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Abstract 

Design and Training of Memristor-based Neural Networks 

by 

Xiaoyang Jia 

 

Modern Artificial Neural Network(ANN) is a kind of nonlinear statistical 

data modeling tool, which can be optimized by a learning method based on 

mathematical statistics. Therefore, it is a practical application of mathematical 

statics. The ANN can get abilities to make simple decisions and judgments, just like 

a human brain. It is superior to formal logical implication. 

Since the advancement of the ANN study significantly depends on the 

expansion of networks in-depth, a massive amount of vector-matrix multiplications 

is required [3]. Thus, energy efficiency is a key factor in evaluating the performance 

of ANNs. Since researches on vector-matrix multiplications have made great 

achievements, large and deep ANNs have been used to handle complex tasks and 

process massive data. The memories utilized by conventional ANNs, such as Static 

Random Access Memory (SRAM) and Flash memory are charge-based, which is 

not efficient in view of energy consumption during ANN computation since it 

cannot directly implement vector-matrix multiplication in a crossbar array structure 

[3]. Over the past decade, the Nonvolatile Memory (NVM) crossbar array has 

shown its superiority on improving the energy efficiency. Unlike the conventional 

memory, NVM is current based. NVM crossbar array can calculate matrix 

multiplication in a single step by sampling the current flowing, therefore, it was 

utilized as the analog vector-matrix multiplier for on ANN [3]. However, the 
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nonlinear I-V characteristics of NVM put hard constrains on critical design 

parameters, such as the read voltage and the range of weight, which causes 

substantially reduced accuracy.  

In this work, we built an ionic floating-gate (IFG) memory unit device model 

on Cadence based on two presented models, ENODe and ionic floating-gate 

memory (IFG) memory [2]. The IFG model consists of a polymer redox transistor 

connected to a conductive-bridge memory (CBM) [2]. We would like to apply this 

IFG memory unit device to build Memristor-based Neural Networks (MNN) and 

explore the performance of the networks. In the MNNs, the selective and linear 

programming of a redox transistor array is executed in parallel by overcoming the 

bridging threshold voltage of the CBMs [2], which can improve the performance 

(accuracy). This thesis is mainly about the design and training of the MNNs. Since 

we would like to apply the MNNs to perform digital number recognition, we 

designed the architecture that is available to recognize Modified National Institute 

of Standards and Technology (MNIST) handwriting digits and trained the MNN 

with MNIST train dataset, then tested the performance (accuracy) by MNIST test 

dataset. In addition, we tried to make some handwriting images by ourselves and 

used them to test the trained network to consolidate our conclusion. We also 

attempted to resize the original MNIST dataset by an image data pixel converting 

algorithm and make the newly created train dataset applicable to train an MNN with 

smaller scale. We used both the MNIST test dataset and the handwritten image data 

newly created to test the network and compared the performance with that of the 



x 

original one. We hope that the IFG memory unit device can impose a significant 

impact on the MNN design. 
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Chapter 1 

Introduction and Background 

 

1.1 Motivation 

The research on Artificial Neural Network started in 1943, and a 

computational model was created by Warren McCulloch and Walter Pitts. The 

model is based on threshold logic algorithms [1]. Their work laid the foundation for 

further research on Artificial Neural Network (ANN) to be classified into two 

approaches; one focuses on biological process, the other mainly devote to the 

application of ANN to Artificial Intelligence. ANN is a mathematical calculation 

model of the biological neural network, which can perform the estimation and 

approximation of functions. Because of the long history and development, ANN 

computation has grown into a massive multidisciplinary analysis field. It has many 

functional models that can handle nonlinear problems in a way quite similar to 

brains. The promotion of ANN study heavily depends on the expansion of depth in 

neural networks. Thus, in-depth research has been performed in the past ten years 

to yield great achievement, enabling ANN to handle many complex problems such 

as pattern recognition, artificial intelligence (AI), estimation, biology, medical, and 

economy. ANN demonstrated excellent intelligence features, and the performance 
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is shown to be superior to that of general-purpose computers. However, much 

remains to be done to remove restrictions on ANN. 

Memristor can be considered as a kind of non-volatile memory (NVM), 

which is in the nano-scale and has low power consumption. With its memory 

property, memristor can remember the connection weight between nodes. Besides, 

its scalability and energy efficiency make it applicable to huge networks. Therefore, 

memristive crossbar arrays showed a great feasibility for implementing intelligent 

neuromorphic operations. It is conceivable to implement ANN in a highly 

integrated circuit chip with a density similar to the human brain. Inspired by a 

proposed ionic floating-gate (IFG) memory array based on a polymer redox 

transistor connected to a conductive-bridge memory (CBM), we designed IFG 

device arrays using Cadence tools based on the reference [2]. We can read out the 

synaptic weight with currents <10 nano amperes by diluting the conductive polymer 

with an insulator to decrease the conductance, and it can endure >1 billion write-

read operations and support >1-megaherz write-read frequencies [2]. We would like 

to explore the performance of networks based on IFG device. My work is to design 

the MNNs on software and get the optimized weights, and then give them to my 

colleagues Donguk and Yinghao so that they can map the weights to the 

conductance of each unit in the IFG arrays and do the hardware simulation.\ 
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1.2 Artificial Neural Network (ANN) Fundamentals 

To illustrate the ANN model, we need to introduce some basic concepts. 

Artificial neural networks (ANN) are nonlinear and self-adapting computing 

systems inspired by the biological neural networks of animal brains [4]. ANN can 

learn, with or without training, from examples to find the pattern to perform tasks 

without being programmed in specific rules. An ANN consists of a collection of 

connected units or nodes called artificial neurons, which is similar to the neurons 

of the biological brain. Each neuron node is connected to other nodes via links that 

correspond to biological axon-synapse-dendrite connections in biological brain. 

Each link has a weight, which determines the strength of one node’s influence on 

another [5] 

1.2.1 Artificial Neurons and Neural Layers 

ANNs are composed of artificial neurons, which retain the biological 

concept of neurons. They receive inputs and combine the inputs by utilizing an 

activation function with an optional threshold value [6]. If the combined input is 

not large enough, the effect of the activation threshold function will suppress the 

output. On the other hand, if it is large enough, the effect will fire the neuron and 

then produce an output [6], as shown in Figure 1.1. The output of each neuron is 

computed by some nonlinear activation function of the weighted sum of its inputs. 
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Figure 1.1: Artificial neuron, the circular node represents artificial neuron and 

arrows represent the input and output. 

In order to replicate the biological mechanism presented above and make 

ANN functional, artificial neurons are typically organized into multiple layers, 

especially in deep learning. [6] Figure1.2 illustrates this idea. Each neuron or node 

of one layer connects to every node in the preceding and next layers in a fully 

connected network. The layer that receives external data is the input layer, and the 

layer that produces the ultimate result is the output layer. In between are hidden 

layers. The nodes between two layers can also be not fully connected; they can be 

pooling, where a group of neurons in one layer connect to a single neuron in the 

next layer, thereby reducing the number of neurons in that layer [7]. 
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Figure 1.2: ANN layer model, an interconnected group of nodes, circular nodes 

represents artificial neurons, and arrows between two nodes represent the 

connections.  

 

1.2.2 Connections and Weights 

For ANN’s implementation, each of the connections between two layers has 

a parameter named weight, which represents the relative importance of its 

corresponding connection [5]. When the output generated by nodes of the preceding 

layer transmits to the nodes of the next layer, they multiply the weight of their 

corresponding connection, and the results act as the input to the next layer, as shown 

in Figure 1.3. Therefore, the value of weights can increase or decrease the strength 

of a signal at connections to adjust the learning process of ANN 
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Figure 1.3: Theoretical weight model of ANN. 𝑥𝑖 denotes the output signal of node 

𝑋𝑖, 𝑊𝑖 denotes the weight value of the connections, Y denotes the combined signal. 

f denotes the activation function, f(Y) is the output singal, and b denotes the bias. 

The bias can modify the range of the input of Y. But it is not necessary, and we did 

not apply it to our project.  

 

1.2.3 Activation Function 

The activation function is the function running on the neurons, shown in 

Figure1.3. It is responsible for mapping the inputs of a neuron to the output. It is of 

great significance for the ANN model since it gives an important nonlinear 

characteristic to the network, which enables the ANN model to compute complex 

and nontrivial problems. Without nonlinearity, the output of each layer is merely 

the linear function of the inputs of the preceding layer. That is, no matter how many 

layers the ANN has, the outputs are always the linear combination of original inputs, 

which will restrict the performance and the application field. 
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There are several common activation functions, such as sigmoid function, 

tanh (hyperbolic tangent) function, and ReLu (Rectified Linear unit) function. Their 

expressions and graphs are shown in Figure 1.4. For our project, we chose the 

sigmoid function as the activation function. Sigmoid function is easy to work with 

and it has a fixed output range. Although it can cause the vanishing gradients 

problem when x value is large, it still has the whole nice properties of activation 

functions.  

 

Figure 1.4: Common activation functions. (a)Sigmoid function. (b) tanh. (c) 

ReLu. 
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1.2.4 Loss Function 

In optimization, the function applied to evaluate candidate solutions is 

usually called an objective function. Researchers may devote themselves to 

optimize (minimize or maximize) the objective function to find a candidate solution 

that has the highest or lowest score respectively. When it comes to ANNs, we 

concentrate on minimizing the error, which is the difference between the target 

output and the actual output. In this case, the objective function is usually referred 

as a loss function and the value calculated by it is simply the error. Loss function is 

applied to optimize the parameter values (weights) in the ANN model and achieve 

the optimal performance for specific tasks. The process we use to minimize the 

error of the ANN’s output is referred as training. 

1.2.5 Matrix Multiplication 

Matrix Multiplication is quite useful for doing the ANN computation. 

Assume that we have a 2-layer ANN with 2 or 3 nodes in each layer. In this case, 

we can do the calculation manually since the network is simple. However, imagine 

that we need to do the same thing for an ANN with 5 layers and 150 nodes in each. 

Merely performing all the necessary calculations will be a huge challenge. The 

combination of combining signals, multiplied by the right weights, applying the 

activation function, for each node, each layer [6], which can be enormously 

overwhelming. Even though we can do the calculation by some algorithm, the large 
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amount of coding work is still challenging. Matrix operation can compress all such 

calculations into a straightforward form. As is well-known, a matrix is just a table 

or a rectangular grid of numbers, so matrix multiplication enables us to express all 

the work of ANN computation concisely and easily [6]. Besides, many computer 

programming languages like Python and Matlab can recognize matrices and do 

appropriate calculations. Therefore, we can utilize the computer program to do all 

the calculation work accurately and efficiently. The matrix multiplication between 

two layers can be simply expressed as  

                                     𝑿 = 𝑾 ∙ 𝑰                            (1.1)   

𝑰 denotes the vector of inputs, and 𝑾 denotes the matrix of weights between two 

layers. 𝑿 is the resultant vector of combined signals to be adjusted by the second 

layer. [6] Then the output of the second layer can be expressed as 

                                 𝑶 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑿)                          (1.2)        

𝑶 is the output vector, which consists of all the output signal from the second layer.  

If we have more than two layers, like 3 layers, we just simply do the matrix 

multiplication again, treating 𝑶 as the input matrix to the third layer, and of course, 

there is bound to be another weight matrix containing weights between the second 

and third layer, which is responsible for combining and moderating the input into 

the third layer [6]. This is not difficult to understand and encode an algorithm to 
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efficiently solve all of these calculations. Therefore, matrix multiplication is an 

efficient and powerful tool to implement ANN. 

1.2.6 Training 

When we start with a complete ANN model, we randomly initialize the value 

of weights. In this case, when we apply the input to the network model, the output 

would not be correct. Training of the network, namely, the network’s learning 

process to evaluate the influence of the parameters (weights 𝑤𝑖𝑗) and modify them 

so that the output can approach the target output, which is the most genuine part of 

deep learning. This learning process can be regarded as an iterative process of 

“going and return” of information by the layers. The “going” and “return” are 

respectively the forward propagation and back propagation of the information in 

the ANN. The information forward propagated through the ANN is the training 

datasets, and the information backpropagated is the loss (error) information. We can 

summarize all the training process by Figure 1.5. 
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Figure 1.5. Visual scheme of the training process 

 

Forward propagation is the first phase of the training. It occurs when the 

training datasets are applied to the network and cross the whole neural network for 

their corresponding outputs to be calculated. During this process, all the inputs pass 

through the ANN in a way that all the neurons perform transformation to the 

information they receive from the preceding layer and transmit the processed 

information to the next layer. The resultant outputs can be compared to the expected 

outputs in the training data. 

In the next phase, the loss function comes into play. In a supervised learning 

environment, we have the target output value of each input data in the training 
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datasets. The loss function is applied to estimate the loss (error), which is the 

divergence between the target value and our actual output value. Ideally, our 

purpose is to eliminate the loss (error) after training, but in practice, as the ANN 

model is being trained, it will adjust the value of the weights of the interconnections 

between neurons of different layers to approach the target value until the actual 

output is close enough to the desired output.  

Once the loss (error) of each node in the output layer has been worked out, 

the loss information will be propagated backward to guide the refinement of 

weights inside the network, which is referred as backpropagation. The diagram of 

the backpropagation is shown in Figure 1.6. Here a simple ANN has three layers, 

each layer with two nodes. Starting from the output layer, two errors 𝑒𝑜1 and 𝑒𝑜2, 

each denoting the error of two output nodes, are propagated to all neurons in the 

hidden layer to calculate the errors (loss) of nodes in the hidden layer, which are 

denoted as 𝑒ℎ1 and 𝑒ℎ2. Each of the two hidden nodes has two links connecting 

them to the two output nodes. The error of each output node is split in a way that is 

proportional to the weights of links connecting to it as shown in Figure 1.6. We can 

recombine link errors of each two links emerging from a hidden node and form the 

hidden error for this node. This process is repeated layer by layer until every neuron 

in the ANN model has received its corresponding error, which is its relative 
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contribution to the whole error. The following expressions show the error of each 

node in the network shown in Figure 1.6 

  𝑒ℎ1 =
𝑤11

′

𝑤11
′ +𝑤21

′ ∙ 𝑒𝑜1 +
𝑤12

′

𝑤12
′ +𝑤22

′ ∙ 𝑒𝑜2                  （1.3）  

𝑒ℎ2 =
𝑤21

′

𝑤11
′ +𝑤21

′ ∙ 𝑒𝑜1 +
𝑤22

′

𝑤12
′ +𝑤22

′ ∙ 𝑒𝑜2                  （1.4） 

𝑒𝑖1 =
𝑤11

𝑤11+𝑤12
∙ 𝑒ℎ1 +

𝑤12

𝑤12+𝑤22
∙ 𝑒ℎ2                  （1.5） 

𝑒𝑖2 =
𝑤21

𝑤11+𝑤12
∙ 𝑒ℎ1 +

𝑤22

𝑤12+𝑤22
∙ 𝑒ℎ2                   （1.6） 

 

Figure 1.6: Diagram of backpropagation. 𝑒𝑜1, 𝑒𝑜2 are the error of output nodes, 

𝑒ℎ1, 𝑒ℎ2 are the error of hidden nodes, 𝑒𝑖1, 𝑒𝑖2 are the error of input nodes, 𝑤𝑖ℎ 

denotes the weight between input and hidden layer, 𝑤ℎ𝑜
′   denotes the weight 

between hidden and output layer. 

 

We can simplify all the laborious calculations above and make the 

backpropagation more concise by utilizing matrix multiplication. At first, we need 

to construct the matrix for output error (Eq.1.7), then we can have the error matrix 

for the hidden layer (Eq.1.8).  
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   𝑒𝑟𝑟𝑜𝑟𝑜𝑢𝑡𝑝𝑢𝑡 = (
𝑒𝑜1

𝑒𝑜2
)                          （1.7） 

   𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = (

𝑤11
′

𝑤11
′ +𝑤21

′

𝑤12
′

𝑤12
′ +𝑤22

′

𝑤21
′

𝑤11
′ +𝑤21

′

𝑤22
′

𝑤12
′ +𝑤22

′

) ∙ (
𝑒𝑜1

𝑒𝑜2
)           （1.8） 

By looking at the Eq. 1.8, we can find that the most significant part is the 

multiplication of the output error with its connected weight. The output error 

propagated back to the hidden layer is proportional to the value of the linked weight. 

Thus, the denominator is a kind of normalizing factor. Therefore, we can simplify 

the matrix again, as shown in Eq. 1.9 by ignoring the normalization factor. 

Obviously, the weight matrix in Eq.1.9 is the transpose of the original weight matrix 

𝑾𝒉𝒐. We can normalize the matrix approach of backpropagation by Eq. 1.10. 

𝑒𝑟𝑟𝑜𝑟ℎ𝑖𝑑𝑑𝑒𝑛 = (
𝑤11

′ 𝑤12
′

𝑤21
′ 𝑤22

′ ) ∙ (
𝑒𝑜1

𝑒𝑜2
)                 （1.9） 

𝒆𝒓𝒓𝒐𝒓𝒉𝒊𝒅𝒅𝒆𝒏 = 𝑾𝒉𝒊𝒅𝒅𝒆𝒏_𝒐𝒖𝒕𝒑𝒖𝒕 ∙ 𝒆𝒓𝒓𝒐𝒓𝒐𝒖𝒕𝒑𝒖𝒕         （1.10） 

Now that the loss (error) has been successfully propagated back, we next 

consider how to update weights to make the loss (error) approach zero. To achieve 

this, we need to utilize a technique called gradient descent, which modifies the 

weights in small increments by the calculation of the gradient of the loss function. 

The gradient refers to the slope of the points on the curve of the loss function. Since 

the initial weights are randomly set, the starting point on the loss function curve is 

not fixed, which indicates that the direction to descend towards the minimum of 
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loss can be both positive and negative. The gradient descent is performed in 

sequence in the successive epochs of all the training data that we apply to the ANN 

in each epoch so that the weights would be modified to enable the network to render 

the desired output. The scheme of gradient descent is shown in Figure 1.7 

 

Figure1.7: Scheme of gradient descent 

 

Let 𝐿 denotes the loss function, the slope of the loss function for the weights can 

be expressed as Eq.1.11, and we can update the weights by following the rule shown 

in Eq.1.12. 𝛼 is the learning rate, and it is applied to moderate the strength of the 

weight changes and avoid overshooting. 

𝜕𝐿

𝜕𝐿𝑤𝑖𝑗
= −(𝐿𝑗) ∙  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(∑ 𝑤𝑖𝑗𝑖 ∙ 𝑂𝑖) ∙ (1 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(∑ 𝑤𝑖𝑗𝑖 ∙ 𝑂𝑖)) ∙ 𝑂𝑖  (1.11) 

∆𝑤𝑖𝑗 = 𝛼 ∙ 𝐿𝑗 ∙ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑂𝑗) ∙ (1 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑂𝑗)) ∙ 𝑂𝑖
𝑇           (1.12) 
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1.2.7 Applications 

Generally speaking, the original purpose of the ANN model was to handle 

things in the same way as that of the human brain. For image recognition, ANN is 

able to identify images of handwritting digital numbers after getting trained by a 

massive amount of example images with different writing styles. ANNs can also be 

applied to do identify images that contain other things, like dogs. After learning 

from example images labeled as “dog” or “no dog”, ANNs can identify arbitrarily 

selected images and judge whether the images contain dogs. However, over time, 

researches paid more attention to performing specific tasks, which led to deviations 

from biology. Today, ANN has been used for a variety of tasks, including computer 

vision, speech recognition, machine transition, social network filtering, playing 

board, and video games, medical diagnosis, painting [5] and even for solving 

business problems, like market forecasting, data validation, and risk management. 

In this thesis, we use the MNN (Memristive Neural Network) for digital number 

image recognition and analysis of the performance.  
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1.3 Memristor-based Neural Network (MNN) 

The following is intended as a brief review of memristor fundamentals and 

the introduction of both the IFG device and memristive crossbar array structure we 

utilized to build MNN.  

1.3.1 Memristor Fundamentals 

Memristor is the concatenation of “memory resistor”, which was first 

introduced in 1971 [8]. It is a two-terminal circuit element that constitutes the 

relationship between flux and charge, the missing pair link among the four basic 

circuit variables [8], as shown in Figure 1.8. Several years later, Chua and Kang [9] 

introduced to the scientific community the generic properties of a broad 

generalization of the memristor to an interesting class of nonlinear dynamical 

devices, called memristive devices. [10] 
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Figure 1.8: The four basic electrical elements: resistor, inductor, capacitor 

and memristor, and their constitutive relationship in terms of four fundamental 

circuit variables.  

 

Normally, the memristor is modeled by a state-dependent Ohm’s Law. There 

are two types of time-invariant memristors depending on the type of the input signal. 

The memristor with a current source as the input signal is named as the current- 

controlled memristor, while the memristor with a voltage source as the input signal 

is called voltage-controlled memristor. In a broader sense, any electrical device with 

two terminals can be called a memristor if the behavior of it can be described by a 

nonlinear constitutive relation between the voltage drop at its terminals 𝑣 and the 

current flowing through the device 𝑖 as shown below: [10] 
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Current-controlled memristor:  

𝑣 = 𝑅(𝑥)𝑖                        (1.13) 

It has the state equation as follows: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑖)                       (1.14) 

Voltage-controlled memristor: 

𝑖 = 𝐺(𝑥)𝑣                        (1.15) 

It has the state equation as follows: 

𝑑𝑥

𝑑𝑡
= 𝑔(𝑥, 𝑣)                      (1.16) 

R(x) and G(x) are named as memristance (memory resistance) and memductance 

(memory conductance), respectively, and they have units Ω (Ohm) and S (Siemens) 

[10]. The 𝑥 is a state-vector, which has n (n≥1) components 𝑥1, … 𝑥𝑛 called state-

variables. These state-variables represent internal physical parameters and do not 

depend on any external variables like voltages or currents [10]. 

We can consider the ideal case of memristor, when the state equations (Eqs. 

1.14 and 1.16) can be expressed as 𝑓(𝑥, 𝑖) = 𝑖 , and 𝑔(𝑥, 𝑣) = 𝑣 . So, we can 

integrate both sides of the equations and get the following equations: 

 𝑥(𝑡) = ∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞
= 𝑞(𝑡)                   (1.17) 
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𝑥(𝑡) = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞
= 𝜑(𝑡)                   (1.18) 

Then we can substitute the above equations for x in Eqs. 1.13 and 1.14 

respectively, and integrating both sides, [10] which gives: 

𝜑(𝑡) = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞
= ∫ 𝑅(𝑞(𝜏))

𝑑𝑞(𝜏)

𝑑𝜏

𝑡

−∞
𝑑𝜏 = ∫ 𝑅(𝑞)𝑑𝑞

𝑞(𝑡)

−∞
= 𝜑̂(𝑞(𝑡))  (1.19) 

𝑞(𝑡) = ∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞
= ∫ 𝐺(𝜑(𝜏))

𝑑𝜑(𝜏)

𝑑𝜏

𝑡

−∞
𝑑𝜏 = ∫ 𝐺(𝜑)𝑑𝜑

𝜑(𝑡)

−∞
= 𝑞̂(𝜑(𝑡)) (1.20) 

The Eqs. 1.19 and 1.20 indicate that, in this case, Eqs. 1.13and 1.14, which defines 

the current-controlled memristor, are equivalent to a defined by a single equation 

as shown below, which defines a charge controlled memristor: 

𝜑 = 𝜑̂(𝑞)                       (1.21) 

Also, Eqs. 1.15, 1.16 defining the voltage-controlled memristor are equivalent to 

the following equation, which defines a flux-controlled memristor. 

 𝑞 = 𝑞̂(𝜑 )                       (1.22) 

Later on, these are precisely described as the fourth constitutive relationship 

between the charge 𝑞 and flux 𝜑 in Figure 1.8, which defines the memristor by an 

axiomatic approach in which 𝑞 and 𝜑 need not have any physical significance. 

We can also differentiate Eqs. 1.21 and 1.22 and obtain two new equations: 

  𝑣 =
𝑑𝜑

𝑑𝑡
=

𝑑𝜑̂(𝑞)

𝑑𝑞

𝑑𝑞

𝑑𝑡
= 𝑅(𝑞)𝑖                (1.23) 
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  𝑖 =
𝑑𝑞

𝑑𝑡
=

𝑑𝑞̂(𝜑)

𝑑𝜑

𝑑𝜑

𝑑𝑡
= 𝐺(𝜑)𝑣                  (1.24) 

These two equations show that the charge-controlled memristor is equivalent to a 

charge-dependent Ohm’s Law in which the 𝑅(𝑞) is merely the slope of the curve 

𝜑 = 𝜑(𝑞) at 𝑞 and the flux-controlled memristor is equivalent to a flux-dependent 

Ohm’s Law where the 𝐺(𝜑) is the slope of the curve 𝑞 = 𝑞(𝜑) at 𝜑 [10]. Since 

the ideal memristor relation is quite rare to do serve in experiment, normally, we 

model the memristive device using the state-dependent Ohm’s Law presented above. 

A comprehensive and detailed review is given in [10]. 

1.3.2 Memristor Crossbar-based Nonvolatile Memory 

Memory technologies can be divided into volatile and nonvolatile on the 

basis of the ability to retain data with and without power. Today, nonvolatile 

memory (NVM) is universally acknowledged, since it provides key advantages on 

data storage and the NVM crossbar array is used for implementing matrix 

multiplication, which is essential to ANN implementation. Therefore, emerging 

NVM technologies, including Phase-Change Random Access Memory (PCRAM), 

Resistive Random Access Memory (ReRAM), Conductive-Bridge Random Access 

Memory (CBRAM), and Spin-Transfer-Torque Magnetic Random Access Memory 

(STT-RAM) have been widely studied as next-generation memories [11]. Unlike 

the conventional memories that are charge-based, emerging NVM is current-based, 

it enables NVM crossbar array to calculate matrix multiplication in a single step by 
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sampling the current flow in each column [3], which opens up an opportunity to 

apply it for ANN acceleration. And emerging NVM represents its states with 

different resistance values. This type of storage device is normally memristive. 

The crossbar is the most prominent and well-documented memristive 

framework in literature and is among the most promising candidates to implement 

memristor-based ReRAM arrays [12]. The two-terminal structure enables 

memristors to be integrated into crossbar networks, thus crossbar array 

architectures have drawn much attention from researchers in nanoelectronics and 

NVM. The structure provides massive advantages such as pattern regularity, 

manufacturing flexibility, CMOS compatibility, defect-tolerance, and the highest 

device density [13], which may enable low-cost fabrication and products. Figure 

1.9 shows the diagrammatic representation of a crossbar array structure with m 

wordlines (WLs) and n bitlines (BLs) [14]. As shown in the figure, 𝑅𝑗  is the 

selected device for illustration, and devices that share a line with 𝑅𝑗 (𝑅𝑚, 𝑅𝑛) are 

named as “half-selected” devices. [14]. 
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Figure 1.9: [14] Crossbar array with m WLs and n BLs. 𝑅𝑗 at the upper left corner 

is selected. 𝑅𝑛, 𝑅𝑚, and 𝑅𝑚𝑛: three groups of unselected devices sharing WL, BL, 

and no line with 𝑅𝑗, respectively. 

 

We can depict the stable-state electrical characteristics of a memristive 

crossbar array by a set of voltage variables, which are the voltages at every cross-

point cell. Basically, there are two voltages for each cell, 𝑉𝑊𝐿 and 𝑉𝐵𝐿, and we can 

derive other electrical parameters (applied voltages, access resistance, and line 

resistance) from the set of these 2mn voltage variables. More detailed reviews of 

the crossbar array structure are described in [14]. 

1.3.3 Memristive IFG Model 

The IFG model we used in our MNN is on the basis of an electrochemical 

neuromorphic organic device (ENODe), which is a memristive device with three 

terminals. It uses ionic currents to control the oxidation state of a semiconducting 
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polymer channel [15-17], and its high-density of ionic doping sites in the 

conductive polymer enables continuous analog conductance tuning [19]. The low 

switching energy and numerous resistance states make ENODes a promising 

candidate for low-power neuromorphic computing [19]. As shown in Figure 1.10 

(a), an ENODe device contains an electrochemically active gate electrode, which is 

applied to actuate ion exchange between an electrolyte and a doped semiconducting 

polymer channel [20]. The gate voltage is responsible for modulating the channel 

conductance (𝐺𝐸𝑁𝑂𝐷𝑒) by controlling the electronic carrier concentration, and the 

low energetic barrier for ion migration between the electrolyte and the channel 

contributes to low minimum programming energies (e.g., 390𝑝𝐽. 𝑚𝑚2) [19]. The 

corresponding equivalent circuit is shown in Figure 1.10(b), in which 𝑅𝑙𝑖𝑚𝑖𝑡 is a 

limit resistor aiming at preventing discharge between programming pulses, 𝑅𝑒𝑙 is 

the electrolyte resistance, 𝐶𝐸𝑁𝑂𝐷𝑒  denotes the mutual capacitance between gate 

and channel, and 𝑅𝑐𝑡  represents the equivalent resistance describing faradaic 

current from unexpected redox reactions at the channel/electrolyte interface [20]. 

The value of 𝑅𝑙𝑖𝑚𝑖𝑡 is ideally to be set high enough to impede self-discharge of the 

device; however, a high 𝑅𝑙𝑖𝑚𝑖𝑡 value will also result in a low writing efficiency, 

which is passively impacting the computation of ANN after training. To solve this 

problem, we can replace 𝑅𝑙𝑖𝑚𝑖𝑡 by nonlinear selectors as shown in Figure 1.10 (c), 

which serves as an electronic switch using voltage threshold filament formation 



25 

 

between two metal electrodes to switch between OFF state (no filaments) and ON 

state (filament forming a conductive bridge between electrodes) [18] like shown in 

Figure 1.10 (d). The fabrication and analysis of the equivalent circuit are described 

in detail in [20]. 

 

 

Figure 1.10: ENODe circuit model: (a) ENODe measurement setup[20]. (b) 

ENODe equivalent circuit model [20]. (c) ENODe circuit with a nonlinear selector 

[20]. (d) I-V characteristic of a nonlinear selector 
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A redox-transistor memory was developed to circumvent existing memristor 

technology limitations. The write and read operations can be decoupled by a three-

terminal redox transistor, which uses a “gate” electrode to tune the conductance 

state through electrochemical reactions involving 𝐿𝑖+ and 𝐻+ ion injection into 

the channel electrode through a solid electrolyte [18]. Based on the above theories, 

a polymer-based redox transistor [21] integrated with a volatile conductive bridge 

memory (CBM) was produced and named as ionic floating-gate memory (IFG), 

which is a nonvolatile, addressable synaptic memory. Its three-terminal design 

enables the channel to be engineered for ultralow-current without sacrificing analog 

performance through diluting the conductive polymer in a polymeric insulator. [18]. 

Figure 1.11 illustrates the IFG device concept. The weight of connections between 

artificial neurons of two layers can be mapped into the source-drain conductance of 

the corresponding synaptic device (transistor). More details about IFG 

characteristics are described in [18]. 
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Figure 1.11: IFG memory device. (a) Write operation of an IFG cell. (b) Read 

operation of an IFG cell 

 

      Inspired by the two models presented above, we made some modifications 

and designed a compact IFG unit named IFG_r6 that described by Verilog, then we 

import the Verilog file to Cadence Virtuoso and create the IFG_r6 unit[23], the 

equivalent circuit, and the model created on Cadence are shown in Figure 1.12. we 

changed the position of the selector to the middle of the gate terminal and the 

electrolyte [23]. In this case, the conductance change is proportional to the flux of 

gate voltage whose absolute value is larger than the threshold voltage with the 

selector, and we can adjust the threshold gate to source voltage. We applied the 
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IFG_r6 cell to crossbar array structure and encoded a weight (conductance) update 

by voltages applied along the rows and columns of the array, which enables us to 

execute parallel writes to IFG memory during the network training.  

 

Figure 1.12: IFG model. (a) equivalent circuit (b) Cadence Virtuoso model. 

 

  



29 

 

Chapter 2 

Memristor-based Neural Network (MNN) Design 

 

2.1 Data Collection and Processing 

2.1.1 MNIST Database 

Data collection and processing is the first step of neural network design 

since we need massive data to train the neural network to set the proper weights. 

And we also need some test data to assess the performance. In this thesis, we plan 

to build two MNNs with different sizes and apply them to recognize the handwritten 

digits, then compare the performances of the two networks. Thus, we need to collect 

massive handwritten digit images to train and test the neural network. For specific 

numbers (0~9), there should be different images with different writing styles, which 

is time-consuming and cumbersome. Fortunately, there is an existing database 

called MNIST, which consists of a training dataset with 60,000 images and a testing 

dataset with 10,000 images. Every image in the MNIST dataset is an anti-aliasing 

grey-scale map of digital number from 0 to 9 and normalized to 28× 28 pixels. 

These images are taken two random-selected groups; one is the Census Bureau 

employees, the other is high-school students. In brief, the MNIST data set is a huge 

set of handwritten digits with different writing styles, which perfectly meets our 

requirements.  
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However, the original format of the MNIST database is difficult to work 

with, and it is inconvenient for humans to view in text editors and also difficult to 

work with by computers. Some professionals have created MNIST data files of a 

simple format called CSV files, which is easy to view and process with some 

programming language like Python. Figure 2.1 shows a section of the MNIST test 

csv file loaded into a text editor.  

  

Figure 2.1: Section of MNIST test csv file. 

As shown above, it looks like a messy code, but actually, everything is fine. 

For the data list of each image, it is too long to be shown as merely one line on the 

window of the text editor, so it is wrapped around several times. Helpfully, there is 

some space between two image data lists, and we can see two whole lines of image 
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data in Figure 2.1. For each data list, the first value is the label, which is the exact 

digit that the handwriting is supposed to represent. The subsequent comma-

separated values are the pixel values of the digit. Since the pixels of the image is 

28×28, there are 784 values after the label. For example, the second data list, the 

first record represents number 2, as shown by the first value; thus, the rest 784 

values are the pixel values of someone's handwritten digit 2. That means we can 

randomly pick a line from the MNIST data file and get the label for the image data 

by looking at the first number of the line. 

2.1.2 MNIST Database Resizing 

Additionally, we exercised another interesting hypothesis that how the 

performance would change if we trained and tested an MNN with handwritten digit 

images with smaller pixel size. Thus, we needed another train database and test 

database handwritten digit images of lower pixels. To make a great comparison, we 

can collect 60,000 handwritten digit images database for training and that of 10,000 

for testing, but it would take a huge amount of time to collect all these by ourselves. 

Instead, we directly resized the original MNIST database to our desired pixel size 

so that we can use the same images to train a new MNN, and then analyze the 

performance of both two networks, which makes the simulation result more 

convincing and reasonable. 
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We can simply process the CSV file by Pandas, which is a Python data 

analysis library. It is a powerful and flexible data analysis tool based on Numpy. 

We can use Pandas to read the MNIST database CSV files row by row. Once we 

read a row of data, we first convert the data list to an array and separate the label 

value and pixel values. We resize the pixel values by an algorithm shown in Figure 

2.2 and combine the processed pixel data with the original label value. Finally, save 

the combined data array to a 2D array. It is easy for us to repeat the operation by 

applying a “for” loop until we transfer all rows of data in one CSV file. All the 

processed image data rows are saved line by line in the 2D array mentioned, and 

we can easily save the 2D array as a new CSV file, which is the new converted 

MNIST database available for small pixel size experiment. 

  

Figure 2.2: The diagram of image data pixel converting algorithm 
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We finally decided to convert the original pixel size (28×28) to 7×7, and we 

successfully got both of the two new training CSV file and testing CSV file. Figure 

2.3 shows a few lines of the converted data. We can see that the data is displayed in 

the same way as the original database. The length of data lines changes from 785 

to 50, and pixel values are also different. Now, we can easily pick a line of image 

data from either the original MNIST database or our converted one, and the first 

number will tell us the correct value. But it is still hard to see how the subsequent 

pixel values make up an image of someone's handwritten number. We can easily 

use Python to plot the image by these pixel values, and Figure 2.4 shows the image 

of the number 7 in the first line in both two databases. The method of visualizing 

the image data will be introduced in the latter part.  

 

Figure 2.3: section of the converted MNIST test csv file 
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Figure 2.4: Image of number 7 in the first line of two MNIST test csv files. 

(a) Original MNIST database. (b) Converted MNIST database. 

 

2.2 MNN Architecture Design 

Now, we can start to design our MNNs; at first, we need to define the 

architecture of our MNNs. As mentioned in Chapter 1, a neural network consists of 

a series of layers of neurons, and all the neurons in each layer connect to neurons 

of the next layer. Basically, an ANN should at least have two layers, one input layer, 

and one output layer, but in this case, the network works just like linear regression, 

since the input nodes merely bring in the input signals applied to the input layer and 

the output nodes only push out the answer of the ANN. This will restrict the learning 

ability of the network. Therefore, to make our MNN more intelligent, we need to 

add hidden layers to our network. 
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The hidden layer is quite common in ANNs; it is located between the input 

and output layers as mentioned in Chapter 1. It multiplies weights to the inputs and 

produces outputs through a weighted summing and an activation function, which 

gives nonlinear characteristics to the network. Briefly speaking, hidden layers are 

layers designed to produce outputs specific to serve as input to the output layer 

aiming at getting intended results. Normally, one hidden layer is sufficient for 

ANNs to solve a majority of problems, and we need our MNNs to recognize 

handwritten digits, which is not a very complicated task. Thus we merely need to 

add one hidden layer to our MNNs, thus, the MNNs for our research are designed 

with three layers. 

Now, we should determine the number of nodes in each layer. To set up 

MNNs and enable them to recognize MNIST handwritten images, the pixel values 

of each image should be inputs for input layers, and the ten labels should be the 

outputs. Since the original MNIST images contain 784 pixels and resized MNIST 

images contain 49 pixels, we should set one MNN with 784 input nodes, and the 

other one with 49 input nodes. Since we would not like to increase the amount of 

work on IFG circuits simulation, we at first set the number of hidden nodes of both 

two networks as 10, if the accuracy is unsatisfactory, we would add more hidden 

nodes to the hidden layer and perform simulation again. For the number of output 

nodes, recall that we are asking our MNNs to classify the MNIST handwritten 
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image and response with correct label, which is one of ten numbers from 0 to 9. 

Therefore, both of the two MNNs have an output layer of 10 nodes. The architecture 

of the two networks we designed are shown in Figure 2.5 and Figure 2.6. Both of 

the two networks are fully connected and feedforward network with 

backpropagation to auto-recognize and train. 

 

 

Figure 2.5: MNN architecture for original MNIST database. The pixels (784) of 

each image are the inputs for the network and the output nodes are ten correct labels. 
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Figure 2.6: MNN architecture for resized MNIST database. The pixels (49) of each 

image are the inputs for this network and the output nodes are ten correct labels. 

 

Now we need to add an appropriate activation function to hidden and output 

layers to introduce nonlinearity characteristics into the two networks and elevate 

them beyond the capabilities of a simple perceptron. The common activation 

functions have been introduced in Chapter 1. The sigmoid function is chosen for 

our networks, since it requires less calculation and is already defined in the scipy 

Python library, in which the sigmoid function is called expit(). It is now quite 
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convenient for us to quote the sigmoid function during programing the networks by 

Python. 

2.3 Training 

2.3.1 Data Preprocessing 

We have all the data for training and testing, but we still need to think about 

preprocessing the data before we apply it to our MNN. When we apply the data to 

the network, the pixel values of each handwritten digital image will be treated as 

inputs to the input layer. As we can see in Figure 2.1 and Figure 2.3, the pixel values 

are in the range of 0 to 255. The large input value would make the sigmoid function 

quite flat, which is problematic when we perform gradient descent during the 

training process. The flat portion of the sigmoid function has tiny gradients, as 

shown in Figure 2.7. Tiny gradient results in limited learning ability [5]. This is 

referred as saturating a neural network. Therefore, we need to rescale the input pixel 

values to a smaller range 0.01-1.0, and we chose 0.01 as the lower bound to avoid 

zero-valued inputs since it can annihilate the weight updating [5]. Besides, the 

sigmoid function is not able to produce a value above 1. Figure 2.7 illustrates the 

sigmoid function, which indicates that the sigmoid function is asymptotically 

approaching 1 [5]. We should restrict the target values to match the range of the 

activation function, since if the target values are set in the outside range of 
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activation function, the network will also be saturated in this case. We chose the 

range of 0.01 to 0.99 for our MNNs. 

 
Figure 2.7: The graph of sigmoid function. 

 

The same argument applies when we initialize the weights, we should 

avoid large initial weight values since they would result in large inputs to the 

sigmoid function, leading to the saturation problem [6]. Besides, we should also 

avoid initializing the weights as the same constant value, especially not zero, it is 

troublesome since all the nodes in the network would receive the same signal and 

all the outputs of these nodes would also be same, which would result in equal 

weight updates during training. We will finally get a set of updated weights with 

the same value. Normally, a properly trained ANN should have unequal weights. 

Zero weights are even worse, since the incoming signals would be entirely zero, 
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which will deactivate the learning ability of the ANN. There is a sophisticated rule 

that initializing the weights by randomly sampling from a range that is 

approximately the inverse of the square root of the number of links into a node [6]. 

By following this rule, we initialize the weights of the first MNN by randomly 

sampling from −
1

√784
 to 

1

√784
, and respectively initialize the weights of second one 

by randomly sampling from −
1

√49
 to 

1

√49
 . 

 

2.3.2 Training Programming 

As mentioned in Chapter 1, the training process has two phases, the first one 

is propagating forward the training data and calculating the outputs, then compare 

the outputs with our target outputs to get the loss (error).The second phase is 

backpropagating the loss (error), which can guide the MNNs to update their weights. 

Therefore, we can draw the scheme of the training algorithm framework as Figure 

2.8. It is now quite clear how to program by Python. 
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Figure 2.8: Framework of training program 
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2.4 Testing 

Since we have trained the two MNNs and got proper weights, we can now 

test whether the two networks work well. Before programming the testing part of 

the MNNs, we need to figure out what the output is supposed to be because we need 

the correct outputs of all the 10 numbers to justify the answer of the MNNs. As 

mentioned earlier, both of the two MNNs have an output layer of ten nodes, one for 

each of numbers from 0 to 9. If we input an image data of number 6, the 

corresponding node in the output layer should fire while all other nodes are silent. 

Figure 2.9 illustrates this scheme and gives example outputs. This example shows 

that the network justifies that the image we gave is number 5, since the node labeled 

with 5 gives largest output signal. The second example in Figure 2.9 is more 

interesting, the node corresponding to number “9” has generated the largest output 

signal while the node labeled with number “4” has a moderately big output signal. 

In general, we always go with the largest output signal, but the moderately big 

signal indicates that the network wonders the answer might also be 4. This is not 

necessarily incorrect, sometimes a weird handwriting style makes it difficult to have 

a confirmed answer, this kind of doubt does happen with neural networks, even for 

those of human brain. We are supposed to treat it as a valuable insight into how 

another answer was also a contestant [6], which makes the neural network be closer 

to that of human brain. 



43 

 

 

Figure 2.9: Scheme of how to get the answer from the output signal 

 

2.4.1 MNIST Testing 

Now, we can think about the testing work, in this case, the MNIST test 

dataset comes into play. We can easily write lines of Python code to get the test 

records from the MNIST test csv file, which is quite similar to that applied to 

acquire the training data. As presented, the test dataset is not a part of training 

dataset, which means the trained network hasn’t seen these images. Therefore, the 

main mechanism of testing is going through all the 10,000 test records and check 

the correctness of the outputs. We can easily write a Python code to see the 

performance of the networks against the whole MNIST test set. Python has a quite 

helpful numpy function called “numpy.argmax()”, which can easily pick up the 
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largest signal in the output signal array and return the corresponding position, which 

can be referred as the node generating the largest signal. Also, we can apply a 

scorecard, which is updated after running each record, to assess the accuracy. If the 

value returned by the argmax function is equal to the correct label, we append 1 to 

the scorecard, respectively, we append 0 to it if the network makes incorrect 

judgement. In this case, the accuracy is fraction of correct answers. 

During the testing process, since we are able to directly see the performance 

(accuracy) of the networks, some parameters can be modified to improve the 

performance score. The first one is the learning rate, it was at first set as 0.5 when 

programing the MNNs by Python, and we are not able to check whether 0.5 is the 

optimum value and experiment with other values until we finish the testing part, the 

process of experimenting with different values of learning rate will be shown in the 

next chapter. 

Another improvement we can do is to repeat the training several times 

against the training dataset [5]. In the Python code, we name each training run as 

an epoch. Thus, when we set the epochs as 5 in the training session, it means the 

training session of the program will run through the whole MNIST training dataset 

5 times. And we can experiment with different values of epoch and compare the 

performance (accuracy), and it is easy for us to find the optimum one. But we need 

to realize that since the size of the MNIST training set is quite large, so if we set the 
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value of epochs too high, like 20 or 50, it will take up to 20 or 30 minutes for the 

computer to finish the training session. We should also take this issue into 

consideration. The experiment of finding the optimum epoch value will be 

described in Chapter 3. 

 

2.4.2 Own Handwriting Image Testing 

Now that we have figured out how to apply the MNIST test set to assess 

the performance of our MNNs, a remaining interesting question would be what if 

we test our trained MNNs with our own handwriting digits? If they can recognize 

most of these images, the test results will be more convincing. 

In order to create the test dataset with our own handwriting digits, we can 

use the paint board on the computer or other image painting and editing software, 

we can even write digits on paper and take the photos of them by cell phone or 

camera. But the images are required to be square and be saved as PNG format, also, 

the pixels of these images should be rescaled to the size matching our MNNs 

(28×28 and 7×7). The key point of the testing work is how to transfer these image 

files to the data, which is similar to MNIST dataset. Python has a quite helpful 

library named “scipy.mimc” that can effectively read out and decode the data from 

image files such as PNG or JPG files. Therefore, we can easily write Python code 
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to perform our own handwriting digits test. The scheme of the testing work can be 

seen in figure 2.10. 

 

Figure 2.10: Scheme of own handwriting digits testing program 
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Chapter 3 

Results and Discussion 

3.1 MNN with 784 Input Nodes 

3.1.1 MNIST Test Dataset  

 

Figure 3.1: Some ideal cases of MNIST test results 
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Figure 3.1 shows the result of ideal cases of all the 10 digits in MNIST test 

dataset. As we can see the output signal of the node corresponding to correct label 

is quite close to 1, while that of other nodes are close to 0. This means the MNN 

can recognize the label in these images clearly. There are some correct cases, shown 

in Figure 3.2, causing some doubt because of handwriting. As mentioned above, 

there is another moderately big output signal from one node other than the correct 

one, which means the network think the label of the node generating relatively big 

output signal can also be the answer. The general character of these cases is that the 

handwriting is not neat. Some weird handwriting makes the digit ambiguous, like 

the 9 in the second image and the 4 in the third image, they look quite similar, it is 

reasonable for the MNN to feel doubtful, even for me, I still cannot make 

undoubtful judgements under this circumstance. 

 
Figure 3.2: Some special correct cases 
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Now that, untidy handwriting can make the MNN make doubtful judgement, 

it can also be illegible enough to prompt the MNN to make mistakes, the following 

Figure 3.3 shows some incorrect cases. The correct labels of these images are 

respectively supposed to be 5, 5, 7, and 2. As we can see, if not being told in advance, 

we cannot correctly recognize them. Therefore, it is understandable for the MNN 

to make wrong judgements in this case. 

 

Figure 3.3 Some incorrect cases. 

As mentioned in Chapter 2, we can enable the Python code to go through all 

the test record and calculate the performance (accuracy), which is referred as the 

fraction of correct answers. In this phase, we can modify two parameters to improve 

the performance, learning rate and epochs. To experiment with different values of 

learning rate, we are supposed to keep the value of epochs fixed. In our experiment 

on learning rate, we set the epochs as 5 and experiment with several values of 
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learning rate at the range from 0 to 1. We plot a graph of the results as shown in 

Figure 3.4. The plot suggested that the learning rate of 0.1 gives us the optimum 

performance.  

 

 

Figure 3.4: Learning rate vs. Performance (28×28) 

 

Next, we move on to examine the impact of epochs on the performance. Now 

that we have found the optimum learning rate of 0.1, we merely need to keep it 

fixed and experiment with values of epochs from 0 to 10, then compare the 

performances. We also plot the relationship between the value of epochs and 
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performance in Figure 3.5. We can see the optimum performance occurs when the 

value of epoch is 5, and beyond that the performance degrades, which may attribute 

to overfitting. But the performance increased again after 8 epochs, and the 

performance is even quite close to the optimum one that corresponding to 5 epochs, 

although a new optimum performance might be found if we continue to increase 

the value of epochs, it would take a quite long time for the computer to finish 

running the code. Therefore, we still treat 5 as the epochs value of optimum 

performance. However, there is still one thing we need to keep in mind that, the 

approach we used to analyze the effect of learning rate and value of epochs is not 

convincingly scientific, since we failed to repeat the experiments for a large number 

of times to minimize the impact of randomness and bad journeys down the gradient 

descent [5]. It is still helpful to understand the general idea that there is an optimal 

values for learning rate and the number of epochs. 
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Figure 3.5 Epochs vs. Performance (28×28) 

  

3.1.2 Own Handwriting Image  

We collected our handwriting image of all 10 digits, and then performed the 

testing operation similar to that of MNIST test set. The results are shown below. It 

can be seen that our MNN can make correct judgement for most of images as shown 

in Figure 3.7, only the images of number 7 and number 1 result in incorrect result 

as shown in Figure 3.8. The MNN can make correct judgement for most cases. 

However, the two incorrect cases are unexpected, we still can’t figure out the reason 

by now. 
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Figure 3.6 Correct cases of own handwriting images test. 

 

 

 

 

Figure 3.7: Incorrect cases of own handwriting images test. 

 

 

 



54 

 

3.2 MNN with 49 Input Nodes 

3.2.1 MNIST Test Dataset 

As mentioned in Chapter 2, our resizing algorithm is not carefully designed, 

and thus some of the resized MNIST handwriting digits are not quite clear. Also, 

the grayscale is not uniformly distributed, which makes the test result of even 

correct ones not quite ideal.  Thus, we just displayed some correct cases in the 

Figure 3.9. It is easily seen that the output arrays are not as ideal as that of the MNN 

with 784 input nodes. The images of number 8 and 9 are too blurry to recognize the 

label in the image. The results might become better if we collected better image 

data or optimized our algorithm for resizing.  
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Figure 3.8 Some correct cases of resized MNIST test results 
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The images with weird handwriting would be worse due to the lower 

dimension pixel. We can see some cases in figure 3.10. What we can see is merely 

some strange label. Our MNN make wrong judgements for these images. This is 

reasonable because they are quite difficult even for human to recognize, not to 

mention the artificial one. 

 

Figure 3.9: Some incorrect cases of resized MNIST test results 

We did the same experiment on the impact of learning rate and epochs as that 

of MNN with 784 input nodes. At first, we still kept the value of epoch as 5 and 

experimented with the same values of learning rate. The corresponding 

performances of these values are shown in Figure 3.11. 
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Figure 3.10: Learning rate vs. Performance (7×7) 

 

In Figure 3.10, we can see that the optimum learning rate is 0.6, which is 

different from that of the former MNN. This could attribute to uneven pixel value 

of images of resized MNIST test set. 

Also, we utilize the same experiment setting of epochs as we used in the 

former MNN, this time we kept the learning rate as 0.6, which is the optimum value 

we found. We can see the experimental consequence in Figure 3.11. We can see that 

the optimum epoch value is also different from that of the former network, in this 

case the optimum value of epochs is 9. Actually, the performance of MNN with 49 

input nodes is better than we expected. Admittedly, when we resize the original 
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MNIST database, the algorithm presented above is not convincingly scientific, and 

the pixel values are not as neat as that of original ones, that is the reason why some 

images of digits are too blurry to recognize. In all these cases, we were pessimistic 

on evaluating the performance, but the actual consequences were beyond our 

expectation. 

 

Figure 3.11: Epochs vs. Performance (7×7) 

 

3.2.2 Own Handwriting Image 

      In this phase, we used some image editing software to resize the images we 

made to test the former work to the pixel size that is available to the MNN of 49 

input nodes. But when putting them into the MNN, none of them gave correct 
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answers. And we tried many methods to do some optimization, but all of them were 

not effective. 

3.3 Hardware 

The IFG networks on Cadence Virtuoso were designed and simulated by 

colleagues [22] [23]. The partial simulation result of MNN with 784 input nodes is 

shown in Figure 3.12. And the hardware experimental performance (accuracy) is 

93.8% for 1800 test sets, which indicates that the IFG memory unit shows great 

feasibility for artificial neural networks. 
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Figure 3.12: Partial results of hardware simulation (28×28). 

However, the Cadence simulation of the MNN with 49 input nodes shows 

somewhat poor consequences, the accuracy is merely 78.8% for 2000 test sets. 

Unlike the computer software simulation, the partial simulation result is shown in 

Figure 3.13. There are several factors that can influence the hardware simulation 

result. We have tried various methods to optimize the simulation, but none of them 

was effective. We need to investigate the causes in the future and seek to improve 

the hardware simulation of this MNN. 
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Figure 3.13: Partial results of hardware simulation (7×7). 
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Chapter 4 

Conclusion and Future Work 

The purpose of this thesis project was to examine how well the Memristive 

IFG device can improve the learning efficiency and inference in memory. I was 

responsible for training the networks and determining the proper weights. Based on 

the software simulation, the two networks we built both showed fairly good 

performances. We also performed the experiments on seeking the influence of 

learning rate and epochs and found that the optimum values of the two parameters 

for two MNNs, which enable them to reach optimal accuracy. The MNN with 784 

input nodes is able to reach the optimal accuracy of 90.9%, and the smaller one 

presented the optimal accuracy of 87.9%. The MNN trained with original MNIST 

dataset also showed a good performance on both our own handwriting digits 

recognition and Cadence virtuoso hardware model simulation with quite excellent 

learning efficiency. For some reported NVM + selector crossbar arrays, the training 

(generalization) accuracy is merely 82.9% [24]. Therefore, our IFG array 

simulation result is fairly good. However, when we did the same with the smaller 

MNN hardware, the simulation results were unsatisfactory, which made it 

meaningless to evaluate the improvement on learning efficiency and inference in 

memory.  
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There are several possible factors that may have caused the relatively poor 

performance of MNN with 49 input nodes. The first one is the resizing algorithm. 

The images in the resized MNIST dataset are of poor quality. Some is quite difficult 

for even members in our team to recognize. Even though the result of software 

simulation is good, it is still disappointing without witnessing simulation results to 

be functional in hardware. Since the MNIST training and testing dataset have 

70,000 images, replicating and resizing such huge amount of data without any loss 

is quite a difficult task, this calls for some novel and precise algorithms that we 

have not yet found. The bad performance may also attribute to the low pixel size. 

As shown in Chapter 3, only the digits with quite neat handwriting can be displayed 

in images of good quality with this pixel size. Therefore, in future work, it is 

recommendable to try to do experiments on images of higher pixel array, such as 

10×10 or 14×14.  
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Appendix 

Python code of 28×28 MNN: 

import numpy as np 

import scipy.special 

import pylab 

import imageio 

class neuralNetwork: 

def __init__ (self, inputnodes, hiddennodes, outputnodes, learningrate): 

   #initialize the nodes of each layer 

   self.inodes=inputnodes 

   self.hnodes=hiddennodes 

   self.onodes=outputnodes 

 

   #initialize the weights wih and who 

   self.wih=np.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, 

self.inodes)) 

   self.who=np.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, 

self.hnodes)) 

    

   #initialize the learning rate 

   self.lr=learningrate 

    

   #activation function 

   self.activation_function=lambda x: scipy.special.expit(x) 

   pass 

 

#train the network 

def train (self, inputs_list, targets_list): 

   #convert the inputs and targets lists to 2D array 

   inputs=np.array (inputs_lists, ndmin=2).T 

   targets=np.array (targets_lists, ndmin=2).T 

   #propagation forward 

   #the signals into hidden layer 

   hidden_inputs=np.dot (self.wih, inputs) 

   #the signals emerging from hidden layer 

   hidden_outputs=self.activation_function(hidden_inputs) 

 

   #the signals into final output layer 
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   final_inputs=np.dot (self.who, hidden_outputs) 

   final_outputs=self.activation_function (final_inputs) 

   #the final output layer error analysis by backpropagation 

   output_error=targets-final_outputs 

   #update the weights between the hidden and final output layers 

   self.who+=self.lr*np.dot ((output_errors*final_outputs*(1.0-

final_outputs)), np.transpose(hidden_outputs)) 

   #the hidden layer error analysis by propagation 

   hidden_errors=np.dot (self.who.T, output_errors) 

   #update the weights between the input and hidden layers 

   self.wih+=self.lr*np.dot ((hidden_errors*hidden_outputs*(1.0-

hidden_outputs)), np.transpose(inputs)) 

   pass 

 

#query the network 

def query (self, inputs_lists): 

   #convert the input list to 2D array 

   inputs=np.array(inputs_list, ndmin=2).T 

   hidden_inputs=np.dot (self.wih, inputs) 

   hidden_outputs=self.activation_function(hidden_inputs) 

   final_inputs=np.dot (self.who, hidden_outputs) 

   final_outputs=self.activation_function(final_inputs) 

   return final_outputs 

 

#number of input hidden output nodes 

input_nodes=784 

hidden_nodes=10 

output_nodes=10 

 

learning_rate=0.1 

n=neuralnetwork= (input_nodes, hidden_nodes, output_nodes, learning_rate) 

#load the mnist training data CSV file into a list 

training_file=open (“mnist_train_csv”, ‘r’) 

training_list=train_file.readlines() 

training_file.close() 

 

#train the neuralnetwork 

epochs=5 

for e in range(epochs) 

  #go through all the records in the training data set 
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  for record in training_list: 

    #split the record by the ‘,’ commas 

    all_values=record.split(‘,’) 

#scale and shift the inputs 

inputs=(np.asfarray(all_values[1:])/255.0*0.99)+0.01 

    #create the target output values (all 0.01, except the desired label which is 

0.99) 

targets=np.zeros(output_nodes)+0.01 

#all_values[0] is the target label for this record 

targets[int(all_value[0])]=0.99 

n.train(inputs, targets) 

pass 

pass 

np.savetxt(‘win.csv’, n.wih) 

np.savetxt(‘who.csv’, n.who) 

 

#load the mnist test data CSV file into a list 

test_file=open (“mnist_test.csv”, ‘r’) 

test_list=test_file.readlines() 

test_file.close() 

 

#test the neural network 

scorecard= [] 

 

#go through all the records in the test data set 

for record in test_list: 

  #split the record by ‘,’ commas 

  all_values=record.split(‘,’) 

  #correct answer is the first value 

  correct_label=int(all_values[0]) 

  #scale the shift the inputs 

  inputs=(np.asfarray(all_values[1:])/255.0*0.99)+0.01 

  #query the network 

  outputs=n.query(inputs) 

  #the index of the highest value corresponds to the label 

  label=np.argmax(outputs) 

  #append correct or incorrect to list 

  if(label==correct_label): 

#network’s answer matches correct answer, append 1 to scorecard 

scorecard.append(1) 
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  else: 

#network’s answer doesn’t match correct answer, append 0 to scorecard 

scorecard.append(0) 

pass 

  pass 

scorecard_array=np.asarray(scorecard) 

print (“performance=”, scorecard_array.sum()/scorecard_array.size) 

def mytest (self, “my_written_x.png”): 

   im=imageio.imread(my_written_x.png, as_gray=True) 

   im=im.resize((28,28)) 

   tmp=np.array(im) 

   vec=tmp.ravel() 

   for i in range(len(vsc)): 

      if vec[i]==0: 

         vec[i]=255 

      else: 

         vec[i]=0 

   my_inputs=(np.asfarray(vec[0:])/255*0.99)+0.01 

   my_outputs=n. query(my_inputs) 

   label=np.argmax(my_outputs) 

   print (my_outputs) 

   if (label==correct_label): 

     print (“The answer is correct”) 

   else: 

     print (“The answer is wrong”)   
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Python code of 7×7 MNN: 

import numpy as np 

import scipy.special 

import pylab 

from PIL import Image 

 

class neuralNetwork: 

def __init__ (self, inputnodes, hiddennodes, outputnodes, learningrate): 

   #initialize the nodes of each layer 

   self.inodes=inputnodes 

   self.hnodes=hiddennodes 

   self.onodes=outputnodes 

 

   #initialize the weights wih and who 

   self.wih=np.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, 

self.inodes)) 

   self.who=np.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, 

self.hnodes)) 

    

   #initialize the learning rate 

   self.lr=learningrate 

    

   #activation function 

   self.activation_function=lambda x: scipy.special.expit(x) 

   pass 

 

#train the network 

def train (self, inputs_list, targets_list): 

   #convert the inputs and targets lists to 2D array 

   inputs=np.array (inputs_lists, ndmin=2).T 

   targets=np.array (targets_lists, ndmin=2).T 

   #propagation forward 

   #the signals into hidden layer 

   hidden_inputs=np.dot (self.wih, inputs) 

   #the signals emerging from hidden layer 

   hidden_outputs=self.activation_function(hidden_inputs) 

 

   #the signals into final output layer 

   final_inputs=np.dot (self.who, hidden_outputs) 
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   final_outputs=self.activation_function (final_inputs) 

   #the final output layer error analysis by backpropagation 

   output_error=targets-final_outputs 

   #update the weights between the hidden and final output layers 

   self.who+=self.lr*np.dot ((output_errors*final_outputs*(1.0-

final_outputs)), np.transpose(hidden_outputs)) 

   #the hidden layer error analysis by propagation 

   hidden_errors=np.dot (self.who.T, output_errors) 

   #update the weights between the input and hidden layers 

   self.wih+=self.lr*np.dot ((hidden_errors*hidden_outputs*(1.0-

hidden_outputs)), np.transpose(inputs)) 

   pass 

 

#query the network 

def query (self, inputs_lists): 

   #convert the input list to 2D array 

   inputs=np.array(inputs_list, ndmin=2).T 

   hidden_inputs=np.dot (self.wih, inputs) 

   hidden_outputs=self.activation_function(hidden_inputs) 

   final_inputs=np.dot (self.who, hidden_outputs) 

   final_outputs=self.activation_function(final_inputs) 

   return final_outputs 

 

#number of input hidden output nodes 

input_nodes=49 

hidden_nodes=10 

output_nodes=10 

 

learning_rate=0.6 

n=neuralnetwork= (input_nodes, hidden_nodes, output_nodes, learning_rate) 

#load the mnist training data CSV file into a list 

training_file=open (“new_train_csv”, ‘r’) 

training_list=train_file.readlines() 

training_file.close() 

 

#train the neuralnetwork 

epochs=9 

for e in range(epochs) 

  #go through all the records in the training data set 

  for record in training_list: 
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    #split the record by the ‘,’ commas 

    all_values=record.split(‘,’) 

#scale and shift the inputs 

inputs=(np.asfarray(all_values[1:])/255.0*0.99)+0.01 

    #create the target output values (all 0.01, except the desired label which is 

0.99) 

targets=np.zeros(output_nodes)+0.01 

#all_values[0] is the target label for this record 

targets[int(all_value[0])]=0.99 

n.train(inputs, targets) 

pass 

pass 

np.savetxt(‘win_new.csv’, n.wih) 

np.savetxt(‘who_new.csv’, n.who) 

 

#load the mnist test data CSV file into a list 

test_file=open (“new_test.csv”, ‘r’) 

test_list=test_file.readlines() 

test_file.close() 

 

#test the neural network 

scorecard= [] 

 

#go through all the records in the test data set 

for record in test_list: 

  #split the record by ‘,’ commas 

  all_values=record.split(‘,’) 

  #correct answer is the first value 

  correct_label=int(all_values[0]) 

  #scale the shift the inputs 

  inputs=(np.asfarray(all_values[1:])/255.0*0.99)+0.01 

  #query the network 

  outputs=n.query(inputs) 

  #the index of the highest value corresponds to the label 

  label=np.argmax(outputs) 

  #append correct or incorrect to list 

  if(label==correct_label): 

#network’s answer matches correct answer, append 1 to scorecard 

scorecard.append(1) 

  else: 
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#network’s answer doesn’t match correct answer, append 0 to scorecard 

scorecard.append(0) 

pass 

  pass 

scorecard_array=np.asarray(scorecard) 

print (“performance=”, scorecard_array.sum()/scorecard_array.size) 

def mytest (self, “my_written_x.png”): 

   im=imageio.imread(my_written_x.png, as_gray=True) 

   im=im.resize((7,7)) 

   tmp=np.array(im) 

   vec=tmp.ravel() 

   for i in range(len(vsc)): 

      if vec[i]==0: 

         vec[i]=255 

      else: 

         vec[i]=0 

   my_inputs=(np.asfarray(vec[0:])/255*0.99)+0.01 

   my_outputs=n. query(my_inputs) 

   label=np.argmax(my_outputs) 

   print (my_outputs) 

   if (label==correct_label): 

     print (“The answer is correct”) 

   else: 

     print (“The answer is wrong”)   
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MNIST resizing algorithm: 

import numpy as np 

import pandas as pd 

import csv 

data=pd.read_csv(“filename.csv”, header =None) 

res= [] 

for j in range (0, # of data lists): 

  a=data.loc[j] 

  a=np.array(a) 

  d=a[0] 

  a=a[1:] 

  b=a.reshape((28,28)) 

  b= (np.split(b, 7, axis=1)) 

  for i in range (0, 7): 

b[i]=np.mean (b, 7, axis=1) 

b[i]=b[i].reshape(7,4) 

b[i]=np.mean(b[i]) 

pass 

  e=np.vstack((b[0], b[1], b[2], b[3], b[4], b[5], b[6])) 

  e=e.T 

  e=e.reshape(49) 

  e=np.hstack((d,e)) 

  res.append(e) 

with open (‘resized filename’, ‘w’, newline=’’) as csvfile:  

writer =csv.writer(csvfile, delimiter=’,’ , quotechar=’”’,  

quoting=csv. QUOTE_MINIMAL) 

for line in res: 

   writer.writerow(line) 




