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Summary Prediction of snowmelt has become a critical issue in much of the western Uni-
ted States given the increasing demand for water supply, changing snow cover patterns,
and the subsequent requirement of optimal reservoir operation. The increasing impor-
tance of hydrologic predictions necessitates that traditional forecasting systems be
re-evaluated periodically to assure continued evolution of the operational systems given
scientific advancements in hydrology. The National Weather Service (NWS) SNOW17, a
conceptually based model used for operational prediction of snowmelt, has been rela-
tively unchanged for decades. In this study, the Snow–Atmosphere–Soil Transfer (SAST)
model, which employs the energy balance method, is evaluated against the SNOW17 for
the simulation of seasonal snowpack (both accumulation and melt) and basin discharge.
We investigate model performance over a 13-year period using data from two basins
within the Reynolds Creek Experimental Watershed located in southwestern Idaho. Both
models are coupled to the NWS runoff model [SACramento Soil Moisture Accounting model
(SACSMA)] to simulate basin streamflow. Results indicate that while in many years simu-
lated snowpack and streamflow are similar between the two modeling systems, the SAST
more often overestimates SWE during the spring due to a lack of mid-winter melt in the
model. The SAST also had more rapid spring melt rates than the SNOW17, leading to larger
errors in the timing and amount of discharge on average. In general, the simpler SNOW17
performed consistently well, and in several years, better than, the SAST model. Input
requirements and related uncertainties, and to a lesser extent calibration, are likely to
8 Elsevier B.V. All rights reserved.
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be primary factors affecting the implementation of an energy balance model in opera-
tional streamflow prediction.

ª 2008 Elsevier B.V. All rights reserved.
Introduction

There has been much written regarding the potential for
improving snowmelt estimation and the subsequent stream-
flow forecasts through better estimates of initial states and
the use of advanced models and data products (Perkins,
1988; Day et al., 1989; Swamy and Brovio, 1997; Marks
et al., 1999; Carroll et al., 2001; Walter et al., 2005; Shamir
and Georgakakos, 2006; Lehning et al., 2006). The National
Weather Service (NWS), responsible for short- and long-
term streamflow predictions across the United States, uses
the SNOW17 model (Anderson, 1973) as part of their river
forecast system. The SNOW17 is a continuous, conceptual
model that simulates snow accumulation and ablation using
only temperature and precipitation as inputs (NWS, 2004).
Alternatively, snow models using the energy balance meth-
od simulate the physical processes that affect the thermal
energy content of the snow pack, such as sensible, latent
and ground heat fluxes, using multiple meteorological vari-
ables as input (Lang and Braun, 1990). Two reasons for using
the SNOW17 in operational forecasting have been stated: (1)
air temperature data are readily available throughout the
US in real-time, and (2) previous tests conducted on exper-
imental watersheds showed that the SNOW17 produced re-
sults ‘‘at least as good as’’ those from the energy-
aerodynamic method (Anderson, 1973, 1976). More recent
studies show that temperature-based snowmelt models
and energy balance snowmelt models perform equally well
under most conditions (Ohmura, 2001; Zappa et al., 2003).

The SNOW17 simulated maximum SWE with slightly less
bias when compared in distributed mode to three land sur-
face models which use the energy balance snow method
(Mitchell et al., 2004). However, other studies have con-
cluded that the SNOW17 was unable to properly capture
snowmelt timing for a topographically complex basin in
the Sierra-Nevada because the model does not consider
the effect of shading on solar radiation reaching the basin;
suggesting the model will be unable to predict timing of
streamflow if melt variations between shaded and sunny re-
gions are enhanced in a warmer climate (Lundquist and
Flint, 2006). Runoff processes are highly sensitive to the
influence of terrain on radiative processes (Lehning et al.,
2006). Assuming continued climate variability and uncertain
model forcing (i.e. data outside the observed record) an en-
ergy balance model may be a more prudent choice for mod-
eling future snow conditions. With the continuing
advancement of remote sensing capabilities and numerical
weather models providing the potential for high resolution
forcing, a snow model which uses the energy balance meth-
od may now be a more viable option than when the SNOW17
was deemed more appropriate for operations in 1973.

The NWS has established the Advanced Hydrologic Pre-
diction System (AHPS) to modernize forecast services and
improve hydrologic predictions through the incorporation
of verified science from the climatological, meteorological,
and hydrological communities (McEnery et al., 2005). A re-
cent National Research Council (NRC) panel identified a
gap between state-of-the-art modeling capabilities and
those used in AHPS and concludes that the NWS needs to
incorporate advanced hydrologic science into their hydro-
logic models (NRC, 2006). Snow models are a central com-
ponent of hydrologic forecasting systems during times
when snow and/or snowmelt are the dominate influence
on the regional streamflow. Given recent snowpack declines
in the western United States and the uncertain impact on
water resources (Mote, 2003; Stewart et al., 2004; Mote
et al., 2005; Maurer, 2007), accurate prediction of spring
snowmelt will become increasingly important as western
populations grow, and demand more water, and operational
agencies have to manage water under climate conditions
outside of the historical record.

Several snow model comparisons studies have included
models specifically developed for hydrological forecasting
(Anderson, 1976; WMO, 1986; Brubaker et al., 1996; Essery
et al., 1999; Etchevers et al., 2002; Mitchell et al., 2004; Lei
et al., 2007), however, there have been no recent studies
that examined alternate snow models within the framework
of the NWS River Forecast System (NWSRFS) (i.e. coupling
with NWS SACramento Soil Moisture Accounting model (SAC-
SMA) (Burnash et al., 1973)). Although the NWS continues to
develop their forecast system, such as through the current
effort to create an open architecture Community Hydrologic
Prediction System (CHPS) (Schaake et al., 2006), some ver-
sion of the current hydrologic forecast system will remain
the standard for some time to come. To integrate scientific
advancements into current operational hydrologic predic-
tion, researchers must consider the existing methods and
system.

The objectives of our work include the following: (1) to
evaluate the performance of an energy balance snow model
against the current NWS model (i.e. SNOW17), (2) to test a
coupled energy balance snow model–SACSMA against the
coupled SNOW17–SACSMA, and (3) to identify the benefits
and challenges associated with implementing an energy bal-
ance snow model within the current NWS forecasting frame-
work. Given the pressure to introduce advanced models into
operational forecasting, this study is a first step in address-
ing the feasibility of incorporating a more complex snow
model (assuming adequate forcing is available) into the
NWSRFS. This study supports ongoing research to evaluate
energy balance snow models for operational hydrologic
forecasting by the NWS Office of Hydrologic Development
(OHD) (Lei et al., 2007) and activities at the NWS National
Operational Hydrologic Remote Sensing Center (NOHRSC).
NOHRSC operates the SNOw Data Assimilation System (SNO-
DAS), a 1 km gridded energy balance model and data assim-
ilation system, to assist in development of snow products
(Carroll et al., 2001). NOHRSC produces daily areal snow
cover and SWE products for the conterminous United States,
which are distributed to the RFCs for guidance on updating
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the SNOW17 model states (http://www.nohrsc.noaa.gov/
nsa/).

We investigate the SNOW17 and the Snow–Atmosphere–
Soil Transfer (SAST) model (Jin et al., 1999a,b), and com-
pare their performance for simulating snow season pro-
cesses and basin discharge, when coupled with the
SACSMA. Numerous energy balance models are available
for simulating snowmelt processes; we chose the SAST be-
cause it was easily available from previous studies (Jin
et al., 1999a,b) and had shown comparable performance
to other models in inter-comparison studies (Jin et al.,
1999a; Nijssen et al., 2003). Both models are evaluated
for simulation of point snow water equivalent (SWE), basin
average melt, and discharge. The models are applied to a
set of nested watersheds within the Reynolds Creek Experi-
mental Watershed (RCEW), Idaho (Slaughter et al., 2001),
where long-term continuous data sets were available.

Methods

The two snow models are initially evaluated at the point-
scale for simulation of SWE. The comparison then progresses
to the watershed scale utilizing a set of nested watersheds
within the RCEW for simulation of discharge when coupled
to the SACSMA. The combination of the SNOW17 and SAST
with the SACSMA will be referred as SNOW/SAC and SAST/
SAC, respectively.

Although there are various spatial scales (point, plot,
grid, etc.) at which to evaluate model performance, we
contend that models must first be understood (and evalu-
ated) using the best possible source of data and at scales
which reduce uncertainty. Rigorous investigation at a high
spatial resolution with reliable ground-based data can lead
to a more thorough assessment, and subsequent under-
standing, of model (structure and parameter) error prior
to applying models at larger scales with alternative or new
data sources (Hogue et al., 2006a). In addition, field obser-
vations and measurements are still considered the bench-
mark for hydrological information and understanding
(Kirchner, 2006) and were, therefore, the preferred data
source to evaluate the models in this study and create a
baseline for future studies.

Finding basins with long-term observations in the US of
all the variables required was difficult, therefore we fo-
cused this study on the RCEW basin for which most of the re-
quired data for the energy balance model were available.
Online searches, literature review, and contact with per-
sons in the hydrologic field were conducted over several
years in an attempt to find multiple study sites. From the lit-
erature it is clear that most snow modeling studies are con-
ducted with only 1–3 years of data (Essery et al., 1999;
Strasser et al., 2002; Fierz et al., 2003; Xue et al., 2003;
Etchevers et al., 2004), or 5 years in the case of the Sleepers
River Experimental Watershed in Danneville, Vermont
(1969–1974) (Brubaker et al., 1996; Yang and Niu, 2003;
Sun and Chern, 2005). Studies often rely on estimated data
from sources outside their basin of interest or computed
values, such as radiation variables (Bowling et al., 2003).
Piecing data together from multiple climate and snow
observation sites is complicated by missing data, mismatch
in the record, large distances between observations, and a
lack of web-based documentation about archives. Using
alternative data sources such as the National Center for
Environmental Prediction (NCEP), North American Regional
Reanalysis (NARR), remote sensing products, and climate
model outputs may introduce additional and unquantified
uncertainties, making it more difficult to separate model
and data errors. Although the use of remote sensing to force
land surface models is being met with some success (Crow
et al., 2006), the uncertainties associated with using this
approach may negate rigorous comparison of model
performance.

Study sites and data

RCEW is located in the Owyhee Mountains of southwestern
Idaho and is characterized as having a semi-arid climate
(Fig. 1). Seventy-five percent of the annual precipitation oc-
curs as snow in the upper elevations of the basin (Hanson,
2001). Hourly climate (Hanson et al., 2001), precipitation
(Hanson, 2001), and snow data (Marks et al., 2001) for water
years 1984–1996 were available online for the basin.

Point-scale snow model evaluations were conducted with
data from a small (0.39 km2 (Pierson et al., 2001)) headwa-
ter basin within RCEW called Reynolds Mountain East (here-
after referred to as the East basin). The overall relief of the
East basin is minimal (2024–2139 m). SWE data (both snow
pillow and snow survey) and precipitation were collected
in the center of the East basin (Marks et al., 2001). The data
collection site is located in a grove of aspen and fir trees at
an elevation of 2061 m (Marks and Winstral, 2001). Basin-
scale snow melt and observed discharge were evaluated
for both the East and the Tollgate basins. The Tollgate basin
is 54.44 km2 in area, and the elevation change from the out-
let (1398 m) to the highest point (2244 m) is 846 m (Pierson
et al., 2001).

Air temperature, relative humidity, solar radiation, and
wind collected on the western ridge of the East basin
(Fig. 2) (Hanson et al., 2001; Slaughter et al., 2001) were
used for snow model forcing. This is an exposed shelf at
an elevation of 2097 m and is characterized by sagebrush
(Marks and Winstral, 2001). Basin average meteorological
forcing for Tollgate were computed for the mean basin ele-
vation (1837 m) based on the lapse rate between the obser-
vation point discussed above and the next closest
observation point located at 1652 m (Fig. 2) (Hanson
et al., 2001). The NWS uses a similar process to compute
mean areal temperature for their forecast basins (Anderson,
2002). Basin average precipitation was computed using the
Thiessen polygon method with the two precipitation gages
in the East basin and nine precipitation gauges in the Toll-
gate basin. Given the minimal relief in the East basin, the
use of the Theissen polygon method is reasonable. Although
the Tollgate basin has more substantial relief, precipitation
gages are well distributed, including five gauges in the high-
est elevations, providing good representation of precipita-
tion throughout the watershed.

Incoming longwave radiation was not observed in RCEW
during the time period studied, and was estimated using
procedures from standard published methods (Crawford
and Duchon, 1999; Kimball et al., 1982; Steiner, 2001; Ding-
man, 2002). Longwave radiation contributed from air and
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Figure 1 Location of the Reynolds Creek Experimental Watershed (insert) and the locations of observation points used in this
study.
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clouds was determined using the observations of solar radi-
ation, dew point temperature, and vapor pressure (Franz,
2006). Climate data for the period September 1983–Decem-
ber 1984 were missing at the observation site at 1652 m.
During this period the historical lapse rates for September
to December from 1984 to 1996 were used to compute the
values from the upper observation point to the mean basin
elevation. The mean monthly temperature lapse rates were
found to be negative for January 1985 and December 1985,
but positive otherwise. The relative humidity was larger at
the higher elevation site and varied ±8% between the two
sites with the mean difference near +2% (Fig. 1). Wind
speeds were greater at the upper site with a mean differ-
ence of 0.7160 m/s.

Models

NWS SNOW17
The SNOW17 model (Anderson, 1973) is based on an energy
balance model described in Anderson (1968, 1976). Simplifi-
cations were made to the snowmelt calculations of the
Anderson energy balance model to create the current ver-
sion which has reasonable data requirements for opera-
tional applications. The SNOW17 (originally called HYDRO-
17) is more complex than most traditional degree-day meth-
ods because the model has continuous accounting of the
heat storage of the snowpack, as well as liquid water reten-
tion and transmission using empirically based relationships.
However, the SNOW17 relies solely on temperature to mod-
el snowpack processes and, as a result, has traditionally
been referred to as a temperature index model (Anderson,
1976).

Snow is modeled as a single layer in the SNOW17. The
point-scale application of the SNOW17 requires eight
parameters (Table 1). When applied at the basin-scale, an
areal depletion curve (ADC) and a parameter describing
when less than 100% snow cover occurs (SI) are also re-
quired. The SNOW17 requires inputs of air temperature
(Ta) and precipitation time series (Anderson, 2002).

Heat content in the snowpack increases or decreases as a
function of the gradient between the antecedent tempera-
ture (as determined by the antecedent temperature index
(TIPM)) and the current air temperature (Anderson, 1973).
Melt occurs when enough heat has been added to the snow-
pack to bring its heat content to zero. During non-rain peri-
ods the depth of melt is determined by

M ¼ M�f ðTa � MBASEÞ ð1Þ

where M is the depth of melt (mm), Mf is the seasonally
varying melt factor (mm/�C), and MBASE is the temperature
above which melt will occur (typically set to 0 �C). The melt
factor is computed from a sinusoidal curve with limits de-
fined by the maximum (MFMAX) and minimum (MFMIN) melt
factor parameters (Anderson, 1973). Heat conduction
through the snowpack is assumed to vary similarly to the
non-rain melt factor and is scaled by a negative melt factor
(NMF). Energy balance equations are used to compute melt
during rain on snow events using several assumptions about
meteorological conditions during rainy periods (Anderson,
1973).

Excess water will occur in the pack when it is isothermal
at 0 �C and the liquid water holding capacity of the pack
(PLWHC) is met. Excess water is lagged and attenuated to
simulate flow through the pack based on a series of empir-
ically derived equations for ripe snow. A constant daily rate
of melt at the soil–snow interface (DAYGM) is parameter-
ized in the model to account for the geothermal heat flux
at the ground surface (Anderson, 1973).



Figure 2 Daily average climate variables for the accumulation period (October through March) and melt period (April through
June) at the East and Tollgate watersheds.

52 K.J. Franz et al.
Snow–Atmosphere–Soil Transfer model (SAST)
The SAST model (Jin et al., 1999a,b) is based on the physical
parameterizations of the SNTHERM model (Jordan, 1991)
and Anderson (1976), but has been simplified to allow appli-
cation for climate and hydrologic studies (Sun et al., 1999).
Jin et al. (1999a) applied the SAST and the SNTHERM to sim-
ulate snow depth and SWE during the 1992 and 1993 melt
seasons at the Mammoth Mountain in the eastern Sierra Ne-
vada, California. The study concluded that the SAST, with
the proper selection of layer depths, generated diurnal
snowmelt characteristics similar to the SNTHERM and was
less computationally expensive.
The SAST model accounts for heat conduction, snow com-
paction, grain growth, and melt. A maximum of three snow
layers are used, which vary in thickness depending upon
the total depth of snow (Sun et al., 1999). SAST computes
the following state and output variables: SWE, snow density,
melt, snow temperature profiles, heat content, and turbu-
lent heat fluxes at the snow surface. Meteorological data re-
quired for the SAST model includes incoming and reflected
shortwave radiation, incoming longwave radiation, air tem-
perature, precipitation, wind speed, and relative humidity.

The dynamic albedo estimation method described by
Dickinson et al. (1993) was applied. This method considers



Table 1 Description of the SAST and SNOW17 model parameters and the ranges used in the calibration

Parameter Description Range Calibrated

SNOW17
MFMAX Maximum melt factor (mm/�C/6 h) 0.50–2.00 0.85
MFMIN Minimum melt factor (mm/�C/6 h) 0.05–0.90 0.05
PLWHC Liquid water holding capacity (%) 0.02–0.3 0.01
MBASE Melt base temperature (�C) 0.0–1.0 0.0a

NMF Maximum negative melt factor (mm/�C/6 h) 0.05–0.50 0.15a

DAYGM Average daily ground melt (mm/day) 0.0–0.3 0.1a

UADJ Wind function factor (mm/mb) 0.03–0.19 0.15a

TIMP Antecedent snow temperature index 0.1–1.0 0.4a

Parameter Description Original Calibrated

SAST
R3 Albedo decay parameter 0.3 0.4
BEXT Near Infrared extinction coefficient 400 320
CV Visible extinction coefficient 0.003036 0.003000
FLMIN Minimum liquid holding water capacity (%) 0.03–0.10 0.01
ZNAUGHT Roughness length 0.001–0.002 0.001
DZMAX Maximum thickness of surface snow layer (m) 0.02 0.01
DZMIN Minimum thickness of surface layer (m) 0.010 0.005
DZNMAX Maximum thickness of second snow layer (m) 0.20 0.15
DZNMIN Minimum thickness of second snow layer (m) 0.18 0.10
AVO New snow albedo 0.95 0.90
a Parameter values transferred without adjustment from the North West River Forecast Center’s Upper Owyhee basin.
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albedo for the near infrared and visible ranges, requires no
data in addition to what was available, and showed compa-
rable results for SWE simulation when tested against other
methods for this study. The albedo averaging method of
Tarboton and Luce (1996) was applied to snow depths less
than 0.1 m to account for the changing surface albedo as
the snowpack becomes shallow. The SNOW17 areal deple-
tion curve (ADC) parameterization was adapted for use with
the SAST model and, similarly, an SI parameter was set to
initialize use of the ADC when there was less than 100% snow
cover.

The SACramento Soil Moisture Accounting model
(SACSMA)
The SACSMA is the rainfall–runoff model used by the NWS as
part of their streamflow forecasting system. The SACSMA is
a saturation excess model which represents percolation, soil
moisture storage, drainage, and evapotranspiration (ET)
processes in a conceptual manner (Burnash et al., 1973). In-
put to the SACSMA is precipitation and/or snowmelt. Poten-
tial evaporation (PE) values for the 16th of each month are
used to linearly interpolate daily PE. PE values from an adja-
cent NWS forecast basin (upper Owhyee River basin) were
obtained from the North West River Forecast Center
(NWRFC) and used directly for the RCEW. The SACSMA has
16 parameters, four of which are typically set to default val-
ues (Table 2). Model output is basin average runoff depth.

Model calibration

Both snow models were manually calibrated using the 13-
year record of SWE observations at the East snow pillow
site. Model calibrations and evaluations were conducted
according to water years to cover an entire snow season
from accumulation through ablation. To simplify the pre-
sentation of results, years are named by the water year rep-
resented, e.g. 1993 represents the water year October 1,
1992–September 30, 1993.

The SAST was first assessed using default parameter val-
ues. However, the default parameters resulted in a general
overestimation of SWE at the East snow pillow site and sig-
nificantly higher SWE values in water years 1993, 1995, and
1996. Because there was no specific guidance regarding
identification of SAST parameters or proper parameter
ranges, a set of possible variables were identified and ad-
justed using Xue et al. (2003), Sun et al. (1999), Jordan
(1991), and Anderson (1976) as guidance (Table 1).

The SNOW17 model calibration was guided by parameter
ranges and suggested values given in Anderson (2002),
NWSRFS documentation, and parameters obtained from
the NWRFC forecast basin. The rain/snow threshold value
was set to 1 �C for each model (the value used by NWRFC
in the adjacent headwater basin), assuring both models
would receive equal amounts of snowfall input. There were
no corrections made to the mass of precipitation input.

SACSMA parameters are conceptual in nature and are sen-
sitive to spatial and temporal scales as well as inputs (Finn-
erty et al., 1997), therefore we did not assume that the same
SACSMA parameters could be used with both snow models or
in both watersheds. Although other studies have successfully
used a priori parameters for a conceptual runoff model cou-
pled with a snow model (Lehning et al., 2006), use of param-
eters from an a priori estimation method for SACSMA (Koren
et al., 2000) were found to be unsatisfactory for these study
basins. The SACSMA model parameters from the adjacent
NWRFC forecast basin were tested with poor results. Initial



Table 2 SACSMA parameters and calibrated values for the SAST (SAST/SAC) and SNOW17 (SNOW/SAC) model outputs

Parameters Description Range Reynolds Mountain East Tollgate

SAST/SAC SNOW/SAC SAST/SAC SNOW/SAC

UZTWM Upper-zone tension water maximum storage
(mm)

1–150 1 15 3 13

UZFWM Upper-zone free water maximum storage
(mm)

1–150 36 12 24 72

UZK Upper-zone free water lateral depletion rate
(day�1)

0.100–0.800 0.102 0.100 0.417 0.319

PCTIM Impervious fraction of the watershed
(decimal fraction)

0.00–0.10 0.01 0.03 0.01 0.00

ADIMP Additional impervious area (decimal
fraction)

0.00–0.40 0.02 0.13 0.08 0.09

ZPERC Maximum percolation rate (dimensionless) 1.0–250.0 13.8 8.7 188.2 139.2
REXP Exponent of the percolation rate

(dimensionless)
0.5–5.0 1.2 0.5 2.1 1.3

LZTWM Lower zone tension water maximum storage
(mm)

1–500 168 80 186 148

LZFSM Lower zone free water supplementary
storage (mm)

1–1000 8 2 1 2

LZFPM Lower zone free water primary storage (mm) 1–1000 130 160 951 253
LZSK Lower zone supplementary free water

depletion rate (day�1)
0.010–0.500 0.500 0.495 0.479 0.423

LZPK Lower zone primary free water depletion
rate (day�1)

0.0001–0.2000 0.002 0.002 0.002 0.002

PFREE Fraction of water percolating from upper
zone directly to lower zone free water
storage (decimal fraction)

0.01–0.80 0.23 0.25 0.12 0.12

KROUTE reservoir routing exponent 0.10–1.00 0.10 0.15 0.21 0.42

Fixed parameters
RIVA Riparian vegetation area (decimal fraction) – 0.00 0.00 0.00 0.00
RSERV Fraction of lower zone free water not

transferrable to lower zone tension water
(decimal fraction)

– 0.30 0.30 0.30 0.30

SIDE Ratio of deep recharge to channel baseflow
(decimal fraction)

– 0.00 0.00 0.00 0.00
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transfer of the SACSMA parameters from the smaller East ba-
sin to the larger Tollgate basin resulted in overestimation of
peak flow and negative Nash–Sutcliffe efficiency values
(NSE). Therefore, the SACSMA was calibrated for each snow
model output in each basin using the Multi-step Automatic
Calibration Scheme (MACS) (Hogue et al., 2000, 2006b). In
this procedure, the Shuffle Complex Evolution (SCE) (Duan
et al., 1992) optimization algorithm is run in three consecu-
tive steps. In each step, the optimized parameters and the
objective function are changed to focus the calibration on
different parts of the hydrograph. Automatic calibration
was chosen to identify SACSMA parameters because auto-
matic calibration techniques for the SACSMA parameters
have proven successful (Duan et al., 1992; Sorooshian
et al., 1993; Yapo et al., 1996; Gupta et al., 1999; Hogue
et al., 2000, 2006b), and multiple parameter interactions
make manual calibration difficult for the SACSMA. In this
study, the SACSMA is used as a transformation tool to deter-
mine if there is a realistic relationship between the snow
model outputs and the streamflow, and to determine com-
patibility between the SAST and SACSMA.
Parameter ranges used in the optimization procedure
were taken from previous studies (Boyle et al., 2000; Hogue
et al., 2000, 2006b) and known RFC values, and were set
wide enough to assure that the SACSMA parameter space
was adequately sampled (Table 2). Runoff was routed to
the basin outlet using a series of linear reservoirs defined
by a single parameter (KROUTE). After preliminary testing,
a single reservoir for the East and a series of five reservoirs
for the Tollgate were found to provide adequate lag.

In the absence of spatial data, an ADC used by the NWRFC
was chosen for the East watershed simulations. The ADC for
the Tollgate was constructed by plotting estimated snow
covered area (SCA) versus the basin average SWE divided
by the maximum SWE for the year. Basin average SWE and
SCA were found using Thiessen polygon weighted snow sur-
vey data, a reasonable method for determining SCA (Lang,
1986). The computed ADC for Tollgate follows the recom-
mendation by Anderson (2002) that mountainous regions
tend to have a combination of what he termed type B and
C curves. The SI parameter was estimated from the maxi-
mum SWE values for Tollgate as per the SNOW17 model
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guidance and verified with the discharge simulations. In the
East, this initial estimate was found to be unsuitable; there-
fore, SI was adjusted during the SACSMA calibration proce-
dure and by comparing the timing of the rain–melt output
to the observed discharge.

Model evaluation

All model simulations were made at a 1-h timestep and
aggregated for evaluation at the daily timestep. The model
simulations were evaluated at the daily timestep using
mean error (ME), root mean squared error (RMSE), Nash–
Sutcliffe efficiency measure (NSE), percent bias (Pbias),
and correlation coefficient (R):
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where x is the model output at time t, and y is the observa-
tion at time t. The timing errors of complete snowpack melt
(melt-out error) and the peak discharge (peak discharge
timing error) are computed where a positive (negative) va-
lue indicates the model simulated the variable later (ear-
lier) than the observation occurred. The snow duration
error is the difference in the number of simulated minus ob-
served snow cover days throughout the water year.
Results

Point-scale snow model comparisons

SNOW17 parameter values for MFMIN, MBASE, NMF, DAYGM,
UADJ, and TIMP were not changed from the NWRFC values
because the simulation was found to be relatively insensi-
tive to these parameters (Table 1). MFMAX and PLWHC were
changed by +30% and �20%, respectively, from NWRFC val-
ues. Calibration of MFMAX resulted in the greatest improve-
ments in both snow accumulation and melt. Adjusting the
PLWHC improved the errors in SWE over-estimation, but
had a lesser impact on melt timing.

SAST simulations were most sensitive to changes in the
allowable maximum and minimum thickness of the snow lay-
ers (DZMAX, DZMIN, DZNMAX, DZNMIN) (Table 1). Reducing
the new snow albedo (AVO) and the minimum liquid water
holding capacity (FLMIN) had a less significant impact on
over-accumulation of snow in the SAST. Calibration of four
other parameters (R3, BEXT, CV, and ZNAUGHT) resulted
in only minor improvements by comparison. Adjusting SAST
parameters caused melting to begin earlier in the season;
extended the melting period; and reduced the average mag-
nitude of daily melt. After calibration the mean daily per-
cent bias and mean daily error were reduced from 43% to
13% and from 107 to 34 mm, respectively.

Compared to the SNOW17, the SAST tended to have a lar-
ger overestimate of SWE, to begin melt at a later date, and
to melt more quickly in the spring (Figs. 3 and 4 and Table
3). Summary statistics compare the SWE simulations to
SWE observations from the snow pillow. Snow pillow obser-
vations have better correlation with snow core measure-
ments during the accumulation period; errors during the
melting period are variable and during repeated freeze thaw
cycles can become uncertain (Sorteberg et al., 2001). At
Reynolds Creek Watershed, the snow pillow observations
tend to be underestimated compared to the snow survey
during the wettest years (Marks et al., 2001). Therefore,
there is greater uncertainty in the accuracy of the snow pil-
low data during the March through May period for the wet-
test years in this basin. The SAST matches the snow survey
data slight better from January through March 1984, but
in the remaining years the tendency by the SAST to overes-
timate SWE is validated by both the snow pillow and snow
survey observations (Fig. 3).

The mean daily Pbias of the SNOW17 was 2.6% lower than
the SAST and the average peak SWE error was 21.7 mm lower
(Table 3). The SNOW17 had a higher NSE (0.95) as compared
to the SAST (0.84) over the 13-year period. From 1984 to
1991, and during 1994, both model simulations resulted in
fairly low mean daily SWE errors (9-year average of 9.6 mm
for the SNOW17 and 4.6 mm for the SAST) and high NSE values
(9-year NSE of 0.98 for the SNOW17 and 0.94 for the SAST). In
9 out of the 13 years, the SAST had a higher peak SWE error
and a lower correlation than the SNOW17, although there is
oftenminimal difference in simulated daily SWEas illustrated
by 1984 and 1988 (Figs. 3a, b and 4). The largest errors for
both models and greatest differences in performance oc-
curred in 1992, 1993, 1995, and 1996. The average Pbias for
these four years was 42% for the SAST, compared to 24% for
the SNOW17. Efficiency values (NSE) for these same years
were 0.87 for the SNOW17 and 0.63 for the SAST.

Figs. 3 and 4 illustrate performance of the two models in
two drier years (1988 and 1992) and two wetter years (1984
and 1995) at the East site. As illustrated by the very dry con-
ditions in 1992 and very wet conditions in 1995 (Figs. 3c, d
and 4) the increased errors are not associated with either
very large or very small snowpack. Both models showed
fairly high accuracy during 1984 (wet) and 1988 (dry). Years
1993, 1995, and 1996 were characterized by above average
precipitation (Fig. 2e); however, large accumulation does
not appear to be a distinguishing reason for the poorer mod-
el performances. The models show fairly good performance
(low Pbias and high NSE) during 1984 (Fig. 4b) which had the
largest snowpack for the period of record.

There is little correlation between average daily long-
wave values in the accumulation periods and the tendency
of the SAST to over-accumulate SWE. 1984 and 1995 had
very similar average longwave inputs (Fig. 2), but SWE is
overestimated in 1995 and not in 1984 (Fig. 3). In addition,
1992 had above average values of longwave radiation and
also displayed over-accumulated SWE. Winter solar radia-
tion inputs varied little from year to year, and no related



Figure 3 Daily snow water equivalent for the East basin study site for water years 1984, 1988, 1992, and 1995. Hourly observed
SWE from the East basin snow pillow is depicted as the shaded region, and observed SWE from the snow survey is shown as the open
circle. Selected years are shown for two wet (WY 1984 and WY 1995) and two dry (WY 1988 and WY 1992) seasons.

56 K.J. Franz et al.
trend in SAST accumulation is observed. Longwave radiation
was above normal throughout the 1992 snow season and the
SAST model displays rapid melt around the middle of March
1992. Both 1984 and 1995 melt periods have below normal
longwave radiation and solar radiation inputs, this corre-
lates to a later melt in the SAST compared to the SNOW17
(Figs. 2, 3a, d and 4c).

The sensitivity of the model simulations to individual in-
put data errors was investigated further by adding positive
and negative biases of magnitudes 5%, 15%, and 25% to the
model inputs. A continuous 13-year model run was generated
using each altered data set. Temperature biases resulted in a
slightly larger change in model performance for the SNOW17
compared to the SAST, indicating the SNOW17 has a higher
degree of sensitivity to temperature at this site (Fig. 5).
The SAST is least sensitive to biases in wind speed and most
sensitive to biases in the radiation inputs. On average, a
longwave radiation bias of +5 to +15% would improve the tim-
ing of the SAST melt in the spring and slightly improve the
over-accumulation of snow beginning around February
(Fig. 6). The SAST is most sensitive to biased data during
the melt period and neither solar radiation nor longwave
radiation errors significantly affected the accumulated snow
during the late fall and early winter. Simulation of complete
snowpack melt ranged from mid-May into July when ±25%
longwave biases were introduced to the inputs (Fig. 6c).
Comparably, the same bias in solar radiation had a lesser im-
pact on SWE accumulation and melt.

Watershed scale snow model comparisons: coupling
to the SACSMA

Reynolds Mountain East (East) watershed
Fig. 7a, c, e, and g illustrates the cumulative distribution of
simulated melt from the two models. The SNOW17 produces
a minimum daily melt output throughout the snow covered
period (due to the DAYGM parameter), whereas the SAST of-
ten has little to no melt through the winter and into Febru-
ary and March. This lack of melt early in the season
contributes to the larger accumulation errors in the SAST,
illustrated by the 13-year average mean peak SWE errors:
26 and 4 mm for the SAST and SNOW17, respectively (Table
3). The SNOW17, on the other hand, typically has more
accurate SWE values going into the spring melt season
(Fig. 3g and d).

The late melt and overestimation of SWE by the SAST
leads to erroneous simulated peak streamflows in the spring
and negative NSE values (illustrated during 1992 and 1995;
Figs. 7f, h and 8d). The overall timing of the SNOW/SAC
was generally more accurate and the model had a higher
NSE (0.60) than the SAST/SAC (0.11) for the East basin (Ta-
ble 4). Both models had the highest Pbias during 1992, the
driest year on record (Fig. 8a).

The SAST had significantly higher melt rates in five of the
13 years during periods of rapid melt. Therefore, despite
the later onset of melt, the SAST melted the snowpack an
average of 2.5 days earlier than the SNOW17 (Table 3).
1995 is an example of where the late onset of significant
melting caused early discharge events to be missed, leading
to excess SWE in the spring and resulting in overestimated
peak discharge events around late May and early June
1995 (Figs. 3d and 7g, h). Despite the error in streamflow
timing, the volume error is small (Fig. 8e). While the
SNOW/SAC had the better overall performance, simulated
streamflow is similar in years where the melt pattern is also
similar between the two model (e.g. 1984 and 1988;
Fig. 7a–d).

Due to differences in melt pattern and timing, several
SACSMA parameters values were largely different between
the two snow models (Table 2). The SI value (which initiates



Figure 4 Mean modeled snowpack statistics for the East basin study site for water years 1984, 1988, 1992, and 1995: (a) mean
daily percent bias (Pbias), (b) simulated seasonal peak SWE error, (c) difference in the timing of modeled snowpack melt in the
spring compared to the observed t (melt-out error) (modeled minus observed), (d) correlation, (e) mean daily error, (f) Nash–
Sutcliffe efficiency score for daily SWE, and (g) error in the number of days during the water year that the model had simulated snow
compared to the observed.

Table 3 SNOW17 and SAST model simulation summary statistics for 13-year record at the RME snow pillow site

SNOW17 SAST

NSE (dimensionless) 0.95 0.84
Pbias (%) 9.40 13.00
ME (mm/day) 26.7 34.2
R (dimensionless) 0.74 0.60
Peak SWE error (mm) 3.90 25.60
Melt-out error (days) 3.0 0.5
Snow duration error (days) 16.8 17.5
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the application of the ADC) was extensively tested for the
East basin because an equal optimum for both models was
not found. SI was set to 50 and 200 mm for the SAST/SAC
and SNOW/SAC, respectively (Table 2). A lower SI results
in longer period of complete snow cover in the SAST/SAC
simulations. Due to the tendency of the SAST to melt more



Figure 5 Mean daily percent bias (Pbias) in simulated SWE for the East basin study site for the original model run (dotted line) and
model runs with error (see legend) added to the input data for the SNOW17 and the SAST. Errors in relative humidity produced less
than a 1% change in percent bias for the SAST.
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rapidly, the snow covered area declines rapidly once the SI
value is met. In order to maintain sufficient melt water out-
put to reproduce adequate discharges, the decrease in snow
covered area had to be delayed by setting a lower SI value.
The ADC functions slightly differently for the two models (in
the SNOW17 the ADC also modifies the melt rate), so varying
the value of SI to compensate for the varying model struc-
ture is not unreasonable.

The late melt onset, fast melt rates, and small SI in the
SAST, resulted in larger lower zone storages (LZTWM and
LZFSM) and higher percolation rates (ZPERC) in the SAST/
SAC (Table 2) in order to move excess water quickly into
the lower soil zone, dampen the large SAST melt outputs,
and allow the simulated streamflow peaks to match the ob-
served more accurately. The LZTWM can function as a sink
for excess water in the system and the larger LZTWM value
in the SAST/SAC is a likely cause for the 32 mm deficit in the
March through June streamflow volume, compared to only a
8 mm deficit in the SNOW/SAC (Table 4).

Tollgate watershed
The 13-year average NSE values improved for the SAST/SAC
in the Tollgate watershed simulations, increasing to 0.31
(Table 4). If 1989 is removed from the 13-year average,
the NSE increases to 0.43 and peak discharge error is low-
ered to 0.34 mm/day. In 1985, 1986, and 1989 the SAST
had very little melt from December through March and rapid
melting in April. In these instances, the peak discharge was
overestimated by the SAST/SAC (not shown). With the
exception of the 1985 accumulation period, these years
are climatically similar to the other years in which the
SAST/SAC tended to underestimate peak discharge.

The melt patterns between the two snow models varied
to a larger degree in the Tollgate (Fig. 9a, c, e, and g),
and most significantly in 1992 where the SNOW17 had signif-
icantly more melt during November–December than the
SAST. The SAST displays a later onset of melt and acceler-
ated late spring melt rates similar to what was observed
for the East; however, average peak discharge errors of
the SAST/SAC are lower than those of the SNOW/SAC (Table
4 and Fig. 10b). Water years 1995 (Fig. 9h) and 1996 (not
shown) revealed a problem with late melt for the SAST/
SAC in the East basin, but these years do not show the same
simulation errors in the Tollgate basin.

Four parameters had greater than 20% difference be-
tween the SAST/SAC and SNOW/SAC (UZFWM, ZPERC,
LZFPM, and KROUTE) in Tollgate (Table 2). However, the
values did not tend towards the optimization bounds as
was seen in the smaller East basin. In the larger Tollgate,
the simulations were less sensitive to the SI and a single va-
lue of 300 mm worked well for both models. It is likely that
the uncertainty resulting from using the same value in both
models is masked by other problems (i.e. data averaging)
introduced at the larger scale.

Discussion

Based on 13 years of simulations, the SNOW17 performed
consistently better than the SAST in both the East and Toll-
gate basins. Much of the difference between the estimated
SWE and discharge from the two snow models are linked to
their respective melt patterns and rates. For those years
when the SAST had minimal winter ablation and late snow-
melt, large differences in estimated daily and seasonal peak
SWE errors were observed between the two models. The dif-
ferences were only significant in four of the 13 years in the
East basin but occurred in both wet and dry years. The SAST
had a rapid spring melt rate resulting in an average earlier



Figure 6 Impact on simulated daily SWE for the East basin for
WY 1995 due to errors added to the SAST model input.
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timing of complete pack melt-out as compared to the
SNOW17, but resulted in overestimation of peak discharge.
The SAST/SAC performance improved in the Tollgate, but on
average, had lower NSE scores and larger peak discharge er-
rors relative to the SNOW/SAC. However, for several years
(1984, 1990, 1992, 1993, and 1995) the SAST/SAC had equal
or higher NSE scores and lower peak discharge errors.

Point-scale snow model comparisons

The SAST tended to miss mid-winter melting episodes lead-
ing to high spring snow depths. Mid-winter ablation is a
source of uncertainty in many snow schemes; in the PILPS-
2(d) model comparison study, the participating land surface
models were found to have markedly different early season
ablation patterns (Slater et al., 2001). In the PILPS-2(e)
experiment, which compared 21 land-surface schemes in
several high-latitude basins, the SAST overestimated the
accumulated SWE at three of the test sites (Nijssen et al.,
2003). A strong link between winter over-accumulation er-
rors and new snow albedo parameterization in the SAST
was found by Xue et al. (2003); however, at the East basin
the new snow albedo value was insignificant compared to
the snow layer thickness parameters. The thickness of the
top two snow layers is important for reasonable simulation
of diurnal temperature changes and heat conduction within
the pack (Sun et al., 1999; Jin et al., 1999a). Under heavy
snow conditions an excessively thick second layer leads to
incorrect simulation of the ablation timing in the SAST.
Reducing the thickness of the top two snow layers in the
SAST through calibration significantly reduced the SWE
over-accumulation in the years with the largest snowpack
in the East basin. Although the hydrologic community is di-
vided on the need for calibration of physically based models
(Gupta et al., 1998; Kirchner, 2006) (such as an energy bal-
ance snow model), ‘‘effective parameters’’ that cannot be
directly obtained from field measurements arguably require
calibration (Gupta et al., 1999; Hogue et al., 2006a). Previ-
ous studies and the sensitivity of the SAST to selected
parameters shown here, indicate that the use of an energy
balance model would not alleviate calibration requirements
for applications such as streamflow forecasting.

SNOW17 parameters calibrated to a nearby basin re-
quired little adjustment, and only the MFMAX and PLWHC
were found to have significant impact on the results. MFMAX
dominates melt computations in mountainous regions where
snow cover builds throughout the winter and doesn’t melt
until spring (Anderson, 2002); as such, this value should be
adjusted to specific sites. In previous work, the uncalibrated
SNOW17 produced an early onset of melt (Lundquist and
Flint, 2006) and completely melted the snowpack earlier
than observed (Etchevers et al., 2002). Given the highly
conceptual nature of the SNOW17, studies that analyzed
the model without site specific parameter calibration are
difficult to contrast against the work presented here. Simu-
lations in the RCEW show that a well calibrated SNOW17
model is highly accurate in dry to wet periods for point
and watershed scale simulations.

The SAST requires more data, leading to increased oppor-
tunity for input uncertainty to be propagated through to
model simulations. Data biases had the greatest effect on
the SWE in the late winter and spring and likely contributed
to the faster spring melt rates during this period. Previous
studies have shown that longwave radiation estimates tend
to be positively biased (Marks and Dozier, 1979; Fierz et al.,
2003). The methodology used for estimating longwave radi-
ation at RCEW was tested using 5 years of observed climate
data at the Mammoth Mountain snow study site (Mammoth)
located in east-central California (http://neige.bren.ucsb.
edu/mmsa/); longwave radiation observations were avail-
able during the ablation seasons from 1992 to 1996. At Mam-
moth, our estimated longwave radiation was 11% higher
than the observed, varying between +7% and +14% from sea-
son to season (Franz, 2006). The biased longwave increased
the onset and rate of spring snow melt in the SAST simula-
tions for Mammoth. Data biases may vary by location, how-
ever, a positively biased longwave input would explain, in
part, the rapid melt rates observed at the RCEW sites. Given
the relative model insensitivity to longwave biases in fall
and early winter, the over-accumulation of SWE in the
mid-winter period is more likely linked to errors in the albe-
do computation. Energy balance models suffer from feed-
backs between errors in SWE and subsequently albedo and
the radiation balance in the model (Mitchell et al., 2004),
exacerbating tendencies to over- or under-accumulate the
snowpack. The snow age albedo estimation methods (such

http://neige.bren.ucsb.edu/mmsa/
http://neige.bren.ucsb.edu/mmsa/


Figure 7 Cumulative distribution of simulated melt and observed discharge (a, c, e, g), and simulated and observed daily
discharge (b, d, f, h) for the East basin watershed for water years (WY) 1984, 1988, 1992, and 1995.

Table 4 Model simulation summary statistics for 13-year record in the RME and TOLL watersheds for the snow models coupled to
the Sacramento model

RME TOLL

SNOW17/SAC SAST/SAC SNOW17/SAC SAST/SAC

NSE (dimensionless) 0.60 0.11 0.58 0.31
Pbias (%) 7.4 �0.4 �0.5 0.5
RMSE (mm/day) 0.13 0.15 0.08 0.10
Peak discharge error (mm/day) 9.4 13.0 1.8 1.2
Peak discharge Timing error (days) 3.2 �1.0 �7.3 �7.1
March 1–June 30 volume error (mm) �8.2 �31.7 4.2 26.9
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as used here) are accurate during melting periods, but not
as accurate during mid-winter, non-melt periods (Etchevers
et al., 2004). Alternative albedo estimation methods were
tested initially and found to have little impact on overall
simulated SWE (Franz, 2006), but will be revisited in future
studies.

The SNOW17 was slightly more sensitive to temperature
data biases than the SAST. This contrasts findings by Lei
et al. (2007) in which the SNOW17 was shown to be less sen-
sitive to biases in temperature than an energy balance mod-
el. In both studies, however, the energy balance model was
least sensitive to wind speed and most sensitive to radiation
model forcings. The complex interactions between the en-
ergy balance snow model and data errors presented here
support findings of Lei et al. (2007) which state that better
estimates of data are needed to run an energy balance snow



Figure 8 Mean modeled streamflow statistics by year for the East basin study for March 1st to June 30th for 1984, 1988, 1992, and
1995: (a) mean daily percent bias (Pbias), (b) peak discharge error, (c) daily root mean square error (RMSE), (d) Nash–Sutcliffe
efficiency (NSE), and (e) error in total discharge.
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model for operational forecasting. Accurate representation
of the radiation variables to which the SAST is most sensitive
will be critical for use of the model in hydrologic prediction.

The snow models have only temperature and precipita-
tion as common inputs, which determine the accumulation
of snow. A study conducted in the Sheep Creek basin of
the Reynolds Creek Watershed pointed to model errors as
the reason for overestimated peak accumulation produced
by the Utah Energy Balance model (in both distributed and
lumped mode) (Luce et al., 1999). However, the common
trend shown here by both the SAST and SNOW17 to over-
accumulate early in the snow season indicates that errors
in temperature, precipitation and/or observed SWE are con-
tributing to the uncertainty in model predictions. In addi-
tion, the rain/snow cutoff parameter value of 1 �C may
require adjustment in some years, such as 1992, 1993,
1995, and 1996, where the modeled SWE was overestimated
by both the SNOW17 and SAST. Varying parameters on an an-
nual basis is not typically considered in hydrologic models,
however, adjusting the rain/snow cutoff parameter for cli-
matic conditions and identifying the interaction between
parameters and sources of uncertainty will be explored in
future studies.

Watershed scale comparisons

An areal depletion curve (ADC) was used in place of a dis-
tributed snow model application to account for the influ-
ence of terrain and snow redistribution in the Reynolds
creek watershed. Marks and Winstral (2001) showed that
runoff generated using the SNOBAL, an energy balance snow
model, at both the ridge and the snow pillow sites of the
East basin under-represented discharge from the basin be-
cause relatively more water was contributed to discharge
due to large drifts within the watershed. Mean wind speed
was significantly higher during 1993, 1995, and 1996, coin-
ciding with the greatest simulated SWE overestimations by
the snow models. Drifting would be most likely in these



Figure 9 Cumulative distribution of simulated melt and observed discharge (a, c, e, g), and simulated and observed daily
discharge (b, d, f, h) for the Tollgate basin for water years 1984, 1988, 1992, and 1995.
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years. However, no relationship between the errors in peak
discharge or streamflow volume with high mean wind speed
is obvious, indicating that the drifting did not have a domi-
nant impact on simulated streamflow errors or the ADC was
able to account for any effects from drifting. The ADC meth-
od appeared better suited to the larger watershed based on
SAST/SAC discharge patterns. The potential use of a lumped
energy balance model for snow simulation when detailed
subbasin conditions are not necessary has also been shown
by Luce et al. (1999), who found that lumped snow model
simulations using an areal depletion curve agreed with dis-
tributed versions of the same model.

SAC/SAST parameters calibrated within reasonable
ranges identified by NWS guidance and other studies, indi-
cating compatibility between the SAST and SACSMA. Differ-
ences in the calibrated SAST/SAC and SNOW/SAC
parameters arose because (1) the diurnal and seasonal melt
patterns from the snow models are quite different, (2) the
SACSMA is a conceptual model, therefore the parameters
are not direct representatives of basin characteristics and
must be calibrated with specific forcings, and (3) parameter
interaction can result in multiple parameter sets which may
have similar performance. The calibration and application
of the SACSMA confirmed that model parameters are sensi-
tive to characteristics in the input and that the SACSMA re-
quires calibration specific to the data sources in addition to
the watershed (Finnerty et al., 1997; Yilmaz et al., 2005).

Concluding remarks

This study was undertaken to determine the feasibility of
using a common energy balance model in lieu of the current
NWS snow model for streamflow forecasting. We emphasize
that the SAST was used as a proxy for the class of energy
balance models and this study was not meant to target
the performance or potential deficiencies of the SAST.
The SAST estimated point- and basin-scale processes as
accurately as the SNOW17 for most years even with simple
estimation of basin-average climate forcing and longwave
radiation. Our conclusions do not preclude the use of an en-
ergy balance model in operational forecasting, however,
relatively large uncertainty still exists in the predictive skill
of the energy balance model relative to existing procedures.
Several challenges remain before the application of an en-



Figure 10 Mean modeled streamflow statistics by year for the Tollgate study for March 1st to June 30th for 1984, 1988, 1992, and
1995: (a) mean daily percent bias (Pbias), (b) peak discharge error, (c) daily root mean square error (RMSE), (d) Nash–Sutcliffe
efficiency (NSE), and (e) error in total discharge.
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ergy balance model for operational predictions can be
realized:

• The SAST performance quality will be influenced to a
greater extent by biased data than the SNOW17 model.
Data error estimation and bias correction will be chal-
lenging due to snow-energy balance feedbacks within
the model and difficulty in estimating biases for multiple
data streams.

• The need to calibrate the SAST will not alleviate existing
calibration requirements. The ease of the SNOW17 cali-
bration and ease to which parameters were transferred
from an operational basin to the research basins can be
attributed to the long history of use of this model by
the NWS. An understanding of parameter ranges and
areal depletion curves is well documented for the
SNOW17. A comparable understanding of parameter
ranges and sensitivities will be required for an energy
balance model.
• The difference in SACSMA model parameters illustrates
that a new snow model will require extensive recalibra-
tion of the SACSMA, substantial investigation will be
needed to optimally calibrate both an energy balance
model and the SACMSA model and to understand the
associated biases and uncertainty.

• Current analysis of energy balance models is limited due
to inadequate basin-scale hydrologic observations. Long-
term analysis of the energy balance model in various cli-
mates and locations using data sources similar to that
which will be used operationally will be needed.

Historical model simulation analysis is an important first
step in model evaluation; however, it does not necessarily
provide information about how a model will perform under
forecasting conditions. In a follow-on paper, hindcasting
techniques are added to our model analysis to quantify
the snow model skill for ensemble streamflow prediction.
Through these series of papers we set forth a framework
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through which alternatives snow models may be evaluated
against current operational models.
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