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Abstract

The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulat-
ing the motion of elastic structures immersed in viscous fluids. In this work, we consider a poroelastic
immersed boundary method in which a fluid permeates a porous, elastic structure of negligible volume
fraction, and extend this method to include stress relaxation of the material. The porous viscoelastic
method presented here is validated for a prescribed oscillatory shear and for an expansion driven by
the motion at the boundary of a circular material by comparing numerical solutions to an analytical
solution of the Maxwell model for viscoelasticity. Finally, an application of the modelling framework
to cell biology is provided: passage of a cell through a microfluidic channel. We demonstrate that the
rheology of the cell cytoplasm is important for capturing the transit time through a narrow channel in
the presence of a pressure drop in the extracellular fluid.
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1 Introduction
Fluid-structure interaction problems are ubiquitous in biological and physical systems. The immersed
boundary method [26] provides a computational framework that couples the dynamics of the im-
mersed structure with the viscous, incompressible fluid. It has been applied to many problems such as
blood flow in the heart [26], flagellar swimming [7, 9], and biofilm processes [10]. Recently, the im-
mersed boundary method has been adapted to simulate poroelastic media in which the fluid permeates
a porous, elastic structure of small volume fraction that moves with its own velocity field [30]. This
variant has been applied to study biological systems such as crawling of the Physarum amoeba [19]
and cellular blebbing [31]. However, the method has been limited to elastic networks, but many bi-
ological materials, such as the cell cytoplasm [12] and collagen gels [24], exhibit stress relaxation
due to the rearrangement of the structure on timescales longer than minutes. In this paper, we are
motivated by the time-evolving rheology of the cell cytoplasm and how its material properties affect
cell locomotion in confined environments.

The cellular cytoplasm is a mixture of organelles, the cytosol, and the cytoskeleton. The cytosol
is the liquid portion of the cytoplasm and it consists of water, ions, and dissolved molecules. The
cytoskeleton is a dynamic network of filamentous proteins, including actin filaments, microtubules,
and intermediate filaments, that give the cell its shape and ability to move. However, the cytoskeletal
network is not a simple linear, elastic solid; it can exhibit highly non-linear elasticity and dynamics
driven by ATP-dependent processes [12]. The cytoplasm has been modelled on the continuum level
as an elastic material, viscoelastic material, porous gel, and viscous fluid [1, 13, 23, 31]. The appro-
priate mechanical model to describe this complex active bio-structure depends on the timescale and
relevant cellular processes under consideration. Notably, the actin filaments involved in cell locomo-
tion polymerise, depolymerise, and reorganise on a timescale of minutes. Therefore, the actin network
behaves like an elastic solid on timescales of seconds, but a viscous fluid on timescales longer than
minutes. On intermediate timescales, the actin network behaves like a elastic material that exhibits
stress relaxation.

Motivated by the rearrangement of the cytoskeletal network, the contribution of this work is to
incorporate a model for stress relaxation in our existing framework for simulating porous elastic struc-
tures immersed in a viscous fluid. The modelling framework in Strychalski et al. [30] is an extension
of the immersed boundary method for simulating poroelastic media immersed in incompressible vis-
cous fluid; the fluid dynamics equations are solved on a fixed Eulerian grid, while the structure forces
are solved on a moving Lagrangian framework and transfer operators are used for the communication
between grids [26]. The method for computing elastic forces on the material is reviewed and extended
to include stress relaxation of the material. Once these material forces are accounted for, one can solve
the equations of fluid motion in different ways. Rather than employ the framework of the immersed
boundary method, here we use the grid-free method of regularised Stokeslets [6], that constructs the
flow field due to a distribution of regularised forces.

There are other methods for modelling moving and deforming viscoelastic materials, such as
the mixed Eulerian/Lagrangian methods which involve mapping elastic quantities between coordi-
nate systems repeatedly [11, 14]. Alternately, Wróbel et al. [34] built a network out of cross-linked
discrete viscoelastic elements and the corresponding elastic forces are computed on the Lagrangian
coordinate system moving with the network. Similarly, we have developed a method for viscoelastic
materials in which stress relaxation is imposed on a Lagrangian frame, but unlike the work in [34]
we use a continuum-like approach. Rather than an expression for the time-evolution of the stress ten-
sor, viscoelasticity is satisfied through a simple ordinary differential equation for how the reference
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configuration of the material relaxes over time to the current configuration, which is derived from a
continuum expression for how strain relaxes in times. We perform two rheological tests to reveal the
mechanical response of such a material and show that in the limit of small strain, our formulation
agrees with the linearised Maxwell model. Finally, the method is applied to cell locomotion through
a microfluidic channel, where we demonstrate that the properties of the cytoplasm are important to
capture the relevant biological behaviour.

2 Mathematical framework

2.1 Formulation of poroelasticity
To describe the mechanics of porous viscoelastic materials, we start with the two-phase flow model,
which is often used to describe multicomponent mixtures that consist of an elastic network immersed
in an incompressible, viscous fluid [5]. Because the aim of this work is to simulate the cytoskeleton,
and the volume fraction of the cytoskeletal network is small in comparison to the fluid phase [18], we
consider the case of negligible volume fraction of the elastic network. It was shown in Strychalski
et al. [30] that the formulation used here matches the standard model of poroelastic media given by
Biot [2] in the limit of vanishing network volume fraction. Here, we revisit the poroelasticity im-
mersed boundary framework, and consider how to introduce stress relaxation within this method in
order to capture the viscous behaviour of the cytoskeleton on longer timescale due to the reorganisa-
tion of the actin filaments.

Ω

X(s,t)

s X(s)
A = ∂X/∂s

(a)

(b)

Figure 1: Computational domain and its discretisation. (a) Ω indicates the Eulerian domain with
coordinate x. X(s, t) represents the current location of the Lagrangian variables with coordinate s.
An unstructured grid is used to discretised the Lagrangian domain. The fluid variables are evaluated
at the material points, x = X(s, t). (b) The deformation gradient tensor A maps the vertices of the
undeformed (reference) triangle configuration, s, to the deformed triangle configuration,X .
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We consider a viscous incompressible fluid in a domain Ω containing an immersed structure, Γ.
A natural way of representing the time evolution of a deforming elastic structure is with a moving
Lagrangian coordinate system. The configuration of the structure is denoted by X(s, t), where s is
a reference Lagrangian coordinate (Fig. 1a). We use the convention that capitalised letters represent
material variables and lower case letters indicate fluid variables. We evaluate the fluid variables at the
material points x = X(s, t) that define the spatial configuration of the material. In our formulation,
there are separate force balance equations for the viscous fluid and for the internal elastic stresses
on the structure. Each structure moves with its own velocity field and the two materials are coupled
through drag forces. The force balance on the fluid includes internal fluid forces (viscosity, pres-
sure) and drag force due to the relative motion of the immersed structure, which leads to the forced
incompressible Stokes equations:

µ∆u−∇p+ fdrag = 0 (1)
∇ · u = 0 , (2)

where u represents the fluid velocity, p is the pressure, µ is the dynamic viscosity of the fluid. fdrag

represents the drag force density on the fluid due to the relative motion of the structure and it is given
by

fdrag = ξ(U − u) , (3)

where U denotes the material velocity. The force density balance on the immersed structure is

Fdrag + Felastic = 0 , (4)

where Felastic denotes the elastic force density in the structure, and the drag force density on the
structure is equal and opposite to the drag force density on the fluid,

Fdrag(s, t) = −fdrag(x, t) . (5)

where the fluid variables are evaluated at the material points x = X(s, t). Combining Eqs. 3-5 and
isolating the variable for the velocity of the structure, the structure moves as follows,

∂X

∂t
= U =

1

ξ
Felastic + u . (6)

Given a set of elastic forces, the evolution of the elastic network specified in Eq. 6 in conjunction with
the viscous flow equations in Eqs. 1-2 are sufficient to determine the dynamics of the fluid-structure
system.

At this point, a constitutive law must be specified to compute the elastic forces of the material
in Eq. 6. A general framework for describing elastic structures is by directly computing the force
from energy functionals and without the direct use of stress tensors. Here, we consider hyperelastic
materials, which are characterised by a strain energy density W = W (A) where A = ∂X/∂s is the
network deformation gradient tensor [20]. For such materials, the Lagrangian elastic force density is
given by the variational derivative of the energy:

Felastic = − δE
δX

, (7)

where E is the total energy of the system,

E =

∫
Γ

W (A) ds . (8)
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The material properties of the hyperelastic solid are specified by a constitutive law for the strain
energy density. For example, the strain energy density of a two-dimensional (2D) neo-Hookean elastic
material is

W (A) =
G

2

( tr(AAT )

J2
− 2
)

+
K

2
(J − 1)2 , (9)

where G denotes the elastic shear modulus, K is the elastic bulk modulus, and J = detA is the
determinant of the deformation gradient tensor [20].

2.1.1 Discretisation of the model

Given the reference configuration of a material, the structure is discretised into a triangular mesh.
Further, we assume that the deformation map X(s, t) is piecewise linear on each triangle T. For
a given triangular element T, the positions of the k-th vertex of T in reference configuration are
denoted by s(k) whereas in the deformed configuration they areX(k). The set of vectors that describe
the deformed and undeformed triangular elastic sheets are X̃(i) = X(i) − X(0) and respectively,
s̃(i) = s(i) − s(0) for i = 1, 2. Since a linear deformation was assumed on a triangle, the deformed
triangular element is given by the following mapping,(

X̃(1) X̃(2)
)

= A
(
s̃(1) s̃(2)

)
, (10)

where A is the deformation gradient tensor (shown in Fig. 1b).
For a piecewise linear deformation map, the deformation gradient tensor and the strain energy

density are constant on each triangle. Starting with Eq. 7 and following the derivation in [30] and [8],
the n-th component of the force (not force density) at vertex k contributed by triangle T is given by

(
F̂

(k)
T

)
n

= −
2∑

i,j=1

Pij
∂Aij
∂X

(k)
n

dA0(T ) . (11)

Here,
Pij = ∂W/∂Aij , (12)

denotes the first Piola-Kirchhoff stress tensor. The area of the triangular element in reference config-
uration is denoted by dA0(T ). To find the total force at the k-th vertex, we sum over the set of all
triangles in the triangular mesh that contain vertex k, Tk. To calculate the force density at each vertex
as needed in the structure force balance in Eq. 4, we divide the force in Eq. 11 by the characteristic
area of a node, dAk, which is taken to be the sum of one third the area of each triangle with vertex
Xk:

F
(k)
elastic =

∑
T∈Tk F̂

(k)
T

dAk
=

∑
T∈Tk F̂

(k)
T

1
3

∑
T∈Tk dA0(T )

(13)

Notably, the Lagrangian elastic force density depends on the first Piola-Kirchhoff stress tensor which
is a measure of the forces in the deformed configuration acting on an element of area in the reference
configuration. By choosing a constitutive law for W (A) or equivalently, P , the type of material is
specified.
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2.2 Formulation for viscoelasticity
To simulate immersed elastic materials that exhibit rearrangement of the network, such as the cell
cytoskeleton, we extend the existing framework for simulating poroelastic material [30] to capture
stress relaxation in a moving Lagrangian coordinate system. Specifically, the aim is to introduce
viscoelasticity congruent with the method for computing elastic forces outlined in Section 2.1.

For simplicity, we first consider a 2D incompressible neo-Hookean material. Then, the constitutive
law in Eq. 9 reduces to the following expression [17, 20],

σ = GC, (14)

where σ is the Cauchy stress tensor andC is the Finger deformation tensor which describes the change
in shape of a small material element:

C = AAT . (15)

Alternatively, one can show that the constitutive law for an incompressible neo-Hookean material can
be written as, {

σ = GC
O
C= ∂C

∂t
+U · ∇C −∇U · C − C · ∇UT = 0 ,

(16)

where
O
C is called the upper-convected derivative [17, 20]. Here, the Finger tensor is a measure of the

strain. Now, we introduce the relaxation of the strain to the identity matrix with a relaxation timescale,
λT :

λT
O
C = I − C , (17)

Together, Eqs. 14 and 17 can also be written as a relaxation of the Cauchy stress tensor:

λT
O
σ +σ = GI . (18)

This expression is commonly identified as the upper-convected Maxwell model and it is one of the
simplest non-linear models for stress relaxation which is analogous to the Maxwell element, a spring
and dashpot in series [17, 20].

This formulation of viscoelasticity poses a few implementation difficulties for our immersed
poroelastic framework. First, while elastic forces are computed in a moving, deforming frame in
Section 2.1, the upper-convected Maxwell model would require computing a corresponding Cauchy
stress tensor, and updating the Cauchy stress tensor in an Eulerian reference frame. One way to re-
solve this issue would be a change of coordinate system every time step [11, 14]. Furthermore, for
the case of deforming and moving structures as is the case in cell locomotion, solving the partial
differential equation in Eq. 18 throughout the structure every time step poses computational diffi-
culties. To avoid both of these complications, we propose a simple model for viscoelasticity in a
moving frame which is analogous to the upper-convected Maxwell model in Eqs. 14-17 (or equiv-
alently, Eq. 18). In particular, we exploit the fact that our elasticity formulation in Eq. 11 involves
the first Piola-Kirchhoff stress tensor and develop a model for viscoelasticity expressed for the first
Piola-Kirchhoff stress tensor. This is achieved by following the same derivation as outline above to
arrive at the upper-convected Maxwell model.

The first Piola-Kirchhoff tensor and the Cauchy stress tensor are related by

P = JσA−T , (19)
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which relates quantities defined in areas in a deformed configuration to those relative to areas in a
reference configuration [17, 20]. We express the Cauchy stress in the above relation in terms of the
deformation gradient using Eqs. 14 and 15, and use that for an incompressible material J = det(A) =
1 to express the constitutive law for an incompressible neo-Hookean material as

P = GA . (20)

For an elastic material, the deformation gradient satisfies

O
A=

∂A
∂t

+U · ∇A −∇U · A = 0. (21)

Equations 20 and 21 are equivalent to 16. We note that the form of the upper-convected derivative
of the deformation gradient, A, is slightly different than that of the Finger tensor, C, [17]. One can
realise their equivalence by applying the derivative defined in Eq. 21 to C = AAT .

The upper-convected Maxwell model results from introducing strain relaxation in a neo-Hookean
material (i.e. as in Eq. 17). Analogously, we modify the elastic model from Eqs. 20–21 to describe a
viscoelastic material by assuming that the deformation relaxes as

λT
O
A= I −A . (22)

Although Eq. 22 is chosen to be analogous to Eq. 17, in general, this will not produce the same ma-
terial response as the upper-convected Maxwell model. In Section 3, we will provide both analytical
and numerical comparisons of this model with the Maxwell model for two different rheological tests.

2.2.1 Discretisation of the model

Just as before, the structure is discretised into a triangular mesh with the assumption that deformation
map is a linear on each triangle T and thus, the deformation gradient tensor is constant on each
triangular element. However, instead of solving Eq. 22 on every triangular element, we propose an
even simpler formulation of viscoelasticity by deriving a mathematically equivalent relation for how
the material’s reference configuration, s, relaxes to the current configuration,X , over time,

A ∂s

∂t
=

1

λT
(X − s) . (23)

We claim that the above expression is equivalent to the relaxation of the strain in Eq. 22 provided that
A is constant per triangular element. To show this, we start with the definition of the deformation
gradient tensor,

A =
∂X

∂s
, (24)

where now because the reference configuration evolves in time, it is useful to express the current and
reference configuration variables as functions of time and the particle label, α. Then, by the chain
rule,

Aij =
∂Xi

∂αk

∂αk
∂sj

, (25)

whereX = X(t,α) and similarly, s = s(t,α). A rearrangement of the above equation yields,

A ∂s

∂α
=
∂X

∂α
. (26)
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which can now be differentiated in time to obtain

∂A
∂t

∂s

∂α
+A ∂

∂α

(∂s
∂t

)
=
∂U

∂α
, (27)

where U = ∂X/∂t. At this point, for the partial time derivative of s we assume that the reference
configuration relaxes as in Eq. 23, and obtain the following equation,

∂A
∂t

∂s

∂α
− ∂U

∂α
= −A ∂

∂α

(∂s
∂t

)
= − 1

λT
A ∂

∂α

(
A−1(X − s)

)
= − 1

λT

∂

∂α

(
X − s

)
, (28)

which holds under the assumption that the deformation gradient tensor is constant per triangle. In the
above equations, all quantities are expressed as functions of α. To change coordinates and express
quantities as functions of s, we use that

∂

∂αi
=
∂sj
∂αi

∂

∂sj
(29)

to obtain
DA
Dt
− ∂U

∂s
= − 1

λT

∂

∂s

(
X − s

)
= − 1

λT

(∂X
∂s
− I
)

=
1

λT

(
I −A

)
, (30)

whereDA/Dt = ∂A/∂t+U ·∇sA is the material derivative. Lastly, a transformation to the Eulerian
coordinate system yields,

DA
Dt
− ∂U

∂X
A =

1

λT

(
I −A

)
, (31)

using the following change of coordinates,

∂U

∂s
=
∂U

∂X

∂X

∂s
=
∂U

∂X
A ,

where now, DA/Dt = ∂A/∂t + U · ∇A. Indeed, we find that the expression for the convective
derivative of the deformation gradient tensor in Eq. 22 is recovered in Eq. 31.

In this framework, we model the stress relaxation of a material through only the ordinary differ-
ential equation for the reference configuration and the stress-strain relation is given by specifying a
constitutive law for the first Piola-Kirchhoff stress tensor. This rearrangement has the advantage that
viscoelasticity is imposed in a computationally inexpensive way and does not depend on the consti-
tutive law or the mesh discretisation of the material. Thus, the equations of motion for the immersed
porous viscoelastic structure and the incompressible viscous fluid are:

µ∆u−∇p+ fdrag = 0 (32)
∇ · u = 0 (33)

Felastic + Fdrag = 0 (34)

A ∂s

∂t
=

1

λT
(X − s) , (35)

where the drag force density on the fluid due to the network is:

fdrag = −Fdrag = ξ(U − u) . (36)
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The elastic force density on the structure, Felastic, is computed through a variational derivative of the
energy as described in Eqs. 11-13. Combining Eqs. 34 and 36, we find that the drag force density on
the fluid is equal to the elastic force density on the structure, fdrag = −Fdrag = Felastic and replacing
in Eq. 32 yields

µ∆u−∇p+ Felastic = 0 . (37)

Given the configuration of the material, Eqs. 37 and 33 determine the fluid velocity and pressure, and
Eq. 6 determines the structure velocity. The structure’s position and rest configuration evolve in time
according to Eq. 6 and Eq. 35, respectively.

3 Rheological validations
In this section, we validate the framework for simulating porous, viscoelastic materials permeated by
viscous fluid by comparing with continuum equations for a viscoelastic structure. Specifically, we
carry out rheological measurements of a material with a viscoelastic response in the limit of small
deformations in order to compare with analytical expressions for the stress tensor. Here, we present
two rheological tests used to characterise viscoelastic properties: a small amplitude oscillatory shear
test and a dynamic expansion test. In the small amplitude oscillatory shear test, a periodic deformation
is imposed on the material and the resulting deformation gradient tensor and stress are measured. In
the expansion test, the material is stretched uniformly in the radial direction and the velocity profile
throughout time and space is obtained and compared with the linearised Maxwell model in the limit
of small strain.

U = γ y cos(2̟ωt)

L

L

Figure 2: Schematic for oscillatory linear shear test. A square viscoelastic material undergoes a
prescribed oscillatory motion in the horizontal direction as given by Eq. 39 with amplitude γ and
frequency ω. The initial material configuration is shown in grey while the later in time configuration
is in blue. We note that the deformation is not drawn to scale.

3.1 Small amplitude oscillatory shear test
We consider a test problem with a prescribed deformation through time and we measured the strain
response of the material. For this problem, a periodic linear shear is imposed on a square viscoelastic
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structure with side of length L (Fig . 2). The prescribed network velocity is

U = (U(y), 0) = (γy cos(2πωt), 0) , (38)

Since the current position and velocity are related by ∂X/∂t = U , the position of the structure at a
given time is

X = (γy sin(2πωt)/(2πω), 0) . (39)

In this section, we will use this rheological test to provide two insights about the framework described
in Section 2.2: first, a numerical validation that the differential equation for the reference configuration
in Eq. 35, is indeed equivalent to the relaxation of the deformation gradient tensor in Eq. 22, and
secondly, a comparison of our model for viscoelasticity and the linearised Maxwell model in the limit
of small deformation (or strain).

3.1.1 Numerical validation

First, to validate the stress relaxation response of the poro-viscoelastic formulation, we compare the
deformation gradient tensor that is obtained by solving Eq. 22, to a 2D prescribed motion simulation,
where stress relaxation is imposed by the simple update expression for the reference configuration in
Eq. 35. For the oscillatory linear shear motion in Eq. 38, with the convention that the gradient of the
vector is∇U = ∂Ui/∂Xj , the gradient of the velocity of the structure is

∇U =

(
0 γ cos(2πωt)
0 0

)
. (40)

We note that the gradient of the structure velocity is constant in space for this prescribed motion test.
Then, the time-evolution for strain in Eq. 22 is written component-wise as,

λT

(A11

∂t
− γ cos(2πωt)A21

)
+A11 = 1, (41)

λT

(A12

∂t
− γ cos(2πωt)A22

)
+A12 = 0, (42)

λT
A21

∂t
+A21 = 0, (43)

λT
A22

∂t
+A22 = 1. (44)

Initially, because there is no deformation of the material, the deformation gradient tensor isA(0) = I .
With this initial condition, the full analytical solution to the components of the deformation gradient
tensor are

A11(t) = 1, (45)

A12(t) =
γλT

4π2ω2λ2
T + 1

(
− e−t/λT + cos(2πωt)

)
+

2πωγλ2
T sin(2πωt)

4π2ω2λ2
T + 1

, (46)

A21(t) = 0, (47)
A22(t) = 1 . (48)

For this test, we set ξ = 0.1, λT = 0.5, G = 0.5, L = 1.0, and t ∈ [0, 5] in arbitrary units. For
the prescribed motion in Eq. 38, we set γ = 0.5 and ω = 1.0. In this scenario, the motion of
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the structure is prescribed, and the reference configuration of the material is obtained using Eq. 35
updated with the forward-Euler method for time integration. Because only the 12-component of the
deformation gradient tensor is non-constant, the convergence of only this component is discussed
here. Fig. 3a shows the difference between the analytically computed deformation gradient and the
resulting deformation gradient from the simulation normalised by maximum deformation gradient
tensor over time. Since for this test problem∇U is constant in space, there is no spatial error for this
rheological test. Here, the temporal discretisation chosen is ∆t = 10−7 in arbitrary time units. In
Fig. 3b we show the error at t = 2.2 (chosen near one of the peaks in Fig. 3a) for different time steps.
The model shows a first-order convergence in time when compared to the line of slope 1 in the plot.
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Figure 3: Relative error in the deformation gradient tensor for an oscillatory linear shear test.
(A) Shown here is a plot of the difference between the analytically computed deformation gradient
tensor and the resulting deformation gradient tensor normalised by its maximum over time for an
oscillatory linear shear test. (B) The difference between the analytical solution of the deformation
gradient tensor and the deformation gradient tensor obtained from the 2D prescribed motion simula-
tion is scaled by its maximum at t = 2.2 and plotted for different choices of time step.

3.1.2 Comparison with linear viscoelasticity

Next, the same deformation of an oscillatory linear shear is considered, but in the limit of small
amplitude deformations, γ � 1. To demonstrate that our method agrees with known models for
linear viscoelasticity, we compare the Cauchy stress tensor obtained by solving the linearised Maxwell
model in Eq. 18 to a 2D prescribed motion simulation as in Eqs. 32-35. This comparison is presented
analytically below and also numerically in Fig. 4.

In the 2D prescribed motion simulation, the Cauchy stress tensor is given by the stress-strain
relation, σ = GAAT . Using the analytical form of the deformation gradient tensor for oscillatory
shear derived in Eqs. 45-48, we arrive at the following full expression for the Cauchy stress tensor in
the porous, viscoelastic method proposed in this work:

σ(t) =

(
G+GA2

12 GA12

GA12 G

)
, (49)
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where the functional form of A12 = A12(t) is provided in Eq. 46. In particular, in the limit of
infinitesimal strain, the quadratic term in the 11-component of the Cauchy stress tensor is negligible.
To find the solution to the linearised Maxwell model in Eq. 18 in the limit of small strain, first we
linearise the expression about the equilibrium, σ = τ +GI , to arrive at the following expression,

λT
∂τ

∂t
+ τ = 2λT GD , (50)

where D = 1/2(∇U +∇UT ) is the rate-of-deformation tensor. With the deformation in Eq. 38, the
solution is given by,

τ =

(
0 τ12

τ12 0

)
,

where τ12 satisfies the equation,

λT

(∂τ12

∂t
−Gγ cos(2πωt)

)
+ τ12 = 0 . (51)

We note that this equation is identical to the equation forA12 in Eq. 42 sinceA22(t) = 1 and provided
that τ12 = GA12. Therefore, the Cauchy stress tensor for the linearised Maxwell model in the case of
small amplitude oscillatory shear has the form:

σ =

(
G GA12

GA12 G

)
+O(γ2) , (52)

since A12(t) ∝ γ. Up to quadratic terms in the amplitude of the oscillation, Eqs. 52 and 49 match;
our method for stress relaxation is in good agreement with the linearised Maxwell model in the limit
of small strain.

Next, we also provide numerical validation for this agreement. Using the same parameters as in
the previous section but with γ = 10−3, the relative difference in each component of the Cauchy stress
tensor between the full 2D prescribed motion simulation and the linearised equation for the Maxwell
material are shown in Fig. 4. We observe that the relative difference in the first component of the
Cauchy stress tensor is slightly lower that the magnitude of the amplitude squared, O(10−8) < O(γ2),
which is in good agreement with our claim that the methods match up to quadratic terms in strain.

3.2 Linear expansion test
Since the deformation was prescribed in the previous rheological test, we now consider a dynamical
test in which a radially symmetric material is expanded uniformly. The motion of the boundary of a
circular viscoelastic structure of radius R is prescribed to move in the outward normal direction with
velocity as shown in Fig. 5. In this case, the fluid velocity is zero, and the motion of the interior of
the material is found by solving the system in Eqs. 32-34,

∇ · σ − ξU = 0 . (53)

For tractability of an analytical solution, we consider a simple model of a compressible material,

σ = GAAT , (54)

where now, G denotes an elastic modulus. We will use this rheological test to evaluate the material
response over time due to a perturbation at the boundary and compare the response with the linearised
Maxwell model.
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Figure 4: Comparison of a full 2D prescribed motion simulation with linear viscoelasticity for a
small amplitude oscillatory shear test. Shown here are the relative differences in the stress compo-
nents between the analytically computed stress for linearised Maxwell model and the computed stress
in the prescribed motion simulation; both stress measurements are normalised by the maximum stress
over time.

U
0

  e
r

t = 0 t = 0.1

Figure 5: Schematic for linear expansion test. A viscoelastic unit circular material undergoes an
expansion in the radial direction driven by a prescribed motion at the boundary. The initial material
configuration is shown in grey while the later configuration at time t = 0.1 is in blue. The arrows
indicate the velocity at the boundary that drives the expansion of the material. We note that the
deformation is not drawn to scale; in our simulations the relative deformation is 10−3.

3.2.1 Numerical validation

We compare the velocityU(r, t) that is obtained from a full 2D immersed structure simulation where
viscoelasticity is modelled by the simple differential equation in Eq. 35, to an analytical solution of
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the linearised Maxwell model (as in Eq. 18). Specifically, we linearise the upper-convected Maxwell
model and the force balance in Eq. 53 and find a series solution to the radial velocity, U(r, t) =
(Ur, Uθ) = (Ur, 0), in Appendix A. Here, Ur = U · er and Uθ = U · eθ = 0 correspond to the
radial and angular components of the velocity. Since in this test problem, the material experiences a
prescribed velocity in the radial direction on the boundary, we take the following boundary condition,

Ur(R, t) = U0 , (55)

for some velocityU0. We also assume that initially, the network undergoes no deformation: Ur(r, 0) =
0. For this section, we set ξ = 0.5, λT = 0.05, G = 1.0, R = 1.0, and t ∈ [0, 0.1] in arbitrary
units. The radial velocity at the boundary is set to be U0 = 10−2, which corresponds to a uniform
expansion of the disk 0.1% in the radial direction. The series solution is truncated after 10 terms with a
truncation error less thanO(10−16). For a poroelastic material, non-dimensionalisation can be used to
show that stress propagates effectively diffusively through the material with a characteristic timescale
of R2ξ/G [22, 31]. For these parameters, the poroelasticity diffusion timescale for propagation of
the deformation is approximately 0.5 arbitrary time units, while the stress relaxation timescale is 0.05
arbitrary time units. The radial velocity through the material at several time points is shown in Fig. 6a.
We observe that the material exhibits a fast equilibration within two relaxation time units.

For the numerical simulations, the Lagrangian domain is a unit disk that is discretised using
Distmesh [25] with a uniform mesh size. The algorithm was used to generate an unstructured grid
with 256 Lagrangian points with an averaged spatial discretisation of ∆s ≈ 0.118686. Internal elastic
forces are computed based on the material’s configuration. Specifically, for the computation of elastic
force densities, we use the following constitutive law for the material, P = JGA, which is equivalent
to the constitutive law for the Cauchy stress tensor in Eq. 54. The fluid velocity is zero because of
incompressibility, and the material’s position and reference configuration are updated in time using
the forward-Euler method to integrate Eq. 6 and 35, respectively, with time step ∆t = 10−5.

In order to compare the numerical solution of the immersed structure simulation to the truncated
series solution of Eqs. 18 and 53, we evaluate the series solution at the points on the Lagrangian grid.
Convergence data is presented in Fig. 6b which shows L∞ and L2 norms of the difference between
the truncated series velocity in the radial direction and the velocity resulting from the simulation at
t = 0.1 for different grid refinements. Similar to the previous test, the model also shows first order
convergence in both norms when compared to the line of slope 1 in the plot.

3.2.2 The effect of the relaxation timescale

By varying the relaxation timescale in the system, the material response in this modelling framework
can be dominated by either the elastic or viscous timescales as illustrated in Fig. 7. In both simulations
all parameters are kept fixed and in particular the diffusion timescale for the material is 0.5 arbitrary
time units. In the first simulation, the relaxation timescale is λT = 0.05, while in the second simulation
the relaxation timescale is much longer, λT = 2.0. For a small relaxation timescale, the stress imposed
by the deformation is gradually forgotten over time since the memory of the stress has a time constant
of λT = 0.05 arbitrary time units. This implies that over this characteristic timescale, the strain due
to the initial deformation decays on the timescale of the problem. In the case of a large relaxation
timescale, we conjecture that the material response should be well-described by an elastic solid. In
Fig. 7, we see that by 0.1 arbitrary time units, the velocity profile is nearly linear across the material,
which indicates that the initial deformation has propagated across the material. This is because the
memory of the deformation is kept for a much longer timescale than the time of the simulation since,
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Figure 6: Relative error in the velocity profile of the immersed structure for a linear expansion
test. (a) Given here is the velocity Ur(r, t) in the radial direction at several time points divided by the
maximum velocity Umax = 1.0 × 10−2. (b) The 2-norm and max-norm of the difference between the
truncated series solution of the velocity field and numerical solution scaled by the maximum velocity
at t = 0.1 is plotted for different grid sizes.

λT is chosen to be 2.0 time units. A linear velocity profile is indeed what is expected in the case of
elastic solid as seen by considering the limit λT → ∞ of the steady state solution of the velocity
profile in Appendix A. By varying the relaxation timescale, the rheological properties of the material
can be tuned to be either more elastic or viscous.
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Figure 7: Velocity profiles across the radially symmetric material for different relaxation
timescales. Shown here are different time plots of the scaled radial velocity Ur(r, t) by the maxi-
mum velocity Umax = 1.0× 10−2. The time-space evolution of the scaled radial velocity is illustrated
for the case of (a) small relaxation timescale, λT = 0.05, and (b) relaxation timescale much longer
than observable time, λT = 2.
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4 An application: Simulation of a cell in a microfluidic channel
In this section, the modelling framework for a porous, viscoelastic material immersed in viscous fluid
is applied to simulate the cell cytoplasm as the cell is driven through a microfluidic channel due to a
prescribed pressure difference on the extracellular fluid. Microfluidic devices have found numerous
applications in biology, biochemistry, and medicine because of their ability to efficiently control and
replicate microenvironments [32, 33]. Cell migration through microfluidic channels has gained inter-
est as an experimental method for one-dimensional, directed migration and has been applied to study
red blood cell flow in capillary-like microenvironments [28, 33], cell differentiation [4, 21, 29], and
the role of interstitial flow in tumor cell migration [27].

In this section, the porous, viscoelastic framework described above is applied to study the effect
of the cytoplasm rheology on the locomotion through a channel as illustrated in Fig. 8. Although mi-
crofluidic channels with chemical gradients have also been used to study directional chemotaxis [16],
here we consider the passive locomotion of cells due to an extracellular fluid flow in the absence of
chemotaxis and cell-surface adhesion. In this experimental setup, cells are driven through a confined
environment in which rheology of the cytoplasm becomes an important factor in determining the es-
cape time across this microenvironment. With this goal in mind, we compare two mechanical models
of the cytoskeleton: poroelastic material and poro-viscoelastic material. Depending on the pressure
gradient, the transient time is expected to be on the order of seconds to a few minutes and on this in-
termediate timescale, the rheological properties of the cytoskeleton have been measured [12] and are
known to be well-described by a viscoelastic material [1, 13, 23]. Using this experimental setup, we
demonstrate that the time for the cell to travel the length of the microfluidic channel is much longer
with a poroelastic cytoskeleton than with a porous viscoelastic cytoskeleton where stress relaxation
of the material has the effect of lowering the internal strain energy.

4.1 Model of the cell
Poroelastic cytoplasm model

The cell moves in the horizontal direction due to fluid flow from a prescribed pressure drop in a mi-
crofluidic channel as illustrated in Fig. 8. Our model of the cell has two subcellular components:
a combined membrane-cortex structure and the cytoplasm. The cell cytoplasm is represented as a
two-phase material: a viscous fluid phase (the cytosol) and a viscoelastic network (the cytoskeleton)
with position Xcyto. The cell membrane and its underlying actomyosin cortex are represented as one
structure and is modelled as an impermeable contractile elastic structure that moves with the fluid
velocity. The position of the membrane/cortex structure is denoted byXmem(s, t), where s is the local
parametric coordinate on the structure and τ̂ is the tangent vector to this curve. The membrane/cortex
structure lies on the boundary of the cytoskeletal network and thus, in the discretisation of the method,
the cytoskeleton and the membrane/cortex share discretisation points. This modeling choice is equiv-
alent to requiring that the boundary of the cytoskeletal network and membrane/cortex structure are
connected by rigid attachments on a lengthscale well below the mesh spacing. The force balance
equation for the fluid phase includes the membrane/cortex structure, the cytoskeletal drag, as well as
a repulsive interaction with the top and bottom channel walls,

µ∆u−∇p+ f cyto
drag + fmem

elastic + fmem
repulsive = 0 (56)
∇ · u = 0 , (57)
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Figure 8: Schematic of the computational setup with a side view of a cell in a microfluidic chan-
nel. The fluid flow is driven by a prescribed pressure differential across the channel. The width of the
channel in the narrowest section, w, is chosen to be 75% of the initial cell diameter. The arrows indi-
cate the characteristic Poiseuille velocity field imposed at the endpoints of the channel. Our model of
the cell has three subcellular components: a combined membrane-cortex structure, a viscous cytosol,
and a cytoskeletal network.

where f cyto
drag is the drag force density on the fluid due to the relative motion of the structure. For

the force densities, we use the convention that the subscript describes the type of force and the su-
perscript describes the structure acted upon by the force. fmem

elastic is the elastic force density on the
membrane/cortex structure and it is computed by

fmem
elastic =

∂

∂s
(T τ̂) . (58)

The tension T is given by

T = γ + k
(∣∣∣∂Xmem

∂s

∣∣∣− 1
)
, (59)

which describes a linearly elastic spring with stiffness k and resting tension γ. To capture non-
specific, small lengthscale cell-surface interaction, when the cell membrane is within a distance δw of
the channel wall, it experiences a repulsive force of the form

fmem
repulsive =

{
−krepulsive(δw − d) n̂ , d < δw
0 , d ≥ δw .

(60)

Here, d denotes the distance from the top and bottom channel walls to the cell, krepulsive represents the
stiffness of this repulsive interaction, and n̂ is a unit vector in the outward normal direction. On the
cytoskeletal network, the force density balance equation has the form,

F cyto
drag + F cyto

elastic = 0 . (61)
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Here, the cytoskeletal drag is defined as F cyto
drag = −f cyto

drag = ξ(u−U). The elasticity of the cytoskeletal
network is computed as described in Section 2.1 with the strain energy density for a compressible,
neo-Hookean material provided in Eq. 9.

Given a configuration of the membrane/cortex structure and the cytoskeleton, forces at every lo-
cation on the structures are computed, and then the pressure and velocity of the fluid, along with
velocity of the membrane/cortex and cytoskeleton are obtained by solving Eqs. 56- 57 and Eq. 61.
The positions of each structure are updated according to their own respective velocities,

dX

dt

mem

= u (62)

dX

dt

cyto

=
1

ξ
F cyto

elastic + u . (63)

Poro-viscoelastic cytoplasm model

The model formulation for a porous, viscoelastic cytoskeletal network is the same as above with
the addition of stress relaxation of the material phase. Here, stress relaxation is imposed through
the time-evolution equation for the reference configuration of the material as derived in Section 2.2.
This implies that in addition to moving each structure according to their respective velocity fields
as provided in Eqs. 62-63, the reference configuration of the each structure must also updated using
Eq. 35.

4.2 Stokes fluid solver
The method of regularised Stokeslets is used to solve the Stokes fluid equations given the forces of
the immersed structure. In order to drive the cell through the confined microenvironment, a pressure
difference is imposed horizontally across the microfluidic channel while the top and bottom channel
walls satisfy a no-slip boundary condition (Fig. 8). For the inlet and outlet flow, we prescribe a
Poiseuille flow profile with an unknown maximum speed, umax,

uinlet/outlet =
(
umax

(
1− y2

R2

)
, 0
)

= umax vinlet/outlet , (64)

whereR represents half the vertical separation between the channel walls. The other unknowns of this
system are the forces at the vertical channel walls, finlet/outlet, which produce a parabolic flow profile,
along with the forces along the top and bottom walls, fwalls, where the no-slip boundary condition is
enforced. Then, algebraically, the system has the following form:(

M C
S Π 0

)(
f
umax

)
=

(
0

∆P

)
, (65)

where

f =

(
fwalls

finlet/outlet

)
, C =

(
0

−vinlet/outlet

)
. (66)

Here, M denotes the regularised Stokeslet velocity matrix which maps regularised forces to flow
velocities while Π represents the regularised Stokeslet pressure matrix which maps regularised forces
to pressure. S is the discretisation of the operator which acts on a pressure field, p, as follows,

S p =
1

2R

∫ R

−R

(
poutlet − pinlet

)
dy. (67)
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For a given channel geometry and pressure difference across the channel, ∆P , the system of equations
is solved for the unknown forces and flow constant, umax.

4.3 Discretisation of the model
To simulate the dynamics of a cell driven by an external pressure drop, the cytoskeletal network is
spatially discretised using 62 points and every discrete point has its own current and reference position
and velocity field. The averaged spatial discretisation is ∆s = 2.0µm. The boundary points on the
network form the membrane/cortex structure. Every time instance, local forces are computed at every
discretised point along the cytoskeletal network and the membrane/cortex structure and their position
is updated according to their respective update equations (Eqs. 62-63). A finite difference scheme
is used to evaluate spatial derivatives in the force computations. Eqs. 62-63 are time integrated for
the positions of the cytoskeletal network and membrane/cortex structure and Eq. 35 for the reference
configuration of the cytoskeletal network using the Runge-Kutta-Fehlberg method, order 4/5 with a
variable time step. In these simulations, the cell membrane can be very close to the channel wall.
The high time accuracy with error control makes it less likely for the membrane to cross the chan-
nel wall due to time integration error. Given the parameters in Table 1 and a relative tolerance of
10−3 for the Runge-Kutta method, the resulting temporal discretisation has an average time step of
∆t = 5.53× 10−4 minutes. Model parameters are discussed below and provided in Table 1.

Model parameters. We perform simulations using the parameter values listed in Table 1. The cy-
toskeletal relaxation timescale, λT , is the only parameter varied to produce the different cytoskeleton
material models in Fig. 9. Where possible, parameter values are chosen to be roughly the same order
of magnitude as measured or estimated values in literature. The viscous drag coefficient is given by
the ratio of the dynamic viscosity of the fluid and the cytoplasmic permeability, ξ = µ/κ.

Symbol Quantity Value
R0 Resting radius 8.0 µm
γ Resting tension for membrane-cortex link 400 pN/µm
k Elastic stiffness for membrane-cortex link 1600 pN/µm
G Cytoskeletal shear modulus 142.5 Pa
K Cytoskeletal bulk modulus 285 Pa
λT Cytoskeletal relaxation timescale 2 - 17 mins
µ Cytosolic fluid viscosity 0.5 Pa·s
κ Cytoplasmic permeability 0.0067 µm2

∆P Prescribed pressure drop 190 Pa
2R Vertical separation between horizontal walls of channel 44 µm
w Width of the narrow channel 12.6 µm

krepulsive Constant for cell-surface repulsive interaction 19 kPa
δw Cell-to-wall separation distance 0.05 µm

Table 1: Definition and values of parameters for a cell passing through a microfluidic channel simu-
lation.
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Figure 9: Transit time through a microfluidic channel for a cell with different rheological de-
scriptions of the cytoskeleton. The location of the rear of the cell is plotted as a function of time for
the two cytoplasm models: poroelastic (solid, grey line) and poro-viscoelastic material with various
relaxation timescales. The dashed, black line indicates the end of the narrow portion of the channel
at 51 µm. The subplots represent snapshots of the cell’s position in the microfluidic channel and
its corresponding strain energy density throughout the structure for different cytoskeleton models, at
different times but at the same location in the channel. Positive strain energy density indicates a com-
pression of the material, while a negative strain energy density indicates expansion. The thickness of
the gap between the cell membrane and the channel walls determines the resistance to movement of
the cell through the channel due to a prescribed pressure gradient. For the poroelastic cytoskeleton,
the outward elastic forces push the cell toward the channel walls resulting in a small gap size (panel c).
In the case of the porous viscoelastic cytoskeleton, the restoring forces decay in time forming a larger
gap size (panel a) which offers less shear effective friction as the cell moves through the channel.

4.4 The effects of the cell cytoplasm rheology for confined fluid-driven loco-
motion

As the cell is driven by fluid flow through the microfluidic channel, the cell position is tracked over
time and the time to travel the length of the tube is recorded for the different cytoskeleton material
models (Fig. 9). Given the current and reference configuration of the structure, the strain energy
density of the material is also computed every time step by the constitutive relation for a compressible
neo-Hookean material in Eq. 9. We note that the cells are not adhering to the surface of the channel
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but instead interact with the surface of the channel through steric forces and are solely driven by
extracellular fluid flow arising from the prescribed pressure difference. For the different simulations
all parameters were kept constant except for the relaxation modulus for the actin cytoskeleton, λT ,
which was varied to be either 2, 5 or 17 minutes. If we consider a cell speed of 10 µm/min (varies due
to the cell type and flow conditions) and a channel length of 51 µm, the time to traverse the channel
is 5 minutes. The different values for the relaxation timescale were chosen relative to the travel time
for a characteristic cell speed of 10 µm/min.

In the case of the poroelastic cytoskeleton (solid, grey line in Fig. 9), as the cell travels through
the channel it gets constricted and deformed, and consequently its strain energy density increases
due to the deformation as shown in Fig. 9c. As the cell passes through the channel, the cell speed
is partially determined by the gap between the channel and the cell membrane. The thickness of the
gap is the result of a balance between pressure and the outward normal forces due to the elasticity
of the cytoskeleton. For the poroelastic cytoskeleton, the elastic forces push in the outward normal
direction creating a smaller space and thus, more resistance to the forward motion. Thus, the cell
moves slowly across the channel and its transit time is approximately 30 minutes. However, in the
case of the porous viscoelastic cytoskeleton, the restoring elastic force decays in time which allows
for larger gaps between the cell membrane and channel walls, and lowers the frictional resistance to
forward motion. In particular, we observe that as the relaxation timescale decreases, the transit time
through the narrow channel decreases as shown in Fig. 9. For example, for a relaxation timescales
of 2 minutes, which is roughly the timescale for reorganisation of actin filaments in the cytoskeleton,
the transit time is an order of magnitude smaller than in the case of a poroelastic cytoplasm. We
attribute a faster passage time to a decrease in the material’s elastic resistance against the channel
walls. Indeed, if we compare the cell’s strain energy density at the same location in the channel but
for different cytoskeletal models (Fig. 9a-c), we find that as the relaxation timescale decreases so
does the strain energy density function across the cell. This decrease in the strain energy is caused by
the material forgetting its original configuration, and thus the network offers less resistance against
the channel walls and allows for a faster transit time. We find that the rheology of the cytoskeleton
has a substantial effect on the passage time through a microfluidic channel, and thus, this model
provides the appropriate framework to capture the effects of cytoplasmic rheology and cytoskeletal
reorganisation for confined cell motility. We note that the interaction between the cell and the channel
wall presented in Fig. 9, occurs on lengthscales that are on or below the mesh spacing. While this
interaction is not well resolved, we have found that with finer resolution, the phenomenon of longer
transit time for the poroelastic cytoskeleton than the porous viscoelastic cytoskeleton is a generic
result of the problem. However, resolving the boundary layer of this cell-surface interaction and
getting the interaction quantitatively right would require either a higher spatial resolution or a more
detailed model of the cell-wall interaction.

5 Conclusions
In this paper, we presented a method for simulating porous viscoelastic material immersed in viscous
fluid. This method is based on the poroelastic IB method [30] in which the fluid and the structure phase
move with their own velocity field and the two phases are coupled through drag forces. Because the
structure and the fluid mechanics can be decoupled at each time step, fast methods for solving the
equations of the fluid mechanics can be used. Given that the material quantities are more naturally
represented in a Lagrangian framework, we developed a model for viscoelasticity in a moving frame
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that in the limit of infinitesimal strain is analogous to the linearised Maxwell model. However, the
viscoelasticity model presented here is non-linear and valid for large deformations that are common
in biological problems. As shown in Section 3.1, the network with a time-evolution equation for the
reference configuration mechanically, behaved like a linear viscoelastic material for small deforma-
tions. In Section 3.2, we validated that dynamically the network’s response matched that of a porous
viscoelastic material permeated by an incompressible viscous fluid.

The model of a viscoelastic material in this work is an extension of our poroelastic immersed
boundary method [30], where the material’s elastic forces are computed using a variational derivative
of the energy. The method begins with a continuum expression for viscoelasticity to derive an ordinary
differential equation for the relaxation of the material’s reference configuration. Hence, the formula-
tion resembles the mixed Eulerian-Lagrangian methods [11, 14] in that a continuum expression for
viscoelasticity underlies the numerical method. However, instead of transforming elastic quantities
back and forth between the Eulerian and Lagrangian frames, we exploit the fact that material quan-
tities are naturally represented in a Lagrangian coordinate system and compute viscoelasticity on a
moving, deforming frame. One advantage of this method over simply using a continuum viscoelastic
model, is that stress relaxation is imposed through a simple ordinary differential equation on the ma-
terial. Although only two-dimensional problems are considered in this paper, extending the method
to three-dimensional materials is trivial.

The viscoelastic model presented here is developed from a continuum description, but another
approach is to describe the material as a network composed of discrete viscoelastic elements as done
by Wróbel et al. [34]. However, there are several limitations of spring-based models of elasticity [30].
Specifically, in the spring model it is not clear what constitutive laws are modelled for the large
deformations and moreover, the mechanical properties of the material depend on the structure of the
mesh. The energy-based elasticity models do not have the limitations of the spring-based model, and
in our tests, the energy-based elasticity method was found to be much more accurate [30]. Here, we
exploit the fact that the first Piola-Kirchhoff stress tensor appears in the energy-based computation of
elasticity and we derive viscoelasticity for this stress tensor. Another advantage of this formulation
is the ability to include isotropic or anisotropic compressive and extensile (swelling) stresses in the
method. For example, including anisotropic swelling stresses in the method could be used to simulate
the formation of actin-rich protrusions such as filopodia and lamellipodia. However, in this case, to
prevent artefacts in the local material properties of the network due to mesh distortion, a model for
local conservation of actin density will be necessary. In particular, the method does not guarantee
to preserve the mesh spacing as the material deforms in the case of large strain and small relaxation
modulus as shown in Fig. 10. This is due to the fact that the model for viscoelasticity describes a fluid
rather than solid as in the poroelastic immersed boundary method [30], and in such cases, re-meshing
algorithms will need to be incorporated in the framework [3, 15].

This work was motivated by problems in cell biology, and our results showed that porous vis-
coelastic models were essential to describe the dynamics in the system presented. However, the
modelling framework and methods are not limited to applications in cell biology. Porous structures
can be found in many contexts in biology and engineering, and our models could be adapted to these
problems.
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Figure 10: Mesh distortion due to motion with large deformations. Since in the limit of small
relaxation timescale, the constitutive law for viscoelasticity describes a viscous fluid, the method does
not guarantee to preserve the mesh spacing as the material deforms. Thus, for large deformations, in
the case of moving, deforming structure, re-meshing algorithms need to be considered.
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A Solution to the linearized Maxwell model for a linear expan-
sion

In this appendix, we derive an expression for the network velocity due to a prescribed deformation
for a porous viscoelastic material with a simple constitutive law,

σ = GAAT , (A.1)

where G denotes an elastic modulus. We consider a dynamical test where the motion of the outer
boundary of a circular viscoelastic structure of radius R is prescribed to move in the outward normal
direction with velocity, U0. In this case, the fluid velocity is zero, and the system in Eqs. 32-33,
simplifies to the single equation,

∇ · σ − ξU = 0 , (A.2)

where U denotes the network velocity. The upper-convected Maxwell model for the time-history of
the Cauchy stress tensor with relaxation modulus λT , is given by,

λT
∇
σ +σ = GI , (A.3)

where ∇ is the material time derivative of a tensor called the upper convected time derivative,

∇
σ=

∂σ

∂t
+U · ∇σ −∇U · σ − σ · ∇UT . (A.4)

To find the solution of the linearised upper-convected Maxwell equation for a linear expansion test,
first, we linearise the model equation for viscoelasticity about the equilibrium: q = 0,U = 0, σ =
GI , where q denotes displacement. Note that the network displacement and velocity are related by

∂q

∂t
= U .

For a small perturbation about the equilibrium, σ = τ +GI , Eq. A.3 yields:

∇ · τ − ξU = 0 (A.5)

λT
∂τ

∂t
+ τ = 2GλTD , (A.6)

where D = 1/2(∇U +∇UT ) is the rate-of-deformation tensor. Since the deformation is only in the
radial direction, the network velocity is

U(r, t) = (Ur, Uθ) = (Ur, 0), (A.7)

where Ur = U · er and Uθ = U · eθ correspond to the radial and angular components of the velocity.
We obtain a dynamic equation for the radial velocity by applying the divergence operator to Eq. A.6
and then combining it with Eq. A.5,

λT
dUr
dt

+ Ur =
2GλT
ξ

(1

r

∂Ur
∂r

+
∂2Ur
∂r2

− 1

r2
Ur

)
. (A.8)

Because the material is undergoing a prescribed expansion due to non-zero velocity at the boundary,
we take the following boundary condition: Ur(R, t) = U0. Further, we assume that initially the
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network experiences no deformation, Ur(r, 0) = 0. To find an explicit expression for network velocity,
we look for separable solutions of the form Ur(r, t) = U(r)T (t):

ξ

2GλT

(λT .
T + T
T

)
=

1

r

U ′

U
+
U ′′

U
− 1

r2
= −c2

k , (A.9)

where . denotes a time derivative and c2
k are non-zero constants. Then, the network velocity is

Ur(r, t) =
∞∑
k=1

Dk J1(ckr) e
−(2GλT c

2
k/ξ+1)t/λT , (A.10)

where J1 represents the Bessel function of the first kind and Dk are the series coefficients. Because
of the non-homogeneous boundary condition, the solution in Eq. A.10 does not satisfy the boundary
condition and instead we write the solution to the differential equation with the appropriate boundary
conditions as,

Ũr(r, t) = Ur(r, t) + V (r) , (A.11)

where Ur solves the differential equation with the homogeneous boundary condition, Ur(R, t) = 0,
and the initial condition is Ur(0, r) = 0 − V (r) and V is such that it is the steady state solution to
Eq. A.8,

V =
2GλT
ξ

(1

r
V ′ + V ′′ − 1

r2
V
)
, (A.12)

with V (1) = U0. We find that the solution to the full system is

Ũr(r, t) =
∞∑
k=1

Dk J1(ckr) e
−(2GλT c

2
k/ξ+1)t/λT + U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.13)

where I1 is the modified Bessel function of the first kind. From the boundary condition on Ur:

Ur(R, t) = 0⇒ J1(ckR) = 0 , (A.14)

we find that ck are the zeros of the Bessel function of the first kind. The initial condition on Ur,

Ur(r, 0) = −V (r)⇒
∞∑
k=1

Dk J1(ckr) = −U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.15)

yields the coefficients of the series expansion

Dk = −U0

1∫
0

J1(ckr)
I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) r dr

1∫
0

J1(ckr) · J1(ckr) r dr

, (A.16)
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from the orthogonality of the Bessel functions of the first kind in the appropriate inner product,
〈f, g〉 =

∫ 1

0
x f(x) g(x) dx. Thus, the network velocity in the radial direction r and at a particular

time t is

Ũr(r, t) =
∞∑
k=1

Dk J1(ckr)e
−(2GλT c

2
k/ξ+1)t/λT + U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.17)

where ck denotes the zeros of the Bessel function of the first kind, Dk are the coefficients provided in
Eq. A.16, and U0 represents the prescribed velocity at the boundary of the material.




