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Wave energy budget analysis in the Earth’s
radiation belts uncovers a missing energy
A.V. Artemyev1,w, O.V. Agapitov2,w, D. Mourenas3, V.V. Krasnoselskikh1 & F.S. Mozer2

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s

magnetosphere, where they continuously remove or energize electrons trapped by the

geomagnetic field, controlling radiation hazards to satellites and astronauts and the

upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year

Cluster data, statistically evaluating the full wave energy budget in the Earth’s magneto-

sphere, revealing that a significant fraction of the energy corresponds to hitherto generally

neglected very oblique waves. Such waves, with 10 times smaller magnetic power than

parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the

wave energy involved in wave–particle resonant interactions. It implies that electron heating

and precipitation into the atmosphere may have been significantly under/over-valued in past

studies considering only conventional quasi-parallel waves. Very oblique waves may turn out

to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar

activity.
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S
ince whistler-mode waves regulate fluxes of trapped
electrons1,2 and their precipitation rate3–5 in the upper
atmosphere6–8, accurately determining the wave energy

budget in the outer radiation belt has lately become an
outstanding challenge for the scientific community9. Owing to
the sparse wave data obtained by early satellites, their poor
coverage of high latitudes and mainly one-component field
measurements, and as linear theory was showing much higher
parallel wave growth, scientists have commonly relied on the
assumption that chorus waves were mainly field-aligned, that is,
their propagation was weakly oblique with respect to the
geomagnetic field10,11. Moreover, crucial theoretical works12,13 in
this area have demonstrated early on that the most important wave
field component determining the wave–particle coupling efficiency
was generally the magnetic field one, at least over a reasonably
large range of wave obliquity. As a result, previous wave statistics
focused on the sole magnetic field component of the full wave
energy—showing indeed a clear prevalence of parallel waves in the
equatorial region sampled by most satellites14–17.

No global study on the basis of satellite measurements since then
has led to a real revision of this conventional picture. Although
some studies16–19 and ray-tracing simulations20 have recently
hinted at both the possible presence and potential importance of
very oblique whistler-mode waves, they failed to grasp the full
extent of the implications, owing either to their continuing focus
on statistics of the sole magnetic field component or to their
use of statistical averages over such wide ranges of geomagnetic
conditions that the effects of oblique waves have become blurred.
Here, we study the full wave energy distribution of whistler waves,
including both magnetic and electric field components. Our work
suggests that the unexpected presence of a very large electrostatic
energy, hitherto missing in past statistics of wave intensity and
stored in very oblique waves, may profoundly change the current
understanding of both the actual wave generation mechanisms and
the processes of wave-induced electron scattering, acceleration and
loss in the magnetosphere.

Results
Statistics of wave energy. To compare the impact of oblique and
parallel waves in the formation and evolution of keV to MeV

electron fluxes in the inner magnetosphere, a reasonable
approach consists in first estimating the energy density of both
wave populations. Such a global survey is presented in Fig. 1.
Here, we make use of 10 years of wave measurements performed
by Cluster satellites16 to evaluate the wave energy distribution
throughout much of the Earth’s inner magnetosphere as a
function of wave obliquity and L-shell (the equatorial distance to
the centre of the Earth normalized to Earth’s radius). The energy
density W of whistler-mode waves is determined by wave electric
E and magnetic B field vectors through a complex relationship
involving the tensor of absolute permittivity (see equation (1) in
Methods section). Using the cold plasma dispersion relation for
whistlers, W depends only on wave characteristics such as
magnetic amplitude B, frequency o, wave-normal angle y (which
defines the wave obliquity with respect to the geomagnetic field)
and refractive index N¼ kc/o (with k is the wave vector and c is
the velocity of light).

Figure 1 with two-dimensional maps of wave energy W clearly
shows that the proportion of very oblique waves, propagating
near the resonance cone angle (that is, near 90�), is
generally similar to or even larger than the proportion of
quasi-parallel waves for L¼ 3 to 6 during moderate geomagnetic
activity (defined by index Kpo3) on the dayside. On the
nightside or during more disturbed periods such that Kp43
(that is, geomagnetic storms or substorms), the amount
of very oblique waves is sensibly reduced. The latter
reduction stems probably from the presence of higher
fluxes of hot (B100 eV to 1 keV) plasmasheet electrons injected
in the midnight region during disturbed periods21. Numerical
ray-tracing simulations have shown that such hot electrons can
damp very oblique waves propagating near their resonance
cone19,20,22.

The present results therefore challenge the conventional
assumption of predominantly quasi-parallel whistler-mode waves
in the outer radiation belt. A big, missing slice of the wave energy
appears to be stored in very oblique waves—which are mainly
made up of electrostatic energy23. Although most oblique waves
are observed away from the equator, significant amounts
moreover exist close to it. It strongly suggests that the widely
accepted theory of parallel wave generation near the equator by
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Figure 1 | Distribution of the energy of whistler waves in the Earth radiation belts. The distribution of the density of whistler wave energy W

(in mV2 m� 2) is displayed in the (L,y) space. Data are shown for two ranges of magnetic latitude (the near-equator region with |l|A[0�,20�] and the high-

latitude region with |l|A[20�,40�]), for day and night sectors, and for low (Kpo3) and high (Kp43) geomagnetic activity. Red curves show the position of

Gendrin yg and resonance cone yr angles (where cosygE2o/Oc, cosyrEo/Oc and Oc is the local electron gyrofrequency). Both angles are calculated with

the mean frequency of spacecraft observations, making use of precise plasma density measurements from IMAGE39. In the present figure, the wave

refractive index has been limited to o100 in agreement with rough but conservative upper bounds due to Landau damping by average levels of hot

electrons19. Three frequency channels have been taken into account: 2,244.9, 2,828.4 and 3,563.6 Hz, covering almost the full range from 2 to 4 kHz. Each

channel is used in the corresponding L-shell range to measure only waves in whistler-mode frequency range.
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an unstable electron population exhibiting a temperature
anisotropy11,24,25 might need to be supplemented with some
new mechanism allowing the direct generation of very oblique
waves there. This could require the presence of additional
energetic electron populations differing subtly from the
commonly assumed ones.

What are the consequences of the large energy of oblique
waves on the dynamics of energetic particles? As their name
suggests, wave–particle resonant interactions are controlled
not only by wave intensity, but also by the actual efficiency of
the resonant interactions. Waves must be in resonance with
particles, implying that a certain relationship must be fulfilled
between particle energy, pitch angle, wave frequency and
obliquity (see equation (2) in Methods section). As a result, only
a small portion of the total wave energy density actually
corresponds to resonant waves12. The wave–particle coupling
efficiency F, which depends also on cyclotron or Landau
resonance harmonic number and on wave field components,
provides the exact portion of wave energy interacting resonantly
with particles13,26, finally yielding the resonant wave energy
Y2¼B2F2/N2. Figure 2 shows the wave energy density Y2 of
resonant waves plotted in the same manner as the wave
energy density previously, using measured wave field
components from Cluster. Figure 2 demonstrates that the
resonant wave energy density at high y-values (between the
Gendrin and resonance cone angles) is 5–10 times larger than for
parallel waves throughout the region L¼ 3–6. Hence, very oblique
waves are expected to play a crucial role in the scattering of
electrons in this region of space.

Electron lifetimes during geomagnetic storms. The remarkable
effectiveness of the resonant interaction of very oblique waves
with keV to MeV electrons can modify particle scattering and
energization processes substantially in the radiation belts as
compared with conventional theoretical estimates obtained for
quasi-parallel waves alone. This effect should be most
pronounced during moderately disturbed periods where oblique
waves are more ubiquitous. To estimate the effects of oblique
waves on resonant electron scattering during the course of a
geomagnetic storm, we use here parameterizations of lower-band
chorus wave magnetic intensity and y distributions as functions
of Dst devised on the basis of the same wave data set18,27. The

disturbance storm time Dst index is widely used to study the
magnitude and internal variability of geomagnetic storms28,29.
Two typical profiles Dst(t) are considered (see top panel in Fig. 3),
corresponding to storm types #1 and #2 (refs 28,30). The storm
type #1 has a relatively long (B1.5 day) early recovery phase
between Dst¼ � 100 and � 75 nT followed by a rapid increase of
Dst back to � 10 nT, while the second type has a much shorter
early recovery phase followed by a much more prolonged stay
(B3 days) around � 50 nT.

The evolution of the lifetime tL of energetic electrons during
the course of these two storms has been calculated numerically
for various energies ranging from 100 eV to 1 MeV. Figure 3 first
demonstrates the important variations of tL with Dst. Such strong
variations can be explained by the combination of two main
effects: (1) lifetimes increase when wave intensity decreases (both
with and without oblique waves)10,31 and (2) the wave–particle
coupling F is significantly stronger for very oblique waves than
for quasi-parallel waves over a very wide energy range (see
Supplementary Fig. 2), leading to a reduction of lifetimes as the
amount of very oblique waves increases during not-too-disturbed
geomagnetic conditions18,19,27. The number of contributing
resonances can moreover increase up to 10-fold for very
oblique waves (see discussion of Supplementary Fig. 2 in
Methods section).

When considering a realistic wave-normal angle distribution,
the first clear consequence of the additional presence of very
oblique waves is a general reduction of lifetimes during the storm.
Most remarkably, however, such a reduction is much less
significant during the early recovery period corresponding to
Dsto� 75 nT. The latter range actually corresponds to high
parallel wave amplitudes. Very oblique waves are then almost
absent, probably due to their quick damping by intense injections
of hot electrons during the main phase of strong storms. Thus, an
extended storm phase such that Dsto� 75 nT, with intense
waves and small losses, is particularly propitious for the strong
energization of electrons. Later on, the competition between the
opposite effects of a rapidly decreasing wave intensity and an
increasing amount of oblique waves as Dst increases, results in a
local minimum of tL near DstB� 60 nT during the early recovery
phase. Finally, during nearly quiet periods with DstB� 10 nT at
the end of storms, electron losses to the atmosphere are
significantly increased by oblique waves, especially at very low
energy. The remarkable difference between tL calculated for
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Figure 2 | Distribution of the energy of resonant whistler waves in the radiation belts. The distribution of the wave energy density Y2 of resonant waves

(in mV2 m� 2) is displayed in the (L,y) space. The most effective resonant wave–particle interaction corresponds to a condition tan a tan yE1 (where a is

the particle pitch angle) for electron energy o2 MeV (ref. 31). This condition has been used to plot Y2 in this figure. Data are shown for one range of

magnetic latitude |l|A[0�,20�], for day and night sectors, and for low (Kpo3) and high (Kp43) geomagnetic activity. Red curves show the position of

Gendrin yg and resonance cone yr angles. Both angles are calculated with the mean frequency of spacecraft observations, making use of precise plasma

density measurements from IMAGE39. In the present figure, the wave refractive index has been limited to o100 in agreement with rough but conservative

upper bounds due to Landau damping by average levels of hot electrons19. Three frequency channels have been taken into account: 2,244.9, 2,828.4 and

3,563.6 Hz, covering almost the full range from 2 to 4 kHz. Each channel is used in the corresponding L-shell range to measure only waves in whistler-mode

frequency range.
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parallel waves alone and with a realistic y-distribution reaches
indeed one order of magnitude for 10 keV electrons, while at
lower energies (r1 keV), only very oblique waves are still able to
resonantly scatter electrons towards the loss-cone.

Discussion
Such results definitely show that a precise knowledge of the actual
distribution of wave energy as a function of propagation angle y is
a key factor for accurately modelling the evolution of relativistic
as well as low-energy electron fluxes under the influence of
resonant wave–particle interactions. As noted above, this y
distribution is tightly controlled by the density and temperature
of hot electrons. The large energy stored in very oblique waves
can be readily tapped by sufficiently hot electrons newly injected
from the outer magnetosphere and lead to their further heating
via Landau damping. It, therefore, represents an accelerating
factor of change for this important population25 of particles.

More generally, the intrinsic variability of hot electron injections
with geomagnetic activity21 probably explains the observed
variation of wave obliquity18,27. As the latter is able to fine-tune
the precipitation of very low energy (especially 0.1 to 10 keV)
electrons, the presence of a large amount of very oblique waves
could have unexpected and major consequences on the
ionospheric conductivity and on the nightside upper
atmosphere ionization level at various altitudes, potentially
affecting the whole magnetosphere–ionosphere coupling7,8,32.

Beside determining electron precipitations into the atmo-
sphere, whistler-mode waves are also responsible for the rapid
energization of B10 keV to 1 MeV electrons to multi-MeVs in
the radiation belts during geomagnetic storms3,5,33. To first order,
the effective energization depends mainly on the dimensionless
product DEEtL of the energy diffusion rate DEE and lifetime,
because a longer tL leaves more time for electron acceleration to
proceed18,27,34. Moreover, the important dependence of the
energy diffusion rate on the wave magnetic intensity (strongly
increasing with �Dst) is almost fully compensated in this factor
DEEtL by the inverse dependence of the lifetime on the wave
intensity. Since DEE varies also much more weakly with wave
obliquity than tL

35, it is the important variation of the lifetime
with wave obliquity that should mainly determine the variation of
the effective energization level of electrons. Thus, the comparison
of lifetimes calculated with and without very oblique waves in
Fig. 3 directly demonstrates the often dramatic change in
energization level between these two cases.

Furthermore, the results displayed in Fig. 3 suggest that two
storms with the same maximal strength but with different
temporal profiles may lead to different effects on energetic
electron fluxes, because of the different lifetime reductions
dictated by the varying amount of very oblique waves. A storm
(close to type #1) with a prolonged early recovery phase at
Dsto� 75 nT followed by a quick return to Dst4� 20 nT should
take advantage of high parallel wave intensity and weak overall
losses to strongly energize electrons. Conversely, another storm
(close to type #2) with a shorter initial period at Dsto� 75 nT
followed by a much slower recovery back to Dst4� 20 nT should
generally involve much stronger electron losses induced by larger
amounts of very oblique waves during the early recovery phase
(up to 1.5 day in Fig. 3), associated with a smaller magnetic wave
intensity—efficiently reducing electron energization during that
period. Later, significant losses to the atmosphere combined with
modest wave intensity should nearly prevent any substantial
acceleration. This could help to answer one outstanding question
in radiation belt physics—why some geomagnetic storms
correspond to global electron energization, while other storms
with the same magnitude of Dst variation do not29.

Excluding oblique waves from consideration would actually
make the dimensionless energization factor DEEtL almost
constant and independent of the Dst time profile, as it does not
depend on the bounce-averaged wave intensity. Only the
consideration of an additional dimension of the system,
corresponding to wave obliquity, gives a chance to obtain a
significant variation of particle acceleration efficiency with
Dst and, as a result, immediately produces a difference in
particle acceleration for different Dst(t) profiles. This effect allows
to separate precipitation-dominated storms with a fast early
recovery further slowing down, from acceleration-dominated
storms with a slow initial recovery later on speeding up.

The surprisingly high level of very oblique wave energy
discovered in Figs 1 and 2 and the strong concomitant increase of
the wave–particle coupling strength have revealed that the wave
obliquity, regulated by low-energy electrons injected from the
plasmasheet, represents a new and important lever governing the
variations of energetic electron fluxes. It indicates one
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possible answer to the problem of often-noted discrepancies
between modern radiation belt models and observations9,36.
The consideration of only parallel waves mostly restricts the space
of wave model parameters to a single parameter—the wave
amplitude. However, the distributions of wave amplitudes with
geomagnetic activity and spatial location are well
documented10,16 and included in modern codes. In this study,
we have clearly shown that there exists at least one additional
model parameter—wave obliquity, which can control both the
energization of electrons, their precipitation into the atmosphere
and even the energy range of precipitated particles. The revelation
of this hidden parameter and of the corresponding missing
energy of very oblique waves should provide new opportunities to
better understand and forecast the observed variations of
energetic electron fluxes in the radiation belts as well as the
global dynamics of the magnetosphere–ionosphere coupling.

Methods
Evaluation of the wave energy density. The energy density W of whistler-mode
waves in the Earth’s magnetosphere is determined by wave electric field E and
magnetic field B vectors through the relation:

W � 1
8p

E�
d oêð Þ

do
EþB2

� �
ð1Þ

where E* is the conjugate vector to E, o is the wave frequency and êðoÞ the tensor
of absolute permittivity. Using the dispersion relation for electromagnetic whistler-
mode waves in a cold magnetized plasma, electric field components can be further
expressed as a function of B. One gets W¼B2(1þWE)/8p where WE depends only
on the wave characteristics: its frequency o, wave-normal angle y (which defines
the wave obliquity with respect to the geomagnetic field), and refractive index
N¼ kc/o (where k is the wave vector). W steeply increases with N, which is itself a
rapidly growing function of y. The refractive index N (as well as y) can be
determined either solely from full three-component wave magnetic field mea-
surements on a given spacecraft, or else by complete wave magnetic and electric
field measurements. The dominant contributions to the wave energy distribution
can be further assessed on the basis of either method. However, wave electric field
measurements on Cluster satellites are often noisy, at least much more than
magnetic field measurements, limiting their use in practice to some case studies.
Therefore, we have chosen to resort to the just-discussed method of determination
of the full wave energy density on the basis of measurements of the wave magnetic
components alone. Nevertheless, the accuracy and reliability of this method must
first be demonstrated.

To this aim, we have compared the crucial N values obtained by the two
methods in a series of Cluster observations of chorus waves displayed in
Supplementary Fig. 1. The comparison of panels (a) and (b) shows clearly that
wave activity can be identified not only in magnetic field fluctuations, but also in
the concomitant variations of the electric field. Most of the wave-power is
concentrated around B3 kHz—the ratio of wave frequency to electron equatorial
gyrofrequency is o/Oc0B0.35. Waves can be considered as very oblique when y is
comprised between the Gendrin angle ygEarccos(2o/Oc0) (which corresponds to
wave propagation at a group velocity independent of frequency37) and the so-called
resonance cone angle yrBarccos(2o/Oc0) (the upper bound on y where the cold
plasma refractive index N of whistler waves goes to infinity38). For events in
Supplementary Fig. 1, we have ygB55–65� and yrB75–85�. Most observed
whistler-mode waves are such that yA[60�,85�] and can, therefore, be classified as
very oblique chorus waves. A substantial part of the wave energy density (see panel
(d)) consists of such oblique waves. The large ratio W/WBc1 shows that most of
the energy density then comes from the wave electric field. More importantly,
evaluations of the wave refractive index N from three-component measurements of
the sole wave magnetic field yield values very similar to calculations making use of
both magnetic and electric field components, attesting the reliability of the former
method (compare panels (e) and (f)). The discrepancy does not exceed 25% on
average, showing that this method can be safely used for evaluating the wave
energy density.

However, only some part of the total wave energy density can actually interact
resonantly with trapped electrons12. This resonant part is determined by the wave–
particle coupling efficiency F (ref. 2) which depends on resonance harmonic
number n, electron energy and pitch angle, as well as on the wave field
components13,26. The resonance condition

og� ck
ffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
cos y cos a ¼ � nOc ð2Þ

provides the necessary relation between particle energy (Lorentz factor g),
pitch angle a and wave obliquity y. As a result, one gets a normalized estimate
Y2¼F2B2/N2 of the resonant wave energy13.

Evaluation of wave-particle coupling and diffusion rates. To demonstrate the
peculiarities of electron resonant interaction with very oblique waves, additional
numerical calculations of the wave–particle coupling efficiency F (averaged over
latitude) have been performed as a function of wave propagation angle y and
geomagnetic activity index Dst, for various electron energies ranging from 100 eV to
1 MeV. Here, as well as for Fig. 3, we use usual values of the mean frequency om/
Oc0B0.35 and frequency width Do/Oc0B0.2 of lower-band chorus waves19 and a
ratio Ope/Oce¼ 5 corresponding to LB5. Supplementary Fig. 1 shows that during
not-too-disturbed geomagnetic conditions (Dst4� 60 nT), wave–particle coupling
F is clearly stronger for very oblique waves than for quasi-parallel waves over a
wide energy range. For a given level of wave intensity, the available range of
variation of the wave–particle coupling efficiency F at small equatorial pitch angles
(near the loss-cone where particles are precipitated in the atmosphere) is so large
that it could presumably explain any observed fluctuations of electron flux by
fluctuations of the wave obliquity only and associated variations of electron
scattering. In addition to the increase of F for a given resonance, the number of
such contributing resonances can moreover increase 10-fold for oblique waves (see
Supplementary Fig. 2).

The efficiency of charged particles resonant interaction with waves is
determined by diffusion rates proportional to the weighting factor
Fn

2¼Y2gy(y)go(o) where gy and go are normalized distributions of y and wave
frequency. To calculate the gy normalization, one should determine resonant k and
o for given particle pitch angle and energy. Then, an integration over y must be
performed. The upper limit of this integration is determined by the maximum
value of the refractive index NMax. The latter is imposed by the presence of both
thermal effects in the dispersion relation and Landau damping by 100–500 eV
suprathermal electrons of oblique waves near the resonance cone angle19,22. Using
typically observed parameters for the thermal and suprathermal electron
population at LB5, it has been shown that one could take NMaxB120 to 300 for
lower-band chorus waves from low to high latitudes during periods of quiet to
moderately disturbed geomagnetic activity, with NMax varying as the inverse of the
frequency o and increasing with latitude19. It led us to use here (in Supplementary
Fig. 2, and Fig. 3 in main text) a rough but realistic limit NMaxBmin(300,36Oce/o)
corresponding to a predominant effect of Landau damping.
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