
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Electrical Appliance Identification Using Frequency Analysis

Permalink
https://escholarship.org/uc/item/52d5d9df

Author
Burov, Olexiy

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52d5d9df
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ELECTRICAL APPLIANCE IDENTIFICATION USING
FREQUENCY ANALYSIS

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Olexiy Burov

September 2019

The Thesis of OLEXIY BUROV
is approved:

————————————————–
Patrick Mantey, Chair

————————————————–
Yu Zhang

————————————————–
Martine Schlag

————————————————–
Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright c© by

Olexiy Burov

2019

Table of Contents

List of Figures . vi

List of Tables . viii

Abstract . ix

Dedication . x

Acknowledgments . xi

1 Introduction 1

2 Related Work 3

2.1 NILM . 3

2.2 Hidden Markov Models Approach 4

2.3 Neural Networks . 4

2.3.1 LSTM . 4

2.3.2 GAN . 4

2.4 Neural Network + Image Processing 5

3 System Overview 7

3.1 Hardware . 7

3.2 FFT Approach . 8

3.3 Filtering approach . 9

iii

3.4 Continuous sampling . 11

3.5 High Level Diagram . 12

4 Experiments 14

4.1 Harmonics . 14

4.2 Power Calculation . 14

4.3 FFT vs Filters . 15

5 Classification 20

5.1 Split Phase Power System . 20

5.2 Approach . 21

5.3 Devices . 21

5.4 Classification . 22

5.5 Features . 23

5.5.1 Unique frequency . 23

5.5.2 Prominent frequency with moving baseline 26

5.5.3 Inverse frequency . 27

5.5.4 Power classification . 29

5.5.5 Running time . 30

5.5.6 Lower-Upper Threshold classification 31

5.5.7 Moving standard deviation 32

6 Results 34

6.1 Classifiers . 34

6.2 Accuracy . 35

6.3 Discussion . 36

iv

7 Future Work 37

7.1 Transients . 37

7.2 Better sampling technique . 38

7.3 Higher frequency sampling . 38

8 Conclusion 39

Appendix A Firmware Code 40

Appendix B Sampling Code 42

Appendix C Filtering Code 46

Appendix D Classification Code 56

References 65

v

List of Figures

3.1 System Architecture . 13

4.1 Comparison between refrigerator signatures using FFT and filters

at 60Hz . 15

4.2 Comparison between refrigerator signatures using FFT and filters

at 120Hz . 16

4.3 Comparison between refrigerator signatures using FFT and filters

at 180Hz . 17

4.4 Comparison between refrigerator signatures using FFT and filters

at 240Hz . 18

4.5 Comparison between refrigerator signatures using FFT and filters

at 240Hz . 19

5.1 Simple binary classifier . 24

5.2 refrigerator power signature . 25

5.3 refrigerator classified . 25

5.4 Dishwasher power signature . 26

5.5 Dishwasher classified . 26

5.6 refrigerator power signature . 27

5.7 Microwave freqeuncy signature . 28

vi

5.8 Difference between two energy signatures 28

5.9 Classified Dryer . 30

5.10 Clothes washer freqeuncy signature 30

5.11 Classified clothes washer . 31

5.12 Water pump frequency signature 31

5.13 Cooktop standard deviation . 32

5.14 Cooktop classified . 33

vii

List of Tables

6.1 Classifiers by features . 34

6.2 Classification Accuracy . 35

viii

Abstract

Electrical Appliance Identification Using Frequency Analysis

by

Olexiy Burov

We prototyped and then created a hardware device (SEADS) [2] that is able

to sample high frequency current and voltage data using up to eight channels.

SEADS was installed in the generic household with a variety of electrical appli-

ances with two sensors on both lines of a single phase 240V circuit. The current

and voltage measurements were taken applying bandpass filters at different fre-

quencies of interest to isolate purely resistive and inductive loads. We identified

the features of devices which consume most of the energy on the electrical panel

and came up with algorithms to automatically identify when these devices are

on or off. This information presents a great value to the end user since it allows

to identify one’s energy usage patterns and make more educated decisions. This

is especially relevant in the states with time of use pricing that encourage the

consumers to use energy at certain times of the day to reduce strain on the grid.

In this work we created a practical solution to appliance identification in a real

household using frequency analysis on the aggregate electrical current waveform.

We were able to identify the most important appliances to effectively manage

household energy consumption.

ix

I dedicate this work to my parents. Thank you for making me who I am.

x

I want to thank Patrick Mantey, Ali Adabi, Eric Cao, Alec Rein and David Bernick

for their extensive help and support.

xi

Chapter 1

Introduction

A popular new area of research that focuses on appliance identification is the

Non Intrusive Load Monitoring or NILM. The concept was initially introduced in

1992[4]. The idea is to have a single sensor in the main electric panel and monitor

overall power consumption of the household. One can break down the aggregate

power of the household into power consumed by individual appliances.

Such a breakdown can be very useful to a consumer because currently consumers

have no information about the power consumption of their appliances and there-

fore cannot make any educated decisions related to their power consumption pat-

ters. For example, an old refrigerator can be consuming power inefficiently where

a newer refrigerator would be more economically viable over the long term.

The popular approach in the field of NILM is to use frequency analysis and look at

power spectrum of the current and try to identify consistent patterns for different

appliances. This is useful because an electric circuit can be viewed as a transfer

function with sinusoidal input (60 Hz 120V AC) and periodic sinusoidal output

which can be a combination of different harmonic frequencies (usually odd) of

60Hz, such as 120Hz, 180Hz, 240Hz, etc. The reason harmonics are mostly even

1

has to do with the fact that they are introduced by nonlinear loads (rectifiers) [20].

Full cycle rectifiers are more common and introduce odd harmonics. The feature

of odd harmonics is that negative and positive cycles are symmetrical. Half-cycle

rectifiers (less common) introduce even harmonics which make the waveform look

asymmetrical in its positive and negative cycles. That is why many appliances

with even harmonics can be very easy to identify due to their simple rarity.

The power spectrum of the appliance is closely connected to the appliance circuitry

and thus presents a good candidate for a classification feature. For instance, the

harmonic content of the current is closely connected to the power factor of the

appliance. To illustrate the idea of how appliances can be identified by their power

spectrum we will discuss a few common household appliances. A simple heating

element (electric kettle, stove, iron) has a power factor of 1.0 and doesn’t have

any other harmonic frequencies only the 60Hz. In this case the current waveform

follows the voltage waveform exactly without any phase shift. On the other hand,

a refrigerator compressor is a relatively high power motor with a power factor

of 0.7-0.8 and has a lot of harmonic frequencies which distort the perfect 60Hz

waveform.

2

Chapter 2

Related Work

2.1 NILM

The initial idea of Non Intrusive Load Monitoring was introduced by Hart in 1992

[4]. The general idea was that the aggregate power consumption of the household

is the sum of consummations of all devices currently running:

P =
n∑

i=0

Pi

i ∈ 0, ..n, where n is the number of currently active appliances.

The benefit of looking at the problem from the perspective of disaggregation is

that it requires only a few sensors on the main panel to observe the whole house

in contrast to installing a sensor on every appliance of interest.

The basic work process of NILM is defined as follows:

• Data Acquisition

• Event Detection

• Disaggregation

3

2.2 Hidden Markov Models Approach

There is a research group in Vancouver which heavily focuses on NILM and tries

different approaches. One of the interesting ways to model an appliance and then

classify it was to use Hidden Markov Models [8]. The model had decent results

on test data sets.

2.3 Neural Networks

2.3.1 LSTM

Another (more recent) approach is based on LSTM neural networks [11]. LSTM

stands for Long-Short-Term-Memory network and coupled with a recurrent neural

network can be very powerful in classifying text and time-series data. We tried a

similar approach by classifying a vector of power data coupled with a harmonic

data and their respective standard deviations based on an idea that uses standard

deviation and derivative of the signal to perform event detection [12]. The ap-

proach showed decent results from empirical tests but the problem was that more

labeled data was required to build a robust model.

2.3.2 GAN

A very novel study (unpublished as of date when this thesis was written) explores

applying convolutional GAN networks for energy disaggregation [7]. The authors

of that work presented very convincing results for identifying the energy consumed

by different devices. Their approach significantly (about 20% better) improves the

results obtained by previous state of the art approach recently published that also

uses convolutional neural networks for energy disaggragation [16].

4

It is worth noting, that this GAN paper presents results for identifying four devices

while our approach is able to identify at least eleven devices. It would be very

beneficial to combine GAN networks for energy disaggregation with a bank of

filters approach that this study utilizes. In a most simple implementation, this

would allow separation of nonlinear loads from linear (purely resistive) loads and

further simplify the problem. The benefit of observing frequency domain signals is

that frequency domain is agnostic to power consumption whereas the same device

can have many different modes of operation (different cycles) as well as different

power levels (microwave cooking modes, dishwasher modes, washer modes etc)

while maintaining the same frequency footprint.

Additionally SEADS-Plug is capable of producing training data of power and

harmonics at the rate of 16Hz, which is a considerable improvement over the rates

of 1Hz and 1
3
Hz and 1

6
Hz which is what the training dataset in REDD and UK-

DALE have respectively. It is probable that the GAN architecture that authors

present will be able to improve its performance when its context-aware architecture

is able to utilize context about motor transients, which is an important feature

often overlooked that we discuss in Chapter 7.1.

2.4 Neural Network + Image Processing

A new approach in time series data recognition has been developed receently, based

on the notion that an appliance power factor could be inferred from the graph of its

voltage-current trajectory [5]. Some of the researchers have successfully applied

this idea and obtained promising results [3]. The main difference here is that

instead of using time-series data for classification, visual data is used - the plot

of voltage vs current, which is correlated with the power factor and harmonics.

5

Thus it is ”picture recognition”, analagous to recognition of faces or other real

objects in 2-dimensions.

6

Chapter 3

System Overview

3.1 Hardware

In order to get data for the electrical current we used current transformers with

a frequency response up to 1000Hz coupled with a 12-bit ADC that supports

maximum sampling frequency of 100,000 samples/seconds. We use a small linux

box (SEADS) as our processing unit. The communication with the ADC was

carried out through SPI protocol.

Since current transformers act as low pass filters there is no practical point in

sampling at frequencies that greatly exceed 2kHz (twice the nyquist frequency).

Current sampling rate ranges from 2.2kHz to 4kHz depending on the number of

channels. SEADS can technically go to 8kHz and higher given that it currently

supports the maximum of 7 channels (one for voltage and the rest for current).

7

3.2 FFT Approach

The initial approach was to use Fourier Transform on the signal, shift it to get the

positive half and look at the absolute values for amplitudes at different frequencies.

This is the standard approach for many signal processing applications. In our

case we discovered that the use of FFT was severely hindered by the imperfection

of our instrumentation which was hard to compensate for. For instance, our

instrumentation didn’t allow us to perform the FFTs on the CPU because the

operation was too compute intensive for a small ARM processor that SEADS has.

The only way out was to use the GPU library which only allowed FFTs of the

length of powers of 2 (64, 128..., 4096, 8192, etc). It was hard to align our sampling

frequency with the length of FFTs and even with zero-padding we experienced

inconsistent results due to a large amount of ”spectral leakage”. We also tried

applying different windows to the sinusoidal signal in hopes of getting better

frequency resolution or amplitude accuracy such as Hanning[19] window and and

Hann window[15]. Even though the windowing improved the results considerably

for lower frequencies (60Hz-240Hz) higher frequency harmonics experienced a lot

of noise due to their very small amplitudes in relation to the lower frequencies and

still present spectral leakage. Our suspicion was that the higher frequiencies also

get lost due to the nature of their small amplitudes. For instance, if the currents

in 60Hz, 180Hz are measured in amperes as soon as we go beyond 300Hz we are

looking into milliamperes and lower. We tried amplifying the signal in software

but it didn’t improve the results.

8

3.3 Filtering approach

We decided to try out a different approach which proved to be more consistent

and gave us better data to work with throughout the whole frequency band. We

implemented 6th-order Butterworth bandpass filters centered at each harmonic

frequency with a width of 20Hz [10]. Such a width was empirically tested to

not be too wide since the signal of interest only contains frequencies which are

integral multiples of 60Hz. The reason for this is because rectifiers and other

switching power control elements in non linear loads tend to draw power at the

peaks of the AC waveform. That is why the output current is periodic in 60Hz

[18]. After filtering the signal at the frequency of interest the energy of the signal

is calculated. Signal energy is defined as:

E =
∫ ∞
−∞

= |x(t)|2

For the finite descrete signal this can be expressed as the summation:

E =
n∑

i=0

|x[i]|2

where n is the length of the signal.

The energy of the signal bandpass filtered at a particular frequency is proportional

to the absolute values of FFT but is not subjected to the spectral leakage. Spectral

leakage is a big problem in high accuracy FFT applications. Size of the FFT

should be exactly the same as the sampling frequency to get ideal frequency bin

distribution (each Hz has a separate bin). The small inconvenience is that not all

software libraries support use of FFTs that are not a power of 2 but this could be

solved with padding. A bigger problem is that our signal doesn’t follow the exact

9

sampling frequency due to the nature of the hardware we use. Our somewhat

wide filter contributes to the stability of the filtered signal but at the same time

efficiently provides the energy around the band of a specific harmonic and not of

the other ones. Also the numerical effects in FFTs with a small number of cycles

and the discontinuities at the beginning and end of the segment input to the FFT

are not present in the filter band approach.

Filters do have some transients at the beginning until they initialize but with

continuous sampling that effect only occurs at the initialization and doesn’t occur

because filtering is performed continuously whereas FFTs operate on partitions of

the signal. We weren’t able to implement FFTs on the continuous data because

of the computational limitations of the SEADS platform.

After empirical testing in the field the filtering approach proved to be much more

consistent and contain less noise than the FFT approach while providing us with

the same frequency signatures that we identified using the FFT approach. How-

ever, there are still some artifacts and rare discontinuities in the waveform. These

occur due to the non-perfect continuous sampling that due to the limitations of

SEADS processor. But those discontinuities are clearly outliers, which are filtered

out by a median filter.

After filtering each chunk of the waveform, filter initial conditions are updated

with the final conditions from the previous filtering. Sixth-order filters were real-

ized as a cascade of three second-order filters for improved stability and precision

at less computational cost. Higher order filters were tested but didn’t improve

the results due to the nature of the waveform (no signals present except around

the center of the passband). Therefore we didn’t use any higher order filters as

we saw no benefit for the added computational requirements.

10

3.4 Continuous sampling

One of the very big challenges that we faced was to implement continuous, real-

time sampling with SEADS, running a non-real-time Linux OS. In order to achieve

that we pipelined the software into several processes that handle different parts

of data mining.

• The first is the sampling process written in C. This process uses BCM2835

(Broadcom Chip on our board) to perform high frequency communication

over SPI protocol. No other programming language on that platform is able

to achieve the speed that we desired (potentially 8kHz for 8 channels). This

process samples data continuously in a loop and saves it to a rotating buffer.

Every second (with an uncertainty of roughly 0.3 milliseconds due to the

nature of the OS) the signal is written in a comma separate value format to

a file. The writing to the file is carried out on a separate thread since it takes

roughly 100ms on our system to perform writing. Our system has a CPU

with 4 cores. In order to improve the continuity of our sampling process we

created a different CPU set dedicated specifically to that process. CPU set

is a concept in linux, which allows to create sets of tasks for specific cores

- hence the naming. We moved all of the other processes and all movable

kernel threads to the second CPU set so that sampling process experiences

minimal interruptions. In addition to that we created a temporary ramdisk

in RAM so that writing to file doesn’t involve any IO. The reason for that is

because the next process that we will discuss reads from these timestamped

files and we don’t want the IO to introduce any further uncertainty.

• The second process is written in Python. It reads chunks of the waveform

sampled by the first process and applies filters at different harmonic fre-

11

quencies and then calculates the energy of the signal as well as power and

voltage. The vector of these values (voltage, power and harmonic energies)

is then saved to an SQL database.

• The third process is also written in Python. It queries the database in bulk,

packages the data, compresses the data using gzip and sends it to our server

via HTTP POST request.

This architecture was dictated by the requirements of real-time sampling and

continuous processing. First of all we use Python as much as possible because

it has a rich library of scientific packages which allows us to quickly implement

filters and data communication with our server. By breaking the whole process

of data mining into three independent processes we are able to better utilize the

multiple cores of the microprocessor in SEADS in an efficient way.

Departing from the FFT approach of taking a sample and then processing it to the

continuous uninterrupted sampling, also lays much of the groundwork for further

research that our group is interested in - detecting anomalies in the voltage signal

- where the continuity of the waveform is essential for the meaningful analysis.

3.5 High Level Diagram

Both hardware and software mechanisms can be seen on the following system

diagram:

12

Figure 3.1: System Architecture

13

Chapter 4

Experiments

4.1 Harmonics

We use the first sixteen harmonics to determine spectral behaviours of different

appliances. Ali Adabi in his Ph.D. thesis here at UC Santa Cruz already demon-

strated that with the first 15 harmonics one is able to classify appliances with

90% accuracy [1].

4.2 Power Calculation

The power and energy is measured on two 120V lines using a standard industry

approach which is consistent with widely accepted methods [17]. The power of

the sample is defined as:

P =
1

N

N∑
j=0

ejij

Where ej and ij are voltage and current samples respectively. Power is calculated

over an integer number of voltage cycles. N is chosen to be an integer multiple of

14

the number of samples per cycle of the 60 Hz signal.

4.3 FFT vs Filters

We mentioned above that we decided to use a series of bandpass filters instead of

FFT analysis due to much better resolution. In order to demonstrate our motiva-

tion here we provide some waveforms of two refrigerators at different frequencies

(the top graph always being the filtered waveform).

Figure 4.1: Comparison between refrigerator signatures using FFT and filters at
60Hz

FFT signal is presented on the bottom. For 60Hz there is not much difference

between the two. Both have occasional outliers artifacts that can easily be filtered

by the median filter.

15

Figure 4.2: Comparison between refrigerator signatures using FFT and filters at
120Hz

FFT signal is presented on the bottom. The 120Hz filtered waveforms do have

some outliers (usually 1% of the data) due to some small interruptions in sampling

which are picked up by the filter to look like even harmonic components (because

they distor the symmetry of the waveform). One can already see that FFT data

starts to deteriorate even though its output could be corrected by post filtering.

16

Figure 4.3: Comparison between refrigerator signatures using FFT and filters at
180Hz

FFT signal is presented on the bottom. Here we see a very high deterioration of

the FFT data compared to the filtered data. This is due to small amplitudes at

these harmonics and spectral leakage.

17

Figure 4.4: Comparison between refrigerator signatures using FFT and filters at
240Hz

Here both approaches do not perform perfectly well but the filtering one is su-

perior. The reason for so much noise is due to very low currents present in even

harmonics. In theory perfect electrical appliance shouldn’t have any even harmon-

ics because they are unhealthy for appliance itself as well as the voltage source

(the grid).

18

Figure 4.5: Comparison between refrigerator signatures using FFT and filters at
240Hz

Here we see an even further advantage of the filtering approach.

In the end we are able to nearly perfectly recover all frequencies in the range

of our current transformers (0-1000Hz), while with the FFT approach the data

becomes too noisy to recover after 360Hz. We do have a significant noise in the

even harmonics but still less than FFT approach. The problem is mitigated by

the fact that only one or two electrical appliances exhibit any behavior in even

harmonics. The rest of the studied appliances have only odd harmonics. Even

harmonics are mostly insignificant and hard to capture which is what we expected

to observe due to the nature of most power control elements.

19

Chapter 5

Classification

5.1 Split Phase Power System

This study capitalizes substantially on the fact that devices in a typical household

are all 120V. Some are 240V appliances (in fact major appliances we identified

are 240V or on the second current leg). This has to do with the split phase power

system which is very common in the households across the US. The basic idea

is that there are two legs with 120V potential between each and a neutral but

when one looks at the potential across the legs it is 240V. This configuration is

illustrated in the system architecture Figure 3.1.

Ali Adabi for instance, used a term ”spatial disaggregation” to refer to sensors on

different electric panels which helps to isolate sets of devices. It is important to

draw a distinction between spatial disaggregation and measuring two legs of 240V

power system. The difference is that spatial disaggregation requires knowledge of

wiring configuration of the household: how many panels, which devices on which

panels, as well as which leg of the split-phase. Split phase power system is a more

or less universal configuration[21] present in many households that allows 120V

20

and 240V depending on the device.

Some 120V appliances are on one of the two legs of the split phase, while 240

volt appliances have current on both. But these are superimposed on different

backgrounds, those being the currents drawn by 120 volt. We also note that small

loads, like LED lights, and even small appliancies like TV, PC power supplies,

etc. do not contribute much to the overall power consumption over the long term.

On both legs, one sees the (same) current being drawn by 240V appliances, and

these are major loads. There is also a benefit of a clear baseline when it comes to

the second phase because all of the ”small” and irregular loads are typically not

present on it.

5.2 Approach

Our approach relies mostly of static classification methods rather than using more

complex methods such as neural networks. While neural networks can be im-

pressively effective at many classification tasks we concluded that the limited

amount of labeled data severely hinders their potential here. It is true that

many people have obtained good identification accuracy on popular public la-

beled data([6][9][13]) sets but there isn’t much work that generalizes to an average

household.

We decided to focus on hand tailoring the features for devices that consume 95%

of electricity on the panel that we measured.

5.3 Devices

• Refrigerator in the kitchen

21

• Old refrigerator in the garage

• Microwave

• Coffee maker and other resistive heating elements

• Dishwasher

• Washing machine

• Water pump

• Clothes dryer

• Oven

• Electric cooktop

5.4 Classification

In essence all of these appliances can be broken down into 4 groups:

• Purely resistive loads that run on 120V (coffee maker, iron, etc)

• Purely resistive loads that run on 240V (cooktop, oven, clothes dryer heating

element and other large loads)

• Nonlinear loads that run on 120V (dishwasher motor, refrigerators, water

pump, microwave)

• Nonlinear loads that run on 240V (dryer, oven with a fan motor)

22

5.5 Features

In our study for classifying devices we were able to identify most of the devices

using the following feature set and a particular technique for each will be discussed

in more detail.

• Unique Frequency

• Power

• Cycling behavior

• Phase (first, second, both)

• Running Time

5.5.1 Unique frequency

We call this approach ”unique frequency” because only one particular device can

be exhibiting a particular frequency that other devices do not have. The best

examples of such devices that we identified in our test household are an older

refrigerator in the garage and the dishwasher. Both have very prominent current

signals in 120Hz - rather rare frequency for an electrical appliance that no other

devices share. After some filtering of the signal the problem of the classification

reduces to a simplest possible binary classifier illustrate in Figure 5.1

23

Figure 5.1: Simple binary classifier

In order to better illustrate the concept let us look at some power data with 120Hz

energy shown in Figure 5.2

24

Figure 5.2: refrigerator power signature

As one can see there are two refrigerators running at the same time and only one

of them has 120Hz energy in the signal. Characteristic of that 120Hz harmonics

is that it makes the current sinusoid look slightly asymmetrical.

Applying the simple binary refrigerator classifier lets us easily find the running

window of the refrigerator as demonstrated in Figure 5.3:

Figure 5.3: refrigerator classified

In this picture one can also see the coffee maker running with two refrigerators.

The same could be done for the dishwasher running on the second phase in Figure

5.4:

25

Figure 5.4: Dishwasher power signature

After applying the binary classifier the exact running window can be found:

Figure 5.5: Dishwasher classified

5.5.2 Prominent frequency with moving baseline

Unfortunately, not all devices have unique signatures that allow us identify them

fairly easily. Some devices share all their freqeuncies with other devices thus their

signatures overlap. The idea is to find a dominating frequency that distinguishes it

from any other devices that have the same frequency. With 17 possible frequencies

to monitor there is a good chance to identify such a frequency. In our classification

we used that approach to identify the second refrigerator. The main distinctive

feature of any refrigerator is a compressor that acts as a powerful inductive motor

and easily overshadows other less powerful motors in the household.

26

This method is very similar in spirit to identifying a unique frequency except these

are other appliances which exhibit that frequency though less prominently. These

other appliances can be filtered out by the running baseline with some threshold.

The demonstration of this concept is illustrated in 5 hours of data in Figure 5.6

Figure 5.6: refrigerator power signature

We identified 540Hz to be a good signature of refrigerator compressor, one can

clearly see the huge jumps that correspond to refrigerator compressor actively

running. However there are occasional ”bumps” in the baseline when other lower

power motors operate. The moving baseline with some thresholds lets us isolate

the refrigerator fairly reliably. The moving baseline was calculated by finding the

local minimums (these correspond to points at which the compressor turns off)

and interpolating them across the energy signal to get a good baseline estimation

for the refrigerator compressor.

5.5.3 Inverse frequency

Another useful feature that we discovered is that for some devices power is propor-

tional to certain frequencies, while being inversely proportional for some devices.

In other words, when device ”A” turns on the energy in frequency ”X” increases

while the energy in frequency ”Y” decreases. Normalizing one frequency to an-

27

other allows us to subtract the two to be left out with only the running time of

the device.

For instance, in the Figure 5.7 one can see the microwave at two fundamental

frequencies (180Hz and 300Hz)

Figure 5.7: Microwave freqeuncy signature

As one can see, 180Hz energy is always smaller than 300Hz energy except when

the microwave runs. Subtracting the two and applying a simple filter yields the

following signal:

Figure 5.8: Difference between two energy signatures

We investigated this phenomena further by measuring both the microwave and the

refrigerator running separately. Both devices had 180Hz and 300Hz frequencies

present, albeit microwave had more energy in those frequencies due to it being a

28

much more powerful appliance. But when these devices run in tandem the energy

in 300Hz is less than when they ran separately. From an electrical point of view

this could be explained by different phases of the harmonics. If 300Hz energy of

the microwave is substantially out of phase (somewhere around 180 degrees) with

300Hz energy of the refrigerator the aggregate of the two will cancel out or get

reduced. This is a useful and overlooked classification feature which we observed in

many other devices but didn’t pick for classification because other more prominent

features were available. More study could be done on the relations of harmonics

to other harmonics and their respective phase angles.

The classification is improved even further by applying a time filter of 30 seconds

(microwave rarely gets run for less than that and is usually in multiples of 30 or

60 seconds).

5.5.4 Power classification

This method is useful in identifying very high power devices. For instance in

our test household the most powerful device was an electric dryer with power

consumption of 5kW (around 20Amps of clothes dryer). The dryer has a heating

up phase and then runs in short cycles. By filtering out all the signals that

consume less than 20A one can easily find the dryer (which draws the maximum

current out of all devices). Classified clothes dryer power over time (followed by

an electric cooktop) can be seen in Figure 5.9

29

Figure 5.9: Classified Dryer

5.5.5 Running time

Some devices can be classified by a running time in addition to a very prominent

frequency. For instance the clothes washer has the most powerful motor in the

180Hz range on the second phase that runs for long periods of time 20-60 minutes.

For instance the signature of the clothes washer can be seen in Figure 5.10

Figure 5.10: Clothes washer freqeuncy signature

One can see two 30-40 minute loads ran one after the other (charecteristic water

pump 1.4kW spike before the run). Applying a filter to remove low amplitude

signals (such as water pump) and a timer filter to detect long running motors we

are able to get the following classification results:

30

Figure 5.11: Classified clothes washer

5.5.6 Lower-Upper Threshold classification

Certain devices exhibit very consistent frequency behavior and can easily be iso-

lated by filtering out the signal by lower and upper bounds.

A good example is the water pump, which has a low power motor with very con-

sistent energy in 180 Hz, that is easily overshadowed by powerful motors (clothes

washer, dishwasher). The convenient part is that the signals that overshadow the

water pump usually draw water and that activates the water pump in this house

to maintain desired water pressure. So a dishwasher or clothes washer running

imply that the water pump is running as well. One can see the amplified water

pump signal in Figure 5.12

Figure 5.12: Water pump frequency signature

31

5.5.7 Moving standard deviation

An electric cooktop can appear to be a very challenging load to disaggregate. It

is a purely resistive element with no harmonic frequencies to stand out. It is also

highly volitile in its power consumption pattern: one small cooking surface can

draw 400W while the bigger one can draw 1kW and any combination of several

of them can vary in power quiet dramatically. However one distinctive feature

that a cooktop has is a very frequently switching on/off cycle to keep the cooking

surfaces hot. This can be identified by calculation of the standard deviation:

δ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

where µ is the mean of the signal.

The window of the standard deviation is determined empirically and is propor-

tional to the duration of a device cycles. Shorter cycles have shorter windows.

The value of standard deviation is proportional to the change in power during

the switch on and off cycles so a good lower bound for filtering noise can be

established.

For instance Figure 5.9 shows a dryer followed by cooktop. Plotting the standard

deviation with the power allows us to identify cooktop:

Figure 5.13: Cooktop standard deviation

32

Other devices have high standard deviations in certain running modes. A clothes

washer and dryer can have many on/off cycles but can be identified much more

reliably by power and harmonic content of the signal. So after finding signal with

high standard deviation, one can filter out the running times for dryer and clothes

washer to get better accuracy:

Figure 5.14: Cooktop classified

Identifying resistive loads

Many of the resistive loads share one characteristic behavior. They have three

states: heating up, keeping hot and off. They are usually hard to identify because

harmonic analysis approaches cannot be applied to them (resistive loads only have

60 Hz in the current waveform). However they can be classified by the durations of

”keeping hot” cycles (usually 10-15 seconds) and power draw at these stages. For

instance coffee maker make take several minutes to brew coffee but after it’s done

it keeps coffee hot for a long time by cycling through on/off (with long pauses).

1kW coffee maker will usually have 1kW short burst to keep things hot, similar

for iron, cooktop and other devices. By finding a derivative of the power signal

one can find the short bursts of a particular power pretty reliably.

33

Chapter 6

Results

6.1 Classifiers

As a result of this study we were able to identify a list of feature sets and create

respective classifiers based on this features for major devices in the studied house-

hold. Some of the identified features were discovered accidentally (such as inverse

effects with phase angles of the harmonics) but could potentially be useful inputs

to Neural Networks and other approaches.

Table 6.1: Classifiers by features
Device: UF: PF: IF: Power: Time: STD:
refrigerator 1 120Hz 120Hz n/a n/a n/a NO
refrigerator 2 NO 540Hz n/a n/a 30-60 m NO
Microwave NO 180Hz 300Hz 1.5-2.0kW 0.5 m and longer NO
Dishwasher 120Hz 120Hz n/a 1.0-1.5kW 30-40 m NO
Dryer NO n/a n/a 2.5kW 30-60 m Some modes
Clothes Washer NO 180Hz n/a ∼500W 20-60 m Some modes
Water Pump NO 180Hz n/a 1.5kW 60-120 s NO
Convection Oven NO 780Hz n/a 1.8kW 10-20 m cycles No
Cooktop NO n/a n/a 400W-1.5kW 10+ m YES
Coffee Maker NO n/a n/a 1kW 10-15 s to keep hot NO

34

Table colums:

• UF - Unique Frequency

• PF - Prominent Frequency

• IF - Inverse Frequency

• m - minutes

• s - seconds

• STD - standard deviation

• Time - running time

6.2 Accuracy

The accuracy was measured in the following way. Hand labeled data for the last

two weeks was taken and all classifiers were run on it. Then the results were

compared against the labeled data:

Table 6.2: Classification Accuracy
Device: Accuracy:
refrigerator 1 100%
refrigerator 2 80%
Microwave 100%
Dishwasher 100%
Dryer 100%
Clothes Washer 100%
Water Pump 90%
Convection Oven 100%
Cooktop 100%
Coffee Maker 100%

35

6.3 Discussion

Overall we were able to achieve great accuracy results. The main reason for such

high accuracy values is the fact that we created hand-tailored classifiers for each

appliance that we classified that made the approach less generalizable but very

accurate. However, we think that the classification features and approaches used

in this study can be useful for more generic approaches (such as neural networks)

when large amounts of labeled data are available.

We looked at two distinct current legs of a split-phase system with high power

appliances on the second leg and lower power appliances on the first leg. This let

us split the appliances into two camps and made the data much cleaner. Other

studies seem to look at the aggregate of both legs, SEADS allows to separate

and unintrusively look at different current legs of multiple panels which applies

to many household configurations.

We do not identify the exact power amounts consumed by each device but rather

identify the running windows of each device which makes the problem simpler.

The rough power consumption for each device can be estimated the following way:

if one found the run time for each cycle, and the the power consumed by the device

during each cycle is know, then the total consumption can be computed.

36

Chapter 7

Future Work

7.1 Transients

One feature that stayed somewhat ignored in this work is the power surge when

motors turn on. These tend to stay fairly consistent and therefore can be used to

identify different motors precisely. The problem is that the transients only lasts

fractions of a second. These ”spikes” have large high-frequency content and their

identification requires analysis of this content. We only tried with 1Hz frequency

for measuring power so the transients get averaged out with the stable state. We

just started experimenting with higher power calculation frequencies (8-16Hz) and

transients are captured much better but more testing is required. Even though

transients provide much of insight into the power and size of the motor, harmonic

frequencies on different phases allow us to capture all motors of interest with a

good accuracy without transients as indicated in the above section.

37

7.2 Better sampling technique

We do realize that our sampling technique is not ideal. In order to achieve much

better continuity the standard approach is to have a separate ”slave” microcon-

troller which would only perform the sampling and save data to a buffer (an

Arduino board or anything similiar could be a good candidate for the job). The

main processing unit can then read chunks of the continuous waveform and pro-

cess it using the convenience of linux operating system. However, in our case the

continuouty and filter behavior proved to be satisfactory to be able to identify

important and significant loads reliably.

7.3 Higher frequency sampling

One of the limitations that we faced is the use of current transformers. Current

transformers act as low pass filters and rarely work in higher frequency ranges

that could potentially contain important and unique features for other electrical

appliances. For instance hall effect sensors can easily go to 20kHz[14].

38

Chapter 8

Conclusion

We developed and implemented a system which works in practice on a generic

household with a variety of different electrical appliances, that include both non-

linear and linear purely resistive loads of different characteristics. We identified

features and implemented algorithms that can automatically detect these features

to identify these appliances. These features are very simple and do not require

large training sets of labeled data that many neural network approaches do. We

also created an auxiliary system to record data of individual appliances that can

also be used to polish the classifier for new appliances. This system can help both

consumers and utility companies. Consumers will be more educated about their

energy usage patterns and can schedule certain big loads at different times of the

day to reduce energy costs from utility companies. Utility companies would be

able to better manage the demand of the grid as more consumers would be able

to switch their behaviors to accommodate the grid.

39

Appendix A

Firmware Code

This is used to isolate two cores from any system tasks

sudo cset shield -c 1-2

sudo cset shield -k on

This is used to run the sampling service using the ”shielded” cores

[Unit]

Description=Sampling Service

After=multi-user.target

[Service]

User=root

Type=idle

Restart=always

WorkingDirectory=/home/pi/FFT-Harmonic-Extraction/fft

CPUSchedulingPolicy=fifo

CPUSchedulingPriority=99

ExecStart=/usr/bin/cset shield -e

40

/home/pi/FFT-Harmonic-Extraction/fft/fft_sampling

[Install]

WantedBy=multi-user.target

in etc/fstab we created a ramdisk to save sampling results to RAM to minimize

I/O Read/Writes

tmpfs /var/sample_tmp tmpfs nodev,nosuid,size=10M 0 0

41

Appendix B

Sampling Code

This function is used to save sampled waveform to a file

void *save_data_to_file(void* argument) {

int *data = (int*)argument;

// Creating filename

char buf[100];

int timestamp = (int)time(NULL);

snprintf(buf, sizeof(buf), "/var/sample_tmp/%d-buffer.csv",

timestamp);

// Counting length

int length = 0;

for (int i = 0; ;i++) {

int value = data[i];

if (value < 0) {

length = i;

break;

}

}

42

// Writing to file

FILE *f = fopen(buf,"w");

for (int i = 0; i < length; i++) {

fprintf(f,"%d,\n",data[i]);

}

fclose(f);

int max_size = 1 << SIZE_LIMIT;

for (int i = 0; i < max_size; i++) {

data[i]=0;

}

return NULL;

}

This function samples the waveform and saves it to file

sample_data function.

channels - binary channel vector that specifies which channels to

sample.

For example, if we want sample channel 0 only:

channels = [1,0,0,0,0,0,0,0]

while if we wanted to sample channel 0 and channel 5:

channels = [1,0,0,0,0,1,0,0]

sample *sample_data() {

int fd=1;

fcntl(stdout, F_SETFL, O_NONBLOCK);

sample *s = sample_allocate();

43

clock_t start = clock();

float diff = 0.0;

int i = 0;

int data;

int index = 0;

int j = 0;

pthread_t my_thread;

while (1) {

if (diff >= 1.0) {

s->channel_data[index][i] = -1;

int *data = s->channel_data[index];

pthread_create(&my_thread, NULL, save_data_to_file, data);

pthread_detach(my_thread);

index = (index + 1) % 8;

diff = 0.0;

start = clock();

i=0;

}

data = sample_channel(0);

s->channel_data[index][i] = data;

i++;

data = sample_channel(1);

s->channel_data[index][i] = data;

i++;

data = sample_channel(3);

s->channel_data[index][i] = data;

i++;

44

data = sample_channel(4);

s->channel_data[index][i] = data;

i++;

clock_t current = clock();

diff = ((float)(current - start) / CLOCKS_PER_SEC); // Update

time

}

sample_deallocate(s);

}

45

Appendix C

Filtering Code

import glob

import csv

import time

import math

import os

import array

import struct

import gc

import zlib

import requests

import json

import MySQLdb

import pandas as pd

import numpy as np

from scipy.signal import butter, lfilter, sosfilt, cheby2, sosfilt_zi,

sosfiltfilt, resample

46

db = MySQLdb.connect(host="localhost", # your host

user="root", # username

passwd="password", # password

db="seads") # name of the database

cur = db.cursor()

def butter_bandpass_filter(lowcut, highcut, fs, order):

nyq = 0.5 * fs

low = lowcut / nyq

high = highcut / nyq

sos = butter(order, [low, high], btype=’band’,output=’sos’)

zi = sosfilt_zi(sos)

return sos,zi

def read_csv(filename):

data = []

with open(filename) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’,’)

for row in spamreader:

value = int(row[0])

data.append(value)

return np.array(data)

def create_filters():

fs=3550

filters = []

47

initial_conditions = []

harmonic_frequencies = [60, 120, 180, 240, 300, 360, 420, 480, 540,

600, 660, 720, 780, 840, 900, 960]

for harmonic in harmonic_frequencies:

lowcut = harmonic-10

highcut = harmonic+10

filter, zi = butter_bandpass_filter(lowcut, highcut, fs, order=6)

filters.append(filter)

initial_conditions.append(zi)

return filters, initial_conditions

def find_first_peak(voltage):

index = 0

max = voltage[index]

for i in range(0,50):

if voltage[i] > max:

max = voltage[i]

index = i

return index

def find_last_peak(voltage):

length = len(voltage)

index = length-50

max = voltage[index]

for i in range(length-50,length):

if voltage[i] > max:

max = voltage[i]

48

index = i

return index

scale_factors = [60000.0, 100.0, 10000.0, 10, 5000.0, 1.0, 1000.0, 1.0,

1000.0, 1.0, 100.0, 0.1, 10.0, 0.1, 10.0, 0.1, 10.0]

directory = "/var/sample_tmp/"

power_correction_factor = 0.00456601002818

filters1, ics1= create_filters()

filters2, ics2= create_filters()

filters3, ics3= create_filters()

filters_for_channels = [filters1, filters2, filters3]

ics_for_channels = [ics1, ics2, ics3]

def calculate_power(voltage, current):

first_peak = find_first_peak(voltage)

last_peak = find_last_peak(voltage)

length = last_peak - first_peak

sum = 0.0

for i in range(first_peak, last_peak):

c_value = current[i]

v_value = voltage[i]

power = c_value*v_value

sum += power

49

average_power = sum / length * power_correction_factor

return abs(average_power)

def calculate_energy(waveform):

sum = 0.0

length = len(waveform)

for data in waveform:

sum += data*data

return sum

def get_correction_factor():

adc_max_value = 4096.0;

referential_voltage = 3.282;

ct_conversion_factor = 60.0600600601;

voltage_correction_factor = 0.09487951807;

current_conversion_factor = referential_voltage * 2 / 1.4142135624;

current_factor =

(referential_voltage*ct_conversion_factor)/adc_max_value

total_factor = current_factor*voltage_correction_factor

return total_factor

def compute_harmonic_energy(fs, window,current_waveform):

harmonic_frequencies = [60, 120, 180, 240, 300, 360, 420, 480, 540,

600, 660, 720, 780, 840, 900, 960]

harmonic_data = {}

for harmonic in harmonic_frequencies:

lowcut = harmonic-10

50

highcut = harmonic+10

y = butter_bandpass_filter(current_waveform, lowcut, highcut,

fs, order=6)

energy_data = calculate_energy_chunks(window,y)

harmonic_data[harmonic] = energy_data

return harmonic_data

def get_all_csv_files():

filenames = []

os.chdir(directory)

for filename in glob.glob("*.csv"):

filenames.append(filename)

filenames.sort()

return filenames

def get_data():

filenames= get_all_csv_files()

if not filenames:

return None, None

oldest_file = filenames[0]

#print("Oldest file: {}".format(oldest_file))

parts = oldest_file.split(’-’)

51

timestamp = int(parts[0])

current_timestamp = int(time.time())

diff = abs(current_timestamp-timestamp)

#print("Diff: {}".format(diff))

if diff < 4:

return None, None

channels = [[],[],[],[],[]]

try:

csv_data = read_csv(oldest_file)

except:

print("read_csv error")

return None,None

i = 0

for data in csv_data:

index = i % 4

channels[index].append(data)

i+=1

os.remove(oldest_file)

return channels, timestamp

def filter_waveform(waveform, sos, ic=None):

52

x = np.array(waveform)

y, zo = sosfilt(sos, x, zi=ic)

return y, zo

def get_hex_data(array):

python_array = []

for value in array:

int_value = int(math.ceil(value))

if int_value < 0 or int_value > 32700:

int_value = 0

python_array.append(int_value)

b = bytes()

b = b.join((struct.pack(’!h’, val) for val in python_array))

hex_string = b.encode(’hex’)

#print("Original")

#print(hex_string)

compressed_data = zlib.compress(hex_string)

compressed_hex = compressed_data.encode(’hex’)

return compressed_hex

def save_data(hex_data, timestamp):

device_id = ’FILTER’

try:

sql = "INSERT INTO SeadsData (device_id, unix_timestamp, data)

VALUES (’{id}’, {timestamp}, ’{data}’)".format(id=device_id,

timestamp=timestamp, data=hex_data)

53

cur.execute(sql)

db.commit()

except (MySQLdb.Error, MySQLdb.Warning) as e:

print(’Database error: {}’.format(e))

def calculate_energy_for_channel(current, filters, ics):

energy_data = []

for i in range(0, len(filters)):

filt = filters[i]

ic = ics[i]

filtered,zo = filter_waveform(current, filt, ic)

ics[i]=zo

factor = scale_factors[i]

energy = calculate_energy(filtered)/factor

#print("Energy at {} Hz is {}".format((i+1)*60, energy))

energy_data.append(energy)

return energy_data

while True:

channels, timestamp = get_data()

if not channels:

#print("No Data to read")

time.sleep(1)

continue

current_channels = [np.array(channels[1]), np.array(channels[2]),

np.array(channels[3])]

54

voltage = np.array(channels[0]) - 2048

current_channels[0] = (current_channels[0] - 2074)

current_channels[1] = (current_channels[1] - 2065) * 3.75

current_channels[2] = (current_channels[2] - 2058) * 3.75

power_data = []

if len(voltage) < 3000:

for i in range(0,4):

channels[i] = resample(channels[i], 3550)

print("Incorrect length! Resampling")

power_1 = calculate_power(voltage, current_channels[0])

power_2 = calculate_power(voltage, current_channels[1])

power_3 = calculate_power(voltage, current_channels[2])

#print("Power1 is {}".format(power_1))

#print("Power2 is {}".format(power_2))

#print("Power3 is {}".format(power_3))

power_energy_data = [power_1, power_2, power_3]

for i in range(0, 3):

current = current_channels[i]

filters = filters_for_channels[i]

ics = ics_for_channels[i]

energy_data = calculate_energy_for_channel(current, filters, ics)

power_energy_data = power_energy_data + energy_data

hex_data = get_hex_data(power_energy_data)

save_data(hex_data, timestamp)

55

Appendix D

Classification Code

Where f is 120Hz energy signal

def identify_fridge_1(f):

z = np.zeros(len(f))

for i in range(0, len(f)):

data = f[i]

if data > 100:

z[i] = 1

return z

Where f is medfilted 540Hz energy signal

def identify_fridge_2(f):

max = np.max(f) + 1;

f_inv = (f - max) * -1;

peaks2 = find_peaks(f_inv, prominence=100)[0]

x = np.linspace(start = 0, stop = len(f), num=len(f))

threshold = np.interp(x, peaks2, f[peaks2]+20)

56

z = np.zeros(len(f))

for i in range(0, len(f)):

data = f[i]

t = threshold[i]

if data > t:

z[i] = 1

return z, threshold

def identify_microwave(h_180, h_300):

filtered_signal = h_180 - h_300

filtered_signal[filtered_signal < 100] = 0

z = np.zeros(len(filtered_signal))

intervals = np.where(filtered_signal == 0)[0]

for i in range(0, len(intervals)-1):

curr_index = intervals[i]

next_index = intervals[i+1]

interval_length = next_index - curr_index

if interval_length > 30:

57

z[curr_index:next_index] = 1

return z

Dishwasher has very pronounced 120Hz harmonics

def identify_dishwasher(h_120):

filtered_signal = medfilt(h_120, 1501)

z = np.zeros(len(filtered_signal))

for i in range(0, len(z)):

curr = filtered_signal[i]

if curr > 500:

z[i] = 1

return z, filtered_signal

Where p2 is the power singal in the second leg of 120V

def identify_dryer(p2):

power_candidates = np.zeros(len(p2))

z = np.zeros(len(p2))

for i in range(0, len(power_candidates)):

curr = p2[i]

Look for all the loads that draw ~ 20 amps

if curr > 2400:

power_candidates[i] = 1

58

nz = np.nonzero(power_candidates)[0]

for i in range(0, len(nz)-1):

curr_index = nz[i]

next_index = nz[i+1]

diff = next_index - curr_index

if diff < 120:

z[curr_index:next_index] = 1

return z, power_candidates

def identify_clothes_washer(h_180):

filtered_signal = h_180

filtered_signal[filtered_signal < 20] = 0

z = np.zeros(len(filtered_signal))

nz = np.nonzero(filtered_signal)[0]

for i in range(0, len(nz)-1):

curr_index = nz[i]

next_index = nz[i+1]

diff = next_index - curr_index

59

if diff < 300:

z[curr_index:next_index] = 1

intervals = np.where(z == 0)[0]

for i in range(0, len(intervals)-1):

curr_index = intervals[i]

next_index = intervals[i+1]

interval_length = next_index - curr_index

if interval_length < 1200:

z[curr_index:next_index] = 0

if interval_length > 4800:

z[curr_index:next_index] = 0

return z

def identify_water_pump(h_180):

filtered_signal = h_180

filtered_signal[filtered_signal < 10] = 0

filtered_signal[filtered_signal > 17] = 0

z = np.zeros(len(filtered_signal))

for i in range(0, len(z)):

curr = filtered_signal[i]

60

if curr > 0:

z[i] = 1

return z

540, 660, 780 Hz is a good candidate for classification

def identify_convection_oven(h_780):

filtered_signal = h_780

filtered_signal[filtered_signal<200] = 0

z = np.zeros(len(filtered_signal))

intervals = np.where(filtered_signal == 0)[0]

for i in range(0, len(intervals)-1):

curr_index = intervals[i]

next_index = intervals[i+1]

interval_length = next_index - curr_index

if interval_length > 200:

z[curr_index:next_index] = 1

return z

Identify cooktop by moving standard deviation

Need to filter our dryer, washing machine

61

def identify_cooktop(p2):

moving_std = np.array([power_2[i:i+100].std() for i in

range(len(power_2)-100)])

moving_std[moving_std < 70] = 0

intervals = np.where(moving_std == 0)[0]

z = np.zeros(len(p2))

for i in range(0, len(intervals)-1):

curr_index = intervals[i]

next_index = intervals[i+1]

interval_length = next_index - curr_index

if interval_length < 1200:

z[curr_index:next_index] = 0

else:

z[curr_index:next_index] = 1

return z

def filter_out_dryer_and_washer(cooktop, dryer, washer):

cooktop = cooktop - dryer

cooktop = cooktop - washer

cooktop[cooktop < 0] = 0

62

intervals = np.where(cooktop == 0)[0]

for i in range(0, len(intervals)-1):

curr_index = intervals[i]

next_index = intervals[i+1]

interval_length = next_index - curr_index

if interval_length < 1200:

cooktop[curr_index:next_index] = 0

return cooktop

def identify_iron(power_1, power_2):

filtered_240_v = filter_240_v(power_1, power_2)

difference = get_difference(filtered_240_v, 3)

z = identify_appliance(15, 1400, 1500, difference)

return z, difference

def identify_coffee_maker(power_1, power_2):

filtered_240_v = filter_240_v(power_1, power_2)

difference = get_difference(filtered_240_v, 3)

z = identify_appliance(15, 900, 1100, difference)

return z, difference

def get_difference(points, W):

length = int(len(points))

diff = np.zeros(length)

63

for i in range(0, length-W):

first = points[i]

second = points[i+W]

d = second - first

diff[i] = d

return diff

def filter_240_v(power1,power2):

z = np.zeros(len(power1))

for i in range(0, len(z)):

p1 = power1[i]

p2 = power2[i]

if p2 < p1:

z[i] = p1 - p2

else:

z[i] = p1

return z

def identify_appliance(cycle_width, lower_threshold, upper_threshold,

difference_signal):

filtered_signal = difference_signal

filtered_signal[abs(filtered_signal) < lower_threshold] = 0

filtered_signal[abs(filtered_signal) > upper_threshold] = 0

z = np.zeros(len(filtered_signal))

64

nz = np.nonzero(filtered_signal)[0]

for i in range(0, len(nz)-1):

curr_index = nz[i]

next_index = nz[i+1]

interval_length = next_index - curr_index

if interval_length == 1:

continue

else:

current_delta = filtered_signal[curr_index]

next_delta = filtered_signal[next_index]

if current_delta > 0 and next_delta < 0:

if interval_length < 15:

z[curr_index:next_index] = 1

return z

65

Bibliography

[1] Ali Adabi, Pavlo Manovi, and Patrick Mantey. Seads: A modifiable platform

for real time monitoring of residential appliance energy consumption. In 2015

Sixth International Green and Sustainable Computing Conference (IGSC),

pages 1–4. IEEE, 2015.

[2] Ali Adabi, Pavlo Manovi, and Patrick Mantey. Cost-effective instrumentation

via nilm to support a residential energy management system. In 2016 IEEE

International Conference on Consumer Electronics (ICCE), pages 107–110.

IEEE, 2016.

[3] Liang Du, Dawei He, Ronald G Harley, and Thomas G Habetler. Electric load

classification by binary voltage–current trajectory mapping. IEEE Transac-

tions on Smart Grid, 7(1):358–365, 2015.

[4] George William Hart. Nonintrusive appliance load monitoring. Proceedings

of the IEEE, 80(12):1870–1891, 1992.

[5] Taha Hassan, Fahad Javed, and Naveed Arshad. An empirical investigation

of vi trajectory based load signatures for non-intrusive load monitoring. IEEE

Transactions on Smart Grid, 5(2):870–878, 2013.

66

[6] J Zico Kolter and Matthew J Johnson. Redd: A public data set for en-

ergy disaggregation research. In Workshop on Data Mining Applications in

Sustainability (SIGKDD), San Diego, CA, volume 25, pages 59–62, 2011.

[7] Chen Kunjin, Zhang Yu, Hu Jun, Hang Fan, and He Jinliang. Scale and

context-aware convolutional non-intrusive load monitoring. unpublished,

2019.

[8] Stephen Makonin, Fred Popowich, Ivan V Bajić, Bob Gill, and Lyn Bar-

tram. Exploiting hmm sparsity to perform online real-time nonintrusive load

monitoring. IEEE Transactions on smart grid, 7(6):2575–2585, 2015.

[9] Stephen Makonin, Fred Popowich, Lyn Bartram, Bob Gill, and Ivan V Bajić.

Ampds: A public dataset for load disaggregation and eco-feedback research.

In 2013 IEEE Electrical Power & Energy Conference, pages 1–6. IEEE, 2013.

[10] P Mantey. Eigenvalue sensitivity and state-variable selection. IEEE transac-

tions on automatic control, 13(3):263–269, 1968.

[11] Lukas Mauch and Bin Yang. A new approach for supervised power disag-

gregation by using a deep recurrent lstm network. In 2015 IEEE Global

Conference on Signal and Information Processing (GlobalSIP), pages 63–67.

IEEE, 2015.

[12] Mohamed Nait Meziane, Philippe Ravier, Guy Lamarque, Jean-Charles

Le Bunetel, and Yves Raingeaud. High accuracy event detection for non-

intrusive load monitoring. In 2017 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 2452–2456. IEEE, 2017.

67

[13] Thomas Picon, Mohamed Nait Meziane, Philippe Ravier, Guy Lamarque,

Clarisse Novello, Jean-Charles Le Bunetel, and Yves Raingeaud. Cooll: Con-

trolled on/off loads library, a public dataset of high-sampled electrical signals

for appliance identification. arXiv preprint arXiv:1611.05803, 2016.

[14] Edward Ramsden. Hall-effect sensors: theory and application. Elsevier, 2011.

[15] Sergio Rapuano and Fred J Harris. An introduction to fft and time do-

main windows. IEEE instrumentation & measurement magazine, 10(6):32–

44, 2007.

[16] Changho Shin, Sunghwan Joo, Jaeryun Yim, Hyoseop Lee, Taesup Moon, and

Wonjong Rhee. Subtask gated networks for non-intrusive load monitoring.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 1150–1157, 2019.

[17] Raymond S Turgel. Digital wattmeter using a sampling method. IEEE

Transactions on Instrumentation and Measurement, 23(4):337–341, 1974.

[18] Electronic Tutorials. Harmonics. https://www.electronics-tutorials.

ws/accircuits/harmonics.html. Accessed: 2019-08-18.

[19] He Wen, Zhaosheng Teng, SiYu Guo, JingXun Wang, BuMing Yang,

Yi Wang, and Tao Chen. Hanning self-convolution window and its applica-

tion to harmonic analysis. Science in China Series E: Technological Sciences,

52(2):467–476, 2009.

[20] Wikipedia contributors. Harmonics (electrical power) — Wikipedia, the free

encyclopedia, 2019. [Online; accessed 18-August-2019].

68

https://www.electronics-tutorials.ws/accircuits/harmonics.html
https://www.electronics-tutorials.ws/accircuits/harmonics.html

[21] Wikipedia contributors. Split-phase electric power — Wikipedia, the free

encyclopedia, 2019. [Online; accessed 18-August-2019].

69

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Related Work
	NILM
	Hidden Markov Models Approach
	Neural Networks
	LSTM
	GAN

	Neural Network + Image Processing

	System Overview
	Hardware
	FFT Approach
	Filtering approach
	Continuous sampling
	High Level Diagram

	Experiments
	Harmonics
	Power Calculation
	FFT vs Filters

	Classification
	Split Phase Power System
	Approach
	Devices
	Classification
	Features
	Unique frequency
	Prominent frequency with moving baseline
	Inverse frequency
	Power classification
	Running time
	Lower-Upper Threshold classification
	Moving standard deviation

	Results
	Classifiers
	Accuracy
	Discussion

	Future Work
	Transients
	Better sampling technique
	Higher frequency sampling

	Conclusion
	Appendix Firmware Code
	Appendix Sampling Code
	Appendix Filtering Code
	Appendix Classification Code
	References

