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Abstract of the Dissertation

Absorbing Markov Chains with Random Transition Matrices and Applications

by

Ali Kassir

Doctor of Philosophy in Mathematics

University of California, Irvine, 2018

Professor Patrick Guidotti, Co-Chair

Professor Knut Solna, Co-Chair

In this thesis, we explore Markov chains with random transition matrices. Such chains

are a development on classic Markov chains where the transition matrix is taken to be

random. The intuition for this is that we may be interested in modeling phenomenas where

the homogeneity assumption of classic Markov chains is invalid. We first use such chains

to model credit risk. The randomness of the transition matrix is used to represent the

randomness of the economy that underlies credit risk. With this, we model a portfolio of

loans and the risk due to having a shared economy. We then proceed to explore theoretical

properties of such chains with a focus on their asymptotic behavior. In the case of absorbing

chains, we show that the the infinite product of independent and identically distributed

random matrices must converge almost surely. We also introduce perturbed Markov chains

x



as a special form of Markov chains with random transition matrices. Perturbed Markov

chains are Markov chains with transition matrices of the form P + "Q where P is taken to

be a constant matrix, " 2 (0, 1) a constant and Q random with rows summing to 0. For

perturbed Markov chains with P irreducible, we approximate the long-run fluctuation of

such chains up to order "2. As for perturbed Markov chains with P having absorbing states,

we approximate the variance of the fundamental matrix and mean time to absorption. We

also explore some applications. In the Moran process application, we study the impact of

temporal randomness on the Moran process and derive an analytic result to calculate the

probability of fixation.

xi



Chapter 1

Introduction

Markov chains are among the most well known and established probabilistic models. They

have long been developed, studied and applied to real world problems. In this thesis we

are particularly interested in discrete-time Markov chains. The simplicity, yet richness of

these models makes them interesting in theoretical studies as well as extremely versatile in

applications. A Markov chain is a stochastic process {X
t

} indexed by time on a state space

S = {1, . . . , s} such that

P (X
t+1 = j | X

t

= i, X
t�1 = i

t�1, . . . , X0 = i0) = P (X
t+1 = j | X

t

= i) .

Abiding by the convention p
t,ij

= P (X
t+1 = j | X

t

= i) gives rise to the s ⇥ s (time de-

pendent) transition matrix P
t

= [p
t,ij

] . Classic Markov chain models come in two forms,

homogeneous and inhomogeneous. If we assume that the transition matrix is independent

of time, then we will have a homogeneous Markov chain. Otherwise, the Markov chain is

inhomogeneous. Most of the study that pertains to discrete-time Markov chains is in regards

to homogeneous Markov chains. As a result, we find that many Markov chain applications

impose this assumption, even though it might not be entirely accurate due to a natural level

of environmental randomness that takes place. Our main focus in this thesis will be cen-

tered around this point: to explore a framework that allows for randomness in the transition

1



matrix P .

In the first portion of this thesis, we will explore a Markov chain application to credit

risk. We develop on a classic Markov model that was initially proposed by Jarrow et al. in

[21]. While the model that Jarrow et al. present appropriately models some aspects of credit

risk, it has its short comings. Our research stems from credit risk migrations failing to satisfy

the homogeneity assumption in their Markov model. This is discussed in [25, 4, 18, 16, 14].

In our model, an important element is to capture the dependence of the transition matrix

on the state of the economy. This dependence can be interpreted as a form of a correlation

factor that is taking place between different entities in the same economy. We will introduce

randomness into the problem by assuming that the transition matrix itself is random and

may change based on the economy. By doing so, we are able to capture the economic impact

of credit risk on an entire portfolio.

We then proceed beyond this application to explore the theory of Markov chains for which

the transition matrix is random. Such Markov chains have been explored in the literature

and have been referred to as Markov chains in random environments in [11, 9, 10, 12, 13,

6, 34, 35, 3, 2, 31, 32, 37]. In a 1969 paper, Takahashi [33] presents his formulation of

Markov chains with random transition matrices and generalizes the concepts of stationarity,

irreducibility, ergodicity and periodicity. He also proves several ergodic theorems. In a more

recent sequence of papers [27, 28, 29, 30], Saloff-Coste and Zungia study the asymptotic

behavior of time inhomogeneous Markov chains as well as develop the notions of stability

and merging. Independently of the above authors, Brueneau et al. [7] study infinite products

of random transition matrices within the more general context of dynamical systems and

applications to physics. They also arrive at some similar results in regards to the behavior of

such products. In particular, they show that the product of random transition matrices can

be decomposed into a sum of a fluctuating and an exponentially decaying process, where the

fluctuating part converges in Cesàro mean. The results presented by Takahashi and Bruneau

are limited to matrices with some form of irreducibility. In particular they don’t consider

2



nor discuss absorbing Markov chains with random transition matrices.

In a sequence of papers [11, 9, 10, 12, 13, 6] published between 1980 and 1991, Cog-

burn explores Markov chains in random environments in the case that the environmental

randomness is Markovian. This extra assumption creates a structure that is different from

that presented by Takahashi and Brueneau et al., where they take the matrices in the dif-

ferent time steps to be independent and identically distributed. In [11], Markov chains in

Markovian environments are established and then a classification of the state space of the

environment is presented. In [6], Bourgin and Cogburn present results on the absorption

probabilities for such Markov chains. In [9, 10, 12], results about the asymptotic behavior

of random products of stochastic matrices are presented. In [34, 35], Torrez also studies

birth and death processes with such a Markov structure and arrives at results pertaining to

the extinction of such processes. In [2, 3], Athreya and Karlin study branching processes in

random environments where the randomness is independent and identically distributed with

respect to time. Smith and Wilkinson also study branching process with such a structure in

[31, 32, 37].

Our work primarily develops on the framework that is established by Bueneau et al. and

Takahashi. We prove that an absorbing Markov chain with random transition matrices that

share absorbing states converges almost surely. Let P (!) be a random matrix that takes

values from P (r), the set of transition matrices that share the first r states as absorbing

states. Then then the infinite product of independent and identically distributed matrices
Q1

i=1 P (!
i

) converges almost surely. We also, present perturbed Markov chains. The rea-

son for establishing and studying perturbed Markov chains is because we are interested in

studying Markov chains that are “almost” homogeneous. In particular, we want to study the

behavior of inhomogeneous Markov chains that are driven by a sequence of random pertur-

bations of a transition matrix P . To illustrate, consider the following formulation. Let Q

denote the set of s ⇥ s matrices with rows summing to 0 and let Q : ⌦ ! Q be a random

matrix on the probability space (⌦,F ,Pr). Moreover, assume E [Q] = O, the zero matrix.

3



For " 2 (0, 1), let P = {P + "Q (!) | ! 2 ⌦} be the set of perturbed transition matrices. We

want to study inhomogeneous Markov chains driven by P . The transition matrix of such a

chain over an n-step time period is a random matrix P (n)
: ⌦

n ! [0, 1]s⇥s given by

P (n)
(!1, . . . ,!n

) =

nY

j=1

(P + "Q (!
j

)) .

We explore the randomness of P (n) , as well as associated quantities such as E
⇥
P (n)

⇤
,

Var
⇣
P (n)
ij

⌘
and Cov

⇣
P (n)
ij

, P (n+k)
h`

⌘
for fixed k � 0 in the large n limit. In Proposition

4.3.1, we present an analytic approximation for the covariance of the entries of P (n) in the

limit. After establishing the convergence of absorbing Markov chains with random transition

matrices, we look at the time until absorption and come up with an analytic approximation

for the variance of the entries of the fundamental matrix in Proposition 5.3.1.

Upon establishing the theoretical foundation for absorbing Markov chains with random

transition matrices and their convergence, we explore two applications. In the first appli-

cation, we present and study a variation of the gambler’s ruin problem. We explore the

asymptotic behavior of the probabilities of transition as well as the time to absorption. In

our second application, we present a formulation of a Moran process with temporal random-

ness. A Moran process is a classic Markov chain model with a transition matrix that takes

a special form. Moran processes are is used in modeling biological systems. We extend this

model by incorporating randomness in the transition matrices as a form of time-dependent

randomness. We then study how this temporal randomness impacts the probability of fixa-

tion and time to absorption of the process. In Sections 6.2.4 and 6.2.5, we derive an analytic

expression for the probability of fixation.

The rest of this thesis will be organized in the following way. In Chapter 2, we will

present an overview of the classic Markov chain results that pertain to our work. In Chapter

3, we will present an economy switching Markov model that takes into account the economy

as a correlation factor. In Chapter 4, we give an overview of Markov chains with random

4



transition matrices, some available results and establish perturbed Markov chains. In Chap-

ter 5, we establish some results in regards to the asymptotic behavior of absorbing Markov

chains with random transition matrices. Finally in Chapter 6, we present some applications

of our model to the gambler’s ruin problem and to Moran processes.

5



Chapter 2

An Overview of Markov Chains

In this chapter, we will be presenting an overview of the classic Markov chain results that

pertain to our work. We will discuss basic definitions and theorems on absorbing and ergodic

Markov chains. For a more detailed discussion, we refer the reader to [19, 20, 22].

2.1 Introduction

A Markov chain is a random process that changes at discrete integer-valued time intervals

with the property that only the current value of the chain determines its distribution at the

next time step. At each integer time step n = 0, 1, . . ., there is an integer valued random

variable X
n

taking on values from a state space S. The state space S can either be countably

infinite, in which case it is usually taken to be S = {0, 1, 2, . . .}, or it can be finite, in which

case it can be taken to be of the form S = {1, . . . , s} for some s. Markov chains study the

random process that starts in one of these states and moves successively from one state to

another. In our work, we will limit our discussion to finite-state Markov chains. A Markov

chain can be viewed as a family of random variables {X
n

| n � 0}.

6



Definition 2.1.1. A Markov chain is a family of random variables {X
n

| n � 0} indexed

by discrete-time where each X
n

is an S-valued random variable for some finite state space

S = {1, . . . , s} and satisfies the following Markov property: for all positive integers n, and

for all choices of i0, . . . , in�2, i, j 2 S,

Pr (X
n

= j | X
n�1 = i, X

n�2 = i
n�2, . . . , X0 = i0) = Pr (X

n

= j | X
n�1 = i) . (2.1.1)

Furthermore, we will call the Markov chain homogenous in the case that Pr (X
n

= j | X
n�1 = i)

does not depend on n and the values P
ij

= Pr (X
n

= j | X
n�1 = i) can be written in matrix

form as the (i, j)-th entries of the s ⇥ s transition (or migration) probability matrix P . In

the case that P
ij

(n) depends on n, we will call the Markov chain inhomogeneous.

Equation 2.1.1 describes the important characteristic of Markov chains that the current

state summarizes everything about the past and is the only relevant information for the

future. The initial probability distribution for X0 along with the transition matrix P define

the probabilities for all possible events in the Markov chain. Homogeneous Markov chains

will be the main focus of this chapter and from here on homogeneous Markov chains will be

simply referred to as Markov chains. Inhomogeneous Markov chains will not be studied in

this chapter, but will play an interesting role in the next chapters.

The matrix representation of the Markov chain gives rise to several important properties

of P . Let P n

ij

denote the (i, j)-th entry of P n, the n-th power of P .

Theorem 2.1.1. Let {X
n

} be a Markov chain with state space S = {1, . . . , s} and transition

probabilities matrix P . Then for all i, j 2 S and positive integers n,m,

1.
sX

k=1

P
ik

= 1

2. Pr (X
n

= j | X0 = i) = P n

ij

3. Chapman-Kolmogorov Equation: Pm+n

ij

=

P
s

k=1 P
m

ik

P n

kj

7



Proof.

1. This is due to the fact that each row of P represents the probability mass function of

the Markov chain at the next time step, given current state i.

2. Using the Markov property 2.1.1, we have

Pr (X2 = j | X0 = i) =
sX

k=1

Pr (X2 = j | X1 = k)Pr (X1 = k | X0 = i)

=

sX

k=1

P
ik

P
kj

= P 2
ij

.

By induction Pr (X
n

= j | X0 = i) = P n

ij

will hold for all n.

3. This equation is a direct consequence of the above.

As a direct consequence of this theorem, if we know the initial distribution of a Markov

chain, then we can calculate the chain’s distribution at each time step.

Corollary 2.1.1. Let ↵(0) be a probability vector representing the probability mass function

of the initial state X0 of a Markov chain with transition matrix P . Then the probability that

the chain is in state i after n steps is the i-th entry of the vector

↵(n)
= ↵(0)P n.

The possibility of a Markov chain to migrate from a given state to another state over

several time steps, or the lack thereof, plays an important role in its long term behavior. For

this purpose, it is important to present the following definitions for the classification of the

states.

Definition 2.1.2. Let P be a transition matrix for a Markov chain.

1. A state j is accessible from i if there exists n such that P n

ij

> 0.

8



2. Two distinct states i and j communicate if i is accessible from j and j is accessible

from i.

3. A recurrent state is a state i that is accessible from all states that are accessible from

i.

4. A transient state is a state that is not recurrent.

Note that we can decompose the state space of a Markov chain into disjoint subsets

comprised of the states that communicate with each other and the states that don’t. A set

of states that communicate with each other will form a class C in the sense that for i, j 2 S,

i and j communicate with each other if and only if i, j 2 C. Moreover, either all states in a

class are transient or all are recurrent.

Another important classification of states is with respect to their periods.

Definition 2.1.3. The period of a state i, denoted as d (i) is defined with respect to the

greatest common divisor (gcd) as

d (i) := gcd (n | P n

ii

> 0) .

A state is aperiodic if is has period 1 and is periodic otherwise.

A simple yet import fact is that for any Markov chain, all states in the same class have

the same period. For a proof visit [19].

2.2 Absorbing Markov Chains

One special type of Markov chains that we will be working with is called an absorbing Markov

chain.

Definition 2.2.1. A state i of a Markov chain is called absorbing if it is impossible to leave

it, that is P
ii

= 1. A Markov chain is absorbing if it has at least one absorbing state that is

9



accessible from every other state.

Note that in an absorbing Markov chain, all the non-absorbing states are transient.

Consider an absorbing chain with r absorbing states and t transient states. Renumbering

the states so that the transient states come first, we can write the transition matrix in the

canonical form

P =

2

64
Q R

0 I

3

75

where Q is t⇥ t, R is t⇥ r and I is the r⇥ r identity matrix. Due to the special form of P ,

the powers will be

P n

=

2

64
Qn

(I +Q+ · · ·+Qn�1
)R

0 I

3

75 .

This form of P n shows that the entries of Qn give the probabilities of remaining in the

transient states. In fact, we see in the following theorem that Qn ! 0, the zero matrix.

Theorem 2.2.1. With probability 1, the process with transition matrix

P =

2

64
Q R

0 I

3

75

will be absorbed.

Proof. Let m
j

be the minimum number of steps required to reach an absorbing state from

state j. Let p
j

be the probability that, starting from state j, the process will not be absorbed

in m
j

steps. Then p
j

< 1. Let m = max

j

m
j

and p = max

j

p
j

. The probability of not being

absorbed in km steps is less than or equal to pk, which must tend to 0 since p < 1. Since

the probability of not being absorbed in n steps is monotone decreasing, these probabilities

also tend to 0, hence lim

n!1 Qn

= 0.

Theorem 2.2.2. The inverse of I � Q exists, call it N . Moreover, for i, j  t, the entry

N
ij

of N is the expected number of visits to state j given initial state i.

10



Proof. To show that (I �Q)

�1 exists, it suffices to show that if (I �Q) x = 0 then x = 0. If

(I �Q) x = 0 then x = Qx and hence iterating we have x = Qnx. Since Qn ! 0, we x = 0.

Let N = (I �Q)

�1. Then N = I +Q+Q2
+ · · · . Indeed,

(I �Q)

�
I +Q+Q2

+ · · ·+Qn

�
= I �Qn+1

and hence

I +Q+Q2
+ · · ·+Qn

= N
�
I �Qn+1

�
.

Letting n ! 1 we have N = I +Q+Q2
+ · · · .

Fix i and j with i, j  t. Let X(`)
ij

be a random variable which equals 1 if the chain, with

initial state i, is in state j after ` steps, and equals 0 otherwise. Then

P
⇣
X(`)

ij

= 1

⌘
= Q(`)

ij

and P
⇣
X(`)

ij

= 0

⌘
= 1�Q(`)

ij

,

where Q(`)
ij

is the ij-th entry of Q`, with the notation Q0
= I. Then

E
h
X(`)

ij

i
= 1 ·Q(`)

ij

+ 0 ·
⇣
1�Q(`)

ij

⌘
= Q(`)

ij

and hence the expected number of times the chain is in state j in the first n steps is

E

"
nX

k=0

X(k)
ij

#
=

nX

k=0

Q(k)
ij

.

Let X
ij

= X(0)
ij

+ X(1)
ij

+ · · · . Note that X
ij

gives the total number of times the chain is

in state j before absorption. Moreover, X
ij

must be finite by the previous theorem, with

probability 1. Therefore,

N
ij

= E [X
ij

] =

1X

k=0

Q(k)
ij

.

11



Recall the basic fact about conditional expectations that if {B
k

} partitions the sample

space, then

E [f (X)] =

X
E [f (X) | B

k

]P (B
k

) .

The following is another proof of the second half of Theorem 2 that provides another

perspective and some intuition.

Proof. As above, let X
ij

be the total number of times the chain is in state j given initial

state i. Note that X
ij

= �
ij

+ X
kj

, where �
ij

is the contribution of the initial state, that

is, we only have a contribution if the initial state is the state that we want to calculate the

expected stay in, and X
kj

is the contribution after the first migration to some state k. Also,

X
`j

= 0 for ` absorbing since once the process has been absorbed, it can no longer reach S
j

.

Let B
k

be the event that the initial migration is to state S
k

for k = 1, . . . , s. Then

E [X
ij

] =

sX

k=1

P
ik

E [X
ij

| B
k

]

=

sX

k=1

P
ik

E [�
ij

+X
kj

]

=

sX

k=1

P
ik

�
ij

+ P
ik

E [X
kj

]

= �
ij

+

tX

k=1

P
ik

E [X
kj

] .

Hence, re-writing in matrix notation we have [E [X
ij

]] = I+Q · [E [X
ij

]] , where [A
ij

] denotes

the matrix with entries A
ij

. Therefore,

[E [X
ij

]] = (I �Q)

�1 .

Definition 2.2.2. The matrix N = (I �Q)

�1 is called the fundamental matrix for P .

12



Due to the above results, it follows that for

P =

2

64
Q R

0 I

3

75 ,

we have

lim

n!1
P n

=

2

64
0 NR

0 I

3

75 .

Theorem 2.2.3. Let n
i

be the expected number of steps before absorption, given initial state

i, and let n be the column vector whose i-th entry is n
i

. Then

n = N1,

where 1 is the column vector all of whose entries are 1.

Proof. Note that N1 will be a column vector with t entries. Let Z
i

denote the number of

steps before default, given initial state i. Then

n
i

= E [Z
i

] = E

"
tX

j=1

X
ij

#
=

tX

j=1

n
ij

.

Theorem 2.2.4. Let M
ij

be the variance on the number of visits to state j given initial state

i and let M be the matrix with entries M
ij

. Then

M = N (2N
dg

� I)�N
sq

,

where N
dg

is the diagonal matrix with same diagonal as N and N
sq

is the Hadamard product

of N with itself (i.e. each entry of N is squared).

Proof. Using the same notation as above, let X
ij

be the total number of times the chain is

13



in state j given initial state i. Then

M
ij

:= Var [X
ij

] = E
⇥
X2

ij

⇤
� (E [X

ij

])

2 .

By Theorem 2.2.2,
⇥
E [X

ij

]

2⇤
= N

sq

. It suffices to show that
⇥
E
⇥
X2

ij

⇤⇤
= N (2N

dg

� I) .

Note,

E
⇥
X2

ij

⇤
=

sX

k=1

P
ik

E
⇥
X2

ij

| B
k

⇤

=

sX

k=1

P
ik

E
⇥
(�

ij

+X
kj

)

2⇤

=

sX

k=1

P
ik

E
⇥
�2
ij

+ 2X
kj

�
ij

+X2
kj

⇤

=

sX

k=1

P
ik

�
�
ij

+ 2E [X
kj

] �
ij

+ E
⇥
X2

kj

⇤�

= �
ij

+

tX

k=1

�
2P

ik

E [X
kj

] �
ij

+ P
ik

E
⇥
X2

kj

⇤�
.

Thus,
⇥
E
⇥
X2

ij

⇤⇤
= I + 2 (QN)

dg

+Q ·
⇥
E
⇥
X2

ij

⇤⇤

and therefore,

⇥
E
⇥
X2

ij

⇤⇤
= (I �Q)

�1
⇣
2 (QN)

dg

+ I
⌘

= N
⇣
2 (N � I)

dg

+ I
⌘

= N (2N
dg

� I) ,

where the second equality holds since N � I = Q+Q2
+ · · · = QN.

Theorem 2.2.5. Let r
i

be the variance on the number of steps before absorption with initial

14



state i, and let r be the column vector whose i-th entry is r
i

. Then

r = (2N � I)n� n
sq

,

where n
sq

is the Hadamard product of n with itself.

Proof. As in the proofs above, let Z
i

denote the number of steps before absorption, given

initial state i, and note that Z
`

= 0 for absorbing states `. Then

r
i

:= Var [Z
i

] = E
⇥
Z2

i

⇤
� E [Z

i

]

2 .

Note,

E
⇥
Z2

i

⇤
=

sX

k=1

E
⇥
Z2

i

| B
k

⇤
P (B

k

)

=

sX

k=1

P
ik

E
⇥
(1 + Z

k

)

2⇤

=

sX

k=1

P
ik

E
⇥
1 + 2Z

k

+ Z2
k

⇤

=

sX

k=1

P
ik

�
1 + 2E [Z

k

] + E
⇥
Z2

k

⇤�

= 1 +

tX

k=1

2P
ik

E [Z
k

] + P
ik

E
⇥
Z2

k

⇤
.

Thus,
⇥
E
⇥
Z2

i

⇤⇤
= 1+ 2Qn+Q ·

⇥
E
⇥
Z2

i

⇤⇤

15



and hence

⇥
E
⇥
Z2

i

⇤⇤
= (I �Q)

�1
(1+ 2Qn)

= N1+ 2NQn

= t+ 2 (N � I)n

= (2N � I)n.

Therefore,

[Var [Z
i

]] = (2N � I)n� n
sq

,

since
⇥
E [Z

i

]

2⇤
= n

sq

by Theorem 2.2.3.

Theorem 2.2.6. Let H
ij

be the probability of visiting state j when starting with initial state

i, and let H be the matrix with entries H
ij

. Then

H = (N � I)N�1
dg

,

where N
dg

is the diagonal matrix with same diagonal as N .

Proof. Let B be the event that the process reverts to state j. Note that {X
ij

| B} =

{�
ij

+X
jj

} as events. Indeed, the RHS can be interpreted as the sum of the contribution

of the initial state and the contribution beginning with the first migration to state j and

beyond. Also, {X
ij

| Bc} = �
ij

because the only contribution will be from the initial state.

So,

E [X
ij

] = E [X
ij

| B]P (B) + E [X
ij

| Bc

]P (Bc

)

= E [�
ij

+X
jj

]H
ij

+ �
ij

(1�H
ij

)

= (�
ij

+ E [X
jj

])H
ij

+ �
ij

(1�H
ij

)

= E [X
jj

]H
ij

+ �
ij

.
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Thus, N = HN
dg

+ I and hence

H = (N � I)N�1
dg

.

2.3 Ergodic Markov Chains

Another family of Markov chains that is relevant to our work is ergodic Markov chains.

Consider the following definitions.

Definition 2.3.1. A Markov chain is called a unichain if it contains a single recurrent class

(and possibly some transient states). A Markov chain is ergodic if it consists of only one

class of states that is both recurrent and aperiodic. An ergodic unichain is a unichain for

which the recurrent class is ergodic.

With these definitions established, we want to discuss the asymptotic behavior of P n. In

the case of ergodic unichains, the long term behavior of the chain will be independent of the

initial states. That is P n

ij

! v
j

and hence P n ! 1v where v is the row vector with entries

v
i

and is known as the invariant distribution. Moreover, the invariant distribution will have

the special property that vP = v. An important theorem is the following:

Theorem 2.3.1. The powers of the transition matrix P converge to a rank 1 matrix of the

form 1v if and only if P is the transition matrix of an ergodic unichain. If P has several

recurrent classes, then P n converges to a matrix with non-identical rows.

We will discuss a sketch of the proof, focusing on the main idea behind the proof and

the role that eigenvalues and the Jordan decomposition play. For a more rigorous proof, we

direct the reader to [19].

For any transition matrix P , its eigenvalues must have magnitude at most 1. In the case

P is the transition matrix of an ergodic unichain having all distinct eigenvalues 1 = �1 >

17



�2 > · · · > �
s

, the Jordan decomposition of P will be of the form

P = U⇤U�1

for some U where ⇤ is the diagonal matrix with entries �
i

. So

P n

= U⇤

nU�1
= U⇤1U

�1
+ U (⇤

n � ⇤1)U
�1

where

⇤1 =

2

66666664

1

0

. . .

0

3

77777775

and ⇤

n � ⇤1 =

2

66666664

0

�n

2

. . .

�n

s

3

77777775

.

Thus, P n will converge geometrically to U⇤1U�1 which will be a matrix with identical rows.

In the case that P is the transition matrix of a chain with several recurrent classes, the

Jordan form of P will have several blocks B1, . . . , B`

. The Jordan blocks associated with the

eigenvalue 1 will determine the convergence, while the other components will tend to 0.

2.4 Looking Forward

The discussion presented in this chapter lays out some of the background material that is

relevant to the content of this thesis. The material presented in Section 2.2 will be important

in our economy switching Markov model presented in Chapter 3 and the applications content

in Chapter 6. The intuition that underlies Theorem 2.3.1 will be important in some of the

results of Chapters 4 and 5.
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Chapter 3

Economy Switching Markov Model

Since the late 1990s, Markov chains have been used to model credit risk because of their

ability to capture the natural credit rating migration behavior that takes place by entities

in the credit market. However, one issue with the basic model that is agreed upon in

the literature is that the homogeneity assumption of the transition matrix is too strong

[25, 8, 14, 16, 17, 18, 4]. In this chapter, we will begin by presenting Jarrow et al.’s Markov

chain model of credit risk. We will then develop this model, in particular modifying the

homogeneity assumption. Our approach is an economy switching Markov model. It involves

considering two transition matrices, one associated with healthy economic times and another

associated with difficult economic times, and a small probability parameter that allows the

process to switch between the two matrices. This approach is intended to capture the shared

impact that the economy has on the different entities due to a shared economy. Taking

this into account will allow us to model the higher risk that is associated with economic

recessions. With this model, we will present results in regards to the distribution of the

number of collected payments of a portfolio of loans. We will also run a simulation and

calculate the associated distributions, value-at-risk and the necessary interest rates to apply

in the case of consumer credit. One of our results is that the payment distribution will be

heavy tailed.
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3.1 Literature Review

Since the 1990s, credit risk modeling has received a lot of attention and interest. Throughout

industry and academia, scholars have been studying and creating mathematical models to

qualify, quantify and analyze credit risk. It has been and continues to be a major field

of research and development. In particular, the consumer credit market has received a lot

of study due to its size and significance in the world market. In the United States alone,

consumer credit has grown massively in the past several decades reaching $3.7 trillion at the

end of 2016 [26]. Moreover, the consumer credit market was at the heart of the 2007-2009

financial crisis.

At the center of credit risk modeling are credit ratings, which play an important role

in assessing an entity’s ability to fulfill a financial commitment. In 1997, Jarrow, Lando

and Turnbull [21] developed a Markov model that takes advantage of an entity’s migration

probabilities between different credit ratings. They introduced a discrete-time Markov chain

model for the pricing and hedging of debt and bonds subject to default risk by incorporating

credit rating migrations via a transition matrix. The main benefit of using a Markov model

is that it allows for the specification of the distribution for the time of bankruptcy, which

plays the main role in the determination of the pricing of a bond.

Since the introduction of Markov chains to credit risk modeling, a significant amount of

research has taken place in assessing the main two assumptions made in the discrete-time

Markov model presented by Jarrow et al. There has also been a lot of contributions in the

literature for ways to take into account the lack of satisfaction of these assumptions. The first

assumption is that a credit rating’s migration is only dependent on the current rating; this is

known as the memoryless property. The second assumption is the homogeneity assumption

on the probabilities of migration. Jarrow et al. assume the Markov model to be homogenous,

i.e. the probabilities of transition between the different ratings do not change over time. The

lack of validity of these assumptions has been central to many papers in this field, and it

will be central to this chapter.
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Since Jarrow et al. published their paper, there have been a number of publications

studying the assumptions in the Markov model. Nickell et al. (2000) use Moody’s data

from 1970 to 1997 to show that the transition matrix changes depending on the state of the

economy [25]. Based on GDP growth, they place the economy into one of three states: peak,

normal times and trough. Moreover, they find that the business cycle is the most important

factor in causing the witnessed variation in the transition matrices. Independently, Bangia

et al. (2002) use Standard & Poor’s data from 1981 to 1998 to confirm these results by

separating the economy into two states, expansion and contraction, and applying the model

to credit portfolio stress testing [4]. They present a much more thorough numerical analysis

on the statistics of the credit rating migration probabilities that were calculated from the

data.

There have also been a number of papers that build on Nickell et al. and Bangia et al.’s

analysis. Frydman and Schuermann [18] propose a model that is a mixture of two Markov

chains that incorporates the speed of movement among the credit ratings. This is intended

to accommodate for the lack of satisfaction of the memoryless property. Fitzpatrick and

Marchev [16] present a double chain Markov model in which the transitions at any time are

dependent on the unobservable state of the economy, which is modeled as a hidden Markov

chain. Interestingly, some of their results are similar to the results presented by Bangia et

al. A more recent 2016 paper in this regards is by D’Amico et al. [14], in which they model

the migration as a semi-Markov process. This allows for the incorporation of the time spent

in a state before migration.

The list of publications presented above have used similar mathematical frameworks to

tackle the problem of assessing credit risk, but there have also been numerous papers by

other scholars that have been studying credit risk with different numerical tools. In a recent

2016 publication by Butaru et al. [8], a more data driven machine learning approach is

taken. They combine consumer historical, credit bureau and macroeconomic data to have a

number of learning algorithms make predictions on the delinquency and default of credit card
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accounts. They perform this study with the goal of assessing how different banks manage

their risk and arrive at the conclusion that there is a range in how successful different banking

institutions are at anticipating the delinquency and default of their customers’ accounts.

While Butaru et al.’s models do a good job at predicting default, there is a fundamental

difference between their approach and the Markov chain approaches mentioned above. In

general, machine learning algorithms require a dense set of data in order to successfully

come up with meaningful results. Given such a data set, the machine learning algorithm

then “learns” the appropriate parameters that allows it to make correct predictions. While

this makes such algorithms versatile, they often become complex “black boxes,” where the

causality that underlines the prediction is not clearly understood. On the other hand, the

Markov model that we are presenting above stems from the fundamental structure of credit

and its behavior. Moreover, adjustments to the original model are made to better capture

and simulate the observed behavior. As a result, a Markov model can give a lot more insight

into the casualty and behavior of the process that is being studied. That said, it would

be hard to say that one modeling technique is better than the other, instead these two

approaches complement each other and can play an important role as tools for a practitioner

who, in the end, is the decision maker.

3.2 Discrete Time Markov Chain Approach

3.2.1 Markov Chain Model

Let S = {S1, . . . , SK

} be the state space representing the different rating classes, with

S1 denoting the best credit rating and S
K

denoting the absorbing default state, and let

X
t

be a random variable representing the rating of an entity that takes on values from S

at time period t. Jarrow et al. assume that the process X
t

is a Markov chain. Taking
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p
t,ij

= P (X
t+1 = S

j

| X
t

= S
i

) gives rise to the (K ⇥K) one period transition matrix

P
t

=

2

66666666664

p
t,11 p

t,12 · · · p
t,1K

p
t,21 p

t,22 · · · p
t,2K

...
... . . . ...

p
t,K�1,1 p

t,K�1,2 · · · p
t,K�1,K

0 0 · · · 1

3

77777777775

where p
t,ij

� 0 for all i, j and
P

K

j=1 pt,ij = 1 for all i. We also assume p
t,ii

6= 1 for 1  i < K

and state S
K

is reachable from all the other states. In Jarrow et al.’s model, this Markov

chain is assumed to be homogeneous, and hence the transition matrix P is independent of t.

In our economy switching model, we will assume that P
t

will be taking on one of two matrix

values: P
g

for the time steps with economic expansion and P
b

for the time steps with economic

recession. However, we will begin by first exploring some properties of homogeneous Markov

chains on a finite time interval of length T .

3.2.2 Expected Value of Visits to None-default States in a Finite

Time Period

Proposition 3.2.1. For a homogeneous Markov chain with transition matrix P written in

the form

P =

2

64
Q ⇤

0 1

3

75 ,

let XT be the random matrix whose i,j-th entry is the number of visits the chain makes to

S
j

given initial state S
i

over the time frame [0, T ]. Then the expected number of visits to S
j

with initial state S
i

is given by
⇥
E
⇥
XT

⇤⇤
=

TX

`=0

Q`.
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Proof. Let X(`)
ij

be a random variable which equals 1 if the chain, with initial state S
i

, is in

state S
j

after ` steps, and equals 0 otherwise. Then

P
⇣
X(`)

ij

= 1

⌘
= q(`)

ij

and P
⇣
X(`)

ij

= 0

⌘
= 1� q(`)

ij

,

where q(`)
ij

is the ij-th entry of Q`, with the notation Q0
= I. Then

E
h
X(`)

ij

i
= 1 · q(`)

ij

+ 0 ·
⇣
1� q(`)

ij

⌘
= q(`)

ij

and hence the expected number of times the chain is in state S
j

in the first T steps is

E

"
TX

`=0

X(`)
ij

#
=

TX

`=0

q(`)
ij

.

Let XT

ij

denote the number of visits to S
j

given initial state S
i

in time period [0, T ] . Then

XT

ij

=

TX

`=0

X(`)
ij

.

Note that XT

ij

6= X(T )
ij

. Thus,

E
⇥
XT

ij

⇤
= E

"
TX

`=0

X(`)
ij

#
=

TX

`=0

q(`)
ij

.

Let Y T

i

denote the total time spent in default, given initial state S
i

, up to time T . Then

Y T

i

= T �
P

K�1
j=1 XT

ij

and hence:

Corollary 3.2.1. E
⇥
Y T

i

⇤
= T �

P
K�1
j=1 E

⇥
XT

ij

⇤
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3.2.3 Distribution of Payments in a Finite Time Period

In our model, we will assume that for as long as an individual is not in default, he or she is

making a payment. Let W T

i

denote the number of payments made up to time T , given initial

state S
i

. Note that W T

i

=

P
K�1
j=1 XT

ij

and W T

i

2 {0, . . . , T} . Given the transition matrix P ,

we may explicitly calculate the distribution of W T

i

.

Proposition 3.2.2. Given the probability transition matrix P , written in the form

P =

2

64
Q ⇤

0 1

3

75 ,

we have,

2

66664

P
�
W T

1 = k
�

...

P
�
W T

K�1 = k
�

3

77775
= Qk

2

66664

p1K
...

p
K�1,K

3

77775
for k = 0, . . . T � 1,

2

66664

P
�
W T

1 = T
�

...

P
�
W T

K�1 = T
�

3

77775
= QT1.

Proof. For 1  i  K � 1 and 0  k  T � 1, note that the event W T

i

= k is equivalent to

having the process with initial state S
i

migrate between non-default states for a total of k

steps, and then migrating into default. Moreover, we may express W T

i

= k conditionally as

�
W T

i

= k
 

=

K�1G

j=1

�
W T

i

= k | process visits S
j

in the k-th step
 

=

K�1G

j=1

{process visits S
j

in the k-th step then defaults} .
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Therefore,

P
�
W T

i

= k
�

=

K�1X

j=1

p(k)
ij

p
jK

.

As for the event W T

i

= T, this is equivalent to never defaulting. So,

�
W T

i

= T
 

=

K�1G

j=1

�
W T

i

= T | process visits S
j

in the T -th step
 

=

K�1G

j=1

{process vists S
j

in the final T -th step}

and hence

P
�
W T

i

= T
�
=

K�1X

j=1

p(T )
ij

.

These two equalities give us what we want to prove when written in matrix notation.

3.3 Modeling Correlation

In this section, we will present our modeling of the correlation that takes place in the portfolio

due to the shared economy over a short time frame [0, T ] . The economy is assumed to start

off healthy and to have a small " > 0 probability of going into recession. Once the economy

enters recession, it is assumed that it will stay in recession until the end of the timeframe

of interest. We are effectively considering a homogenous Markov chain that may switch to

another homogenous chain at each time step with a probability ".

3.3.1 Distribution of the Number of Collected Payments

Let W T

i,t

denote the number of payments of an individual made up to time T , given initial

state S
i

and assuming the economy changes states from expansion to recession at time t.
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Then

0  k  t� 1 :

2

66664

P
�
W T

1,t = k
�

...

P
�
W T

K�1,t = k
�

3

77775
= Qk

g

2

66664

(P
g

)1K

...

(P
g

)

K�1,K

3

77775

t  k  T � 1 :

2

66664

P
�
W T

1,t = k
�

...

P
�
W T

K�1,t = k
�

3

77775
= Qt

g

Qk�t

b

2

66664

(P
b

)1K

...

(P
b

)

K�1,K

3

77775

k = T :

2

66664

P
�
W T

1,t = k
�

...

P
�
W T

K�1,t = k
�

3

77775
= Qt

g

Qk�t

b

1,

where Q
g

and Q
b

denote the sub-matrices of P
g

and P
b

, respectively. Let fT

i,t

denote the

distribution of an individual in an economy that changes states at time t. Then, fT

i,t

(k) =

P
�
W T

i,t

= k
�

for 0  k  T .

3.3.2 Convolutions

Let X be a random variable with mean µ and variance �2 with distribution f . Let Y =

P
n

i=1 Xi

where X
i

are independent and identically distributed to X. Then the distribution

of Y will be fn⇤, the convolution of f with itself n items. Then, by the (Lindeberg-Levy)

Central Limit Theorem, for large n

Z :=

Y � nµp
n�

=

1p
n

nX

i=1

(X
i

� µ)

�
⇠ N (0, 1) .

So, for large n,

Y =

p
n�Z + nµ ⇠ N

�
nµ, n�2

�
.

Thus, for n large, we can expect the convolution f ⇤n to be close to the Gaussian with mean

nµ and variance n�2.
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3.3.3 Distribution of Payments in a Portfolio

Let f
t

denote the distribution of the payments of one individual, given that the economy state

changes states at time t 2 {1, . . . , T} . Then the distribution of one individual irrespective

of when the economy changes states is given by

f = (1� (T � 2) ") f
T

+ "

 
T�1X

t=1

f
t

!
.

Suppose that we have a portfolio of size n. If we assume that we have a diversified portfolio,

in which the behavior of one individual is assumed not to impact the behavior of another

individual, then the distribution of the portfolio will simply be

˜f1 = fn⇤.

On the other hand, if we assume that the individuals are in the same economy, then this

extra assumption will give us that the distribution of the portfolio will be

˜f2 = (1� (T � 2) ") fn⇤
T

+ "

 
T�1X

t=1

fn⇤
t

!
,

where fn⇤
t

will be the distribution of the portfolio assuming the economy state changes at

time t. Such a portfolio is an example of a non-diversified portfolio, in which the underlying

behavior of the economy is impacting all the individuals in the same way.

For large n, ˜f1 will be close to a normal distribution with mean nµ and variance n�2. As

for ˜f2, we expect it to be close to a sum of normal distributions and hence, for large enough

n, it may have T � 1 peaks, where the one associated with fn⇤
T

will at times be the most

dominant.
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3.3.4 Calculating VaR

Let fT,n

i

denote the distribution of a portfolio of size n with initial state S
i

and a total of T

periods. Given a confidence level ↵ 2 (0, 1), define the VaR of the portfolio at the confidence

level ↵ as

VaRT,n

i,↵

= min

(
0  x  T :

TX

j=x

fT,n

i

(j)  ↵

)
.

With ↵ confidence, we expect that the total number of collected payments to be at least

VaRT,n

i,↵

.

3.3.5 Calculating Interest Rate

Let L denote the loan size in dollar. After calculating v = VaRT,n

i,↵

, set the monthly payment

as x (v) = L/v and take r (v) = T

v

�1 to be the interest rate. With ↵ confidence, the monthly

payment of x (v) will insure a profit and the associated interest rate will be r (v). Indeed,

to insure profit with ↵ confidence, x must satisfy xv = L. Also, given payment size x and

R = 1 + r, R must satisfy LR = xnT. So r = R� 1 =

nT

v

� 1.

3.3.6 Numerical Simulation

In our simulation, we will take the hypothetical transition matrices

P
g

=

2

666666666666666666664

.91879 .07385 .00718 0 0 0 0 0

.01131 .91264 .07091 .00308 .00206 0 0 0

.00102 .02561 .91189 .05328 .00615 .00205 0 0

0 .00206 .05361 .87938 .05464 .00825 .00103 .00103

0 .00106 .00425 .04995 .85122 .07333 .00425 .01594

0 .00109 .00109 .00543 .05972 .82193 .02172 .08903

0 .00437 .00437 .00873 .02511 .05895 .67795 .22052

0 0 0 0 0 0 0 1

3

777777777777777777775

,
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P
b

=

2

666666666666666666664

.2416 .6463 .0775 .0269 .0055 .0014 .0005 .0003

.0483 .6279 .2377 .0619 .0157 .0053 .0023 .0008

.0069 .2132 .4739 .2148 .0551 .0204 .0105 .0052

0 .0495 .2189 .4654 .1629 .0570 .0299 .0165

0 .008 .0478 .2602 .3811 .1502 .0883 .0645

0 .0019 .0083 .0768 .2735 .3137 .1856 .1401

0 .0003 .0033 .0266 .1440 .2528 .3257 .2474

0 0 0 0 0 0 0 1

3

777777777777777777775

,

and variables " = 0.1 and T = 12. The distributions are plotted in Figure 3.3.1. As

anticipated, for n = 1 we have the same distribution. For n = 10, we see a difference in

the distributions of the portfolios initiating in states S1, S2, S3, S4 but the difference between

the distributions of the portfolios initiating in S5, S6, S7 is not significant. For n = 100, we

start seeing a signifiant difference. We clearly see correlation in the non-diversified portfolio,

while the diversified portfolio almost follows a normal distribution. In the non-diversified

portfolio, we have flatter distributions with more probability mass to the right. Also, the

non-diversified portfolio distributions have a heavier left tail. This remains to be the case

for n = 500 and n = 1000. For n = 500 we begin to see several peaks, namely 8 peaks for

portfolios with initial states S1, S2, S3, S4. For n = 1000, the peaks become more evident

and more so for n = 10000.

In the case of a portfolio comprised of 100 individuals, we calculated the associated VaR

and interest rates in Table 3.3.1. We see here that the calculated interest rates are within

range of current credit market interest rates. Also, the extremely large interest rates for

individuals in the lower states matches interest rates that are often charged by payday loans

and other such loans.
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Figure 3.3.1: These plots represent the distributions of the number of payments in the
diversified and non-diversified portfolios.
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1%
S
4
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33
%

)
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3%
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8

(8
0.
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%

)
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.9
7%

S
5
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9

(7
3.
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%

)
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.5
2%
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5

(6
8.

75
%

)
45

.4
5%

S
6
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6

(5
2.

17
%

)
91

.6
9%
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7

(5
1.

42
%

)
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.4
9%

S
7

38
4

(3
2.

0%
)

21
2.

5%
38

2
(3

1.
83

%
)

21
4.

14
%

Table 3.3.1: For n = 100, with 95% confidence, we calculated the VaR and interest rate in
the diversified and non-diversified portfolios.
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Chapter 4

Markov Chains with Random Transition

Matrices

In a 1969 paper, Takahashi [33] presents a generalization of the ordinary Markov chain, which

he calls a Markov chain with random transition matrices. He also presents some results in

regards to the ergodicity of such Markov chains. In a more recent 2010 paper, Bruneau et

al. [7] independently explore products of random transition matrices within a larger context

and arrive at some similar, but different results. In this chapter, our goal is to shed light on

Markov chains with random transition matrices by presenting an overview of this subject.

We will present some of the material in these papers as well as explore some numerical

examples to gain a better understanding of such chains and their applicability. One form of

such chains that we will present is a perturbed Markov chain. Markov chains with random

transition matrices are a very natural extension of ordinary Markov chains and can provide

meaningful insight in applications where ordinary Markov chains are used.

4.1 Motivation and Some Examples

Let P denote a set of s ⇥ s transition matrices. A Markov chain with random transition

matrices is a Markov process {X
n

} that is driven by a random matrix P : ⌦ ! P over the
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finite state space S = {1, . . . , s}. Let

↵(0)
=


↵(0)
1 · · · ↵(0)

s

�

denote the initial the distribution. Then the distribution of the Markov chain at time n is

given by ↵(n)
= ↵(0)P (n) where P (n)

: ⌦

n ! P is the transition matrix of such a chain over

an n-step time period given by

P (n)
(!1, . . . ,!n

) =

nY

i=1

P (!
i

) .

In particular, we are assuming that P (!
i

) and P (!
j

) are independent for i 6= j. Thus,

E
⇥
P (n)

⇤
= E [P ]

n .

So, if E [P ]

n converges for large n, the mean of P (n) will also converge. In order to better

understand the behavior of such chains we will consider several examples.

Example 4.1.1. Let S = {1, 2, 3} and let P = {P1, P2} given by

P1 =

2

66664

.5 .3 .2

.1 .1 .8

.3 .4 .3

3

77775
and P2 =

2

66664

.2 .6 .2

.9 .05 .05

.8 .1 .1

3

77775

with Pr (P = P
i

) =

1
2 . Then P1 and P2 are irreducible and aperiodic with stationary distri-

butions

⇡1 ⇡

0.3039 0.2843 0.4118

�
and ⇡2 ⇡


0.5215 0.3436 0.1350

�
.
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Figure 4.1.1: Plot of P (n)
1j in example 1 over n = 1, . . . , 100 and the entries of the invariant

distribution ⇡ of E [P ].

Moreover,

E [P ] =

2

66664

.35 .45 .2

.5 075 .425

.55 .25 .2

3

77775

is also irreducible and aperiodic with the stationary distribution ⇡ =


0.4463 0.2887 0.2650

�
.

In our simulation, we see that P (n) becomes rank 1, and its rows fluctuate around ⇡. It is

interesting to note that we have more fluctuation in the P (n)
11 entry than in the P (n)

12 entry,

which presumably has to do with the interactions of P1 and P2.

In the next example we consider a particularly interesting Markov chain, where the chain

is driven by a randomly perturbed matrix of the form P +"Q (!). Note that the randomness

is only in Q. Such a chain will be called a perturbed Markov chain and we will discuss its

construction in more detail below.
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Figure 4.1.2: Plot of P (n)
1j in example 2 with " = 0.1 over n = 1, . . . , 100 and the entries of

the invariant distribution ⇡ of P .

Example 4.1.2. Let S = {1, 2, 3} and let P = {P + "Q} where

P =

2

66664

.8 .1 .1

.05 .7 .25

.05 .6 .35

3

77775
,

" 2 (0, 1) is fixed and Q is random with mean 0 and rows summing to zero so that P + "Q

remains a transition matrix. Note that E
⇥
P (n)

⇤
= P n because E [Q] = O. As we saw in the

above examples, P (n) will become rank 1 and will fluctuate around the invariant distribution

⇡ =


1/5 5/9 11/45

�
⇡

0.2 0.5556 0.2444

�
of P for large n.

Another interesting example that can have many applications is a perturbed Markov

chain with an absorbing state.
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Figure 4.1.3: Plot of P (n)
1j in example 3 with " = 0.1 over n = 1, . . . , 50 and the entries of

the invariant distribution ⇡ of P .

Example 4.1.3. Let S = {1, 2, 3} and let P = {P + "Q} where

P =

2

66664

.8 .1 .1

.05 .7 .25

0 0 1

3

77775
,

" 2 (0, 1) is fixed and Q is random as above with the extra assumption that it does not alter

the third row. Thus, all transition matrices in P will share an absorbing state. Then for any

! 2 ⌦

n,

lim

n!1
P (n)

(!) =

2

66664

0 0 1

0 0 1

0 0 1

3

77775
.

Indeed, we see this behavior in the simulation in Figure 4.1.3 where the entries fluctuate

until the chain is fully absorbed.
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4.2 Probabilistic Framework

Next we will present the probabilistic framework required to describe Markov chains with

random transition matrices. Let S = {1, . . . , s} denote a finite state space, A be the set

of all probability measures with respect to S and P be the set of all transition matrices

with respect with to S. Then A and P can be viewed as s and s2-dimensional Euclidean

subspaces and we can denote them in the following fashion,

A =

(
↵1 · · · ↵

s

�
2 Rs | ↵

i

� 0 and
X

i

↵
i

= 1 for all i

)

and

P =

(
[p

ij

] 2 Rs⇥s | p
ij

� 0 and
X

k

p
ik

= 1 for all i, j

)
.

For each time step n, let (⌦

n,F n,Prn) be a probability space for the P-valued random

matrix P n and let
�
⌦,F ,Pr

�
=

1Y

n=1

(⌦

n,F n,Prn)

be the product probability space.

Definition 4.2.1. An S-valued Markov chain {X
n

} with random transition matrices {P n}

is a Markov process on ⌦ such that

Pr (X
n

= j | X0 = i) =
�
P (n)

(!)
�
ij

with P (n)
(!) =

Q
n

i=1 P
i

(!i

) and ! = (!1,!2, . . .) 2 ⌦. In the particular case with P i

= P

for all i we will call the chain stationary.

Our main focus will be on stationary Markov chain with random transition matrices. It is

worth noting that stationary Markov chains with random transition matrices are the analog

of homogeneous Markov chains, while nonstationary Markov chain with random transition

matrices are the analog of inhomogeneous Markov chains.
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Let S
k

be the set of k-tuples of states in S. Then the k-th moments of the random matrix

P (!) is the sk ⇥ sk matrix

⌃

k

= [E [p
i1j1 · · · pikjk ] | (i1, . . . , ik) , (j1, . . . , jk) 2 S

k

] .

We will adopt the following definitions for irreducibility, periodicity and ergodicity from

Takahashi.

Definition 4.2.2. A stationary Markov chain with random transition matrices is irreducible

if the ordinary Markov chain driven by ⌃1 is irreducible.

To define periodicity we will need to first present the following theorem, the proof of

which can be found in Takahashi’s paper as Theorem 4.

Theorem 4.2.1. For a stationary and irreducible Markov chain with random transition

matrices there exists a unique integer r � 1 such that the r sequences
�
P (nr+m)

 
for

m 2 {0, 1, . . . , r � 1} converge in distribution as n tends to 1 and such that their limit

distributions are different from each other.

Definition 4.2.3. The period of a stationary and irreducible Markov chain with random

transition matrices is the number r whose existence is assured in the above theorem. A

stationary and irreducible Markov chain is aperiodic if r = 1.

Definition 4.2.4. A stationary and irreducible Markov chain with random transition ma-

trices is ergodic if it is aperiodic and P (n) converges in distribution to a random matrix

Q =

2

66664

q1 · · · q
s

... . . . ...

q1 . . . q
s

3

77775
.

Let ˆP (n)
(!) denote the dual process of P (n)

(!) in the sense that

ˆP (n)
(!) = P (!

n

) · · ·P (!1) .
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Hence the distributions of P (n)
(!) and ˆP (n)

(!) coincide.

Lemma 4.2.1. Let ˆM (n)
j

(!) = max

i

p̂(n)
ij

(!) . For each j, ˆM (n)
j

(!) converges to some ˆM
j

(!).

Define the random rank 1 matrix ˆM by

ˆM (!) =

2

66664

ˆM1 (!) · · · ˆM
s

(!)

... . . . ...

ˆM1 (!) · · · ˆM
s

(!)

3

77775
.

Theorem 4.2.2. For a stationary and irreducible Markov chain with random transition

matrices, the following four statements are equivalent:

(a) The chain is ergodic.

(b) P (n)
(!) converges in distribution to ˆM (!).

(c) P (n)
(!) converges in probability to ˆM (!).

(d) P (n)
(!) converges with probability one to ˆM (!).

In the above results and others presented by Takahashi, the irreducibility of the Markov

chain is an important and fundamental assumption. Bruneau et al study Markov chains

with random transition matrices and infinite products of random matrices within the more

general context of random dynamics processes and physics applications. Interestingly, they

make a weaker assumption which produces similar results in regards to the ergodic behavior

of such Markov chains. They show that the product P (n) is the sum of a fluctuating and a

decaying process. The decaying process converges to zero almost surely and exponentially

fast as n ! 1. Instead of the irreducibility assumption, they assume that 1 is a simple

eigenvalue of P .

Let P (!) be as above, a P-valued random matrix with simple eigenvalue 1, that is with

multiplicity 1. Then for each !, the Jordan form J (!) exists along with an invertible V (!) ,
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such that

P (!) = V (!) J (!)U (!)

where U (!) = V �1
(!) and J (!) is of the form

J (!) =

2

66666664

1

B2 (!)

. . .

B
p

(!)

3

77777775

where each matrix B
i

(!) is composed of the Jordan blocks of the eigenvalue �
i

(!). Let

J1 =

2

66666664

1

0

. . .

0

3

77777775

and

J2 (!) =

2

66666664

0

B2 (!)

. . .

B
p

(!)

3

77777775

.

Then we can decompose P (!) as

P (!) = V (!) J1U (!) + V (!) J2 (!)U (!)

= 1⇡ (!) + V (!) J2 (!)U (!)

where ⇡ (!) is the invariant distribution of P (!).
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Proposition 4.2.1. P (n)
(!1, . . . ,!n

) can be decomposed as follows:

P (n)
(!1, . . . ,!n

) = 1⇡ (!1)P
(n�1)

(!2, . . . ,!n

) +

nY

i=1

V (!
i

) J2 (!i

)U (!
i

) .

Proof. For n = 2,

P (2)
(!1,!2) = (1⇡ (!1) + V (!1) J2 (!1)U (!1))P (!2)

= 1⇡ (!1)P (!2) + (P (!1)� 1⇡ (!1))1⇡ (!2) +

2Y

i=1

V (!
i

) J2 (!i

)U (!
i

)

= 1⇡ (!1)P (!2) +

2Y

i=1

V (!
i

) J2 (!i

)U (!
i

) .

Given the above equation for some n,

P (n+1)
(!1 . . . ,!n+1) =

"
1⇡ (!1)P

(n�1)
(!2, . . . ,!n

) +

nY

i=1

V (!
i

) J2 (!i

)U (!
i

)

#
P (!

n+1)

= 1⇡ (!1)P
(n)

(!2, . . . ,!n+1) +

 
nY

i=1

V (!
i

) J2 (!i

)U (!
i

)

!
1⇡ (!

n+1)

+

n+1Y

i=1

V (!
i

) J2 (!i

)U (!
i

)

= 1⇡ (!1)P
(n)

(!2, . . . ,!n+1) +

n+1Y

i=1

V (!
i

) J2 (!i

)U (!
i

) .

By induction, the above decomposition holds for a general n.

The following result, taken from Bruneau et al., shows that the second portion of the

decomposition in Proposition 11 decays exponentially.

Theorem 4.2.3. Let P be a P-valued random matrix with positive probability of 1 being

a simple eigenvalue. Then there exist a set ⌦1 ⇢ ⌦ and constants C,↵ > 0 such that

P (⌦1) = 1 and such that for any ! = (!1,!2, . . .) 2 ⌦1, there exists an n0 (!) such that for
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any n � n0 (!), �����

nY

i=1

V (!
i

) J2 (!i

)U (!
i

)

�����  Ce�↵n.

As a consequence of this theorem, P (n)
(!) will become rank 1 for large n. In particular

we have the following corollary.

Corollary 4.2.1. Let P be a P-valued random matrix with a constant invariant distribution

⇡. Then

lim

n!1
P (n)

(!) = 1⇡.

Proof. Indeed,

1⇡P (n�1)
(!2, . . . ,!n

) = 1⇡P (!2) · · ·P (!
n

)

= 1⇡

for all n since ⇡P (!
i

) = ⇡ for all i.

When it comes to studying the fluctuation of the process, there are two perspectives we

can take, both of which lead to the same result. On the one hand,

E
⇥
P (n)

⇤
= E [P ]

n

and hence the process will fluctuate about the invariant distribution of E [P ] for large n. We

can also study the Césaro mean. Bruneau et al. present the following result which proves

the convergence in Césaro mean.

Theorem 4.2.4. Let P be a P-valued random matrix with simple eigenvalue 1 with positive

probability. Then there exists a set ⌦2 ⇢ ⌦ such that P (⌦2) = 1 and for any ! 2 ⌦2,

lim

N!1

1

N

NX

n=1

P (n)
(!) = E [P ],
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where

E [P ] = lim

n!1
E [P ]

n .

4.3 Perturbed Markov Chains

We are interested in exploring a specific type of Markov chain with random transition ma-

trices, namely the perturbed Markov chain.

Definition 4.3.1. We will call a stationary Markov chain {X
n

} with random transition

matrices P + "Q (!) a perturbed Markov chain, where P is a constant transition matrix,

" 2 (0, 1) is constant and Q (!) is a random matrix with rows summing to 0.

As we saw in examples 2 and 3, perturbed Markov chains have some interesting behaviors

that we would like to explore and better understand. One specific property that we would

like to better understand is the amount of fluctuation that takes place over time.

Let P = {P + "Q (!) | ! 2 ⌦} be the set of perturbed transition matrices for some fixed

" 2 (0, 1). Note that given a fixed P we will need to impose more assumptions on Q and

" to guarantee that P + "Q remains a transition matrix. We want to study inhomogeneous

Markov chains driven by P . The transition matrix of such a chain over an n-step time period

is a random matrix P (n)
:⌦ ! Rs⇥s given by

P (n)
(!) =

nY

j=1

(P + "Q (!
j

))

where ⌦ =

Q1
j=1 ⌦ and ! = (!1,!2, . . .) 2 ⌦. To simplify the notation, we will let Q

j

:=

Q (!
j

).
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Let L(n)
`

denote the order "` term of P (n). Then

L(n)
0 = P n,

L(n)
1 =

n�1X

i=0

P n�1�iQ
n�i

P i,

L(n)
n

= Q1 · · ·Qn

,

L(n)
`

= O for ` > n.

Moreover, we have the following recursion

L(n)
`

= L(n�1)
`

P + L(n�1)
`�1 Q

n

= L(`)
`

P n�`

+

n�`�1X

i=0

L(n�1�i)
`�1 Q

n�i

P i

= Q1 · · ·Q`

P n�`

+

n�`�1X

i=0

L(n�1�i)
`�1 Q

n�i

P i.

4.3.1 Covariance of P (n)
and P (n+k)

In this section we will present an analytic expression for the limit of the covariance of P (n)

and P (n+k) for a fixed k. In the proof, we will take advantage of the Jordan decomposition of

P . If 1 is assumed to be a simple eigenvalue, then, as we have done earlier, we can decompose

P as

P = 1⇡ + V J2U.

Moreover, P i

= 1⇡ + V J i

2U and Q
j

P i

= Q
j

V J i

2U for any i and j.

Proposition 4.3.1. Let P be a transition matrix with simple eigenvalue 1 and let ⇡ be its

invariant distribution. The limit of the entry-wise covariance of P (n) and P (n+k) is

lim

n!1
Cov

⇣
P (n)
ij

, P (n+k)
h`

⌘
= "2

" 1X

x=0

sX

a=1

⇡2
a

⇣
(P x � 1⇡)T Cov (Q

a·)
�
P x+k � 1⇡

�⌘

j`

#
+O

�
"3
�
,
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where Cov (Q
a·) denotes the s⇥ s covariance matrix of the a-th row of Q.

Proof. Recall that

Cov
⇣
P (n)
ij

, P (n+k)
h`

⌘
= E

h
P (n)
ij

P (n+k)
h`

i
� E

h
P (n)
ij

i
E
h
P (n+k)
h`

i
.

By the independence assumptions,

E
h
P (n)
ij

i
E
h
P (n+k)
h`

i
= P n

ij

P n+k

h`

.

Note,

P (n)
ij

P (n+k)
h`

=

 
nX

x=0

"xL(n)
x,ij

! 
n+kX

y=0

"yL(n+k)
y,h`

!

= L(n)
0,ijL

(n+k)
0,h` + "

⇣
L(n)
1,ijL

(n+k)
0,h` + L(n)

0,ijL
(n+k)
1,h`

⌘

+ "2
⇣
L(n)
2,ijL

(n+k)
0,h` + L(n)

1,ijL
(n+k)
1,h` + L(n)

0,ijL
(n+k)
2,h`

⌘
+ · · · .

Calculating the expectation of the first few terms we have,

E
h
L(n)
0,ijL

(n+k)
0,h`

i
= P n

ij

P n+k

h`

,

E
h
L(n)
1,ijL

(n+k)
0,h`

i
= E

2

4
 

n�1X

x=0

P n�1�xQ
n�x

P x

!

ij

�
P n+k

hl

�
3

5
= 0,

E
h
L(n)
0,ijL

(n+k)
1,h`

i
= 0,

E
h
L(n)
2,ijL

(n+k)
0,h`

i
= E

2

4
 
Q1Q2P

n�2
+

n�3X

x=0

n�2�xX

y=0

P n�2�x�yQ
n�1�x�y

P yQ
n�x

P x

!

ij

�
P n+k

h`

�
3

5
= 0
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since n� x > n� 1� x� y, and

E
h
L(n)
0,ijL

(n+k)
2,h`

i
= 0.

Now,

E
h
L(n)
1,ijL

(n+k)
1,h`

i
1
= E

2

4
 

n�1X

x=0

P n�1�xQ
n�x

P x

!

ij

 
n+k�1X

y=0

P n+k�1�yQ
n+k�y

P y

!

h`

3

5

2
=

X

x,y

E
h�
P n�1�xQ

n�x

P x

�
ij

�
P n+k�1�yQ

n+k�y

P y

�
h`

i

3
=

X

x,y

E

"
sX

a,b=1

�
P n�1�x

ia

Q
n�x,ab

P x

bj

� sX

c,d=1

⇣
P n+k�1�y

hc

Q
n+k�y,cd

P y

d`

⌘#

4
=

X

x,y

X

a,b,c,d

E
h
P n�1�x

ia

Q
n�x,ab

P x

bj

P n+k�1�y

hc

Q
n+k�y,cd

P y

d`

i

5
=

n�1X

x=0

X

a,b,d

E
⇥
P n�1�x

ia

Q
n�x,ab

P x

bj

P n�1�x

ha

Q
n�x,ad

P x+k

d`

⇤

6
=

n�1X

x=0

X

a,b,d

E
h
P n�1�x

ia

Q
n�x,ab

(V Jx

2U)

bj

P n�1�x

ha

Q
n�x,ad

�
V Jx+k

2 U
�
d`

i

7
=

n�1X

x=0

X

a,b,d

P n�1�x

ia

P n�1�x

ha

(V Jx

2U)

bj

E [Q
n�x,ab

Q
n�x,ad

]

�
V Jx+k

2 U
�
d`

8
=

n�1X

x=0

sX

a=1

P n�1�x

ia

P n�1�x

ha

 
X

b,d

(V Jx

2U)

T

jb

Cov (Q
a·)

bd

�
V Jx+k

2 U
�
d`

!

9
=

n�1X

x=0

sX

a=1

P n�1�x

ia

P n�1�x

ha

⇣
(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
�⌘

j`

10�!
n!1

1X

x=0

sX

a=1

P
ia

P
ha

⇣
(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
�⌘

j`

11
=

1X

x=0

sX

a=1

⇡2
a

⇣
(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
�⌘

j`

12
=

1X

x=0

sX

a=1

⇡2
a

⇣
(P x � 1⇡)T Cov (Q

a·)
�
P x+k � 1⇡

�⌘

j`

where the fifth equality is due to the independence assumptions on the different Qs as well as
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the rows of Q . Also we will have convergence in (10) since the magnitude of the summand

decays geometrically. Indeed,

���P n�1�1
ia

P n�1�x

ha

(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
���� = O

�
�2x+k

2

�

where �2 is the second largest eigenvalue of P .

Corollary 4.3.1. In the special case that the rows of Q are identically distributed, we have

lim

n!1
Cov

⇣
P (n)
ij

, P (n+k)
h`

⌘
= "2

" 1X

x=0

⇡⇡T

(P x � 1⇡)T Cov (Q1·)
�
P x+k � 1⇡

�
#

j`

+O
�
"3
�
.

Moreover, as k ! 1, this term will decay exponentially.

Proof. Note that

�����

1X

x=0

⇡⇡T

(P x � 1⇡)T Cov (Q1·)
�
P x+k � 1⇡

�
����� = O

�
�k

2

�

where �2 is the second largest eigenvalue of P , since P x � 1⇡ = V Jx

2U .

It is important to see here that �2 is governing the de-correlation in the process. Indeed,

this turns out to be a powerful generalization from the classic Markov chain case which is

causing a lot of the long term structure that we see with perturbed Markov chains.

Corollary 4.3.2. In the special case that the rows of Q are identically distributed and k = 0,

we have

lim

n!1
Cov

⇣
P (n)
ij

, P (n)
h`

⌘
= "2

" 1X

x=0

⇡⇡T

(P x � 1⇡)T Cov (Q1·) (P
x � 1⇡)

#

j`

+O
�
"3
�
.

This matrix will be symmetric and its diagonal gives the variance of P (n)
ij

, as n ! 1.

We also have that the autocovariance of the process, i.e. the covariance of the process

with itself over time, will decay to 0 in the limit.
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Corollary 4.3.3. Given the assumptions in Proposition 4.3.1,

lim

k!1
Cov

⇣
P (n)
ij

, P (n+k)
h`

⌘
= O

for any fixed n.

Proof. In the proof of Proposition 4.3.1, we see that

Cov
⇣
P (n)
ij

, P (n+k)
h`

⌘
=

n�1X

x=0

sX

a=1

P n�1�x

ia

P n�1�x

ha

⇣
(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
�⌘

j`

�!
k!1

n�1X

x=0

sX

a=1

P n�1�x

ia

P n�1�x

ha

⇣
(V Jx

2U)

T Cov (Q
a·) (VOU)

⌘

j`

= O.

Moreover, this convergence will take place exponentially with rate corresponding to the

second largest eigenvalue �2 of P since

���P n�1�1
ia

P n�1�x

ha

(V Jx

2U)

T Cov (Q
a·)
�
V Jx+k

2 U
���� = O

�
�2x+k

2

�
,

where k will dominate in the exponent.

4.3.2 Perturbed Markov Chain Simulations

In this section we will present a procedure for the numerical simulation of perturbed Markov

chains. We will first present the Dirichlet distribution as well as some of its properties

because we will be using it in the simulation of the random perturbation Q.

4.3.2.1 Dirichlet Distribution

The Dirichlet distribution can be interpreted as a distribution on probability distributions.

The random vector ✓ = (✓1, . . . , ✓n) is a Dirichlet random variable if it has the probability

density function

p
↵

(✓) =
1

B (↵)

nY

i=1

✓↵i�1
i

I
S

(✓)
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where ↵ = (↵1, . . . ,↵n

) 2 Rn is a constant vector with ↵
i

> 0, S = {x 2 Rn |
P

x
i

= 1, x
i

� 0}

is the probability simplex, and

B (↵) =
� (↵1) · · ·� (↵

n

)

� (↵0)

is the multivariate Binomial function with ↵0 =
P

n

i=1 ↵i

. Moreover, it holds that

E [✓
i

] =

↵
i

↵0
,

Var (✓
i

) =

↵
i

(↵0 � ↵
i

)

↵2
0 (↵0 + 1)

,

Cov (✓
i

, ✓
j

) =

�↵
i

↵
j

↵2
0 (↵0 + 1)

if i 6= j.

We will use the notation ✓ ⇠ Dir (↵) to denote a Dirichlet random vector.

There are two important advantages to using the Dirichlet distribution in our work.

Firstly, it gives a reasonable approach to defining a random vector with nonnegative entries

summing to 1. Via a translation and scaling of a Dirichlet random vector, we can define a

random vector with bounded entries summing to 0. Indeed, the random vector

� = c (✓ � E [✓])

has mean 0, entries bounded by c and summing up to 0. Secondly, the constant vector

↵ allows for a range of behaviors. In particular, taking ↵ = (1, . . . , 1) gives the (n� 1)-

dimensional uniform distribution. The two quantities that determine the behavior of the

distribution are ↵ and ↵0, sometimes called the base measure and concentration, respectively.

The base measure ↵ affects the mean, while the concentration ↵0 affects the variance and

covariance. A small ↵0 gives rise to distributions with extreme behaviors, while letting

↵0 ! 1 forces the variance and covariance to 0, and the samples of such a distribution will

be clustered about a normalization of the base measure ↵.
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4.3.2.2 Construction of Q

Let q = {x = (x1, . . . , xs

) 2 Rs |
P

i

x
i

= 0} and let q : ⌦ ! q be a random vector on a

probability space (⌦,F ,Pr) with mean E [q
i

] = 0 and variance Var (q
i

) = �2
i

. Then the

covariance matrix of q is

Cov (q) :=

2

66666664

�2
1 Cov (q1, q2) · · · Cov (q1, qs)

Cov (q2, q1) �2
2 · · · Cov (q2, qs)

...
...

Cov (q
s

, q1) Cov (q
s

, q2) · · · �2
s

3

77777775

.

with the property that

0 =

sX

i=1

�2
i

+ 2

X

i<j

Cov (q
i

, q
j

)

since Var (
P

q
i

) = 0. Also, the rows (and columns) of Cov (q) sum to 0 since

sX

j=1

Cov (q
i

, q
j

) =

sX

j=1

E [q
i

q
j

] = E

"
q
i

sX

j=1

q
j

#
= 0.

For the purposes of constructing an appropriate Q, we will want to impose two extra as-

sumptions on the random vector q:

1. |q
i

| < 1
2 and

2.
P

qi>0 qi <
1
2 .

Given s independent random vectors constructed as above, we can build the random matrix

Q : ⌦1 ⇥ · · ·⇥ ⌦

s

! Rs⇥s with rows q1, . . . , qs.

One structure we can impose on these random vectors is the Dirichlet distribution. Let

✓ = (✓1, . . . , ✓s) ⇠ Dir (↵) with ↵ = (↵1, . . . ,↵s

) 2 Rs and ↵
j

> 0. Taking q =

1
2 (✓ � E [✓])

as a row of Q gives us the three assumptions that we need:

1.
sX

j=1

q
j

=

1

2

sX

j=1

✓
✓
j

� ↵
j

↵0

◆
=

1

2

(1� 1) = 0
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2. |q
j

| = 1

2

����✓j �
↵
j

↵0

���� <
1

2

3.
X

j:qj>0

q
j

=

1

2

X

j:✓j>
↵j
↵0

✓
✓
j

� ↵
j

↵0

◆
<

1

2

X

j

✓
j

=

1

2

Let k·k denote the infinity norm on matrices defined by kAk := max

i

P
j

|A
ij

|. Then for any

transition matrix P we have kPk = 1. Also for any matrix Q constructed as above we have

kQk < 1. Indeed, note that for any i,

X

j

|Q
ij

| = 2

X

j:Qij>0

Q
ij

< 1.

4.3.2.3 Numerical Example

In the simulation of Example 4.1.2, we found the numerical variances to be Var(P (n)
11 ) ⇡

0.00052, Var(P (n)
12 ) ⇡ 0.00039 and Var(P (n)

13 ) ⇡ 0.00025. According to the analytic result

presented in Corollary 4.3.2, the variance is Var(P (n)
11 ) = 0.00054, Var(P (n)

12 ) = 0.00041 and

Var(P (n)
13 ) = 0.00024.
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Chapter 5

Absorbing Markov Chains with Random

Transition Matrices

In this chapter, we will discuss absorbing Markov chains with random transition matrices.

In the previous chapter we studied perturbed Markov chains within the context of station-

ary and irreducible Markov chains, as presented in the literature. A next natural step is to

consider stationary absorbing Markov chains with random transition matrices in which the

random transition matrices share absorbing states. We will begin our discussion by motivat-

ing this study, then laying the foundations and presenting some definitions and propositions.

The primary theorem that we will present and prove is the entry-wise convergence of infinite

products of random transition matrices with shared absorbing states. We will then present

perturbed absorbing Markov chains.

5.1 Motivation

In the previous chapters, we motivated and discussed Markov chains with random transition

matrices as present in the literature. We also developed on these concepts by presenting

perturbed Markov chains, an analytic approximation of the fluctuation of such processes, as

well as a methodology for simulating them. However, throughout that discussion our focus
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was on matrices for which the eigenvalue 1 is simple. So we were predominantly looking at

irreducible transition matrices. For such matrices we saw that the process has a decaying

component as well as a fluctuating component. We were able to talk about chains with only

one absorbing state as well and we saw that such chains decayed exponentially.

The next natural cases to consider are Markov chains with random absorbing transition

matrices and perturbed Markov chains with more than one absorbing state. Transition ma-

trices with more than one absorbing state don’t satisfy the assumptions of the theorems

previously discussed. To our knowledge, such processes have not been studied in the liter-

ature. Establishing them and proving results pertaining to their convergence may be very

valuable due to the fact that absorbing Markov chains have numerous applications in the sci-

ences. This extra level of randomness that we are introducing will allow for more complexity

in such models. In order to gain some insight, consider the following example.

Example 5.1.1. Let S = {1, 2, 3, 4} be the state space of a perturbed Markov chain and let

P = {P0 + "U (!)} be the set of transition matrices driving a Markov process where " = 0.2,

P0 =

2

66666664

1 0 0 0

0 1 0 0

.2 .2 .3 .3

.1 .4 .4 .1

3

77777775

and U is simulated so that the non-absorbing rows are uniform and summing to 0. (This

can be done as before with the Dirichlet distribution.) Then we see in Figure 5.1.1 that the

product of random matrices taken from P will converge within a small region of the expected

value. However, in each simulation the exact convergence differs. Moreover, we don’t see

the fluctuation that we saw in the previous chapter.
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Figure 5.1.1: Here we have two simulations of the chain in example 5.1.1.
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5.2 Probabilistic Framework

In this section, we will present the probabilistic framework and results that capture the

asymptotic behavior of absorbing Markov chains with random transition matrices. Let S =

{1, . . . , s} denote a finite state space and P (r) be the set of all transition matrices with

respect to S, where the first r states are absorbing states. Then

P (r)
=

8
><

>:
P =

2

64
I
r⇥r

O
r⇥(s�r)

R(s�r)⇥r

Q(s�r)⇥(s�r)

3

75 2 Rs⇥s

�������
p
ij

� 0 and
X

k

r
ik

+

X

k

q
ik

= 1 for all i, j

9
>=

>;
.

Definition 5.2.1. An S-valued stationary r-absorbing Markov chain {X
n

} is a stationary

Markov chain with random transition matrix P (!) 2 P(r).

All the primary results that were presented in the previous chapter relied on the irre-

ducibility assumption. However, we will see in this section that some of the properties carry

over. In the previous chapter, we saw that an infinite product of irreducible random transi-

tion matrices was composed of two parts, a geometrically decaying apart and a fluctuating

part. These results relied on the assumption that 1 was a simple eigenvalue. In this chapter,

we are studying absorbing transition matrices, for which the multiplicity of the eigenvalue 1

must match the number of absorbing states. However, we will see that infinite products of

transition matrices with absorbing states will be composed of only a geometrically converging

part. The goal of this section is to prove the following theorem.

Proposition 5.2.1. Let P (!) be a random transition matrix and suppose P (!) 2 P(r) with

probability 1. Then there exists a set ⌦1 ⇢ ⌦ such that P (⌦1) = 1 and such that for any

! = (!1,!2, . . .) 2 ⌦1, the infinite product
Q1

i=1 P (!
i

) converges.

5.2.1 Preliminary Deterministic Results

We will begin by first presenting several preliminary lemmas that hold true due to the

deterministic properties of P (!) 2 P(r). For this reason, we will let P
i

denote P (!
i

).
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Lemma 5.2.1. The spectral decomposition of P
i

will be

P
i

=

2

64
I O

(I �Q
i

)

�1 R
i

O

3

75+ V
i

2

64
O O

O ⇤

(2)
i

3

75V �1
i

for some invertible matrix V
i

and ⇤

(2)
i

is a block diagonal square matrix comprised of the

Jordan blocks associated with the eigenvalues that have magnitude less than 1.

Proof. Let P
i

2 P (r). First note that the algebraic multiplicity of the eigenvalue �1 = 1 is

r since P
i

has r absorbing states. Moreover, the geometric multiplicity of �1 must also be

equal to r since

e1 =


1 0 · · · 0

�
T

,

...

e
r

=


0 · · · 0 1 0 · · · 0

�
T

are all eigenvectors with eigenvalue �1 and are linearly independent. Thus, the Jordan blocks

associated with �1 are all 1 dimensional and hence P
i

can be written in the form

P
i

= V
i

2

64
I O

O ⇤

(2)
i

3

75V �1
i

= V
i

2

64
I O

O O

3

75V �1
i

+ V
i

2

64
O O

O ⇤

(2)
i

3

75V �1
i

where ⇤

(2)
i

is a block diagonal matrix comprised of the Jordan blocks of the eigenvalues

�2, . . . ,�p

written in decreasing order with respect to their magnitude. Moreover,

P n

i

= V
i

2

64
I O

O O

3

75V �1
i

+ V
i

2

64
O O

O
⇣
⇤

(2)
i

⌘
n

3

75V �1
i

.
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Since

P1
i

:= lim

n!1
P n

i

=

2

64
I O

(I �Q
i

)

�1 R
i

O

3

75

and
⇣
⇤

(2)
i

⌘1
= O, we must have

V
i

2

64
I O

O O

3

75V �1
i

=

2

64
I O

(I �Q
i

)

�1 R
i

O

3

75 .

Indeed,
⇣
⇤

(2)
i

⌘1
= O since

⇣
⇤

(2)
i

⌘
n

will decay geometrically with respect to �2.

In the above proof and throughout this chapter, we will let A1 denote the entry-wise

limit lim

n!1 An for a square matrix A, assuming it exists. From here on, let

T
i

= V
i

2

64
O O

O ⇤

(2)
i

3

75V �1
i

= P
i

� P1
i

.

In the probabilistic context, T (!) = P (!)� P (!)1 .

Lemma 5.2.2. For all i, j 2 N,

1. P1
i

T
j

= O

2. P1
i

P1
j

= P1
i

3. P1
i

P
j

= P1
i

Proof. The first two equations follow directly from simple matrix block-multiplication. The

third equation follows from the first two since

P1
i

P
j

= P1
i

�
P1
j

+ T
j

�
= P1

i

P1
j

+ P1
i

T
j

= P1
i

.
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Lemma 5.2.3. For n � 2,

P1 · · ·Pn

= P1
1 +

nX

i=1

T1 · · ·Ti�1P
1
i

+ T1 · · ·Tn

.

Proof. We proceed with the proof inductively. For n = 2,

P1P2 = (P1
1 + T1)P2

= P1
1 P2 + T1P2

= P1
1 + T1 (P

1
2 + T2)

= P1
1 + T1P

1
2 + T1T2.

Now, suppose the above equality holds for some n. Then

P1 · · ·Pn+1 =

 
P1
1 +

nX

i=1

T1 · · ·Ti�1P
1
i

+ T1 · · ·Tn

!
P
n+1

= P1
1 +

nX

i=1

T1 · · ·Ti�1P
1
i

+ T1 · · ·Tn

P
n+1

P1
1 +

n+1X

i=1

T1 · · ·Ti�1P
1
i

+ T1 · · ·Tn+1.

5.2.2 Probabilistic Results

Our next step is to prove the following proposition.

Proposition 5.2.2. Let P (!) be a random transition matrix and suppose P (!) 2 P(r) with

probability 1. Then there exist constants C,↵ > 0 such that for almost every ! 2 ⌦, there

exists an n0 (!) such that for any n � n0 (!) ,

kT (!1) · · ·T (!
n

)k  Ce�↵n.
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Upon establishing Proposition 5.2.2, the proof of Proposition 5.2.1 will be as follows:

Proof. Take ⌦1 ⇢ ⌦ such that P (⌦1) = 1 and for every ! = (!1,!2, . . .) 2 ⌦1, the conclusion

of Proposition 5.2.2 holds. Fix ! 2 ⌦1. To prove the convergence of the infinite product, it

suffices to show that

lim

n!1

�����

nY

i=1

P (!
i

)�
n�1Y

i=1

P (!
i

)

����� = 0.

Indeed, P (r) can be viewed as a subset of the compact s2 dimensional cube [0, 1]s
2

2 Rs

2 . By

compactness, convergence of a sequence {x
n

} is equivalent to the convergence of {x
n

� x
n�1}

to 0. Now, by Lemma 5.2.3

�����

nY

i=1

P (!
i

)�
n�1Y

i=1

P (!
i

)

����� = kT (!1) · · ·T (!
n�1)P (!

n

)

1

+T (!1) · · ·T (!
n

)� T (!1) · · ·T (!
n�1)k

 kT (!1) · · ·T (!
n�1)k kP (!

n

)

1k

+ kT (!1) · · ·T (!
n

)k+ kT (!1) · · ·T (!
n�1)k

 kT (!1) · · ·T (!
n�1)kK

+ kT (!1) · · ·T (!
n

)k+ kT (!1) · · ·T (!
n�1)k ,

which tends to 0 by Proposition 5.2.2.

In order to prove Proposition 5.2.2, we will first establish that for any " we can approx-

imate almost every P (!) with finitely many matrices P1, . . . , Pk

2 P(r). Then the product

T (!1) · · ·T (!
n

) must decay geometrically bounded by the powers of the largest eigenvalue

of the matrices P
i

.

Proof. For a matrix P 2 P (r), let �1 = 1,�2, . . . ,�p

be its eigenvalues with 1 > |�2| > · · · >

|�
p

|. For n 2 N, let

P (r)
n

=

⇢
P 2 P(r)

���� |�2|  1� 1

n

�
.
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Then the sequence of sets P (r)
n

is increasing and P (r)
=

S
n

P (r)
n

. Let P (!) 2 P(r) with

probability 1. Then P (!) 2 P (r)
n0 for some n0 with probability 1. Let " > 0 and cover the

closed set P (r)
n0 with a finite number of balls with centers in P (r)

n0 and radii ". This is possible

due to the compactness of P (r)
n0 and the Heine–Borel property. Let P1, . . . , Pk

be the centers

of these balls. Then for almost every P (!) there exists an i such that kP (!)� P
i

k < ".

Fix ! and i. Decompose P
i

= P1
i

+ T
i

and pick n0 such that kP n0
i

� P1
i

k < "/4 and

kP (!)n0 � P (!)1k < "/4. By continuity of the function A 7! An0 , there exists � > 0 such

that kP (!)n � P n

i

k < "/4 for kP (!)� P
i

k  �. Note that if "/4 < � we can replace � by

"/4. Therefore,

kT (!)� T
i

k = k(P (!)� P (!)1)� (P
i

� P1
i

)k

 kP (!)� P
i

k+ kP (!)1 � P1
i

k

 kP (!)� P
i

k+ kP (!)1 � P (!)n0k+ kP (!)n0 � P n0
i

k+ kP n0
i

� P1
i

k

< ".

So, for any " > 0, T (!
j

) can be decomposed as

T (!
j

) = T
j

+4 (!
j

)

for some T
j

2 {T1, . . . , Tk

} with k4 (!
j

)k < ", almost surely. Indeed, we are simply taking

4 (!
j

) = (P (!
j

)� P (!
j

)

1
)�

�
P
j

� P1
j

�
.

Since we have only finitely many P
j

2 P (r), we can find positive constants C and � such
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that kT1 · · ·Tn

k  Ce��n for large n. By expanding the product, we have

�����

kY

i=1

T (!
i

)

����� =

�����

kY

i=1

(T
i

+4 (!
i

))

�����


kX

j=0

✓
k

j

◆
Ce��(k�j)"j

= Ce��k

kX

j=0

✓
k

j

◆
(e�")j = Ce��k

(1 + e�")k .

For small enough ", we can find ↵ > 0 so that e��

(1 + e�") = e�↵. So we have that

kT (!1) · · ·T (!
k

)k  Ce�↵k for almost every (!1, . . . ,!k

) 2 ⌦

k and k 2 N. This establishes

Proposition 5.2.2.

Before concluding this section, it is worth making a couple of remarks. Firstly, note that

we need to have the strong assumption that almost every P (!) has shared absorbing states.

Indeed consider the example with

P (!) =

8
>>>>>>>>>><

>>>>>>>>>>:

2

664
1 0

1
2

1
2

3

775 with probability 1
2

2

664

1
2

1
2

0 1

3

775 with probability 1
2

.

Then

P (!1) · · ·P (!
n

) =

8
>>>>>>>>>><

>>>>>>>>>>:

2

664
1� q

n,k

q
n,k

1� p
n,k

p
n,k

3

775 with probability 1
2n

2

664
p
n,k

1� p
n,k

q
n,k

1� q
n,k

3

775 with probability 1
2n

where q
n,k

=

k

2n�1 and p
n,k

=

2k�1
2n for k = 1, 2, . . . , 2n�1. As a result, the infinite product will

not converge and will fluctuate.
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Secondly, we cannot allow P (!) to be irreducible with positive probability because then

we will have a fluctuating process. This is due to the results presented by Bruneau et al.

However, we can relax the assumptions of Proposition 5.2.2 and allow for almost every P (!)

to lie in P (r+)
=

�
P 2 P(`) | ` � r

 
. Then the same argument on the closure of P (r+) will

hold. That is, rather than finding a closed set P (r)
n0 , we can cover P (r+) with finitely many

balls with radii ". Taking the centers of these balls to be P1, . . . , Pk

will allow us to proceed

in the same fashion.

5.3 Perturbed Absorbing Markov Chains

5.3.1 Definition

In this section we will discuss perturbed absorbing Markov chains. As in the previous

sections, for r, s 2 N with r < s, let

P (r)
=

8
><

>:
P =

2

64
I
r⇥r

O
r⇥(s�r)

R(s�r)⇥r

Q(s�r)⇥(s�r)

3

75 2 Rs⇥s

�������
p
ij

� 0 and
X

k

r
ik

+

X

k

q
ik

= 1 for all i, j

9
>=

>;
.

Definition 5.3.1. A perturbed absorbing Markov chain is a perturbed Markov chain with

random matrices P (!) = P0 + "U (!), where P0 2 P (r), " 2 (0, 1) and U (!) is a random

matrix with the first r rows taken to have 0 entries.

The random perturbations in such absorbing Markov chains do not impact the absorbing

states. That is, if we write U (!) as

U (!) =

2

64
O O

V (!) W (!)

3

75 ,
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then

P (!) =

2

64
I O

R (!) Q (!)

3

75 =

2

64
I O

R0 + "V (!) Q0 + "W (!)

3

75 .

As we saw before, the n-step time period transition matrix is a random matrix

P (n)
: ⌦ ! Rs⇥s

given by

P (n)
(!) =

nY

j=1

(P0 + "U (!
j

))

where ! = (!1,!2, . . .) 2 ⌦. By proposition 5.2.1, P (n)
(!) converges in n almost surely.

5.3.2 Time Until Absorption

When studying classic absorbing chains, one of the important basic quantities that can be

calculated is the expected time until absorption. If we have an absorbing chain driven by a

transition matrix

P =

2

64
I O

R Q

3

75 ,

then the expected time until absorption is given by N1, where N = I + Q + Q2
+ · · · =

(I �Q)

�1 is the fundamental matrix of Q. In the context of inhomogeneous absorbing

Markov chains driven by the sequence of matrices P1, P2, . . . , the time until absorption is

according to

N = I +
1X

m=1

mY

k=1

Q
k

= I +Q1 +Q1Q2 + · · · .

In this subsection, our goal is to present an extension of the analysis within the context of

perturbed absorbing Markov chains.

First note that for a sequence of random matrices P (!1) , P (!2) , . . ., the matrix N is
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random and dependent on !1,!2, . . . with

N (!1,!2, . . .) = I +
1X

m=1

mY

k=1

Q (!
k

) = I +Q (!1) +Q (!1)Q (!2) + · · · .

Thus E [N ] =

P1
m=0 Q

m

0 = (I �Q0)
�1 by independence. However, the variance is not as

easily calculable and it would be beneficial to approximate the variance of the entries N
ij

.

Proposition 5.3.1. Let N be the random fundamental matrix of a perturbed absorbing

Markov chain. Then

Var (N
ij

) = "2
 1X

m=1

mX

x=1

�
Qx�1

0 �Qx�1
0

�
C(m)

x

!

ij

+O
�
"3
�

where the a-th row of C(m)
x

is the diagonal of Qm�x,T

0 Cov [W
x,a·]Q

m�x

0 .

Proof. To simplify notation, fix a sequence !1,!2, . . . and let

Q
k

= Q0 + "W
k

denote Q (!
k

) = Q0 + "W (!
k

) . Then

N = I +
1X

m=1

mY

k=1

Q
k

=

1X

m=0

Qm

0 + "

 1X

m=1

mX

x=1

Qx�1
0 W

x

Qm�x

0

!
+O

�
"2
�
.

Let N0 denote the fundamental matrix of Q0. Then

N
ij

N
h`

= N0,ijN0,h` + "

2

4N0,ij

 1X

m=1

mX

x=1

Qx�1
0 W

x

Qm�x

0

!

h`

+

 1X

m=1

mX

x=1

Qx�1
0 W

x

Qm�x

0

!

ij

N0,h`

3

5

+ "2

2

4N0,ij (⇤) +
 1X

m=1

mX

x=1

Qx�1
0 W

x

Qm�x

0

!

ij

 1X

n=1

nX

y=1

Qy�1
0 W

y

Qn�y

0

!

h`

+ (⇤)N0,h`

3

5

+O
�
"3
�
,
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where the (⇤) terms will not contain any powers of random matrices W
i

and hence

E [N0,ij (⇤)] = E [(⇤)N0,h`] = 0.

So

Cov (N
ij

, N
h`

) = "2E

2

4
 1X

m=1

mX

x=1

Qx�1
0 W

x

Qm�x

0

!

ij

 1X

n=1

nX

y=1

Qy�1
0 W

y

Qn�y

0

!

h`

3

5
+O

�
"3
�

= "2
1X

m=1

mX

x=1

1X

n=1

nX

y=1

E
h�
Qx�1

0 W
x

Qm�x

0

�
ij

�
Qy�1

0 W
y

Qn�y

0

�
h`

i
+O

�
"3
�

= "2
1X

m=1

mX

x=1

1X

n=x

E
h�
Qx�1

0 W
x

Qm�x

0

�
ij

�
Qx�1

0 W
x

Qn�x

0

�
h`

i
+O

�
"3
�

= "2
1X

k=0

1X

m=1

mX

x=1

X

a,b,c,d

E
⇥
Qx�1

0,iaWx,ab

Qm�x

0,bj Qx�1
0,hcWx,cd

Qk

0,d`

⇤
+O

�
"3
�

= "2
1X

k=0

1X

m=1

mX

x=1

X

a,b,d

Qx�1
0,iaQ

x�1
0,haQ

m�x

0,bj E [W
x,ab

W
x,ad

]Qk

0,d` +O
�
"3
�

= "2
1X

k=0

1X

m=1

mX

x=1

X

a,b,d

Qx�1
0,iaQ

x�1
0,haQ

m�x,T

0,jb Cov [W
x,a·]

bd

Qk

0,d` +O
�
"3
�

= "2
1X

k=0

1X

m=1

mX

x=1

X

a

Qx�1
0,iaQ

x�1
0,ha

⇣
Qm�x,T

0 Cov [W
x,a·]Q

k

0

⌘

j`

+O
�
"3
�
.

In the case that we are interested in the variance, we have

Var (N
ij

) = "2
1X

k=0

1X

m=1

mX

x=1

X

a

Qx�1
0,iaQ

x�1
0,ia

⇣
Qm�x,T

0 Cov [W
x,a·]Q

k

0

⌘

jj

+O
�
"3
�

= "2
 1X

k=0

1X

m=1

mX

x=1

�
Qx�1

0 �Qx�1
0

�
Cm,k

x

!

ij

+O
�
"3
�

where the a-th row of Cm,k

x

is the diagonal of Qm�x,T

0 Cov [W
x,a·]Qk

0.

While the above result gives some insight into the variance of the fundamental matrix, a
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more applicable result in regards to the time until absorption is the following:

Corollary 5.3.1. For a perturbed Markov chain with s states and r absorbing states, the

expected time until absorption is given by the column vector t (!) = N (!)1. Moreover,

E [t] = E [N ]1 = (I �Q0)
�1 1

and

V ar (t
i

) = "2
s�rX

j=1

s�rX

`=1

" 1X

k=0

1X

m=1

mX

x=1

X

a

Qx�1
0,iaQ

x�1
0,ia

⇣
Qm�x,T

0 Cov [W
x,a·]Q

k

0

⌘

j`

#
+O

�
(s� r)2 "3

�
.

In particular, the standard deviation of t
i

is of order (s� r) ".

Proof. By the proof of the above proposition,

V ar (t
i

) = V ar

 
s�rX

j=1

N
ij

!

=

s�rX

j=1

s�rX

`=1

Cov (N
ij

, N
i`

)

= "2
s�rX

j=1

s�rX

`=1

" 1X

k=0

1X

m=1

mX

x=1

X

a

Qx�1
0,iaQ

x�1
0,ia

⇣
Qm�x,T

0 Cov [W
x,a·]Q

k

0

⌘

j`

#
+O

�
(s� r)2 "3

�
.

We confirm the calculation of the above proposition in the following example.

Example 5.3.1. Consider the perturbed absorbing Markov chain driven by random matrix

P = P0 + "Q (!) where

P0 =

2

66666666664

1 0 0 0 0

0 1 0 0 0

0.1 0.1 0.3 0.4 0.1

0.1 0.1 0.4 0.2 0.2

0.1 0.1 0.2 0.1 0.5

3

77777777775
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and " = 0.1. Then the numerical approximation of the variance of N based on the above

proposition is 2

66664

0.002625 0.001960 0.002648

0.002586 0.001931 0.002609

0.002696 0.002013 0.002720

3

77775
,

while an approximation based on a large number of experiments is

2

66664

0.002596 0.001953 0.002683

0.002654 0.002010 0.002687

0.002716 0.002039 0.002776

3

77775
.

We see here that the two are equal up to 4 decimal places.
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Chapter 6

Applications

In this chapter we will consider applications of absorbing Markov chains with random tran-

sition matrices.

6.1 Gambler’s Ruin

6.1.1 Gambler’s Ruin with Random Transition Matrices

In this section, we will generalize a classic application of absorbing Markov chains: the

gambler’s ruin problem. In the classic problem, a gambler starts with an initial fortune of

$i and then on each successive gamble either loses or wins $1 with probabilities p and 1� p,

respectively. He will keep playing until one of two events, he loses all his money or he makes

$N . If we let X
n

denote the gambler’s total fortune after the n-th gamble, then X
n

can be

viewed as an absorbing Markov chain on the state space S = {0, 1, . . . , N} with transition
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matrix

P =

2

66666666664

1

p 0 1� p

. . . . . .

p 0 1� p

1

3

77777777775

.

The long-term probabilities of winning or losing, given initial state i are P1
iN

and P1
i0 . More-

over, it is a simple result that

P1
iN

=

8
>><

>>:

1�
(

p
1�p)

i

1�
(

p
1�p)

N if p 6= 0.5

i

N

if p = 0.5

.

We would like to take this classic problem one step further by incorporating randomness

to the transition matrix P . Instead of the constant p, we will consider a random variable

u uniformly distributed on the unit interval. Then at each time step of the game, the

gambler has different probabilities of migrating between the states. From the theory that we

developed in the previous section, we can make several statements. First, for each gamble

that the gambler plays, we are guaranteed longterm convergence in probabilities. This holds

due to Proposition 5.2.1. Second, the longterm odds of the gambler will be largely determined

by his odds in the initial rounds. That is, if the gambler’s luck in the first few rounds is

in his favor, the longterm probabilities will be in his favor above the expected probabilities.

This is indeed true even if his luck turns against him after the first few rounds because the

convergence of the process above or below its expectation is highly impacted by the initial

draws of the matrix.

We ran some numerical simulations of this version of the gambler’s ruin and we believe

that the following conjecture holds.

Conjecture 6.1.1. Consider an absorbing Markov chain driven by the random transition
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matrix

P =

2

66666666664

1

u 0 1� u

. . . . . . . . .

u 0 1� u

1

3

77777777775

where u is uniformly distributed on the unit interval and n is the dimension of P . Then with

m =

⌃
n

2

⌥
� 1 there exists parameters (↵

i

, �
i

) for i = 1, . . . ,m such that P (n) converges a.s.

to the random matrix

2

666666666666666664

1 0 · · · 0 0

Beta (↵1, �1) 0 · · · 0 1� Beta (↵1, �1)

... 0 · · · 0

...

Beta (↵
m

, �
m

) 0 · · · 0 1� Beta (↵
m

, �
m

)

... 0 · · · 0

...

1� Beta (↵1, �1) 0 · · · 0 Beta (↵1, �1)

0 0 · · · 0 1

3

777777777777777775

,

where Beta (↵, �) denotes the Beta random variable with parameters ↵ and �.

Figure 6.1.1 contains the histogram plots of the entries of P (1) with P a 5 dimensional

matrix. We saw similar results for simulations of larger dimensions as well. In all our

simulations, we were able to fit a beta distribution to our histogram.

In the 3-dimensional case, we can say the following:

Proposition 6.1.1. P (n) converges to

2

66664

1 0 0

u 0 1� u

0 0 1

3

77775
,

71



Figure 6.1.1: The histogram plots of the entries of P (1) with N = 5.
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where u is the uniform random variable on the unit interval.

Note that the uniform distribution can also be viewed as a Beta(1, 1) distribution.

Proof. This trivially holds since

2

66664

1 0 0

u 0 1� u

0 0 1

3

77775

2

66664

1 0 0

v 0 1� v

0 0 1

3

77775
=

2

66664

1 0 0

u 0 1� u

0 0 1

3

77775

for any u and v.

This result is interpretable within the context of our problem as only the first round

will determine whether the gambler wins or loses and hence any more matrix draws will not

change the probabilities.

In the 4-dimensional case, we believe the following holds:

Conjecture 6.1.2. P (n) converges to

2

66666664

1 0 0 0

t 0 0 1� t

1� t 0 0 t

0 0 0 1

3

77777775

,

where t is the triangular random variable with parameters (0, 1, 1).

Note that the triangular random variable with parameters (0,1,1) can also be viewed as

a Beta(2, 1) random variable.

We may also look at the mean time of absorption. In the gambler’s ruin, absorption

takes place when all money is lost or the game is won in the two absorbing states 0 and N .
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Figure 6.1.2: Histogram of mean time of absorption of gambler’s ruin simulations with 4

In the classic example, this can be easily calculated. If we write

P =

2

66664

1 0 0

A T B

0 0 1

3

77775
,

then the i-th entry of the N � 1 column vector (I � T )�1 1 gives the mean time until ab-

sorption of the process that begins in state i.

In our context, the story develops complexity. Since the the probabilities are themselves

random, the mean time until absorption is also random. In Figure 6.1.2, we plot the his-

togram of the time until absorption of simulations of the example started above with P a 5

dimensional matrix and N = 4. We see that the distribution of the mean time until absorp-

tion is the same for processes that begin in states 1 and 3 due to the symmetry in P . The

probabilities of finishing in 1, 2 or 3 steps are the same, then the distribution develops a tail.

The expectation of the mean time until absorption is 3 in these two cases. In the case that

the process begins in state 2, the process needs a minimum of 2 steps and has an expectation

of 4 steps. The distribution again develops a tail for larger values. We see similar histograms

in simulations with other values of N . In Figure 6.1.3 we plot the histogram of the N = 6

case.
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Figure 6.1.3: Histogram of mean time of absorption of gambler’s ruin simulations with N = 6

6.1.2 Perturbed Gambler’s Ruin

In this section, we will consider a generalization of the gambler’s ruin problem within the

context of perturbed Markov chains. Take

P0 =

2

66666666664

1

p 0 1� p

. . . . . . . . .

p 0 1� p

1

3

77777777775

and

Q =

2

66666666664

0

u1 0 �u1

. . . . . . . . .

u
N�1 0 �u

N�1

0

3

77777777775

where u
i

is uniformly distributed on the interval (�1, 1). Let P = P0 + "Q with 0  " 

min {p, 1� p} . We would like to study the behavior of P (1)
(!) and the mean time until

absorption.
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Note that the current formulation of the gambler’s ruin is equivalent to saying that P is

of the form

P =

2

66666666664

1

w1 0 1� w1

. . . . . . . . .

w
N�1 0 1� w

N�1

1

3

77777777775

with w
i

uniformly distributed on (p� ", p+ "). However, decomposing P as above will allow

us to say more about the process and apply the results that were developed in the previous

section.

Consider a perturbed gambler’s ruin with p =

1
2 . In Figures 6.1.4 and 6.1.5 we plot

the histograms of the simulations that we ran for a perturbed gambler’s ruin with " = 0.2

and " = 0.5. In these two figures, we see the distribution of the entries of P (1) and how

the increase in " is leading to to a wider distribution. In Figures 6.1.6 and 6.1.7 we plot

the histograms of the mean time of absorption for the two cases. The mean values of the

mean time to absorption are the same for all ". The standard deviation of the mean time to

absorption for the three distributions in Figure 6.1.6 are 1.02, 0.86 and 0.72. Similarly, the

standard deviation of the mean time to absorption for the three distributions in Figure 6.1.7

are 2.72, 2.47 and 2.21. This confirms the conclusion of Corollary 5.4.1 that the standard

deviation will be of order "(t� s), which is 1 and 2.5 for " = 0.2 and 0.5, respectively.

We also ran simulations and plotted the histograms of the time to absorption for the

classic gambler’s ruin and the perturbed gambler’s ruin with " = 0.2 and 0.5 in Figure 6.1.8

from left to right. The blue plots are the distributions of the simulations, with their mean

in green. The red plot is the distribution of the classic gambler’s ruin case. We see see in

these plots that the mean distribution of the time until absorption in the random case and

non-random case coincide.
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Figure 6.1.4: Histogram of P (1) of perturbed gambler’s ruin simulations with N = 6 and
" = 0.2
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Figure 6.1.5: Histogram of P (1) of perturbed gambler’s ruin simulations with N = 6 and
" = 0.5
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Figure 6.1.6: Histogram of mean time of absorption of perturbed gambler’s ruin simulations
with N = 6 and " = 0.2

Figure 6.1.7: Histogram of mean time of absorption of perturbed gambler’s ruin simulations
with N = 6 and " = 0.5
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Figure 6.1.8: Histograms of the time to absorption of simulations of the perturbed gambler’s
ruin with " = 0.2 (left) and 0.5 (right)
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6.2 Moran Processes with Temporal Randomness

6.2.1 Introduction

In this section, we will propose a formulation of Moran processes that allows for time varying

randomness. The Moran process model is a classic framework for modeling biological systems

with asexual reproduction and a competition for survival between two organisms. It was

originally proposed in [24] and has since had a vast presence in the literature. In a Moran

process, we assume that we have a fixed population of size N and that during each time step,

one organism is chosen to reproduce and another is chosen to die off. In such models, two

central quantities of interest are the probability of fixation and the time until absorption. The

probability of fixation refers to the probability that one of the two organisms takes over the

entire population and the other goes extinct. The time until absorption is the time until one

of the two organisms fixates. In [5, 15, 1, 23], Moran processes with spatial randomness are

considered with an interest on how spatial randomness impacts the probability of fixation.

In our work, we are interested in exploring Moran processes with temporal randomness.

In particular, we will explore the case where the temporal randomness is uniform and we

will arrive at analytic expressions of the mean probability of fixation and mean time of

absorption.

6.2.2 Deterministic Birth and Death Processes

One classic example of absorbing Markov chains that receives a lot of attention in biology

applications is a birth and death process in a fixed population size with only two cells that

reproduce asexually and are competing for survival. Consider a fixed population of size N

with two cells A and B. Let X
t

denote the size of the cell A population and let �
i

and

µ
i

denote the probabilities of birth and death of cell A. Then the state space of X
t

is

S = {0, 1, . . . , N} and the transition matrix of X
t

will have two absorbing states and will be
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of the form

P =

2

66666666664

1

µ1 1� µ1 � �1 �1

. . . . . . . . .

µ
N�1 1� µ

N�1 � �
N�1 �

N�1

1

3

77777777775

.

During each time interval, t to t+1, the population of cell A either increases by 1, decreases

by 1 or stays the same. This is a reasonable assumption only if the time step is sufficiently

small. The absorbing states 0 and N capture the possible scenarios of cell A going extinct

and cell B going extinct, respectively. Absorption will take place with probability 1. Let

⇢
i

denote the probability of absorption of the process in state N given initial state i, i.e

that cell A with initial population i takes over the whole population and cell B goes extinct.

Then ⇢
i

= P1
iN

, the (i, N)-th entry of P1
:= lim

t!1 P n. Let ⌧
i

denote the mean time until

absorption of the process given initial state i. Then ⌧
i

=

⇥
(I � B)

�1 1
⇤
i

for i = 1, . . . , n� 1,

where

B =

2

66664

1� µ1 � �1 �1

. . . . . . . . .

µ
N�1 1� µ

N�1 � �
N�1

3

77775
.

6.2.3 Birth and Death Processes with Temporal Randomness

In this section, our goal is to generalize and study birth and death processes with temporal

randomness. Temporal randomness refers to randomness that is time dependent, as opposed

to spatial randomness which models environmental randomness that is independent of time.

The two primary quantities of interest in this study are the probability of absorption in state

N and the mean time until absorption. Consider a birth and death process as presented above

with �
i

and µ
i

random variables. Then X
t

is an absorbing Markov chain with state space
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S = {0, 1, . . . , N} and random transition matrix

P (!) =

2

66666666664

1

µ1 (!) 1� µ1 (!)� �1 (!) �1 (!)

. . . . . . . . .

µ
N�1 (!) 1� µ

N�1 (!)� �
N�1 (!) �

N�1 (!)

1

3

77777777775

.

where ! 2 ⌦ and ⌦ is the set of all possible outcomes. Assume P (!) has mean

P0 =

2

66666666664

1

µ0
1 1� µ0

1 � �0
1 �0

1

. . . . . . . . .

µ0
N�1 1� µ0

N�1 � �0
N�1 �0

N�1

1

3

77777777775

.

Let

P (n)
(!) :=

nY

i=1

P (!
i

)

be the n-product of P (!
i

) iid for i = 1, 2, . . . , n and ! = (!1,!2, . . .) 2 ⌦

1. Let

P (1)
(!) := lim

n!1
P (n)

(!) .

We know that P (n)
(!) converges almost surely in n by our previous theoretical results. By

the independence assumption,

E
⇥
P (1)

(!)
⇤
=

1Y

i=1

P0 =: P1
0 .

Let ⇢
i

(!) denote the probability of absorption in state N given initial state i in the random

case. Let ⇢0
i

denote the same quantity in the non-random case with resect to the Markov
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chain with transition matrix P0. Then

E [⇢
i

(!)] = ⇢0
i

.

Thus we see that the probability of absorption of the random process coincides with the

probability of absorption of the deterministic process driven by the mean of the random

transition matrix.

Next, we will explore the mean time until absorption. In the case of a classic absorbing

chain with transition matrix

P =

2

64
I O

R Q

3

75 ,

the fundamental matrix is given by F := I + Q + Q2
+ · · · = (I �Q)

�1 and the expected

time until absorption is given by F1. In the context of inhomogeneous absorbing Markov

chains driven by the sequence of matrices P1, P2, . . . , the time until absorption is according

to

F = I +
1X

m=1

mY

k=1

Q
k

= I +Q1 +Q1Q2 + · · · .

Now, in our random process context, first let

P (!) =

2

66664

1

A (!) B (!) C (!)

1

3

77775

and

P0 =

2

66664

1

A0 B0 C0

1

3

77775
.

Then the fundamental matrix of a Markov chain with random transition matrices P (!) is
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random and given by

F (!) = I +
1X

m=1

mY

k=1

B (!
i

) = I +B (!1) + B (!1)B (!2) + · · · for ! 2 ⌦

1.

So

E [F (!)] =
1X

m=0

Bm

0 = (I � B0)
�1

=: F0

by the independence assumption. So the mean time until absorption is given by

E [F (!)1] = F01.

Let ⌧
i

denote the mean time until absorption given initial state i. Then ⌧
i

is the i-th entry

of the column vector F01. Again, we see that the mean time until absorption of the random

process coincides with the mean time until absorption of the deterministic process driven by

the mean of the random transition matrix. Thus, if we have the mean of P (!) then we can

analytically arrive at the mean probability of absorption in state N and the mean time until

absorption.

6.2.4 Analytic Expression for the Probability of Absorption in State N

In the above discussion, we are able to analytically calculate the mean probability of ab-

sorption in state N and the mean time until absorption by means of an inverse matrix or

infinite sum of matrices. In this section, we will further develop these analytic results to be

comprised of finite sums and products and only in terms of the birth and death probabili-

ties �
i

and µ
i

. Moreover, these results will allow us to calculate the mean probabilities of

absorption in the random case.

Consider X
t

an absorbing Markov chain with state space S = {0, 1, . . . , N} and random
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transition matrix

P =

2

66666666664

1

µ1 1� µ1 � �1 �1

. . . . . . . . .

µ
N�1 1� µ

N�1 � �
N�1 �

N�1

1

3

77777777775

.

We will index the rows and columns of P from 0 to N . Let B be the sub-matrix of dimension

(N � 1)⇥ (N � 1) not containing the absorbing states. Then the probability of absorption

in state N given initial state i is

⇢
i

=

�
I +B +B2

+ · · ·
�
i,N�1

P
N�1,N

= (I � B)

�1
i,N�1 PN�1,N .

Let D = I � B . Then

D =

2

66666666664

µ1 + �1 ��1

�µ2 µ2 + �2 ��2

. . . . . . . . .

�µ
N�2 µ

N�2 + �
N�2 ��

N�2

�µ
N�1 µ

N�1 + �
N�1

3

77777777775

.

Due to the tridiagonal form of D, its inverse can be explicitly calculated.
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The inverse of an n-dimensional tridiagonal matrix of the from

T =

2

66666666664

a1 b1

c1 a2 b2

c2
. . . . . .
. . . . . . b

n�1

c
n�1 a

n

3

77777777775

is given by

�
T�1

�
ij

=

8
>>>>>><

>>>>>>:

(�1)

i+j b
i

· · · b
j�1✓i�1�j+1/✓n if i < j

✓
i�1�j+1/✓n if i = j

(�1)

i+j c
j

· · · c
i�1✓j�1�i+1/✓n if i > j

where ✓
i

satisfy

✓
i

= a
i

✓
i�1 � b

i�1ci�1✓i�2 for i = 2, 3, . . . , n

with ✓0 = 1, ✓1 = a1 and �
i

satisfy

�
i

= a
i

�
i+1 � b

i

c
i

�
i+2 for i = n� 1, . . . , 1

with �
n+1 = 1 and �

n

= a
n

. [36]

In our context, with a
i

= µ
i

+ �
i

, b
i

= ��
i

and c
i

= �µ
i+1 we get

✓
`

=

`Y

i=1

µ
i

+

`�1X

k=1

" 
kY

i=1

µ
i

! 
`Y

j=k+1

�
j

!#
+

`Y

j=1

�
j

for ` = 2, 3, . . . , N � 1

with ✓0 = 1, ✓1 = µ1 + �1 and

�
`

=

N�1Y

i=`

µ
i

+

N�1�`X

k=1

" 
N�1�kY

i=`

µ
i

! 
N�1Y

j=N�k

�
j

!#
+

N�1Y

j=`

�
j

for ` = N � 2, . . . , 1
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with �
N

= 1 and �
N�1 = µ

N�1 + �
N�1. So

⇢
`

= D�1
`,N�1PN�1,N

=

`�1X

k=1

" 
kY

i=1

µ
i

! 
N�1Y

j=k+1

�
j

!#
+

N�1Y

j=1

�
j

N�1Y

i=1

µ
i

+

N�2X

k=1

" 
kY

i=1

µ
i

! 
N�1Y

j=k+1

�
j

!#
+

N�1Y

j=1

�
j

=

`�1X

k=1

 
kY

i=1

µ
i

�
i

!
+ 1

N�1X

k=1

 
kY

i=1

µ
i

�
i

!
+ 1

.

Thus ⇢
`

is increasing with respect to `.

6.2.5 Moran Processes with Temporal Randomness

In this section we will explore one particular example of a birth and death process: a Moran

process. A Moran process is a birth and death process with birth and death probabilities

�
i

=

f
i

· i
f
i

· i+ g
i

(N � i)
· N � i

N
and µ

i

=

g
i

(N � i)

f
i

· i+ g
i

(N � i)
· i

N
,

where f
i

and g
i

denote the division rates of the two cells A and B. The framework that

we have established allows us to consider Moran processes with a wide range of different

behaviors depending on the context.

As an example, consider a Moran process with uniform temporal randomness introduced

by taking the division rates f
i

and g
i

to be uniformly distributed on the interval (1� ", 1 + ")

for some small " 2 (0, 1). Then the mean of �
i

and µ
i

can be calculated by the following

lemma.

Lemma 6.2.1. Let X (a, b, c) =

c

c+1 · u

cv+u

with u, v uniformly distributed on the interval
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(a, b) and c constant with a, b, c > 0. Then

E [X] =

1

2 (b� a)2 (c+ 1)

ln

"✓
b (c+ 1)

ac+ b

◆
b

2 ✓
a (c+ 1)

bc+ a

◆
a

2 ✓
ac+ b

a (c+ 1)

◆
a

2
c

2 ✓
bc+ a

b (c+ 1)

◆
b

2
c

2
#

+

c

2 (c+ 1)

.

The calculation of the mean is simple and merely involves calculus integration. We will

include the proof for completeness.

Proof. Note,

E


u

cv + u

�
=

1

(b� a)2

Z
b

a

Z
b

a

u

cw + u
dwdu =

1

(b� a)2

Z
b

a

hu
c
ln (cw + u)

i
b

a

du

=

1

(b� a)2

Z
b

a

u

c
ln

✓
bc+ u

ac+ u

◆
du =

1

(b� a)2

Z
b

a

ln

✓
bc+ u

ac+ u

◆
d

✓
u2

2c

◆

=

1

2 (b� a)2


u2

c
ln

✓
bc+ u

ac+ u

◆
�
Z

u2
(a� b)

(ac+ u) (bc+ u)
du

�
b

a

=

1

2 (b� a)2


u2

c
ln

✓
bc+ u

ac+ u

◆
�
Z ✓

� a2c

ac+ u
+

b2c

bc+ u
+ (a� b)

◆
du

�
b

a

=

1

2 (b� a)2


u2

c
ln

✓
bc+ u

ac+ u

◆
+ a2c ln (ac+ u)� b2c ln (bc+ u)� (a� b) u

�
b

a

=

1

2 (b� a)2


b2

c
ln

✓
bc+ b

ac+ b

◆
+

a2

c
ln

✓
ac+ a

bc+ a

◆
+ a2c ln

✓
b+ ac

a+ ac

◆

+b2c ln

✓
a+ bc

b+ bc

◆
+ (a� b)2

�
.

Note that in a Moran process with uniform temporal randomness,

�
i

= X

✓
1� ", 1 + ",

N � i

i

◆
and µ

i

= X

✓
1� ", 1 + ",

i

N � i

◆
.

With this lemma we are able to analytically calculate probability of absorption in state N

and the mean time until absorption. We calculated these quantities for N = 10, 25 and 50
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and included in the figure below.

In the plots below we see a symmetry in the mean probability of absorption. We will

formulate and prove this symmetry in the following proposition.

Proposition 6.2.1. In a Moran process with uniform temporal randomness, we have

⇢
`

+ ⇢
N�`

= 1,

where ⇢
`

denotes the mean probability of absorption given initial state `.

Proof. Let

�0
i

= E

X

✓
1� ", 1 + ",

N � i

i

◆�

and

µ0
i

= E

X

✓
1� ", 1 + ",

i

N � i

◆�
.

Then the mean probability of absorption is given by

⇢
`

=

`�1X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

N�1Y

i=1

µ0
i

+

N�2X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

,
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Figure 6.2.1: Mean probability of absorption in state N and the mean time until absorption.
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as shown above. Note that µ0
N�i

= �0
i

. So,

⇢
`

=

`�1X

k=1

" 
kY

i=1

�0
N�i

! 
N�1Y

j=k+1

µ0
N�j

!#
+

N�1Y

j=1

µ0
N�j

N�1Y

i=1

µ0
i

+

N�2X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

=

N�1Y

i=1

µ0
i

+

`�1X

k=1

" 
N�k�1Y

i=1

µ0
i

! 
N�1Y

j=N�k

�0
j

!#

N�1Y

i=1

µ0
i

+

N�2X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

=

N�1Y

i=1

µ0
i

+

N�2X

k=N�`�2

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#

N�1Y

i=1

µ0
i

+

N�2X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

= 1�

N�`�1X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

N�1Y

i=1

µ0
i

+

N�2X

k=1

" 
kY

i=1

µ0
i

! 
N�1Y

j=k+1

�0
j

!#
+

N�1Y

j=1

�0
j

= 1� ⇢
N�`

.
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Chapter 7

Conclusions and Future Work

In this thesis we have motivated and presented Markov chains with random transition ma-

trices with an emphasis on absorbing chains and their applications. This first application of

such processes that we discussed was the credit risk model which incorporated the depen-

dence of credit migrations on the underlying economy. This was used to capture the risk

inherent in a portfolio of loans. We then presented an overview of Markov chains with ran-

dom transition matrices and the relevant work in the literature for processes with transition

matrices having simple eigenvalue 1. In Proposition 4.3.1, we approximated the asymp-

totic fluctuation that takes place for such processes within the context of perturbed Markov

chains. We also presented a procedure to simulate such chains. In Proposition 5.2.1, we

motivated and proved the almost sure convergence of infinite products of random transition

matrices with absorbing states. We also approximated the variance of the time until absorp-

tion for perturbed absorbing Markov chains. We then studied Moran processes. With our

framework, we introduced a form of temporal randomness to Moran processes and derived

an analytic result for the probability of fixation. While this work answered interesting and

relevant questions, it has also given rise to other questions.

In the context of Markov chains with random transition matrices several questions came

up that we where not able to answer, but would provide more insight. For chains with simple
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eigenvalue 1, we found that the entries of the P (n) fluctuated about the invariant distribution

of E [P ]. One interesting question here is whether we can bound this fluctuation. We also

assumed that the transition matrices where independent. An interesting question is what

happens when we relax this assumption? Relaxing this assumption can be done in many

ways. One way of doing so, which has been studied by [11, 9, 10, 12, 13, 6], is to impose a

Markov structure on the switching between the transition matrices. However, this has only

been done with irreducible transition matrices. An interesting study would be to take the

underling Markov structure to be absorbing.

In the Gambler’s ruin application, we studied the case where the probability of wins and

loses is uniformly distributed. From our simulations, we came up with Conjecture 6.1.1,

which remains unproven.

In the Moran process application, we studied the case where the temporal randomness

is modeled by a uniform distribution. One phenomenon that we believe to be happening

is that the probability of absorption ⇢1 (N, ") converges to a non-zero value as N tends to

infinity (at least for some values of "). If this is true, this is a surprising result because for

the classic Moran process, ⇢1 = 1
N

and converges to 0. The interpretation of such a potential

result is that by introducing temporal randomness to the process, the possibility of fixation

of a mutant cell will always be non-negligible regardless of how small the initial population

of the mutant cell is or how large the overall population N is.

Our work in this thesis has addressed several important questions within the study of

Markov models, from theoretical developments to applications in finance and biology.
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