntroduced using the
technlques of Sec. V. Thus only the scalar current has'good iarge-q2
behavior.

Freedman's ncdel Wés constructed frcm amﬁlitudes'of the form
shown in Fig. 15(a) and (b).with Y - -1, Changing variables tovthose
correspondlng to the multlperlpheral conflguratlon of Flg "13(c ),
lettlng k be arbltrary, and using the current algebra 1dent1ty of

Ref. 29, we obtain‘

1
0 = dvl~--va v e [IN+3 Vl(l - Vl)]
: 1
0
(B.1)
1 ,
1%
= LI - - v .
avyee-dvl-k(1 - v)) +ay ‘I/(l) s
Jo

where ' ﬁb&;)vA is defined follcwing Eq. (4.9) with the change cf
variables to the Vi. Letting k — 0 pickscouf the residue of the
lowest pole in the first term of (B.l).  This N + 2 point function
is precisely the amplitude for a single scalar current [Fig. 13(b)].

Therefore, changing back to the variables of Fig. 13(a) we obtain
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b, | du, - dul\I (1) IN+5 = du,,» « ~duy IN+2 s (B.2)
- 40 . _ 0 _
or

. AV ) ) - ._ .

where the 1ntegrands now have the ch01ce of tragectorles shown in
Flg. l}(a) and (b).’ Equatlon (B. 2) is the analogue of (3.9) for the

current'commutation relatlonf
AO = g . - %=
R @), §,(0)] = ey, I E1) FE-T) -

We note that the identity (B l) did not depend the varlables

55 AL and thus any functlon of these varlables can be inserted

w1thout sp0111ng the result. In particular exponentlal form factors

eoce

and the absence of all fixed poles be31de those in the two-current .
channel can be achleved,£OIIOW}ng the prescription of Sec. V and

insérting the factor

|-G |

This gives in M’ the factor

(B.3)

exp |-

and in ¢ the factor

G
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As it stands (B.2) has a trivial constant form factor for the
vector current. Arbitrary form factors can be ‘introduced through the

simple expedient of multiplying M. by .

- af -1 q v q \
. - 2 1
Av'v(qe) = Z VL Gl "Ei_“" gv'v - }.
. 2=0 m + 1+ £ » m + 1 + £
- . : , (B.4)
since
v 2y _ ‘
qv A, (q_) = q,

the current algebra identity (B.2) still holds. Note that the vector-
meson amplitudes implied by this generalization will have the same
fixed poleé as the vector current amplitudes, a manifestation of the

simple multiplicative nature of the form factors (B.4).
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' FIGURE CAPTIONS

Constraints on the single- current amplltude (a) Vector-

"meson dominance. (b) Factorlzatlon. The - amplltude must be
fexpress1ble as a sum over the poles shown by the heavy lines

and these poles must correspond to states in the hadronlc

spectrum,
Constraints on the two-current amplitude. (a) Vector-meson

dominance. (b) Linear factorization.__(o) Quadratic factori-

: zation. The amplitude must be expressible as a sum over the

' poles'shown by the heavy lines and'thése.polés must correspond
”to states in the hsdronic spectruﬁ.

’DiVergence‘Condition for'singlé Cuffent amplitudé.

An external line 1nsert10n (ELI) for the partlcle X.

. v 3 By, 86
(a) Diagram for hadronlc 1sOsp1n factor & 6 S,
. a [0
o 1 s 3
By By '
X 8 & , . Each line represents a 8. (b) Modified
% 9%
B
diagram. Each cusp represents a sum, €.g., E: S, 9] .
Xy ab ' _xl

Diagram for coupling of isovector current in Vl“(q).
Divergence conditions for two-current amplitudes.- (a) Nonad-

' jacent currents. (b) Adjacent currents.

Field theory models illustrating the relationship between

' compositeness and the absence of fixed poles.

S.)-

1

Construction for current amplitudes.
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‘Choice-bf variables in 6-point beta function corresponding

" to Eq. (5.3) for P = O.

 Fig. 13.

:Single—current amplitude with four hadréns}[Eq. (5.13)]{

Vector-scalar7current_algebra amplitudes.: (a) Two-current

 amplitude, Mv(ql,qg).“ (b) Single-scéldf.gurrent amplitude,

¢(ql + q2). 1(0) Choice of variables for Eq. (B.1).



-63-

(a)

(b)

XBL704 -266I

Fig. 1



 _64-

(b)

Fig. 2

XBL704-2658




-65-

[ ]
¢ =

[
'XBL704-2659

Fig_; 3



-66 -

XBL696- 3099

Fig. 4



-67-

(b) xaLsgé§3|d|

Fig. 5 .



-68-

. XBL696- 3102




~69-

(b)

Fig. 7

XBL704-2660



[P X'y PR

. XBL705- 2848



71—

XBL705-2849



p] , 2 K 2
o
@
O

A

XBL705-

10

Fig.




-73-

XBL705- 285l

Fig. 11



Fig.

12

XBL705-2852



75




LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process-disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report. '

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor. ’
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