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ARTICLE INFO ABSTRACT

Keywords: SOA formation is not well predicted in current models in urban area. The interaction among multiple anthro-
Secondary organic aerosol pogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere.
m-Xylene Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-me-

Polycyclic aromatic hydrocarbons
Two-product model
Surrogate mixture

thylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an
atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant
low NO, and extremely low NO, (H»0,) conditions. Addition of m-xylene suppressed SOA formation from the
individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate
mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA
growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO5]/[RO,] ratio but
negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-
xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics
such as fu4 versus f43 H/C ratio, O/C ratio, and the oxidation state of the carbon (OS,) were consistent with a
continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from
PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from in-
dividual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.

1. Introduction generally observed to decrease as NOy increases; however, some studies

observe reverse NO, dependence at low NOj level due to the formation

Polycyclic aromatic hydrocarbons (PAHs) are significant compo-
nents of semivolatile gas-phase emissions from anthropogenic sources
including incomplete combustion emissions from heavy-duty diesel
exhaust vehicles (Shah et al., 2005), biomass burning (Conde et al.,
2005; Hedberg et al., 2002), and meat cooking (McDonald et al., 2003),
and may be a major “missing” source of SOA. Formation of naphthalene
and its alkyl derivatives are favored among PAHs and can represent as
much as 80% of the total PAHs in a combustion smoke sample (Conde
et al., 2005). Previous studies have shown that SOA yields for naph-
thalene, 1-methylnaphthalene, and 2-methylnaphthalene range from
0.04 to 1.81 (Chen et al., 2016; Shakya and Griffin, 2010; Nishino et al.,
2012), which indicates a significant impact on SOA formation from
anthropogenic sources.

Nitrogen oxides (NOy) levels play an important role on SOA for-
mation from small hydrocarbons (10 carbons or fewer)(Kroll et al.,
2006; Ng et al., 2007; Song et al., 2005; Li et al., 2015). SOA yields are

of OH from NO (Kroll et al., 2006). ROy + NO and ROy + HO, oxi-
dation mechanisms dominate the reaction pathway in forming volatile
organic compounds (VOCs) oxidation products. m-Xylene has been
extensively studied in smog chambers and significant SOA formation
has been reported (e.g. (Bahreini et al., 2005; Chhabra et al., 2011;
Cocker et al., 2001b; Izumi and Fukuyama, 1990; Li et al., 2015; Loza
et al., 2012; Ng et al., 2007; Odum et al., 1996; Qi et al., 2010; Song
et al., 2005, 2007; Takekawa et al., 2003; Nakao et al., 2011a; Sato
et al.,, 2010). The chemical composition and aging properties of SOA
formed from m-xylene photooxidation have been investigated pre-
viously; however, SOA formation from aromatic mixtures (e.g., with
PAHs) is poorly understood. Previous chamber studies have reported
that NO, level influences SOA formation from m-xylene photo-
oxidation—SOA formation per m-xylene reacted increases with de-
creasing NO, levels (Li et al., 2015; Song et al., 2005). Song et al.
(2007) studied SOA formation from m-xylene and utilized H>O,
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photolysis as a hydroxyl radical source, leading to higher hydroxyl
radical concentrations relative to NOy experiments and thereby greater
SOA formation. Hezne et al. (2008) reported that SOA yield increases
when aromatic hydrocarbons react with OH instead of NO under lower
[NO1/[HO,] ratios. Therefore, gas phase radical conditions are sig-
nificant factors to SOA formation from aromatic hydrocarbon pre-
cursors. The OH radical reactions occurred mainly by OH radical ad-
dition pathway (> 90%) to the aromatic ring(s) for both monocyclic
aromatic hydrocarbons and PAHs (Atkinson and Arey, 2007; Li et al.,
2017). Forstner et al. (1997) reported that major three products (ap-
proximately 75%) of SOA from m-xylene oxidation includes 3-methyl-
2,5-furandione, m-toluic acid, and 2,5-furandione. For naphthalene
SOA under low NO, condition (with H,0,) ~26.2% is associated with
organic peroxide compounds, and others are mainly from acids, such as
hydroxyphthalic acid, 2-formylcinnamaldehyde (30-60%), phthaldial-
dehyde, phthalic anhydride (Atkinson and Arey, 2007; Nishino et al.,
2012, 2009; Wang et al., 2007), and phthalic acid (Kautzman et al.,
2010).

Previous studies reported that current climate and air quality
models underestimate the total organic aerosols including primary or-
ganic aerosol (POA) and SOA in urban and remote areas (e.g. (Heald
et al., 2005; Volkamer et al., 2006; Kleinman et al., 2008; Utembe et al.,
2011; Hodzic et al., 2009; Henze et al., 2008). It is hypothesized that
the underestimation is attributable to missing chemical reaction pro-
cesses and errors in SOA photochemical (Zhang et al., 2006) as well as
overestimation of POA (de Gouw et al., 2005). Hodzic et al. (2009)
reported that anthropogenic SOA is underestimated by a factor of two
in the late morning with the discrepancy increasing rapidly during the
day. Volkamer et al. (2006) also estimated that anthropogenic SOA is
underestimated by a factor of 5 after especially when photochemistry
enhance an order magnitude after few hours of photooxidation.

Currently, SOA formation potentials are measured from single pre-
cursors where the atmospheric reactivity of the chamber study is set by
the individual oxidizing species and NO,/oxidants injected. However,
these precursors react in a complex atmospheric mixture dictated by
atmospheric NOy and many other volatile organic compounds present
especially in the urban atmosphere. Therefore, this study investigates
how the individual SOA formation from select PAHs is influenced by the
presence of other VOCs. This study takes advantage of the extensive m-
xylene experimental database and previous studies to identify how a
simple VOC mixture impacts SOA formation from PAH precursors.
Further, the atmospheric reactivity is controlled by an atmospheric
surrogate developed by Carter (2010) to explore the impact of atmo-
spheric reactivity on SOA formation from individual PAH.

2. Experimental methodology
2.1. Experimental setup

All mixtures and individual PAH experiments were conducted in the
UCR/CE-CERT environmental chamber described in detail elsewhere
(Carter et al., 2005). The facility includes a 6m X 6 m X 12m ther-
mally insulated enclosure, which is continuously flushed with purified
air (Aadco 737 series (Cleves, Ohio) air purification system). Inside the
enclosure, there are two 90 m® 2 mil (54 um) FEP Teflon” film reactors,
and four banks of 115W 4-ft blacklights for driving NO, photolysis
within the reactor. The top frames of the chamber are controlled by
elevators that maintain a positive differential pressure of ~0.02" H,0.
Aliquots of volatile organic compound were injected into the chamber
through a heated glass injection manifold system and flushed into the
chamber with pure N,. PAHs and hydrogen peroxide (50 wt% H,0,)
were injected into a glass manifold tube with a 55 °C oven, and flushed
into the chamber with purified air. NO was prepared by filling a cali-
brated glass bulb to a known pressure of pure NO followed by flushing
into the chamber with pure N,. The full surrogate used for select ex-
periments consists of n-butane (135 ppb), n-octane (36 ppb), ethane
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(25 ppb), propene (20 ppb), trans-2-butene (20 ppb), toluene (33 ppb),
and m-xylene (31 ppb) (Carter, 2010). 100 ppb perfluorohexane was
injected into the chamber as an inert tracer.

2.2. Instrumentation

Gas phase: Hydrocarbon decay and perfluorohexane were mon-
itored with dual Agilent 6 980 (Palo Alto, CA) gas chromatographs (GC)
equipped with flame ionization detectors (FIDs). NO and NO, were
measured by a TECO model 42 chemiluminescence NOy analyzer while
O3 was monitored with a Dasibi Environmental Corp. Model 1 003-AH
O3 analyzer.

Particle phase: Particle size distributions (27-686 nm) and number
concentrations were measured with an in-house build Scanning
Mobility Particle Sizers (SMPS) described by Cocker et al. (2001a).
Aerosol particle density was measured with an aerosol particle mass
analyzer (APM, Kanomax model 3600) and SMPS in series (APM-
SMPS). A detailed description of APM-SMPS is described elsewhere
(Malloy et al.,, 2009; Nakao et al., 2011b). Particle volatility was
monitored with a volatility tandem differential mobility analyzer
(VITDMA) (Nakao et al., 2012) for which monodisperse particles of
mobility diameter (D,,;) are selected by the 1st differential mobility
analyzer (DMA) followed by transport through a Dekati thermodenuder
(TD, residence time: ~16s, at 100 °C) and resizing after the TD in the
second DMA column (D). Volume remaining fraction (VRF) is then
calculated as VRF = (Dpp/Dpmi)°.

High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-
ToF-AMS) has been widely used to provide quantitative chemical
composition and size-resolved mass distributions with high time re-
solution (Aiken et al., 2007, 2008; DeCarlo et al., 2006). Details of the
HR-ToF-AMS and software analysis are described in DeCarlo et al.
(2006). This study used W-mode for higher mass resolution analysis,
including mass-to-charge (m/z) distribution, elementary analysis of
elemental carbon (EC) and organic carbon (OC). Data was analyzed
with ToF-AMS analysis toolkit squirrel 1.56D/PIKA 1.15D version.

2.3. Gas-phase kinetic modeling of radical species

The OH radical concentration was estimated by fitting the m-xylene
decays, using the SAPRC gas-phase mechanism (Carter and Heo, 2013).
SAPRC 12 was then used to estimate HO, and RO, radical concentra-
tion. Further, the model used a kinetic and equilibrium approach to
predict secondary particulate matter formation and ozone (Carter,
2010; Carter and Heo, 2013).

2.4. SOA yield

SOA formation is evaluated assuming gas-particle partitioning
equilibrium of semivolatile partitioning products is achieved. Odum
et al. (1996, 1997) established the expression of fractional SOA yield
(Y) to describe the gas-particle partitioning absorption model. SOA
yield for individual hydrocarbons is defined by equation (1), where
AM, (ug m %) is the total organic aerosol mass concentration, AHC (ug
m ™) is the amount of hydrocarbon reacted, and o; and Kom,i m3ug™h
are the mass-based stoichiometric coefficient and absorption equili-
brium partitioning coefficient of product i, respectively.

n n

ZK=MOZ

i=1

_AM,

aiKom,i
1+ Kom,iM,

AHC [6))

Total organic aerosol formation for multicomponent mixture is es-
timated from individual VOC yields by:

M total estimated = Z YHC,iAHCHC,i 2

M, predicted = Yaca X AHCycn + Yacp X AHCycp, 3
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Table 1
Initial experimental conditions and SOA yields for all experiments.

Atmospheric Environment 180 (2018) 256-264

Run number Compounds Initial PAHs Initial m-xylene AHC_PAHs AHC_ m-xylene NO® AM, SOA yield Density
ppb ppb pgm~—3 pug m~—3 ppb pgm~3 gem™®
1784A naphthalene + m-xylene 36.6 114.8 124.3 247.9 12.5 42.0 0.11 1.37
1784B naphthalene 37.7 - 184.7 - 12.4 39.7 0.21 a
1788A naphthalene + m-xylene 68.6 44.9 209.3 92.2 8.3 61.7 0.20 1.33
1788B m-xylene - 44.0 - 158.5 8.1 4.8 0.03 b
1791A naphthalene + m-xylene 321 94.4 106.8 187.4 8.7 39.4 0.13 1.33
1791B m-xylene - 91.8 - 248.1 8.7 7.2 0.03 b
1794A naphthalene + m-xylene 49.5 50.0 181.9 1171 9.5 55.0 0.18 1.34
1794B naphthalene 50.9 - 226.1 - 9.5 79.9 0.35 a
1797A naphthalene + m-xylene 53.5 50.9 184.8 145.7 11.5 71.3 0.22 1.32
1797B m-xylene - 58.9 - 201.0 11.5 11.6 0.06 b
1800A naphthalene + m-xylene 30.0 111.2 102.9 242.1 12.2 40.9 0.12 1.33
1800B naphthalene 29.8 - 148.6 - 12.1 47.8 0.32 a
1959A naphthalene + m-xylene 34.1 110.0 118.8 185.2 12.4 50.3 0.17 1.42
1959B naphthalene 34.1 156.6 - 12.5 79.0 0.50 a
1804A 1-methylnaphthalene + m-xylene 38.2 125.3 152.8 214.0 12.4 123.9 0.34 1.30
1804B 1-methylnaphthalene 38.8 - 203.9 - 12.1 136.3 0.67 c
1805A 1-methylnaphthalene + m-xylene 66.5 66.7 227.8 115.9 12.7 155.3 0.45 1.33
1805B 1-methylnaphthalene 65.9 - 303.7 - 12.5 152.8 0.50 c
1808A 1-methylnaphthalene + m-xylene 32.8 129.4 122.7 193.0 11.8 81.9 0.26 1.31
1808B 1-methylnaphthalene 34.8 - 176.0 - 11.8 95.1 0.54 c
1976A 1-methylnaphthalene + m-xylene 36.5 120.5 161.7 215.1 10.7 137.3 0.36 1.35
1976B 1-methylnaphthalene 38.5 - 214.9 - 11.0 158.8 0.74 c
1978A 1-methylnaphthalene 25.9 - 130.9 - 11.5 112.4 0.86 1.48
1978B 1-methylnaphthalene + m-xylene 28.2 68.8 128.1 136.3 11.5 137.5 0.52
1936A 2-methylnaphthalene + m-xylene 36.1 117.8 158.2 234.8 11.5 58.2 0.15 1.37
1936B 2-methylnaphthalene 35.5 - 213.5 - 11.4 84.2 0.39 d
1979A 2-methylnaphthalene + m-xylene 48.8 61.3 236.4 134.6 12.6 131.8 0.36 1.38
1979B 2-methylnaphthalene 54.5 - 301.0 - 12.5 151.9 0.50 d
1981A 2-methylnaphthalene + m-xylene 26.0 117.0 119.8 226.1 12.4 78.4 0.23 1.35
1981B 2-methylnaphthalene 28.2 - 160.5 - 12.4 134.8 0.84 d
1982A 2-methylnaphthalene 39.0 - 216.0 - 13.0 108.0 0.50 1.44
1982B 2-methylnaphthalene + m-xylene 36.9 69.2 188.5 161.6 12.9 103.5 0.30 d

[a], [b], [c], and [d]: The experiment lacks the measurement of density, so the assumed density is derived from the average of individual PAH or m-xylene experiments. [a]: Assumed
density for naphthalene is 1.48 gcm ™ 3; [b]: Assumed density for m-xylene is 1.4 gcm ™ >[c]: Assumed density for 1-methylnaphthalene is 1.41 gcm ™ 3; [d]: Assumed density for 2-

methylnaphthalene is 1.37 gcm ™ [e]: In the absence of H;0,.

where Yyc; is estimated from the o; and Kon; in (eq (1)) and total
aerosol mass concentration measured. In this study, Ym.ylene predicted
and Ynaphthatene_predicted 1S defined as following equations:

Mo m—xylene predicted
Yin —xylenepredicted =

A Hcm—xylene (4)
Y, Mo naphthalene predicted
naphthalene predicted =
A chaphthalene (5)

3. Results and discussion
3.1. SOA formation from mixtures of m-xylene and individual PAH

All experiments were conducted for 6-8h at UCR CE-CERT en-
vironmental chamber at T = 27 °C and RH < 0.1%. Table 1 summarizes
the key parameters of SOA experiments along with total organic aerosol
mass formed, SOA yields, and average density. Empirical fits to the two-
product model (eq (1)) for naphthalene, 1-methylnaphthalene, and 2-
methylnaphthalene under various conditions have been explored pre-
viously within the same chamber under the same light, RH, and tem-
perature conditions (Table S1) (Chen et al., 2016). Fig. S1 shows the
two-product model curves for three individual PAH under different
conditions including H,O, with NO and without NO addition (curvel),
high NO, + HONO (curve 2), low NOy (curve 3), along with m-xylene
SOA yield curves obtained for similar conditions (Song et al., 2005).
The two-product model SOA yield curve 3 for low NOy condition and
curve 1 for H,O, condition were used in this study for predicting the
total organic aerosol formation for individual PAH and m-xylene. The

predicted to measured organic aerosol mass concentration (M,) for
mixtures of individual PAH with m-xylene are summarized (Table S2).
Ypredicted/ Ymeasured Tanges from 1.23 to 1.61, 0.78-1.15, and 1.08-1.59
for m-xylene/naphthalene mixture, m-xylene/1-methylnaphthalene,
and m-xylene/2-methylnaphthalene, respectively for low NOx condi-
tions. Measured versus predicted SOA formation for each PAH/m-xy-
lene photooxidation experiment (Fig. 1) shows a linear correlation with
a 0.90 (~10% less SOA is formed than prediction). m-Xylene/1-me-
thylnaphthalene produced a higher SOA yield than m-xylene with 2-
methylnaphthalene or naphthalene, consistent with individual PAH
photooxidation SOA yield (Chen et al., 2016). SOA formation from PAH
and m-xylene mixtures are expected to be affected by the initial PAHs/
NO ratio, m-xylene/NO ratio, m-xylene/PAHs mixing ratio and other
changes to the reactivity of the system. The VOCs/NO ratio has pre-
viously been found to affect the SOA formation from aromatic pre-
cursors (Li et al., 2015, 2016; Song et al., 2005) by influencing the
relative abundance of radicals (e.g., RO2:HO,:OH) in the system.
Therefore, differences between reactivity from individual precursor/
NO, system and those induced by addition of different hydrocarbons
changes the aerosol formation estimated by using the simple gas-par-
ticle partitioning approach where the hydrocarbon mixture aerosol
formation is predicted from the sum of individual precursors. The two-
product model for this particular matter over predicts the experimen-
tally observed SOA formation. The bias increases might result from
increasing m-xylene/PAH ratio. The bias may be induced by changes to
the reactivity of the overall system (e.g., HO»/HO ratios, OH con-
centration, HO,/NO or RO,/NO ratio, etc.) or by additional cross-re-
action between oxidation products from the two individual precursors.
A previous study observed cross-reactions of glyoxal and methylglyoxal
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Fig. 1. Secondary organic aerosol yields as a function of organic aerosol mass con-
centration (AM,) for each PAH/m-xylene mixture experiment under low NO, condition.
Left upper figure represents the linear relationship of measured SOA yields and predicted
SOA yields. Dashed curves are derived from each PAH curve 3 as shown in Fig. S1.

during secondary organic aerosol formation (Schwier et al., 2010).
Section 3.7 addresses the significance of cross-reaction between oxi-
dation products from mixture precursors.

The relationship between SOA yield and the initial m-xylene/PAHs
(0.7-3.7) is shown in Fig. 2. Initial PAH hydrocarbon concentration at
low NOy conditions is the key metric for estimating the SOA formation
from aromatic/PAH hydrocarbon photooxidation. Yp,.yiene predicted 1S
constant with initial m-xylene/PAHs since the SOA yield for m-xylene is
located on the plateau of two-product curve for the given aerosol mass
concentration. The SOA yield for naphthalene prediction (Ynaphthalene
predicted) decreases from 0.34 to 0.26, indicating m-xylene addition
suppresses naphthalene SOA yield. Overall, the total SOA yield (Yota1)
and total M, decrease as the initial m-xylene/PAHs increases. The M,_
predicted 18 higher than the M, measurea for naphthalene/m-xylene mixture
by 23%—-61% and is not a function of total AHC (Fig. S2). This study
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suggests additional precursor m-xylene suppressed the SOA formation
from naphthalene.

3.2. Overall and instantaneous aerosol formation after onset of aerosol
growth

The timing for the onset of new particle formation was identified as
the time at which aerosol mass concentration (AM,) equaled 2 ug m~2.
Aerosol yield can then be estimated as the amount growth after the new
particle induction period versus the hydrocarbon consumed after new
particle formation commences (Li et al., 2015). The onset of new par-
ticle formation varies widely—for example, exp. 1784A (naphthalene
36.6 ppb, m-xylene 114.8 ppb, NO 12.5ppb) has an irradiation of
41 min while exp. 1784B (naphthalene 37.7 ppb, no m-xylene, NO
12.4 ppb) has an irradiation time of 156 min (Fig. S3 and Table S3).
Fig. 3 compares aerosol growth with and without shifting for timing of
new particle formation. The aerosol growth curve is almost linear after
offset with linear regression for each system. The slope of the line then
indicates the aerosol yield accounting only for hydrocarbon decay after
the onset of aerosol formation. This implies three important observa-
tions: 1) aerosol formation is independent of the HC consumed prior to
aerosol formation; 2) the aerosol formation after particle formation is
not strongly influenced by organic aerosol mass concentration present
for these mixture systems; and 3) addition of species that influence the
timing of aerosol formation by altering the reactivity of the system will
directly impact total aerosol formation; therefore AHC precursor re-
acted after the onset of aerosol formation.

The higher the initial m-xylene/naphthalene ratio the lower the
slope is consistent with the lower SOA yield under higher m-xylene/
naphthalene ratio. m-Xylene decay is observed (Table S3 and Fig. S3) to
be faster than naphthalene when the initial m-xylene to naphthalene
(ppbv/ppbv) mixing ratio is greater than 1 (e.g., 1784A, 1791A, and
1800A). Conversely, for mixing ratios less than 1 the naphthalene is
observed to decay faster than the m-xylene (Table S3). This indicates
that the addition of mixture species changing the time of AHC precursor
reacted. Therefore, the initial hydrocarbon mixing ratio is a critical
factor to determine the contribution of different precursor to SOA for-
mation for constant NO range.

Aerosol mass concentration starts to increase for the m-xylene/
naphthalene mixture experiment, only after the NO decreases from
12.5 ppb to 1 ppb (t = 33 min) (Fig. S4). The irradiation time for NO to
consume to sub-ppb level from naphthalene without m-xylene is much
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A YigarYmxyene predcied
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Fig. 2. Relationship between initial m-xylene/naphthalene and SOA yield. Marker size is a function of M, (from 10 ug m ~> to 80 pg m ). “SOA yield by nap decay” represents SOA yield

is estimated by total organic aerosol divided by naphthalene decay only.
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Fig. 3. SOA mass concentration (AM,) from (a) naphthalene/m-xylene, (b) 1-methylnaphthalene/m-xylene, and (c) 2-methylnaphthalene/m-xylene mixture photooxidation experiments
as a function of total hydrocarbon consumption (AHC). Right panels represent the liner relationship of SOA mass concentration with the difference of total hydrocarbon reacted with the
first hydrocarbon decay at the initial lag phase (AHC- AHC’) for (d) naphthalene/m-xylene, (e) 1-methylnaphthalene/m-xylene, and (f) 2-methylnaphthalene/m-xylene mixture photo-
oxidation experiments. AHC’ represents the first hydrocarbon decay at the initial lag phase.

longer than the mixture (188 min). SAPRC-12 gas-phase chemical
model predicts RO, and HO, radicals to sharply increase to 10° mole-
cules cm ™3 level when NO is depleted (Fig. S5). Competition for
available hydroxyl radical led to the consumption of only 50% and 65%
of the precursor m-xylene and naphthalene, respectively versus 94%
naphthalene consumption in the naphthalene-NO, experiment. The
mixture experiment's rapid conversion of NO to NO, greatly enhanced
HO,+ RO, reaction while the slow conversion of NO to NO, in naph-
thalene experiment led to greater contribution of RO+ NO chemistry.
Therefore, it is expected that the mixture experiment will lead to lower
volatility hydroperoxides products (ROOH) compared with the re-
activity higher volatility RO,+NO products (e.g., nitronaphthalene,
and naphthoquinone (Kautzman et al., 2010)).

3.3. SOA growth rate for different PAH mixtures

SOA mass concentration (AM,) as a function of total hydrocarbon
reacted for m-xylene/PAH photooxidation experiments was shown for
different mixing ratio all with similar initial NO levels (Fig. 3a, b, and
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3c). The hydrocarbon reacted lag phase (AHC’, the hydrocarbon reacted
when AM, = 2ug m~ %) was subtracted from total HC reacted (AHC)
(Fig. 3d, e, and 3f). The relationship of M, and AHC — AHC’ was linearly
curve fit with the slope representing the SOA formation rate for each
experiment after onset of particle growth. The slopes are the highest
(0.38 and 0.45) when the mixing ratio is 1:1 for naphthalene and 2-
methylnaphthalene, respectively, but the slope is the highest when the
mixing ratio is 2:1 for 2-methylnaphthalene, likely due to the different
reaction mechanism. The SOA formation growth rate was explored for
different m-xylene/PAH mixtures by investigating the correlations with
OH radical, HO,, RO, radical, and the different mixing ratios (Fig. 4
and Table S4). The relationship of SOA formation rate to average OH
concentration (Fig. 4a) suggests that the OH radical alone concentration
is not the determining factor for aerosol production in the naphthalene/
m-xylene mixture photooxidation. Only using OH radical concentration
cannot explain the gas phase reactivity. Integrated [OH]/[HO,] ratio
(Fig. 4b) ranges from 1.03 x 10~ 3 to 6.43 x 102 for the various
mixtures with SOA growth rate slightly increasing with increasing
[OH]/[HO,] ratio. Furthermore, if we consider [NO]/[HO,] (Fig. 4c),
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Fig. 4. SOA formation rate of PAH/m-xylene mixture hydrocarbon reacted after the lag phase versus with (a) the [OH] radical concentration; (b) [OH]/[HO,] ratio; (c) [NO]/[HO,] ratio;
(d) [HO-]/[RO,] ratio; (e) initial PAH/NO ratio; (f) initial m-xylene/NO ratio. Marker size as a function of initial m-xylene/PAH concentration (min:0 ~max: 5). In this study we consider
r* between 0.64 and 1.0 (0.8 < |r| < 1) to be a strong correlation, 7* less than 0.25 (0 < |r| < 0.5) to be weak, and otherwise to be moderate (Devore and Berk, 2012).

the SOA growth rate is observed to increase with [NO]/[HO,] ratio.
The [NO]/[HO,] trend is opposite of that suggested by Henze et al.
(2008). They suggest based on global modeling that aromatic species
produce more SOA when they react with OH radicals in regions where
the [NO]/[HO,] ratios are lower. A strong positive correlation between
SOA formation and [HO,]/[RO-] ratios was observed (Fig. 4d), sug-
gesting increasing HO, + RO, chemistry enhances SOA formation. High
initial PAH/NO ratio (Fig. 4e) and the low initial m-xylene/NO ratio
(Fig. 4f) are also weakly associated with more SOA formation, sug-
gesting m-xylene inhibits OH radical availability for PAH reaction in the
PAH/m-xylene low NOy condition. However, the limitation and un-
certainties of these results from Fig. 4 include the limited experimental
data available for PAH/m-xylene mixtures, and the uncertainties of the
SAPRC model predicting HO, and RO,. The uncertainties in radical
estimates may originate from uncertainties in the SAPRC model esti-
mated mechanism and relevant rate constant(s) or photolysis rates;
however, other applications of mechanisms based on similar

assumptions have been found to perform reasonably for related com-
pounds (Carter, 2010).

The individual PAHs have a delayed second step oxidation relative
to first step oxidation aerosol growth evidenced by a “hook” (also ob-
served in Chan et al., 2009) at the end of higher hydrocarbon reacted
(AHC) (Fig. S6); the mixtures lack the “hook” suggesting different
chemical pathways for individual PAHs and mixtures. The SOA for-
mation from 1-methylnaphthalene is observed to be higher (Fig. 4) than
naphthalene or 2-methylnapthalene. This is consistent with earlier
studies suggesting that the mechanism of OH radical oxidation for 1-
methylnaphthalene is different than naphthalene and 2-methyl-
naphthalene. The OH addition most frequently occurs at the C2 position
for 1-methylnaphthalene, while the OH addition most frequently occurs
at C1 position for naphthalene and 2-methylnaphthalene (Wang et al.,
2007; Kautzman et al., 2010). More aldehyde group compounds formed
from oxidation of first-generation dicarbonyl fragment product from 2-
methylnaphthalene photooxidation than 1-methylnaphthalene (Chen
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et al., 2016).
3.4. Mixtures under absence of NO,

Song et al. (2007) observed that SOA mass concentration from
aromatics is enhanced by injecting H,05 as it increases hydroxyl radical
levels which in turn increase organic peroxide formation rates. SOA
yields from PAH precursors were suppressed as more m-xylene was
added, consistent with observations from the low NO, condition (Table
S4). The two-product model overestimates aerosol formation for m-
xylene/naphthalene photooxidation by 34%-78% based on individual
PAH/H,0, and m-xylene/H,0, two-product model curves (as Table S1
and Fig. S7). Adding m-xylene to PAHs photooxidation reduces the OH
radicals for all PAH/m-xylene mixtures H,O, experiments (Fig. S8) and
SOA formation from the precursors. Therefore, the overprediction of
SOA formation from the two-product model derives from changes to the
OH radical levels by the mixture of precursors versus of the individual
precursor.

3.5. Individual PAH/surrogate mixture

An ambient surrogate mixture (Carter, 2010) was introduced into
the PAH system to further understand the effect of mixture compounds
in the atmosphere. The initial condition and experimental results for
individual PAH and surrogate mixture photooxidation experiments in
the absence and presence of NO, are summarized (Table S5). The H,O,
(runs: 1814AB) was injected as an additional OH radical source,
thereby increasing both OH and hydroperoxyl (HO,) radicals. CO was
introduced with HyO, (run: 1814A) to further promote HO, radical
concentration through the CO oxidation cycle. SOA formation from the
naphthalene/surrogate is less than 5ugm ™2 with addition of CO and
H,0, condition (run: 1814A), while the experiment without CO addi-
tion formed more aerosol mass concentration (73.1pgm~3, run:
1814B) (Fig. S9). The large differences in aerosol formation are at-
tributed to greatly reduced OH superceding any additional aerosol
formation through increasing HO,. The HO, radical increases rapidly at
the onset of aerosol formation (Fig. S9), which indicates that the CO
and surrogate reacted with OH radical and formed more HO, as well as
lower PAH reacted leading to lower SOA formation. The surrogate
mixture in the presence of NOy inhibits SOA formation from individual
PAH photooxidation, indicating that SOA formation from PAH is less
pronounced due to the atmospheric reactivity conditions changed by
the addition of the ambient surrogate. Some intermediate species from
the surrogate mixture system could influence SOA formation by chan-
ging OH radical concentrations and the volatility of condensable species
(e.g., glyoxal uptake on SOA from toluene photooxidation under NOy
condition (Nakao et al., 2012).) Similarly, the presence of the surrogate
mixture during photooxidation of intermediate-low volatility organic
compounds from consumer products was also found to influence SOA
and O3 formation (Li et al., 2018).

3.6. Volatility and density evolution

Volume remaining fraction (VRF) evolution of SOA generated from
different m-xylene/PAHs mixtures photooxidation is shown in Fig. S10
and Table S6. VRF increased from 0.26 to 0.69 for the 1:1.5 (m-xyle-
ne:naphthalene) mixing ratio. Previously, our group reported the VRF
increasing from 0.35 to 0.7 for naphthalene/low NO, experiment (Chen
et al., 2016) and from 0.21 to 0.4 for m-xylene/low NO, experiment (Li
et al., 2015). Therefore, the mixture VRF of 0.69 is indicative of low
volatility aerosol mainly from naphthalene photooxidation. Increasing
the mixing ratio (m-xylene:PAH) from 1:1 to 4:1 decreased the final
VRF from 0.66 to 0.55, 0.74 to 0.65, and 0.70 to 0.56, respectively for
m-xylene mixtures with naphthalene, 1-methylnaphthalene, 2-methyl-
naphthalene, indicating m-xylene addition increases the volatility of
secondary organic products. The 1-methylnapthalene/m-xylene mixture
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formed the lowest volatility products, consistent with the VRF order
from individual PAH (Chen et al., 2016).

Densities for each m-xylene/PAHs mixture experiment (Table 1) and
density evolution (Fig. S11) are provided for low NOy conditions. The
average density ranges from 1.32 to 1.42 for m-xylene/naphthalene
mixture, from 1.30 to 1.40 for m-xylene/1-methylnaphthalene mixture,
and from 1.35 to 1.37 for m-xylene/2-methylnaphthalene mixture. No
obvious changes in density occur as each PAH/m-xylene experiment
progresses (Fig. S11).

3.7. Chemical composition of PAHs mixtures

3.7.1. Cross-reaction effect evaluation

This study evaluated the cross-reaction effect by two methods—the
unique m/z indicator mass-balance approach and the two-product
model. Three representative average spectral distributions of 2-me-
thylnaphthalene, m-xylene and 2-methylnaphthalene + m-xylene are
shown (Fig. S12). The m/z 43 and m/z 44 are the two dominant frag-
ments from m-xylene and 2-methylnaphthalene photooxidation. The m/
243 (C,H30™ or CsH, ™) indicates oxidized organic compounds such as
aldehydes and ketones (CH,CHO™ or CH3CO™) and saturated hydro-
carbon compounds (C3H, " )(Alfarra et al., 2004). The mass spectrum
distribution from the m-xylene/2-methylnaphthalene mixture combines
fragments from individual 2-methylnaphthalene and m-xylene photo-
oxidation experiments with the higher m/z fragment (m/z > 100) is
dominated by PAHs. To explore the relative SOA production from each
mixture components, and from cross reaction, the unique m/z in-
dicators were chosen and analyzed by a mass-balance approach:

(M, contribution of m — xylene to AMS signal of mixed exp.)
+ (M, contribution of PAHs to AMS signal of mixed exp.)

+ M,cross reaction = total M, (6)
mix. exp. signal(},i)  mix. exp. signal(}i)
i + i + MOfcrass reaction
Mo__m — xylene only My__ PAHs only
= total M, ()

where M, is total organic aerosol mass concentration (ug m~3), and Y i
are the unique m/z indicators for each individual m-xylene or PAHs. In
this study, m-xylene has unique m/z at 95 (C;H;; * or C¢H,0™"), which
is a fragment in individual m-xylene SOA but not a observed unique
fragment in individual PAH; and naphthalene has unique m/z at 76,
104, 105; 1-methylnaphthalene has unique m/z at 76, 104, 105, 115,
and 147; and 2-methylnapthalene has unique m/z at 76, 104, 105, 115,
and 147. The M, cross-reaction Was calculated by equations (6) and (7)
based on individual m-xylene (1193A and 1930A) and PAH experiments
(Table S7). The aerosol mass concentration M, cross-reaction 1S from 0.65
to —9.66 ugm ™3 for m-xylene/naphthalene mixture experiment, sug-
gesting little to no effect of cross-reaction between naphthalene and m-
xylene precursors. However, since the m/z 95 is a minor m-xylene SOA
fragment, significant discrepancies are observed from each individual
experiment. Therefore, the M, contribution prediction from two-pro-
duct model is compared with the AMS evaluation method (Table S7).
The two-product model prediction of the individual contribution to
aerosol mass concentration is more plausible; the AMS method has
great uncertainties associated with unique m/z fragments leading to the
significant percentage discrepancy in estimates of individual con-
tributors between experiments.

3.7.2. Triangle plot and Van Krevelen diagram analysis

m-Xylene/PAHs photooxidation experiments were evaluated with
two common AMS analyses (“ Triangle plot” (Ng et al., 2010) and “Van
Krevelen diagram” (Heald et al., 2010) (Fig. S13). All SOA from three
m-xylene/PAHs mixtures lies on the lower side of triangle area in-
dicating these SOA mixtures are semivolatile oxygenated organic
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aerosol (SV-OOA). Chen et al. (2016) investigated each individual PAH
(naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) SOA,
all of which are located on the upper side of triangle area. Previous
studies reported that SOA continuously ages (higher fragment m/z 44
(CO,™) intensity) with 33% organic acid SOA from low NO, with H,O,
naphthalene photooxidation (Chhabra et al., 2010; Kautzman et al.,
2010). This study observes that SOA from m-xylene/PAHs mixtures age
with increasing f;4 and f;s. Elevated m/z 44 (CO,"%) is considered
“aged” organic aerosol and classified as low volatility oxygenated or-
ganic aerosol (LV-OOA) while SV-OOA is associated with “fresh” OOA
with elevated m/z 43 (C,H30 ") signal intensity (Chhabra et al., 2011).
The m/z 44 (CO,™) fragment is associated with thermal decarboxyla-
tion of many different oxo-, di-, and poly carboxylic acids, hydroxyl-
acids, and acyl peroxides (Aiken et al., 2007; Alfarra et al., 2004;
Duplissy et al., 2011; Zhang et al., 2007). Recent studies (Li et al., 2016;
Loza et al., 2012) have reported that m-xylene SOA lies on the right of
the triangle region with f,3 higher than the ambient SOA reported by Ng
et al. (2010).

Previous studies have observed that atmospheric organic aerosol
lies on the —1 slope of Van Krevelen diagram (H:C versus O:C). Heald
et al. (2010) suggested that the slope is the addition of carboxylic acid
or equal addition of hydroxyl and carbonyl functional groups to an
aliphatic (unfunctionalized) carbon. m-Xylene/PAHs mixtures in this
study occupy the area between a slope of —1 and —2 on Van Krevelen
diagram (Fig. S13 (b)). The slope of —1 for naphthalene and 2-me-
thylnaphthalene indicates greater addition of carboxylic acid groups to
the precursor. However, the m-xylene/1-methylnaphthalene mixture
SOA lies on the area with slope —2, which indicates less formation of
carboxylic acid and more ketone/aldehyde functionality to the pre-
cursor molecule.

Furthermore, SOA with higher f,, increases O/C values and the state
of the carbon (0S,) (Kroll et al., 2011; Ng et al., 2010). The simplified
equation describing OS, is:

20/C—-H/C

0OS,

~

(8

The OS. of SOA from photooxidation of m-xylene/PAHs mixture
increases from —0.54 to —0.37 for m-xylene/naphthalene, from —0.77
to 0.11 for m-xylene/1-methylnaphthalene, and from —0.41 to —0.43
for m-xylene/2-methylnaphthalene SOA. Kroll et al. (2011) reported
that ambient organic aerosol OS, values from — 0.5 to 0 for SV-OOA and
0.5 to 0.9 for LV-OOA. Therefore, the PAH mixture SOA has similar OS,
to ambient SV-OOA, just as the SOA was consistent with the SV-OOA
portion of triangle plot.

4. Conclusions

Previous studies have demonstrated that the SOA yield is potentially
high for naphthalene and methylnaphthalenes photooxidation, and that
the system reactivity (e.g., hydroxyl radical concentration, NOy con-
centration) significantly impacts the SOA formed from these precursors.
This study explores the SOA formation from PAHs mixed with either m-
xylene or an atmospheric surrogate mixture during photooxidation
under low NO, conditions with and without H,O,. Traditional two-
product models as well as m/z HR-ToF-AMS fragment analysis were
applied to evaluate the aerosol mass contribution from individual PAH
and m-xylene during PAH/m-xylene photooxidation. Our results in-
dicated that SOA growth rate from PAH photooxidation was inhibited
by m-xylene addition for low NO, and H,0, experiments, despite pro-
moting earlier particles nucleation. Furthermore, the traditional two-
product model using parameters derived from individual precursors
over-predicted My for m-xylene/PAHs photooxidation, suggesting that
gas-phase cross-reaction chemistry or changes in the radical chemistry
hinder the ability of the individual precursors to form SOA.

The SOA growth rate for different PAHs-m-xylene mixture was
strongly correlated with initial [HO,]/[RO-] ratio but negatively cor-
related with initial m-xylene/NO ratio, suggesting that the strong
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correlation is attributed to enhancement of SOA formation due to
HO, + RO, chemistry, and the negative correlation is attributed to
suppression of OH radical concentration due to m-xylene. The PAH-m-
xylene mixture rapid conversion of NO to NO, greatly enhanced
HO,+ RO, reaction while the slow conversion of NO to NO, in in-
dividual PAH led to greater contribution of RO, +NO chemistry. The
reactivity changes in the systems by addition of species also alter the
time of onset of SOA formation and hydrocarbon reacted. Only minimal
changes in particle-phase bulk chemical composition was observed due
to potential cross-reaction between the products from individual PAHs
or m-xylene suggesting that additional cross reaction particle products
were not strongly influencing SOA formation. However, the addition of
m-xylene or atmospheric surrogate changes the gas-phase radical
chemistry and influences the SOA formation from PAH precursor.
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