
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Boundary Characterization of a Smooth Domain with Non-Compact Automorphism Group

Permalink
https://escholarship.org/uc/item/52g9r7gm

Author
Thomas, Bradley Gray

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52g9r7gm
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Boundary Characterization of a Smooth Domain with Non-Compact
Automorphism Group

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Bradley Gray Thomas

June 2012

Dissertation Committee:

Dr. Bun Wong , Chairperson
Dr. Yat Sun Poon
Dr. David Rush



Copyright by
Bradley Gray Thomas

2012



The Dissertation of Bradley Gray Thomas is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would first like to acknowledge my thesis adviser, Bun Wong. Thank you for

all of your help these last several years. Thank you for always being willing to help me

when I was stuck on a problem and being patient with me as I struggled to understand

a concept. Thank you for your constant guidance throughout this long process.

I would like to also thank Lina Lee. Thank you for always being there to help

me whenever I had a question.

To my mom, dad, brother, and everyone else in my family, thank you very

much for all of the love and support you have gave me these last six years.

I would like to thank everyone from Gracepoint Church. Thank you for all of

your support and prayers these last two years.

Finally, I would like to thank my Savior, Jesus. Thank you for your uncondi-

tional love and all of the ways you have sustained me throughout this long journey.

iv



ABSTRACT OF THE DISSERTATION

Boundary Characterization of a Smooth Domain with Non-Compact Automorphism
Group

by

Bradley Gray Thomas

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Dr. Bun Wong , Chairperson

One of the most important problems in the field of several complex variables

is the Greene-Krantz conjecture:

Conjecture Let Ω ⊂ Cn be a smoothly bounded domain with non-compact automor-

phism group. Then the ∂Ω is of finite type at any boundary orbit accumulation point.

The purpose of this dissertation is to prove a result that suppports the truth-

fulness of this conjecture:

Theorem Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose there exists a

point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p)→ q ∈ ∂Ω non-tangentially.

Furthermore, suppose Condition LTW holds. Then ∂Ω is variety-free at q.
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Chapter 1

Introduction

In any category, it is natural to ask which objects in it are equivalent. This

is no less true in the category consisting of bounded domanins in Cn, with morphims

being the holomorphic maps between them. In one dimension, the task of classification

is already complete: Any simply connected bounded domain in the complex plane is

biholomorphic to the unit disc. This incredible result is given by the Riemann Mapping

Theorem. It is natural to ask, then, if such a result holds for bounded domains in Cn.

Unfortunately, the answer is no. Hence, if any classification is going to be obtained,

the set of bounded domains in Cn must be restricted to a smaller collection satisfying

some additional property. One such collection is the bounded domains in Cn with a

non-compact automorphism group. Can any sort of classification be obtained in this

case? One important tool needed in order classify such domains is the Greene-Krantz

conjecture:

Conjecture 1.0.1 (Greene-Krantz) Let Ω ⊂ Cn be a smoothly bounded domain with

non-compact automorphism group. Then ∂Ω is of finite type at any boundary orbit

accumulation point.
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The purpose of this dissertation is to prove a result that supports the truth-

fulness of this conjecture, namely that the ∂Ω is variety-free at any boundary orbit

accumulation point. This is a weaker conclusion, since finite type implies variety-free.

Here is the exact statement of the result, with the assumption of the truth of Condition

LTW:

Theorem 1.0.2 (Lee-Thomas-Wong) Let Ω ⊂ Cn be a smoothly bounded convex

domain. Suppose there exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that

φj(p) → q ∈ ∂Ω non-tangentially. Furthermore, assume Condition LTW holds. Then,

Sq is trivial and hence ∂Ω is variety-free at q.

Condition LTW is a techincal assumption. Please see page 7o for more information.

Here is what follows:

In Chapter 2, a general study of the bounded domains in Cn with a non-

compact automorphism group, with an emphasis on any known or potential results that

provide a classification of such domains. The purpose of this chapter is to provide both

a general framework and a common set of terminology to be used throughout the latter

part of the document.

In Chapter 3, the definition of the invariant metrics and measures will be given,

along with many of their important properties. These objects constitute one of the main

tools that will be needed in the proof of the main theorem.

In Chapter 4, the main result will be proven. Leading up to it will be a sequence

of definitions, lemmas, propositions, and corollaries that will be needed to prove this

result. The basic idea behind the proof is Poincaré’s Theorem, which states that the

ball and the polydisc are not biholomorphic. In particular, assuming that the domain

Ω is not variety-free at a boundary point q, the ∂Ω will be geometrically flat along this
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variety. Hence, near a strongly (pseudo)convex boundary point, the domain Ω is like

a ball, whereas, near a flat boundary point, the domain Ω is like a polydisc. The non-

compactness of the automorphism group allows one to mediate between these two types

of boundary points, bringing forth a contradiction. The fact that the domain Ω near a

strongly (pseudo)convex and flat boundary point is like a ball and polydisc, respectively,

is codified precisely by the quotient of the Carathéodory and Kobayashi measures. A

significant portion of this dissertation is a joint work with Dr. Lina Lee and Professor

Bun Wong.
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Chapter 2

Background

2.1 Domains with Non-Compact Automorphism Group

From now on, for brevity’s sake, a bounded domain in Cn will be denoted by

Ω and the automorphism group of Ω will be denoted by Aut(Ω). Note that an element

f of Aut(Ω) is a biholomorphic map of Ω onto itself. As its name makes abundantly

clear, Aut(Ω) is indeed a group, the operation being function composition. In addition

to being a group, Aut(Ω) is also a topological group, the topology being given by the

compact-open topology (since Ω, being a subset of Cn, is equipped with a metric, the

compact-open topology of Aut(Ω) coincides with the topology of uniform convergence

on compact sets). Furthermore, H. Cartan showed that Aut(Ω) is a Lie Group. Before

stating what is precisely meant by Aut(Ω) being non-compact, a couple of definitions

are required.
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Definition 2.1.1 Let G be a topological group and X a (Hausdorff) topological space.

G acts upon X if there exists a continuous map ϕ : G×X → X, ϕ(g, x) = gx, such that

ϕ(e, x) = ex = x ∀x ∈ X and ϕ(gg′, x) = ϕ(g, ϕ(g′, x)) ∀ g, g′ ∈ G, x ∈ X

Definition 2.1.2 Let G and X be as in the previous definition. The orbit of x ∈ X

under the action of G is {ϕ(g, x) | g ∈ G}.

Definition 2.1.3 A map f : Ω −→ Ω̃, Ω ⊂ Cn, Ω̃ ⊂ Cm is proper if, for any compact

set K̃ ⊂ Ω̃, the set f−1(K̃) is compact in Ω.

Note that this is equivalent to the following: For any sequence {zj} ⊂ Ω which

has no limit point in Ω, the sequence {f(zj)} has no limit point in Ω̃.

Definition 2.1.4 If G and X are as in Definition 2.1.1 and are locally compact, then the

action of G on X is proper if the map G × X −→ X × X, defined by (g, x) 7−→ (ϕ(g, x), x)

is proper.

Definition 2.1.5 Aut(Ω) is non-compact if there exists a sequence {φj} ⊂ Aut(Ω) such

that {φj} is divergent and {φj} has no convergent subsequence.

Note that, since the action of Aut(Ω) on Ω is proper, for all p ∈ Ω, φj(p) −→

q ∈ ∂Ω as j −→∞, i.e. φ := limφj maps Ω into ∂Ω (this can also be seen by looking at

Montel’s Theorem). Therefore, the orbit of any point p ∈ Ω is non-compact. The point

q is called a boundary orbit accumulation point for the action of Aut(Ω) on Ω. More

precisely, q ∈ ∂Ω is a boundary orbit accumulation point for the action of Aut(Ω) on Ω

if there exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p) −→ q as

j −→∞.

Conversely, assume Ω ⊂ Cn is bounded, with q ∈ ∂Ω a boundary orbit accu-

mulation point.
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Claim 2.1.6 Aut(Ω) is non-compact.

Proof. Assume that Aut(Ω) is compact. Then, for any sequence {ψj} ⊂ Aut(Ω),

there exists a subsequence {ψjν} ⊂ {ψj} such that ψjν −→ ψ ∈ Aut(Ω). Consider the

sequence {φj} ⊂ Aut(Ω); by assumption, ∃ {φjν} ⊂ {φj} such that φjν −→ φ ∈ Aut(Ω)

as ν −→∞. In particular, φ(p) = q ∈ Ω⇒ q ∈ Ω ∩ ∂Ω, which contradicts the fact that

Ω is open. Therefore, Aut(Ω) is compact.

Therefore, there is no loss in assuming that Aut(Ω) non-compact means that

at least one orbit of the action of Aut(Ω) on Ω is non-compact.

Now, here are some examples of some bounded domains with non-compact

automorphism groups, along with an explanation why.

Example 2.1.7 The unit disc in C

Let ∆ := {z ∈ C | |z| < 1} be the unit disc, where |·| denotes the Euclidean norm of z

in C. Then,

Aut(∆) =

{
eiθ

z − a
1− az

∣∣∣∣ a ∈ ∆, θ ∈ [0, 2π]

}
.

Why is Aut(∆) non-compact? To determine the answer to this question, a proposition

is needed.

Proposition 2.1.8 Let Ω be a bounded domain in Cn with a transitive automorphism

group, i.e. Ω is homogeneous. The Aut(Ω) is non-compact.

Proof. Let Ω be a bounded domain in Cn with a transitive automorphism group, i.e.

given any two elements a, b ∈ Ω, ∃φ ∈ Aut(Ω) such that φ(a) = b. Let z ∈ Ω. By the

transitivity of Aut(Ω), the orbit of z is {w ∈ Ω |w = φ(z), φ ∈ Aut(Ω)} = Ω. Since Ω is

open, it is not compact ⇒ the orbit of z is non-compact ⇒ Aut(Ω) is non-compact.
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How, then, can this proposition be used in showing that Aut(∆) is non-

compact? It can be invoked due to the fact that Aut(∆) is transitive: Given any

two elements a, b ∈ ∆, let

φa(z) :=
z − a
1− az

, φ−b(z) :=
z + b

1 + bz
.

Then, both φa and φ−b are in Aut(∆). In fact, φ−b ◦ φa(a) = φ−b(0) = b ⇒ Aut(∆) is

non-compact by the previous proposition.

Example 2.1.9 The unit ball in Cn.

Let Bn :=
{
z = (z1, . . . , zn) ∈ Cn | ‖z‖ :=

∑
|zk|2 < 1

}
denote the unit ball.

To write down the elements of Aut(Bn) explicitly, recall that

U(n) :=
{
A ∈Mn(C) |AAt = A

t
A = I

}
is the (Lie) group (under matrix multiplication) of unitary matrices. Importantly, the

elements of U(n) preserve the Euclidean norm: They correspond to complex rotations.

Furthermore, consider the collection of maps {φa}, where

φa(z1, . . . , zn) :=

(
z1 − a
1− az1

,

√
1− |a|2z2

1− az1
, . . . ,

√
1− |a|2zn
1− az1

)
, |a| < 1

Note that φ(a, 0, . . . , 0) = (0, . . . , 0) and that φa is an automorphism of the ball. There-

fore, Aut(Bn) is the group generated by U(n) and {φa}, i.e. every automorphism of the

ball is a composition of elements from U(n) or {φa}. Why is Aut(Bn) noncompact?

Claim 2.1.10 Aut(Bn) is transitive.

Proof. Choose a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Bn. Then, ∃Φa ∈ U(n) such

that Φa(a) = (a1, 0, . . . , 0), i.e. Φa rotates a unto the z1-axis. Choose Φ−b ∈ U(n)

such that Φ−b(b1, 0, . . . , 0) = b (Φ−b is the inverse of Φb). Let φa1 , φ−b1 be the au-

tomorphisms of the ball as described above. Note that φ−b1 = (φb1)−1 Therefore,
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(Φ−b ◦ φ−b ◦ φa ◦ Φa) (a) = Φ−b (φ−b (φa (Φa (a)))) = Φ−b (φ−b (φa (a1, 0, . . . , 0))) = Φ−b (φ−b (0)) =

Φ−b (b1, 0, . . . , 0) = b, i.e. (Φ−b ◦ φ−b ◦ φa ◦ Φa) (a) = b⇒ Aut(Bn) is transitive.

Therefore, by Proposition 2.1.8 , Aut(Bn) in non-compact.

Example 2.1.11 The unit polydisc in Cn.

Let ∆n := {z = (z1, . . . , zn) | |zk| < 1 ∀k} denote the unit polydisc in Cn. Notice that

∆n = ∆× . . .×∆, n times. Therefore,

Aut(∆n) =

{
ϕ(z) = ϕ(z1, . . . , zn) :=

(
eiθ1

zσ(1) − a1

1− a1zσ(1)
, . . . , eiθn

zσ(n) − an
1− anzσ(n)

)}
,

where a ∈ ∆n, 0 ≤ θk ≤ 2π, and σ ∈ Sn, where Sn is the symmetric group on n letters.

The fact that Aut(∆n) is non-compact follows from the fact that Aut(∆n) is transitive.

Claim 2.1.12 Aut(∆n) is transitive.

Proof. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ ∆n. Consider the following automor-

phisms of ∆n:

ϕa(z) =

(
z1 − a1

1− a1z1
, . . . ,

zn − an
1− anzn

)
and

ϕ−b(z) =

(
z1 + b1

1− b1z1

, . . . ,
zn + bn

1− bnzn

)
.

Then, (ϕ−b ◦ ϕa)(a) = ϕ−b(0) = b⇒ Aut(∆n) is transitive.

Therefore, it follows that Aut(∆n) is non-compact.

Example 2.1.13 The “egg” domain in C2.

Let Em :=
{

(z1, z2) ∈ C2 | |z1|2 + |z2|2m < 1
}

be the egg domain in C2, where m ∈ Z+.

Then,

Aut(Em) =

(z1, z2) 7−→

 z1 + a

1 + az1
, z2

(√
1− |a|2

1 + az1

)1/m
 ∣∣∣∣∣ |a| < 1

 .
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Why is Aut(Em) non-compact? It is non-compact since it has a boundary orbit

accumulation point.

Claim 2.1.14 The point (1, 0) is a boundary orbit accumulation point for the action of

Aut(Em) on Em.

Proof. Choose aj , 0 ≤ aj < 1, such that aj → 1 as j →∞. Let z = (z1, z2) ∈ Em and

φaj ∈ Aut(Em). Then, (1, 0) is a boundary orbit accumulation point of the action of

Aut(Em) on Em, since φaj (z)→ (1, 0) as j →∞⇒ Aut(Em) is non-compact by Claim

2.1.6.

With these examples in hand, it is natural to ask if any of these domains are

biholomorphic. More generally, can the orginal desire for a higher-dimensional Rie-

mann Mapping theorem be found for the set of bounded domains with non-compact

automorphism group? As the following theorem of Poincaré demonstrates, without the

imposition of additional conditons upon the domains under consideration, no such result

holds. Before proving this theorem, a definition and a few facts are needed.

Definition 2.1.15 Let Ω ⊂ Cn be a bounded domain, where P ∈ Ω. Then, the isotropy

subgroup Aut(Ω)P ⊂ Aut(Ω) is the collection {g ∈ Aut(Ω) | g(P ) = P}.

For the following proof, knowledge of the isotropy subgroups of ∆n and Bn at

the origin is needed.

1. Aut(∆n)0 =
{

(eiθ1 , . . . , eiθn) | 0 ≤ θj < 2π
}

= S1 × . . . × S1, n times, which is

abelian.

2. Aut(Bn)0 = U(n), the unitary group, which is not abelian.
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Theorem 2.1.16 (Poincaré) There does not exist a biholomorphism between ∆n and

Bn for n > 1.

Proof. Suppose ∃ a biholomorphism g : Bn → ∆n. Since Bn and ∆n are homogeneous,

without loss of generality, assume g(0) = 0. (If g(0) = a 6= 0, choose f ∈ Aut(∆n) such

that f(a) = 0. Then, (f ◦ g)(0) = 0 and f ◦ g : Bn → ∆n is a biholomorphism.)

Claim 2.1.17 g induces a group isomorphism between Aut(Bn)0 and Aut(∆n)0.

Let g∗ : Aut(Bn)0 → Aut(∆n)0 be defined by g∗(h) = g ◦ h ◦ g−1. Since g(0) = 0

and h(0) = 0, g∗(h) ∈ Aut(∆n)0. Clearly, this map is well-defined and g∗(h ◦ j) =

g ◦ (h ◦ j) ◦ g−1

= g ◦ (h ◦ 1Aut(Bn)0 ◦ j) ◦ g−1 = g ◦ (h ◦ (g−1 ◦ g) ◦ j) ◦ g−1 = (g ◦ h ◦ g−1) ◦ (g ◦ j ◦ g−1) =

g∗(h) ◦ g∗(j)⇒ g∗ is a group homomorphism.

Let g−1
∗ : Aut(∆n)0 → Aut(Bn)0 be defined by g−1

∗ (h) = g−1 ◦ h ◦ g, where

h ∈ Aut(∆n)0. By the exact same argument as in the previous paragraph, g−1
∗ is a

group homomorphism.

Subclaim: g∗ and g−1
∗ are inverses of each other.

g−1
∗ (g∗(h)) = g−1 ◦ (g ◦ h ◦ g−1) ◦ g = (g−1 ◦ g) ◦ h ◦ (g−1 ◦ g) = h

and

g∗(g
−1
∗ (j)) = g ◦ (g−1 ◦ j ◦ g) ◦ g−1 = (g ◦ g−1) ◦ j ◦ (g ◦ g−1) = j

where h ∈ Aut(Bn)0 and j ∈ Aut(∆n)0. Therefore, the subclaim is proved ⇒ the claim

is proved. But, this imples that S1 × . . . × S1 = Aut(∆n)0
∼= Aut(Bn)0 = Un, i.e

S1 × . . . × S1 ∼= Un, which is a contradiction, since S1 × . . . × S1 is abelian and Un is

non-abelian. Therefore, there does not exist a biholomorphism between Bn and ∆n.
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With this result, the next question one might ask is whether a classification

result holds for a subset of the bounded domains in Cn with non-compact automorphism

group, i.e. if some additional constraint is placed upon the domains under consideration,

can any sort classification be obtained? The answer to this question is yes. In what

follows, a discussion concerning the notion of pseudoconvexity, together with a known

classification result, will ensue.

11



2.2 Pseudoconvexity and the

Ball Characterization Theorem

Before getting to the Ball Characterization Theorem, the definition of pseudon-

convexity will be given, along with the statement of several important properties of pseu-

doconvex domains. Examples will be discussed too. Good references for this material

are contained in the books by Steven G. Krantz [K] and R.C. Gunning [Gu].

Definition 2.2.1 Let Ω ⊂ Cn be a bounded domain with a C2 boundary (so, the defining

function ρ for the boundary is C2). Then, ∂Ω is pseudoconvex at p if

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk ≥ 0 ∀w ∈ T 1,0

p (∂Ω),

where

T 1,0
p (∂Ω) :=

w ∈ Cn
∣∣∣∣∣

n∑
j=1

∂ρ

∂zj
(p)wj = 0

 .

T 1,0
p is called the complex tangent space to the ∂Ω at p. If the inequality

above is strict, p is called a point of strong pseudoconvexity. So, a point p ∈ ∂Ω is a

point of pseudoconvexity (resp. strong pseudoconvexity) if the complex Hessian (also

known as the Levi form) is positive semi-definite (resp. positive defintie) at p on the

complex tangent space. If every point p ∈ ∂Ω is a point of pseudoconvexity (resp.

strong pseudoconvexity), then the domain Ω is said the be pseudoconvex (resp. strongly

pseudoconvex ). From now on, Tp(∂Ω) := T 1,0
p (∂Ω).
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Now, here are some important properties of pseudoconvex domains.

(1) Pseudoconvexity is independent of the defining function chosen.

Proof. Let ρ̃ be another defining function of ∂Ω in a neighborhood U of p, p ∈ ∂Ω.

Then, ∃ a C1 function h defined in U such that ρ̃ = hρ, where h(z) > 0∀z ∈ U . So,

∂2ρ̃

∂zj∂zk
(p) =

∂2(ρh)

∂zj∂zk
(p) =

∂

∂zj

(
∂(ρh)

∂zk
(p)

)
=

∂

∂zj

(
∂ρ

∂zk
(p) · h(p) + ρ(p) · ∂h

∂zk

)
=

∂2ρ

∂zj∂zk
(p) · h(p) +

∂ρ

∂zk
(p) · ∂h

∂zj
(p)

+
∂ρ

∂zj
(p) · ∂h

∂zk
(p) + ρ(p) · ∂2h

∂zj∂zk
(p)

=
∂2ρ

∂zj∂zk
(p) · h(p) +

∂ρ

∂zk
(p) · ∂h

∂zj
(p) +

∂ρ

∂zj
(p) · ∂h

∂zk
(p),

where the last equality follows from the fact that ρ(p) = 0. Therefore,

n∑
j,k=1

∂2ρ̃

∂zj∂zk
(p)wjwk = h(p)

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk

+
n∑

j,k=1

(
∂ρ

∂zk
(p) · ∂h

∂zj
(p) +

∂ρ

∂zj
(p) · ∂h

∂zk
(p)

)
wjwk

= h(p)

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk

+ 2Re
n∑

j,k=1

(
∂ρ

∂zj
(p) · ∂h

∂zk
(p)wjwk

)

= h(p)
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)wjwk if w ∈ Tp(∂Ω).

Therefore, since h(p) > 0, p ∈ ∂Ω is a point of pseudoconvexity with respect to ρ ⇔

it is a point of pseudoconvexity with respect to ρ̃ Therefore, the pseudoconvexity of a

boundary point is irrespective of the defining function chosen.
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(2) Pseudoconvexity is preserved under biholomorphic maps.

Proof. Let Φ : Ω −→ Cn be biholomorphic onto its image, where Ω′ := Φ(Ω). So,

Φ(z) = Φ(z1, . . . , zn) = (Φ1(z), . . . ,Φn(z)) = (z′1, . . . , z
′
n). Let ρ : U −→ R be a defining

function for Ω, where Ω ⊂ U , U an open set. Then, ρ̃ := ρ ◦ Φ−1 is a defining function

for Ω′. Choose p ∈ ∂Ω and w ∈ Tp(∂Ω). Then, Φ(p) ∈ ∂Ω′ and w′ ∈ TΦ(p)(∂Ω′), where

w′ =


w′1

...

w′n

 =


∂Φ1
∂z1

(p) . . . ∂Φ1
∂zn

(p)

...
...

∂Φn
∂z1

(p) . . . ∂Φn
∂zn

(p)




w1

...

wn

 =


∑ ∂Φ1

∂zj
(p)wj

...∑ ∂Φn
∂zj

(p)wj

 .

Now, since ρ̃ := ρ ◦ Φ−1, ρ = ρ̃ ◦ Φ implies

∂2ρ

∂zj∂zk
(p) =

∂2(ρ̃ ◦ Φ)

∂zj∂zk
(p) =

∂

∂zj

(
∂(ρ̃ ◦ Φ)

∂zk
(p)

)
=

n∑
l,m=1

∂2ρ̃

∂z′m∂z
′
l

(Φ(p)) · ∂Φm

∂zj
(p) · ∂Φl

∂zk
(p)

by the chain rule. Hence,

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk =

n∑
j,k=1

 n∑
l,m=1

∂2ρ̃

∂z′m∂z
′
l

(Φ(p)) · ∂Φm

∂zj
(p) · ∂Φl

∂zk
(p)

wjwk

=
n∑

l,m=1

 n∑
j,k=1

∂2ρ̃

∂z′m∂z
′
l

(Φ(p)) · ∂Φm

∂zj
(p)wj ·

∂Φl

∂zk
(p)wk


=

n∑
l,m=1

∂2ρ̃

∂z′m∂z
′
l

(Φ(p))w′mw
′
l,

i.e.
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)wjwk =

n∑
l,m=1

∂2ρ̃

∂z′m∂z
′
l

(Φ(p))w′mw
′
l,

which imples that the Levi from is preserved under biholomorphic maps. In other words,

pseudoconvexity is preserved under biholomorphic maps.
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(3) If p ∈ ∂Ω is a point of strong pseudoconvexity, then there exists a neighborhood

U of p such that for all q ∈ ∂Ω ∩ U , q is strongly pseudoconvex.

To prove this result, a techincal lemma is needed.(A proof can be found in [K]

Chapter 3.)

Lemma 2.2.2 If Ω is strongly pseudoconvex, then Ω has a defining function ρ̃ such that

n∑
j,k=1

∂2ρ̃

∂zj∂zk
(p)wjwk ≥ C|w|2

for all p ∈ ∂Ω, w ∈ Cn, where C ∈ R+.

Now, here is a proof.

Proof. By Lemma 2.2.2, there exists a defining function ρ̃ for Ω such that

n∑
j,k=1

∂2ρ̃

∂zj∂zk
(p)wjwk ≥ C|w|2 ∀w ∈ Cn.

In particular,
n∑

j,k=1

∂2ρ̃

∂zj∂zk
(p)wjwk > 0 ∀w 6= 0, w ∈ Cn.

Since ρ̃ is C2, the function

q
Φ→

n∑
j,k=1

∂2ρ̃

∂zj∂zk
(q)wjwk

is continuous in a neighborhood U of p ⇒ ∀q ∈ U ∩ ∂Ω,

n∑
j,k=1

∂2ρ̃

∂zj∂zk
(q)wjwk > 0 ∀w 6= 0, w ∈ Cn

by the continuity of Φ ⇒ q ∈ U ∩ ∂Ω is strongly pseudoconvex. This completes the

proof.

Note: The analogous result for pseudoconvex boundary points is false (see the examples

below for details).
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(4) Every domain in C (with a C2 boundary) is vacuously pseudoconvex.

Proof. Let Ω be a domain in C with a C2 boundary. So, the defining function ρ is C2.

Now, for all p ∈ ∂Ω,

∇ρ(p) =
dρ

dz
(p) 6= 0,

which implies w ∈ Tp(∂Ω) ⇔ w = 0. This implies that Tp(∂Ω) = {0}, giving that Ω is

pseudoconvex, since the condition for pseudoconvexity in one dimension

d2ρ

dzdz
(p)w2 ≥ 0

is always satsified.

To help elucidate this important notion, some examples are in order. To sim-

plify calculations, only domains in C2 will be considered.

Example 2.2.3 The unit ball B2.

Recall that B2 =
{
z = (z1, z2) ∈ C2 | ρ(z) := |z1|2 + |z2|2 − 1 < 0

}
. The complex hessian

for ρ is the matrix (
∂2ρ

∂zj∂zk

)
=

1 0

0 1

 ,

which implies that

2∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk = |w1|2 + |w2|2 > 0 ∀w ∈ C2, w 6= 0

Since this is true for every p ∈ ∂Ω, B2 is strongly pseudoconvex.

Example 2.2.4 The egg domain Em

Recall that Em :=
{
z = (z1, z2) | ρ(z) := |z1|2 + |z2|2m − 1 < 0

}
. The complex hessian

for ρ is the matrix (
∂2ρ

∂zj∂zk

)
=

1 0

0 m2zm−1
2 zm−1

2

 ,
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which implies that for any p ∈ ∂Ω,

2∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk =

(
w1 w2

)1 0

0 m2pm−1
2 pm−1

2


w1

w2


= |w1|2 +m2|p2|2m−2|w2|2,

which is greater than 0 only if |p2|2m−2 6= 0, i.e. any point p = (p1, p2) ∈ ∂Ω is a

point of strong pseudoconvexity if p2 6= 0. Therefore, points of pseudoconvexity are

of the form (eiθ, 0) (the complex hessian is positive semi-definite at these points; take

w = (w1, w2) ∈ C2, w1 = 0).

Going back to the question posed prior to this discussion concerning pseudo-

convexity, if additional restrictions are placed upon the domains under consideration –

say strong pseudoconvexity and some sort of boundary regularity – can a meaningful

classification be obtained? The answer is yes! The primary and most important one is

known as the Ball Characterization Theorem, proved originally by Bun Wong [W1] and

later refined by J.P. Rosay [R], using the same method introduced in [W1].

Theorem 2.2.5 (Bun Wong) Let Ω be smoothly bounded strongly pseudoconvex do-

main in Cn with non-compact automorphism group. Then Ω is biholomorphic to the

unit ball Bn.

With this result, the problem of classifying smoothly bounded strongly pseu-

doconvex domains with non-compact automorphism group is finished. The crucial hy-

pothesis is that of strong pseudoconvexity. What if, though, the hypothesis of stong

pseudoconvexity is weakend to just pseudoconvexity? Can any classification be ob-

tained in this case? Again, the answer is yes, but additional conditions must be imposed

upon the domain, which is illustrated by the following well-known result (see [BP]):
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Theorem 2.2.6 Let Ω be a smoothly bounded pseudoconvex domain in Cn of finite type

with non-compact automorphism group such that the Levi form of ∂Ω has no more than

one zero eigenvalue at any point. Then Ω is biholomorphic to the ellipsoid Em, where

m ∈ Z+.

This result classifies all smoothly bounded pseudoconvex domains of finite type.

What is finite type? What follows, then, is a discussion of the notion of finite type in

two dimensions.
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2.3 Finite Type in C2

Because the notion of finite type is more complicated in dimensions greater than

two, the forthcoming discussion concerning the type of a smoothly bounded domain will

be restricted to C2. The way in which this will occur will follow the view promulgated

in [K], Chapter 11.5.

Definition 2.3.1 Let Ω := {z | ρ(z) < 0} be a smoothly bounded domain in C2, where

p ∈ ∂Ω. Then the analytic disc φ : ∆ → C2 is called a nonsingular disc tangent to ∂Ω

at p if φ(0) = p, φ′(0) 6= 0, and (ρ ◦ φ)′(0) = 0.

Definition 2.3.2 Let Ω := {z | ρ(z) < 0} be a smoothly bounded domain with p ∈ ∂Ω.

Then ∂Ω is of finite (geometric) type m at p if the following condition holds: There

exists a nonsingular disc tangent to ∂Ω at p such that

|ρ ◦ φ(ζ)| ≤ C|ζ|m

for |ζ| small. But, there does not exist a nonsingular disc ψ tangent to ∂Ω at p such

that

|ρ ◦ ψ(ζ)| ≤ C|ζ|m+1

for |ζ| small. (C is some constant.) In this case, p is called a point of finite (geometric)

type.

The idea behind the notion of type is that it measures the maximum order of

contact of an analytic disc with a given boundary point. In two dimensions, there is

actually a notion of analytic type, but this paper will focus on the former; there is no

loss in doing this, since both notions of type are the same in two dimensions.

Before going through some examples to help clarify the idea of the type of a

smooth domain at a boundary point, some important properties will be given.
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(1) The definition of type is independent of the defining function chosen.

Proof. Let Ω ⊂ C2 be smooth, with defining function ρ. Let p ∈ ∂Ω and ρ̃ be another

defining function for Ω. Then, there exists a function h nonvanishing in a neighborhood

of ∂Ω such that ρ̃ = hρ. Therefore, ρ̃ = hρ ⇒ ρ = 1
h ρ̃. Therefore, for any nonsingular

analytic disc φ tangent to ∂Ω at p,

|ρ(φ(ζ))| =
∣∣∣∣( ρ̃h

)
(φ(ζ))

∣∣∣∣ =

∣∣∣∣ ρ̃(φ(ζ))

h(φ(ζ))

∣∣∣∣ .
Let p ∈ ∂Ω be a point of finite type m with respect to ρ. So, there exists a

nonsingular disc φ tangent to ∂Ω at p such that for |ζ| small,

|ρ ◦ φ(ζ)| ≤ C|ζ|m.

This implies that, by the above calculation, for |ζ| small,∣∣∣∣ ρ̃(φ(ζ))

h(φ(ζ))

∣∣∣∣ ≤ C|ζ|m
i.e.

|ρ̃(φ(ζ))| ≤ C|h(φ(ζ))||ζ|m ≤ CM |ζ|m

for |ζ| small, where

M := sup
|ζ| small

|h(φ(ζ))|.

Hence, for |ζ| small,

|ρ̃(φ(ζ))| ≤ C1|ζ|m.

Suppose there exists a nonsingular analytic disc ψ tangent to ∂Ω at p such that

|ρ̃(ψ(ζ))| ≤ C|ζ|m+1 for |ζ| small. Then,

|ρ(ψ(ζ))| ≤ |ρ̃(ψ(ζ))|
|h(ψ(ζ))|

≤ C|ζ|m+1

|h(ψ(ζ))|
≤ C

M
|ζ|m+1,

where

M := inf
|ζ| small

|h(ψ(ζ))|.
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Hence,

|ρ(ψ(ζ))| ≤ C1|ζ|m+1

for |ζ| small. This contradicts the fact that p is a point of finite type m with respect to

ρ. Therefore, p is a point of finite type m with respect to ρ̃, which completes the proof.

(2) The condition of finite type is preserved under biholomorphic mappings.

Example 2.3.3 The unit ball B2 =
{
z ∈ C2 | ρ(z) = |z1|2 + |z2|2 − 1 < 0

}
.

Consider the boundary point p = (1, 0). Is p a point of finite type? Now,

∇ρ =

z1

z2

 =⇒ ∇ρ(p) =

1

0

 ,

which implies that any curve tangent to ∂B2 at p must be of the form

φ(ζ) = (1 +O(ζ2), ζ +O(ζ2)),

after a reparametrization (look at the Taylor expansion).

Consider the disc φ(ζ) = (1, ζ); it has order of contact 2 with ∂B2 at p, since

ρ(φ(ζ)) = ρ(1, ζ) = |ζ|2.

Now, what happens in general, i.e. what is the maximum order of contact when φ is of

the form

φ(ζ) = (1 +O(ζ2), ζ +O(ζ2))?

Here’s the computation:

ρ(φ(ζ)) = |1 +O(ζ2)|2 + |ζ +O(ζ2)|2 − 1

= |1 +O(ζ2)|2 + |ζ|2 · |1 +O(ζ)|2 − 1

≤ C|ζ|2
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for |ζ| small, since

|1 +O(ζ2)|2 → 1 as |ζ| −→ 0

and

|1 +O(ζ)|2 → 1 as |ζ| −→ 0.

Therefore, p = (1, 0) ∈ ∂B2 is a point of finite type 2.

Example 2.3.4 The ellipsoid Em =
{
z ∈ C2 | ρ(z) = |z1|2 + |z2|2m − 1 < 0

}
Consider the boundary point p = (1, 0). To calculate the type at p, note that,

∇ρ =

 z1

mzm−1
2 zm−1

2

 =⇒ ∇ρ(p) =

1

0

 ,

which implies, after a reparametrization, a nonsingular analytic disc φ that intersects

∂Em at p is of the form

φ(ζ) = (1 +O(ζ2), ζ +O(ζ2)).

What is the maximum order of contact of such a curve with the boundary?

First, consider the simple case where φ(ζ) = (1, ζ); this curve as order of contact 2m at

the boundary point p, since

ρ(φ(ζ)) = |ζ|2m.

Can the order of contact improve? For an arbitrary curve φ as described above,

ρ(φ(ζ)) = |1 +O(ζ2)|2 + |ζ +O(ζ2)|2m − 1

= |1 +O(ζ2)|2 + |ζ|2m · |1 +O(ζ)|2m − 1

≤ C|ζ|2m
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for |ζ| small, since

|1 +O(ζ2)|2 → 1 as |ζ| −→ 0

and

|1 +O(ζ)|2m → 1 as |ζ| −→ 0.

Therefore, the maximum order of contact of any nonsingular analytic disc tan-

gent to ∂Em at p = (1, 0) is 2m, which implies that p is a point of finite type 2m.

Example 2.3.5 The domain E∞ :=
{
z ∈ C2 | ρ(z) := |z1|2 + 2e−1/|z2|2 − 1 < 0

}
.

Consider the point p = (1, 0) ∈ ∂Ω. Then,

∇ρ =

 z1

2e−1/|z2|
2

z22z2

 =⇒ ∇ρ(p) =

1

0

 .

Consider the curve φ(ζ) = (1, ζ); it is tangent to ∂Ω at p. Now,

ρ(φ(ζ)) = 2e−1/|ζ|2 ,

which implies that

|ρ(φ(ζ))|
|ζ|m

=
2e−1/|ζ|2

|ζ|m
−→ 0 as ζ → 0

by L’Hopital’s rule, since

dk

dζk
(2e−1/|ζ|2)

∣∣∣∣
ζ=0

= 0 ∀k ∈ Z+.

Since this is true for any m ∈ Z+,

|ρ(φ(ζ))| ≤ C|ζ|m

as |ζ| → 0 ∀m ∈ Z+, which implies that p = (1, 0) is a point of infinite type.
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Example 2.3.6 The unit polydisc ∆2 =
{
z ∈ C2 | |zj | < 1, j = 1, 2

}
.

Choose p = (1, 0) ∈ ∂∆2. In a neighborhood Up of p, let ρ(z) := |z1| − 1 be a

local defining function for the boundary defined in Up ∩ ∂∆2. Since

∇ρ =

z1

0

 =⇒ ∇ρ(p) =

1

0

 ,

the nonsingular analytic disc φ(ζ) := (1, ζ) is tangent to ∂∆2 at p. So

ρ(φ(ζ)) = ρ(1, ζ) = |1| − 1 = 0 ∀ζ ∈ D,

which implies that

|ρ(φ(ζ))| ≤ C|ζ|m

as |ζ| → 0 ∀m ∈ Z+. Therefore, p = (1, 0) ∈ ∂Ω is a point of infinite type.

As these examples illustrate, the greater the type at a boundary point, the

flatter the boundary is in a neighborhood of that point.
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2.4 Importance of the Greene-Krantz Conjecture

In the above well-known result (Theorem 2.2.7) finite type is assumed on the

whole boundary, because it is not known where the boundary orbit accumulation points

are located. But, the crucial fact that is needed for this result to be true is the finiteness

of type at the boundary orbit accumulation points. Consider, now, the Greene-Krantz

Conjecture, named after Robert E. Greene and Steven G. Krantz:

Conjecture 2.4.1 (Greene-Krantz) Let Ω ⊂ Cn be a smoothly bounded domain with

non-compact automorphism group. Then ∂Ω is of finite type at any boundary orbit

accumulation point.

If this result is true, then any smoothly bounded pseudoconvex domain with

non-compact automorphism group in C2 is biholomorphic to Em by Theorem 2.2.7

stated above. Why? The Greene-Krantz conjecture would give that the boundary orbit

accumulation points are of finite type and, in two dimensions, the restriction on the Levi

form concerning its eigenvalues coincides with the notion of pseudoconvexity already

assumed. This consequence, together with many more, show why the truthfulness of

the Greene-Krantz conjecture is so important concerning the classification of smoothly

bounded domains with non-compact automorphism group.

In the last example of the previous section (Example 2.3.6), the analytic disc

φ was actually contained in the boundary of the bidisc ∆2, passing through the point

p = (1, 0). Whenever this happens, i.e. whenever there exists a positive dimensional

complex analytic variety on ∂Ω, passing through some point p ∈ ∂Ω, the domain will

be of infinite type at p. Here is statement of this fact, along with its proof.

Lemma 2.4.2 In C2, finite type at p ∈ ∂Ω =⇒ variety free at p, i.e. there is no positive

dimensional complex analytic variety on ∂Ω, passing through the point p.
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Proof. Suppose ∂Ω is not variety free at p. So, there exists a complex variety V ⊂ ∂Ω

such that p ∈ V and dimC V > 0. So, dimC V = 1 =⇒ V is nonsingular at p (see Lemma

3.2 in [FW]). Let φ : ∆ −→ V be local parameterization of V in a neighborhood of p.

Hence, φ(0) = p and φ′(0) 6= 0. But, V ⊂ ∂Ω =⇒ |ρ(φ(ζ))| = 0 =⇒ |ρ(φ(ζ))| = 0 ≤

C|ζ|m ∀m ∈ Z+ =⇒ ∂Ω is of infinite type.

The concept of a domain being variety free at a boundary point will be very

important in the sequal, since the main result to be proven will be that if a domain

satisfies certain conditions, it will be variety free at its boundary orbit accumulation

points. In other words, the main result of this document will be to prove a result

that supports the truthfulness of the Greene-Krantz conjecture. A very important tool

needed to prove the main result will be the invariant metrics and measures. A discussion

of them and their important properties will take place in the next chapter.
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Chapter 3

Invariant Metrics and Measures

3.1 Invariant Metrics

Definition 3.1.1 Let Ω be a domain in Cn, p ∈ Ω, and ξ ∈ TpΩ. Then the (infinitesi-

mal) Kobayashi metric on Ω at p in the direction of ξ is defined as

FΩ
K(p, ξ) = inf

{
1

α

∣∣∣∣∣ ∃φ ∈ Hol(∆,Ω) such that φ(0) = p, φ′(0) = αξ

}
.

The Carathéodory metric on Ω at p in the direction of ξ is defined as

FΩ
C (p, ξ) = sup {|φ∗(p)ξ| | ∃φ ∈ Hol(Ω,∆) such that φ(p) = 0} .

Note that TpΩ = Cn and that Hol(Ω1,Ω2) is the set of all holomorphic map-

pings from Ω1 to Ω2. A very important property that these two metrics satisfy is the

following decreasing property.

Lemma 3.1.2 If f ∈ Hol(Ω1,Ω2), p ∈ Ω1, ξ ∈ Cn, then

FΩ1
K (p, ξ) ≥ FΩ2

K (f(p), f∗(p)ξ)

and

FΩ1
C (p, ξ) ≥ FΩ2

C (f(p), f∗(p)ξ).
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Proof. First, the Kobayashi case. Let φ ∈ Hol(∆,Ω1) such that φ(0) = p, φ′(0) = αξ.

Consider f ◦ φ ∈ Hol(∆,Ω2). (f ◦ φ)(0) = f(p) and (f ◦ φ)′(0) = f∗(φ(0))φ′(0) =

f∗(p)αξ = αf∗(p)ξ. Hence,

FΩ2
K (f(p), f∗(p)ξ) ≤

1

α
.

Taking the infimum over all φ with the desired property implies

FΩ1
K (p, ξ) ≥ FΩ2

K (f(p), f∗(p)ξ).

Now, the Carathéodory case. Let φ ∈ Hol(Ω2,∆) such that φ(f(p)) = 0.

Consider φ◦f ∈ Hol(Ω1,∆). (φ◦f)(p) = φ(f(p)) = 0. Hence, FΩ1
C (p, ξ) ≥ |(φ◦f)∗(p)ξ| =

|φ∗(f(p))(f∗(p)ξ)|; taking the supremum over all φ with the desired property gives that

FΩ1
C (p, ξ) ≥ FΩ2

C (f(p), f∗(p)ξ).

Corollary 3.1.3 If f : Ω1 −→ Ω2 is a biholomorphism, p ∈ Ω1, ξ ∈ Cn, then

FΩ1
K (p, ξ) = FΩ2

K (f(p), f∗(p)ξ)

and

FΩ1
C (p, ξ) = FΩ2

C (f(p), f∗(p)ξ).

Proof. First, the Kobayshi case. By the previous lemma, FΩ1
K (p, ξ) ≥ FΩ2

K (f(p), f∗(p)ξ).

Now, apply that lemma to the mapping f−1 : Ω2 −→ Ω1:

FΩ2
K (f(p), f∗(p)ξ) ≥ FΩ1

K (f−1(f(p)), f−1
∗ (f(p))(f∗(p)ξ)).

But, f−1(f(p)) = p and f−1
∗ (f(p))(f∗(p)ξ) = (f−1 ◦ f)∗(p)ξ = (1Ω1)∗(p)ξ = ξ, where

1Ω1 is the identity mapping on Ω1. This implies that

FΩ1
K (p, ξ) ≥ FΩ2

K (f(p), f∗(p)ξ) ≥ FΩ1
K (p, ξ)
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=⇒

FΩ1
K (p, ξ) = FΩ2

K (f(p), f∗(p)ξ).

The exact same argument holds for the Carathéodory metric.

Lemma 3.1.4 FΩ
K(p, cξ) = |c|FΩ

K(p, ξ) for any c ∈ C.

Proof. Let f ∈ Hol(∆,Ω) such that f(0) = p and f ′(0) = αξ. Let g(z) := f
(
cz
|c|

)
.

Then, g(0) = f(0) = p and g′(0) = c
|c| (αξ) = α

|c| (cξ). Therefore,

FΩ
K(p, cξ) ≤ |c|

α
= |c| · 1

α
.

Taking the infimum over 1
α implies that

FΩ
K(p, cξ) ≤ |c|FΩ

K(p, ξ).

To show the reverse inequality, let f ∈ Hol(∆,Ω) such that f(0) = p and f ′(0) = α (cξ).

Let g(z) := f
(
|c|z
c

)
. Then g(0) = f(0) = p and g′(0) = |c|

c αcξ = |c|αξ = (|c|α) ξ.

Therefore,

FΩ
K(p, ξ) ≤ 1

|c|α
=

1

|c|
· 1

α
.

Taking the infimum over 1
α implies that

FΩ
K(p, ξ) ≤ 1

|c|
FΩ
K(p, cξ)

=⇒

|c|FΩ
K(p, ξ) ≤ FΩ

K(p, cξ)

=⇒

|c|FΩ
K(p, ξ) = FΩ

K(p, cξ).
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Note that the same property holds for the Carathéodory metric. That is,

FΩ
C (p, cξ) = |c|FΩ

C (p, ξ)

for any c ∈ C.

Now, the defintions of the Carathéodory and Kobayashi distance on a bounded

domain Ω ⊂ Cn. Like the metrics, they also have a decreasing property, which will be

proved as a lemma.

Definition 3.1.5 Given two points z, w ∈ Ω ⊂ Cn, the Carathéodory distance between

z and w is defined as

dΩ
C(z, w) := sup {ρ(φ(z), φ(w)) |φ ∈ Hol(Ω,∆)} ,

where ρ is the Poincaré distance on ∆.

Definition 3.1.6 Given two points z, w ∈ Ω ⊂ Cn, the (integrated) Kobayashi distance

between z and w is defined as

dΩ
K(z, w) := inf

γ

{∫ 1

0
FΩ
K(γ(t), γ′(t))dt

}
,

where γ : [0, 1]→ Ω is a piecewise C1 curve joining z and w.

Lemma 3.1.7 For f ∈ Hol(Ω1,Ω2) and z, w ∈ Ω1,

dΩ1
C (z, w) ≥ dΩ2

C (f(z), f(w))

and

dΩ1
K (z, w) ≥ dΩ2

K (f(z), f(w)).

Proof. First, the Carathéodory case. Let φ ∈ Hol(Ω2,∆). Then, φ ◦ f ∈ Hol(Ω1,∆).

Hence, ρ((φ ◦ f)(z), (φ ◦ f)(w)) ≤ dΩ1
C (z, w) ⇒ ρ(φ(f(z)), φ(f(w))) ≤ dΩ1

C (z, w). Taking
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the supremum over all φ implies that dΩ1
C (z, w) ≥ dΩ2

C (f(z), f(w)).

Now, the Kobayashi case. Let γ : [0, 1] → Ω1 be a C1 curve joining z to w (without

loss of generality; if γ is piecewise C1, repeat the argument for each C1 piece of γ (and

f ◦ γ)). Then, f ◦ γ : [0, 1]→ Ω2 is a C1 curve joining f(z) to f(w). Hence,

FΩ1
K (γ(t), γ′(t)) ≥ FΩ2

K (f(γ(t)), f∗(γ(t))γ′(t))

=⇒ ∫ 1

0
FΩ1
K (γ(t), γ′(t))dt ≥

∫ 1

0
FΩ2
K (f(γ(t)), f∗(γ(t))γ′(t))dt

≥ dΩ2
K (f(z), f(w));

taking the infimum over all C1 curves γ implies

dΩ1
K (z, w) ≥ dΩ2

K (f(z), f(w)).

Corollary 3.1.8 If f : Ω1 −→ Ω2 is a biholomorphism, then

dΩ1
C (z, w) = dΩ2

C (f(z), f(w))

and

dΩ1
K (z, w) = dΩ2

K (f(z), f(w)).

Proof. Apply the previous lemma to both f and f−1.

The orginal definition of the Kobayashi (pseudo)distance is not the one above.

Here is what it is (see [Ko], p.45):

Definition 3.1.9 Let M be a complex manifold. Given two points z and w, choose

points z = z0, z1, . . . , zk−1, zk = w of M , points a1, . . . , ak, b1, . . . , bk of ∆, and holo-

morphic mappings f1, . . . , fk of ∆ into M such that fj(aj) = zj−1 and fj(bj) = zj for
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j = 1, . . . , k. For each choice of points and mappings thus made, consider the number

ρ(a1, b1) + . . .+ ρ(ak, bk).

dMK (z, w) is defined as the infimum of the numbers obtained in this manner for all possible

choices.

Royden in [R] showed that Kobayashi’s orginal definition is equivalent to the

integrated form given above.

For a complex manifold, dMK in general is only a pseudodistance. For any com-

plex manifold M , whenever dMK is actually a distance, the manifold is called hyperbolic.

If dMK happens to be complete, M is called complete hyperbolic. M is complete with

respect to dMK if, for each point z ∈ M and any r ∈ R+, βK(z; r) (the closed ball, cen-

tered at z, with radius r measured with respect to the Kobayashi distance) is a compact

subset of M . For the purposes of this paper, the following facts will be needed:

1. Every bounded domain Ω ⊂ Cn is hyperbolic.

2. Every smoothly bounded convex domain Ω ⊂ Cn is complete hyperbolic.

Now, more important properties that will be needed in the sequal will be given,

along with their proofs.

Lemma 3.1.10 Let Ω ⊂ Cn be bounded, with p ∈ Ω and ξ ∈ Cn. Then,

FΩ
K(p, ξ) ≤ |ξ|

r
,

where r = dist(p, ∂Ω).

Proof. Let r := dist(p, ∂Ω); consider f : ∆ −→ Ω given by f(z) = p + rξ
|ξ|z. f is

holomorphic, f(0) = p, and f ′(0) = rξ
|ξ| . Therefore, by definition, FΩ

K(p, ξ) ≤ |ξ|r .
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Lemma 3.1.11 Let Ω ⊂ Cn be a domain with a C2 boundary. Let q ∈ ∂Ω be strongly

pseudoconvex and ν the real normal vector to ∂Ω at q . Let z, w ∈ `q, where

`q = {q − tν} , t ∈ R

(i.e. `q is the real normal line to the ∂Ω at q). Let γ : [0, 1] −→ Ω be defined by

γ(t) = (1− t)w + tz. Then,

dΩ
K(z, w) =

∫ 1

0
FΩ
K(γ(t), γ′(t))dt.

Proof. For this proof, the following well-known result will be needed (see [A], [G]):

Let Ω ⊂ Cn be a domain with a C2 boundary. Let q ∈ ∂Ω be strongly

pseudoconvex. For any p ∈ Ω, ξ ∈ TpΩ,

FΩ
K(p, ξ) ≈ 1

δ(p)
ξN +

1√
δ(p)

ξT ,

where ξT and ξN are the tangential and normal components of ξ at q and δ(p) :=

dist(p, ∂Ω).

Note that

FΩ
K(p, ξ) ≈ 1

δ(p)
ξN +

1√
δ(p)

ξT

means that there are constants c1 and c2 such that

c1

(
1

δ(p)
|ξN |+

1√
δ(p)
|ξT |

)
≤ FΩ

K(p, ξ) ≤ c2

(
1

δ(p)
|ξN |+

1√
δ(p)
|ξT |

)
.

Let ν be in the direction of the Re zn-axis (choose local coordinates). Let γ be

as above. For all t ∈ [0, 1], γ′(t) is normal to ∂Ω at q. Let σ be any other piecewise C1

curve joining z to w. Then, σ(t) = σN (t) + σT (t) = γ(t) + σT (t), where σN (t) = γ(t) is

the straight line joining z to w and σT (t) is piecewise C1 for which σ′T (t) ∈ Tq∂Ω for at

least one t ∈ (0, 1). By definition,

dΩ
K(z, w) ≤

∫ 1

0
FΩ
K(γ(t), γ′(t))dt.
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But, ∫ 1

0
FΩ
K(γ(t), γ′(t))dt ≤ c2

∫ 1

0

|γ′(t)|
δ(γ(t))

dt ≤
∫ 1

0

(
|γ′(t)|
δ(γ(t))

+
|σ′T (t)|√
δ(σ(t))

)
dt

≤ c2

∫ 1

0

(
|σ′N (t)|
δ(σ(t))

+
|σ′T (t)|√
δ(σ(t))

)
dt

≤ c2

c1

∫ 1

0
FΩ
K(σ(t), σ′(t))dt =

∫ 1

0
FΩ
K

(
σ(t),

c2

c1
σ′(t)

)
dt.

Let u(t) := σ
(
c2
c1
t
)

, u : [0, c1/c2] −→ Ω. Then,

∫ 1

0
FΩ
K

(
σ(t),

c2

c1
σ′(t)

)
dt =

∫ c1
c2

0
FΩ
K

(
σ

(
c2

c1
t

)
,
c2

c1
σ′
(
c2

c1
t

))
dt

=

∫ c1
c2

0
FΩ
K

(
u(t), u′(t)

)
dt.

Therefore,

dΩ
K(z, w) ≤

∫ 1

0
FΩ
K(γ(t), γ′(t))dt ≤

∫ c1
c2

0
FΩ
K

(
u(t), u′(t)

)
dt;

taking the infimum over all piecewise C1 curves u joining z to w implies

dΩ
K(z, w) ≤

∫ 1

0
FΩ
K(γ(t), γ′(t))dt ≤ dΩ

K(z, w)

=⇒

dΩ
K(z, w) =

∫ 1

0
FΩ
K(γ(t), γ′(t))dt.

Lemma 3.1.12 Let Ω ⊂ Cn be a domain with a C2 boundary. Let q ∈ ∂Ω be strongly

pseudoconvex and ν the real normal vector to ∂Ω at q . Suppose z ∈ `q, w ∈ Ω, and w̃

is the projection of w onto `q. Then, dΩ
K(z, w̃) ≤ dΩ

K(z, w).

Proof. Choose coordinates so that ν is in the Re zn direction and q is the origin. Then,

w̃ = (0, 0, . . . , 0,Rewn). Let γ(t) := (1 − t)z + tw̃, t ∈ [0, 1]. Let σ be any piecewise

C1 curve joining z to w. So, σ(t) = γ(t) + σT (t), where σT is piecewise C1 such that
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σT (0) = 0 and σT (1) = (w1, w2, . . . , wn−1, Imwn). Therefore,

dΩ
K(z, w̃) =

∫ 1

0
FΩ
K(γ(t), γ′(t))dt ≤ c2

∫ 1

0

|γ′(t)|
δ(γ(t))

dt

≤ c2

∫ 1

0

(
|γ′(t)|
δ(γ(t))

+
|σ′T (t)|√
δ(σ(t))

)
dt

≤ c2

∫ 1

0

(
|σ′N (t)|
δ(σ(t))

+
|σ′T (t)|√
δ(σ(t))

)
dt

≤ c2

c1

∫ 1

0
FΩ
K(σ(t), σ′(t))dt =

∫ 1

0
FΩ
K

(
σ(t),

c2

c1
σ′(t)

)
dt.

The first equality follows from the previous lemma. Let u(t) := σ
(
c2
c1
t
)

, u : [0, c1/c2] −→

Ω. Then, ∫ 1

0
FΩ
K

(
σ(t),

c2

c1
σ′(t)

)
dt =

∫ c1
c2

0
FΩ
K

(
σ

(
c2

c1
t

)
,
c2

c1
σ′
(
c2

c1
t

))
dt.

=

∫ c1
c2

0
FΩ
K

(
u(t), u′(t)

)
dt.

Therefore,

dΩ
K(z, w̃) ≤

∫ c1
c2

0
FΩ
K

(
u(t), u′(t)

)
dt;

taking the infimum over all piecewiese C1 curves joing z to w

=⇒

dΩ
K(z, w̃) ≤ dΩ

K(z, w).

For the next lemma, let H be the upper half-plane in C and Γθ(q) a cone in

H with vertex q = 0 and angle θ between the imaginary axis and the arms of the cone.

The method of proof will follow Theorem 5.1 in [W2].

Lemma 3.1.13 Let z = (0, r) be a point on the imaginary axis. Then,

dHK(z, ∂Γθ(q)) = ln(tan θ + sec θ).

Proof. Let w = x+ iy be coordinates for C. The Kobayashi metric for H is

√
dx2+dy2

y

(this can be seen by pulling back the Poincaré metric

√
dx2+dy2

1−x2−y2 on ∆ via the mapping
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ω = i−w
i+w ). Let z′ and z′′ be the points of intersection of Γθ(q) and the geodesic of

√
dx2+dy2

y through z (which is a circle of radius r with center q). Let γ : [0, θ] −→ H be

the arc of the circle joining z to z′. Then, the length of the arc of the circle joining z to

z′ is ∫
γ

√
dx2 + dy2

y
.

Now, γ(φ) = r (sinφ+ i cosφ) implies∫
γ

√
dx2 + dy2

y
=

∫ θ

0

r dφ

r cosφ
=

∫ θ

0
secφdφ

=

∫ θ

0
secφ · secφ+ tanφ

secφ+ tanφ
dφ

=

∫ θ

0

sec2 φ+ secφ tanφ

secφ+ tanφ
dφ.

Letting u = secφ+ tanφ gives that

dHK(z, z′) =

∫
γ

√
dx2 + dy2

y
= ln(tan θ + sec θ).

It remains to show that this is the minimum distance between z and any point

on ∂Γθ(q). The following well-known theorem from Riemannian geometry is needed.

Theorem 3.1.14 Let M be a simply connected complete Riemannian manifold of neg-

ative sectional curvature. For any two points in M , there exists one and only one

minimizing geodesic joining them.

Note that H, equipped with

√
dx2+dy2

y , satisfies the hypothesis of this theorem.

Let w′ be a point on ∂Γθ(q) that achieves dHK(z, ∂Γθ(q)). By the symmetric properties

of Γθ(q) and

√
dx2+dy2

y , there exists a point w′′ ∈ ∂Γθ(q) such that the line segments

qw′ and qw′′ have the same euclidean length. Let w be the point of intersection of the

imaginary axis and the circle of radius qw′ centered at q. Since the arc of the circle

joining w to w′ is a minimizing geodesic, then by the theorem it is the minimizing
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geodesic, and hence dHK(w,w′) ≤ dHK(z, w′). Note that, by the above computation,

dHK(w,w′) = dHK(z, z′) = ln(tan θ + sec θ).

Therefore,

dHK(z, ∂Γθ(q)) ≤ dHK(z, z′) ≤ dHK(z, w′) = dHK(z, ∂Γθ(q)).

=⇒

dHK(z, z′) = dHK(z, ∂Γθ(q)) = ln(tan θ + sec θ).
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3.2 Invariant Measures

Definition 3.2.1 Let Ω ⊂ Cn be a domain, with p ∈ Ω. Let {ξk}mk=1 ⊂ TpΩ be a set of

linearly independent vectors. Let M be a (m,m) form at p, with 1 ≤ m ≤ n, such that

M(ξ1, . . . , ξm, ξ1, . . . , ξm) = 1. Put

µm =

m∏
j=1

i

2
dzj ∧ dzj .

Let U := Bm−j × ∆j , where 0 ≤ j ≤ m. Then, define the Eisenman-Kobayashi m-

measure on Ω at p with M by

KΩ
U (p; ξ1, . . . , ξm) = inf

{
1

α

∣∣∣∣∣ ∃Φ ∈ Hol(U,Ω), Φ(0) = p, Φ∗(M)0 = αµm, α > 0

}
.

Similarly, define the Carathéodory m-measure on Ω at p with M by

CΩ
U (p; ξ1, . . . , ξm) = sup

{
β

∣∣∣∣∣ ∃Φ ∈ Hol(Ω, U), Φ(p) = 0, Φ∗(µm)p = βM, β > 0

}
.

Now, properties of these measures will be given as a sequence of lemmas.

Lemma 3.2.2 (Decreasing Properties) Suppose φ : Ω1 −→ Ω2 is holomorphic,

where p ∈ Ω1, Ω1 ⊂ Cn, and Ω2 ⊂ Cn′. Let U be as above, where 0 ≤ j ≤ m ≤

min {n, n′}. Then, if {ξk}mk=1 and {φ∗(p)ξk}mk=1 are linearly independent,

KΩ1
U (p; ξ1, . . . , ξm) ≥ KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm)

and

CΩ1
U (p; ξ1, . . . , ξm) ≥ CΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

Proof. First, show KΩ1
U (p; ξ1, . . . , ξm) ≥ KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm). Let p and φ

be as above, and M an (m,m) form on Ω1 such that

M(ξ1, . . . , ξm, ξ1, . . . , ξm) = 1. Suppose Φ ∈ Hol(U,Ω1) such that Φ(0) = p and

Φ∗(M)0 = αµm. Let M ′ be an (m,m) form on Ω2 such that (φ∗M ′)p = M . (Note
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that this means that M ′(φ∗(p)ξ1, . . . , φ∗(p)ξm, φ∗(p)ξ1, . . . , φ∗(p)ξm) = 1.) Consider the

mapping φ ◦ Φ : U −→ Ω2; it is holomorphic mapping that satisfies (φ ◦ Φ)(0) = φ(p)

and (φ ◦ Φ)∗M ′ = Φ∗ (φ∗M ′) = αµm. Therefore,

1

α
≥ KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm);

taking the inf over all Φ ∈ Hol(U,Ω1) with the desired property

⇒

KΩ1
U (p; ξ1, . . . , ξm) ≥ KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

For the Carathéodory case, let Φ ∈ Hol(Ω2, U) such that Φ(φ(p)) = 0 and

Φ∗(µm)φ(p) = βM ′ where M ′ is an (m,m) form on Ω2 satisfying

M ′(φ∗(p)ξ1, . . . , φ∗(p)ξm, φ∗(p)ξ1, . . . , φ∗(p)ξm) = 1. Consider the mapping Φ ◦ φ :

Ω1 −→ U ; it is holomorphic and satisfies (Φ◦φ)(p) = 0 and (Φ◦φ)∗(µm)p = φ∗(Φ∗(µm)φ(p)) =

φ∗(βM ′)p = βφ∗(M ′)p. (Note that (φ∗M ′)p(ξ1, . . . , ξm, ξ1, . . . , ξm) =

M ′(φ∗(p)ξ1, . . . , φ∗(p)ξm, φ∗(p)ξ1, . . . , φ∗(p)ξm) = 1.) Hence

CΩ1
U (p; ξ1, . . . , ξm) ≥ β;

taking the sup over all Φ ∈ Hol(Ω2, U) with the desired property yields

CΩ1
U (p; ξ1, . . . , ξm) ≥ CΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

Corollary 3.2.3 Suppose Ω1,Ω2 ⊂ Cn are domains and U is as above, where 0 ≤ j ≤

m ≤ n. Let p ∈ Ω1 and {ξk}mk=1 ⊂ TpΩ1 be linearly independent. If φ : Ω1 −→ Ω2 is a

biholomorphism, then

KΩ1
U (p; ξ1, . . . , ξm) = KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm)
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and

CΩ1
U (p; ξ1, . . . , ξm) = CΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

Proof. First, the result will be shown for the Eisenman-Kobayashi case. By Lemma

3.2.2,

KΩ1
U (p; ξ1, . . . , ξm) ≥ KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

Now, apply that same lemma to the mapping φ−1 to obtain

KΩ2
U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm) ≥ KΩ1

U (p;φ−1
∗ (φ(p))(φ∗(p)ξ1), . . . , φ−1

∗ (φ(p))(φ∗(p)ξm)).

But, φ−1
∗ (φ(p))(φ∗(p)ξk) = (φ−1 ◦φ)∗(p)ξk = (1Ω1)∗(p)ξk = ξk, where 1Ω1 is the identity

mapping on Ω1. Therefore,

KΩ2
U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm) ≥ KΩ1

U (p; ξ1, . . . , ξm)

⇒

KΩ1
U (p; ξ1, . . . , ξm) = KΩ2

U (φ(p);φ∗(p)ξ1, . . . , φ∗(p)ξm).

The same exact argument proves the result for the Carathéodory case.

Lemma 3.2.4 Let Ω ⊂ Cn be a bounded domain, with p ∈ Ω. Let {ξk}mk=1 ⊂ TpΩ be lin-

early independent and let M be a (m,m) form at p such that M(ξ1, . . . , ξm, ξ1, . . . , ξm) =

1, i.e.

M =
1

V
µm,

where V = volume of ξ1, . . . , ξm. Then,

KΩ
U (p; ξ1, . . . , ξm) = V ·KΩ

U (p; e1, . . . , em)

and

CΩ
U (p; ξ1, . . . , ξm) = V · CΩ

U (p; e1, . . . , em),
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where {ek}mk=1 is an orthonormal basis for span(ξ1, . . . , ξm) (subspace of TpΩ spanned by

ξ1, . . . , ξm).

Proof. Recall that

KΩ
U (p; ξ1, . . . , ξm) = inf

{
1

α

∣∣∣∣∣ ∃Φ ∈ Hol(U,Ω), Φ(0) = p, Φ∗(M)0 = αµm, α > 0

}
.

Let Φ ∈ Hol(U,Ω) such that Φ(0) = p and Φ∗(M)0 = αµm. Now Φ∗(M)0 = αµm ⇒

1
V Φ∗(µm)0 = αµm ⇒ Φ∗(µm)0 = (V α)µm. Therefore,

KΩ
U (p; e1, . . . , em) ≤ 1

V α
=

1

V
· 1

α
.

Taking the infimum over 1
α implies that

KΩ
U (p; e1, . . . , em) ≤ 1

V
·KΩ

U (p; ξ1, . . . , ξm)

=⇒

V ·KΩ
U (p; e1, . . . , em) ≤ KΩ

U (p; ξ1, . . . , ξm).

To show the reverse inequality, let Φ ∈ Hol(U,Ω) such that Φ(0) = p and Φ∗(µm)0 =

αµm. Now, Φ∗(µm)0 = αµm ⇒ Φ∗(µmV )0 = α
V µm ⇒ Φ∗(M)0 = α

V µm, which implies that

KΩ
U (p; ξ1, . . . , ξm) ≤ V

α
= V · 1

α
.

Taking the infimum over 1
α gives that

KΩ
U (p; ξ1, . . . , ξm) ≤ V ·KΩ

U (p; e1, . . . , em)

=⇒

KΩ
U (p; ξ1, . . . , ξm) = V ·KΩ

U (p; e1, . . . , em).

Now, for the Carathéodory case. Recall that

CΩ
U (p; ξ1, . . . , ξm) = sup

{
β

∣∣∣∣∣ ∃Φ ∈ Hol(Ω, U), Φ(p) = 0, Φ∗(µm)p = βM, β > 0

}
.
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Let Φ ∈ Hol(Ω, U) such that Φ(p) = 0 and Φ∗(µm)p = βM . Note that this means that

Φ∗(µm)p = β
V µm. Hence,

CΩ
U (p; e1, . . . , em) ≥ β

V

=⇒

V · CΩ
U (p; e1, . . . , em) ≥ β;

taking the supremum over all β implies that

V · CΩ
U (p; e1, . . . , em) ≥ CΩ

U (p; ξ1, . . . , ξm).

For the reverse inequlity, let Φ ∈ Hol(Ω, U) such that Φ(p) = 0 and Φ∗(µm)p = βµm.

This impies that Φ∗(µm)p = (βV ) µmV = (βV )M . Hence,

CΩ
U (p; ξ1, . . . , ξm) ≥ βV.

Taking the supremum over all β implies that

CΩ
U (p; ξ1, . . . , ξm) ≥ V · CΩ

U (p; e1, . . . , em)

=⇒

CΩ
U (p; ξ1, . . . , ξm) = V · CΩ

U (p; e1, . . . , em).

The following theorem, known as the Carathéodory-Cartan-Kaup-Wu Theo-

rem, will be needed for some of the subsequent lemmas. This statement is taken from

[K], page 444.

Theorem 3.2.5 (Carathéodory-Cartan-Kaup-Wu Theorem) Let Ω ⊂ Cn be a

bounded domain. Let f ∈ Hol(Ω,Ω) and p ∈ Ω. Assume that f(p) = p. Then:

1. The eigenvalues of df(p) all have modulus not exceeding 1;
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2. |det df(p)| ≤ 1;

3. If |det df(p)| = 1, then f ∈ Aut(Ω);

4. If df(p) = In, then f = 1Ω.

Lemma 3.2.6 Let Ω ⊂ Cn be a domain and let U be as above. Suppose p ∈ Ω and

{ξk}mk=1 ⊂ TpΩ be a linearly independent set of vectors. Then,

CΩ
U (p; ξ1, . . . , ξm)

KΩ
U (p; ξ1, . . . , ξm)

≤ 1

Proof. Let Φ ∈ Hol(U,Ω) such that Φ(0) = p and Φ∗(M)0 = αµm; Ψ ∈ Hol(Ω, U)

such that Ψ(p) = 0 and Ψ∗(µm)p = βM , where M is an (m,m) form on Ω such that

M(ξ1, . . . , ξm, ξ1, . . . , ξm) = 1.

Consider Ψ◦Φ ∈ Hol(U,U): (Ψ◦Φ)(0) = 0 and (Ψ◦Φ)∗(µm)0 = Φ∗((Ψ∗µm)p)0 =

Φ∗(βM)0 = βΦ∗(M)0 = (βα)µm ⇒ |det d(Ψ◦Φ)(0)|2 = βα; since | det d(Ψ◦Φ)(0)|2 ≤ 1

by the Carathéodory-Cartan-Kaup-Wu Theorem, βα ≤ 1 ⇒ β ≤ 1
α . Hence,

CΩ
U (p; ξ1, . . . , ξm) ≤ KΩ

U (p; ξ1, . . . , ξm)

after taking the infimum over all Φ and the supremum over all Ψ. The result follows.

Lemma 3.2.7 Let Ω ⊂ Cn, p ∈ Ω, and U = Bn−j ×∆j (i.e. U ⊂ Cn). Let M be an

(n, n) form on Ω defined as

M =
1

V

n∏
j=1

i

2
dzj ∧ dzj ,

where V = volume of ξ1, . . . , ξn (i.e. M(ξ1, . . . , ξn, ξ1, . . . , ξn) = 1. Then,

KΩ
U (p; ξ1, . . . , ξm) = V ·

∣∣ME
Ω (p)

∣∣
and

CΩ
U (p; ξ1, . . . , ξm) = V ·

∣∣MC
Ω (p)

∣∣ ,
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where ∣∣ME
Ω (p)

∣∣ = inf

{
1

| det dΦ(0)|2

∣∣∣∣∣∃Φ ∈ Hol(U,Ω), Φ(0) = p

}

and ∣∣MC
Ω (p)

∣∣ = sup
{
|det dΦ(p)|2

∣∣∣∃Φ ∈ Hol(Ω, U), Φ(p) = 0
}

Proof. First, the Eisenman/Kobayashi case. Let Φ ∈ Hol(U,Ω) such that Φ(0) = p

and Φ∗(M)0 = αµn. Now,

M =
1

V

n∏
j=1

i

2
dzj ∧ dzj =

1

V
µn

⇒ Φ∗(M)0 = 1
V · |det dΦ(0)|2µn ⇒ 1

V · | det dΦ(0)|2µn = αµn ⇒ 1
V · | det dΦ(0)|2 = α.

So,

1

α
=

V

|det dΦ(0)|2
.

Therefore,

KΩ
U (p; ξ1, . . . , ξm) = inf

{
V

|det dΦ(0)|2

∣∣∣∣∣∃Φ ∈ Hol(U,Ω), Φ(0) = p

}

= V · inf

{
1

|det dΦ(0)|2

∣∣∣∣∣ ∃Φ ∈ Hol(U,Ω), Φ(0) = p

}

= V ·
∣∣ME

Ω (p)
∣∣ .

Now, the Carathéodory case. Let Φ ∈ Hol(Ω, U) such that Φ(p) = 0 and

Φ∗(µn)p = βM . Now, Φ∗(µn)p = |det dΦ(p)|2µn ⇒ |det dΦ(p)|2µn = βM ⇒ |det dΦ(p)|2µn =

β
V µn ⇒ |det dΦ(p)|2 = β

V . Hence,

V · | det dΦ(p)|2 = β.

Therefore, using the same reasoning as before,

CΩ
U (p; ξ1, . . . , ξm) = V ·

∣∣MC
Ω (p)

∣∣ .
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Lemma 3.2.8 If U = Bn−j ×∆j, then Aut(U) is transitive.

Proof. Let a = (a1, . . . , an−j , an−j+1, . . . , an) and b = (b1, . . . , bn−j , bn−j+1, . . . , bn) ∈

U . Let φ ∈ Aut(Bn−j), ϕ ∈ Aut(∆j) be such that φ(a1, . . . , an−j) = (b1, . . . , bn−j) and

ϕ(an−j+1, . . . , an) = (bn−j+1, . . . , bn) (we can find φ and ϕ since Aut(Bn−j) and Aut(∆j)

are both transitive). Let Φ ∈ Aut(U) be defined as Φ(z1, . . . , zn−j , zn−j+1, . . . , zn) =

(φ(z1, . . . , zn−j), ϕ(zn−j+1, . . . , zn)). Then, Φ(a) = b⇒ Aut(U) is transitive.

Lemma 3.2.9 Let Ω ⊂ Cn, p ∈ Ω, and {ξk}mk=1 ⊂ TpΩ be linearly independent. Then

CΩ
U (p; ξ1, . . . , ξm)

KΩ
U (p; ξ1, . . . , ξm)

= 1

if and only if Ω is biholomorphic to U .

Proof. (⇐) Suppose Ω ∼= U . Then, U must be a domain in Cn, so U = Bn−j ×∆j .

Therefore, to show that

CΩ
U (p; ξ1, . . . , ξm)

KΩ
U (p; ξ1, . . . , ξm)

= 1,

it suffices to show that ∣∣MC
Ω (p)

∣∣∣∣ME
Ω (p)

∣∣ = 1

by Lemma 3.2.7.

Denote the biholomorphism between Ω and U by φ, φ : Ω −→ U . Let ϕ ∈

Aut(U) be the automorphism that maps φ(p) 7→ 0 (recall that Aut(U) is transitive by

the previous lemma). Consider the mapping Φ := ϕ ◦ φ; Φ is a biholomorphic mapping

between Ω and U and Φ(p) = 0. Therefore, by Corollary 3.2.3,

∣∣MC
Ω (p)

∣∣ = |det dΦ(p)|2 ·
∣∣MC

U (0)
∣∣ .

Taking the supremum over all Φ ∈ Hol(Ω, U) such that Φ(p) = 0

⇒ ∣∣MC
Ω (p)

∣∣ ≤ ∣∣MC
Ω (p)

∣∣ · ∣∣MC
U (0)

∣∣
45



⇒

1 ≤
∣∣MC

U (0)
∣∣ .

Now, consider the inverse mapping φ−1 : U −→ Ω. Let ψ ∈ Aut(Ω) be the automorphism

that maps φ−1(0) 7→ p. Therefore, let Ψ := ψ ◦ φ−1; Ψ is a biholomorphism, with

Ψ(0) = p. Hence, ∣∣ME
U (0)

∣∣ = |det dΨ(0)|2 ·
∣∣ME

Ω (p)
∣∣

⇒

1

|det dΨ(0)|2
=

∣∣ME
Ω (p)

∣∣∣∣ME
U (0)

∣∣ ;
taking the infimum over all Ψ ∈ Hol(U,Ω) with the property that Ψ(0) = p ⇒

∣∣ME
Ω (p)

∣∣ ≤ ∣∣ME
Ω (p)

∣∣∣∣ME
U (0)

∣∣
⇒ ∣∣ME

U (0)
∣∣ ≤ 1.

Hence, ∣∣ME
U (0)

∣∣ ≤ 1 ≤
∣∣MC

U (0)
∣∣ .

By Lemma 3.2.6, ∣∣MC
U (0)

∣∣ ≤ ∣∣ME
U (0)

∣∣
⇒ ∣∣MC

U (0)
∣∣ =

∣∣ME
U (0)

∣∣ .
Hence, ∣∣MC

Ω (p)
∣∣∣∣ME

Ω (p)
∣∣ =
|det dΦ(p)|2 ·

∣∣MC
U (0)

∣∣
|det dΦ(p)|2 ·

∣∣ME
U (0)

∣∣ =

∣∣MC
U (0)

∣∣∣∣ME
U (0)

∣∣ = 1.

(⇒) This implication is due to Bun Wong (see Theorem E in [W1]). Since two domains

of different dimension are not even homeomorphic, U must be a domain in Cn, i.e.
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U = Bn−j ×∆j . Therefore the assumption that

CΩ
U (p; ξ1, . . . , ξm)

KΩ
U (p; ξ1, . . . , ξm)

= 1

is equivalent to ∣∣MC
Ω (p)

∣∣∣∣ME
Ω (p)

∣∣ = 1

by Lemma 3.2.7.

Let {fj} ⊂ Hol(Ω, U) be such that fj(p) = 0 and |det dfj(p)|2 −→
∣∣MC

Ω (p)
∣∣.

Note that {F ∈ Hol(Ω, U) , F (p) = 0} is a compact subset of Hol(Ω, U), so there exists

a subsequence {fjk} ⊂ {fj} such that fjk(p) = 0 and fjk −→ f ∈ Hol(Ω, U) (in the

CO topology, which is equivalent to uniform convergence on compact sets) . Hence,

|det dfj(p)|2 −→ |det df(p)|2, which implies that |det df(p)|2 =
∣∣MC

Ω (p)
∣∣.

Let {gj} ⊂ Hol(U,Ω) such that gj(0) = p and

1

|det dgj(0)|2
−→

∣∣ME
Ω (p)

∣∣ .
Since Ω is a bounded subset of Cn, {G ∈ Hol(U,Ω) , G(0) = p} is a compact subset

of Hol(U,Ω), so there exists a subsequence {gjk} ⊂ {gj} such that gjk(0) = p and

gjk −→ g ∈ Hol(U,Ω) (uniformly on compact sets)

=⇒

1

|det dgjk(0)|2
−→ 1

|det dg(0)|2

=⇒

1

|det dg(0)|2
=
∣∣ME

Ω (p)
∣∣ .

Consider f ◦ g ∈ Hol(U,U). (f ◦ g)(0) = 0 and

|det d(f ◦ g)(0)|2 = |det df(p)|2 · |det dg(0)|2

=

∣∣MC
Ω (p)

∣∣∣∣ME
Ω (p)

∣∣ = 1
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=⇒ |det d(f ◦ g)(0)| = 1 =⇒ f ◦ g ∈ Aut(U) by the Carathéodory-Cartan-Kaup-Wu

theorem =⇒ g is injective.

Consider g ◦ f ∈ Hol(Ω,Ω). (g ◦ f)(p) = p and

|det d(g ◦ f)(p)|2 = |det dg(0)|2 · |det df(p)|2

=

∣∣MC
Ω (p)

∣∣∣∣ME
Ω (p)

∣∣ = 1

=⇒ |det d(g ◦ f)(p)| = 1 =⇒ g ◦ f ∈ Aut(Ω) by the Carathéodory-Cartan-Kaup-Wu

theorem =⇒ g is surjective =⇒ g : Ω −→ U is biholomorphic.

Lemma 3.2.10 Let Ω ⊂ Cn be a bounded domain with a C2 boundary and q ∈ ∂Ω

strongly pseudoconvex. Let W be a neighborhood of q in Cn. Then,

KΩ
U (p; ξ1, . . . , ξm)

KΩ∩W
U (p; ξ1, . . . , ξm)

−→ 1

and

CΩ
U (p; ξ1, . . . , ξm)

CΩ∩W
U (p; ξ1, . . . , ξm)

−→ 1

as p −→ q.

Proof. Should follow using similar arguments found in [G] or Chapter 11.3 in [K].

The following two lemmas deal with the invariant measures defined for a specific

domain Wβ := Γrβ(q)× Bεn−1, where

1. Γrβ(q) is a cone in C with vertex at q ∈ C, angle β ∈ [0, π], and radius r.

2. Bεn−1 is n− 1 dimensional ball of radius ε.

In particular, the invariant measures for Wβ will be defined with respect to the

product domain U = ∆× Bn−1. In other words, let

∣∣∣ME
Wβ

(z)
∣∣∣ = inf

{
1

|det df(0)|2

∣∣∣∣ f ∈ Hol(U,Wβ), f(0) = z

}
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and ∣∣∣MC
Wβ

(z)
∣∣∣ = sup

{
|det df(z)|2

∣∣∣∣ f ∈ Hol(Wβ, U), f(z) = 0

}
.

Lemma 3.2.11 For the wedge domain Wβ described above,

∣∣∣MC
Wβ

(z, w)
∣∣∣ ≥ ∣∣∣MC

Γrβ(q)(z)
∣∣∣ · ∣∣∣MC

Bεn−1
(w)
∣∣∣ ,

where z ∈ Γrβ(q) and w ∈ Bεn−1 (the Carathéodory measure for Γrβ(q) and Bεn−1 are

defined with respect to ∆ and Bn−1, respectively).

Proof. Let g ∈ Hol
(

Γrβ(q),∆
)

, h ∈ Hol(Bεn−1,Bn−1), where g(z) = h(w) = 0. Hence,

the mapping f(z, w) := (g(z), h(w)) is a holomorphic mapping from Wβ to ∆×Bn−1 with

the property that f(z, w) = (0, 0). Let (z, w) = (z, w1, . . . , wn−1) be the coordinates for

Cn. Hence, the mapping f takes (z, w1, . . . , wn−1) to

(g(z), h1(w1, . . . , wn−1), . . . , hn−1(w1, . . . , wn−1)). Therefore,

df =



∂g
∂z

∂g
∂w1

. . . ∂g
∂wn−1

∂h1
∂z

∂h1
∂w1

. . . ∂h1
∂wn−1

...
...

. . .
...

∂hn−1

∂z
∂hn−1

∂w1
. . . ∂hn−1

∂wn−1


=



∂g
∂z 0 . . . 0

0 ∂h1
∂w1

. . . ∂h1
∂wn−1

...
...

. . .
...

0 ∂hn−1

∂w1
. . . ∂hn−1

∂wn−1


⇒

det df(z, w) = det dg(z) · det dh(w)

⇒

|det df(z, w)|2 = |det dg(z)|2 · |det dh(w)|2 .

Now, taking the supremum over all f ∈ Hol (Wβ,∆× Bn−1) implies that

∣∣∣MC
Wβ

(z, w)
∣∣∣ ≥ |det dg(z)|2 · |det dh(w)|2
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⇒

∣∣∣MC
Wβ

(z, w)
∣∣∣ ≥ ∣∣∣MC

Γrβ(q)(z)
∣∣∣ · ∣∣∣MC

Bεn−1
(w)
∣∣∣

after taking the sup over all g and h.

Lemma 3.2.12 For the wedge domain Wβ described above,

∣∣∣ME
Wβ

(z, w)
∣∣∣ ≤ ∣∣∣ME

Γrβ(q)(z)
∣∣∣ · ∣∣∣ME

Bεn−1
(w)
∣∣∣ .

Proof. The proof is almost the same as the previous one. Let g ∈ Hol
(

∆,Γrβ(q)
)

, h ∈

Hol(Bn−1,Bεn−1), where g(0) = z and h(0) = w. Hence the mapping f : ∆ × Bn−1 −→

Wβ, (z, w) = (z, w1, . . . , wn−1) 7−→ (g(z), h(w)), is holomorphic and f(0, 0) = (z, w).

Like in the case of the previous lemma,

|det df(0, 0)|2 = |det dg(0)|2 · |det dh(0)|2

⇒

1

|det df(0, 0)|2
=

1

|det dg(0)|2
· 1

|det dh(0)|2
.

Taking the inf over all f ∈ Hol (∆× Bn−1,Wβ) yields

∣∣∣ME
Wβ

(z, w)
∣∣∣ ≤ 1

|det dg(0)|2
· 1

|det dh(0)|2

⇒ ∣∣∣ME
Wβ

(z, w)
∣∣∣ ≤ ∣∣∣ME

Γβ,rq
(z)
∣∣∣ · ∣∣∣ME

Bεn−1
(w)
∣∣∣

after taking the inf over all g and h.

For the next lemma, when considering Γrβ(q), assume q is the origin and β is

the angle between Re z-axis and the arms of the cone. The reason for this will become

clear later. This lemma is actually Lemma 2.6 in [FW] (Fu and Wong’s paper).
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Lemma 3.2.13 Let θ and α be two numbers such that 0 < θ < α < π. Let {zj} be a

sequence in Γrθ(q) and let νj be the angle between the Re z-axis and the vector joining q

to zj. Suppose zj → 0 and νj → ν. Then, for any r > 0,

lim
j→∞

∣∣MΓrα(q)(zj)
∣∣∣∣∣MΓrθ(q)(zj)
∣∣∣ =

(
θ cos

(
πν
2θ

)
α cos

(
πν
2α

))2

,

where M is either of the invariant measures.

Proof. Let w = u + iv and z = x + iy. Then,
∣∣MC

H (w)
∣∣ =

∣∣ME
H (w)

∣∣ = 1
v2

, where H

is the upper half-plane (this can be obtained by pulling back the Poincaré metric on ∆

via the biholomorphic mapping z = i−w
i+w between H and ∆). Let

f(w) :=
(
e−πi/2w

)2β/π
= e−iβw2β/π;

f is a biholomorphic mapping between H and Γβ(q), 0 < β < π (r is infinitely large).

Then,

f−1(z) = eπi/2zπ/2β.

Let wj := f−1(zj), with zj as in the statement of the lemma. Then, wj → 0 as zj → 0.

So, |MH(wj)| = |f ′(wj)|2·
∣∣MΓβ (zj)

∣∣ (write Γβ for Γβ(q) for brevity of notation).

Hence, ∣∣MΓβ (zj)
∣∣ =

1

(Im wj)
2 ·

1

|f ′(wj)|2
.

Suppose zj = rje
iνj . Then,

wj = eπi/2
(
rje

iνj
)π/2β

= r
π/2β
j ei(π/2+πiνj/2β)

= r
π/2β
j

(
cos

(
π

2
+
πνj
2β

)
+ i sin

(
π

2
+
πνj
2β

))
.

So,

Im wj = r
π/2β
j sin

(
π

2
+
πνj
2β

)
= r

π/2β
j cos

(
πνj
2β

)
.
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Since

f ′(w) = e−iβ
(

2β

π
w2β/π−1

)
,

∣∣f ′(wj)∣∣ =
2β

π
|wj |2β/−1

⇒

∣∣MΓβ (zj)
∣∣ =

1

r
π/β
j cos2

(
πνj
2β

) · 1
4β2

π2 |wj |4β/π−2

=
1

r2
j cos2

(
πνj
2β

)
4β2

π2

,

since

r
π/β
j |wj |4β/π−2 = r

π/β
j

(
r
π/2β
j

)4β/π−2
= r2

j .

Therefore,

|MΓα(zj)|
|MΓθ(zj)|

=

1

r2j cos2
(
πνj
2α

)
4α2

π2

1

r2j cos2
(
πνj
2θ

)
4θ2

π2

=

(
θ cos

(πνj
2θ

)
α cos

(πνj
2α

))2

.

Since

lim
j→∞

∣∣∣MΓrβ
(zj)

∣∣∣∣∣MΓβ (zj)
∣∣ = 1,

it follows immediately that

lim
j→∞

∣∣MΓrα(q)(zj)
∣∣∣∣∣MΓrθ(q)(zj)
∣∣∣ =

(
θ cos

(
πν
2θ

)
α cos

(
πν
2α

))2

.

The next lemma is a generalization of Lemma 2.4 in [FW], which will be needed

in the sequel. In it, U = ∆× Bm and {ek}m+1
k=1 ⊂ Cn is a set of orthonormal vectors. A

sketch of the proof will be given.

Lemma 3.2.14 Let Ω ⊂ Cn be a bounded convex domain, where ∂Ω is C2 smooth and

strongly convex near q ∈ ∂Ω. Let Ω̃ = Ω ∩B(q; r), where B(q; r) ⊂ Cn. Then,

lim
x→q

CΩ̃
U (x; e1, . . . , em+1)

KΩ̃
U (x; e1, . . . , em+1)

< 1.
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Sketch of Proof. The idea is to approximate Ω̃ by analytic elipsoids, which are

biholomorphic to balls. The inequivalence of a ball with the product domain U will give

the desired conclusion.

Lemma 3.2.15 Let Ω ⊂ Cn be bounded, p ∈ Ω, and {ξk}mk=1 ⊂ Cn be linearly inde-

pendent. Suppose T : span(ξ1, . . . , ξm) −→ span(ξ′1, . . . , ξ
′
m) is an isomorphism, where

T (ξk) = ξ′k. Then,

CΩ
U (p; ξ1, . . . , ξm) · |detT |2 = CΩ

U (p; ξ′1, . . . , ξ
′
m)

and

KΩ
U (p; ξ1, . . . , ξm) · |detT |2 = KΩ

U (p; ξ′1, . . . , ξ
′
m).
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Chapter 4

Boundary Accumulation Points of

a Convex Domain in Cn

4.1 Some Geometry of Convex Domains

Definition 4.1.1 Let Ω ⊂ Cn be a bounded domain with a C1 boundary. Then {qj} ⊂ Ω

converges to q ∈ ∂Ω non-tangentially if there exists α > 1 such that, for j large enough,

qj ∈ Γq(α) := {z ∈ Ω | |z − q| < αdist(z, ∂Ω)} .

Let `q be the real normal line to ∂Ω through q. Then qj −→ q normally if {qj} ⊂ `q for

j large enough.

A stronger form of non-tanagential approach is if the sequence qj −→ q ∈ ∂Ω within the

region Γ̃q(α), where

Γ̃q(α) :=
{
z ∈ Ω | 0 ≤ ∠zqz̃ < cos−1(1/α)

}
, z̃ ∈ `q.

In general, Γ̃q(α) ⊂ Γq(α); the other inclusion holds when the domain Ω is convex, as is

demonstrated in the next lemma.
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Lemma 4.1.2 Let Ω ⊂ Cn be a bounded convex domain with a C1 boundary. Suppose

q ∈ ∂Ω. Then,

Γq(α) ⊂ Γ̃q(α).

Proof. Define local coordinates so that q = 0 and the outward unit normal vector to ∂Ω,

ν, is in the Rezn direction (so, ν = (0, . . . , 0, 1)). Since Ω is convex, Ω ⊂ {w |Rewn ≤ 0};

denote this region by H. Now, dist(z, ∂Ω) ≤ dist(z, ∂H) = |Rezn|.

Let π : Ω −→ `q ∩ Ω, z 7→ z̃, be the projection of Ω onto `q. Note that

|z̃| = |z̃ − q| = |Rezn|. Therefore, if z ∈ Γq(α), then

|z − q| < αdist(z, ∂Ω)

=⇒

|z − q| < |z̃ − q|α

=⇒

1

α
<
|z̃ − q|
|z − q|

=⇒

∠zqz̃ = cos−1

(
|z̃ − q|
|z − q|

)
≤ cos−1

(
1

α

)
=⇒

z ∈ Γ̃q(α).

Lemma 4.1.3 Let Ω ⊂ Cn be a bounded convex domain with a C1 boundary. Suppose

there exists p ∈ Ω and {φj} ⊂ Aut(Ω) such that φj(p) −→ q ∈ ∂Ω non-tangentially.

Then, there exists {pj} ⊂ Ω such that φj(pj) −→ q normally and that dΩ
K(p, pj) ≤ r for

some r > 0.
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Proof. Let qj := φj(p). Since qj −→ q non-tangentially, there exists α > 1 such that

qj ∈ Γq(α) for all j large enough. Let π : Ω −→ Ω ∩ `q be the projection mapping of Ω

onto the real normal line `q; let q̃j = π(qj). Then, |qj−q̃j | ≤ |qj−q| < αdist(qj , ∂Ω) −→ 0

as j −→∞. Therefore, let pj := φ−1
j (q̃j). Then, q̃j −→ q normally for all j large enough.

Now by Lemma 4.1.2, since Ω is convex, qj ∈ Γ̃q(α), so 0 ≤ ∠qjqq̃j <

cos−1(1/α). Hence,

cos (∠qjqq̃j) =
|q̃j − q|
|qj − q|

>
1

α
.

Consider the straight line γ(t) = (1− t)qj + tq̃j . Then,

dΩ
K(p, pj) = dΩ

K(qj , q̃j) ≤
∫ 1

0
FΩ
K(γ(t), γ′(t)) dt

≤
∫ 1

0

|γ′(t)|
dist(γ(t), ∂Ω)

dt ≤
∫ 1

0

α|γ′(t)|
|γ′(t)− q|

dt

≤ α|q̃j − qj |
|q̃j − q|

≤ α|qj − q|
|q̃j − q|

< α2.

Note that the second inequality comes from Lemma 3.1.10. Therefore, letting r = α2,

it follows that dΩ
K(p, pj) < r for j large enough.

Lemma 4.1.4 Let Ω ⊂ Cn be a bounded, complete hyperbolic domain with a C2 bound-

ary. Suppose p ∈ ∂Ω is strongly convex. Then, for any fixed r > 0, the euclidean

diameter of βΩ
K(z; r) −→ 0 as z −→ p.

Proof. Let ρ be a local defining function for Ω in a neighborhood of p, where p is

strongly convex. Let z′ ∈ ∂Ω such that |z − z′| = dist(z, ∂Ω). Now, since p is strongly

convex, for z close to p, the ∂Ω is strongly convex in a neighborhood of z′, and so the

diameter of the set {
w ∈ Ω

∣∣∣Ref(w) > −
√
|z − z′|

}
converges to 0 as z −→ p, where

f(w) =
1

|∇ρ(z′)|

n∑
j=1

∂ρ

∂zj
(z′)(wj − z′j).
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Therefore, the result will follow if it can be shown that

βΩ
K(z; r) ⊂

{
w ∈ Ω

∣∣∣Ref(w) >
√
|z − z′|

}
.

To simplify notation, choose coordinates so that z′ = 0 and that the out-

ward normal vector to ∂Ω at z′ is in the Rezn-direction. Then, with respect to these

coordinates, z = (0, . . . , 0,−x) for some x > 0. Hence,

f(w) =
1

|∇ρ(z′)|

n∑
j=1

∂ρ

∂zj
(z′)(wj − z′j)

=
1

|∇ρ(0)|
(0(w1 − 0) + . . .+ 0(wn−1 − 0) + |∇ρ(0)|(wn − 0))

= wn

=⇒

Ref(w) = Rewn.

Therefore, the result will follow if

βΩ
K(z; r) ⊂

{
w ∈ Ω

∣∣∣Rewn > −
√
x
}
.

Suppose this isn’t true, i.e. there exists w ∈ βΩ
K(z; r) for which Rewn ≤ −

√
x. Let

w̃ = (0, . . . , 0,Rewn) and γ(t) = (1− t)w̃ + tz. Therefore,

r ≥ dΩ
K(z, w) ≥ dΩ

K(z, w̃) =

∫ 1

0
FΩ
K(γ(t), γ′(t)) dt.

The first inequality holds because the domain is complete hyperbolic and the second

by Lemma 3.1.12; the equality holds by Lemma 3.1.11. Since γ(t) is near the stongly

pseudoconvex boundary point z′, it follows from from a well-known result (see [A] and

[G]; an explicit statement is contained in Lemma 3.1.11) that

∫ 1

0
FΩ
K(γ(t), γ′(t)) dt &

∫ 1

0

|γ′N (t)|
δ(γ(t))

dt =

∫ 1

0

| − Rewn − x|
|(1− t)Rewn − tx|

dt.
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Now, for x close to 0, x <
√
x ⇒ −x > −

√
x ≥ Rewn. Therefore, −x ≥ Rewn ⇒

−Rewn − x ≥ −Rewn + Rewn = 0. Hence,∫ 1

0

| − Rewn − x|
|(1− t)Rewn − tx|

dt =

∫ 1

0

(−Rewn − x)

−((1− t)Rewn − tx)
dt

= −
∫ 1

0

(−Rewn − x)

(1− t)Rewn − tx
dt.

Let u = (1− t)Rewn − tx. Then, du = (−Rewn − x)dt, which implies that

−
∫ 1

0

(−Rewn − x)

(1− t)Rewn − tx
dt = −

∫ −x
Rewn

du

u
= ln

(
|Rewn|
x

)
≥ ln

(
1√
x

)
.

Therefore,

∞ > r ≥ ln

(
1√
x

)
−→∞

as x −→ 0, which is a contradiction.
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4.2 Maximal Chain of Analytic Disks

Definition 4.2.1 Let Ω ⊂ Cn and S a connnected subset of ∂Ω. Then ∂Ω is geometri-

cally flat along S if ∂Ω is C2 in a neighborhood of S and the outward normal direction

to ∂Ω is constant on S.

Proposition 4.2.2 Let Ω ⊂ Cn be a smoothly bounded convex domain. If φ : ∆ −→ ∂Ω

is a holomorphic mapping, the ∂Ω is geometrically flat along φ(∆).

Proof. Suppose φ : ∆ −→ ∂Ω is holomorphic and φ(0) = q. Choose holomorphic

coordinates (z1, . . . , zn) so that q = 0 and the Rezn axis is the outward normal direction

to ∂Ω at q. Since Ω is convex, the set {w |Rewn = 0} is the real supporting hyperplane

to ∂Ω at q and Ω ⊂ {w |Rewn ≤ 0}. Let x : Cn −→ C be the function (z1, . . . , zn) 7→ zn.

Note the x is holomorphic, and Re x = Rezn is harmonic. Consider the composition

x◦φ; it is holomorphic and Re(x◦φ)(w) is harmonic. Now, Re(x◦φ)(0) = Re(x(q)) = 0

and Re(x ◦ φ)(w) ≤ 0 ∀w ∈ ∆ by convexity ⇒ Re(x ◦ φ)(w) ≡ 0 on ∆ by the Maximum

Principle ⇒ Im(x ◦ φ)(w) ≡ 0 on ∆ by the Cauchy-Riemann equations. Therefore,

(x ◦ φ)(w) = x|φ(∆) ≡ 0 ⇒ φ(∆) ⊂ {w |wn = 0} ⇒ ∂Ω is geometrically flat along φ(∆).

Note that, as a consequence of this proof, φ(∆) is contained in the maximal

complex subspace of the real suppoting hyperplane to the boundary at q, i.e. φ(∆) ⊂

Tq∂Ω.

Definition 4.2.3 Let H ⊂ Cn and q ∈ H. Then the maximal chain of analytic discs

on H through q, denoted ∆H
q , is

∆H
q = {z ∈ H | there exists a finite chain of analytic discs joining z to q} .

In other words, z ∈ ∆H
q if
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1. There exists holomorphic mappings φj : ∆ −→ H, 1 ≤ j ≤ k;

2. Points zj ∈ H, aj , bj ∈ ∆, 1 ≤ j ≤ k, such that φj(aj) = zj−1 and φj(bj) = zj,

where z0 = z and zk = q.

From now on, whenever it is clear, the notation {φ1, . . . , φk} will be used to

represent that z can be joined to q by a finte chain of analytic discs. Also, for the sake

of brevity, let Sq := ∆H
q .

Now, some important properties of Sq, which will be given as a sequence of

corollaries.

Corollary 4.2.4 If z ∈ Sq, then Sq = Sz

Proof. (⊆) Suppose w ∈ Sq. Let {φ1, . . . , φk} be a chain of analytic discs joining z to q,

and {ψ1, . . . , ψl} a chain of analytic discs joining q to w. Then {φ1, . . . , φk, ψ1, . . . , ψl}

is a chain of analytic discs joining z to w ⇒ w ∈ Sz ⇒ Sq ⊆ Sz.

(⊇) Suppose w ∈ Sz; let {φ1, . . . , φk} be a chain of analytic discs joining w

to z. Since z ∈ Sq, there exists a chain of analytic discs {ψ1, . . . , ψl} joining z to q ⇒

{φ1, . . . , φk, ψ1, . . . , ψl} is a chain joining w to q ⇒ Sz ⊆ Sq ⇒ Sz = Sq.

Corollary 4.2.5 If V ⊂ H is a complex variety through q, then V ⊂ Sq.

Proof. Since any two points of a complex variety can be joined by a chain of analytic

disks, it follows immediately that V ⊂ Sq (see [Ko], p.97).

Corollary 4.2.6 If Ω ⊂ Cn is a smoothly bounded convex domain, then ∂Ω is geomet-

rically flat along Sq for all q ∈ ∂Ω.

Proof. Let z ∈ Sq. Then, there exists a finite chain of analytic discs {φ1, . . . , φk}

joining z to q. Hence, ∂Ω is geometrically flat long φj(∆), j = 1, . . . , k, by Proposition
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4.2.2. Since z was chosen arbitrarily, Sq consists of a union of (potentially arbitrarily

many) geometrically flat faces. Since Ω is smooth, then ∂Ω is geometrically flat along

Sq.

Theorem 4.2.7 Let Ω ⊂ Cn be a smoothly bounded convex domain. Then Sq is geomet-

rically convex for all q ∈ ∂Ω, i.e. if z, w ∈ Sq, then the line segment tz + (1− t)w ∈ Sq

for all t ∈ [0, 1].

Proof. First, it will be shown that if z, w ∈ Sq, then the line segment tz + (1 − t)w ∈

∂Ω for all t ∈ [0, 1]. Since Ω is convex, choose coordinates (z1, . . . , zn) such that

Ω ⊂ {z |Rezn ≤ 0} and Sq ⊂ {z |Rezn = 0} (since Sq geometrically flat by the pre-

vious corollary). Because Ω is convex, tz + (1 − t)w ∈ Ω for all t ∈ [0, 1], and

Re(tz+ (1− t)w)n = tRezn + (1− t)Rewn = 0 for all t ∈ [0, 1] ⇒ tz+ (1− t)w ∈ ∂Ω for

all t ∈ [0, 1].

Now, in order to show that tz + (1 − t)w ∈ Sq for all t ∈ [0, 1], induction on

the length of the chain joining z to w will be used.

Base Case: Let z, w ∈ Sq. Suppose there exists an analytic disc φ : ∆ −→ ∂Ω

such that φ(a) = z, φ(b) = w. Consider the mapping

(t, ζ) 7−→ tφ(ζ) + (1− t)φ(b).

For any ζ, φ(ζ), φ(b) ∈ Sq ⇒ tφ(ζ) + (1− t)φ(b) ∈ ∂Ω ∀t (by above). Now, for any fixed

t,

tφ(ζ) + (1− t)φ(b) : ∆ −→ ∂Ω

is an analytic disc. Let ζ = b. Then, tφ(b) + (1 − t)φ(b) = φ(b) = w ⇒ the image of

tφ(ζ) + (1 − t)φ(b) contains a point in Sq (it is w = φ(b)) ⇒ tφ(ζ) + (1 − t)φ(b) ∈ Sq
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∀ζ; since t was arbitrary, tφ(ζ) + (1 − t)φ(b) ∈ Sq ∀ζ ∀t. Therefore, let ζ = a. Then,

tφ(a) + (1− t)φ(b) = tz + (1− t)w ∈ Sq ∀t.

Induction Hypothesis: Assume the result is true if z, w ∈ Sq and they can be

joined by at most n analytic discs.

Induction Step: Suppose z, w ∈ Sq and z and w can be joined by n + 1 analytic

discs, i.e. there exists φ1, . . . , φn+1 : ∆ −→ ∂Ω, aj , bj ∈ ∆, zj ∈ ∂Ω, j = 1, . . . , n + 1,

such that φj(aj) = zj−1, φj(bj) = zj , φ1(a1) = z0 = z, and φn+1(bn+1) = zn+1 = w.

Now, consider the mapping

(t, ζ) 7−→ tφ1(ζ) + (1− t)φn+1(bn+1).

For any ζ ∈ ∆, φ1(ζ), φn+1(bn+1) ∈ Sq ⇒

tφ1(ζ) + (1− t)φn+1(bn+1) ∈ ∂Ω ∀t, ∀ζ,

since ζ was chosen arbitrarily. Therefore, it remains to show that

tφ1(ζ) + (1− t)φn+1(bn+1) ∈ Sq ∀t, ∀ζ.

Now, for any t, the mapping

ζ 7−→ tφ1(ζ) + (1− t)φn+1(bn+1)

is an analytic disc. But, when ζ = b1,

tφ1(b1) + (1− t)φn+1(bn+1) = tφ2(a2) + (1− t)φn+1(bn+1) = tz1 + (1− t)zn+1 ∈ Sq,

since z1 and zn+1 = w can be joined by n analytic discs. Therefore, tφ1(ζ) + (1 −

t)φn+1(bn+1) : ∆ −→ ∂Ω is an analytic disc joining tz1 + (1 − t)zn+1 ∈ Sq to tφ1(ζ) +
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(1− t)φn+1(bn+1) (i.e. the image of the analytic disc tφ1(ζ) + (1− t)φn+1(bn+1) contains

a point in Sq) ⇒

tφ1(ζ) + (1− t)φn+1(bn+1) ∈ Sq ∀ζ;

since t was chosen arbitrarily,

tφ1(ζ) + (1− t)φn+1(bn+1) ∈ Sq ∀ζ, ∀t.

Therefore, letting ζ = a1, it follows that tz + (1− t)w ∈ Sq ∀t.
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4.3 Normal Convergence and Boundary Orbit Accumula-

tion Points

Proposition 4.3.1 Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose there

exists p ∈ Ω and {φj} ⊂ Aut(Ω) such that φj(p) −→ q ∈ ∂Ω non-tangentially. Then,

there exists a non-constant holomorphic onto mapping φ : Ω −→ Sq such that φj −→ φ,

passing to a subsequence if necessary.

Proof. Recall the Theorem of Montel (see [Wu], p. 199): A uniformly bounded family

of holomorphic mappings from a complex manifold M into Cn is equicontinuous and

hence relatively compact in Hol(M,Cn).

Therefore, since {φj} ⊂ Aut(Ω) is uniformly bounded, φj −→ φ ∈ Hol(Ω,Cn), passing

to a subsequence if necessary. Since φ /∈ Aut(Ω), φ ∈ Hol(Ω, ∂Ω) (for more details, see

Cartan’s Theorem, Chapter 5 in [N]).

Therefore, it remains to show that φ(Ω) = Sq. It is clear that φ(Ω) ⊆ Sq.

To show the other inculsion, let q′ ∈ Sq. Therefore, a point p′ ∈ Ω needs to be found

such that φ(p′) = q′. Now, by Corollary 4.2.6, ∂Ω is geometrically flat along Sq; let

ν by the unit outward normal vector to Sq. By Lemma 4.1.3, there exists a sequence

{pj} ⊂ βΩ
K(p; r), 0 < r <∞, such that φj(pj) := qj −→ q ∈ ∂Ω normally. Let δj be the

number defined by

qj = q − δjν.

Consider the point q′j := q′ − δjν. Now, for any j,

dΩ
K(qj , q

′
j) < r′ <∞.
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Let p′j := φ−1
j (q′j). Therefore,

dΩ
K(p, p′j) ≤ dΩ

K(p, pj) + dΩ
K(pj , p

′
j)

< r + dΩ
K(qj , q

′
j) < r + r′ <∞, ∀j.

Now,

βΩ
K(p; r + r′) ⊂ Ω,

because of complete hyperbolicity. Hence,

p′j −→ p′ ∈ βΩ
K(p; r + r′) ⊂ Ω,

passing to a subsequence if necessary. Therefore,

φ(p′) = lim
j→∞

φj(p
′
j) = lim

j→∞
q′j = q′

=⇒ Sq ⊆ φ(Ω) =⇒ φ : Ω −→ Sq is surjective.

Theorem 4.3.2 Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose there

exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p) −→ q ∈ ∂Ω non-

tangentially. If Sq is not trivial, then Sq is an open convex set contained in a complex

m-dimensional plane, where dimC Sq = m.

Proof. By Theorem 4.2.7, Sq is a convex set, and hence is contained in a complex m-

dimensional plane, where dimC Sq = m. Therefore, all that remains to be shown is that

Sq is open. Suppose not, i.e. there exists a point w ∈ ∂Sq. Now, by Proposition 4.2.1,

φ := limj→∞ φj is a surjective holomorphic mapping, which implies that there exists

z ∈ Ω such that φ(z) = w. Choose an open set U containing z such that dimC φ(U) = m.

Let H be the complex m − 1 dimensional subspace of the real supporting

hyperplane to ∂Sq at w = φ(z), chosen as follows: Choose coordinates (z1, . . . , zm)

such that w is the origin and Sq ⊂ {z |Re zm ≤ 0} . Then, L := {z |Re zm = 0} is a

65



real supporting hyperplane to ∂Sq at w and H ⊂ L, where H = {z | zm = 0}. (Note

that there is no assumption of any boundary regularity at w; convexity guarantees the

existence of a real supporting hyperplane.)

Let h : Cm −→ C be defined by h(a) = h(a1, . . . , am) = am; h is a holomorphic

mapping. Now, consider the compostion H := h ◦ φ, defined on U . H is holomorphic,

so the function H̃(a) := ReH(a) is harmonic, so the Maximum Principle holds for H̃.

Now, H̃(z) = Reh(w) = Rewm = 0 and H̃|U ≤ 0 (because of convexity), which implies

that

H̃|U ≡ 0

by the Maximum Principle. Therefore,

H̃|U = Re (h ◦ φ)|U = Reh|φ(U) ≡ 0

=⇒

Imh|φ(U) ≡ 0,

because h is holomorphic (look at the Cauchy-Riemann equations for h) ⇒ h ≡ 0 on

φ(U) ⇒ φ(U) ⊂ H. But,

dimC φ(U) = m > m− 1 = dimCH,

which is a contradiction. Therefore, ∂Sq = ∅ ⇒ Sq is open.

For the next theorem, the idea of a holomorphic support function is needed.

First, a defintition (see Section 3.2.1 in [K]).

Definition 4.3.3 Let Ω ⊂ Cn be a domain and p ∈ ∂Ω. Then p possesses a holomorphic

support function for the domain Ω provided that there is a neighborhood Up of p and a

holomorphic function fp : Up −→ C such that

{z ∈ Up | fp(z) = 0} ∩ Ω = {p} .
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For p ∈ ∂Ω that is strongly pseudoconvex, a holomorphic support function can

always be found. To see this, choose a local defining fucntion ρ for Ω such that

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk ≥ C|w|2, ∀w ∈ Cn.

Note that such a ρ can be found for p ∈ ∂Ω that is strongly pseudoconvex. Then, the

Levi polynomial, defined by the equation

h(z) =

n∑
j=1

∂ρ

∂zj
(p)(zj − pj) +

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)(zj − pj)(zk − pk)

is a holomorphic support funtion for Ω at p. For a proof of this fact, see [K], p.139-140.

Theorem 4.3.4 Let Ω ⊂ Cn be a smoothly bounded domain. Let q ∈ ∂Ω, and suppose

Sq is not trivial. Furthermore, suppose φ : Ω −→ Sq is a surjective holomorphic map-

ping. Then, there exists a sequence {pj} ⊂ Ω such that pj −→ p ∈ ∂Ω, p is strongly

pseudoconvex, and {φ(pj)} ⊂ Sq converges to a point in Sq.

Proof. Let Ω and φ be as above. Then, since Ω is smooth, there exists a strongly

pseudoconvex boundary point p ∈ ∂Ω. Let h be a holomorphic support function for Ω

at p, and let

H := {z ∈ Cn |h(z) = 0} .

Note that dimCH = n − 1. Let ν be the unit outward normal vector to ∂Ω at p, and

define the set Hn by

Hn =

{
z − ν · 1

n

∣∣∣∣ z ∈ H}
(i.e. translate H in the direction of −ν by a length of 1

n). Since ∂Ω is strongly pseudocon-

vex at p, there exists a neighborhood U of p such that ∂Ω∩U is strongly pseudoconvex.

Choose N ∈ Z+ such that Hn ∩ Ω ⊂ Ω ∩ U ∀n ≥ N .
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Suppose dimC Sq = m; Let Vn ⊂ Hn be an m dimensional analytic subset

such that φ|Vn∩Ω has rank m almost everywhere - perturb Vn if needed - and that

∂(Vn ∩Ω) ⊂ ∂Ω. (Note that the Jacobian of φ restricted to Vn, Jφ|Vn , will not have full

rank (i.e. rank m) if Vn is contained in the common zero set of the component functions

of one of its rows.) Let V ′n := Vn ∩ Ω.

Let φn := φ|V ′n . Suppose there exists an n ≥ N such that φn isn’t proper.

Hence, for some subset K ⊂ Sq that is compact, φ−1
n (K) will not be compact in V ′n.

Hence, there exists {pj} ⊂ φ−1
n (K) ⊂ V ′n such that pj −→ p′ ∈ ∂V ′n ⊂ ∂Ω, p′ is strongly

pseudoconvex, and φ(pj) = φn(pj) −→ q′ ∈ Sq.

Suppose φn is proper ∀n ≥ N . Since φn has rank m almost everywhere, it must

be surjective by the Proper Mapping Theorem of Remmert. Now, for each n ≥ N , choose

Kn ⊂ Sq that is compact. Hence, φ−1
n (Kn) is compact in V ′n; choose pn ∈ φ−1

n (Kn) ⊂ V ′n.

Hence, pn −→ p as n −→∞ and φ(pn) = φn(pn) ∈ Kn ⊂ Sq ∀n ≥ N .

Definition 4.3.5 Let Ω ⊂ Cn be a bounded convex domain with a C2 boundary. Suppose

φj(p) → q, where p ∈ Ω and {φj} ⊂ Aut(Ω) Let π : Ω −→ Ω be the projection onto

the complex plane normal to ∂Ω at q. Then, φj(p)→ q non-tangentially in the complex

normal direction if

π(φj(p)) ∈ Γq(α)

for some α > 1 and j large enough.

Lemma 4.3.6 Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose, for some

q ∈ ∂Ω, Sq is not trivial. Furthermore, assume there exists p ∈ Ω and a sequence {φj} ⊂

Aut(Ω) such that φj(p) −→ q non-tangentially. Then, for any a ∈ Ω, φj(a) −→ b ∈ Sq

non-tangentially in the complex normal direction for some b ∈ Sq.

68



Proof. Choose coordinates (z1, . . . , zn) such that q = 0 and the Rezn direction is the

outward normal direction to ∂Ω at q. Since Ω is convex, Ω ⊂ {z ∈ Cn |Rezn ≤ 0}. Since

φj(p) −→ q non-tangentially, there exists a sequence {pj} ⊂ Ω such that φj(pj) =: qj −→

q normally and dΩ
K(p, pj) < r < ∞ ∀j by Lemma 4.1.3. Note that dΩ

K(p, a) = s < ∞,

since Ω is complete hyperbolic.

Let φj(a) = aj and a′j the projection of aj onto the zn-plane. Note that, under

this projection, b 7−→ q, since Sq is contained in a complex m-dimensional subspace

of the complex tangent space, where m ≤ n − 1, by Theorem 4.3.2. Therefore, a′j =

(0, . . . , 0, tj), tj = Aje
iαj , and qj = (0, . . . , 0, xj), xj < 0. Hence, θj := π−αj is the angle

between the line segment a′jq and the −Rezn-axis (without loss of generality; assume

a′j −→ q within the second quadrant of the zn-plane). Therefore,

∞ > s+ r > dΩ
K(p, a) + dΩ

K(p, pj)

> dΩ
K(pj , a)

= dΩ
K(qj , aj)

≥ dΩ
K(qj , a

′
j),

since the mapping (z1, . . . , zn) 7−→ (0, . . . , 0, zn) is well-defined, since Ω is convex. But,

dΩ
K(qj , a

′
j) ≥ dHK(xj , tj)

= ln (sec θj + tan θj) .

The inequality holds because the projection onto the zn-plane is a holomorphic mapping,

where H = {z ∈ C |Rez ≤ 0}; the equality holds by Lemma 3.1.13. But,

ln (sec θj + tan θj) −→∞ if θj −→
π

2
.

Putting all of this together,

∞ > dHK(xj , tj) −→∞ if tj −→ q tangentially,
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which is a contradiction. Hence φj(a) −→ b non-tangentially in the complex normal

direction.

An additional hypothesis that will be needed in the main theorem is called

Condition LTW. Here is its statement:

Condition 4.3.7 (Condition LTW) Let Ω ⊂ Cn be a smoothly bounded convex do-

main. Suppose, for some q ∈ ∂Ω, Sq is not trivial. Furthermore, assume there exists

p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p) −→ q non-tangentially. Then,

there exists a sequence {zi} ⊂ Ω converging to a strongly (pseudo)convex boundary point

p′ such that φ(zi) → q̃ ∈ Sq. Also, for each zi, there exists a sequence
{
zji

}
⊂ Ω

such that zji ∈ βΩ
K(zi; r) and φj(z

j
i ) is contained in the complex planes normal to Sq

for j large enough. Furthermore, for any ε > 0, i can be chosen large enough so that

βΩ
K(zi; r) ⊂ B(p′; ε) ∩ Ω

This condition is a technical detail that is needed for the proof of the main

theorem. In this condition, βΩ
K(zi; r) is the ball, centered at zi, with radius r measured

with respect to the Kobayashi distance. Also, the statement that φj(z
j
i ) is contained in

the complex planes normal to Sq for j large enough means that φj(z
j
i ) is contained in

the product Π× Sq, where Π is the complex plane normal to Sq (recall that ∂Ω is geo-

metrically flat along Sq). Note that, if it can be shown that for any a ∈ Ω, φj(a)→ Sq

non-tangentially, which is very reasonable to expect to be true, the condition is a corol-

lary to previous results. Here is how the proof would follow:

Proof. Let ε > 0.

1. By Proposition 4.3.1, φj → φ : Ω −→ Sq, where φ is a surjective holomorphic

mapping.
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2. Since Ω ⊂ Cn is smoothly bounded and convex, there exists a strongly convex

boundary point p′ (which is also strongly pseudoconvex), so by Theorem 4.3.4, a se-

quence zi can be chosen so that φ(zi)→ q̃ ∈ Sq.

3. Now, φ(zi) = q̃i ∈ Sq ⇒ limj→∞ φj(zi) = q̃i ∈ Sq, so φj(z) −→ q̃i non-tangentially

(assuming it can be shown).

4. Therefore, by Lemma 4.1.3, there exists a sequence
{
zji

}
⊂ Ω such that φj(z

j
i ) −→ q̃i

normally and dΩ
K(zi, z

j
i ) < r <∞ for some r > 0.

5. Since diamβΩ
K(zi; r) −→ 0 as zi −→ p′ by Lemma 4.1.4, choose zi close enough to

p′ so that βΩ
K(zi; r) ⊂ B(p′; ε); hence zji ∈ B(p′; ε) ∩ Ω.

This concludes the argument.

Condition LTW is sufficient for the main theorem to hold. In order to simplify

the proof, the following Corollary to Condition LTW will be used.

Corollary 4.3.8 Assume Condition LTW. Then, for each zi, there exists a sequence{
p̃ji

}
⊂ Ω such that φj(p̃

j
i ) → q̃i ∈ Sq in the complex plane normal to Sq through q̃i,

non-tangentially, and p̃ji ∈ βΩ
K(zi; r′) ⊂ B(p′; ε)∩Ω, for zi chosen sufficiently close to p′

Proof. Suppose φj(z
j
i ) → q̃i as j → ∞, where φj(z

j
i ) is as in Condition LTW and

q̃i ∈ Sq. For simpler notation, let V := Sq. Let π denote the projection of Ω onto the

complex plane normal to V through q̃i. Since Ω is convex, this mapping is well-defined

and holomorphic. Let pji := π(φj(z
j
i )). Then, by Lemma 4.3.6, pji → q̃i non-tangentially.
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Let Vj be the translation of V to pji :

Vj :=
{
z + (pji − q̃i)

∣∣∣ z ∈ V } .
Then, for j large enough, Vj ⊂ Ω. Let p̃ji := φ−1

j

(
pji

)
. Then,

dΩ
K(p̃ji , zi) ≤ d

Ω
K(p̃ji , z

j
i ) + dΩ

K(zji , zi)

≤ dΩ
K(pji , φj(z

j
i )) + r

≤ dVjK (pji , φj(z
j
i )) + r < s+ r <∞

for j large enough. Let r′ := r + s. Hence, p̃ji ∈ βΩ
K(zi; r′) ⊂ B(p′; ε) ∩ Ω, for zi chosen

sufficiently close to p′, and φj(p̃
j
i )→ q̃i in the complex plane normal to V through q̃i.
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4.4 Principal Result

Proposition 4.4.1 Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose there

exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p) → q ∈ ∂Ω non-

tangentially. Furthermore, suppose Sq is not trivial and that Condition LTW holds.

Then, Sq is biholomorphic to Bm, where m = dimC Sq.

Proof. By the corollary of Condition LTW, for any ε > 0 and some strongly convex

boundary point p′, there exists a sequence {pj} ⊂ Ω such that pj ∈ βΩ
K(zi; r′) ⊂ B(p′; ε)∩

Ω and qj := φj(pj)→ q′ ∈ Sq in the complex plane normal to ∂Ω through q′. (Note that

pj is p̃ji and q′ is q̃i in the corollary of Condition LTW; notation is being changed for

simplicity.) By sequential compactness, pj → p̃ ∈ βΩ
K(zi; r′), passing to a subsequence if

necessary. Hence, φ(p̃) = q′ non-tangentially. Furthermore, by choosing p′ and ε so that

B(p′; ε) ∩ Zj = ∅, j ∈ {1, . . . ,m} ,

where Zj is the common zero set of the component functions in the jth row of dφ,

rank dφ(p̃) = m.

Let ν be the constant unit outward normal vector to ∂Ω along Sq. For simpler

notation, let V := Sq and let Vj be the translation of V to qj , i.e.

Vj =
{
z + (qj − q′), | z ∈ V

}
.

Then, Vj ⊂ Ω for j large enough. Let {ξk}mk=1 ⊂ Tq′V be linearly independent. Since

∂Ω is geometrically flat along V , {ξk}mk=1 ⊂ TqjVj is linearly independent (for j large

enough) and ν will be normal to Vj . Since Vj ⊂ Ω for j large, this set is linearly

independent in TqjΩ. Since dφ−1
j (qj) is an isomorphism of vector spaces,

{
dφ−1

j (qj)ξ1, . . . , dφ
−1
j (qj)ξm

}
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is linearly independent in TpjΩ. For brevity, let

ξ′k := dφ−1
j (qj)ξk and ξ̃k := lim

j→∞
dφ−1

j (qj)ξk.

Claim:
{
ξ̃1, . . . , ξ̃m

}
⊂ Tp̃Ω is linearly independent.

Now, for any k, the set
{
dφ−1

j (qj)ξk

}
j

is a sequence of points in Cn. Since Cn is a sequen-

tially compact metric space,
{
dφ−1

j (qj)ξk

}
j

has a convergent subsequence. Therefore,

ξ̃k := limj→∞ dφ
−1
j (qj)ξk exists, passing to a subsequence if necessary.

Now, for any k ∈ {1, . . . ,m},

dφ(p̃)(ξ̃k) = dφ(p̃)

(
lim
j→∞

dφ−1
j (qj)ξk

)
= lim

j→∞
dφj(pj)

(
lim
j→∞

dφ−1
j (qj)ξk

)
= lim

j→∞
dφj(pj)

(
dφ−1

j (qj)ξk

)
= lim

j→∞
d
(
φj ◦ φ−1

j

)
(qj)ξk

= lim
j→∞

d1Ω(qj)ξk = ξk.

Therefore, ξ1, . . . , ξm linearly independent and dφ(p̃) linear implies that ξ̃1, . . . , ξ̃m lin-

early indepedent. This proves the claim.

Let U = Bm. Now, by the well-known properties of the invariant measures,

CΩ
U (pj ; ξ

′
1, . . . , ξ

′
m) = CΩ

U (qj ; ξ1, . . . , ξm)

≤ CVjU (qj ; ξ1, . . . , ξm)

= CVU (q′; ξ1, . . . , ξm),

and

KΩ
U (p̃; ξ̃1, . . . , ξ̃m) ≥ KV

U (q′; ξ1, . . . , ξm).

Therefore,

1 ≥
CVU (q′; ξ1, . . . , ξm)

KV
U (q′; ξ1, . . . , ξm)

≥
CΩ
U (pj ; ξ

′
1, . . . , ξ

′
m)

KΩ
U (p̃; ξ̃1, . . . , ξ̃m)

for any j large. Hence, letting j →∞,

1 ≥
CVU (q′; ξ1, . . . , ξm)

KV
U (q′; ξ1, . . . , ξm)

≥
CΩ
U (p̃; ξ̃1, . . . , ξ̃m)

KΩ
U (p̃; ξ̃1, . . . , ξ̃m)

.
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Since

CΩ
U (p̃; ξ̃1, . . . , ξ̃m)

KΩ
U (p̃; ξ̃1, . . . , ξ̃m)

−→ 1

as p̃→ a strongly (pseudo)convex boundary point (p̃ can be chosen arbitrarily close to

a strongly (pseudo)convex boundary point by construction), it follows that

CVU (q′; ξ1, . . . , ξm)

KV
U (q′; ξ1, . . . , ξm)

= 1

=⇒

V ∼= Bm.

Theorem 4.4.2 (Lee-Thomas-Wong) Let Ω ⊂ Cn be a smoothly bounded convex

domain. Suppose there exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that

φj(p) → q ∈ ∂Ω non-tangentially. Furthermore, suppose that Condition LTW holds.

Then, Sq is trivial and hence ∂Ω is variety-free at q.

Proof. Suppose Sq is not trivial. For notational simplicity, let V := Sq. Then, V is a

convex open subset lying in a m-dimensional subspace of Tq∂Ω, where m = dimC V

by Theorem 4.3.2. By a linear change of coordinates, assume ν = (1, 0, . . . , 0) is

the constant outward normal vector to ∂Ω along V (recall that the ∂Ω is geomet-

rically flat along V ) and V lies in the z2 · · · zm+1 plane, where q is the origin. Let

π : Ω −→ {z ∈ Cn | zm+2 = · · · = zn = 0} be the projection mapping (i.e. π is the pro-

jection onto the z1 · · · zm+1 plane).

Now, by the corollary of Condition LTW, there exists a strongly convex bound-

ary point p′ ∈ ∂Ω such that, for any ε > 0, there exists a sequence {pj} ⊂ Ω such that

qj := φj(pj) → q′ ∈ Sq in the complex plane normal to ∂Ω through q′ non-tangentially

and pj ∈ B(p′; ε) ∩ Ω ∀j. Also, pj ∈ βΩ
K(zi; r′) ⊂ B(p′; ε) ∩ Ω, so pj → p̃ ∈ βΩ

K(zi; r′),
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passing to a subsequence if necessary. (Recall that, in the corollary, pj is p̃ji and q′ is q̃i;

notation has been changed for simplicity.) Let {Ω`} be a sequence of relatively compact

open subsets of Ω such that Ω` ⊂⊂ Ω`+1,
⋃∞
`=1 Ω` = Ω, and, choosing ` large enough,

pj , p̃ ∈ Ω` ∀j.

Let Vj be the translation of V to qj , i.e.

Vj =
{
z + (qj − q′) | z ∈ V

}
.

Then, Vj ⊂ Ω for j large enough. Let {ξk}mk=1 ⊂ Tq′V be linearly independent. Since

∂Ω is geometrically flat along V , {ξk}mk=1 ⊂ TqjVj is linearly independent (for j large

enough) and ν will be normal to Vj . Hence, the set {ξ1, . . . , ξm, ν} ⊂ TqjΩ is linearly

independent. Since dφ−1
j (qj) is an isomorphism of vector spaces, the set

{
dφ−1

j (qj)ξ1, . . . , dφ
−1
j (qj)ν

}
⊂ TpjΩ

is linearly independent. For brevity, let

ξ′k := dφ−1
j (qj)ξk, ν ′ := dφ−1

j (qj)ν.

Now, let U = ∆ × Bm and let f : V −→ Bm be the biholomorphism from

the previous proposition. Let {Vδ} be a sequence of subsets of V such that Vδ ↗ V as

δ → 0. Consider the wedge domain

Γrα
(
q′
)
× Vδ,

where Γrα (q′) is a cone contained in the complex plane (z1-plane) normal to ∂Ω at q′,

with angle between its arms and −Re z1-axis α ∈
(
π
2 , π

)
and arms of length r. Let

θ ∈
(
0, π2

)
be chosen so that qj ∈ Γrθ(q

′). Then,

Γrθ
(
q′
)
× Vδ ⊂ Ω
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for r small enough, since ∂Ω is geometrically flat along V . For j sufficiently large,

π (φj (Ω`)) ⊂ Γrα
(
q′
)
× Vδ.

Hence, for j large enough, by using the decreasing properties of the invariant measures,

the following inequalities hold:

CΩ`
U (pj ; ξ

′
1, . . . , ξ

′
m, ν

′)

KΩ
U (pj ; ξ′1, . . . , ξ

′
m, ν

′)
≥
C
φj(Ω`)
U (qj ; ξ1, . . . , ξm, ν)

KΩ
U (qj ; ξ1, . . . , ξm, ν)

≥
C
π(φj(Ω`))
U (qj ; ξ1, . . . , ξm, ν)

KΩ
U (qj ; ξ1, . . . , ξm, ν)

≥
C

Γrα(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

K
Γrθ(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

.

Now, for any j, the volume of ξ′1, . . . , ξ
′
m, ν

′ is non-zero – denote it by µj – so

CΩ`
U (pj ; ξ

′
1, . . . , ξ

′
m, ν

′)

KΩ
U (pj ; ξ′1, . . . , ξ

′
m, ν

′)
=
µj · CΩ`

U (pj ; e1, . . . , em+1)

µj ·KΩ
U (pj ; e1, . . . , em+1)

=
CΩ`
U (pj ; e1, . . . , em+1)

KΩ
U (pj ; e1, . . . , em+1)

,

where {ek}m+1
k=1 is an orthonormal basis for span(ξ′1, . . . , ξ

′
m) by Lemma 3.2.4. Hence,

CΩ`
U (pj ; e1, . . . , em+1)

KΩ
U (pj ; e1, . . . , em+1)

≥
C

Γrα(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

K
Γrθ(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

(call this inequality ∗). Since U , Γrα (q′) × Vδ, Γrθ (q′) × Vδ are domains in Cm+1, by

Lemma 3.2.7,

C
Γrα(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

K
Γrθ(q′)×Vδ
U (qj ; ξ1, . . . , ξm, ν)

=

∣∣∣MC
Γrα(q′)×Vδ(qj)

∣∣∣∣∣∣ME
Γrθ(q′)×Vδ(qj)

∣∣∣ .
Let qj = (qj 1, . . . , qj m+1) = (qj 1, w) := (qj , w), where qj is in the complex plane normal

to ∂Ω through q′, with Re qj < 0, and w ∈ Vδ. Therefore, by Lemma 3.2.11, 3.2.12,∣∣∣MC
Γrα(q′)×Vδ(qj)

∣∣∣∣∣∣ME
Γrθ(q′)×Vδ(qj)

∣∣∣ ≥
∣∣∣MC

Γrα(q′)(qj)
∣∣∣ · ∣∣∣MC

Vδ
(w)
∣∣∣∣∣∣ME

Γrθ(q′)(qj)
∣∣∣ · ∣∣∣ME

Vδ
(w)
∣∣∣ .

Letting j →∞, δ → 0, and so the right-hand side of the above inequality becomes

lim
j→∞

∣∣∣MC
Γrα(q′)(qj)

∣∣∣∣∣∣ME
Γrθ(q′)(qj)

∣∣∣ ·
∣∣MC

V (w)
∣∣∣∣ME

V (w)
∣∣ .
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Since V is biholomorphic to the ball Bm,

lim
j→∞

∣∣∣MC
Γrα(q′)(qj)

∣∣∣∣∣∣ME
Γrθ(q′)(qj)

∣∣∣ ·
∣∣MC

V (w)
∣∣∣∣ME

V (w)
∣∣ = lim

j→∞

∣∣∣MC
Γrα(q′)(qj)

∣∣∣∣∣∣ME
Γrθ(q′)(qj)

∣∣∣ .
Let ωj be the angle between the line segment joining qj to q′ and the −Re z1-axis.

Suppose ωj → ω, where ω ∈ (0, θ). Therefore, by Lemma 3.2.13,

lim
j→∞

∣∣∣MC
Γrα(q′)(qj)

∣∣∣∣∣∣ME
Γrθ(q′)(qj)

∣∣∣ =
θ cos

(
π
2θ · ω

)
α cos

(
π
2α · ω

) −→ 1,

letting r → 0, since that allows θ → π
2
− and α → π

2
+. What does this all mean? It

means that, letting j →∞ in inequaltiy ∗ that

lim
j→∞

CΩ`
U (pj ; e1, . . . , em+1)

KΩ
U (pj ; e1, . . . , em+1)

≥ 1,

and so

CΩ`
U (p̃; e1, . . . , em+1)

KΩ
U (p̃; e1, . . . , em+1)

≥ 1.

Letting `→∞, it follows that

CΩ
U (p̃; e1, . . . , em+1)

KΩ
U (p̃; e1, . . . , em+1)

≥ 1.

Let Ω̃ = Ω∩B(p′; ε). Using the localization properties of the invariant measures (Lemma

3.2.10),

lim
p̃→p′

CΩ̃
U (p̃; e1, . . . , em+1)

KΩ̃
U (p̃; e1, . . . , em+1)

= lim
p̃→p′

CΩ
U (p̃; e1, . . . , em+1)

KΩ
U (p̃; e1, . . . , em+1)

≥ 1.

But, by Lemma 3.2.14,

lim
p̃→p′

CΩ̃
U (p̃; e1, . . . , em+1)

KΩ̃
U (p̃; e1, . . . , em+1)

< 1,

which implies that

1 > lim
p̃→p′

CΩ̃
U (p̃; e1, . . . , em+1)

KΩ̃
U (p̃; e1, . . . , em+1)

≥ 1,

which is a contradiction. Therefore, the assumption was false and so the ∂Ω must be

variety-free at q.
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Theorem 4.4.3 Let Ω ⊂ Cn be a smoothly bounded convex domain. Suppose there

exists a point p ∈ Ω and a sequence {φj} ⊂ Aut(Ω) such that φj(p) → q ∈ ∂Ω non-

tangentially. Then, dimC Sq < n− 1.

Proof. Assume the conclusion isn’t true, i.e. dimC Sq = n−1. The idea is to show that

Condition LTW holds, and then invoke the same argument as in the main theorem to

derive a contradiction. Let V := Sq.

By Proposition 4.3.1, φj → φ : Ω −→ V , where φ is a surjective holomorphic

mapping. Since Ω ⊂ Cn is smoothly bounded and convex, there exists a strongly

(pseudo)convex boundary point p′ , so by Theorem 4.3.4, a sequence {zi} can be chosen

so that φ(zi) → q̃ ∈ V . Now, φ(zi) ∈ V implies that limj→∞ φj(zi) ∈ V , so φj(zi) →

q′ ∈ V non-tangentially in the complex normal direction by Lemma 4.3.6. Let π be the

projection of Ω onto the complex plane normal to V through q′. Since Ω is convex, this

mapping is well-defined and hence holomorphic. Let zji := π(φj(zi)), and let Vj be the

translation of V to zji , i.e.

Vj :=
{
z + (zji − q

′)
∣∣∣ z ∈ V } .

For j large enough, Vj ⊂ Ω. Let z̃ji := φ−1
j (zji ). Then,

dΩ
K(zi, z̃

j
i ) = dΩ

K(φj(zi), z
j
i )

≤ dVjK (φj(zi), z
j
i ) < s <∞

for j large enough. So,

z̃ji ∈ βΩ
K(zi; s),

and, for any ε > 0, by choosing zi sufficiently close to p′,

βΩ
K(zi; s) ⊂ B(p′; ε) ∩ Ω,
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since diamβΩ
K(zi; s)→ 0 as zi → p′ by Lemma 4.1.4.

At this point, repeat the argument in the main theorem. In fact, letting pj := z̃ji

and qj := φj(pj), one can apply that argument verbatim to derive the contradiction.
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Chapter 5

Conclusions

This result supports the truthfulness of the Greene-Krantz conjecture and pro-

vides a partial generalization of the result of Fu and Wong [FW] (it is only partial, since

in their work, the domain considered in C2 was pseudoconvex, whereas the domain con-

sidered here in Cn was assumed to be convex, which is a stronger assumption; also, there

is the assumption of Condition LTW).

There is much work to be done. The result of this dissertation is far from the

Greene-Krantz conjecture in its full generality: The hypothesis is much stronger and the

conclusion is weaker. As a start towards proving the conjecture, here are some problems

the author is interested in pursuing:

Problem 5.0.4 Prove the main result without the assumption of Condition LTW.

The author believes that the main result will hold without the assumption of

this condition, since the condition can be easily proven if it can be shown that φj(a)→

Sq, a ∈ Ω, non-tangentially, which is very reasonable to think to be true.
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Problem 5.0.5 Suppose Ω ⊂ C2 is smoothly bounded and pseudoconvex. Further-

more, suppose there exists p ∈ Ω and {φj} ⊂ Aut(Ω) such that φj(p) → q ∈ ∂Ω

non-tangentially. Then ∂Ω is of finite type at q.

Proving this would be a generalization of Fu and Wong’s result in that a

stronger conclusion would be obtained.

Problem 5.0.6 Suppose Ω ⊂ C2 is smoothly bounded and pseudoconvex. Furthermore,

suppose there exists p ∈ Ω and {φj} ⊂ Aut(Ω) such that φj(p) → q ∈ ∂Ω. Then ∂Ω is

of finite type (or variety-free) at q.

In this problem, the assumption of non-tangential convergence is removed, i.e.

the possibility of φj(p)→ q tangentially is allowed. It is unnatural to have the assump-

tion of non-tangential convergence, so proving a result allowing tangential convergence

would be good progress. Of course, one can not forget the Greene-Krantz conjecture

itself:

Problem 5.0.7 Prove the Greene-Krantz conjecture.
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