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S Y S T E M S  B I O L O G Y

Modes of information flow in collective cohesion
Sulimon Sattari1, Udoy S. Basak1,2, Ryan G. James3,4, Louis W. Perrin1,5,  
James P. Crutchfield4, Tamiki Komatsuzaki1,6,7*

Pairwise interactions are fundamental drivers of collective behavior—responsible for group cohesion. The abiding 
question is how each individual influences the collective. However, time-delayed mutual information and transfer 
entropy, commonly used to quantify mutual influence in aggregated individuals, can result in misleading inter-
pretations. Here, we show that these information measures have substantial pitfalls in measuring information 
flow between agents from their trajectories. We decompose the information measures into three distinct modes 
of information flow to expose the role of individual and group memory in collective behavior. It is found that de-
composed information modes between a single pair of agents reveal the nature of mutual influence involving 
many-body nonadditive interactions without conditioning on additional agents. The pairwise decomposed 
modes of information flow facilitate an improved diagnosis of mutual influence in collectives.

INTRODUCTION
Coherent collective behavior fascinates us when a global pattern 
emerges from individuals who share information with others only 
in their local vicinity. Decisions made by one individual apparently 
cascade throughout the entire group. That said, not all members 
have the same influence. The challenge here in explaining these 
emergent behaviors is to infer the underlying relationships among 
individuals from observations. Expectedly, this challenge has attracted 
many over decades to diagnose collective behaviors in a variety of 
systems (1–7). In epithelial Madin-Darby canine kidney monolayers, 
for example, collective cell migration is triggered by multicellular 
protrusions, which form fingerlike structures (8–10). Photoablating 
a group of cells from the fingertip makes the remaining cell group 
lose its sense of direction. The interpretation is that the former and 
latter cells have acted as if they were “leaders” and “followers.” This 
functional assignment can be carried out because of their spatial 
location along the protrusion and because the two cell classes are 
genetically distinct (10).

Understanding the relationships between leaders and followers—
even defining what those roles mean (11)—is very difficult, espe-
cially so, when probing the mechanisms that cause the dynamical 
behaviors of aggregated agents. Beyond cells, these basic questions 
also apply to bird flocking (3), fish schooling (4, 5), caribou migra-
tion (6), and baboon foraging (7). A leader agent is often defined as 
an individual that influences others more than others influence it. 
That is, the role is fundamentally asymmetric. Previous studies 
(4, 5, 12–16) proposed that, under this definition, pairwise analysis 
of trajectories can assign leaders and followers under the working 
hypothesis that a change in motion of the leader forecasts a change in 

motion of the follower. From this, one interprets the change of leader 
motion as a candidate cause that triggers the motion of followers.

Various statistical quantities are used to infer causal relationships 
(17). In pigeon flocks, for example, time-delayed correlation between 
the orientation of individuals at one time instance and the orienta-
tion of others at previous times reveals a hierarchical leadership 
structure and also provides a method to quantify the time scale of 
influence (3). In such a case, the motion of one pigeon is correlated 
with the past motion of another. Granger causality (18) is seen as an 
improvement to time-delayed correlation as it quantifies the pre-
dictability of the current state of a variable based on knowledge of a 
variable at a previous time. Time-delayed correlation and Granger 
causality both assume linear relationships between variables, 
though. This generally does not hold. More recent studies argued that 
information-theoretic quantities—transfer entropy (TE), time-
delayed mutual information (TDMI), and causation entropy—are 
superior when quantifying influence since they naturally accommodate 
the highly nonlinear nature of multiagent systems (5, 12–14, 19–31).

In practice, one must consider the potential for misclassifying 
influence when using information-theoretic methods. Carefully con-
sidering the definitions of information-theoretic quantities—such 
as TE or TDMI—further illuminates the types of influence a partic-
ular individual has. As pointed out by Schreiber (32) in introducing 
TE, TDMI reports a nonzero value between the present of a stochastic 
variable X and the future of a stochastic variable Y even when X has 
no direct influence on Y. This implies that it cannot be directly used 
to infer the underlying mutual influence among individuals. It also 
includes additional information not intrinsically coming from X.

TE from X to Y, in contrast, computes the reduction of uncer-
tainty about Y’s future while knowing X’s present, conditioned on 
Y’s present. Recently though, the study of James et al. (33) showed 
that, paralleling TDMI, TE incorporates additional, unwarranted 
information, namely, the reduction of uncertainty about Y that oc-
curs by knowing the present state of X and Y simultaneously. This 
information is extraneous to determining “flow” and, misleadingly, 
adds to the desired information: intrinsic flow from X to Y. In this 
view, TE decomposes into two distinct modes of information flow—
intrinsic and synergistic (33).

In addition to the above drawbacks, any measure of causality or 
information flow suffers from the problem of hidden variables, for 
example, when an outsider influences two agents concurrently. By 
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observing the two agents alone, one may infer a causal relationship 
between them. One can condition on other agents by computing 
causation entropy, which is an extension of TE that accounts for the 
effects of additional agents (28). The difficulty with this approach is 
that the dimension of the probability distribution required for com-
puting the measure grows exponentially with respect to the number 
of additional variables, which may require unfeasibly large amounts 
of data to properly sample.

Pairwise interactions are fundamental to information theory’s 
development of input-output (“two-port”) communication chan-
nels (34). Hence, they provide a primary statistical tool that, as we 
show, makes it possible to infer the underlying influences among 
individuals. To obtain maximum insight into the mechanisms un-
derlying multiagent systems, the following focuses on decomposing 
TE and TDMI into James et al.’s (33) three different fundamental 
modes of information flow—termed intrinsic, shared, and synergistic 
information flows. The results demonstrate how the decomposed 
elemental information flows shed light on the influences that drive 
leader-follower relationships. This work augments the previous work 
in (33) by manifesting previously unidentified features that come 
out from the mode decomposition of most commonly used informa-
tion measures, such as extracting the nature of multiagent interactions 
from only pairwise trajectories and shedding light on previously un-
identified interpretations of the modes of information flow that pro-
vide us with a more solid interpretation of causal inference than TE.

As an illustrative vehicle, we use a generalized Vicsek model (35) 
with two additional features: (i) tunable influence weight of one 
particle over another (i.e., leaders have larger influence) and (ii) 
particle memory. We show that, by analyzing the effects of (i) and 
(ii) on the three modes of information flow, intrinsic information 
flow exists whenever the motion of an agent depends on another 
with nonzero weight, as does TE and TDMI. Shared and synergistic 
information, however, can or cannot occur depending on the setting 
of (i) and (ii), as we will show further. These results extend previous 
studies on modes of information flow in finite-state hidden Markov 
models by introducing Vicsek models that are fundamental to 
understanding collective motion. In addition, the results manifest 
that decomposing pairwise information flow between two agents 
(e.g., leader and follower) enables us to differentiate the underlying 
interaction pattern driven by some additional agents (e.g., follow-
ers) in more than two interacting agents and also allows us to probe 
the effect of agent memory on the different modes of information 
flow and their role in collective behavior.

Background: Measuring causal influence
We now review several information-theoretic measures of sta-
tistical interdependence—measures that have been offered up as 
ways to detect causal influence. With these in hand, we turn to ex-
plore how useful (or not) they are in analyzing leader-follower 
relationships.
Detecting causal influence via TDMI and TE
Our definition says that leaders are, on average, more influential 
than followers. As a consequence of this asymmetry, a follower’s 
behavior is affected by the leaders, but there is a time delay. To de-
termine the degree of causal influence between random variables, 
quantitative measures have been introduced from information 
theory, such as TDMI and transfer (conditional) entropy. As they 
make no assumption about the functional relationship between 
variables, the latter improve on the more commonly used measures 

of time-delayed correlation (13) and Granger causality (18), which 
can capture only linear functional relationships.

Consider two stationary stochastic processes X = (…, xt−1, 
xt, xt+1, …) and Y = (…, yt−1, yt, yt+1, …) with probability mass func-
tions p(xt) = Pr {X = xt} and p(yt) = Pr {Y = yt}, respectively. TDMI 
from X to Y with time delay  is given by (27)

​​M​ X→Y​​( ) = I(​X​ t​​; ​Y​ t+​​ ) = H(​Y​ t+​​ ) − H(​Y​ t+​​∣​X​ t​​ ) = H(​X​ t​​ ) − H(​X​ t​​∣​Y​ t+​​)​	 (1)

where H(Yt+) and H(Yt+∣Xt) are the Shannon entropy and con-
ditional entropy, respectively. They measure, in turn, the uncertainty 
in Yt+ and the uncertainty in Yt+ remaining given Xt, respectively. 
In other words, being their difference, the mutual information 
MX → Y() monitors the reduction in uncertainty in Y’s future knowing 
X’s at a time t. Since mutual information is symmetric, this is also 
the reduction of uncertainty in X’s present knowing Y at the future 
time t + . The symmetry, though, means that it cannot be used to 
infer causal influence since, by assumption, the future cannot influ-
ence present.

In addition, TDMI has another perhaps more subtle drawback: 
When predicting influence, it can be nonzero when two variables 
have shared history (32). That is, the condition MX → Y() may hold 
when variable Y is not directly influenced by variable X but when 
either X or Y dynamics contains memory of their present config-
urations.

TE was introduced to overcome these shortcomings (32): If X 
influences Y, then predicting Y’s future becomes easier after knowing 
the present of both X and Y, compared to only knowing Y’s present. 
The TE from X to Y takes the form of conditional mutual information

	​​ T​ X→Y​​( ) = I(​X​ t​​; ​Y​ t+​​∣​Y​ t​​ ) = H(​Y​ t+​​∣​Y​ t​​ ) − H(​Y​ t+​​∣​Y​ t​​, ​X​ t​​)​	 (2)

That is, TX → Y() is TDMI between Y at time t +  and X at time 
t conditioned by Y at time t. It is the same as subtracting the uncer-
tainty remaining in Y at time t +  given both X and Y at the present 
time t from that in Yt+ given Yt. The latter corresponds to the un-
certainty of Yt+ reduced by knowing Xt in addition to the knowl-
edge of Yt.

TX → Y has become one of the standard methods for measuring statis-
tical influence in classifying leaders and followers (4, 5, 13–15, 25, 26). 
More broadly, since it improves upon TDMI for quantifying asym-
metric relationships, it has become a standard for inferring causal 
relationships in many areas of science, including neuroscience 
(23, 36–40), chemistry (41), human behavior (42, 43), and Earth 
systems (44–46).

We note, however, that, like correlation, information-theoretic 
quantities such as TDMI and TE are not sufficient in themselves to 
identify causality. The latter also requires accounting for the influ-
ence of latent or hidden variables. TDMI does not condition on the 
present or past time steps, and conditioning on the history in com-
puting TE is finite in time length (Yt in Eq. 2). Therefore, each vari-
able’s history may act like a hidden variable that influences outcomes. 
This, in turn, can lead to spurious effects when estimating informa-
tion flow, as we will elucidate shortly.

Recently, it was demonstrated for a simple binary system that 
TX → Y() > 0 can occur although knowledge of Xt alone cannot reduce 
the uncertainty in Yt+ (33). It was pointed out that, in addition to 
information intrinsic to reducing uncertainty in Yt+, which comes 
from knowing Xt, independent of Yt, TE from X to Y includes 
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information that reduces the uncertainty in Yt+, which comes from 
knowing Xt and Yt simultaneously (47).

Here, intrinsic information flow is the additional reduction in 
uncertainty in Y’s future gained from knowing X’s present compared 
to the reduction from knowing Y’s present alone or knowing the 
present of X and Y simultaneously. Intrinsic mutual information 
(IMI) was proposed (47, 48) as a measure that avoids including in-
fluence that comes from both the present of X and Y when predicting 
Y’s future. Note that, while IMI is a specific quantity and not synon-
ymous with intrinsic information flow, it can be seen as an attempt 
to compute intrinsic information flow between two variables.
Diagnosing causal influence via intrinsic, shared, and  
synergistic information
Intrinsic information flow from X to Y is regarded as the informa-
tion flowing from the present of X (Xt) to the future of Y (Yt+), 
which cannot be attributed in any way to the present of Y (Yt), in 
contrast to TE TX→Y attributed in part to Yt. Independently, secret 
key agreement rate S(A; B∣C) is a key concept of cryptography, 
which quantifies the rate of secret (information) shared between 
two stochastic variables A (say, Alice) and B (Bob) free from a third 
variable C (Eve), regarded as an “eavesdropper” (see section S3 and 
fig. S15) (48, 49). By using the secret key agreement rate where A, B, 
and C are replaced by Xt, Yt+, and Yt, the amount of information 
flowing intrinsically from X to Y is equal to the secret key agreement 
rate S(Xt; Yt+∣Yt) (defined in section S3) (33). Since S(Xt; Yt+∣Yt) 
is not computable in practice, IMI IX→Y is used as a (workable) up-
per bound on S(Xt; Yt+∣Yt) to monitor information that flows in-
trinsically from X to Y.

The amount of IMI communicated from process X to another Y 
is the infimum of ​I(​X​ t​​; ​Y​ t+​​∣​​Y  ̄ ​​ t​​)​ taken over all possible conditional 
distributions ​p(​​Y ̄ ​​ t​​∣​Y​ t​​)​ (33)

	​​
​​I​ X→Y​​(τ ) ≔  inf​{​​I(​X​ t​​; ​Y​ t+τ​​ ∣ ​​ 

_
 Y ​​ t​​ ) : p(​X​ t​​, ​Y​ t+τ​​, ​​ 

_
 Y ​​ t​​)​

​    
                      ​ = ​ ∑ 

y∈​Y​ t​​
​​​p(​X​ t​​, ​Y​ t+τ​​, ​Y​ t​​  =  y ) p(​​ 

_
 Y ​​ t​​ ∣ ​ Y​ t​​  =  y ) ​}​​​

​​	 (3)

Here, ​​
_

 ​Y​ t​​​​ is an auxiliary variable used to realize the upper bound 
of S(Xt; Yt+∣Yt). It satisfies the Markov property ​​Y​ t​​  → ​

_
 ​Y​ t​​​​, and ​​​ 

_
 Y ​​ t​​​ 

has no information to be shared with Xt and Yt+, conditioned by Yt, 
i..e, ​I(​X​ t​​ ​Y​ t+​​; ​​Y  ̄ ​​ t​​∣​Y​ t​​ ) = 0​. Here, A → B signifies that B depends only 
on A, and the infimum is taken over all possible conditional distri-
butions ​p(​​Y ​ t ​​ ̄ ​∣​Y​ t​​)​.

IX→Y represents uncertainty reduction in Y’s future that comes 
from knowing only X’s present as much as possible under the as-
sumption of the Markov property with respect to Y and ​​Y  ̄​​, which has 
been found to be a convenient and accurate bound on the secret key 
agreement rate S(Xt; Yt+∣Yt)( ≤ IX→Y) (47, 48).

The intuitive explanation as to why the IMI forms an upper 
bound on the secret key agreement rate is as follows: Alice (A) and 
Bob (B) cannot be said to hold any information secretly if they are 
all accessible to Eve (C), including their secret key to decrypt their 
public communication (see also section S3). How does Eve infer 
what information Alice and Bob exchange solely from the knowl-
edge of communication between Alice and Bob? Suppose that Eve is 
not restricted to using solely the value c of the stochastic variable C 
she observes at each step but rather any possible statistical transfor-
mation of the variable C represented by C′ ∼ p(C′∣C)p(C) with an 
auxiliary variable C′ [Note p(C′∣C) = C,C′ (:Kronecker delta) 
corresponds to using the original C in the inference]. Said another 

way, Eve has access to knowledge regarding A and B via C plus any 
manipulation or transformation of C, and so the secret key agree-
ment rate between Alice and Bob is certainly bound from above by 
conditional mutual information ​I(A; B∣​C​ M​ ′ ​ )​, where ​​C​ M​ ′ ​​  is the trans-
formation of C that minimizes the mutual information between 
A and B.

How does this intuition translate to the information flow setting? 
Intrinsic information flow from X to Y is a very restricted concept, 
that is, it is the information flowing from the present of X (Xt) to the 
future of Y (Yt+), which is free from the present of Y (Yt). So in a very 
similar sense as above, if there is some manipulation of Yt (i.e., ​​​Y  ̄ ​​ t​​​), 
which reduces the information between Xt and Yt+, ​I(​X​ t​​; ​Y​ t+​​∣​​Y   ̄​​ t​​)​ is 
expected not to be attributed to the present of Y (since it was in-
ferred via the present of Y). It is in this sense that using the secret 
key agreement rate helps us quantify intrinsic information flow.

The following relations delineate the importance of IX→Y() and 
its relationship to S(Xt; Yt+∣Yt), TX→Y(), and MX→Y()

	​ 0  ≤  S(​X​ t​​; ​Y​ t+​​∣​Y​ t​​ ) ≤ ​I​ X→Y​​()​	 (4)

	​​ I​ X→Y​​( ) ≤ ​ T​ X→Y​​( ) ≤ H(​Y​ t+​​∣​Y​ t​​)​	 (5)

and

	​​ I​ X→Y​​( ) ≤ ​M​ X→Y​​()​	 (6)

In effect, Eqs. 4 to 6 demonstrate that IMI can be used to com-
pute bounds on the deviations of MX→Y() and TX→Y() from 
S(Xt; Yt+∣Yt). That is, whenever equality does not hold in Eq. 5 
(Eq. 6), then there must be a portion of TX→Y() (MX→Y()) that is 
not intrinsically coming from X. From here on, we set  = 1 and 
omit  from equations, as it has been shown that  = 1 best captures 
the information flow between two particles in the Vicsek model (12).

Once IX→Y has been determined, shared X→Y and synergistic 
SX→Y information follow immediately by subtracting it from TDMI 
(MX→Y) and TE (TX→Y), respectively

	​​ ​ X→Y​​  = ​ M​ X→Y​​ − ​I​ X→Y​​​	 (7)

and

	​​ S​ X→Y​​  = ​ T​ X→Y​​ − ​I​ X→Y​​​	 (8)

From Eqs. 4 to 6, one sees that

	​ 0  ≤ ​ ​ X→Y​​  ≤ ​ M​ X→Y​​​	 (9)

and

	​ 0  ≤ ​ S​ X→Y​​  ≤ ​ T​ X→Y​​​	 (10)

Note that IX→Y monitors information coming from (mostly) X 
alone to Y, since IMI provides an upper bound on S(Xt; Yt+1∣Yt). 
Because of this, SX→Y > 0 (X→Y > 0) implies that TX→Y (MX→Y) 
contains information that comes from Y’s present and that TX→Y 
(MX→Y) should not be interpreted as information flowing only 
from X to Y in those cases.

In the following, on the basis of IX→Y being (mostly) informa-
tion coming from only X to Y, X→Y is the part of MX→Y, which 
comes from knowing both variables. On postulating that it is the 
information redundant in both X and Y, we referred to it as shared 
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information. Similarly, SX→Y is synergistic information since it is 
the part of TX→Y, which comes from knowing both variables and 
since it arises from simultaneously knowing X and Y at present (33). 
Together, I, , and S reveal a much more detailed decomposition of 
the relationship between X and Y than can be inferred from T or 
M alone.

To ground this information-theoretic setting, the following shows, 
using a modified Vicsek model of collective behavior, that T and M 
can result in misleading interpretation concerning the underlying 
actual relationship among individuals. We go on to propose that I, 
, and S provide a firmer interpretation of the relationship without 
requiring additional experiments.

RESULTS
With this background, we now turn to diagnose interactions be-
tween individuals in a collective system and between individuals 
and the collective.

Modified Vicsek model
To demonstrate the interpretability of informational modes I, , 
and S, we introduce a series of augmented Vicsek models. These 
extend the original (35) with asymmetric interactions and turn on-
off the dependence on the present dynamics of interacting particles.

Consider N particles lying within a square box of length L with 
periodic boundary conditions. Particle i’s position ​​​ → r​​i​ 

t
​​ at time t is up-

dated over time increment t according to

	​​​  → r​​i​ 
t+1

​  = ​​  → r​​i​ 
t
​ + ​​ → v​​i​ 

t
​ Δt​	 (11)

where ​​​ → v​​i​ 
t
​​ denotes particle i’s velocity at time t and i = 1,2, …, N. For 

simplicity, particles have uniform constant speed v0, and only their 
orientations i change.

Particle orientation is updated at each time by taking the weighted 
average of the velocity of neighboring particles within a given 
radius R
	​​ θ​ i​​(t + 1 ) = ​〈𝛉(t ) 〉​ R,w,​​ → ​r​ i​​​​​ 

t
​​​ + Δ ​θ​ i​​​	 (12)

where w is a nonnegative asymmetric matrix whose wij element de-
termines the interaction strength that particle i exerts on particle j. 
wij > wji whenever particle i is a leader, and particle j is a follower in 
our setting. To model thermal noise, i is a random number uni-
formly distributed in the range [−0/2, 0/2] and is chosen uniquely 
for each particle i at each time step. In the original model (35), the 
right-hand side of Eq. 12 ensured that i(t + 1) resulted from the 
configurations of all the particles j (including that of the same par-
ticle i) within the circle of radius R centered at ​​​ → r​​i​ 

t
​​.

Now, consider modified dynamics that modulate the depen-
dence on j(t) associated with follower-leader interactions that 
determine i(t + 1): The leader influences the follower, but the fol-
lower does not influence the leader; i.e., wLF > 0, while wFL = 0.

To graphically understand our models, we show Fig. 1 (Aa to Da), 
where each graph depicts one possible interaction protocol in a sim-
ple, two-particle system that determine i(t + 1), where L and F de-
note leader and follower, respectively. There, if A or B are either 
L or F, then A → B signifies that A’s present state influences the B’s 
future state. We vary wLF ∈ [1,10]. We set wLL = 1 and wFF = 1 for the 
models in which the present state of L (F) influences the future state 
of L (F). For models in which the present does not influence the 

future for the same particle (F or L)—see Fig. 1Aa (i.e., L’s and F’s 
dynamics), Ba (L’s), and Ca (F’s)—we replace i(t), which appears 
in computing ​< 𝛉(t ) ​>​ R,w,​​ → ​r​ i​​​​​ 

t
​​​​ (see ∑′ term in Eq. 20) by a random 

number in the interval [0,2] to erase any influence from i(t)’s 
present. Note that the value of wLL (wFF) is inconsequential when 
the dynamics of leader (follower) do not depend on their present 
state, and i(t) depends solely on a random number in the interval 
[0,2]. In type A, neither the future dynamics of L nor F depend on 
their present (Fig. 1, Aa). In type B, only the future dynamics of 
F depends on its present (Fig. 1, Ba). In type C, only the future dy-
namics of L depends on its present (Fig. 1, Ca). In type D, both L’s 
and F’s future dynamics depend on their present (Fig. 1, Da). To 
further examine the effects of the history of L in types C and D, we 
also introduced interaction types C′ and D′, which are the same as 
interaction types C and D, respectively, except the future state of L 
depends on its present only when time step t is even, and L “forgets” 
its present in its future dynamics as in types A and B whenever t is 
odd. In types C′ and D′, the dependence of the future of F on its 
present are not changed, that is, the future of F does not depend on 
its present in type C′, and the future of F always depends on its 
present in type D′ regardless of the value of t.

Informational modes between leaders and followers
Misinterpreting causal influence
Let us first examine the amounts of TDMI (M) and TE (T ) shown 
in Fig.  1 for different interaction types, integrated over ranges of 
both wLF and 0 (the landscapes of M and T as a function of wLF and 
0 are shown in figs. S1 and S2). Here, the white circle with diagonal 
shading represents M, and the red circle represents T. The Venn 
diagrams can graphically capture the relationship among the de-
composed modes of information with TDMI and TE. The over-
lapping region between M and T, the part of M that is not 
overlapping with T, and the part of T that is not overlapping with 
M represent I, , and S, respectively, and are discussed in the fol-
lowing section.

As expected, ML→F and TL→F in Fig. 1(Ab to Db and Cd to Dd) 
exhibit substantial, nonzero values in all interaction types, since L is 
influencing F in all cases. Naively, one expects MF→L and TF→L to 
be zero for all cases since F does not influence L at all. However, 
there are spurious values of both MF→L and TF→L in Fig. 1(Cc to 
Dc), as well as spurious values of TF→L alone in Fig. 1(Ce to De). 
Spurious amounts of TX→Y and MX→Y, even in cases where X does 
not influence Y, have been ignored by a large and growing body of 
research in quantifying causal relationships. The following section 
elaborates on how decomposing M and T into I, , and S can 
improve the interpretation of information flow using different 
interaction types as examples.
Modes of information flow
We now interpret by Venn diagrams the different modes of informa-
tion flow integrated over ranges of wLF and 0 for each interaction 
type (Venn diagrams for analogous binary systems are shown in fig. 
S13 and described in section S3). The landscapes of I, , and S as a 
function of wLF and 0 are shown in figs. S3 to S5 for types A, B, C, 
and D and in figs. S6 and S7, respectively, for types C′ and D′. Since 
each interaction type corresponds to a special case of information 
flow, let us briefly examine each one.

In type A, where neither L nor F depends on its present (Fig. 1, 
Aa), only IL→F and no other type of information flow is observed, as 
seen in Fig. 1 (Ab). In this case, since M and T overlap completely, 
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there is no nonoverlapping region of either M or T, signifying that 
I = M = T and  = S = 0. Furthermore, all F to L information flow 
quantities are equal to zero, thus the Venn diagram for type A from 
F to L is not shown. Although this may not be a realistic case in sys-
tems of interacting agents, since agents are likely to depend not only 
on each other but also their history, it is only the case demonstrated 
where either T or M can accurately convey causal relationships be-
tween agents.

Figure 1 (Ba) represents type B where only F depends on its pres-
ent in the i(t + 1) dynamics. IL→F and SL→F, (and thus ML→F and 
TL→F) (Fig. 1, Bb) all increase compared to the case where F’s dy-
namics do not depend on its present (Fig. 1, Ab). This further em-
phasizes our point that dependence on the present state plays a key 
role in the calculation of information flow even when the interac-
tions between individuals are not intrinsically changing. Notably, 
the red sliver of nonoverlapping region between M and T in Fig. 1 
(Bb) shows the appearance of synergistic information SL→F, which 
denotes that part of TL→F is not intrinsically coming from L. Since 
F depends on its present, the simultaneous knowledge of the pres-
ent state of F and L provides more predictive power than knowing 
either the present state of F or L alone. Also to be noted is that L→F 
is equal to zero, which is due to L not imparting any of its history 
onto F. F to L information flows in this case are again equal to zero, 
since the leader has no memory of its past history to share with the 
follower.

Figure  1  (Ca) represents type C, where only L depends on its 
present. In this case, a substantial amount of L→F appears because 
of the dependence of the future state of both L and F on the present 
state of L, as shown in Fig. 1 (Cb). L imparts information from its 
present on to the future dynamics of F, and meanwhile, this infor-
mation is already contained in the future state of F because of the 
dependence of the future state of F on that same history (i.e., L’s present). 
In contrast to types A and B, there is a substantial amount of shared 
history between F and L, as shown in Fig. 1 (Cb). As in the binary 
system proposed by Kaiser and Schreiber (50) having the same 
graph representation as Fig. 1 (Ca), there exists a substantial amount 
of MF→L although there is no direct interaction in that direction. 
By decomposing MF→L into IF→L and F→L, we quantitatively 
show that the spurious amount of MF→L is coming solely from 
L→F and is thus not intrinsically coming from F. TE T was intro-
duced to reconcile this issue (32). TF→L does in fact reduce the 
amount information flow in that direction in our model, given that 
TF→L is notably less than MF→L in Fig. 1 (Cc).

Why then, are TF→L, and more importantly, IF→L not equal to 
zero in type C (Fig. 1, Cc)? Surely, information is not intrinsically 
flowing from F to L in this case since there is no direct link from 
F to L in Fig. 1 (Ca). The reason is that the history of L acts as a 
hidden variable, imparting information onto both L and F. To verify 
this, we have introduced interaction type C′, which is the same as 
interaction type C (Fig. 1, Ca), except that the future state of L depends 

Fig. 1. Graph representation of interaction types A, B, C, and D and the corresponding Venn diagrams representing information flow. Areas of the circles are 
computed by integrating M and T over 0 ranging from 0 to 2 and wLF ranging from 1.0 to 10.0. The area of red circles and white striped circles in the Venn diagrams are 
equal to the (integrated) TDMI ∫M(0, wLF) d0 dwLF and TE ​∫ T (​​ 0​​, ​w​ LF​​) ​d​ 0​​ ​dw​ LF​​​, respectively. The centers of the two circles are determined as follows: First, each of the 
centers is connected with a horizontal line without being overlapped [the TE (TDMI) is located at the left (right)], and then a binary search algorithm was used to find the 
placement of those circles whose overlapping area is equal to the IMI ∫I(0, wLF) d0 dwLF by decreasing the distance between the centers. The part of the red (white 
striped) circle not overlapped with the white striped (red) circle has area equal to the synergistic information ​∫ S(​​ 0​​, ​w​ LF​​) d ​​ 0​​ ​dw​ LF​​​ (the shared information ∫(0, 
wLF) d0 dwLF) (see Legend). (Aa) Type A. (Ba) Type B. (Ca) Type C. (Da) Type D. (Ab to Db) Venn diagrams from leader to follower for interaction types A to D. The informa-
tion flows from follower to leader for types A and B are negligible and therefore are not shown. (Cc to Dc) Those from follower to leader for interaction types C and D. 
(Cd to Dd) Those from leader to follower for interaction types C′ and D′. (Ce to De) Those from follower to leader for interaction types C′ and D′.
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on its present only when time step t is even, and L forgets its present 
in its future dynamics when time step t is odd. Although the present 
state of L can still act as a hidden variable imparting information on 
both L and F, the computation of IF→L conditions on the present 
state of L and also minimizes the uncertainty coming from the pres-
ent state of L as much as possible. Therefore, it is not possible for the 
history of L to have any influence on the value of IF→L in type C′ 
since it remembers at most one time step of its past history, which is 
being minimized in the computation of I. The Venn diagram from 
follower to leader in this case is shown in Fig. 1 (Ce). Note that TF→L 
still exists in this case but only in the form of synergistic informa-
tion SF→L as IF→L = 0. Recall that the existence of SF→L, which is a 
part of TE, implies that simultaneous knowledge of the present 
states of L and F allows for an improvement on the prediction of the 
future of L compared to individual knowledge of the present states 
of L or F alone. Why does this happen under IF→L = 0? Here, we 
explain the origin of the existence of synergistic information intui-
tively. For interaction type C′, F(t + 1) always results from L(t) 
irrespective of the time step. In turn, the present configuration of 
L(t) affects its future at every even time step t. However, L(t + 1) is 
taken from [0,2) randomly to reset its history every odd time step 
t, i.e., F(t + 1) ≠ L(t + 1). That is, simultaneous knowledge of the 
states of L and F reduces uncertainty about whether time step is 
even or odd, and, therefore, simultaneous knowledge of the present 
states of L and F improves the prediction power of the future of 
L compared to solely individual knowledge of the present state of 
L and F (see more in detail in section S2).

Last, Fig. 1 (Da) represents type D, which is perhaps the most 
intuitive case in typical systems, where both entities depend on their 
present state in the i(t + 1) dynamics. M, T, and  are greater than 
zero for similar reasons as they are in types B and C for both leader 
to follower and follower to leader, and SL→F but not SF→L is greater 
than zero for similar reasons as well. Type D′ is the same as C′, ex-
cept F depends on its present dynamics as in type D. As in type C′, 
the only type of information flow from F to L in type D′ is SF→L, and 
for similar reasons. Thus, type D, representing the most typical 
types of multiagent systems, contains a rich profile of information 
flows, which we have explained by analyzing types A, B, C, C′, and D′.

Systems of more than two agents
The analysis up to now addressed only pairwise interactions. This is 
in accord with the theoretical basis of the information measures 
used; for example, TX → Y() in Eq. 2. The measures generalize 
straightforwardly to account for additional time series, say, of a 
third particle (or agent); see, for example, the causation entropy 
(26). Suppose the third variable Z, in addition to X and Y, are each 
symbolized by m discrete values. Then, for example, the dimension 
of the probability distribution p(Yt + 1, Xt, Zt) is m3 − 1 (−1 is because 
of probability normalization). This means that, the more the num-
ber of additional variables to be conditioned on increases, the more 
the dimension of the probability distribution required for comput-
ing the measures grows exponentially with respect to the number of 
additional variables. This requires increasingly large amounts of 
data to properly sample. Therefore, in multiagent systems, it is not 
usually feasible to condition on all or even a few other agents that 
interact with a given agent. In addition, even if additional vari-
able(s) that indirectly affect(s) interactions between X and Y exist, it 
is nontrivial to look for this indirect “cause.” These hidden variables 
may be another agent entity, some past memory of the process of X 

and/or Y longer than being taken into account in the elucidation of 
TE, or something else.

Nonetheless, estimating two-agent information measures has been 
proven useful for monitoring influence in systems having more than 
two agents (5, 13, 14, 25, 27). We will now show how measuring I, 
, and S gives marked improvements even in these admittedly ap-
proximate settings.

Consider a collective in which L and F mutually interact with 
one another, but under model A, followers also directly interact 
with each other, and under model B, they do not. See, for example, 
Fig. 2 for the case of three agents. In the following discussion, there 
is one leader agent, and the number of follower agents NF is varied. 
L refers to the leader, and F refers to a particular follower.

Figure 3 (A and B) displays ML→F for models A and B, respec-
tively. The plots of  (see fig. S9) are almost indistinguishable from 
those of M, indicating that a majority of M is actually coming from 
, which is due to shared history between L and F. As has been es-
tablished for the Vicsek model (35), cohesive behavior increases as 
a function of density. Here, ML→F and L→F increase as a function 
of NF in model A. Model B, however, is not the same as the original 
Vicsek model in that followers do not interact with each other, and 
therefore, ML→F and L→F decrease as a function of NF, since the 
inclusion of additional agents that are not interacting decreases the 
overall cohesion between the present state of L and the future state 
of F. The plots of MF→L for models A and B are not shown as they 
are not distinguishable by eye from those of ML→F (see fig. S8).

Figure 4 (A to D) shows TL→F as a function of 0 for model A, 
TF→L for model A, TL→F for model B, and TF→L for model B, respec-
tively. At 0 = 0, agent movements quickly reach a regular parallel 
flow independent of initial coordinates and velocities, and thus, any 
information about their present orientations are negligible (on 
average) in predicting the others’ orientational motions (see movie 
S1). In practice, all agents are subject to finite noise due to their 
environment (represented here by thermal fluctuation). Gradual 
decreases of T as 0 increases simply arise from this natural stochas-
ticity. In both models A and B, there are small bumps in TL→F and 
TF→L at 0 ≃ 0.7, but the notable difference is that the bumps clear-
ly decrease as a function of NF from L to F and F to L in model A 
(Fig. 4, A and B) and from F to L in model B (Fig. 4D) but not from 
L to F in model B (Fig. 4C).

The existence of bumps in T at 0 ≃ 0.7 and the difference in 
their behavior between models A and B can be explained by decom-
posing T into I and S. Figure 5 (A to D) shows IL→F as a function of 
0 for model A, IF→L for model A, IL→F for model B and IF→L for 
model B, respectively. While the overall trend is very similar to that 
of T in Fig.  4, I does not contain bumps at 0 ≃ 0.7. Thus, the 
bumps in T are explained solely by S. This suggests that when such 

BA

Fig. 2. Three-agent interaction diagrams. (A) In model A, a leader influences 
both followers, both followers influence L, and followers influence each other. 
(B) Model B is similar to model A, but followers cannot influence each other. 
Weights are asymmetric: wLF (leader to followers) is greater than wFL and wFF. We 
set wLF = 4 and wFL = wFF = wLL = 1.
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a bump exists in the values of T as a function of noise, this may be 
attributed to a difference in the location of the peak of I and that of 
S. Furthermore, when looking at how this structure changes as a 
function of the number of following agents, one can deduce wheth-
er follower agents mutually interact (i.e., model A) or not (i.e., mod-
el B) solely by observing the pairwise trajectories between the leader 
and one follower. Similar results are also obtained by more simpli-
fied binary models (see section S2 and fig. S14). Figure 6 (A to C) 
shows SL→F as a function of 0 for model A, SF→L for model A, and 
SL→F for model B, respectively (SF→L for model B is indistinguish-
able by eye from SF→L for model A and therefore not shown here) 
(see fig. S10). As an overall trend, S is negligibly small when 0 < 
0.4, which means that since the configuration of F (L) is not vary-
ing by a large amount from time to time, the simultaneous knowl-
edge of L and F does not decrease the uncertainty in F (L) more than 
knowing the current configuration of L or F alone. At intermediate 
values of 0, simultaneous knowledge of L and F becomes relatively 
more important, and at high values of 0, the simultaneous knowl-
edge of L and F has no predictive power as the dynamics are domi-
nated by thermal noise. As NF increases in model A, SL→F and SF→L 
both decrease, as the future configuration of F (L) depends on more 
other agents and relies less on the simultaneous knowledge of L or 
F alone. Therefore, increasing NF decreases the likelihood that 
simultaneously knowing the configuration of F and L has any addi-
tional predictive power on L or F. In model B, however, F is not 
affected by other followers, and therefore, SL→F remains largely un-
changed as a function of NF.

Now let us consider the case of multiple leaders in which the 
motility of follower agents are subject to more than one leader. 
Figure 7G exemplifies the case of four agents including one leader, 

while the three followers can interact with one another (model A). 
Figure 7H exemplifies the same interaction type, but with two leaders 
and two followers, where the leaders cannot interact with one an-
other but the followers can. Graph representations of cases where 
the leaders and followers can all mutually interact, leaders can inter-
act with one another but followers cannot, and neither leaders nor 
followers can interact with one another are shown in fig. S11. The 
values of S in these cases are shown in fig. S12, and the results are 
discussed in section SIF. Here, we study the effect of increasing the 
number of leaders in model A, where leaders cannot interact with 
one another but followers can (see Fig.  7,  G  and  H). Figure  7 
(A and B) shows SL→F and SF→L, respectively, for the case of four 
agents, including one leader and three followers (blue) and two 
leaders and two followers (red). As one may expect, SL→F decreases 
as the number of leaders increases, since the dynamics of each fol-
lower results from the two leader agents, reducing synergistic effect 
between a leader-follower pair in the prediction of the follower mo-
tility. In the case of one leader and three followers, a follower is also 
subject to the interaction of an additional follower instead of the 
leader; however, since the weight of the follower is less, this does not 
reduce the synergistic effect as much as the case of two leaders and 
two followers. Counterintuitively, SF→L increases as the number of 
leaders increases, as shown in Fig. 7 (B and D). Note that keeping 
the total number of agents fixed, there are fewer followers interacting 
with a given leader as we increase the number of leaders. It suggests 
that synergistic effects SX → Y decrease as the weighted indegree of 
the agent Y increases, or, in other words, as more agents “participate” 
in determining the future of the target agent Y. In Fig. 7 (C and D), 
where there is a total of eight agents, the same trends are, respectively, 
seen as the number of leaders is increased; however, the overall 
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Fig. 3. ​M​ as a function of noise level 0 (in units of  radians) for models A and B with one leader. Here, NF = 1 (blue), 3 (red), 7 (yellow), and 15 (purple), where the 
number of leaders is always one. (A) ML→F for model A. (B) ML→F for model B.
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values of SL→F and SF→L are lower than in Fig. 7 (A and B) due to 
the higher number of agents reducing the synergistic effects. In 
Fig. 7 (E and F), we keep the number of followers fixed to three and 
increase the number of leaders. Here, there is no change in SF→L as 
the number of leaders increases, although the total number of 
agents increases, because the increase in agents does not increase 
the indegree of L.

DISCUSSION
We investigated a series of model systems based on the Vicsek 
Model of collective motion to explore the effect of interaction pro-
tocols on the distinct modes of information flow. In theory, one 
would condition on all variables, as well as history, to fully interpret 
mutual relationships among agents in a collective. At present, this is 
not practical. Instead, our task was to acquire detailed and correct 
interpretations under the constraint of limited measurements—
specifically, pairwise interactions among agents.

We observed that the intrinsic information between X and Y 
dominates whenever there is only a link from X to Y and no direct 
link between Y to X or from Y to itself. However, a small amount of 
intrinsic information can still be observed when there is no direct 
link from X to Y, as in the case where X is a follower with memory 
and Y is a leader. We noted that this was due to the effect of memo-
ry. We also found that shared information from X to Y dominates 
when X and Y are both influenced by a shared history. Synergistic 
information dominates when present knowledge of X or Y alone 

cannot predict the future state of Y by itself, but knowing both the 
present of X and Y simultaneously does. One of the most notable 
consequences in our analysis of this multiagent system was that de-
composing TE into intrinsic and synergistic information flows en-
abled us to infer whether followers interact with one another in the 
collective and, more generally, distinguish between cases where an 
agent interacts mutually with only one or a few other agents, from 
the cases where many interacting agents are influential. Notably, 
from that, one can also correctly interpret the “bump” observed in 
TE as a function of noise level.

Although the concepts of intrinsic, shared, and synergistic infor-
mation flows apply generally to any system of interacting variables, 
some of the main limitations of information theory still apply to the 
measures used in this study. Computing information flow typically 
requires a discretization of the dataset, which performs a coarse 
graining of the data (still, these coarse-grained methods have proven 
more effective than methods based on continuous quantities, such 
as time-delayed correlation (12)). Furthermore, although intrinsic 
information is an improvement upon TE to rule out the effects of 
history, it cannot erase all memory effects without condition-
ing on longer and longer pasts, which, in practice, is not feasible. 
Notwithstanding these limitations, the decomposition of TE and 
TDMI into intrinsic, shared, and synergistic modes of information 
flow provides a marked improvement on the nature of interaction 
without requiring any additional data.

On the basis of the model systems and their corresponding 
information flows, one can deduce which information measure is 
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Fig. 5. ​I​ as a function of noise level 0 (in units of  radians) for models A and B with one leader. Here, NF = 1 (blue), 3 (red), 7 (yellow), and 15 (purple), where the 
number of leaders is always one. (A) IL→F for model A. (B) IF→L for model A. (C) IL→F for model B. (D) IF→L for model B.
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more appropriate based on the physical problem being addressed. 
In leader-follower classification, for example, TE is often used. 
However, when one does not expect to find substantial synergistic 
or shared flows, it equals TDMI. The latter is then a better choice 
since it does not require additional conditioning that increases the 
dimension of the probability distribution that must be well-sampled. 
In cases where synergistic flow is dominant, one may consider sep-
arating intrinsic and synergistic flows instead of computing just 
TE. This results in a much richer feature space for classification. In 
general, computing intrinsic, shared, and synergistic flows should 
perform better or at least as well as TE and TDMI in classification. 
Future work will verify these claims and elucidate exactly in which 
scenarios we expect each mode of information flow to be effective in 
classifying leaders and followers.

MATERIALS AND METHODS
Defining information flow
In this section, we will construct our measure of intrinsic information 
flow. We will start with a broader understanding of information 
flow and then narrow it until we arrive at our goal. To begin, infor-
mation flow from a time series X to a time series Y must exist in both 
the behavior of X at time t and the later behavior of Y at time t + 

	​​ M​ X→Y​​( ) = I(​X​ t​​; ​Y​ t+​​ ) = ​ ∑ 
​x​ t​​,​y​ t+​​

​​​p(​x​ t​​, ​y​ t+​​) ​log​ 2​​ ​ 
p(​x​ t​​, ​y​ t+​​) ─ p(​x​ t​​ ) p(​y​ t+​​)

 ​​	 (13)

a quantity known as the TDMI.

As pointed out by Schreiber (32), there are many reasons why Xt 
and Yt+ might share information. First, both X and Y may be syn-
chronized, and so Xt predicts Yt+ in the same fashion that Yt would, 
and so it would be disingenuous to attribute that shared information 
to information flow. Similarly, X and Y may be jointly influenced by 
a third system Z, and so there is no direct, or even indirect, informa-
tion flow from X to Y. Schreiber referred to these two situations as 
the two time series being correlated via common history and com-
mon input signals and proposed discounting these influences from 
the TDMI via conditioning

​​T​ X→Y​​( ) = I(​X​ t​​; ​Y​ t+​​∣​Y​ t​​ ) = ​  ∑ 
​x​ t​​,​y​ t​​,​y​ t+​​

​​​p(​y​ t+​​, ​y​ t​​, ​x​ t​​) ​log​ 2​​     ​ 
p(​y​ t+​​∣​y​ t​​, ​x​ t​​) ─ p(​y​ t+​​∣​y​ t​​)

  ​​	 (14)

a quantity known as the TE. This does overcome the stated weak-
ness of the TDMI by conditioning on Yt, thus not including the in-
formation shared by Xt and Yt+, which also exists in Yt. The TE can 
also be modified to discount the information also in a simultaneous 
third variable

​I(​X​ t​​; ​Y​ t+​​∣​Y​ t​​, ​Z​ t​​ ) = ​  ∑ 
​x​ t​​,​y​ t​​,​z​ t​​,​y​ t+​​

​​​p(​y​ t+​​, ​y​ t​​, ​x​ t​​, ​z​ t​​) ​log​ 2  ​​ ​ 
p(​y​ t+​​∣​y​ t​​, ​x​ t​​, ​z​ t​​)  ─ p(​y​ t+​​∣​y​ t​​, ​z​ t​​)

  ​​	 (15)

Conditioning on variables, however, is not a purely subtractive 
operation. That is, the following relation does not necessarily hold

	​ I(X; Y∣Z ) ≤ I(X; Y)​	 (16)
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Fig. 7. ​S​ as a function of noise level 0 (in units of  radians) for model A with different numbers of leaders and followers. (A and B) ​​S​ L→F​​​ (A) and ​​S​ L→F​​​ as a function 
of 0 (in units of  radians) (B) for four agents with one leader and three followers (blue) and two leaders and two followers (red). (C and D) ​​S​ L→F​​​ (C) and ​​S​ F→L​​​. (D) for eight 
agents with one leader and seven followers (blue), two leaders and six followers (red), three leaders and five followers (yellow), and four leaders and four followers (purple). 
(E and F) ​​S​ L→F​​​ (E) and ​​S​ F→L​​​ (F) with three followers and one leader (blue), two leaders (red), and three leaders (yellow). (G) Graph representation of model A, where there 
is one leader and three followers. (H) Graph representation of model A, where there are two leaders and two followers.
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Rather, conditioning can increase the information shared by two 
variables. These phenomena are known as conditional dependence 
(51) and are perhaps best exemplified by the following distribution, 
where X, Y, and Z are binary random variables, and the events in 
which an even number of them take on the value 1 have equal prob-
ability of 1/4, and the probability of X = Y = Z = 0 is also 1/4:

Xor

X Y Z Pr

0 0 0 ​​1 _ 4​​

0 1 1 ​​1 _ 4​​

1 0 1 ​​1 _ 4​​

1 1 0 ​​1 _ 4​​

In this distribution, any pair of variables is independent

	​ I(X; Y ) = I(X; Z ) = I(Y; Z ) = 0​	 (17)

yet each of those pairs conditioned on the third variable is highly 
correlated

	​ I(X; Y∣Z ) = I(X; Z∣Y ) = I(Y; Z∣X ) = 1​	 (18)

This is because knowing the value of, for example, X, does not 
allow us to infer the value of Y, but if conditioned on (again, for 
example) Z = 0, suddenly, we know that whatever value X takes, Y 
must as well. This is conditional dependence in its purest form: X 
and Y are independent, but given Z, they are perfectly correlated.

This brings us back to the TE. As it is based on a particular con-
ditional mutual information, conditioning on Yt can induce an 
apparent correlation between Xt and Yt+, which does not exist 
without it. To overcome this weakness in the TE, it was proposed to 
take a step back and consider the problem from a slightly different 
perspective (33). We seek an operational understanding of the in-
formation shared by Xt and Yt+, removing the influences of com-
mon history and common input signals without introducing other 
forms of correlation. To do this, we appeal to the cryptographic flow 
ansatz (33), which states that intrinsic information flow exists when 
Xt and Yt+ can agree upon a secret, while Yt acts as an eavesdropper, 
and furthermore, that the intrinsic information flow is quantified as 
the rate of secret sharing existing between the two (see section S3). 
In essence, this means that information shared by Xt and Yt+ can 
only be definitively attributed to flow from Xt to Yt+ if there is no 
way that information can be reconstructed or derived by Yt.

To practically apply the cryptographic flow ansatz, we use a rel-
atively easily computable upper bound, termed as IMI

	​​ I​ X→Y​​( ) = ​inf​ p(​​ 
_

 Y ​​ t​​=​​ _ y ​​ t​​∣​Y​ t​​=​y​ t​​)​​ I(​X​ t​​; ​Y​ t+​​∣​​ 
_

 Y ​​ t​​)​	 (19)

Effectively, this bound simply states that the information shared 
by Xt and Yt+, which is inaccessible to Yt, is bound from above by 
the conditional mutual information between Xt and Yt+ given all 
possible variables that can be constructed from ​​​Y  ̄ ​​ t​​​.

The calculation of the IMI, while not trivial, is not particularly 
difficult. While the optimization over ​p(​​Y  ̄ ​​ t​​∣​Y​ t​​)​ is not convex, the 
optimization space is finite because the cardinality of ​​​Y  ̄ ​​ t​​​ can be 

bound by the cardinality of Yt, ∣Yt∣ (52). The object of optimiza-
tion is then a ∣Yt∣×∣Yt∣ row-stochastic matrix, where the i, jth en-
try is ​p(​​Y  ̄ ​​ t​​  = ​​ y ̄ ​​ j​​∣​Y​ t​​  = ​ y​ i​​)​. Global optimization techniques, such as 
basin hopping, can then be used to find the global minimum. In 
basin hopping, an initial condition is proposed, and the local mini-
ma are found through standard gradient-based techniques; then a 
step in the optimization space is taken, and the local minima are 
found again. This is repeated some number of times, and the least of 
the found local minima is presumed to be the global minimum. 
This is the technique used in the dit information theory package 
(53), which was used to perform the calculations in this manuscript.

Briefly, this measure builds upon the TE, producing a previously 
unidentified metric that comes substantially closer to the TE’s stated 
goal of removing the effects of common history and common input 
signals but without introducing the possibility of conditional depen-
dence. This is accomplished by appealing to the field of information-
theoretic cryptography and drawing parallels between secret key 
agreement and the scientific issue of attributing information pres-
ent in Yt+ to Xt and Xt alone.

IMI is a sharp bound on the secret key agreement rate. Note that 
only in particular cases have rates been derived. However, in these 
cases, IMI and secret key agreement rate coincide (48,  53). That 
said, probability distributions with IMI greater than the secret key 
agreement rate can be constructed. Again, only a few constructions 
are known (54, 55). In these situations, tighter bounds on secret key 
agreement rate exist. However, they are more challenging to calcu-
late (54, 55).

Computing information flow measures
The computation of T, M, S, and  were performed as follows. First, 
the orientations L and F are computed as described by Eq. 12 up to 
time T = 2 × 106 for 20 sets of initial conditions. The values of L and 
F are then discretized by binning them into six bins on the interval [0,2] 
[the use of six symbols was found to be sufficient to differentiate the 
behaviors of L and F while maintaining a computationally feasible 
number of sequences to be sampled to compute information mea-
sures; see (12, 24)]. For each set of initial conditions, the joint prob-
ability distribution of p(x(t), y(t), y(t + 1)), from the time series, 
where x(t) and y(t) are the discretized forms of i, where x and y can 
be either L or F. p(x(t), y(t), y(t + 1)) is computed by counting the 
occurrences of each of the 63 possible combinations of (x(t), y(t), 
y(t + 1)) and dividing by the total length of the time series minus 1, 
2 × 106 − 1. Once the probability distributions are computed, T is com-
puted by plugging them into the equation ​T  = ​ ∑ ​y​ t+​​,​y​ t​​,​x​ t​​​ ​​ p(​y​ t+​​, ​y​ t​​, ​x​ t​​ ) ​
log​ 2 ​​ ​p(​y​ t+​​ ∣ ​ y​ t​​, ​x​ t​​)  _ p(​y​ t+​​ ∣ ​ y​ t​​)

  ​​ (32), where  = 1. Likewise, M is computed using the 

formula ​M  = ​ ∑ ​x​ t​​,​y​ t+​​​ ​​ p(​x​ t​​, ​y​ t+​​ ) ​log​ 2​​ ​  p(​x​ t​​, ​y​ t+​​) _ p(​x​ t​​ ) p(​y​ t+​​)
​​. The calculation of I is 

described in the “Defining information flow” section. Last,  and S 
are computed directly using Eqs. 7 and 8 ( = M − I and S = T − I).

In practice, one does not need to use longer time series to com-
pute the modes of information flow than those required for the 
computations of TE or TDMI. To further confirm the statistical sig-
nificance of our results on the decomposed mode of information 
flow, we have performed a surrogate test (56, 57). This uses surro-
gate time series by swapping a pair of two time series of two inter-
acting agents in the set of realizations, which preserves all statistical 
properties of the nonlinear dynamics of the individual agents but spoils 
causal relationship if it exists. We confirmed that our conclusions 
are statistically significant (see the “Surrogate test” section and Fig. 8).
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Details of the modified Vicsek models
Here, we describe the details of the modified Vicsek model. To iterate 
their trajectories, the following formula is used (12)

	​​​ 〈θ(t + 1 ) 〉​ R,w,​​ → ​r​ i​​​​​ 
t
​​​  =  arctan​[​​​∑ j​ ′ ​​ ​w​ ij​​ sin ​θ​ j​​(t ) / ​∑ j​ ′ ​​ ​w​ ij​​ cos ​θ​ j​​(t ) ​]​​​​	(20)

Here ​​∑ j​ ′ ​​​ sums over all j satisfying ​∣ ​​ → r​​i​ t​ − ​​ → r​​j​ t​ ∣ ≤ R​. In this, w is a 
nonnegative asymmetric matrix whose wij element determines the 
interaction strength that particle i exerts on particle j. wij > wji 
whenever particle i is a leader and particle j is a follower in our set-
ting. Positions at the initial time t = 1 are chosen randomly from a 
uniform distribution within the box of length L = 10, and orienta-
tions are chosen randomly from a uniform distribution on the in-
terval [0,2). The interaction radius R is set to R = 3. Positions are 
updated using Eq. 11, and the orientations F and L are updated 
using Eq. 12. All simulations are coded in MATLAB.

Surrogate test
To validate the statistical significance of the values of M, T, I, , 
and S reported here and in the Supplementary Materials, we per-
form a permutation test using surrogate data following (56). When 
performing the statistical test on SF→L, for example, we first pro-
pose the null hypothesis that there is no significant amount of 
SF→L. Then, we create a distribution using surrogate data that pre-
serves the dynamical and statistical properties of F(t) and L(t) while 
spoiling causality between them if it exists. In random shuffle surro-
gate analysis, the time series F(t) is randomly shuffled, meaning F(t) 
at each time t is replaced by a randomly chosen F(t′) from another 
time t′; however, this method does not preserve dynamical proper-
ties of F(t), such as the dependency of F(t + 1) on F(t). Fourier 
transform–based surrogates, such as iterative amplitude adjusted 
Fourier transform (57), are often used to preserve both the linear 
correlation in time (i.e., power spectrum) and the frequency distri-
bution of the original time series. Here, desired surrogate data to 
unveil statistical significance for observed information modes in TE 

and TDMI are those preserving nonlinear dynamics and frequency 
distribution intrinsic to each stochastic variable of leaders and 
followers, Li and Fj, but spoiling possible causal relation in the 
computation of information mode decomposition.

We first performed a set of simulations for n realizations, each of 
which the initial positions of agents are taken randomly from a uni-
form distribution within a 10 by 10 box with a periodic boundary 
condition (the interaction radius R is equal to 3), and their orienta-
tions from a uniform distribution on the interval [0,2), respectively. 
The kth realization of the ith leader’s and the jth follower’s dynam-
ics are denoted as ​​F​i​ 

(k)​(t)​ and ​​L​j​ (k)​(t)​ (1 ≤ i ≤ NL,1 ≤ j ≤ NF), respec-
tively, where NL and NF are the number of leaders and that of 
followers in the system, respectively.

For example, to carry out the surrogate analysis on synergistic 
information ​​S​ ​F​ j​​→​L​ i​​​​  = ​  1 _ n​ ​∑ k=1​ n  ​​ ​S​ ​F​j​ (k)​→​L​i​ 

(k)​​​​, we simply swapped the 
(same length) time series of the kth realization ​​F​j​ (k)​(t)​ or ​​L​i​ 

(k)​(t)​ to the 
other k′th realization ​​F​​j ′ ​​ 

(​k ′ ​)​(t)​ or ​​L​​i ′ ​​ 
(​k ′ ​)​(t)​, which preserves the non-

linear dynamical and statistical properties of leaders and followers, 
while any causal relation is erased simply because of different reali-
zation. Namely, the surrogate “synergistic information” is defined 
by ​​​S​ ​F​ j​​→​L​ i​​​ ′ ​   ≡ ​ {​​ ​S​ ​F​j​ (k)​→​L​​i ′ ​​ 

(k′)​​​, ​S​ ​F​​j ′ ​​ 
(k′)​→​L​i​ 

(k)​​​​}​​​​. Here, i, i′, j, and j′ were chosen 
arbitrarily from the set of NL leaders, {Li}, and that of NF followers, 
{Fj}, in kth and k′th realizations (e.g., i and i′ over different realiza-
tions are not necessarily identical among the same kind of agents 
and randomly taken from {Li} over different realizations). It was 
confirmed that decomposed information modes including SFj→Li 
were statistically indistinguishable among different choices of i and 
j across (n = 20) realizations here, which implies that the finite 
length of trajectories (T = 2 × 106) and the number of 20 realizations 
were enough to characterize the general properties of decomposed 
information modes between leader(s) and follower(s) in the mod-
els. Thus, here, we simply omitted the notation of subscripts i and j 
from Li and Fj like SF→L and ​​S​ F→L​ ′ ​​ . If the null hypothesis, i.e., no 
synergistic information exists, is true, it means that the value of 
SF→L should not be indistinguishable statistically from ​​S​ F→L​ ′ ​​ . One 
can quantify this by setting a false-positive error rate  by using the 
distribution of the null hypothesis ​p(​S​ F→L​ ′ ​ )​ so that the value of SF→L is 
fallen into the domain of 1 − . If it is false, then the value of SF→L 
would appear as an outlier outside of the domain.

Here, for example, Fig. 8 demonstrates the surrogate test with n = 
10,000 (= 100 × 100) surrogate trials to verify the statistical signifi-
cance of the difference between SF→L, where NL = 2 and NF = 6 and 
SF→L, where NL = 1 and NF = 7 for the multiagent Vicsek model A 
[see SF→L(NL = 2, NF = 6) − SF→L(NL = 1, NF = 7) in Fig. 7D]. The 
figure manifests that SF→L(NL = 2, NF = 6) − SF→L(NL = 1, NF = 7) 
are statistically significant with significance level  < 0.01 (i.e., no 
false positives over 10,000 surrogate trials), implying that our inter-
pretation of “the more the NL, the larger SF→L under NL + NF being 
invariant” in Fig. 7D was validated.

Likewise, we confirmed statistical significances of information 
mode decomposition here, especially when the amounts of the 
quantities are marginally small.

It may be noted for a limited number of trajectories, such as in 
experimental data, that the nearest-neighbor permutation test (58) 
can be an alternative method of surrogate analysis, in which the 
time series F(t) at each time t is replaced by a randomly chosen F(t′) 
at any time t′ (≠t) where ∣L(t) − L(t′)∣ is the smallest (nearest). This 
preserves the marginal distributions of F(t) and L(t), and the joint 
probability distribution p(F(t), L(t)) between F(t) and L(t) if the 

0 5 10 15

10 –5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 8. Surrogate and actual distributions used for surrogate testing. (Blue) 
Distribution of surrogate values ​​S​ F→L​ ′  ​(​N​ L​​  =  2, ​N​ F​​  =  6 ) − ​S​ F→L​​(​N​ L​​  =  1, ​N​ F​​  =  7)​. 
(Red) the actual value of SF→L(NL = 2, NF = 6) − SF→L(NL = 1, NF = 7) averaged over 
20 realizations for 0 = 1.1. The values of SF→L(NL = 2, NF = 6) and SF→L(NL = 1, NF = 7) 
for 0 ranging from 0 to 2 are shown in Fig. 7D.

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 02, 2022



Sattari et al., Sci. Adv. 8, eabj1720 (2022)     9 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 13

nearest neighbors chosen are close enough to guarantee L(t) ≈ L(t′) 
while spoiling p(F(t), L(t), L(t + 1)) between F(t) and L(t + 1).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj1720

View/request a protocol for this paper from Bio-protocol.
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