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Abstract 

QCD corrections to the electron positron annihilation cross section into hadrons 
and to the hadronic Z boson decay rate are reviewed. Formal developments are 
introduced in a form particularly suited for practical applications. These include 
the operator product expansion, the heavy mass expansion, the decoupling of heavy 
quarks and matching conditions. Exact results for the quark mass dependence 
are presented whenever available, and formulae valid in the limit of small bottom 
mass ( m~ « s) or of large top mass ( mr » s) are presented. The differences 
between vector and axial vector induced rates as well the classification of singlet and 
nonsinglet rates are discussed. Handy formulae for all contributions are collected 
and their numerical relevance is investigated. Prescriptions for the separation of 
the total rate into partial rates are formulated. The applicability of the results 
in the .low energy region, relevant for measurements around 10 GeV and below, is 
investigated and numerical predictions are collected for this energy region. 
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Since experiments at the e+e- storage ring LEP started data-taking a few years ago, and 
by the end of the 1993 run by the four experiments, more than seven million hadronic 
events had been collected at the Z resonance. The accuracy of the measurements is 
impressive. Numerous parameters of the standard model can be determined with high 
precision, allowing stringent tests of the standard model to be performed . Among them: 
the mass Mz = (91.1884±0.0022) GeV and the width Fz = (2.4963±0.0032) GeV of the Z 
boson or the weak mixing angle sin2 e~~r = 0.23143 ± 0.00028 [1]. All experimental results 
were in remarkable agreement with theoretical predictions and a triumphant confirmation 
of the standard model. · 

As well as the electroweak sector of the standard model, LEP provides an ideal 
laboratory for the investigation of strong interactions. Due to their purely leptonic ini­
tial state, events are very clean from both the theoretical and experimental point of 
view and represent the ideal place for testing QCD. From cross-section measurements 
ahad = (41.488 ± 0.078) nbarn [1] as well as from the analysis of event topologies the 
strong coupling constant can be extracted. Other observables measurable with very high 
precision are the (partial) z decay rates into hadrons rhad/fe = 20.788 ± 0.032 and bot­
tom quarks r bb/fhad = 0.2219 ± 0.0017. From the line shape analysis of LEP a value 
a 5 = 0.123 ± 0.004 ± 0.002 is derived. The program of experimentation at LEP is still 
not complete. The prospect of an additional increase in the number of events by a factor 
of about two will further improve the level of accuracy. This means, for example, that 
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the relative uncertainty of the partial decay rate into b quarks .6.fb/fb falls significantly 
below one percent and that. an experimental error for as of 0.003 may be achieved. 

Also at lower energies significant improvements can be expected in the accuracy of 
cross-section measurements. The energy region of around 10 Ge V just below the BB 
threshold will be covered with high statistics at future B meson factories. The cross 
section between the charm and bottom thresholds can be measured at the BEPC storage 
ring in Bejing. These measurements could provide a precise value for as and - even more . 
important- a beautiful proof of the running of the strong coupling constant. 

In view of this experimental situation theoretical predictions for the various observables 
with comparable or even better accuracy become mandatory and higher-order radiative 
corrections are required. It seems appropriate to collect all presently available calculations 
and reliably estimate their theoretical uncertainties. The aim of this report is to provide 
such a review for the QCD sector of the standard model, as far as cross-section measure­
ments are concerned, at the Z peak as well as in the 'low energy' region from. 5 to 20 
GeV. (Related topics have been also discussed in recent reviews [2].) Higher-order QCD 
corrections to the e+e- annihilation cross-section into hadrons will be discussed as well as 
the hadronic width of the Z boson. Further interest lies in the partial rates for the decay 
of the Z boson into specific quark channels. Of particular importance is the partial width 
f(Z--+ bb), as this quantity can be measured with high accuracy and provides important 
information about the top quark mass from the Zbb vertex. However, the decomposition 
of rha.d into partial decay rates of different quark species is possible in a simple, straight­
forward way only up to corrections of the order of O(as)). Apart from diagrams where 
'secondary quarks' are radiated off the 'primary quarks' one encounters flavour singlet 
diagrams that first arise in order O(as) 2) and lead to a confusion of different species. 
They therefore have to be carefully scrutinized. 

For many considerations and experimental conditions quark masses can be neglected, 
compared to the characteristic energy of the problem. Accordingly, higher-order QCD 
corrections to the total cross-section were first calculated for massless quarks. At LEP 
energies this is certainly a good approximation for u, d, s and c quarks. In view of the 
accuracy reached at LEP much effort has been spent in estimating the size of mass effects 
of the bottom and the top quark,. Whereas b quarks are present as particles in the final 
state, top quarks can appear only through virtual corrections. A large part of this report 
is devoted to these effects. The application of these formulae and, if necessary, their 
numerical evaluation will also be covered. 

In Part 2 topics of a general nature are addressed. In Section 2.1 the notation is 
introduced and the relation between cross-sections and decay·rates on the one hand and 
the corresponding current correlators on the other is discussed. Furthermore, the clas­
sification of singlet versus nonsinglet terms is introduced. The behaviour of coupling 
constant, masses, operators and correlators under renormalization group transformations 
is reviewed in Section 2.2 and the relevant anomalous dimensions are listed. The decoup­
ling of heavy quarks and the resulting matching conditions for coupling constant masses 
and effective currents are treated in Section 2.3. Numerical values of quark masses are 
discussed in Section 2.4. Part 3 is concerned with calculational techniques relevant to the 
problems at hand. Emphasis is put on the behaviour of the current correlators at large 
momenta, the structure of mass corrections in the small mass limit and the resummation 
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of large logarithms of m2 Is. And the other extreme, with slm2 « 1 also dealt with in 
this Part, which concludes with a discussion of ; 5 in D i= 4 .dimensions. 

The analytical first-order QCD corrections to the cross-section are recalled in Part 4. 
Approximations in the limits of low and high energies are given. 

Nonsinglet and singlet contributions to the QCD corrections are presented in Parts 5 
and 6, respectively, and the relevant formulae for various applications are given. First, the 
calculations are reviewed for massless quarks. This assumption is evidently not justified 
for the heavy top top mass, which appears as a virtual particle. Top mass corrections are 
described in Section 5.2. The dependence on the mass of the final-state quarks is given 
in Section 5.3. At low energies not only do the leading quadratic mass terms have to be 
taken into account, but quartic mass terms also become relevant. They are presented in 
Section 5.4. The influence of secondary quark production on determinations of the partial 
rate is treated in Section 5.6. Recent resuts for the second order QCD corrections valid 
for arbitrary m 2 Is are discussed in Section 5.5. 

Flavour singlet contributions are discussed in Part 6. They arise for the first time in 
second order for the axial-induced rate and in third order for the vector current-induced 
rate. O(a~) singlet corrections would be absent for six massless flavours, but do not 
vanish due to the large mass splitting in the (b, t) doublet. Massless contributions and 
bottom-mass corrections from singlet diagrams are covered in Sections 6.1 and 6.2 re­
spectively. The assignment of the singlet contributions to a partial rate into a specific 
quark flavour is explained in Section 6.3. and the resulting ambiguity is discussed. In 
Part 7 the numerical relevance of the different contributions are studied. Different sources 
of theoretical uncertainties are investigated and their size estimated. 

A collection of formulae is presented in the Appendix. It provides an overview and 
may serve as a quick and convenient reference for later use. 

2 General Considerations 

2.1 Notations 

2.1.1 Cross-Sections and Decay Rates 

We introduce our notations by casting the total cross-section for longitudinally polarized 
e+e- into hadrons in leading order of the electroweak coupling as: 

O"R 
L 

47fa
2 

{ (ve =F ae? I s 1

2 
Rv + RA 

3s y2 s- Mi +iMzfz y2 

+2Qe Ve =F aeRe [ M2 s "M r l Rint + Q;Rem}' 
y s- z+'l z z Y 

with the weak couplings defined through 

Vj = 21{- 4Qj sin2 8w, af = 21{, y = 4sin8w COS8w. 

(1) 

(2) 

Rand L denote the electron beam polarization (positrons are assumed to be unpolarized). 
The functions Rk with k = V, A, em, int are the natural generalization of the Drell ratio 
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R = Clhad/ CJpoint = Rem, which is familiar from purely electromagnetic interactions at lower 
energies. They are induced by the vector and axial couplings of the Z boson, the pure 
QED part and an interference term. In the massless parton model they are given by 

Here the sum extends over all flavours f. 

Rint = 3 LQJVf. 
f 

(3) 

The hadronic decay rate of the Z can be expressed in a way similar to the incoherent 
sum of its vector- and axial vector-induced parts: 

f~ad = fV +fA 

= a M z ( R v + RA) . 
3 y2 

Alternatively one may express ajy2 through the Fermi constant 

a GpM~ 
y2 87rv'2 

(4) 

(5) 

and absorb the large logarithms from the running of QED. These formulae are equivalent 
for the present purpose, where higher-order electroweak corrections are ignored. 

All relevant information needed for the correction factors Rk is contained in the current 
correlation functions 

(6) 

with (i,j) = (V, V), (A, A), (em, em), (em, V) fork= V, A, em, int respectively. The cur­
rents under consideration are defined through 

(7) 

where the sum extends over all six flavours. 
The relation between the cross-section Clhad and the corresponding current correlator 

is closely connected to the analytic properties of IIpv· After the Lorentz decomposition 
into the functions I11 and II2 , only I11 enters the cross-section, since the contraction of 
qpqvii2 with the lepton tensor is suppressed by the electron mass. The threshold energies 
for the production of fermion pairs are branch points of the vacuum polarization, and 
I11 ( -s) is analytic in the complex plane cut along the real positive axis. For energies 
above the lowest-lying threshold ( s = 4m2) the function I11 ( s) is discontinuous when s 
approaches the real axis from above and below. The optical theorem relates the inclusive 
cross-section and thus the function R( s) to the discontinuity of I11 in the complex plane 

1211" . 67ri . . 
R(s) =-- Imii1( -s- zE) = -[II1( -s- zc)- II1( -s + zc)], (8) 

s s 
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where Schwarz's reflection principle has been employed for the second step. Conversely,' 
the vacuum polarization is obtained through a dispersion relation from its absorptive part. 
Applying Cauchy's theorem along the integration contour of Fig. 1 leads to: 

_1_fds'I11(-s') = .!_ roo ds'ImiTI(-s'- ic:) mod sub 
27ri s'- s 1r lo s'- s 

- ~2 roo ds'-8-

1 

-R(s') mod sub, 
121r lo s'- s 

(9) 

No subtraction is needed if 111 ( -s) vanishes at infinity, since the large circle does not 
contribute to the integral in this case. If the spectral function is only bounded by sn at 
large distances, one may apply the dispersion relation to the function llr/ sn+I. This is 
achieved by n + 1 subtractions. For example, a twice-subtracted dispersion relation has 
to be applied for rrl ( -s)' is given by 

The absorptive part is not affected by these subtractions. For the vector current 111 (0) 
vanishes as a consequence of current conservation and the second subtraction corresponds 
to charge renormalization. 

Let us add an additional remark concerning the applicability of perturbative QCD 
for the calculation of radiative corrections to the cross-section ahad· Experimental e+e­
data are taken in the physical regime of timelike momentum transfer q2 > 0. This region 
is influenced by threshold and bound state effects which make the use of perturbative 
QCD questionable. However, perturbative QCD is strictly applicable for large spacelike 
momenta (q2 = -Q2 < 0), since this region is far away from non-perturbative effects due 
to hadron thresholds, bound state and resonance effects [3]. Therefore, reliable theoretical 
predictions can be made for 111 ( Q2 ) with Q2 > 0. To compare theoretical predictions and 
experimental results for time-like momenta, one has to perform suitable averaging proced­
ures [4]. For large positives one may appeal to the experimentally observed smoothness of 
Rasa function of sand to the absence of any conceivable non-perturbative contribution. 

For later use it is convenient to introduce the Adler function 

(10) 

It is related to R through a dispersion relation which allows a comparison between the 
perturbatively calculated Adler function ( Q2 > 0) and the experiment if the cross-section 
R is known over the full energy scales' > 0: 

(11) 

The relation inverse to Eq. ( 11) finally reads 

- _1_1-s+ie zD(Q2) 
R(s)-

2 
. . dQ QZ . 

1r'l -s-tE 
(12) 
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Figure 1: Contour integral. 

Diagrammatically1 current correlators are depicted as vacuum polarization graphs. 
Their absorptive parts are obtained from the sum of all possible cuts applied to the 
diagram (see Fig. 2). This means- according to Cutkosky's rule- that the absorptive 
part of a Feynman integral is obtained, if the substitution 

2 

1
2 

. -+ -27riO(p2 
- m 2 )B(p0 ) 

p -m +u: 
(13) 

is applied to those propagators associated with to the cut lines of the corresponding 
Feynman diagram. Calculating the two-point correlator and taking its absorptive part is 
equivalent to the evaluation of the matrix element squared with a subsequent integration 
over the phase space of the final-state particles. The former method has some advantages. 
Although the vacuum polarization graph contains one loop more than the amplitudes in 
the direct calculation of the rate, the problem is reduced to a propagator type integral, for 
which quite elaborate techniques have been developed and implemented in corresponding 
computer packages. Furthermore, the occurance of infrared divergences is naturally cir­
cumvented, since virtual and bremsstrahlung corrections correspond only to different cuts 
of the same diagram and hence are combined in the same amplitude. The cancellation of 
infrared divergences is therefore inherent in each diagram. Depending on the cut, final 
states with a different number of particles are represented by the same diagram, as is 
shown in Fig. 2. 

2.1.2 Classification of Diagrams 

Higher-order QCD corrections to e+e- annihilation into hadrons were first calculated 
for the electromagnetic case in the approximation of massless quarks. Considering the 
annihilation process through the Z boson, numerous new features and subtleties become 
relevant at the present level of precision. 

The different charge and chiral structure of electromagnetic and weak currents respect­
ively has already been addressed in the previous section: The functions Rk as defined 
above were classified according to the space-time structure of the currents (vector versus 
axial vector) and their electroweak couplings. Another important distinction, namely 
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Im + 

+ + 

Figure 2: The absorptive part of a current correlator is obtained by cutting the diagram 
in all possible ways. 

'singlet' versus 'non-singlet' diagrams, originates from two classes of diagrams with in­
trinsically different topology and resulting charge structure. The first class of diagrams 
consists of non-singlet contributions with one fermion loop coupled to the external cur­
rent. All these amplitudes are proportional to the charge structures given in Eq. (3), 
consisting of a sum of terms proportional to the square of the coupling constant or the 
trivial generalization in the interfence term Rint. QCD corrections corresponding to these 
diagrams contribute a correction factor independent of the current under consideration 
as long as masses of final state quarks are neglected. Singlet contributions arise from a 
second class of diagrams where two currents are coupled to two different fermion loops 
and hence can be cut into two parts by cutting gluon lines only (see Fig. 3). They cannot 
be assigned to the contribution from one individual quark species. In the axial vector 
and the vector case the first contribution of this type arises in order O(a5 )

2
) and O(as)3

) 

respectively. Each of them has a charge structure different from the one in Eq. (3). The 
lowest order term is therefore ultraviolet finite. Furthermore, singlet contributions are 
separately invariant under renormalization group transformations. These diagrams are 
obviously absent in charged-current-induced processes like the W decay. 

The functions Rk are therefore conveniently decomposed as follows: 

(14) 

It will be shown below that r~ (!, f') is independent off and f' (meaning the respective 
quark masses) up to terms of order a;m~/ s, where q stands for one of the five light quarks. 
Hence 

Rv "'3 [ ~:V}r~s(f) + (~:Vtl'ri ]· (15) 

The functions r£;8 and r¥_ are independent of the quark charges and arise identically in 
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Figure 3: Singlet contribution of order O(as)2
) and O(as) 3

). 

the decompositions of Rint and Rem: 

Rint = 3 L VJQfr~8 (!) + L VJQJ'r~ (!, f')l 
f f,f' 

~ 3 L VJQfr~8 (!) + (L VJ )(2: Qf' )r~J 
f f f' 

Rem = 3 LQ}r~g(f) + LQJQJ'r~(f,J')l 
f f,f' 

~ 3 2:::Q}r~8 (!) + (LQ,?r~J 
f f 

(16) 

A similar decomposition can be derived for RA: 

RA = 3 L a}r~8 (!) + L afaf'r~(f, !') (17) 
f f,f' 

In the limit of massless u, d, s and c quarks the second term receives contributions from 
j, f' = b or t only, or - more precisely - the light quarks compensate mutually. The 
advantage of this decomposition becomes even more manifest in the limit m~/ s --+ 0. Then 
the nonsinglet functions r~s and r~s are identical and the corrections for non-vanishing, 
but small, masses are easily calculated. 

2.2 j3 Function and Anomalous Dimensions 

In this section several aspects of the renormalization procedure in QCD are recalled, 
which will be of importance for the subsequent calculations. The renormalization of vari­
ous currents and the corresponding current correlators will be considered. Green functions 
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with the insertion of two external currents require subtractive renormalization. The cor­
responding renormalization constants lead to anomalous dimensions for the correlators. 
The presentation will be rather short, and for more detail the reader should consult, for 
example, Refs. [5, 6, 7, 8]. 

2.2.1 Renormalization in QCD 

The QCD Lagrangian is given by 

.C{<P;,2:,J.l} .C{A~, w, w,ca,Ca;g,m,~,J.l} 

- -~Ga GJJ.V + w(i 171- m)w + _cGF + _cFP 4 ~ a ~ ' 
(18) 

(19) 

Here !abc are the structure constants of the colour SUc(3) group,~ is the gauge parameter, 
G~v is the gluon field strength tensor and ca is the ghost fields, with 

GF 1 2 FP ( -.C = - 2~ (8vAv) and .C = Op.C)"V p.C. (20) 

The quark masses are denoted as m = {mq}; w = {"Wqlq = u, d, s, c, b, t} represents the 
quark fields; while <P stands for the collection of all fields, and :2: = {g, m, 0 for the 
'coupling constants'. Anticipating the use of dimensional regularization, the unit mass 
J.l has been introduced in (18) to keep the coupling constant g dimensionless even if the 
Lagrangian is considered in D = 4 - 2€ dimensions. 

A convenient representation of all (connected) Green functions is provided by the 
generating functional 

Zc(I; <P) = {j[d<P] exp (if+ <P · <P)} c , (21) 

with the normalization condition Zc(I, 0) = 1. Here the action 

J(<P,,2:,J.l) = j .C(<P,,2:)dx (22) 

and the functional integration is to be understood in the standard manner within the 
perturbation theory framework. 

Finite Green functions can be constructed from the Lagrangian Eq. (18) in three 
equivalent ways: The first method is based on the renormalized Lagrangian, obtained 
from the original one by a rescaling of fields and parameters, expressing them in terms of 
renormalized quantities: 

10 



The explicit form of the renormalization constants depends on the renormalization scheme 
adopted. The most powerful method, which is particularly suitable for applications in 
QCD, the procedure of dimensional regularization [9, 10] and minimal subtraction [11] 
is nowadays widely used. After continuation of the Feynman integrals to D = 4 - 2c 
space-time dimensions divergences reappear as poles in c. The renormalization constants 
may then be expanded in the coupling constant 

O<j~i (a )i 1 z = 1 + L Zij _!_ j . 
. . 1r € 
t,J 

(24) 

In the minimal subtraction scheme (we will use the MS-scheme [12] throughout in this 
work) the coefficients Zii are just dimensionless constants. There exists a choice of the 
renormalization constants such that every Green function of elementary fields computed 
with the help of £R is finite in the limit c --+ 0 in every order of perturbation theory. 
Hence, too, the generating functional 

Zc(IR; <P) with /R = j £Rdx (25) 

is finite in every order of perturbation theory. 
An example of a renormalized finite Green function obtained from £R is the two-point 

function of two quark fields, namely the renormalized quark propagator 

S(p,g,m,Jl) = i j deipx(OI T [q(x)q(O)] IO), 

whose contribution will serve to define the quark field renormalization constant Z2 • 

A second calculational method is based on the bare Lagrangian 

LB{ ~s; ,2:B} =£{iPs; 9:s' 1} 

and the resulting generating functional of bare Green functions 

Zc(/B; <PB) = {j [d<PB] exp (i/B + <Ps · <PB)} c , 

with the bare action 
/B(<PB,,2:s) = J £s{<PB,,2:B,1}dx., 

The functional change of variables 

(26) 

(27) 

(28) 

(29) 

As,JL = (Z3) 1
/
2 A~, 'Ills= (Z2) 1

/
2'1j;, 'Ills= (Z2) 1

/
2w, CJ3 = (Z3) 1

/
2Ca (30) 

leads to the immediate conclusion that 

(31) 

provided bare and renormalized sources and parameters are related through 

(32) 

11 



and 
9B = JJEZgZ3 112 Z2 1g' ms = ZmZ2 1m' ~B = (Zs)-1 Ze~. (33) 

The bare Green function corresponding to Eq. (26) is given by 

Ss(p, gs, ms) = i j dxeipx(OI T[qa(x)qa(O)] IO). (34) 

Equations (26) and (34) show that after having introduced a renormalized coupling con­
stant, masses and gauge-fixing parameters, all remaining divergences of the Green function 
can be eliminated by wave function renormalization: 

S(p, g, m, JJ) = Z21Ss(p, ga, ms). (35) 

A third way of obtaining finite Green functions is based on the so-called R-operation 
-a recursive subtraction scheme- to remove ultraviolet (UV) divergences from a given 
(arbitrary) Feynman integral in a way compatible with adding local counterterms to the 
Lagrangian1 . Using the R-operation the renormalized generating functional (25) can be 
conveniently presented in the form: 

Zc(IR; «P) = Z~(I; «P) = RMs {j[d«P] exp (if+ «P · «P)} c (36) 

2.2.2 Running Coupling Constant and Masses 

In comparison with the classical Lagrangian (18) (now considered in the physical D = 4 
number of space-time dimensions) the renormalized one (23) depends on an additional 
parameter - the 't Hooft unit mass JJ. This naturally leads to the well-known renor­
malization group (RG) constraint: any physical prediction (that is me_9.Surable at least in 
principle) obtained with the help of (23) must not depend on the value of 1-l provided bare 
fields and parameters are kept fixed. If P(a5 , m, ~-t) denotes a physical quantity computed 
with the Lagrangian (23) then it must meet the RG equation 

2 d ) -J1 d~-t2 P(a5 ,m,J1 =0, (37) 

where 

(38) 

or, equivalently, 

2 d 2 a . a _ 2 a 
1-l d 2 = J1 a 2 + 7r/3(as)-a +2m lm(o.s) ~2 . 

J1 1-l ~ um 
(39) 

Note that we follow the common convention by denoting 

g2 
Cts =-. 

47r 
1 A good pedagogical introduction to the apparatus of the R-operation in the MS-scheme and its 
applications may be found in Refs. [6, 13]. 
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In addition, in complicated formulae we shall for brevity use the couplant a defined as 

The ,8-function and the quark mass anomalous dimension 'Ym are 

(40) 

d (a )i+l 
J.t2d 2m(J.t)igB,mB = m(J.thm(as) = -mL,"(:n __!_ 

It i2:0 7r 

( 41) 

Their expansion coefficients to three loops are well known [14, 15] and read (n1 is the 
number of quark flavours; note that the results ( 42) and ( 43) have been recently confirmed 
in Refs. [16, 17] respectively) 

(42) 

'Y! = 1' 'Y~ = (2~2 - 290 nf) /16' 

{ [
2216 160 ] 140 } 'Y~ = 1249- 27 + 3 ((3) n1- 8l n} /64. 

( 43) 

According to (40) and (41) both the minimally renormalized coupling constant g and 
quark mass mq run (that is depend on) with It· This demonstrates clearly that g and m are 
just parameters entering the QCD Lagrangian and that their connection to measurable 
physical quantities is not direct. In this sense the MS renormalization scheme is not 
unique or distinguished by physical consideratio~s. However, it allows one to employ 
the RG equation (37) in order to efficiently and conveniently 'improve' the perturbation 
expansion by neatly summing up potentially dangerous logarithms of momenta and masses 
appearing in higher-orders. 

Indeed, in any necessarily finite order of perturbation theory, the master RG Eq. (37) 
is met only partially: that is, its r.h.s. does not vanish but rather is a polynomial in the 
coupling constant that includes only terms of order higher than the one taken into account 
in the calculation of P. If additionally the characteristic scale Q on which the physical 
quantity P depends is taken large, then, as is well known, the general structure of P may 
be visualized as follows - it is understood that the P starts from an as independent 
constant, with all power (suppressed) mass effects are neglected for the moment-

(44) 

Even if a renormalization prescription has already been specified, there remain two prob­
lems: the residual J.t dependence and the invalidation of the perturbation expansion by 
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large logarithms of Q irrespective of the smallness of the initial value of the coupling 
constant. The well-known solution of both problems is to fix the value of 11 to be of order 
Q or, in many cases, just equal to Q. Such a prescription clearly eliminates the dangerous 
momentum logs and, as a side effect, helps to specify the value of 11 . 

Of course, the above consideration cannot fix the 11 value exactly. In other words, in 
the limit of asymptotically large Q the choices of 11 = Q or 11 = v'2Q are· mathematically 
equivalent but still generally lead to slightly different predictions. A considerable amount 
of literature discussing this ambiguity exists and various recipes for overcoming it have 
been suggested (we cite only a few of them [18, 19, 20, 21, 22, 23]). Below, a commonly 
accepted and pragmatic approach will be adopted: the MS scheme will be chosen with 
11 set to a characteristic momentum of the problem at hand and, finally, 11 will be varied 
somewhere around the scale to test the sensitivity of the result with respect to not-yet­
computed corrections of higher order. 

In what follows we will always identify the MS quark mass with the running one and 
occasionally denote the latter with a bar. If not stated otherwise a running mass without 
an argument will be understood as taken at scale 11; so that 

We finish this subsection by writing out the explicit solution for the running as and 
quark mass. The solution of Eq. (40) reads (L = ln 112

/ A~8 ) 

as(ll) = _1_ { 1 __ 1_ (31ln L + ~ [J3~ (ln2 L -ln L _ 1) + f32]} (45) 
1r f3oL f3oL f3o f3oL 2 f3o f3o 

while Eq. ( 41) is solved by 

(46) 

2.2.3 MS Mass Versus Pole Mass 

There are situations where it is convenient to deal with quark mass definitions different 
from that given by the MS scheme. For instance, for very heavy quarks a non-relativistic 
description is believed to be relevant. In this case the pole mass seemingly should be 
used. The pole mass Mq presents a gauge-invariant, infrared-finite, scheme-independent 
object which is defined as the position of pole of a renormalized quark propagator. It 
shoulli be heavily emphasized that by definition the renormalized quark propagator is to 
be understood in a strictly perturbative framework. 
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There is the firm belief that non-perturbative effects should change significantly the 
pole structure of the propagator of even a quite heavy quark. This belief has been sup­
ported by the recent observation [24] that there are some non-perturbative effects in the 
heavy quark propagator which defy their description in terms of familiar vacuum con­
densate contributions. However, with the qualification above, the pole mass remains a 
valuable characteristic of heavy quark masses. 

The explicit relation between both masses was obtained in Refs [25, 26, 27, 28, 29, 30]. 
The most advanced calculation presented in Ref. [29] leads to the following result: 

M { 1- as(f.l) [~ + ln L] 
- q 1r 3 M2 

q 

_ [as(f.l)l 2 

[K (M) _ 16 + (157 _ nf 13) ln.!!!_+(~_ nt) ln2 L] 
. 1r q 9 24 36 .iV!J 8 12 MJ 

+ O(a~)} , (47) 

with M = {Mt} and 

K (M) = 3817 + ~(2 + ln 2)((2)- ~((3)- nt [((2) + 71] + ~ 2: ~(Mt) 
q 288 3 6 3 48 3 1 Mq ' 

(48) 

and ~(r) being a complicated function of r. For our aims it is enough to know that it 
has the limiting behaviours [30]: 

~(r) 

~(r) 

r-too 

r-+0 

1 13 1 151 
41n2 r + 

24 
ln r + 4((2) + 

288 
+ O(r-2 ln r), 

3 

4 r((2) + O(r2
) , 

with ~(1) = ~((2)- £. Numerically Eq. (48) reads 

· Kq = 16.00650- 1.04137 n1 + ~ ~ ~ ( ~) 

or, equivalently, 

Kq = 17.1514-1.04137 nt +~I:~(~). 
J#q q 

If 0 ~ r ~ 1 then the function ~(r) may be conveniently approximated as follows 

7r2 

~(r) = 8 r- 0.597 r2 + 0.230 r 3 

which is accurate to 1%. 
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2.2.4 External Currents 

So far we have addressed the properties of Green functions of elementary fields. The 
discussion may be extended to Green functions with insertions of composite operators, 
for which we want to consider at first various external currents coupled to quark fields. 
Let 

j(x) = q'(x)fq(x) (54) 

denote a general current where r stands for an arbitrary combination of 1-matrices. Green 
functions with the insertion of one current j remain in general divergent even after wave 
function renormalization of all elementary fields, coupling constants and masses. The 
remaining divergence is removed by multiplicative renormalization: 

(55) 

where 

(56) 

The renormalized Green function GJn) with insertion of the external current j(O) is 
given by 

j (g dyieip;y;) ( Ol T JR(O) g q>i(Yi) IO) c (57) 

j (8 dy;e;""') {J [dil!J exp (i j dx£R { i!>(x)})jR(O) g il>;(y;)}' 

The bare Green function is defined through the insertion of the bare current 

(58) 

and in an analogous manner 

G(n)( ) -j,B p,mB,gB,E - j (g dyieip;y;) ( Ol T JB(O) g q>s,i(Yi) IO) (59) 

J (g dyieip;y;) j[d~]B exp (i J dx.CB{q>B(x)} )jB(O) g q>B,i(Yi) · 

Comparing eqs.(57) and (59) one may relate bare and renormalized Green functions 

n 

c)n) (p, m, g, J-l, E) = (Zj/Z2) II (Zi)- 112 G)~~(p, fiB, 9B, E). (60) 
i=l 

The connection between the renormalized and the bare Green functions allows the deriv­
ation of the current renormalization constant Zi and its anomalous dimension 

2 d (zj) 
'Yi = J-l dJ-L2 ln z2 . (61) 
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The relation between bare and renormalized quark propagator Eq. (35) can be combined 
with Eq. (60) employed for the special case of the vertex function 

G)2l(PI,P2) = i 2 j dyldy2eiPlYl-iP2Y2 (0i T q(yi)j(O)q(y2) IO), (62) 

to discuss the renormalization of scalar, pseudoscalar, vector and axial vector currents 
respectively: 

. _, 
Js = q q' 

. _,. 
Jp = q 'l'"'fsq' (63) 

For the diagonal vector current j~ = (j'"'(J-tq the Ward-Takahashi identity 

(64) 

can be employed. A corresponding identity relates the bare vertex function with the bare 
quark propagator in the same manner, which implies in view of Eqs. (35) and (60) for the 
renormalization constant and the vector current anomalous dimension 

Zv = Z2 , 'Yv = 0 . (65) 

These identites are valid also for a nondiagonal vector current j~ = q''YJ-tq composed of 
two different quark fields, because Zv does not depend on the quark mass. 

In the case of the axial vector current one may, in a first step, ignore the axial anomaly 
and assume a Hermitian, anticommuting 'Ys ( 'Y~ = 1, { 'Ys, 'YJ-t} = 0). As long as diagrams 
are considered which involve either nondiagonal axial currents or diagrams without traces 
with an odd number of 'Ys matrices, these assumptions are justified and lead to 

(66) 

The more involved discussion of the correct treatment of 'Ys in D dimensions is given 
below in Section 3.5. 

The quark propagator and the two-point Green function with a scalar current insertion 
are related by 

(67) 

From the comparison of this identity with the analogous identity for the bare Green 
functions one then obtains 

(68) 

The scalar current therefore has a non-vanishing anomalous dimension. This result holds 
true also for nondiagonal currents. 

With the same qualifications as discussed above for the axial vector current and with 
similar arguments one obtains for the pseudoscalar current 

(69) 

Whereas neither scalar nor pseudoscalar currents are RG invariant, this holds true for the 
b. t" .SjP ·S/P · com ma IOns mBJB = mRJR . 
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2.2.5 Current Correlators 

The renormalization properties and anomalous dimensions of the two-point current cor­
relators, defined as the vacuum expectation value of the time-ordered product of the re­
spective currents, will be discussed in this section. In coordinate space the renormalized 
correlator of a nondiagonal current j = q'rq is given by 

fii(x, g, m, m', J-L) = (OI T j(x)jt(o) !O). 

The masses of the quark fields q and q' are denoted by m and m' and all other quarks are 
assumed to be massless. The correlator contains two renormalized composite operators 
and hence is finite in the limitE ---7 0 as long as x =f. 0. However, in the vicinity of the point 
x = 0 this function does exhibit singularities which are not removed by renormalization 
of the coupling constant, the quark masses, the quark fields and the current as discussed 
above. In momentum space the renormalized polarization function 11j ( q, g, m, m', J-L) is 
thus obtained from its bare counterpart by adding new renormalization constants. For 
the vector current correlator two independent constants appear: 

IT~v(q,g,m,m',J-L) i j dxeiqx(Oi T j~(x)J!(O) !O) = J-L2EIT~,JL)q,gB,mB,m~) 

( 
2 vv 1 ( 12 vv 1 + QJLQv- gJLvQ )Zq 16?T2 + gJLV m- m) zm 16?T2 . (70) 

The transversality of the polarization operator for m = m' is explicitly taken into ac­
count. The factor J-L2

E is introduced in order to make the dimension of the function 
IT~v(q, g, m, m', E) independent of E and the factors 1/(16?T2) have been introduced for 
convenience. 

The subtractive renormalization constants z'(v, Z;::' can be expanded in the coupling 
constant and have the following form in the minimalsubtraction scheme: 

zvv 
q 

zvv 
m 

L (Z~)ij (as)i ~ ' 
O~j-l::;i 1T E 

L (Z~)ij (as)i ~ . 
O~j-l~i 1T E 

(71) 

The dimensionless expansion coefficients (z'(v)ij and (Z;::')ij are pure numbers. The 
quadratic dependence of the subtractions in Eq. (70) on the momentum q and the quark 
masses is a trivial consequence of the mass dimension of the function IT~v and the fact 
that renormalization constants are polynomial in masses and momenta [31]. 

Applying J-L2 d~2 to both sides of Eq. (70), one obtains the RG equation 

2 d V ( I ) ( 2 VV 1 ( /)2 VV 1 
J-L dJ-L2ITJLv q, g, m, m 'J-L = qJLqv- gJLvq )!'q 16?T2 + gJLv m- m 'Ym 16?T2' (72) 

with the anomalous dimensions 

(73) 
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After insertion of Eq. (71) one observes that , ... ;iv and"!':/: are already completely determ­
ined by the coefficients of the simple poles 1/ € in the expansion of the renormalization 
constants: 

For the axial current correlator 

the renormalization properties correspond to those of the vector case, since 

IT~v(q, g, m, m', J.L) = IT~v(q, g, ±m, =fm', J.L), 

which leads to the equivalent RG equation 

2 d A ( 1 ) ( 2) AA 1 ( ')2 AA 1 
f..£ df..£2 ITJ.Lv q, g, m, m 'f..£ = qJ.Lqv - 9J.Lvq 'Yq 167f2 + 9J.Lv m + m 'Ym 167f2 ' 

with 

(74) 

(75) 

(76) 

(77) 

"(:A="(~, "f!A = "!':/:. (78) 

Similar considerations apply to the two-point correlation function of pseudoscalar currents 

(79) 

The subtractive renormalization of the bare correlator (we limit ourselves below to the 
massless case) 

ITP(Q2, g, J.L) = (Zm)2J.£2£fi~(Q2, 9B) + Q2 z:P 1:7f2 

leads to the RG equation 

with the anomalous dimension 

The scalar current correlator 

IT8 = i J dxeiqx(Oi T Js(x)j~(O) IO) 

and the pseudoscalar current correlator are related in a simple manner: 
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For vanishing quark masses scalar and pseudoscalar current correlators are therefore 
identical: rrs = IIP. 

The axial vector and pseudoscalar correlators are connected through the axial Ward 
identity 

(85) 

where the vacuum expectation values on the r.h.s. are understood within the perturbation 
theory framework. Equation (85) leads to the following relation between the corresponding 
anomalous dimensions [32]: 

'Y!A := -'"'(;p (86) 

This relation was used in Ref. [32] in order to find the anomalous dimension 'Y!A at the 
a; order starting from the results of Ref. [33]. 

2.3 Decoupling of Heavy Quarks 

This section deals with the issue of heavy quarks decoupling when MS-like renormalization 
schemes are employed. The matching conditions relating the parameters of minimally 
renormalized theories describing the physics well below and above a heavy quark threshold 
are formulated and a short discussion of power-suppressed effects is given. 

2.3.1 . Decoupling Theorem in MS-like Schemes 

Masses of known quark species differ vastly in their magnitude. As a result, in many 
QCD applications the mass of a heavy quark h is much larger than the characteristic 
momentum scale Js intrinsic to the physical process. In such a situation there appear 
two interrelated problems when using an MS-like scheme. 

• First, one has two large but in general quite different mass scales, Js and mh, and 
thus two different types of potentially dangerously large logarithms. The standard 
trick of a clever choice of the renormalization scale Jt is no longer effective; one can 
not set one parameter Jt equal to two different mass scales simultaneously. 

• Second, according to the Appelquist-Carrazone theorem [34] heavy particles should 
be eventually 'decoupled' from low-energy physics2

. However, a peculiarity of mass­
independent renormalization schemes is that the decoupling theorem does not hold 
in its naive form for theories renormalized in such schemes: the effective QCD action 
to appear will not be canonically normalized. Even worse, large mass logarithms in 
general appear when one calculates a physical observable! (See the example below.) 

Fortunately, both problems are controlled once a proper choice of the expansion para­
meter is made and the renormalization group improvement is performed [35, 36, 37] 

2It should be stressed that the statement is literally valid only if power-suppressed corrections of order 
(s/m~)n with n > 0 are neglected. It is also understood that the effective Lagrangian without 
the heavy quark field remains renormalizable. Fortunately, the QCD Lagrangian (18) meets this 
demand. The standard model however, does not fulfil this requirement. This leads to the 
well-known deviations from the theore~ such as them; effects in r(Z-+ bb) or the p parameter. 
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In order to be specific, consider QCD with nj = n 1 - 1 light quarks '1/J = { 'l/J1Il = 1-n/} 
with masses m = {mdl = 1-nj} and one heavy quark h with mass mh. 

The respective action I ( W, h, h, g, m, mh, J1) is determined by integrating over the 
space-time the Lagrangian density 

(87) 
+ terms with ghost fields and the gauge-fixing term. 

In the condensed notation of Section 2.2 the collection of fields ~ is now decomposed 
as~= {W,h,h} with W = {'1/;,'1/;,A~}. The (renormalized) generating functional of 
(connected) Green functions of light fields may now be written as 

Z~(I; ~' s) = RMs {j[dwdhdh] exp (if+ w · ~ + J · s)} . 
. c 

(88) 

Here RMs is the ultraviolet R-operation in MS-scheme. ~ and s are sources for the (light) 
elementary fields from W and for an external quark current J = '1/;f'l/; respectively. For 
the sake of notational simplicity we shall proceed in the Landau gauge and ignore the 
ghost field variables. 

Integrating out the heavy quark should transform the generating functional (88) to 
that corresponding to the effective QCD with nj remaining quark flavours plus additional 
higher dimension interaction terms suppressed by powers of the inverse heavy mass. The 
_current J as well as any other composite operator will generically develop a non-trivial 
coefficient function even if one neglects all power-suppressed terms. 

In a more formal language the result of integrating out the heavy quark may be 
summarized in the following master expansion for the generating functional ( 88): 

Z~(I; ~' s) mh~oo RMs { j[dw] exp [ileff(w,g) + w' · ~' + (J'zi + ~ m~~-3 Jn) ·sll]} c , 

(89) 
where the sum is performed over operators constructed from the light fields, with the 
quantum numbers of those of the initial current J and of mass dimension On. The effective 
action Jeff ( ~, g) can be written as 

eff( ) ( 1 ')I ""J ZnOn(x) I W, g = I W , g h=O + L...., dn _ 4 dx, 
n mh 

(90) 

with 
(91) 

and w' = {'1/J' = z~12 '1/;, (A~)'= z~12 A~}, J' = '1/;'f'l/;'. Here {On} are Lorentz scalars of 
dimension dn > 4, again constructed from the (primed) light fields only. At last, 
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and all 'normalization constants' z's with various subscripts are series of the generic form 

1 + ""' ? 
2
i "f ? - •1• •1• 2 3 L..-aig 1 .-'+','+',,,gorm, 

i>O (92) 
L aJ g2i if ? · J, n . 
i>O 

with finite coefficients an, which are polynomials in ln (112 /m~). 
The master equation (89) requires some comments. 

• The expansion (89) should be understood in the strictly perturbative sense; once it 
is performed it is necessary to utilize the usual renormalization group methods in 
order to resum all large logs of the heavy quark mass (see below). 

• The master equation (89) governs the mh -t oo asymptotic behaviour of all light 
Green functions: if one neglects power-suppressed terms and does not consider 
extra current insertions, then their asymptotic behaviour is completely determined 
by a few finite normalization constants. Even more: in the calculation of physical 
quantities, which do not depend on the normalization of quantum fields, only two 
constants remain, viz. z1 and Zm· 

• There exist several methods of computing the finite renormalization constants. The 
most advanced approach is based on the so-called heavy mass expansion algorithm 
and will be discussed in Section 3.2. 

2.3.2 Matching Conditions for et5 and Masses 

In this subsection we review the so-called matching conditions which allow the relating of 
the parameters of effective low-energy theory without a heavy quark to those of the full 
theory. 

The master equation (89) states that the effective coupling constant a~ and the (light) 
quark masses m~ are expressed in terms of those of the full theory, viz. a 5 and mq, mh, 
via Eq. (91) (see [37]) 

et5 (f1) C(as(f1),x), 
mq(/1) H(as(f1), x). 

Here x =In (mV 112
) and the functions C and H exhibit the following structure: 

C(as, x) 1 + 2:: ck (as )k Ck(x) = L cikXi' 
k~l 1f O:S:i:S:k 

H(as(/1), x) 1 + LHk (Cts)k Hk(x) = L HikXi' 
k~l 1f O:S:i:S:k 
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with Cik and Hik being pure numbers. At present, the functions C and H are known at 
two-loop level [37, 38, 39]. and read3 

11 11 . 1 2 
C2 = -+- x+- X 

72 24 36 

0, 
89 5 1 2 

H2 = 432 + 36 X+ 12 X . 

(97) 

(98) 

Another useful form of (93) is obtained after expressing its r.h.s. in terms of the pole 
mass Mh: 

, ( ) = ( ) {1 X as(t-t) (-!...._ 19X X
2

) [as(t-t)] 2

} 
as 1-t as 1-t + 6 1r + 24 + 24 + 36 1r ' 

(99) 

with X= ln (M~/ p,2). , 

The effective a~ and the light quark masses evolve with p, according to their own 
effective RG equations [36]. It is important to stress that the master equation and hence 
(93) were derived under the requirement that the normalization scale p, is much less than 
mh· However, once obtained, Eqs. (93, 94), present universal relations, valid order by 
order in perturbation theory. 

This implies that on formal grounds one is free to choose the matching value of p, = ~-to 

to determine the value of, say, a~ in terms of the parameters of the full theory. The final 
result should not depend on p,0 . However, in practice, some dependence remains from the 
truncation of higher-orders. 'Thus the problem is completely similar to that discussed in 
Section 2.2.2. The correct prescription, hence, is to solve the matching conditions (93, 94) 
with p, fixed somewhere in the vicinity of'mh to suppress all mass logarithms. A popular 
particular choice is to set p, = mh (p,) and thus nullify all mass logarithms. The mass 
mh = mh ( mh) is sometimes referred to as scale invariant mass of the quark h. Finally, 
one should run the effective coupling constant and quark masses to a lower normalization 
scale with the effective renormalization group equations. 

2.3.3 Matching Equations for Effective Currents 

From a fundamental point of view the treatment of effective currents does not differ signi­
ficantly from the one discussed for the effective coupling constant and masses. Moreover, 
for the customary case of bilinear quark currents it is even easier: in many instances there 
exist some extra constraints like Ward identities which help to fix the constant z3 . Two 
cases are of particular interest. 

Vector current: This is the most simple and well-known case. For J = '1/Jq'Yp,'I/Jq one derives 
from the vector Ward identity4 that 

zv = { 1 if q is a light quark 

0 if q = h . 

(100) 

3The constant term in C2 is cited according to Ref. [39], where it has been recalculated using two 
different approaches. 

4An explicit derivation may be found e.g. in Ref. [40]. 
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Thus the functional form of a (light) vector quark current is unchanged after integrating 
out a heavy quark and rewriting it in terms of the effective (that is properly normalized) 
light quark fields. 

Axial vector current: Here the situation is more complicated due to the famous axial vector 
anomaly. A statement similar to (100) may be proved only for non-singlet axial vector 
current constructed from light quark fields [41, 42, 43]. Explicitly, if JA = 2:1,1, all''l/J(Ys'YJ.L'l/Jt' 
with a traceless matrix {all'} then the corresponding effective current reads 

(101) 

It is understood in (101) that 'Ys is treated in a way which does not violate the (non­
anomalous) chiral Ward identity. In fact this requirement is unmet if the axial vector 
currents are minimally renormalized with the 't Hooft-Veltman definition of 'Ys· The 

I 
necessary modifications are discussed in Section 3.5. 

If, however, one, has a non-singlet combination of light and heavy diagonal axial vector 
currents then there are no simple formulas like (100) and (101} the resulting effective 
current is in general not a non-singlet combination of some light axial vector currents. 
This case is discussed in Refs. [41, 42]. 

2.3.4 Power Suppressed Corrections 

The apparatus of the effective theory also allows the taking into account of power sup­
pressed corrections. These can in turn be separated into the corrections to the effective 
Lagrangian and an effective current. Below we list for illustrative purpose some well­
known results. 

QCD Lagrangian 
The least power suppressed contribution to the sum in (90) is given by a four-quark 
operator of dimension 6 (see Ref. [44]), viz. 

(102) 

Here the colour group generators ta are normalized in the standard way Tr(tatb) = oab /2. 

Vector and axial vector currents 
The formulae look almost identical for vector and axial vector (non-singlet) currents (if, 
of course, the "correct" treatment of 'Ys is employed, see above and Section 3.5). For the 
case most useful in practice, namely that of a massless light quark (axial) vector current, 
one obtains [40] 

(103) 
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2.3.5 Example 

To provide an example of a peculiar realization of the decoupling theorem in MS-like 
schemes we now discuss the evaluation of a 'physical' quantity- the pole mass M1 of a 
light quark q1 in the full and the effective theories. 

First of all we recall that the pole mass is defined as the position of the pole of the 
quark propagator computed in perturbation theory. It is a renormalization scheme and 
gauge invariant object [27, 28] whose numerical value should obviously not depend on the 
theory - full or effective - in which it is evaluated in. 

The result of the evaluation of M1 in the MS-scheme at two-loop level in the QCD 
with a heavy quark reads- the formula below is in fact just an inversion of (47): 

M1 = mz(tJ) {1 + as(IJ) (~ + ln 11:) (104) 
1r 3 m 1 

+ [as(IJ)l2 [Kz(m) - ~ + ( 173 - 13 nt) ln J!.... + ( 15 - 2_. nt) ln2 /12]} . 
7r 3 24 36 m[ 8 12 mr 

If mh -+ oo then, according to (49), the function K 1(m) behaves as ln2(mh/m1)/3 and 
thus the r.h.s. of Eq. (104) is not well defined! This is, of course, a manifestation of 
the fact that in this limit the initial parameters of the full theory are not adequate to 
construct the perturbative theory expansion for a low energy quantity. 

However, using the relations (93) and (94) and expressing the r.h.s of (47) in terms 
of the effective a~ and m', the resulting expression becomes well-defined at the mh -+ oo 
limit and reads 

{ a' [4 11
2 l M1 = m~(IJ) 1 + ; 3 + ln (m/) 2 

+ (a~)
2 

[
3049 + ~(2 + ln 2)((2)- !((3)- nj (((2) + 71

) (105) 
7r 288 3 6 3 48 

+ ~ 1$~nJ L1 (::) + c;:- ~: nf )ln (~:)' + c:- 1
1
2 nf )ln' (~:)']} 

Now it can be easily seen that (105) is nothing but (104) written in the effective theory 
with the decoupled heavy quark! 

2.4 Quark Masses 

In this section we briefly discuss the presently available numeric values of pole and running 
quark masses at different scales. The exposition below serves to explain and motivate the 
choice of the input quark masses in the numerical discussion of Part 7. It is not intended 
to provide a comprehensive review of this involved issue (for some recent reviews see, for 
example, Refs. [45, 46]). " 

2.4.1 Light u, d and s Quarks 

For a light quark q = u, d, s the concept of the pole mass Mq is clearly meaningless, at 
least in the framework of the perturbative definition given above. In contrast, the running 
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mass mq is well defined, provided the scale parameter f.1, is not too small. Traditionally, 
the reference scale f.1, is taken to be 1 GeV. The latest available values for these masses 
are 

mu(lGeV) + md(lGeV) 

m 5 (1GeV) 

(12 ± 2.5)MeV, 

189±32MeV. 

mu =- = 0.4 ± 0.22 ' md . 
(106) 

(107) 

(These values (106) and (107) are cited according to Refs. [47, 48, 49]; some earlier 
determinations can be found in Refs. [50, 51, 52, 53, 54]). 

In all of the applications considered in the present work, it is clearly more than legible 
to consider u and d quarks as massless. Also, the strange quark mass will be neglected 
everywhere except for small corrections induced by m5 in the relation between pole and 
running masses of c and b quarks, respectively, as discussed below. 

2.4.2 Charm and Bottom 

Within the effective four-quark theory the relation between the pole and the running 
masses of the charmed quark reads (it is, in fact, Eq. (104) with n1 = 4) 

This equation may be used in two ways. First, if one is given a value of me(f.J,) then (108) 
may be used to construct Me in the following way. One runs me (f.J,) (using RG equations 
in the n1 = 4 theory) to find the scale invariant mass me = me(me), and then evaluates 
the r.h.s. of (108) with f.1, =me. Second, let us suppose that Me is known and we would 
like to find the running mass me (f.J,) at some reference point f.J,. Even in this case the use of 
(108) is preferable to that of (47), as the latter would contain a contribution proportional 
to the ill-defined pole mass of the strange quark. 

In the case of the b quark the relation ( 4 7) assumes the following form (all running 
masses and the coupling constant are now defined in the n1 = 5 effective QCD) 

This equation is to be used in the same way as (108). 
In the literature there is a variety of somewhat different results for the masses of 

b and c quarks. Also, there exist strong indications that the very concept of the pole 
mass is plagued with severe non-perturbative ambiguities [24]. It may well happen that 
eventually the most accurate and unambiguous mass parameter related to a quark will 
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Table 1 

(5) (4) -(4)( ) -(5)( ) -(5)( ) -(5)( ) ( ( Values of AMS' AMS' me Me , me Mb , mb Mb , mb Mz and mb mb) in GeVs) for 

different values of a~5)(Mz), and the default values of Me and Mb as in (110). · 

a~5)(Mz) A~ 
MS 

A~ 
MS 

m~4)(Me) m~5)(Mb) m~5)(Mb) m~5\Mz) mb(mb) 

0.11 0.129 0.188 1.27 1.03 4.13 3.01 4.20 

0.115 0.175 0.248 1.21 0.953 4.07 2.89 4.15 

0.12 0.233 0.32 1.12 0.855 3.99 2.77 4.10 

0.125 0.302 0.403 1.01 0.734 3.91 2.64 4.04 

0.13 0.383 0.499 0.853 0.583 3.82 2.5 3.97 

be its running mass taken at some convenient reference point. However, for illustrative 
purposes we will use the following ansatz for the pole masses Me and Mb: 

Me= 1.6 ± 0.10GeV and Mb = 4.7 ± 0.2GeV. (110) 

The central values and uncertainty bars in (110) are in broad agreement with Refs. [46, 
55, 56] and also with those used by the Electroweak P~ecision Calculation Working Group 
[~7]. Table 1 shows the running masses obtained from (108,109), and RG equations at 
various relevant scales in dependence on as(Mz) with Mz = 91.188 GeV. 

2.4.3 Top 

The top quark mass value as reported by the CDF collaboration [58] is 

Mt = 174 ± 10~gGeV. 

In our numerical discussions we shall use a conservative input value of Mt 
WG~. • 

(111) 

174 ± 

In order to find the corresponding running mass we use the equation below obtained 
from (47) (we deal now with the fully-fledged n1 = 6 theory, and discard completely 
negligible terms caused by the masses of s and c quarks) 

Mt 1--- -+ln-{ 
O:s(J-L) (4 J-L

2 
) 

1f 3 M[ 
(112) 

[
O:s(J-L)l

2 

[ 4 (Mb) 35 J-L
2 

3 2 J-L
2

]} - -- 9.125+-,6. - +-ln -
2 

+-ln -
2 

. 
1r 3 Mt 8 Mt 8 Mt 
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After setting J.L = Mt and evaluating a~6)(Mt) one finds 

a~6)(Mt) = 0.109, mt(Mt) = 164GeV, 

for our default value a~5)(Mz) = 0.120 corresponding to A~~= 233MeV. 

3 Calculational Techniques 

In this Part we discuss available calculational techniques to perform small and heavy 
mass expansions of two-point correlators as well as the problem of 'Ys in dimensional 
regularization. 

3.1 Current Correlators at Large Momentum 

A lot of results on higher-order radiative corrections were derived after neglecting quark 
masses, originating from massless diagrams and resulting in a drastic simplification of 
calculations. However, problems arise when quark masses are taken into account, at least 
in the form of power corrections. In the simplest cases the evaluation of, say, a quadratic 
quark mass correction may be reduced to the computation of massless diagrams which 
are obtained by naively expanding the massive propagators in the quark mass. However, 
this strategy fails in the general case starting from quartic mass terms. The so-called 
logarithmic mass singularities appear and render the simple Taylor expansion meaningless. 
In this section the general structure of non-leading mass corrections will be discussed as 
well as some approaches for their evaluation. 

In investigating the asymptotic behaviour of various correlators at large momentum 
transfer, it proves to be very useful to employ the Wilson expansion in the framework of 
the MS scheme. Consider vector current correlator 

(113) 

with lp. = (jf'p.Q· Here q is a quark with mass mq = m. To simplify the following discussion 
we will consider the second derivative II"(Q2) = £12II(Q2)/d(Q2)2, which can be seen from 
(72) to satisfy a homogeneous RG equation, 

J.L2 d~2 II" ( Q2) = 0. (114) 

The high energy behaviour of II" ( Q2) in the deep Euclidean region may be reliably eval­
uated in QCD by employing the operator product expansion: 

Q2II"(Q2, as, m, J.L) ===? Ko(Q2, as, m, J.L) 1 
Q2-+= 

+ ~ (Q2
1
)n/2 dim~=n Ki(Q

2
,as,m,J.L)(O!Oi(J.L)!O). (115) 

We have explicitly separated the contribution of the unit operator from that of the oper­
ators with non-trivial dependence on the field variables. The coefficient functions K0 and 
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Ki depend upon the details of the renormalization prescription for the composite oper­
ators Oi. The usual procedure of normal ordering for the composite operators appearing 
on the r.h.s. of Eq. (115) becomes physically inconvenient if quark mass corrections are 
to be included [61]. From the calculational view-point it also does not lead to any insight 
in computing power-suppressed mass corrections involving mass logarithms. 

Indeed, the coefficient function in front of the unit operator in (115) represents the 
usual perturbative contributions and, if normal ordering is used, it contains in general 
mass and momentum logarithms of the form 

( 
2) n ( 2) n1 ( 2 ) n2 ~2 ln ~2 ln ~2 , (116) 

with n, n1 and n2 being non-negative integers. More specifically, one can write 

(117) 

where L = ln (J..t2 jQ2
), M = ln (J..t2 jm2

), and the superscript NO is a reminder of the 
normal ordering prescription being used. The function Fn1(L, M) corresponds to the 
contribution of the l-loop diagrams, and is a polynomial of degree not higher than l, in 
both Land M. The contributions due to non~trivial operators- that is containing some 
dependence on field variables- are completely decoupled from those of the unit operator 
if the normal ordering is employed, since the vacuum expectation value vanishes for every 
non-trivial operator 0: 

(OIOIO) = o. 
The situation improves drastically if one abandons the normal ordering prescription. 

It was realized some time ago [59, 60, 61] that all logarithms of quark masses may be com­
pletely shifted to the vacuum expectation values (VEV) of non-trivial composite operators 
appearing on the r.h.s. of (115) if the latter are minimally subtracted. · 

To give a simple .example, let us consider the correlator (113) in the lowest order one­
loop approximation. First, we use the normal ordering prescription for the composite 
operators which appear in the OPE of the time ordered product in (113). To determine 
the coefficients of the various operators, one possible method is to sandwich both sides 
of the OPE between appropriate external states. By choosing them to be the vacuum, 
only the unit operator 1 will contribute on the r .h.s., if the normal ordering prescription 
is used. This means that the bare loop of Fig. 4a contributes entirely to the coefficient 
Ko in (115). A simple calculation gives (in the sequel we neglect all terms of order 1/Q6 

and higher): 

Q2II"(Q2) T/ (Q2) .1 4 (OI IO) no + Q4 mqq ' 
Q2-too 

(118) 

NO( 2 ) 2 II 2 1 [ 12m4 l Ko Q ,m,J..l =Q_IT (Q ,m,as,J..t)ia.=0=- 41f2 1+Q4(1+L-M) ·' (119) 

The coefficient function Kt0 contains mass singularities (the M-term). On the other 
hand, if one does not follow the normal ordering prescription, then the operator mqq 
develops a non-trivial vacuum expectation value even if the quark gluon interaction is 
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(a) (b) (\lf\lf) 

Figure 4: (a) Lowest order contribution to the correlator II"(Q2 ). (b) Vacuum diagram 
contributing to the perturbative VEV of the operator ijq. 

turned off by setting as = 0. Indeed, after minimally removing its pole singularity, the 
one loop diagram of Fig. 4b leads to the following result [63]: 

(120) 

By inserting this into (115), the new coefficient function K 0 can be extracted, with the 
result: 

Ko =- 4~2 [1 + 
1~7

4 

(2 + L)]. (121) 

The mass logarithms are now completely transferred from the CF K 0 to the VEV of 
the quark operator (120)! The same phenomenon continues to hold even after the as 
corrections are taken into account for (pseudo )scalar and pseudovector correlators, inde­
pendently of their flavour structure [62, 64]. 

The underlying reason for this was first found in Ref. [65]. There it was shown that no 
coefficient function can depend on mass logarithms in every order of perturbation theory 
if the minimal subtraction procedure is scrupulously observed5 . This is true irrespective 
of the specific model and correlator under discussion. Three important observations may 
be made in this context: 

• Prior knowledge of the fact that any conceivable correlator can be expanded in a 
series of the form (116) makes it possible to obtain without calculation important 
information on the structure of mass logs as they appear in various correlators. For 
example, in QCD any correlator should contain no mass logarithms in the quadratic 

5In particular it also excludes the normal ordering, as the latter amounts to a specific non-minimal 
subtraction of diagrams contributing to VEV's of composite operators. 
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in mass terms [60, 61]. This holds true because there does not exist a gauge-invariant 
non-trivial operator of (mass) dimension two in QCD. 

• From the purely calculational point of view the problem of computing non-leading 
mass corrections to current correlators becomes much simpler. This is due to two 
facts. First, all coefficient functions are expressed in terms of massless Feynman 
integrals while VEV's of composite operators are by definition represented in terms 
of some massive integrals without external momenta (tadpole diagrams). Second, 
methods have been elaborated for computing analytically both types of Feynman 
integrals. 

• The abandonment of the normal ordering slightly complicates the renormalization 
properties of composite operators. An instructive example is provided by the 'quark 
mass operator' 0 2 = mqq. The textbook statement (see, for example, Ref. [6]) 
that this operator is RG invariant is no longer valid. Indeed, the vacuum diagram 
of Fig. 4b has a divergent part which has to be removed by a new counterterm 
proportional to the operator m4 1. In other words, mijq begins to mix with the 
'operator' m4 1 [61]. 

To lowest order, the corresponding anomalous dimension matrix reads: 

(122) 

The non-vanishing, off-diagonal matrix element describes the mixing of the two operators 
under renormalization and was obtained from the divergent part of the vacuum diagram 
in Fig. 4. The diagonal matrix elements are just the anomalous dimensions of the respect­
ive operators in the usual normal-ordering scheme. The lower one is equal to 4'Ym(a5 ). 

Note that the general structure of the anomalous dimension matrix of all gauge-invariant 
operators of dimension four has been established in.Refs. [66, 61]. This information was 
used recently [67] to evaluate the corrections of order m~a; to the vector current correlator 
(see Section 5.4). 

3.2 Top Mass Expansion in s / m; 
Our discussion of the dependence of cross-sections and decay rates on the quark masses 
has up to now dealt with five flavours light enough to be produced in e+e- collisions. The 
top quark, on the other hand, is too heavy to be present in the final state, even at LEP 
energies. Nevertheless it constitutes a virtual particle. Virtual top loops appear for the 
first time in second order a;. Massive multi-loop integrals may conveniently be simplified 
considering the heavy top limit mt -+ oo. In this effective field theory approach the top is 
integrated out from the theory. Then the Lagrangian of the effective theory contains only 
light particles. The effects of the top quark are accounted for through the introduction of 
additional operators in the effective Lagrangian. For the vector current correlator their 
contributions are suppressed by inverse powers of the heavy quark mass sjm;_ As we will 
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also explicitly see, no decoupling is operative in the case of the axial vector correlator. 
A logarithmic top mass dependence signals the breakdown of anomaly cancellation if the 
top quark is removed from the theory. 

The heavy mass expansion is constructed as follows (see Refs. [68]-[71]; a rigorous 
mathematical formulation can be found in Ref. (70]): Let the Feynman integral (r) of a 
Feynman graph r depend on a heavy mass M and some other 'light' masses and external 
momenta which we will generically denote as m and q respectively. In the limit M -t oo 
with q and m fixed (r) may be represented by the asymptotic expansion: 

(123) 

The diagrams (r /'Y)eff of the effective theory consist of light particles only, whereas the 
top mass is only present in the 'coefficient functions' C~t). The notation (r /'Y)eff means 
that the hard subgraph 'Y of the original diagram r is contracted to a blob. By definition a 
hard subgraph contains at least all heavy quark lines and becomes one particle irreducible 
if each top quark propagator is contracted to a point. The Feynman integral of the hard 
subgraph is expanded in a formal (multidimensional) Taylor expansion with respect to 
the small parameters, namely the light masses and the external momenta of 'Y· It should 
be noted that the set of external momenta for a subgraph 'Y is defined with respect to 'Y 
and thus in general consists of some genuine external momenta (that is, those shared by 
'Y and the very diagram r) as well as momenta flowing through internal lines of r, which · 
are external ones of 'Y (see the example below). This Taylor series C~t) is inserted in the 
effective blob and the resulting Feynman integral has to be calculated. All possible hard 
subgraphs have to be identified and the corresponding results must be added. 

The prescription for the construction of the coefficent function c~t) for a hard sub­
graph 'Y can be formulated as follows: Suppose the Feynman integral ('Y)(M, q 7 , m'Y, p) 
corresponds to a hard subgraph 'Y and depends on external momenta q7 and light masses 
m 7 in addition to the heavy mass M. Then 

(124) 

where the operator t{x1 ,x2 ... } performs the formal Taylor expansion according to the rule: 

(125) 

(126) 

Here several comments are in order. 

• The differentiation with respect to~ in (126) may be carried out in two ways. One 
could simply differentiate the Feynman integral, which is a smooth function of ~ at 
~ =I= 0. A more practical way is to differentiate the corresponding integrand. 

• The operation of setting ~ zero is to act on the differentiated integrand. 
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Figure 5: Hard Mass Procedure. 

• It may be immediately seen that the expression 

t~~',m'} (r)(M, q'Y, m\ t-t) 

scales with M as Mw('Y)-n where w('y) is the (mass) dimension of the Feynman 
integral ('Y) determined without counting any dimensionful coupling constant as well 
the 't Hooft mass 1-l· Therefore, in every application of the hard mass expansion the 
terms with too high value of n in (125) may be dropped. 

• By construction the coefficient function C~t) is a polynomial with respect to its 
external momenta q'Y and the light masses m'Y. 

As an example we consider the two-loop diagram r depicted in Fig. 5 which contributes 
to the fermion propagator in QED. The heavy fermion of mass M is contained in the 
virtual fermion loop, whereas the open fermion line corresponds to a propagating light 
fermion with mass m. The integral reads (in Feynman gauge): 

The integration momenta are denoted as k and p for the outer and the inner loops re­
spectively. Two different integration regions can be identified. In the first region is 
k -«: M,p ~ M. The corresponding hard subgraph 'Yl is shown in Fig. 5 and (11) has 
to be expanded with respect to its only external momentum, k. The second region is 
characterized by k,p ~ M. The hard subgraph 12 coincides with r and the Feynman 
integral ('Y2/'Y2) reduces to unity. In this case the hard subgraph (r) must be expanded 
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with respect to the external momentum q and, in case of a non-vanishing light mass m, 
also with respect tom. The sum of all contributions results in a power series in the inverse 
top mass. 

Working up to the power-suppressed terms of order q2 / M 2 , one has 

C (t) ( (o) (1) (2) )( )(M k ) d c(t) ( (o) . (1) )( )(M ) ( ) 
/1 = t{k} +t{k} +t{k} /'1 ' '11 an 12 = t{q,m} +t{q,m} 1'2 'q, m, 11 0 128 

In explicit form these coefficient functions are given by the following Feynman integrals 

c(tl = 2e. f d
0

P Sp ha(P + Mhf3(P- ~ + M)] ( 1 + + 2) 
'Yl 11 z (27r)D (M2- p2)2 r r ' (129) 

with and 

(t) - 4e ·2 J dDp J dD k 
C'Y2 - 11 Z (27r)D (27r)D X [

Sp ha(P + Mh!3(P- ~ + M)] !'a(~-~+ mh!3] 
( -k2)3(M2 _ p2)[M2 _ (p _ k)2] · 

(130) 
It is of course understood that the terms of higher than second order in the expansion 
parameters are discarded in the integrand of (129). 

3.3 Evaluation of Feynman Integrals 

In this section we will discuss very briefly the tools now available to analytically compute 
massless propagators and massive tadpoles in higher orders. We limit ourselves to these 
rather restricted classes of Feynman integrals due to the following reasons: 

1. Practice shows that in many cases the methods of asymptotic expansions of Feynman 
integrals do produce results numerically very well approximating the exact results 
when the latter are available. These methods reduce initial multi-scale Feynman 
amplitudes to combinations of massless propagators and massive tadpoles. 

2. The bulk of higher order results discussed in the present work was eventually ob­
tained applying precisely these methods to integrals appearing after the small/large 
mass/momentum expansions are carried out. 

3. Thanks to the intrinsic simplicity of the integrals under discussion, - they depend 
on only one nontrivial scale: an external momentum or a heavy mass - their ana­
lytical evaluation proves to be feasible in quite high orders in the coupling constant. 
The same simplicity provides the possibility of constructing regular algorithms for 
evaluating these integrals and for creating dedicated computer programs allowing 
to perform the calculations in a convenient and automatized way. 

Following the established practice we shall consider Feynman integrals in the Euclidean 
momentum space throughout this section. To avoid any confusion, all explicit results cited 
in this section will be given in the canonical dimensional regularization; in order to trans­
form these into those appropriate for the MS scheme an extra factor ( e IE/ ( 47r)) eh should 
be introduced to every diagram wit~ the number of loops equal to h ( "YE = 0.577221566 ... 
is the Euler's constant). 

34 



3.3.1 Massless Propagators 

For brevity massless Feynman integrals depending on exactly one external momentum 
will be denoted by p-integrals. At the moment there are tools to analytically compute 
arbitrary one- two- and three-loop p-integrals (see below). Fortunately, in many import­
ant cases one is interested only in the absorptive part of massless two-point correlators. 
In this case available theoretical tools are enough to guarantee at least in principle the 
analytical calculability' of absorptive part of an arbitrary 4-loop p-integral. Indeed, as 
was demonstrated in Ref. [115] the absorptive part of a four-loop p-integral is express­
ible in terms the corresponding four-loop UV counterterm along with some three-loop 
p-integrals. 

Next, calculation of UV counterterms is simpler than that of the very integral. This 
is because in MS scheme any UV counterterm is polynomial in momenta and masses 
[31]. This observation was effectively employed in Ref. [72] to simplify considerably the 
calculation of UV counterterms. The method was further developed and named Infrared 
ReaRrangement (IRR) in Ref. [73]. It essentially amounts to an appropriate transform­
ation of the IR structure of FI's by setting zero some external momenta and masses (in 
some cases after some differentiation is performed with respect to the latter). As a result 
the calculation of UV counterterms is much simplified by reducing the problem to eval­
uating massless p-integrals. The method of IRR was ultimately refined and freed from 
unessential qualifications in Ref. [74]. The following statement has been proven there by 
the explicit construction of the corresponding algorithm: 

Any UV counterterm for any (h+I)-loop Feynman integral can be expressed 
in terms of pole and finite parts of some appropriately constructed (h)-loop 
p-integrals. 

One-loop p-integrals 
We start from a well-known elementary formula for a generic one loop p-integral (see 

Fig. 6a) 
dDf 1 (q2)2-!-o:-{j 

j (27r)D (q2)o:(q -l)2fi = , (47r)2-€ G(a, {3), 

G( /3) = r(a + j3- 2 +c) f(2- a- c)f(2- j3- c) 
a, - r(a)f(/3) f(4- a- j3- 2c) . 

(131) 

It is of importance to note that any p-integral depends homogeneously on its external 
momentum. This facts allows the immediate analytic evaluation of the whole class of 
primitive p-integrals which, by definition, may be performed by repeated application of 
the one-loop integration formula. For example, the five-loop scalar integral of Fig. 6b is 
performed by (131) with the result 

(132) 

Two-loop p-integrals 
Not all p-integrals are primitive ones. One first encounters nontrivial p-integrals 

already at the two loop level. While one-loop integrals are performed with ease the 
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Figure 6: Some p-integrals: (a) the generic one-loop p-integral and (b) an example of 
primitive five-loop p-integral; (c) the master two-loop p-integral. 

evaluation of the master two-loop diagram (see Fig. 6c) is not trivial. The corresponding 
Fey_nman integral reads 

(133) 

with the loop momenta 

In fact, a closed expression for the function F(o:1, ... o:5) for generic values of the argu­
ments is not known. However, results do exist for particular cases. The first one, valid for 
a generic space-time dimension D, was obtained with the help of the so-called Gegenbauer 
polynomial technique in x-space (GPTX) (73]. It reads6 

G(1, 1) 
F(o:, 1, 1, ,B, 1) = D _ 

2 
_ o: _ ,B { o:[G(o: + 1, ,B)- G(o: + 1, ,B +E)]+ (o: t-t ,B)} (134) 

It has been also shown in Ref. (73] that similar results may be obtained for the case when 
the indices o:2 , o:3 and o:5 are integers while o:1 and o:4 are arbitrary. 

In practice one often needs only a few first terms of the expansion of F(o:1 ... o:5 ) in 
the Laurent series in E. This expansion is known for generic values of the o:1 ... o:5 up to 
a fixed (quite high) order (see Refs. (76, 77] and references therein). 

Three-loop p-integrals 
In principle GTPX is also applicable to compute some non-trivial three-loop p-integrals 7 . 

However, calculations quickly get clumsy, especially for diagrams with numerators. 

6 In fact, we put below an equivalent but simpler formula found in Ref. [75). 
7 For example, the basic scalar non-planar three-loop diagram of Fig. 8a was first calculated via GPTX 

in Ref. [73). 
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Figure 7: The exact relation expressing a nonprimitive two-loop scalar p-integral through 
primitive integrals; a dot on a line means a squared scalar propagator. 

The main breakthrough at the three-loop level happened with elaborating the method 
of integration by parts of dimensionally regularized integrals Refs. [78, 75]. The key 
identity for the method is8 

(135) 

where I(f, .. . ) is a Feynman integrand and f is one of its loop momenta. The identity 
reflects the possibility of neglecting the surface terms, which holds true in dimensional 
regularization [79]. The use of (135) along with tricks like completing momentum squares 
and cancelling similar factors in the nominator against those in the denominator9 consti­
tutes the essence of the approach. The identity depicted in Fig. 7 is a typical example of 
relations obtainable with the help of the integration by parts method. 

The general scheme of the use of the integration by parts method is based on the 
exploitation the identities of type (135) in the form of recurrence relations with the aim 
to express a complicated diagram through the simpler ones. Unfortunately; there does 
not exist (at least at the present) a general method to study these recurrence relations. 
Nevertheless, all (about a dozen) topologically different three-loop p-integrals were neatly 
analyzed in Ref. [75] and a concrete calculational algorithm was suggested for every to­
pology. As a result the algorithm of integration by parts for three-loop p-integrals was 
developed. The algorithm constitutes a series of involved identities which are used to 
identically transform any three-loop p-integral into a sum of primitive one-loop p-integrals 
and two basic three-loop p-integrals pictured in Fig. 8. 

Four-loop and beyond 
At the moment there is no any general algorithm allowing to analytically compute 

arbitrary 4-loop p-integrals. The problem of creating such an algorithm seems to be 
hopelessly difficult (see Ref. [80) where the point is discussed in some detail). Considering 
the comments made above, full control of three-loop p-integral is sufficient to calculate 
the absorptive part of any four-loop p-integral. 

8 In fact for two-loop massive integrals a similar identity was used in the classical work by 't Hooft 
and Veltman Ref. [9]. 

9The validity of such operations for divergent dimensionally regulated integrals has been rigorously 
justified in Ref. [79]. 
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(a) (b) 

Figure 8: (a), (b) the master three-loop non-planar and planar scalar diagrams. 

.. a·· CD ·· ... ·· ... . . . . . . . . . . . . .. . . .. . . 
(a) (b) (c) 

Figure 9: Different cases of two-loop m-integrals: dashed lines are massless; solid lines 
have mass m. 

3.3.2 Massive Tadpoles 

In this section we discuss another useful class of Feynman integrals -integrals without 
external momenta at all. However massive lines as well as massless ones are admitted. 

It is understood that all the massive propagators depend on one and the same mass 
m. Such integrals - they will be referred to as m-integrals - naturally appear in many 
problems where the mass m may be considered as much larger than all other mass scales 
involved. 

One-loop tadpoles 
At one-loop level there is a textbook result which comes from straightforward integ­

ration over Feynman parameters and reads 

D . 
1 J d e - 2 D/2-a-(Jr(D/2- {3)f(a + f3- D/2) ( 36) 

(1r?-f (£2 + m2 )a(f.2 )f3 - (m ) f(D/2)f(a) 
1 

Two-loop tadpoles 
All possible two-loop m-integrals are pictured in Fig. 9. Those with only one massive 

line (Fig. 9a) may be reduced to the one-loop integral after first integrating the one-loop 
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p-subintegral. Two-loop m-integrals with more than 1 massive lines (Fig. 9b,c) are more 
difficult. A simple formula exists for the integral with two massive lines [81]: 

with 
M( j3 ) = r(a + 'Y- D/2)r(j3 +'Y- D/2)r(a + j3 + 'Y- D) 

a, ,"f r(a+/3+2"!-D) . 

The case with all lines massive has been studied e.g. in Ref. [82]). 

Three-loop tadpoles 

(138) 

Three loop m-integrals have proved to be also treatable with the help of recursive 
relations stemming from the main identity (135) of the integration by parts method [83, 
84]. These relations allow one to express a given 3-loop m-integral in terms of a limited 
number of master integrals. The latter need to be evaluated once and for all. Unlike the 
situation with three-loop p-integrals some master integrals are to be evaluated numerically 
(see Ref. [85, 84] and references therein). 

3.4 Software Tools 

It goes without saying that the calculation of higher order corrections in gauge theories is 
almost impossible without intensive use of computer algebra methods. In addition to the 
old problem of taking long traces of Dirac 'Y matrixes, the algorithm of integration by parts, 
when applied even to a single three-loop p- (or m-) integral, generically produces dozens 
or even hundreds of terms. At the moment there exist essentially three different packages 
which implement the algorithm. For p-integrals they are written in SCHOONSCHIP · 
[86] (see Refs. [87, 88] and in FORM [89] (see Refs. [90, 91]). However, in genuine 4-
loop calculations the reduction to. three-loop p-integrals is far from being trivial and also 
includes a lot of purely algebraic manipulations, which are difficult to computerize (see a 
discussion in Ref. [80]). 

Form-integrals the FORM program SHELL2 has been developed [92]. It computes 
two-loop tadpoles and on-shell massive propagators. A short description of an algorithm 
to perform three-loop m-integrals of some particular types may be found in Ref. [83]. 
Recently the algorithm has been extended to cover all three-loop m-integrals [93]. 

3.5 ')'5 in D Dimensions 

Multi-loop calculations with dimensional regularization often encounter the question of 
how to treat 'Ys in D dimensions. Occasionally the problem can be circumvented by 
exploiting chiral symmetry which allo~s, for example, the relating of the non-singlet 
axial correlator in the massless limit to the corresponding vector correlator. In general, 
however, a consistent definition must be formulated. A rigorous choice is based on the 
original definition by ~t Hooft and Veltman [9], and formalized by Breitenlohner and 
Maison [94] with a modification introduced in [95]. In this self-consistent approach 'Ys is 

39 



defined as [9] 

(139) 

with Eo123 = 1. For our discussion we consider the cases for both the non-singlet axial 
current j~~S)a and the singlet one A~), which are defined with the help of the antisym­
metrized combination 'Y[vpu] = ( ')'11 'Yp'Yu - 'Yu 'YP'Y 11

) /2 in order to guarantee Hermiticity for 
noncommuting 'Ys 

-(NS)a 1-
Jsp. = 2w('Yp.'Ys- 'Ys'Yp.)taw 

-(S) 
Jsp. 

- i W [vpu]taW - i A[vpu]a 
- 3! Ep.vpu 'Y - 3! Ep.vpu NS ' 

1-
= 2'11(/'p.'Ys- 'Ys'Yp.)W 

Here ta are the generators of the SU(n1 ) flavour group. 

(140) 

The four-dimensional Levi-Civita tensor Ep.vpu is kept outside the renormalization pro­
cedure where all indices can be considered as four dimensional whereas the calculation is 
performed with the generalized currents A~r]a, A~pu] in D dimensions10 . 

As a consequence of the lost anticommutativity of 'Ys, standard properties of the 
axial current as well as the Ward identities are violated. In particular, it turns out 
that the renormalization constant zNs of the non-singlet current is not one any more. To 
restore the correctly normalized non-singlet axial current an extra finite renormalization 
is introduced with corresponding finite renormalization constant zNs [6, 97]. One thus 
has for the renormalized non-singlet axial current the following expression: 

( 
-(NS)a) = ZNS zNS ( -(N?)a) 

Jsp. R Jsp. B (141) 

with [98, 99] 

21[11 1 ] 1 +a- --- n1 
€ 6 9 

3 1 [ 121 11 1 2 (391 44 1 2)] + a - --+- n1 - - n + E - - - n1 +- n1 c2 36 27 81 I 72 81 486 
(142) 

and 
NS 4 2 ( 19 1 ) 

z = 1 - 3a + a - 36 + 54 n I . (143) 

The prescription described above and the use of the non-singlet axial current defined 
according to Eq. (141) lead to the same characteristics for nonanomalous amplitudes 
as would be obtained within a na!ve approach featuring completely anticommutating 'Ys· 
First, the Ward identity is recovered. Second, the anomalous dimension of the non-singlet 

10 A practical realization of the scheme avoiding the explicit separation of Lorentz indexes into the 4-
and (D- 4)- dimensional ones was elaborated in Ref. [99]. 
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axial current vanishes. For diagrams with an even number of 'Ys connected to the external 
current it has been checked that the treatment based on an anticommutativity of 'Ys leads 
to the same answer [100]. 

Similar considerations may be carried out for the singlet axial vector current. However, 
in this case there is some freedom in defining the renormalized current .. This is due to 
the fact that in any physical application the current never appears as it is but only 
in a (virtually non-singlet) combination with another axial vector current. A physically 
motivated definition has been suggested in Ref. [42], where the singlet axial vector current 
has been defined with the help of the following limiting procedure: 

(J.(S)) -- ZNS zNS [J·(S) - n _!_E WT'""[vpu]w ] 
5p R -- 5Jl f 3' JlliPU I T . 

mT--;.oo . B 
(144) 

Here, WT is the field of an auxiliary quark T and thus the combination in the squared 
brackets is a non-singlet one (in the extended QCD with n1 + 1 flavours!). Due to the 
asymptotic freedom, the large mT limit of (144) does exist and is naturally id~ntified 
with the renormalized singlet axial current. Explicitly, the r.h.s. of (144) can be written 
without any auxiliary fields in the form (note that the renormalization constant zs was 
first found in Ref. [99]) 

( ·(S)) = ZS zs ( ·(S)) 
Jsp R Jsp B ' (145) 

with 

zs - 1 + a2 ~ [ 
11 + ~ n 1] 

E 6 36 
3 1 [ l21 11 5 2 (391 61 13 2)] 

+a E2 - 36 - 216 nf + 324 nf + E 72 + 1296 nf + 1944 nf (146) 

and 

(-..Q.. nf- ll) 
1 +a 18 3 (147) 

f3o 

2 [ 1 ( 185 2 391 2651) 1 ( 13 2 61 391)] 
+a !36 . -2592 nf + 864 nf + 144 - (3

0 
1296 nf + 864 nf + 48 ' 

where (30 = (11 - ~ n1 )/4. It should be noted that an equivalent definition of the sing­
let axial vector current is obtained by demanding that it have a vanishing anomalous 
dimension. 

4 Exact Result of Order O(a8 )) 

The exact QCD corrections for arbitrary quark masses are known in order O(as)· The 
result is different for vector and axial current correlators. Whereas the former can be _ 
taken directly from QED [101] the latter have been obtained in Ref. [102]. (For the non­
diagonal current and arbitrary, different masses the result can be found in [103].) With 
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v2 = 1 - 4m2
/ s they read: 

rv -
NS-

3- v
2 

[ 4a5 (s)K l v 1+--- v 
2 3 1f 

v3 [ 1 + ~ frs; S) K A] . 
(148) 

Kv and KA have been calculated in Refs. [102, 103, 104]. A compact form for the correc­
tion can be found in Ref. [104]: 

Kv= 
1 [ Pv ( v) 1 + v Qv ( v) l 
; A(v) + (1- v2j3) ln 1- v + (1- v2/3) ' 

~ [A(v) + PA(v) ln 1 + v + QA(v)l , 
v v2 1- v v2 

with 

A(v) = (1 + v2) [Li2 ([
1

- v]
2
) + 2Li2 (

1
- v) + ln 

1 
+ v ln (1: ~) 3

] 
l+v 1+v 1-v v 

1 - v2 

+ 3v ln 
4

v - v ln v , 

33 22 2 7 4 
Pv ( v) = 24 + 24 v - 24 v ' 

5 3 3 
Qv( v) = 4v - 4v , 

21 59 2 19 4 3 6 
p A ( V) = 32 + 32 V + 32 V - 32 V ' 

21 30 3 3 5 
QA(v)=--v+-v +-v. 

16 16 16 
Convenient parametrizations are [105]: 

Kv= 7r
2 3 + v ( 1f

2 3) 
2v- -4- 2-4 ' 

1r
2 

_ [19 _ 22 v + ~v2] (1f
2 

_ ~) . 
2v 10 5 2 2 4 

(149) 

(150) 

(151) 

(152) 

Let us consider this result in the limit where s approaches the threshold region ( v --+ 0) 
as well as the high energy regime ( v --+ 1). 

For v --+ 0 the correction factors simplify to: 

21f0:8 ( 16 0:8 ) --+ 1---
3v 3 1r ' 

27r0:8 + ( 1 _ ~ frs) . 
3v 3 1r 

(153) 

For very small v higher-order contributions must be taken into consideration. In QED 
these can be summed to yield the Sommerfeld rescattering factor: 

3 1f0: 
r -- -:----~ 

QED - 2 (1 - e-1ro.fv) (154) 
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In QCD the coupling constant a would be replaced in this formula by 4a5 j3. 
However, the scale of a 5 (Q2

) cannot be fixed with certainty, since subleading log­
arithms have not yet been evaluated. It has been argued in Ref. [105] that the choice 
a 5 (21Ptl), combined with Eq. (152) allows for an adequate description of R in the threshold 
region and provides a smooth connection between resonances and continuum. This an­
satz will be discussed further in Section 5.5. For top quarks a new element enters 
through their large decay rate. Resonance and open tt production merge. An ac­
count of the resulting phenomena is beyond the scope of this paper and can be found 
in Refs. [107, 108, 109, 110, 111]. 

The behaviour of the result for large 8 can easily be extracted from the analytic 
formulae [104, 112, 113]. In Born approximation the leading term of the vector and the 
axial vector correlators are of order m4 /8

2 and m 2 /8 respectively: 

3- v3 

v 2 

Including first-order QCD corrections leads to: 

m4 
1-6-

82 

+ - 5 1 + 12- + - 10 - 24 ln -·- , a [ m2 m4 ( m2)] 
1r 8 8 2 8 

m2 m4 
1- 6-+6-

8 8 2 

a [ m2 ( m2) m4 ( m2)] + 7rs 1- --;- 6 + 12 ln --;- + ~ -22 + 24 ln 7 

(155) 

(156) 

The approximations to the correction functions for the vector and the axial vector current 
correlators (including sucessively higher-orders without the factor a 5 j1r) are compared to 
the full result in Fig. 10. As can be seen in this figure, for high energies - say for 
2mb/ ..fi below 0.3- an excellent approximation is provided by the constant plus the m2 

term. In the region of 2m/ ..fi above 0.3 the m4 term becomes increasingly important. 
The inclusion of this term improves the agreement significantly and leads to an excellent 
approximation, even up to 2m/ ..fi ~ 0. 7 or 0.8. For the narrow region between 0.6 and 
0.8 the agreement is further improved through the m 6 term. 

The mass m in this formula is understood as the physical mass, defined through the 
location of the pole of the quark propagator in complete analogy with the treatment of 
the electron mass in QED. However, if one tried to control fully the m 2/ 8 and m 4 /82 

terms one might worry about the logarithmically enhanced coefficient which could in-. 
·validate perturbation theory. These leading logarithmic terms may be summed through 
renormalization group techniques. 

In order as this can be trivially achieved by substituting 

m
2 = m 2 [1 ~ :s (8/_3- ~ln (~2 ~8))] 
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Figure 10: Comparison between the complete O(as) correction function (solid line) and 
approximations of increasing order (dashed lines) in m2 for vector (upper graph) and axial 
vector current (lower graph) induced rates. 
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which implies (for completeness also m6 / s2 terms from Ref. [67] are included) 

~ -;;n6 
1-6--8-

s2 s3 

a 5 [ m
2 ~ 16 ( m

2 
) -;;nf>l +- 1+12--22--- 6ln-+155-

1r s s2 27 s s3 

-m2 ~ -;;n6 
1-6- +6- +4-

s s2 s3 

(157) 

+ _!_ 1 - 22- + 10- + - -39ln - + 149 -a [ m2 ~ 8 ( m
2 

) -;;nf>l 
1r s s2 27 s s3 

A systematic discussion of higher-order terms will be given in the subsequent sections. 

5 Non-singlet Contributions 

5.1 Massless Limit 

This section will cover those results obtained in the limit of massless quarks. As discussed 
in the previous part, non-singlet contributions exhibit a universal charge factor which is 
given by the Born result and can be trivially factored. The first-order correction· was 
derived in the context of QED some time ago [101]. The second order coefficient has been 
calculated by several groups [114]. The initial calculation of the O(a~) term described 
in [115] was later corrected by two groups [116, 117]. An implicit test of the results has 
recently been performed [100]. 

The full result for the non-singlet current reads as follows: 

a 5 (s) a 5 (s) 730 44 32 
[ ]

2 

1 + -7r- + A;- { 3 - 176 ((3) + [-3 + 3 ((3)] nt} 

+ [a5 (s)l 3 
{ 174058 _ 17648 ((3) + 8800 ((5) 

47r 9 3 
(158) 

+ [- 62776 + 16768 ((3) _ 1600 ((5)] nt 
27 9 9 

+ [4832 _ 1216 ((3)] n 21 _ [484 _ 176 nt + 16 n2 ] 1r2 } . 

81 27 3 9 27 f 

This leads to the following numerical result: 

r~J(s) = 1 + a,;s) + [ a,;s) r (1.9857- 0.1153 nf) 

[as(s)l 3
( 2 ) + ~ -6.6369 - 1.2001 n 1 - 0.0052 n 1 . (159) 

Those terms which depend on the number of quark flavours n1 are due to virtual fermion 
loops with light quarks. They appear for the first time at second order a~. 
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Figure 11: Double Bubble Diagram. 

Mixed QED and QCD corrections can be deduced from the QCD res.ults in a straight­
forward manner [118]. One obtains 

rq(o) = Q21 ~ a(s) [1 _ ~ as(s)l· 
ED 4 7r 3 7r 

(160) 

Corrections of order a 2 are also given in Ref. [118]. They are small and will not be 
considered here. 

5.2 Top Mass Corrections 

The top quark is also present at second order through a virtual quark loop. The corrections 
in the corresponding double bubble diagram (Fig. 11) are known in analytical form, if 
the.masses of the quarks in the external loop are neglected [119, 120]. The absorptive 
part from the cut through the two (massless) quark lines contributes for s > 0 and is 
calculated in Ref. [119]. The one from the cut through all four quark lines contributes for 
s > 4mf and can be found in Ref. [120]. Only the former is of relevance for the present 
discussion. Its contribution to rm reads: 

rl:'J = [ a,;s) r { ~ ( 1 - 6x2
) [Lia{A2

) - ({3) - 2({2) ln A+~ ln3 A] 

+ 
2
2
7 

(19 + 46x) v'1 + 4x [Li2 (A2
)- ((2) + ln2 A] (161) 

+- -+44x lnx+--+-x 5 (53 ) 3355 119 } 
54 3 648 9 ' 

where A= ( v'l + 4x- 1)/v'4X with x = mfls. 
The leading term has also been determined [40] by employing the heavy mass expansion 

as described in Section 2.3. In the heavy top limit the correction reads: 

r(O) = [as(s)l 2 

.!_ ( 44 + ~ln mf) 
NS 7r mr 675 135 S 

(162) 
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Figure 12: The function gv describing virtual corrections in the range slm2 < 4 (solid 
curve) and the approximation of the heavy mass expansion (dashed curve). 

As shown in Fig. 12, the heavy mass expansion provides an excellent approximation to 
the full answer from mt » s, even down to the threshold 4m;....:... s. The result was derived 
in the theory with n 1 = 6, whence CK 5 should be taken for the correction term accordingly. 
However, since CK5 I = _ CK 5 I + 0( CK 5 )

2
), this distinction is irrelevant for the terms 

n1=5 n1=6 
under consideration. Note that the diagrams of Fig. 11 were studied in Refs. [121, 122], 
where an exact double integral representation was obtained. The r.h.s. of (153) was 
numerically evaluated in Ref. [123]. 

It seems appropriate at this point to already here anticipate the mass corrections 
arising from internal loops of quarks with m2 Is ~ 1. Also, these corrections are universal. 
They will be derived in Sections 5.3 and 5.4. The leading a;m2 Is term is absent. The 
first non-vanishing terms are of order a~m2 Is and a;m4 I s2 and provide a correction, 

(163) 

These corrections, as well as those from a heavy top, apply equally well to vector and 
axial correlators. 
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5.3 Mass Corrections of Order m2 / s 

In view of the high precision reached in the cross-section measurements the large size 
of the first-order corrections made the knowledge of higher order QCD corrections desir­
able. Their exact computation for arbitrary quark masses would be a tremendous task. 
Fortunately for many considerations and experimental conditions, quark masses can be 
neglected in comparison with the characteristic energy of the problem, or are considered 
as small parameters. This holds true for the light u, d and s quarks, once the CMS energy 
exceeds a few GeV, and is equally valid for charm and bottom quarks at LEP energies 
of about 90 GeV. The problem may therefore be simplified by performing an expansion 
in the small parameter m2 Is, which reduces the calculational effort to massless propag­
ator integrals. The leading quadratic terms m2 Is and, for the case of lower energies, the 
quartic mass terms m4 I s2 , represent a very good approximation. 

In first order this expansion is trivially obtained in Eq. (156) from the exact result. 
We already noticed the large logarithm ln m2 Is which makes the reliability of perturba­
tion theory questionable. Its occurrence is connected to the use of the pole mass as an 
expansion parameter. The problem may be overcome by employing RG techniques and is 
conveniently achieved in the MS-scheme. In this calculational scheme leading logarithms 
ln m2 Is are summed and absorbed in the MS mass m(J.L2) with 11 being the renormaliza­
tion scale. One can then write 

(164) 

The massless results r(o) are identical for the vector and the axial vector correlators, 
whereas the mass corrections r V(n) differ from rA(n) for n 2: 1. 

It was found in Ref. [65] (discussed in some detail in Section 3.1) that the MS scheme 
has the remarkable property of all coefficient functions for QCD operators being poly­
nomial in masses and momenta. From this, and the fact that no non-trivial operators 
of mass dimension two exist in QCD, follows that no logarithms ln m2 Is appear in rV(I) 

and rA(I). Therefore rV/A(O) and rV/A(l) can be written as a perturbation expansion to all 
orders in as with mass independent coefficients. 

Since to first order as only trivial operators (unit operator times a combination of 
quark masses) of mass dimension four exist, logarithms in rC2l are absent in order a 5 and 
show up for the first time in second order a;. 

5.3.1 Vector-Induced Corrections 

In this section we demonstrate that the mass corrections of order 0 (a~) to the flavour 
non-singlet contribution of the vector-induced decay rate rv can be obtained from the 
three-loop vector current correlator [113] without an explicit four-loop calculation. The 
argument is based on the RG invariance of the Adler function 
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= 3 { [ 1 + as;lt) + ... ]- m~~) [bcio + (bci1 -+ b~£) (as~)) 

+ (bv -av +bv£+bV£2) (as(~t))2 02 02 12 22 -7f- (165) 

+ {bri, + bi,£ + br,t> + b~f'l('"·~) )'] } , 

where£= ln (~t2 /Q2). The term aci'2 originates from the b quark propagating in an inner 
fermion loop. Mass corrections are therefore also present for the decay of the Z-boson 
into massless quarks. The coefficients up to and including the second order CJ(a5 )

2) were 
obtained in [124] (the aci'2 term was first computed in [121]). They read11 

bci'0 = 6, 

bci'2 = [28799 + 992 ((3)- 8360 ((5)- 882 n,]/72, 

b{2 = (3303- 114 n1 )/18, b¥2 = (513- 18 n1 )/18, 

aci'2 = [32- 24 ((3)]/3 . 

(166) 

The crucial point for the subsequent calculation is the invariance of nv (165) under RG 
transformations 

2 d v 
It d~t2 D = 0, (167) 

combined with the absence of ln ~t2 jm2 terms in Eq. (165). Recursion relations between 
the coefficients of the Adler function allow the calculation of the order O(a5 )

3 ) coef­
ficients b{'3 , b¥3 , bj3 frorri the lower order coefficients combined with those of anomalous 

11 The result (166) was confirmed by a direct calculation in Ref. [125]. Hence, the correction of the 
originally published coefficient 992 of ((3) in b~2 to 1008 suggested in Ref. [126] and unfortunately used 
in Ref. [113] turned out to be an error. This fact has also been recently acknowledged by the very author 
of Ref. [126] in Ref. [127]. Numerically the use of the correct result leads to only a slight increase (less 
than 0.6%) in the magnitude of>-.¥ in comparison with that given in Ref. [113]. 
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mass dimension and the ,B-function: 

b{'2 = (,Bo + 2'Y~)bci1 + 2')':nbci0 , 

v 1 ( 0 v b22 = 2 ,Bo + 2'Ym)bu , 

b{'3 = 2(,Bo + 'Y~) (bci2 - aci2) + (,81 + 2'Y:n)bci1 + 2'Y!bri'0 , 

b¥3 = (,Bo + 'Y~)b{'2 + ~(,81 + 2'Y:n)b{'1 , 

v 2( o)v 
b33 = 3 ,Bo + 'Y m b22 · 

(168) 

The coefficient b"63 cannot be obtained via this recursion method. However, the term 
proportional to this coefficient does not contribute to Rv. The vector contribution to the 
decay rate is then written in the form: 

-2 m (1) 
-rv 
s 

If we set the normalization point p.2 = s, the remaining logarithms of sf p.2 are absorbed in 
the running coupling constant and the running mass. The coefficients >.can be obtained 
from the expansion coefficients of the Adler function by first integrating Eq. (165) to 
obtain rrv 1 Q2 and subsequently taking the imaginary part of rrv 1 Q2 to arrive at r v: 

>.6 = 0' 
,v _ bv 
/\1 - 11' 

,y- 0 
/\2 - ' 

,y- 0 
/\5 - ' 

(170) 

The term 1r2 in >.¥ is a consequence of the analytical continuation from space-like to 
time-like momenta and arises from the term ln3 p.2 fQ2 -+ (ln p.2 /IQ21 ± i1r)3 . Explicitly, 
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non-zero entries above read: 

A{= 12, 

Av __ 13 253 
3 - 3 nl + 2 ' 

A¥= -57+ 2 n1, 

v 1 2 2 125 2 17 2 466 1045 
A6 = - 9 nl7r + 54 nl + 3 nl7r - 27 nl((3) + 27 nl((5) (171) 

_ 4846 nl _ 285 7r2 + 490 ((3) _ 5225 ((5) + 2442 
27 4 3 6 ' 

A v = _ 13 n 21 + 175 nl _ 4505 
7 9 2 4 ' 
v 1 2 855 

As = 3 n 1 - ~ 7 n 1 + 4 . 

The a02 contribution originates from the b quark vacuum polarization graphs and 
is thus also present for final states with massless quarks. (More precisely, it originates 
in this case from QCD corrections to qqbb configurations.) The same correction would 
arise in rA. This term has been anticipated in Eq. (163). The final answer can still 
be interpreted as an incoherent sum of the contributions from different quark species. In 
particular this implies that contributions from three gluon intermediate final states (singlet 
contributions) are absent in the O(a5 )

3 ) mass terms. This contrasts with the corrections 
form= 0, which receive third-order contributions precisely from this configuration- see 
Eq. (196) below. 

Numerically, one finds a quite decent decrease in the terms of successively higher­
orders, which supports confidence in the applicability of these results for predictions of 
the rate. This will be studied in more detail in Part 7. 

5.3.2 Axial Vector-Induced Corrections 

The situation is more involved if one wants to apply similar RG arguments to the axial 
vector-induced rate in order to again compute the corresponding mass corrections from 
nonsinglet diagrams. The comparison of the expansion of the Adler function 

(172) 

with Eq. (165) shows that in the axial case the highest order term of the power series 
in £ within a given order 0( as)i) is proportional to £i+1 , whereas in the vector case the 
£-expansion terminated at £i. This structure is dictated by the anomalous dimension 'Y!.A, 
which vanishes in the vector case. 
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The expansion of nv contained the second order coefficient aci'2 , originating from an inner 
b-quark loop. The same O(a5 )

3 ) term is also present in the axial case for massless as 
well as massive external quark lines. The mass correction of O(as)3 ) from external quark 
loops has not yet been calculated. 

The coefficients of the expansion (172) read: 

b~0 = -12, 

A 151 
b01 = -2 + 24((3), 

(173) 

b~1 = -6. 

The complication in deriving from these the second-order coefficients of the logarithmic 
terms arises from the fact that the mass dependent part of DA obeys the inhomogeneous 
RG equation: 

2_i:_DA = ffi2 
AA = m:2(J.L) """ ( AA) [as(J.L)li 

f.L d 2 Q2 'Ym - Q2 L...J 'Ym i 
f.L i~O ~ 

(174) 

Therefore, recursion relations can be set up again, although in this case order 0( a~) 
coefficients btn (k > 0) are not only expressed through the {bij} with 0::; i::; j + 1 ::; n, 
but also through the expansion coefficients of the anomalous dimension ('Y!A )r (r ::; n). 
In fact, the second-order coefficients satisfy the relations 

bto =- ('Y!A)o' 

bfi . =- ( 'Y!A )
1 
+ 2b~o'Y!, 

b~l bA 0 = 10'Ym' 
(175) 

bt2 · = - ( 'Y!A )
2 
+ b~1 (,Bo + 2'Y!) +2b~o'Y~, 

b~2 = ~ b~1 (,Bo + 2'Y!) + b~o'Y~ ,. 

b~2 1 A ( 0 
= 3 b21 ,Bo + 2'Ym) · 

[Note: for the vanishing anomalous dimension the Eqs. (168) and (175) coincide.] There­
fore the anomalous dimension 'Y!A must be known to the same order to which the decay 
rate is computed. The calculation of 'Y!A is sketched in Section 2.2.5 and leads to the 
following result [32] 

AA · { 5 Ct5 
( Ct5

) 

2 
[455 1 1 ( )] } 'Y = 6 1 +- - + - --- - n1-- ( 3 . 

m 3 ~ ~ 72 3 2 
(176) 

As for the vector case we write a general expansion for the axial vector-induced rate: 
-2 m (1) 
-rA 
s 

(177) 
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The coefficients read as follows: 

'A_ bA Ao - 10 ' 

Or, explicitly, 

).~ = -6' 

>.t = -22' 

).~ = 12 ' 

A 1 2 151 19 2 8221 
.>.3 =- 3 n11r -4 n,((3) + l2 n 1 + 2 1r + 117 ((3)- 24 , 

A 16 
.>.4 =- 3 n1 + 155, 

A 57 
As = n,- 2· 

(178) 

(179) 

The discussion in this and the previous section is tailored for an external current 
coupled to bb and includes mass corrections from internal b quark loops as well as from 
the loops coupled to the external current. A slightly different situation occurs for a 
nonsinglet correlator arising from massless quarks. Internal bottom quarks as indicated 
in the double bubble graph still induce mV s corrections. However, a slight generalization 
of the arguments presented above demonstrates that these terms are again absent in 
order CJ(a5 )

2
). From corrections of the diagrams in Fig. 11 one obtains the terms of order 

CJ(a5 )
3 ), which should for convenience be incorporated into r~J and summed over all 

massive quark species, adding the term 

(180) 

5.4 Mass Corrections of Order m4/s2 

Terms of higher-order in m 2 Is are quite unimportant as far as Z decays into b-quarks 
are concerned. However, at lower energies these should be taken into account in order to 
arrive at an adequate description of the cross-section. In fact, as shown in Fig. 10, the 
order as correction functions K v and KA introduced in Eq. (148) are well described by 
the first few terms of the expansion in m2 Is, not only at high energies, but even fairly 
close to threshold. Hence one should arrive at a reliable result to O(a;) near the threshold 
through the incorporation of the first terms of the expansion in a; ( m2 Is )n. The second­
order calculation of quartic mass corrections presented below is based on Ref. [67]. The 
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calculation was performed for vector and axial vector current nonsinglet correlators. The 
first is of course relevant for electron-positron annihilation into heavy quarks at arbitrary 
energies, the second for Z decays into b quarks and for top production at a future linear 
collider. 

Quartic mass corrections were already presented to order as in Part. 4, expressed in 
terms of the pole mass. In this section the result in the MS scheme is given and the second 
order a; contribution is discussed. The calculation is based on the operator product 
expansion of the T-product of two vector currents, Jf.L = U"ff.Ld and J;f = (i"(,_,u. Here u 
and dare simply two generically different quarks with masses mu and md· The operator 
product expansion includes power law suppressed terms up to operators of dimension 
four induced by non-vanishing quark masses. Renormalization group arguments similar 
to those already employed in the previous section allowed a deduction in the a;m4 terms. 
Quarks which are not coupled to the external current will influence the result in order a; 
through their coupling to the gluon field. The result may be immediately transformed to 
the case of the electromagnetic current of a heavy, say, t (or b) quark. 

The asymptotic behaviour of the transverse part of this (operator valued) function for 
Q2 = -q2 ---+ oo is given by an OPE of the following form (different powers of Q2 may be 
studied separately and only operators of dimension 4 are displayed): 

Only the gauge invariant operators G~v• mijiqi and a polynomial of fourth order in the 
masses contributes to physical matrix elements. Employing renormalization group argu­
ments the vacuum expectation value of :En CnOn is under control up to terms of order as 
as far as the constant terms are concerned and even up to a; for the logarithmic terms 
proportional to ln Q2 I p,2 . Only these logarithmic terms contribute to the absorptive 
part. Hence one arrives at the full answer for a;m4 I s2 corrections. Internal quark loops 
contribute in this order, giving rise to the terms proportional to m2m; and m[ below. 

The result reads [below we set for brevity the MS normalization scale Jl = ..jS and 
mu(s) = md(s) = m]: 

=4 m (2) 
-2rv s 

rn;4 {- 6- 22as(s) 
s2 7r 

[
as(s)l

2 
[ (1 m

2 
2 2 · 8 143) + -- n1 -ln -- -1r - -((3) +-

7r 3 s 3 3 18 

11 m2 
2 3173 m; 

- -ln- + 277r + 112((3)-- + 122:.:-
2 s 12 i m 2 

(
13 ) 7'fi1 7'fi1 mi

2
] } + 3- 4((3) ~ m~ - ~ m~ ln -s- ' (182) 
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Figure 13: Contributions to Rv from m4 terms including successively higher orders in a 5 

(order a~/ a!/ a; corresponding to dotted/ dashed/ solid lines) as functions of 2mpoie/ y's. 

- ~{6+10as(s) 
s2 7r 

+ [as(s)l
2 

[nf (- ~ln m
2 
+ ~7r2 + 16 ((3) _ 41) 

7r 3 s 3 3 6 

77 m 2 
2 3533 m~ + -ln-- 277r - 220((3) +- -12L::-

2 s 12 i m2 

+ ( 
1
; - 4( (3)) ~ :! -~ :! ln ~

2

] } • (183) 

Note that the sum over i includes also the quark coupled to the external current and 
with mass denoted by m. Hence in the case of one heavy quark u of mass m ( d = u) one 
should set L::i m[ /~ = 1 and L::i m~ / m 2 = 1. In the opposite case, when one considers the 
correlator of light (massless) quarks the heavy quarks appear only through their coupling 
to gluons. There one finds for the correction term: 

rv = rA = [as(s)l2"' mj(s) [13 -ln m}(s) - 4((3)] ' 
1r L...J s2 3 s -

f 
(184) 

as anticipated in Eq. (163). 
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Figure 14: Predictions for Rv including successively higher orders in m2. 

The Z decay rate is hardly affected by the m4 contributions. The lowest order term 
in Eq. (182) evaluated with m = 2.6 GeV amounts to ±6m/s2 = ±5 x 10-6 for the 
vector (axial vector) current induced Z -+ bb rate. Terms of increasing order in a 5 

become successively smaller. The mt correction to f(Z -+ qq), which starts in order 
a;, is evidently even smaller. It is worth noting, however, that the corresponding series, 
evaluated in tl!e onshell scheme, leads to terms which are larger by about one order 
of magnitude and of oscillatory signs. From these . considerations it is clear that m4 

corrections to the Z decay rate are well under control -despite the still missing singlet 
piece - and that they can be neglected for all practical purposes. 

The situation is different in the low energy region -. say several Ge V above the charm 
or the bottom threshold. For definiteness the second case will be considered and for 
simplicity all other masses will be put to zero. The contributions to Rv from m4 terms 
are presented in Fig. 13 as functions of 2m/ y'S in the range from 0.05 to 1. The input 
parameters Mpole = 4.70 GeV and a5 (mi) = 0.12 have been chosen. Corrections of 
higher-orders are ·added successively. The prediction is fairly stable with increasing order 
in 0 5 as a consequence of the fact that most large logarithms were absorbed in the running 
mass. The relative magnitude of the sequence of terms from the m 2 expansion is displayed 
in Fig. 14. The curves for m0 and m2 are based on corrections up to third order in a 5 , 

with the m2 term starting at first order. The m4 curve receives corrections from order 
zero to two. 

Of course, very close to threshold - say above 0. 75 (corresponding to y'S below 
13 GeV) -the approximation is expected to break down, as indicated already in Fig. 10. 
The validity of the approximation and a prediction valid even closer towards threshold 
can only be achieved through a full three loop calculation. 
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Below the bb threshold, however, one may decouple the bottom quark and consider 
mass corrections from the charmed quark within the same formalism. 

5.5 Heavy Quark Vacuum Polarisation to Three Loops 

To order as the vacuum polarization was calculated by Kallen and Sabry in the context 
of QED a long time ago (101]. In order a; a variety of qualitatively different contribu­
tions arises. Diagrams with a massless external and a massive internal fermion loop can 
be calculated in analytical form. Their contributions to R are given by Eq. (161) and 
Eq. (17) in the Appendix 3. Diagrams with two loops of fermions with equal mass are 
straightforward: The two particle cut is known in analytical form, the four particle cut is 
expressed through a two-dimensional integral [128]. The imaginary part of the "fermionic 
contribution" -derived from diagrams with a massless quark loop inserted in the gluon 
propagator- has been calculated in [128]. All integrals could be performed to the end 
and the result was expressed in terms of polylogarithms. In (129] results for the cross 
section are presented in order a;. They are obtained from the vacuum polarisation II(q2

) 

which was calculated up to three loops. Instead of trying to perform the integrals ana­
lytically, the large q2 behaviour of II(q2 ) up to terms of order m 2 jq2 was combined with 
its Taylor series around q2 = 0 was calculated up to terms of order q8 . The leading and 
next-to-lead~ng singularity is deduced from the known behaviour of the nonrelativistic 
Green function and the two-loop QCD potential. Altogether eight constraints on II(q2

) 

are thus available, four from q2 = 0, two from q2 -+ -oo and two from the threshold. 
The contributions rv c~,"' CACF and rv CFTnz have to be treated separately since 

they differ significantly in their singularity structure. For each of the three functions an 
interpolation was constructed which incorporates the light and low energy calculations 
and is based on conformal mapping and Pade approximation. Since the result for CFTnz 
is available in closed form the approximation method can be tested and shown to give 
excellent result for this case. 

To. arrive at the final answer the following steps were performed: 
The contributions from diagrams with n1 light or one massive internal fermion loop 

were denoted by CFTn1 1I~2 ) and CFTII~) with the group theoretical coefficients factored 
out. Purely gluonic corrections are proportional to C~ or CACF. The former are the 
only contributions in an abelian theory, the latter are characteristic for the nonabelian 
aspects of QCD. It is essential to treat these two classes separately, since they exhibit 
qualitatively different behaviour close to threshold. The following decomposition of II(q2

) 

(and similarly for R( s)) is therefore adopted 

II = II(O) + as (J.L
2

) II(l) (185) 
1r 

+ ( "'·~')) 
2 

[c~rr~l + CACFII~~ + CpTn,rr('1 + CpTil~1]. (186) 

All steps' described below have been performed seperately for the first three contributions 
to II(2). 

The high energy behaviour of II provides important constraints on the complete an­
swer. In the limit of small m2 jq2 the constant term and the one proportional to m2 jq2 
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(modulated by powers of ln J.L2 
/ q2

) have been calculated a long time ago [124]. 
General arguments based on the influence of Coulomb exchange close to threshold, 

combined with the information on the perturbative QCD potential and the running of 
as dictate the singularities and the structure of the leading cuts close to threshold, that 
is for small v = .J1- 4m2/ s. The C} term is directly related to the QED result with 
internal photon lines only. The leading 1/v singularity and the constant term of RA can 
be predicted from the nonrelativistic Greens function for the Coulomb potential and the 
O(as) calculation. The next-to-leading term is determined by the combination of one 
loop results again with the Coulomb singularities One finds 

{2) (71"
4 

2 ) R A = 3 Sv - 37r + . . . . (187) 

The contributions rv CACF and rv CFTnt can be treated in parallel. The leading 
C ACF and CFTnt term in R is proportional to ln v2 and is responsible for the evolution 
of the coupling constant close to threshold. Also the constant term can be predicted by 
the observation, that the leading term in order as is induced by the potential. The O(as) 
result 

R = 3 -v+CF--+ ... (
3 37!"

2 
Q 5 ) 

2 4 7r 
(188) 

is employed to predict the logarithmic and constant CFCA and CFTnt terms of O(a~) 
by replacing as by av( 4p 2 = v2s) governing the QCD potential. governing the QCD 
potential. This implies the following threshold behaviour: 

R(2
) 371"2 

(
31 

-
11

1n v2 + 11
1n J.L

2 

+ ... ) 
NA 48 16 16 S ' 

(189) 

2 ( 5 1 2 1 J.L
2 

) 37r -- + - ln v + -
4 

ln - + . . . . 
12 4 s 

(190) 

This ansatz can be verified for the CFTnt term since in this case the result is known 
in analytical form [128]. Extending the ansatz from the behaviour of the imaginary part 
close to the branching point into the complex plane allows to predict the leading term of 
II(q2 ) rv ln v and rv ln2 v. 

Important information is contained in the Taylor series of II(q2 ) around zero: 

rr<2) - _3_ c _q_ 
( 

2 )n 
- 1671"2 I:· n 4m2 

n>O 

(191) 

The calculation of the first four nontrivial terms is based on the evaluation of three-loop 
tadpole integrals. The results for Cn upton= 4 can be found in [129]. 

The vacuum polarisation function II(2) is analytic in the complex plane cut from q2 = 
4m2 to +oo. The Taylor series in q2 is thus convergent in the domain lq2 l < 4m2 only. 
The conformal mapping which corresponds to the variable transformation 

1- · /1- q2 /4m2 

w- --~Vr======== 
- 1 + .J1- q2/4m2 ' 

4w 
(192) 

(1+w) 2 ' 

58 



transforms the cut complex q2 plane into the interior of the unit circle. The special points 
q2 = 0, 4m2, -oo correspond tow= 0, 1, -1, respectively. 

The logarithmic singularities at threshold and large q2 are removed by subtraction, 
the 1/v singularity, which is present for the C} terms only, by multiplication with v as 
suggested. in (130]. The imaginary part of the remainQ.er which is actually approximated 
by the Pade method is thus smooth in the entire circle, nuJ?lerically small and vanishes 
at w = 1 and w = -1. 

After performing the Pade approximation for the smooth remainder with w as natural 
variable, the transformation (192) is inverted and the full vacuum polarisation function 
reconstructed by reintroducing the threshold and high energy terms. This procedure 
provides real and imaginary parts of II(2). 

In Figure 15 the complete results are shown for J-l2 = m2 with R~), R~1 and R~2) 
displayed separately. The solid curves are based on the (4/2L (3/2] and (3/2] Pade ap­
proximants for A, N A and Z, respectively. The threshold and high energy behaviour is 
given by the dashed curves. The exact analytical result which is known for the R~2) con­
tribution only differs from the approximation curve in Figure 15 by less than the thickness 
of the line. The quality of the approximation Jor R~) and R~1 is confirmed by the com­
parison of the high energy behaviour of the approximation with the known asymptotic 
behaviour (Figure 16). The quadratic approximation (dash-dotted line) is incorporated 
into R(2) by construction, the quartic approximation shown (dashed line) is known from 
(67], but is evidently very well recovered by the method presented here. 
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Figure 15: Complete results plotted against v = Jl- 4m2 Is. The high energy approx­
imation includes the m4 I s2 term. 
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Figure 17: Nonsinglet 0( a;) four fermion (a) and virtual (b) contributions. 

5. 6 Partial Rates 

The formulae for the QCD corrections to the total rate rhad have a simple, unambiguous 
meaning. The theoretical predictions for individual qq channels, however, require addi­
tional interpretation. In fact, starting from order 0( a;) it is no longer possible to assign 
all hadronic final states to well specified qq channels in a unique manner. The vector- and 
axial vector-induced rates receive (non-singlet) contributions from the diagrams, where 
the heavy quark pair is radiated off a light qq system (see Fig. 17a). The analytical result 
for this contribution for arbitrary m 2 I 8 can be found in Ref. [120] and is reproduced in 
the Appendix. The rate for this specific contribution to the qqbb final state in the limit 
of small m 2 I 8 is given by -

(
a 5 )

2 
1 { 3 8 19 2 8 [146 ] 8 - - ln - - -ln - + - - 12((2) ln -

1r 27 m2 2 m2 3 m2 
b b b 

(193) 

2123 } - 18 + 38((2) + 30((3) + O(mV8). 

Numerically one obtains 

RN-!b = (as )2 

{0.92210.987 11.059} ; for mb = 4.914.714.5 GeV. (194) 
qq 7r 

The contributions from this configuration to the total rate (in particular the logarithmic 
mass singularities) are nearly cancelled by those from the corresponding virtual corrections 
(see Fig. 18b). 

Despite the fact that b quarks are present in the four-fermion final state, the nat­
ural prescription is to assign these events to the qq channel. They must be subtracted 
experimentally from the partial rate r b"b· This should be possible, since their signature 
is characterized by a large invariant mass of the light quark pair and a small invariant 
mass of the bottom system, which is emitted collinear to the light quark momentum. If 
this subtraction is not performed, the inclusive bottom rate is overestimated (for mb = 
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4.70 GeV and a 5 chosen between 0.12 and 0.18) by 

" rNS_ L...t qqbb 

Do = q=u,d,~,~ ~ 0.007 .. 0.016 . 
bb 

(195) 

As shown in Fig. 18a the leading contribution well matches the full calculation (for bottom 
quarks it is about 10% above the exact answer) leading to the analytic result presented 
in the App.endix. A slightly different approach to the evalutaion of heavy quark multipli­
cities, which attempts the resummation of leading logarithms, can be found in Ref. [131]. 

6 Singlet Contribution 

6.1 Massless Final State 

6.1.1 Vector Currents 

Singlet contributions to the Z decay rate or to the total cross-section originate from 
diagrams that can be split into two parts by cutting gluon lines only. In the vector case 
the first of these contributions arises in order O(a5 )

3 ) and is induced by 'light-by-light' 
scattering diagrams (see Fig. 3). The charge structure of this contribution differs from 
the non-singlet terms. Hence the lowest order singlet contribution is UV finite. In the 
notation introduced in Section 2.1 one obtains: 

r¥ = H"~~))' (d:t )'[1~6 -128((3)l 

= ~ ( a,;s))' (-1.240). 
(196) 

At this point a brief comment concerning mass-dependent terms is in order. As dis­
cussed in Section 5.3.1, mV s terms from diagrams depicted in Fig. 3 are absent. This 
leaves potential contributions with heavy top quarks from the same diagram. However, 
these are suppressed by a factor sjm; and asymptotically decoupled. In Section 5.2 the 
corrections of order O(a5 )

2sjm;) from non-singlet diagrams were calculated and shown 
to be small. Corrections of order O(a5 )

3s/m;) will therefore be ignored throughout12 . 

Hence no mass corrections from singlet diagrams will be considered in the vector case. 
It should be stressed again that the knowledge of the two functions R~s and R¥ (and 

hence of r~J, r~~l), r¥) is sufficient to evaluate all possible vector current correlators like 
Rem, Rv and Rint. 

6.1.2 Axial Case 

In the (fictitious) case of mass degenerate isospin doublets, singlet contributions from up 
and down quarks compensate exactly, since au = -ad. Interesting enough, individual 

12 Recently these corrections have been evaluated in Ref. (39] and proved to be quite small. 
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Figure 18: a) The function gR describing the production of four fermions in the region 
0 < x = m2 Is < 1 I 4. Solid line: exact result; dashed-dotted line: logarithmic and 
constant terms only; dotted line: including m2 Is corrections; dashed line: including m2 Is 
and m4 I s2 corrections. b) Corresponding curves for g v describing virtual corrections. 
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contributions to four-fermion final states are nevertheless present. The individual contri­
butions from these cut double triangle diagrams to the Z decay rate for a massless ( u and 
d) doublet are given as follows: 

1 
r uiiuii ' r dddd = - 2 r uiidd . (197) 

For the top and bottom quark this cancellation is no longer operative as a consequence of 
the large mass splitting within the multiplet. For mt -t oo one recovers the predictions 
based on an anomalous axial current. The V(as)2) calculation has been performed in 
Refs. [104, 132] for arbitrary m; / s. The additional term in the Z decay rate can be de­
composed into a term from two- (bb), three- (bbg) and four-parton (bbbb) configurations. 
The two gluon cut is forbidden according to the Landau-Yang selection rules [133), which 
forbid the decay of a parity odd particle with non-even integer total angular momentum 
into two massless vector bosons. 

The respective diagrams contribute an additional singlet piece, 

r~ = d§ ( :s r + d§ ( ~ r (198) 

The first term can be decomposed into contributions from two-, three- and four-particle 
intermediate states: 

2 1( ) 1 ( ) d8 = 3 Rei2 + ~I3 + I4 = 3 I. 199 

The functions I are well approximated by13 

s ( s )
2 

s Rei2 = -7.210 + 1.481-2 + 1.363 -
4 2 + 3ln - 2 , 

4mt mt mt 

~I3 = -1.580- 0.444-;.- 0.731 (
4

8 

2)
2

, 
4mt mt (200) 

I4 = -0.460, 

s ( s )
2 

s I = -9.250 + 1.037-2 + 0.632 -
4 2 + 3ln - 2 . 4mt mt mt 

The asymptotic behaviour for large m; is particularly simple14 : 

21 10 s s 
Rei2 ::} 2((2)--+--+ 3ln-

2 27 mr mr' 
s 

~I3 =* -4((2) +5--
9 2 , 
mt 

15 
I 4 =* 2( ( 2) - "4 , 

(201) 

37 7 s s 
I ::} - - + - -- + 3ln -. 

4 27 mr m'f 
13 The exact formula in terms of Clausens functions can be found in Ref. [104]. 
14Note that the above result for I at large mt has been checked through completely independent 

calculations in Ref. [134] (up to terms of order sfm~) and in Ref. [39] (up to terms of order s3 fm~). 
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At this point the scale in et5 is-still ambiguous, as is the precise definition of mt. In fact, 
since two different mass scales, Mz and mt, are present in the problem, the asymptotic 
behaviour for large mt cannot be directly derived from this result. The evaluation of the 
leading logarithms in Ref. [43) allows the resolution of the ambiguity between the choice 
of f--L = mt and f--L = Mz. The remaining constant term has been evaluated in Ref. [135). 
For the renormalization scale J--L

2 = 8 , and with m; = m; ( 8) , one gets in the limit of 
large mt: 

d3 -s -

1 { 37 8 } 
3 -4 + 3 ln m;(8) ' 

- --- + 3((3) + -1r + -ln -- + -ln -- . 1 { 5651 23 2 31 s 23 2 8 } 

3 72 12 6 mH8) 4 mH8) 
(202) 

For practical purposes it is more convenient to employ the on-shell mass as the input 
parameter. Relating the MS mass at scale J--L

2 = 8 to the on-shell mass through Eq. ( 4 7), 
one arrives at 

~ { -
37 + 3ln ~} 

3 4 Ml ' 

d~ = ~ { _ 5075 + 3((3) + 23 7r2 + 67 ln ~ + 23 ln2 ~} . 
3 72 12 6 M[ 4 M[ 

(203) 

Ford§ one should in fact include the subleading terms I'V 1/mr or, even more appropriately, 
employ the complete answer, or at least the approximation Eq. (200). 

6.2 Bottom Mass Corrections in the Singlet Term 

Bottom quark mass effects have been neglected in the previous section. Employing the 
techniques of light/heavy mass expansions discussed in Part 3, one may derive terms of 
order mV 8 as well as of order mVm;. Although the former are significantly more import­
ant for realistic top masses than the latter, we list both contributions for completeness. 
The corresponding results are [134, 136): 

rt = -6 ~~ ( ~) 
2 

[ -3 + ln ~r] 
-10m~ (Cts)2 [~- ..!_ln _!_] mr 7r 81 54 mr 

(204) 

We would like to conclude this section with a brief comment on O(a5 )
3mV8) singlet 

terms. As stated in Section 5.3.1, these are absent in the case of vector-current correlators. 
Hence, for a complete treatment of order O(a5 )

3 ), including mass corrections, only axial 
singlet and non-singlet contributions of order 0( et5 )

3mV 8) are missing. In fact, only 
corrections of this order to the currents TryJ..L!sb and hJ..List are not yet available [see the 
discussion in Section 5.2, Eq. (163)]. The Born contribution of these currents amounts to 
20% of the Z decay rate only, and the missing corrections to these terms of 0( et5 )

3mV 8) 
can be safely neglected both for the moment and the foreseeable future. 
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6.3 Partial Rates 

Assigning of singlet terms f 8 to partial decay rates into individual qq final states r qq:, 

which in turn are attributed to individual quark currents, is evidently not possible in a 
straightforward manner. Singlet contributions arise from the interference between differ­
ent quark amplitudes. Nevertheless, at the present level of precision where experiments 
are only able to identify heavy flavour rates with a relative precision of about 1%, prag­
matic prescriptions for this separation can be found. 

6.3.1 Axial Rate 

Let us start with the O(a;) singlet term induced by the interference of axial top and 
bottom currents. It can be decomposed into two-, three- and four-particle cuts, corres­
ponding to the interference terms in Figs. 19 and 20. For final states with bottom quarks 
only one has [104] [see also Eq. (200)]: 

1 (a )2 { · s (· s )
2 

8 
} = 3 7rs -7.210 + 1.4814ml + 1.363 4ml + 3ln mr 

( a 5
)

2 

= - --;- (3.52 ± 0.25)' 

= ~ (as) 2 

{-1.580- 0.444-
8
--0.731 (-

8
-)

2

} 
3 n 4mr 4ml (205) 

=- (:s r (0.60 ± 0.01)' 

= - ~ ( ~) 
2 

0.460 

= - ( :s) 2 

0.15' 

where mt = 17 4 ± 20 Ge V has been assumed in the numerical evaluation·. The first, 
logarithmically enhanced term dominates and can reasonably be assigned to r bi>· The 
same holds true for the three particle contribution from bbg. At this point it should be 
stressed that other qq final states are affected by this mechanism: 

R~cr = -Rs- = R;s = -R~-;; -~ - b ' uu 
(206) 

R~crg = -R~u:g -Rs - ssg - Rs -- ccg -~ - bg 0 

These terms are proportional to the isospin of the quark, whence contributions from the 
massless doublet cancel. The assignment of singlet qq and qqg terms can therefore be 
performed in a convincing manner. 

The situation is more intricate for .the four-fermion final states, say qqbb, which ori­
ginate from the interference between qq and bb induced amplitudes (Fig. 20). Neglecting 
masses one obtains 

s 1s 1s 1s 1s 
~bbb =- 2~buu = 2~bdd =- 2~bcc = 2~bss (207) 
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Figure 19: Singlet contributions with final states bb and bbg. 

* 

Figure 20: Singlet contribution with four-fermion final state qqbb. 

Among the final states from these diagrams with at least one bb pair, only the bbbb 
term remains after all compensations have been taken into account. Numerically it is 
tiny, about a factor 25 below the bb + bbg rate, and can therefore be ignored at present. 
The four-fermion contribution is present also for other light quarks. Within one complete 
doublet the cancellation occurs between mixed and pure configurations: 

R s - Rs - IRs - Rs 
uudd - dddd - - 2 uudd - ~ 'bbbb · (208) 

If one were to insist on distributing the four-fermion singlet part to specific partial rates, 
the separation could only be performed in an analysis tailored to the specific experi­
mental cuts. Mixed configurations like bbcc could either be assigned tor bb ('hierarchical' 
assignment) or with equal weight tor bb and fcc ('democratic' assignment). Furthermore, 
four fermion events with secondary radiation (which exhibit mass singularities - see 
Section 5.6) lead to similar signatures and must be subtracted from the singlet parts with 
the help of Monte Carlo simulations. However, as stated above, the issue can be ignored 
at present and the assignment of the axial singlet terms to partial rates according to the 
quark isospin seems adequate. 

The a; term has not been decomposed into individual cuts, except for the three gluon 
final state discussed below. Nevertheless it is evident from the structure of the calculation 
that the leading logarithmically enhanced terms can be interpreted as a correction to the 
bb configuration and hence are again proportional to the weak isospin. Therefore the 
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complete axial singlet rate equations (200) and (203) can be assigned to r qq with a 
weight proportional to the weak isospin Ij. 

As noted above, the three-gluon rate induced by the axial current has been calculated 
with the truly tiny result [137], 

rA = GFMl (O:'s) 3 
_!_ [2981 

- 587r2 -
21

7r4 - 8((3)] = 0.00072 MeV. (209) 
ggg 24J27r 7r 16 3 5 

6.3.2 Vector Rate 

In order a; there are no singlet terms as a consequence of charge conjugation (Furry's The­
orem). The a~ term given in Section 6.1.1 receives co~tributions from two to five parton 
configurations. Again, only the tbree-gluon contribution has been calculated separately 
[137]: 

GFMl (as) 3 (L v ) 
2 
~ [-124 + 417r2 + !_1r4 

24J27r 7r f f 144 3 15 

-128((3) + 200((5)- 87r2((3)] = 0.0041 MeV. (210) 

The prediction is again far below the level of detectability. 

7 Numerical Discussion 

7.1 Z Decays 

One of the central tasks at LEP is the extraction of a precise value for O:'s from the hadronic 
Z decay rate (or from derived quantities such as Rhad or o"). Another quantity of interest 
is the ration r bbfrhad, which provides important limits on the mass of the top quark and, 
indirectly, on new physics. It is therefore mandatory to explore the sensitivity of these 
predictions with respect to uncertainties in the input parameters, such as quark masses or 
as, and to deduce estimates on the uncertainties from as yet uncalculated higher-orders. 

For the convenience of the reader we shall now extract from the previous parts a 
summary of the main results combined with a numerical evaluation that is particularly 
tailored for the energy regime around the Z. If not stated otherwise, O:'s will denote 
the QCD coupling a8 (s) in the MS-scheme evaluated for five flavours at the scale s. As 
input for AMs we shall use the value AMs = 233 MeV corresponding to as(M~) = 0.1200. 
The b-mass mb(s) will be taken as MS-mass in a five-flavour theory at the mass scale s. 
For the bottom pole mass we shall use the value of M = Mb = (4.7 ± 0.2) GeV. It is 
related to mb(Mb) through Eq. (47), evaluated at J1 = Mb. The running mass is therefore 
dependent on 0:' 8 • A few typical values are given in Table 2, where we also anticipate 
the values relevant for the subsequent discussion at lower energies. Our default value 
corresponds to a running mass at the Z peak of m = mb(M~) = 2.77 GeV. The running 
charm mass is about a factor of five smaller than mb. Corrections from m~/ s terms are 
hence entirely negligible for Z decays. For sin2 Ow the value 0.2321 is adopted. We als<? 
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Table 2 

Table of bottom masses. 

AMS as(Mz) a 5 (10 GeV) M m(M) m(Mz) m(10 GeV) 

0.150 0.112 0.165 4.70 4.10 2.95 3.69 

0.200 0.117 0.176 4.70 4.04 2.84 3.59 

0.233 0.120 0.183 4.70 3.99 2.77 3.54 

0.300 0.125 0.195 4.70 3.91 2.64 3.43 

0.400 0.131 0.210 4.70 3.80 2.48 3.28 

use the value 1/a(Mz) = 127.9 ± 0.1 [138] for the running fine structure constant at the 
scale of Mz. For the top (pole) mass we choose Mt = 174 ± 20 GeV. 

7 .1.1 The Total Hadronic Decay Rate r had 
The hadronic decay rate can be cast into following form: 

12 12 

rhad = L:ri = L:roR, (211) 
i=1 i=1 

with r 0 = GpM!/24v'27r = 82.94 MeV, v1 = 21£- 4Q1 sin2 Ow, a{= 211, and the follow­
ing separate contributions: 

Massless non-singlet terms: 

R1 = 3 l:(vJ + a})r1 
f 

= 3 ~(vj +a}) [1+ ~ + 1.40932 ( ~ )'- 12.76706 (~ )'] 
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Massive universal corrections ('double bubble'): 

R2 = 3 I':(vj + a})r2 
f 

)

3 -2 

= 3 L(VJ + aj)( -6.126) (as L mf' 
f 7r f'=b s 

R3 = 3 I':(v} + a})r3 
f 

= 3 L(vj +a}) (as) 2 

L mt' [-0.4749 -ln m},l 
f 7r f'=b s s 

R4 = 3 L(vj + a})r4 

f 

= 3 ~(vJ + aJ) (~) 
2 

~,2 [o.0652+ 0.0148ln ~'
2

] 

Massive non-singlet corrections (vector): 

Rs = 3v~rs 

= 3v~ ~~12 [ ~ + 8.736 (~) 
2 

+ 45.657 (:s) 3] 

Rs = 3v~r6 

= 3v~ 7} [ -6-22 ~ + (~) 
2 

( 139.489- 3.833ln ~~)] 

Massive non-singlet corrections (axial): 

R1 = 3r7 

= 3 ~~ ( -6) [ 1 + 3.667 ~ + 14.286 ( ~) 
2

] 

Rs = 3rs 

= 3' [6 + 10 :s + (:s) 2 

( -217.728 + 26.833ln ~~)] 

Singlet corrections (axial): 

R9 3r9 

3 { ( ~) 2 ~ [ -9 250 +1.037 4~,' + 0.632 ( 4~,' )' +3ln ~i'] 
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(as) 3 
1 [ s s l } + --;- _3 -47.963 + 11.167ln Ml + 5.75ln2 Ml , (216) 

3rw 

(
a ) 2 { m2 [ · 8 l 3 7/ -6 s b -3 + ln Ml m

2 

[ 

8 l} - 10 Ml 0.0988 - 0.0185ln Ml ; 

Singlet corrections (vector): 

Rn = 3( ~:Vt )'rn 
= (~>~)'(~)' (-12395}; 

(217) 

0 (a as) corrections: 

(218) 

The various contributions are listed in Table 3, where the terms of order as, a; and a~ 
are also separately displayed. 

Electroweak corrections are not incorporated. To prediCt precise numerical results for 
the width, the formulas should be used only in conjunction with electroweak corrections. 
Estimates of the theoretical error from as yet uncalculated higher-orders are to some 
extent subjective. They are frequently based on the stability of the prediction against a 
variation of the renormalization scale or the comparison of predictions in different schemes. 
Alternatively, one may simply identify the last calculated term with an upper limit on 
the uncertainty. 

Let us start with the discussion of the mass corrections. In Fig. 21 mass corrections 
of successively higher-orders in the MS-scheme are compared with those in the on-shell 
scheme. The poor convergence of the OS prediction, which results from the large log­
arithms in the coefficients, is evident. The MS prediction, however, is fairly stable. Rv 
and RA are calculated to order O(a~) and O(a;) respectively, whence all error estimates 
can be limited to the axial contribution. The size of the a; term in the sum R7 + R8 , 

resulting from the non-singlet contribution, amounts to 0.03 MeV, which can be taken 
as a safe error estimate. (Including the corresponding singlet term would reduce it to 
0.02 MeV.) 
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Table 3 

Numerical Values 

I II 

r1 1 3.821x1o- 2 2.057x1o-3 -7.120x1o- 4 1.0396 20.96025 1738.443 

r2 - - - -3.153x1o- 7 -3.153x 10-7 -0.0000064 -0.000527 

r3 - - 8.095x1o- 9 - 8.095x1o-9 0.0000002 0.000014 

r4 - - 3.381xl0-5 - 3.381x1o-s 0.0006817 0.056537 

r5 - 4.231x1o- 4 1.412x1o-4 2.819x1o-s 5.924x1o- 4 0.0008475 0.070292 

r6 -5.109x1o- 6 -7.157x1o- 7 2.067x1o- 7 - -5.618x 10-6 -0.0000080 -0.000667 

r7 -5.537x 10-3 -7.756xlo-4 -1.154xlo-4 - -6.428 x w-3 -0.0192826 -1.599301 

r8 5.109xlo-6 3.253xlo-7 -5.037x 10-7 - 4.930xlo- 6 0.0000148 0.001227 

r9 - - -6.351 X 10-3 -9.814xlo-4 -7.332xlo- 3 -0.0219966 -1.824400 

rw - - 3.432xlo-s - 3.423xlo-s -0.0001027 0.008518 

ru - - - :...2.304xlo-s -2.304xlo-s -0.0001185 -0.009831 
' 

r12 1.867x10-3 -2.378x Io-5 - - 1.843xlo-5 0.0083492 0.692480 
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Figure 21: Mass Corrections from r~) (upper graph) and rr) (lower graph). The left-hand 
bars represent the result in the on~shell scheme, the right-hand ones are obtained in the 
MS-scheme. 
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From the study of the stability of the prediction with respect to a variation of the 
renormalization scale an alternative error estimate can be deduced. It is obtained by 
using an equation equivalent to Eq. (215), but with arbitrary scale J.i-2 (see Appendix). In 
Fig. 22 the scale is varied between f.J2 = s/4 and f.J2 = 4s. The corresponding error in the 
prediction for the decay rate amounts to c)f(m) = (~~:~~~) MeV. . 

The uncertainty in the prediction from the input .mass is essentially proportional to 
the relative error in m2

. Adopting Mb = 4.7 ± 0.2 GeV, one is lead to 8m2 jm2 -:::::, ±0.11 " 
and hence to a variation of the m2 terms by ±11 %. It is clear that this contribution leads 
to the dominant error in the corrections corresponding to ±0.17 MeV. The combined 
uncertainty from mass term is therefore below c)f(m) = ±0.21 MeV. 

-0.45 

-0.5 

-0.55 O(oc 0
.) 

-0.6 
O(oc 2

.) 

-0.65 
O(oc'.) 

-0.7 
0.3 0.4 0.5 0.6 0.7 0.80.9 1 2 4 

Figure 22: Renormalization scale dependence of the massive axial QCD corrections; 
[as(Mz) = 0.12) . 

We now move to the massless limit. As discussed in Section 6.1 the reliability of 
the singlet terms is significantly improved through the inclusion of the a; corrections. 
This is illustrated in Fig. 23, where the O(a;) and O(a;) predictions as functions of 
the renormalization scale are compared. From the variation of the full prediction an 
uncertainty c5r s = ( ~~:~;) MeV can be deduced. (Taking the last calculated term of order 
a~ as an error estimate would lead to c5fs = ±0.25 MeV. ) The singlet terms furthermore 
depend on the top mass. A change of our default value Mt = 17 4 Ge V by ±20 Ge V leads 
to a variation of c5r8 by (~~:~~) MeV. 
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Figure 23: Renormalization scale dependence of the axial singlet massless QCD correc­
tions; [as(Mz) = 0.12]. 
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Figure 24: Renormalization scale dependence of the non-singlet massless QCD corrections. 
[as(Mz) = 0.12] 
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Clearly, even the combining linearly of the modulus of the three dominant errors 
(from the bottom mass, the singlet contribution and Mt) leads to an uncertainty in 
the nonuniversal corrections of only (~~::D MeV. This corresponds to an uncertainty 

in the value of as extracted from f had of ( ~6~2) X 10-4 and a relative error in f bhff had of 

(~~) x 10-4 , significantly below the anticipated experimental precision. · 
The remaining uncertainty in the as determination results from the unknown terms 

of O(a!) in the non-singlet correction r~~- In Fig. 24 the variation of rm = r 1 with 
f-l2 is displayed. Evidently one arrives at a fairly stable answer in order O(a~). The 
variation of or~~ = (~~:!) x 10-4 may be interpreted as an error estimate. It translates 

into of(O) = c~oo~:) MeV and corresponds to an uncertainty in as of Oas = (~~:~!)X 10-3. 
This result is of course dependent on the input for as· For central values of as = 0.115 

and as = 0.125 one obtains oas = (~~:!D x 10-3 and oas = (~~:~~) x 10-3 respectively. 
An alternative approach has been advocated in Ref. [139] (see also Ref. [140]), where an 
attempt is made to actually arrive at an estimate for the (as/7r)4 term. Adopting their 
value for the coefficient of -97 one obtains a shift of or~~ = -2.1 x 10-4 and hence of 
as by -6.3 x 10-4

, quite comparable to the error estimate presented above. As a third 
option one may again take the last calculated term in or~~ for an error estimate, resulting 
in or~~= ±7.1 X 10-4 and Oas = ±21.7 X 10-4. The choice is left to the reader. 

7.1.2 The Partial Rate rbb" 

Another quantity of interest is the ratio r bbfr had. Assuming that qq events with secondary 
radiation of b quarks (see Section 5.6) are assigned tor qq:, the universal QCD corrections 
C, i = 1 ... 4 cancel to a large extent and the non universal parts dominate. Their 
contribution is small and the resulting uncertainty hence even smaller. The ratio can thus 
be predicted quite unambiguously. The near independence of the prediction on as is shown 
in Fig. 25. The flatness of the solid curve is the result of two (accidental) cancellations. 
With increasing as(Mz) the mass correction is lowered through the reduction of the 
running b mass (for fixed pole mass) the singlet correction, however, essentially increases 
proportional to a;. This·is illustrated by the dashed curve, where the running mass has 
been kept fixed to the default value. 

The deviation from the parton model prediction (with mb = 0) amounts to 0.7% with 
a negligible error from higher-orders in a 5 • The uncertainties from the input values for 
Mb and Mt amount to ±3 x 10-4 and ±2 x 10-4 respectively. 
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Figure 25: The ratio { (rbi>/v~ +a~)/ [rhad/:L)v} +a})]} versus as. The dashed curve 

corresponds to a case of a fixed value of mb(Mz) = 2.77 GeV, while the continuous one 
takes into account the implicit as dependence of mb(Mz). 

7.1.3 Quick Estimates 

The previous formulae display the full dependence of the QCD corrections on the input 
parameters mb and Mt as well as their effect on the vector and axial vector rate of the 
various quark species separately. These are the formulae most suited as building blocks 
for detailed fitting programs. It seems, however, also useful to provide a short numerical 
formula suited for quick estimates. For this purpose we set m = mb(Mz) = 2.77 ± 
0.15 GeV (corresponding approximately toM= mblpole = 4.7 ± 0.20 GeV) and Mtlpo!e = 
174 ± 20 GeV. One obtains: 

rhad 
ro 3 ~(vJ +a}){ 1+ ':' + 1.409 (':') 

2

- 12.767 (':' r 
+(0.023 ± 0.005) ( :s) 2 

+ ( -0.006 ± 0.001) ( ~) 
3

} 

+ 3v~{ ( -5 X 10-6 ± 1 X 10-6
) + (0.011 ± 0.001) ~ 

+ (0.097 ± 0.01) (~ r + (0.51 ± 0.05) (~) 
3

} 

+ 3{ ( -0.0055 ± 0.0006) + ( -0.020 ± 0.002) :s 
+ ( -4.41 ± 0.26) ( ~) 

2 

+ ( -17.60 ± 0.30) ( :s) 3 

} 

+ 3 ( ~ Vf )' { - 0.413 ( ':') 
3 

} 

+ 3 ~( v} +a} )Q} { 0.001867- 0.000622 ':'} . 
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The origin of the terms is still evident from the structure of the couplings. For a simple 
evaluation of QCD corrections to the total rate one may now combine the correction 
coefficients with the numerically evaluated weights vV :E1( vj +a}) etc. and arrive at 

rhad = rhadl {1 +as + 1.40932 (as) 2

- 12.76706 (as)
3 

mb=O 7r 7r 7r 
a 8 =0 

- (0.00040 ± 0.00008) - (0.0023 ± 0.0002) as 
7r 

- (0.63 ± 0.04) (~) 
2 

- (2.69 ± 0.06) (:s) 3 }. (220) 

A similar treatment of r hi> implies 

rbb = 

and 

rbbl {1 +as+ 1.40932 (as) 2

- 12.76706 (as)
3 

mb=O 7r 7r 7r 
a 8 =0 

- (0.0035 ± 0.0004)- (0.010 ± 0.001) as 
7r 

- (2.95 ± 0.17) (~) 
2

- (11.9 ± o.3) (:s) 3 } 

(rrbb) 1 {1- (0.0031 ± 0.0003) _ (0.005 ± 0.0005) as 
~ ~~ 7r 

O:s=O 

(as)2 (as)3} - (2.3 ± 0.1) -; - (6.9 ± 0.3) -; . 

(221) 

(222) 

From these formulae it is evident that the coefficients of the a; and the a; terms are 
entirely different from the massless non-singlet case as a consequence of the bottom mass 
effects and virtual top loops discussed in this work. The deviation of this from 1 can be 
traced to two sources: the bottom mass term, responsible for the term independent of as, 
and the singlet term mainly responsible for the a; (and a;) contribution. 

7.2 The Low-Energy Region Near the Bottom Threshold 

The previous discussion has dealt mainly with the applications of the theoretical results 
to the high energy region. However, as indicated already in Section 4.4 the results are also 
applicable for energies relatively close to the threshold of heavy quarks, if m2 I 8, m4 I 8 2 

and m6 I 8 3 terms are included. This was demonstrated for the Born and the O(as) 
formulae in Section 4.4, where it was shown that these leading terms provide an excellent 
approximation even if the ratio 4m2 I 8 approaches 0.8. With this justificatio·n a detailed 
analysis of Rhad can be performed for the region above the charmonium resonances and 
below the bottom threshold (excluding, of course, the narrow T resonances). Furtherm,ore 
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the region above the bb resonances- say, above 11.5 or 12 GeV- can be treated in the 
same approximation. 

With increasing statistics and precision at LEP the uncertainty in as from the 
measurement of the hadronic decay rate of the Z can be reduced to ±0.002. It would 
be highly desirable to test the evolution of the strong coupling as predicted by the beta 
function through a determination of as from essentially the same observable - at lower 
energy, however. The region from several GeV above charm threshold (corresponding to 
the maximal energy of BEPC around 5.0 Ge V) to just below the B meson threshold at 
around 10.5 GeV (corresponding to the 'off resonance' measurements_ of CESR) seems 
particularly suited for this purpose. As a consequence of the favourable error propaga­
tion, the accuracy in the measurement (compared to 91 GeV) may decrease by a factor of 
about three or even four at 10 and 5.6 GeV respectively, to achieve comparable precision 
in AM8 : 

Most of the results discussed above for massless quarks are applicable also for the case 
under consideration. However, two additional complications arise: 

i) Charm quark effects ca~tnot be ignored completely and should be taken into consid­
eration through an expansion in the ratio m~/ s, employing the results of Sections 5.3 
and 5.4 for terms of order m~/ s and m~/ s2

. 

ii) Contributions involving virtual bottom quarks are present, starting from order a;. 
Their contribution depends in a nontrivial manner on mV s. In order a; these are 
discussed in Section 5.2 and are shown to be small. Estimates for the corresponding 
contributions of order a~ indicate that they are under control and can be safely 
neglected, provided that one works within the correctly defined effective four-quark 
theory. 

The results presented below are formulated for a theory with n1 = 4 effective flavours 
and with the.corresponding definitions of the coupling constant and the quark mass. The 
relation to a formulation with n 1 = 5 appropriate for the measurements above the bb 
threshold was discussed in Section 2.3 and will be given at the end of the Section. 

We shall now list the independent contributions and their relative importance. Neg­
lecting for the moment the masses of the charmed quark and a forteriori of the u, d and 
s quarks one predicts in order a~, 

for the non-singlet contribution. The second and the third order coefficients are evaluated 
with n1 = 4, which means that the bottom quark loops are absent. In order a; the 
bottom quark loops can be taken into consideration with their full mass dependence. 
given in Section 5.2. However, the leading term of order a;;m~ provides a fairly accurate 
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description even up to the very threshold s = 4m~. Hence one has to add a correction 

6Rm = " 3Q2 (as)2 _:_ [ 44 + ~ ln m~]. 
b L.t f 7r m2 675 135 s 

/=u,d,s,e b 

(224) 

For the singlet term one obtains 

Rs = _ (~) 3 c~.< Qf), 1.239 = -0.55091 (~) 3 

(225) 

The bottom quark is absent in this sum. In view of the smallness of the a;8/m~ correction 
(even close to the bb threshold!) all other terms of O(a~) from virtual b quarks are 
also neglected. This can be justified with the results of Ref. [39] where 8/m2 terms are 
evaluated. In the same spirit it is legitimate to use the scale invariant value of the b quark 
mass mb = mb(m~) as defined in the five-quark theory. 

In contrast to the bottom mass the effects of the charmed mass can be incorporated 
through an expansion in m~/ 8. Quadratic mass corrections are included up to order a~, 
quartic mass, terms up to order a;. Since m~ /8 is in itself a small expansion parameter, 
the order a;m~/ 8 2 terms should be sufficient for the present purpose. 

The charmed mass corrections are thefore given by 

3 Q2 12 m~ as [1 + 9.097 as + 53.453 (as) 
2

] 
e 811" 7r 7r 

_ 3 I: Q} ~~ ( ~ r 6.4 76 
/=u,d,s,e 

2 me as me as 4 { [ 25 ( 2) l ( ) 2 } + 3 Qe --;2 -6 - 22 -;- + 141.329 - 6ln 7 -;-

+ 3 f=~,c Q} ';; (~ )'[ -0.4749 -ln ( ~;)] 

- 3 - 8 + - - 6 n - + 155 , Q2 m~ { 16 as [ 1 (m~) l} 
e s3 27 1r 8 

(226) 

where n1 = 4 has been adopted everywhere. Note that terms of order a~m~/ 8 are more 
important than those of order a;m~/ 82 in the whole energy region under consideration. 
For completeness, m~/ s3 and a5m~/ 8 3 terms are also listed, which, however; are insigni­
ficant and will be ignored in the numerical analysis. 

The charm quark mass is to be taken as me= m~4)(s) and is to be evaluated in the four­
flavour theory via the standard RG equation with the initial value me(me) = 1.12 GeV, 
corresponding to a pole mass of 1.6 GeV in the case of a~5)(Mz) = 0.120(see Section 2.4.2). 
A similar line of reasoning can be pursued for bottom mass terms in the region several 
Ge V above the B meson threshold. The formula given below is expected to provide a 
reliable answer for vs around 15 GeV and perhaps even down to 13 GeV: 
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oRm 3 Q2 _c + Q2 _2. 12 _s_ 1 + 8.736 _s_ + 45.657 _s_ ( m2 m2) a<s) [ a<s) (a(s)) 2] 
cs bs 7r 7r 7r 

_ 3 L. Q} (~~ + ~) ("n, 6.126 
l=u,d,s,c,b 

m4 { a(s) [ 23 (m2) m2] (a(5)) 2} + 3Q2 _c -6-22 - 5
- + 139.489- -ln _c + 12 _2. - 5

-

c s2 1r 6 s m 2 1r c 

m4 { a<s) [ 23 (m2) m2] (a(s))2} · + 3 Q; 
82

b -6 - 22 ~ + 139.489 - 6 1n 
8 

b + 12 m~ ~ 

m4 (a(5))2 [ (m2)] + 3 L Q} 
82

c ~ -0.4749 -ln -;-
l=u,d,s,c,b 

m4 (a(s))2 [ (m2)] 
+ 3 l=u~,c,b Q} s2b ; -0.4749 -ln sb 

- 3 Q; 73g { 8 + ~~ a;s) [ 6ln ( ~~) + 155] } . (227) 

Above the B meson threshold it is more convenient to express all quantities for n1 = 5 
theory and thus in (7.2) all the coupling constant and quark masses are evaluated in the 
five-flavour theory at the scale f-L = y's. 

The transition from four- to five-flavour theory is performed as follows: The charm 
mass is naturally defined in then 1 = 4 theory. In order to obtain the value of me = m~5) ( s) 
the initial value m~4l(l GeV) is evolved via the n1 = 4 RG equation to the point J.L2 = M~ 
and from there up to J.L2 = s, now, however, with the n1 = 5 RG equation. The bottom 
mass, on the other hand, is naturally defined in the n 1 = 5 theory irrespective of the 
characteristic momentum scale of the problem under consideration. Hence we take mb ( s) 
obtained from the scale invariant mass mb(mb) after running the latter with the help of 
the n1 = 5 RG equation. Finally, a~4) and a~5 ) are related through the matching Eq. (99). 

In Tables 4-7 the predictions for Rat 10.5 and 13 GeV are listed for different values 
of a~5l(Mz) together with the values of a5 (s) and the running masses15 • Note that our 
predictions are presented without QED corrections from the running of a and from initial. 
state radiation. Figure 26 shows the behaviour of the ratio R( s) as a function of energy 
below and above the bottom threshold, for a5 (Mz) = 0.120, 0.125 and 0.130. The light 
quark u, d, s, c) contribution is also displayed separately above 10.5 GeV. It is evident 
that the predictions from the four- and five-flavour theories join smoothly. The additional 
contribution from the bb channel is presented down to 11.5 GeV, where resonances start 
to contribute and the perturbative treatment necessarily ceases to apply. 

15The results for the 5 GeV region and for a larger variety of values for a 5 are given in Ref. [141]. Some 
slight differences between the numbers in Tables 4-7 and those in Ref. [141] stem from different input 
values for Me. 
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Table 4 
\ 

(5) ( 4) 
Values of AMS' AMS' a14)(s), m~4)(s) and mb(mb) at y's = 10.5 GeV for different values of 

a15)(M1). 

a~s)(M1) A~ 
MS 

A~ 
MS 

a~4)(s) m~4) (s) mb(mb) 

0.1200 233 MeV 320 MeV 0.177 0.751 GeV 4.09 GeV 

0.1250 302 MeV 403 MeV 0.188 0.637 GeV 4.03 GeV 

0.1300 383 MeV 498 MeV 0.199 0.500 GeV 3.96 GeV 

Table 5 

Predictions for R(s) at y's = 10.5 GeV; the contributions to oRmc are shown separately for . 
every power of the quark mass. 

Rs R 

0.1200 3.530 -0.000098 0.0077 -0.00023 0.0026 3.540 

0.1250 3.543 -0.00012 0.0061 -0.000121 0.0030 3.551 

0.1300 3.556 -0.00014 0.0041 -0.000046 0.0034 3.563 
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Table 6 

Values of A~~' a~5)(s), m~5)(s) and m~5)(s) at .JS = 13 GeV for different values of a~5)(M~). 

a~5)(Mz) A~ 
MS 

a~5)(s) m~5)(s) m~5)(s) 

0.1200 233 MeV 0.172 0.729 GeV 3.41 GeV 

0.1250 302 MeV 0.183 0.617 GeV 3.29 GeV 

0.1300 383 MeV 0.194 0.483 GeV 3.17 GeV 

Table 7 

Predictions for R( s) at .JS = 13 Ge V; the contributions to aRm are shown separately for every 
power of the quark masses. 

Rs 

0.1200 3.875 -0.000023 0.023 -0.011 -0.0014 3.887 

0.1250 3.888 -0.000027 0.023 -0.0092 -0.0011 3.901 

0.1300 3.901 -0.000032 0.022 -0.0079 -0.00091 3.914 
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Figure 26: The ratio R( s) below and above the b quark production threshold at 10.5 Ge V 
for o:s(Mz) = 0.120, 0.125 and 0.130. The contributions from light quarks are displayed 
separately. 

7.3 Conclusions 

In this report we have tried to present, in a comprehensive form, the theoretical framework 
and all formulae presently available that are required to predict the QCD corrected total 
cross-section of e+e- annihilation and the Z decay rate into hadrons, with optimal ac­
curacy. The presentation is supposed to be self-contained -. and hopefully self-consistent 
- such that all formulae relevant for the prediction of experimental quantities can be 
deduced from this work without the need to combine results from different publications. 
Particular emphasis has been put on the influence of the non-vanishing bottom quark 
mass and on contributions from virtual top quarks, which are of particular importance 
for the so-called singlet contributions. Much of the discussion has been tailored for the 
90 Ge V region, where experiments at LEP provide highly accurate data, but, applica­
tions to 'low energies', around 10 GeV or even lower, have been mentioned whenever 
appropriate. 

The topic is approached from three different viewpoints: from the purely theoretical, 
laying the ground for the discussion, from the calculational, providing the formulae, and 
from the practical viewpoint, discussing the relative importance of the various contri­
butions and associated uncertainties. In the first two parts the basis of the subsequent 
calculations is presented. They contain, essentially, a brief review of the field theoret­
ical ingredients: (3 function and anomalous dimensions, the relations between various 
definitions of the mass, the decoupling of heavy quarks, and the corresponding trans­
itions between different 'effective theories'. In many circumstances quarks are either light 
(m2 << s) or heavy (m2 » s). The corresponding expansions provide powerful tools. 
They are described in Part 2 together with other calculational techniques. 

The results of higher-order calculations are scattered in numerous original publications, 
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often with conflicting conventions and notations. In Parts 3, 5 and 6 the formulae are 
collected and presented in a uniform way. The brief presentation of exact results of 0( as) 
(i.e. with arbitrary m2 Is) in Part 4leads quickly to Parts 5 and 6 where m2 Is or slm2 are 
treated as expansion parameters, and results of up to order a~ are collected. An important 
classification of amplitudes originates from the distinction between singletand non-singlet 
diagrams, with markedly different behaviour in the limit m2 Is» 1, and our presentation 
follows this classification. Most of the discussion is concerned with predictions for the total 
cross-section or the decay rate, occasionally also results for partial rates, for example into 
four fermion states or for the inclusiye rate into bb quarks, are presented. The formulae 
are displayed in two different forms: first in analytical form with the relevant coefficients 
given by fractions and Riemann's Zeta function, as functions of n1, and then entirely 
numerically (Part 7 and the Appendices) in terms of decimal fractions. Occasionally we 
also write some important formulae with their full dependence on the group theoretical 
factors CA, CF and T. 

The final Part is most relevant to practical applications. The numerical relevance 
(or irrelevance) of the various contributions is clarified. Their stability with respect to 
variations of the renormalization scale J.t is studied. Estimates are presented for the 
errors from the truncation of the. perturbation series, the 'theoretical error', and for the 
error induced by the uncertainty in the input parameters Mb and Mt. A safe upper 
limit on the combined uncertainty of f(Z -7 hadrons) from quark mass (Mb and Mt) 
dependent corrections amounts to about 0.4 MeV. The uncertainty from the truncation 
of the perturbative expansion in the massless limit ,in O(a~) is highly subjective, with 
estimates ranging from 0.6 MeV up to 1.2 MeV. Fortunately enough, in the foreseeable 
future, both sources of errors will not effect the precision of as as determined at LEP 
through total cross-section measurements. 

For the convenience of the reader, simple numerical formulae are presented which allow 
a quick estimate of r had , r bi> and their ratio. A similar discussion for the energy region. 
around the bottom threshold concludes this Part. For easy access the formulas most 
frequently used in practical applications are collected and rewritten in the Appendices. 
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Appendixes 

1 Some Useful Formulae 

Zeta function 
The Riemann Zeta function is defined by 

00 

((s) = :L k-s. (1) 
k=l 

Some particular values are: 

2 

((2) = ~ = 1.6449341, ((3) = 1.2020569, 

11"4 
((4) = 90 = 1.0823232, ((5) = 1.0369278. 

(2) 

Dilogarithm and trilogarithm 

L. ( ) _ 1x In (1- t) d 
12 X -- t. 

0 t 
(3) 

00 xn 
Li3(x) = :L 3, (lxl < 1) or 

n=l n 
. 1x Li2 L13 (x) =- -dt. 

0 t 
(4) 

2 Renormalization Group Functions 

The RG equation for the quark mass reads: 

d . (a )i+l 
J.12d 2ih(J.1) = m(J.lhm = -ih(J.1) l:'Y::n _s . 

J.1 , i~O 7r 

(1) 
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It is solved by 

with 

m(J.L) = m(J.Lo)exp {~ ro:s(J.L) dx 'Y/3m((x))} 
7r Jo:s(J.Lo) X 

~ 
m(J.Lo) ( O:s(J.L)) 

130 {1 + (l'!n- !3tl'~) [o:s(J.L)- O:s(J.Lo)l 
O:s(J.Lo) /3o /36 7r 7r 

+~ (l'!n _ f3t~~)
2 

[o:s(J.L) _ O:s(J.Lo)l
2 

2 /3o !3o 7r 7r 

+~(I'!_ !3t~!n _ !32~~ + /3r~~) [(o:s(J.L))
2 

_ (o:s(J.Lo))
2
]}. 

2 /3o !3o !3o !3o 7r 7r 

1 

4[3Cp) 

_!_ [~c~ + 97 
CpCA-

1° CpTn1] 
16 2 6 3 
_!_ [ 129 03 _ 129 02 c 11413 c 02 
64 2 F 4 F A + 108 F A 

2 ( ( 556) 140 2 2] +CpTn1(48((3)- 46) + CFCATnf -48( 3)-
27 

-
27 

CpT nf 

(2) 

(3) 

Here C A and C F are the Casimir operators of the adjoint and quark (defining) repres­
entations of the colour group; T is the normalization of the trace of generators of quark 
representation Tr(tatb) = T6ab; n1 is the number of quark flavours. Below we shall also 
use the notation dabc = 2Tr( { tatb}tc) for the symmetric structure constants. The standard 
QCD SUc(3) colour group values are CF = 4/3, CA = 3, T = 1/2 and dabcdabc = 40/3. 
Similarly, one has for the strong coupling constant (L =In 112/ A~s): 

/12~ (O:s(J.L)) = {3 =- L /3i (O:s)i+2 (4) 
dJ.L 7r i;:::o 7r 

Integration gives 

o:s(J.L) 1 [ 1 /31ln L 1 (/3r 2 !32)] 
-7r- = /3oL 1- !3oL !3o + /36£2 !36 (In L-In L- 1) + !3o ' (5) 

with 

(6) 
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With CF = 4/3, CA = .3 and T = 1/2 one has 

1'! = 1, 1'~ = (2~2 - 290 nf) /16, 

(7) 

1'! = ( 1249- [ 2~~6 + 
1 ~0 ((3)] n1 -

1

8~
0 n}) /64. 

and 

(8) 

(
2857 5033 325 2 ) I fJ2 = -

2
-- wnf + 

54 
n1 64. 

In order to switch to the case of QED with n1 number of different fermion species (with 
the same electric charge) in (3) and (6) one should set CF = T = 1 and CA = 0. 

Finally we give the coefficients of the QCD renormalization group functions for differ­
ent values of nf: 

n1 = 6 

/ 7 
{31 = 13 65 

f3o =- {32 = -128 4 8 (9) 

1'! = 1 
1 27 

'f'm= S 2 = 2083 - 5((3) 
'"Ym 192 

n1 = 5 

23 29 9769 
f3o = 12 {31 = 12 {32 = 3456 (10) 

1'! = 1 
1 253 

'"Ym = 72 
2 = 64429 - 25 ((3) 

'"Ym 5184 6 

n1 = 4 

25 77 {3 - 21943 
f3o = 12 {31 = 24 2

- 3456 ' (11) 

1'! = 1 
1 263 

'"Ym = 72 
2 = 72337 _10(() 

'"Ym. 5184 3 3 

n1 =3 

9 
{31 = 4 

{3 3863 
f3o =- 2 = 384 4 (12) 

1'! = 1 
1 91 

'"Ym = 24 
2 = 8885 - ~((3) 

'"Ym 576 2 
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3 List of Radiative Corrections 

In this section all contributions to the total hadronic Z decay rate are collected. Complete 
order as prediction with full mass dependence ( v2 = 1 - 4m2 / s): 

rhad = 

(1) 

with 

Kv= ~ [A(v) + Pv(v) ln 1 + v + . Qv(v) l 
v (1 - v2 /3) 1 - v (1 - v2 /3) ' 

1 [A( ) PA(v) 1 1 + v QA(v)l - v+--n--+-7---'--
v v2 1 """"'v v2 ' 

(2) 

and 

A(v) = (1 + v2 ) {Liz [(
1

- v)
2

] + 2Li2 (
1

- v) + ln 
1 + v ln (

1 + v)
3

} 
1 + v 1 + v 1 - v 8v2 

1 - v2 

+ 3v ln - v ln v , 
4v 

(3) 

33 22 2 7 4 
Pv ( v) = 24 + 24 v - 24 v ' 

21 59 2 19 4 3 6 

PA(v) = 32 + 32v + 32v - 32v ' 

5 3 3 
Qv(v) = 4v- 4v , 

21 30 3 3 5 
QA(v)=- -v+-v +-v 

16 16 16 ' 

(4) 

where f 0 = GpM!/24v'27r = 82.94 MeV. 

Including higher-order corrections the decay rate can be written in the following form: 

12 12 

rhad = z=ri = z=roRt . (5) 
i=1 i=1 

The separate contributions are given by the following expressions. (Below in Eqs. (6-15) 
as, m 1 and mb stand for a~5) (J1,), m ~5) (M) and m~5) (M) respectively; n f = 5 is the number 
of active flavours.) 
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Mass less nonsinglet corrections: 

3~(vJ+aJ){l+ ~ 

(a5
)

2 
[365 ( 11 2 ) ( 11 1 ) s] + - -- -11((3) + n1 -- + -((3) + -- + -nf ln _ .. 

7r 24 . 12 3 4 6 p,2 

+ (a5 )
3 

[87029 _ 1217r2 _ 1103 ((3) + 275 ((5) 
7r 288 48 4 6 

( 
7847 11 2 262 25 ) 2 ( 151 1 2 19 ) + n1 --+ -1r + -((3)- -((5) + n1 -- -1r - -((3) 
216 36 9 9 162 108 27 

( 
4321 121 [785 22 ] 2 [ 11 2 ] ) s + -- + -((3) + n1 -- -((3) + n1 -- + -((3) In-
48 2 72 . 3 36 9 p,2 

(
121 11 1 2) 2 s]} + - - -n1 + -n1 ln -

. 16 12 36 p,2 

(6) 
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3 L)VJ + a}){1 +as 
I 7r 

+ ( :s) 2 

[ 1.9857- 0.1153n1 + ( -2.75 + 0.167nf) ln :2 ] 

+ (:s) 3 

[- 6.6369- 1.2001nt- 0.0052n} 

+ ( -17.2964 + 2.0877nf- 0.0384n}) ln 8

2 jJ 

+ (7.5625- 0.9167nf + 0.0278n}) ln2 
: 2 ]}; 

Massive universal corrections ('double bubble'): 

"2 2 (as) 3 "m},( 11 3 2 ) R2 = 3 L...)v1 + af) - L...- --CA- -
2

CF +-Tnt CpT (16- 12((3)] 
f 1r f'=b s 6 3 

" 2 2 (as) 3 
" m }, { ( 32 8 ) '} = 3 L...(vf + af) - L...- -80 + 60((3) + nf -- -((3) 

f 1r f'=b s 9 3 

= 3 L(VJ +a}) (as) 3 
L m}, {- 7.8766 + 0.3501 nf} 

I 7r F=b 8 

R3 = 3 L(VJ +a}) (as) 2 
CpT L mt' { 13

- 6((3)- ~ ln m},} 
f 7r F=b s 2 2 s 

= 3 L(VJ +a}) (as)2 L mt' { 13- 4((3) -ln m},} (7) 
f 7r F=b s 3 s 

= 3 L(VJ +a}) (as) 2 

L mt' {-0.4749 -ln m},} 
f 1r f'=b s s 

" 2 2 (as ) 2 
s { 22 1 Mt

2 
} R4 =3L...(v1 +a1) - CpT- -+-ln-

1 7r M{ 225 45 s 

" ( 2 2 (as) 2 
s { 44 2 M'/: } =3L... v1 +af) - M 2 -+-ln-

f 1r t 675 135 s 

= 3 ~(v} +a})(~)'~,' { 0.0652+ 0.0148ln ~,'} ; 
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Massive nonsinglet corrections (vector): 

2 m~ { . a5 (a5
)

2 
[253 13 ( s l = 3vb- 12- + - -- - -n1 + -57+ 2n1) ln -

s 7r 7r 2 3 p,2 

(
a 5 )

3 
[ 285 2 310 5225 + - 2522- -7r + -((3)- -((5) 

7r 4 3 6 

( 
4942 17 2 394 1045 ) 2 (125 1 2) + nf ----;;:;- + 37r - 27 ((3) + 27((5) + nf 54 - 97r 

( 
4505 175 13 2) s (855 1 2) 2 s l} + ---+-.-n1 --n1 ln -+ --17n1 +-n1 ln-

4 2 9 p,2 4 3 p,2 
(8) 
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2~ ~ ~ s -2 { ( )2 [ l = 3vb--;- 12-;- + -:;;:- 126.5- 4.3333nt + (-57+ 2nt) ln f.-l2 

+ ( :s) 3 

[ 1040.01- 104.517n1 + 1.2182n} 

+ ( -1126.25 + 87.5n1 - 1.4444n}) ln 
8

2 f.-l 

+ (213.75- 17n1 + 0.3333n}) ln2 
: 2 ]}; 

=4 { [ l 2mb as s 
= 3vb- - 6 + - -22 + 24ln -

82 ~ f.-l2 

+ - --- + 27~ + 112((3)- -In-+ 225ln-- 81ln -(
as) 2 

[ 3029 2 11 m~ s 2 s 
~ 12 2 f.-l2 f.J,2 f.J,2 

( 
143 2 2 8 1 m~ 22 s 2 s ) J } +n1 ---~ --((3)+-ln ---ln-+2ln-
18 3 3 3 f.J,2 3 f.J,2 f.J,2 

=4 { [ l 2mb as s 
=3vb- -6+- -22+24ln-

s2 ~ f.-l2 . 

(
a )2 [ m

2 
s s + __!.. 148.693 - 5.5ln --T + 255ln 2 - 81ln2 

2 
~ f.-l f.-l f.-l 

mb s 2 s 
( 

-2 ) l} + n1 -1.8408 + 0.3333ln f.-l2 - 7.3333ln f.-l2 + 2ln f.-l2 ; 
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Massive nonsinglet corrections (axial): 

-2 { [ l mb as s 
=3- -6+- -22+12ln-

s 7r J-l2 

(
as)

2 
[ 8221 19 2 ( ) (151 1 2 ) + - - - + -1r + 117( 3 + n1 -- -1r - 4((3) 

7r 24 2 12 3 . 

( 16 ) s ( 57 ) 2 s l } + 155- 3 n1 ln J-l2 + - 2 + n1 ln J-l2 

-2 { [ l mb as s 
= 3- - 6 +- -22 + 12ln -

s 7r J-l2 

+ ( :s) 2 

[- 108.14 + 4.4852nt + (155- 5.3333nt) ln : 2 + ( -28.5 + n1) ln2 
: 2]}; 

(10) 
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= 3- 6 + - 10 - 24In-Tnt { as [ S l 
82 7r f..L2 

+ - --- 277r - 220((3) +-In-- 207In- + 81In -(
as) 2 [3389 2 77 m~ s 2 s 
7r 12 2 f..L2 f..L2 f..L2 

( 
41 2 2 16 7 m~ 22 s 2 s ) ] } +n1 -- + -1r + -((3)- -In-+ -In-- 2In -
6 3 3 3 J..L2 3 f..L2 f..L2 

= 3Tnt {6as [10- 24In ~] . 
82 7r f..L2 

(11) 

+ (as)
2 
[- 248.515 + 38.5In m~ - 207In 

8

2 
+ 81In2-; 

7r f..L f..L f..L 

+ n1 ( 6.1574- 2.3333In :~ + 7.3333In : 2 - 2In
2 

: 2)]}; 

Singlet corrections (axial) (D = N't;- 1}: 

R. = ( ~ )' T2 DH -9.250 + 1.037 4~f + 0.632 ( 4~.' )' + 3ln ~f } . 

(as ) 3 
{ 3 [ 25 1 2 1 J..L

2 
1 2 J..L

2 
11 s 1 2 S l + - n1T D - - -1r + -In- - -In - - -In - + -In -

1r 12 6 3 Ml 2 Ml 4 J..L2 2 J..L2 

2 [ 215 3 11 2 19 J..L
2 

+CAT D -16- 2((3) + 24 7r + 12 1n Ml 

+ 11 In2 f..L2 + 161 In !._ - 11 ln2 ~] 
8 Ml 16 J..L2 8 f..L2 

+ CpT2 D [~ + ~((3)] 

+ T 3
D [- ~~]} 

= ( ~ )' { -9.250 + 1.037 4~ + 0.632 ( 4~.' )' + 3ln ~f } 
(
as) 3 

{ 5075 23 2 67 J..L
2 

+ - --+-. 1r +3((3)+-In-
7r 72 12 6 Ml 

+ 23 ln2 f..L2 + 373ln !._- 23ln2 !._} 
4 Ml 8 J..L2 4 f..L2 

= (~) 2 

{ -9.250 + 1.037 4~f + 0.632 (4~f) 
2 

+ 3ln ~f} 
(12) 

(
a )3{ f..L2 + 7rs - 47.963 + 11.167ln Ml 

2 } 2 f..L s 2 s 
+ 5.75ln M 2 + 46.625ln 2 - 5.75ln 2 

t f..L f..L 
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• 

R10 = 3 (as) 2 

T 2 D {-3m~ [-3 + ln _!__]- 5 m~ [~- _.!_ ln _!__]} 
1r s M? M{ 81 54 M? 

=3(as)
2

{-6mb [-3+ln _!_]-10mb [~-2_ln _!__]} · 
1r s M? M{ 81 54 M{ ' 

(13) 

Singlet corrections (vector): 

Rn = (~vt)2 
(;;)' (d~" r C~6 

-128({3)) 

= (~ VJ )
2 

( ':' )' ( -1.2395); 

(14) 

O(aas) corrections: 

(15) 

Rha.d from virtual photons: 
The prediction for the 'classical' production through a virtual photon 
Rem = a(e+e- -t hadrons)/apoint is obtained from the above equations after setting 

'Y 

Vf-+ Qf and a!-+ 0 with Rem= L:~ ~ 
Secondary radiation of heavy quarks: 
The rate for secondary radiation of a pair of quarks with mass m is given by 

r QQqq = ~ (as)2 rl (m2) ' 
r qq 3 1r s 

where 

~ (1 - 6x2 ) {! Li3 ( 
1 

- w) - ! Li3 ( 
1 

+ w) 
3 2 2 2 2 

L. ( 1 + w) L" ( 1 - w) L. ( 1 + w) L" ( 1 - w) + 13--- 13-- + 13--- 13--· 
l+a 1-a 1-a l+a 

(16) 

+! ln ( 1 + w) [C-(2) - _.!_ ln2( 1 + w) +! ln2(a- 1) - ! ln ( 1 + w) ln ( 1 - w )] } 
2 1 - w 12 1 - w 2 a + 1 2 2 2 

1 (. l+w . 1-w . l+w . 1-w 
+-a (19 + 46x) L12(--) + L12(--)- L12(--) - L12(--) 

9 1+a 1-a 1-a l+a 

+ ln (a - 1) ln ( 1 + w )) (17) 
a+l 1-w 

+4(
19 

+x+x2 ) (Lb(-l+w)-Li2(_l-w)-lnxln(
1

+w)) 
72 1-w 1+w 1-w 

7 ( 73 74x x 2) ln(l +w) _! (2123 2489 ) 
+ 189 + 63 + 1- W 3 108 + 54 X W' 

with 
a = "II + 4x , w = v'l - 4x . (18) 

The corresponding virtual corrections can be taken from Eq. (161). 
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