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ABSTRACT OF THE DISSERTATION 

VISUALIZATION AND ANALYSIS OF HUMAN PARAFOVEAL CAPILLARIES 
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SCANNING LASER OPHTHALMOSCOPY VIDEOS 

 

by 

 

Johnny Tam 

 

Doctor of Philosophy in Bioengineering 
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Professor Austin Roorda, Chair 

 

The eye provides a window through which a complete vascular system of arteries, 

capillaries, and veins can be directly observed. An adaptive optics scanning laser 

ophthalmoscope (AOSLO), a custom-built optical microscope for the living human eye, 

can be used to directly acquire videos of blood flow through the smallest capillaries in 

the eye. However, in the absence of invasive contrast agents, the contrast of blood cells 

and capillaries is very low. Moreover, it is difficult to determine the locations of all 

capillaries, and therefore tracking and speed quantification of blood cells is hindered. In 

human eyes, contrast agents such as fluorescein are routinely used only in the later 

stages of certain diseases; as with any invasive procedure, there is also a risk for adverse 
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side effects. Instead of injected contrast agents, we used intrinsic signals from moving 

blood cells to create contrast. By applying custom motion contrast enhancement 

methods to AOSLO videos, we were able to noninvasively visualize complete capillary 

networks as well as characterize hemodynamics through the capillaries in the eye. We 

investigate capillaries in healthy and diseased eyes, and show that the flow dynamics of 

leukocytes and plasma gaps are heterogeneously distributed, with certain capillaries 

accounting for a clear majority of leukocyte traffic, and other capillaries primarily 

featuring plasma gap flow. Such capillaries may serve specific functional roles, such as 

to prevent inactivated leukocytes from entering exchange capillaries, or to serve as 

relief valves to minimize flow disruption due to the presence of a leukocyte in a 

neighboring capillary. In diabetes, we found evidence of capillary remodeling even 

before conventional clinical methods detected any changes. We establish that motion 

signals can be used to generate intrinsic contrast for visualization and analysis of 

capillaries and blood cells. These methods are important for evaluating diseases that 

affect the microcirculation, such as diabetes. 
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CHAPTER 1 

VESSEL PERFUSION MAPPING 

 

1.1 Abstract  

The retina is one of the most metabolically active tissues in the human body, and as 

such, is coupled with a unique system of blood vessels. These blood vessels are an 

important marker of retinal health. Although there are many imaging methods to 

visualize and assess the larger arterioles and venules in live human subjects, few 

methods address visualization and assessment of the capillary network. This is largely 

because capillaries have very low contrast under most imaging conditions, particularly 

when no contrast agents are administered. In this chapter, we demonstrate a noninvasive 

method to visualize and analyze the parafoveal capillary network in humans, using an 

adaptive optics scanning laser ophthalmoscope, a custom-built confocal microscope 

designed for the living human eye. We optimized imaging parameters for vascular 

imaging and developed custom video and image processing tools to enhance motion 

contrast. Motion contrast methods were applied to visualize capillaries from 10 subjects 

with clear ocular media and no history of prior ocular or systemic disease. The resulting 

images compared well to fluorescein angiography, the gold standard for visualizing 

human retinal capillaries. The average area of the foveal avascular zone was 0.323 mm2, 

corresponding to an average effective diameter of 633 μm.  There was no variation in 

capillary density in the region immediately outside of the foveal avascular zone, when 

considering superior, inferior, temporal, and nasal directions. These results show that 
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motion contrast enhancement combined with adaptive optics scanning laser 

ophthalmoscopy can be used to unambiguously visualize and analyze the parafoveal 

capillary network, without the need for injection of invasive contrast dyes. 

 

1.2 Introduction 

The retina is one of the most metabolically active tissues in the human body, and as such, 

is coupled with a unique system of blood vessels. One of the most striking features of the 

inner retinal blood vessels is the presence of a large avascular zone, called the foveal 

avascular zone (FAZ). Specialized photoreceptors called foveal cones reside inside the 

FAZ. These cones are responsible for central vision, and are necessary for fine visual 

tasks such as reading. It is believed that the FAZ exists in order to provide these foveal 

cones with an unobstructed view of the exterior world. In regions of the retina outside of 

the FAZ, retinal vessels sit in front of the photoreceptors. Such vessels can absorb or 

scatter incoming light, diminishing the final number of photons which reach the 

photoreceptors. Thus, the FAZ serves as a vascular window through which the foveal 

cones can gather incoming light. 

 Since the inner retinal vessels reside in front of the photoreceptors, it is sometimes 

possible to observe in one’s own vision several interesting phenomena. First, it is possible 

to see shadows of retinal vessels in a phenomenon known as “Purkinje’s figures,” first 

described without explanation by Johannes Purkinje (1787-1869), and subsequently 

interpreted by Heinrich Müller (1820-1864) (Polyak 1957). One can observe this 

phenomenon in a dark room by shining a light towards the retina, and then slowly moving 
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the head or the eye in a constant speed, thereby generating an image of the shadows of the 

vasculature on the retina. Second, it is possible to observe a rapid but transient movement 

of tiny bright objects through the retinal circulation in a phenomenon known as the “blue 

field entoptic phenomenon,” described as early as 1860 by Karl von Vierordt (Riva and 

Petrig 1980; Sinclair, Azar-Cavanagh et al. 1989). The accepted explanation for this 

phenomenon is that moving objects correspond to leukocytes in small retinal capillaries 

(Sinclair, Azar-Cavanagh et al. 1989). With practice, one can observe this phenomenon 

by staring at any bright uniform background, such as the sky. A third phenomeon allows 

one to visualize his or her own FAZ by looking through a pinhole at a bright background, 

and wiggling the pinhole around. All three phenomena are based on the movement of 

some object relative to the photoreceptors, since any object that casts a perfectly static 

image on the underlying photoreceptors will disappear (this is the reason why blood 

vessels are invisible under normal viewing conditions, despite the fact that the vessels sit 

in front of the photoreceptors) (Ditchburn 1987). In the first case, the movement of a high 

contrast shadow of the blood vessels relative to the photoreceptors enables one to observe 

the vasculature; in the second case, the movement of low contrast leukocytes through 

capillaries enables one to observe patterns of flow. Interestingly, with specialized 

instrumentation and proper training, one might even be able to use the entoptic 

phenomenon observe one’s own lesions, such as microaneurysms due to diabetic 

retinopathy (Applegate, Bradley et al. 1997); however, direct and objective measurements 

are not possible. Until recently, the only noninvasive methods to identify and investigate 

the FAZ were based on these phenomena. 
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 The FAZ is an important indicator of foveal health in a number of different 

diseases, including diabetic retinopathy (Mansour, Schachat et al. 1993; Sander, Larsen et 

al. 1994; Conrath, Giorgi et al. 2005), sickle-cell disease (Sanders, Brown et al. 1991), 

branch retinal vein occlusion (Parodi, Visintin et al. 1995), and retinopathy-of-

prematurity (Mintz-Hittner, Knight-Nanan et al. 1999). Functionally, the capillaries at the 

edge of the FAZ supply a transition zone in the retina where the retina begins to become 

too thick to be supplied by the underlying choroidal blood supply. The choroid is a 

system of blood vessels residing behind the photoreceptors, extending over the entire area 

of the retina. The central fovea is the only portion of the retina that is thin enough (about 

0.2 mm) to be nourished by only the choroid; in all other portions of the retina, the retina 

is thicker (about 0.5 mm), and inner retinal vessels are needed to supply the inner portions 

of the retina. The limit of 0.2 mm corresponds approximately to the maximum tissue 

thickness through which nutrients from the choroid can effectively nourish the retina 

(Buttery, Hinrichsen et al. 1991), especially when considering that the eye is normally 

under pressure, which limits the effective distance over which nutrients from the choroid 

are able to freely diffuse. While the photoreceptors receive their nutrients primarily from 

the choroid, it appears that the inner retinal capillaries near the FAZ primarily nourish the 

beginnings of the ganglion cell layer (Iwasaki and Inomata 1986). Therefore, although 

there are two systems of blood vessels that supply the retina, the two systems are not 

redundant, since different layers are nourished by different systems of blood vessels. This 

makes the retina doubly vulnerable to any disease that affects the vasculature. More 

importantly, disruption of the FAZ could indicate damage to the foveal region. Although 

the foveal region comprises less than 4% of the total retinal area in humans, it is a highly 
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specialized area that accounts for an estimated 25% of the total ganglion cell output to the 

brain (Provis, Penfold et al. 2005). Therefore, it is vital that all of the vasculature which 

surrounds the fovea remain healthy. 

 In order to appreciate the pathological changes that manifest in the FAZ during 

disease, it is important to consider the development of the FAZ. Until recently, there has 

been very little data about the development of the FAZ in humans. A common 

assumption was that the fovea was fully vascularized prior to birth, with subsequent 

apoptotic pruning resulting in the formation of a FAZ. This hypothesis was based on 

observations of a condition known as retinopathy of prematurity, in which the FAZ 

appears to be small or entirely absent in babies born prematurely (Mintz-Hittner, Knight-

Nanan et al. 1999). Although a subsequent histological study based on monkeys and cats 

seemed to confirm that this was the case (Henkind, Bellhorn et al. 1975), more recently, 

evidence has been presented that suggests that the foveal zone is avascular throughout the 

developmental cycle (Provis and Hendrickson 2008). Knowledge of this controversy is 

important in evaluating strategies for treatment of diseases affecting the FAZ, since there 

are often parallel processes that occur in development and aging. 

 Histological studies, which are restricted to evaluation of animals and post-

mortem humans, provide a limited picture of the role of the parafoveal capillaries in 

disease. With this limitation in mind, there have been two impressive histological studies, 

which have defined the structure and topology of the “normal” primate and human 

parafoveal capillaries. Using excised monkey retinas, the inner retinal microvasculature 

that surrounds the FAZ has been mapped out in detail (Snodderly, Weinhaus et al. 1992). 

Far from the fovea, the capillary network is multi-layered; closer to the fovea, the network 
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thins down, first to two layers of capillaries in the peri- to parafoveal region, and then to 

one layer in the parafoveal region closest to the foveal center. As the capillary layers thin 

down, the deep layers are the first to disappear. Thus, in the fovea, where there are no 

vessels, the FAZ is formed by what would have been the most superficial layer of the 

capillary network. These observations have been confirmed in humans (Yu, 

Balaratnasingam et al. 2010). Although these studies are highly detailed, it is important to 

remember that the idea of a normal FAZ is an idealized concept, because in fact there is 

considerable individual variation in the size and appearance of the FAZ (Bird and Weale 

1974; Laatikainen and Larinkari 1977). Normal variation in the parafoveal capillaries 

could easily be misinterpreted as pathological signs. 

 There are clear advantages to developing in vivo methods to directly visualize and 

assess the human FAZ and parafoveal capillaries. First, the human vasculature is unique. 

The presence of a dual blood supply and an FAZ is a unique feature of primates, which 

makes it difficult to develop disease models for macular diseases; even when comparing 

rhesus monkeys to humans, the natural progression of diabetic retinopathy has subtle 

differences (Kim, Johnson et al. 2004). Second, methods to assess the FAZ may lead to 

new insights about the progression of diseases such as diabetic retinopathy (Arend, Wolf 

et al. 1991). To this end, fluorescein angiography (FA), the gold standard for in vivo 

visualization of human retinal capillaries, is useful for evaluating the later stages of 

certain diseases. However, even FA has its limitations, which include the observation that 

it is difficult to assess the deeper capillaries using FA (Weinhaus, Burke et al. 1995). This 

deep layer of capillaries is sparser than the superficial layer (Yu, Balaratnasingam et al. 

2010), but both layers can contribute to disease. This suggests that the modern clinical 
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understanding of retinal capillaries is largely an understanding of the superficial capillary 

layer, with little knowledge about the deeper layers of capillaries. Moreover, as with any 

invasive procedure, FA is associated with a small risk for adverse side effects (Kwan 

2006), making it an undesirable method to perform unless there is a clear clinical benefit 

to be reaped. To further elucidate fine vascular structures in disease, a better noninvasive 

method for imaging live human parafoveal capillaries is needed. 

 In the past few decades, there have been many different technologies that have 

been introduced for noninvasive imaging of the parafoveal capillaries. Excluding methods 

based on adaptive optics, the two most promising methods are based on optical coherence 

tomography (OCT) and fundus photography. Using high-speed OCT combined with a 

phase variance technique, a 3D image of the human retinal parafoveal capillaries can be 

generated (Kim, Fingler et al. 2011). The key advantages of this technique are the speed 

of data acquisition (3.6 seconds for a 3x3 square millimeter field of view), and the ability 

to generate 3D data; key limitations are low signal to noise ratios when considering the 

smallest capillaries in the retina. The retinal function imager (RFI) is a method based on 

rapidly capturing 8 consecutive fundus photographs of the human eye (Nelson, Krupsky 

et al. 2005). The key advantages are the speed of data acquisition (140 milliseconds) and 

the ability to generate large field-of-view images of the vasculature; key limitations are 

patient comfort (very bright flashes of green light) and difficulty in capturing the smallest 

capillaries. Thus far, there have been no in vivo approaches which have replicated the 

histological detail with which capillaries can be visualized. Furthermore, excluding 

methods based on adaptive optics, current systems for noninvasive imaging of retinal 

capillaries are all limited by ocular aberrations and low image contrast of capillaries. 
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 There are two key challenges that must be addressed to successfully image the 

retinal microcirculation: aberrations in the eye, and low capillary contrast. Aberrations in 

the eye may hinder the resolution of the smallest capillaries (i.e. those with diameter ~5 

μm), for any imaging system employing conventional optics, such as conventional FA, as 

well as any system based on conventional fundus photography. Aberrations can be 

corrected using Adaptive Optics (Liang 1997). Recently, an Adaptive Optics Scanning 

Laser Ophthalmoscope (AOSLO) was used to quantify leukocyte speeds through 

parafoveal capillaries (Roorda, Romero-Borja et al. 2002; Martin 2005). These methods 

were based on human identification of leukocytes and capillaries, which is a difficult task 

due to low contrast (Figure 1.1). Contrast is typically improved using a contrast agent, 

such as in FA. However, contrast agents cannot be used if one wants to design a 

noninvasive imaging system. An alternate method to improve capillary contrast is to use 

video processing tools based on flow visualization (Japee, Ellis et al. 2004). These tools 

included mean, variance, min, max, range, and transition images. The variance image has 

been previously applied as a method for increasing vessel contrast in microvessels prior to 

applying leukocyte tracking algorithms (Sato 1997). However, when AOSLO videos are 

processed using these flow visualization tools, the contrast of the vessels actually 

decreases. Moreover, all these methods assume access to the retinal capillaries, without 

consideration of optical aberrations. 
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Figure 1.1: Examples of unprocessed AOSLO images of retinal capillaries, acquired on 

three different human subjects using light sources with 532 nm wavelengths (left) and 

840 nm wavelengths (middle and right). Dark, fuzzy lines usually correspond to 

capillaries. However, while some capillaries can be seen, it is very difficult to precisely 

locate all capillary paths. Scale bars, 100 μm. 
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 In this chapter, we will describe novel video and image processing tools for 

AOSLO imaging to demonstrate an improved method that can detect even the smallest 

capillaries in the parafoveal region without the use of injected dyes. We use these 

methods to generate highly detailed, noninvasive images of the FAZ and surrounding 

capillaries in live human subjects. The methods developed in this chapter form the 

foundation for studies of hemodynamics and diabetic retinopathy in the remainder of the 

dissertation. 

 

1.3 Materials and Methods 

Image acquisition 

All procedures performed in this study adhered to the tenets of the Declaration of 

Helsinki. After a detailed explanation of the procedures, written informed consent was 

obtained from all participants. The research protocol was approved by the University of 

California, Berkeley Committee for Protection of Human Subjects. Videos were acquired 

on human subjects as described previously (Martin 2005), using a variety of imaging 

parameters. Briefly, videos were acquired at 512 x 512 pixels2, 30 or 60 fps, for 5 to 40 

seconds in overlapping windows in the parafoveal region. The field of view ranged from 

1.2 to 2.5 deg. The imaging wavelength was either 532 nm or 840 nm. 

 Ten subjects with clear ocular media and no history of prior ocular or systemic 

disease were used. For each subject, a total of 20 to 78 videos were collected. The average 

age of the subjects was 27 with a standard deviation of 6.4. 
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Video Preprocessing 

Raw videos were preprocessed to correct for distortions due to raster scanning and eye 

motion. Preprocessing involves desinusoiding, cropping, and frame deletion. 

 

Desinusoiding and stabilization 

To achieve high line density and high frame rates, the AOSLO employs a resonant 

scanner combined with a sensor that reads in data at a constant rate. The velocity of the 

scanner varies sinusoidally across each scan line, which results in a horizontal distortion 

in the raw videos. Desinusoiding corrects this distortion, which is characterized from 

videos of calibration grids. The velocity of the scanner is slowest at the left and right 

edges of the frame, and fastest in the middle; thus, there are more pixels per retinal area 

towards the edges compared to the center. The redistribution of pixels can result in a 

desinusoiding artifact due to a change in the distribution of noise (Figure 1.2). We 

minimized this artifact using median and Gaussian filtering. 

 Stabilization is the process that corrects for the distortions due to eye motion 

that occur during acquisition of each raster-scanned frame. Detailed procedures for 

desinusoiding and stabilization can be found elsewhere (Vogel 2006; Arathorn, Yang et 

al. 2007). Briefly, the task involves splitting each frame in a video into a set of 

horizontal strips, each of which is registered using affine transformations to a 

desinusoided reference frame and reassembled using linear interpolation. The result is a 

desinusoided and stabilized video. 

 

 



 

12 

Cropping the video 

Due to eye motion, there are regions of the retina that are not present in all video 

frames, particularly at the edges of each frame. To account for this, the desinusoiding 

and stabilization process introduces borders around each frame so that each registered 

frame will be of the same size. The thickness of each border changes according to the 

eye motion. We cropped the videos such that each frame contains only the portion of 

the video that was visible in the majority of all frames, thereby eliminating the black 

borders.
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Figure 1.2: Desinusoiding artifact that is commonly observed in raster scanning 

systems when the SNR is low. (A) An AOSLO video with a very low signal-to-noise 

ratio (SNR) acquired using a 532 nm wavelength laser. When the variance image of the 

video is calculated to determine regions of high intensity fluctuations, the resulting 

artifact that appears is shown. (B) The source of the artifact is due to a redistribution of 

SNR, as demonstrated using a model video. A model video of uniform Gaussian noise 

was desinusoided, and then the standard deviation of the desinusoided video was 

calculated, resulting in the image shown. Uniform noise is redistributed by the 

desinusoiding process, resulting in bright bands of higher noise. It is important to apply 

proper filtering to the videos in order to eliminate this artifact. 
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Frame deletion 

In the processed videos, there were four types of improper frames that were identified 

for deletion. First, insufficient overlap between the image and the reference frame 

resulted in poor stabilization. This occurred when the eye wandered too far away from 

its fixation target. Second, blinks resulted in the image intensity dropping to zero 

throughout the blink. Third, large saccades, involuntary fast eye movements, caused 

intraframe shearing and distortion on single frames and prevented proper image 

stabilization. Fourth, frames where image quality was poor, due to uncorrected high 

frequency tear film induced aberrations, were also deleted. 

 

Motion Contrast Enhancement 

When viewing individual AOSLO video frames, one can see that vessel contrast 

disappears in the presence of leukocytes (Figure 1.3). The intensity variations of pixels in 

vessel regions are similar in magnitude to intensity variations of pixels near photoreceptor 

boundaries. Our strategy is first, to enhance the contrast of individual fluid parcels, and 

second, to apply flow visualization tools to the locally enhanced videos. 

 It is possible to see individual flow parcels traveling through capillaries (Figure 

1.3). We introduce the concept of multi-frame division videos. Division videos are 

similar in concept to difference videos, except that instead of subtracting, individual 

pixels are divided by each other. A division image, D(x,y), is calculated from each pair 

of consecutive frames as Dj(x,y) = Ij(x,y) / Ij+1(x,y), where Ij(x,y) represents the 

intensities of frame j. Division images are used instead of difference images to enable 

arithmetic averaging of multiple frames, which improves the signal to noise ratio, as 
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opposed to using the arithmetic average of two consecutive difference images, which 

yields no improvement in signal to noise (Tam and Roorda 2010). Consecutive division 

images are averaged together to create a multi-frame division image, Mj(x,y) = [Dj(x,y) 

+ Dj+1(x,y)] / 2, with high contrast ratios between the fluid parcels and the background 

tissue. Mj gives the jth frame of the multi-frame division video. 

 Finally, the capillaries are visualized by collapsing the multi-frame division 

video down to a single image (subsequently referred to as the vessel perfusion image). 

This is done by calculating the standard deviation image of the multi-frame division 

video. The standard deviation image S(x,y) can be calculated using either arithmetic or 

geometric definitions. The arithmetic definitions are given by: 

∑
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The geometric definitions are given by: 

( )
( ) ( )[ ]

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

∑ =

1

,ln,ln
exp, 1

2

n

yxMyxM
yxS

n

j j ; 

( ) n
n

j jMyxM ∏ =
=

1
,       

 

 

(2) 

In both cases n is the total number of frames. 
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Figure 1.3: High resolution images of the human retina, acquired noninvasively using 

an 840 nm laser. The video and image processing steps are illustrated. (A, B, C) Three 

consecutive frames from an unprocessed video. Individual photoreceptors can be seen 

as small dots. However, it is difficult to distinguish the locations of vessels and of 

individual leukocytes (one leukocyte is shown inside the circle). Scale bar, 100 μm. (D) 

The first step in motion contrast enhancement is the division image, Dj(x,y); (E) An 

averaged division image, Mj(x,y); (F) The highlighted image, S(x,y), showing perfused 

vessels. 
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Figure 1.4: Successive improvements in image quality, demonstrated using a video 

acquired using a 532 nm wavelength laser, from the same video as shown in Figure 1.1A 

(A) Vessel perfusion image before frame deletion, using the arithmetic definition of 

standard deviation. (B) Vessel perfusion image after frame deletion, using the arithmetic 

definition of standard deviation. (C) Vessel perfusion image after frame deletion, using 

the geometric definition of standard deviation. This demonstrates that frame deletion and 

use of the geometric definition of standard deviation can result in improved image quality. 
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We used both arithmetic and geometric definitions. The arithmetic definitions 

were more robust against noise as well as errors in stabilization, and could be used for 

general cases, while the geometric definitions gave higher quality results, but required 

excellent stabilization. The subtle improvement in the quality of the vessel perfusion 

image is shown in Figure 1.4.  

 There is also an advantage to using multiple frames in the calculation of the 

division video. Multi-frame division videos improve the signal-to-noise ratio (SNR) 

through signal averaging. Consider three frames from a video with noise, Ij, Ij+1, and 

Ij+2. A conventional difference image is given by Ij – Ij+1. The average of consecutive 

difference images, (Ij – Ij+1+ Ij+1– Ij+2) / 2 yields the expression Ij – Ij+2, which is not an 

improvement over the single frame difference image. However, using division images, 

defined as Dj  = Ij / Ij+1, we can define a multi-frame division image as Mj = (Dj + Dj+1) 

/ 2. Assuming that there is a constant background in the images (consisting of all static 

features), the background can be defined as { }ε(x,y) = 1+(x,y) = D(x,y) | DB 1jjj += , 

where ε can be adjusted depending on the level of the noise. Suppose each image Ij has 

a noise component proportional to the signal intensity, ηjIj, such that Ij = Ij’ + ηjIj’, 

where Ij’ denotes the noise-free component of image intensities. Let Dj’ = Ij’ / Ij+1’ and 

Mj’ = (Dj’ + Dj+1’) / 2, which are the ideal responses of the single and multi-frame 

division images in the absence of noise. For (x,y) ∈Bj, let Nj = Dj – Dj’, which is the 

deviation from the ideal response, and the noise component of the single-frame division 

image. For the multi-frame division images, Mj – Mj’ = (Nj + Nj+1) / 2. This shows that 

the noise is averaged in the background. 
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 The number of high quality frames needed to generate a good quality image is 

about 300, corresponding to 10 high quality seconds of video at 30 Hz, or 5 high quality 

seconds of video at 60 Hz (Figure 1.5). While the use of additional frames does result 

in improved image quality, the improvement in image quality diminishes after about 

600 frames. 

 Filter size is another important consideration. As it is important to apply filtering 

to minimize the desinusoiding artifact (Figure 1.2), and both Gaussian and median 

filtering were selected, the next parameter to adjust is the size of the filter window. 

Typically, filter windows are selected based on the size of the object of interest. The 

size of a photoreceptor is on the order of 2-5 μm in the parafovea; for a 1.5 degree field 

of view AOSLO video, this corresponds to approximately 2 to 6 pixels. Capillary 

diameters are on the order of 4 to 10 μm, corresponding to approximately 5 to 11 pixels. 

Therefore, to minimize the effect of intensity fluctuations due to photoreceptors, one 

should select a filter window of at least 5 pixels, but less than 11 pixels. We selected a 

window size of 10 pixels, which appeared to be the optimal size for motion contrast 

enhancement (Figure 1.6). 
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 Figure 1.5: Effect of the number of frames on motion contrast images. Columns: one 

video acquired using a 532 nm laser (left column), and two videos acquired using an 840 

nm laser (middle and right columns). Rows, from top to bottom: resulting motion contrast 

image using 15 frames, 75 frames, 300 frames, and 600 frames. A good quality image can 

be obtained using about 300 frames. 
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 Figure 1.6: Effect of filter size on appearance of motion contrast enhancement, for an 

AOSLO video acquired using an 840 nm light source. From left to right, images with 

filter window sizes of 5, 10, and 15 pixels are shown. At 5 pixels, there is a spotty 

appearance due to the presence of photoreceptors. These spots are eliminated when using 

a window size of 10 pixels. At 15 pixels, some of the fine details of capillary features are 

lost. Thus, the optimal window size for a typical AOSLO video is 10 pixels. 
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 Finally, it is important to select an appropriate plane of focus. Retinal capillaries 

reside anterior to the plane of focus of the photoreceptors. Although the capillary network 

is single-layered immediately outside of the FAZ, it is still possible for different 

capillaries to reside in different planes of focus. The appearance of capillaries is very 

different depending on the plane of focus (Figure 1.7). When the plane of focus is set to 

the capillary level, a bright vessel reflex appears along the centerline of the vessel, and a 

high density of particles can be seen traveling through the reflex region. The particles 

have brighter intensities than the background. When the plane of focus is set to the 

photoreceptor layer, capillaries are either equal in intensity or darker in intensity than the 

background tissue. This is likely due to small differences in the location of the capillary 

with respect to the plane of focus: capillaries on the anterior to the plane of focus would 

appear darker than capillaries closer to the plane of focus, as long as capillaries are not too 

far from the plane of focus to be imaged. However, although the spatial appearance of 

capillaries may change with different focal planes, the fact that there is visible motion 

through the capillaries does not change. 

 The diameter of the vessel also appears larger when out of focus, potentially 

complicating any attempts to measure vessel diameter (Figure 1.8). Specifically, diameter 

measurements may not be reliable unless the position of the vessel relative to the plane of 

focus is known or can be estimated. When the plane of focus is set near the 

photoreceptors, a high density of particles can no longer be seen in the capillaries. Instead, 

individual particles can occasionally be seen traveling through some, but not all of the 

capillaries. These particles have a very similar intensity compared to the background 
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tissue of photoreceptors. In AOSLO imaging, the plane of focus is controlled using a 

defocus parameter. Despite small variations in the appearance of capillaries in any given 

video, it is possible for motion contrast enhancement to identify aspects of capillaries 

which are in multiple planes of focus. 

 

FAZ Quantification 

Overlapping videos of the parafoveal region were used to generate a montage of the 

capillary network. To create montages, each video was analyzed separately, and then 

maps of highlighted images were pieced together using Adobe Photoshop (Adobe 

Systems, Inc.). Intensities were normalized by manually adjusting histogram levels as 

well as brightness and contrast. The vessel perfusion images were linked to their 

corresponding images of photoreceptors; this enabled accurate registration of vessel 

perfusion images, down to the level of individual photoreceptor cells. Finally, a 

Gaussian eraser was used to minimize the appearance of hard edges at regions of 

overlap. The effect of the Gaussian eraser can be seen by comparing Figure 1.12 and 

Figure 1.14. 
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Figure 1.7: Plane of focus determines vessel appearance. (A,B) AOSLO image before 

and after motion contrast enhancement at a defocus of 0.1, on a 5.5 µm maximum stroke 

MEMs deformable mirror (Boston Micromachines, Cambridge, MA). This focal plane is 

posterior to one vessel and near a second vessel. Note that when the focal plane is 

posterior to the vessel, a dark shadow is seen (dark arrows), compared to a bright vessel 

reflex when focused at or near the vessel (bright arrows). Both planes of vessels are 

present in (B), albeit to different amounts. (C) Image taken with a defocus of 0.175, 

anterior to the plane of (A). One of the vessels resides in two different planes (bright and 

dark arrows). (D) Image taken at a defocus of 0.2, anterior to the plane of (C). The 

capillary segment from (C) is now in focus (bright arrows). If a capillary segment is too 

far from the plane of focus, then it will be completely absent from the image, unless there 

is some motion that can be seen. 
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Figure 1.8: Effect of defocus on apparent vessel diameter. The same vessel, imaged at 

different focal planes. A defocus of (A) -.025D, (B) 0D, and (C) +0.025D was applied 

using a 3 µm maximum stroke MEMS deformable mirror (Boston Micromachines, 

Cambridge, MA). If a capillary is too far away from the plane of focus, it generates a very 

faint signal that could be misinterpreted as an artifact by the untrained observer. The 

focus level also changes the apparent diameter of the vessel. It is important to optimize 

the plane of focus during imaging to achieve the highest quality vessel perfusion image. 
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We applied custom image analysis tools to the montage of vessel perfusion 

images to analyze the FAZ. The FAZ boundary was defined as the centerline of the 

bordering vessels. To extract vessel centerlines, we used a semi-automated method 

based on the Frangi vesselness measure (Frangi, Niessen et al. 1998) (Figure 1.9), in 

the following manner. A closed contour, C(t), was used to mathematically represent the 

FAZ boundary. First, through a graphical user interface, seed points, pi(x,y), were 

selected by the user at points near the boundary of the FAZ. Next, pi(x,y) were displaced 

toward the centerline of the nearest vessel in order to reduce variations due to user 

input. To identify vessel centerlines, we calculated the Frangi vesselness measure 

(Frangi, Niessen et al. 1998). A neighborhood, Ni, was generated around each pi(x,y). 

The vesselness values in Ni, denoted as Vi, were used to determine the location of the 

new point, qi(x,y), as qi(x,y) = max(Vi). The amount of displacement from the seed point 

toward the centerline point was restricted by the size of the neighborhood around which 

to search. Finally, C(t) was generated using piecewise Cardinal splines between 

neighboring pairs of qi(x,y), with the restriction that interpolation points needed to fall 

into the pixel space of the montage image. C(t) was used to generate a mask of the FAZ 

for the area calculation (Figure 1.10). 
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Figure 1.9: Vessels were extracted using a semi-automated procedure. (A) A piece of a 

highlighted image at the edge of the FAZ, showing a faint vessel segment connected to 

a bright vessel segment, with the extracted vessel overlaid as a thick gray line.  (B) The 

Frangi vesselness measure is used to guide the vessel extraction, with seed points, 

pi(x,y), depicted as crosses, and displaced points, qi(x,y), depicted as circles. In areas 

where there is no information from the vesselness measure (arrow), no correction is 

applied. 
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Figure 1.10: An example of FAZ extraction, from 532 nm videos. (A) Nine 

overlapping videos were separately processed and then compiled into a montage, 

showing parafoveal capillaries. (B) The FAZ was extracted and used for area 

quantification. Superior, Inferior, Nasal, and Temporal directions are labeled (S, I, N, 

T). Scale bar, 300 μm. 
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 Area was calculated from the mask of the FAZ in square pixels and then 

converted to mm2
 using a model eye parameterized by axial length, anterior chamber 

depth (ACD), and corneal curvature (CC). Axial length was measured on all subjects. 

We used ACD and CC values from Bennett’s model eye (Bennett 1990), except in the 

case of four subjects, where we were able to measure ACD and CC directly, using an 

IOL Master (Carl Zeiss Meditec AG, Germany). The use of additional biometry 

measurements, such as ACD and CC, improves the conversion from angle to distance; 

however, the amount of improvement is small (Li, Tiruveedhula et al. 2010). Using ray 

tracing, the posterior nodal point (PNP) of the eye was estimated from these parameters. 

Finally, we calculated mm/deg = d*tan(1 deg), where d was the distance from the PNP 

to the retina. 

 A two step process was used to calculate the number of pixels per degree. First, 

an image of a calibration grid was acquired. The calibration grid consisted of an array of 

0.1 degree x 0.1 degree squares. The number of pixels per degree were measured in 

both the horizontal and vertical directions to derive a preliminary conversion factor 

from pixels to degrees. Second, the spectacle correction was taken into consideration. 

Since the AOSLO is designed to correct for higher-order aberrations, the lower-order 

aberrations (i.e. sphere and cylinder) need to be corrected using spectacle lenses. A 

scaling factor, M, was calculated as M = 1/(1-0.14*S), where S was the spherical 

equivalent of the two lenses. The pixels per degree was then calculated by multiplying 

the scaling factor M by the preliminary conversion factor from pixels to degrees. 
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The effective diameter, deff, was calculated as the diameter of a circle with equal 

area: 

π
Areadeff 2=  

(3) 

 

Capillary density measurements 

 Vessels were mapped out and extracted with the same approach used in the FAZ 

analysis (Figure 1.9). Since the microvessels are similarly-sized near the FAZ, we 

defined capillary density as LTot/A, where LTot was the combined length of all capillary 

segments in a region of interest (ROI), and A the area of the ROI, as described 

previously (Zheng, LaMantia et al. 1991). We selected a special ROI to represent the 

zone at which there was only a single layer of capillaries, with no major retinal vessels 

(arteries and veins). In our datasets, this was the zone that was 0.15 degrees from the 

edge of the irregularly-shaped FAZ. 

 The ROI was generated automatically from C(t) (Figure 1.11) in the following 

manner. The distance transform (Blum 1967) was used to calculate the distance of all 

pixels outside of the FAZ, as defined by C(t). We discarded all pixels that were outside 

of 0.15 degrees from the edge of the FAZ, as well as pixels that were in the interior of 

C(t). 

To investigate whether there was a variation in capillary density in different 

directions (e.g. superior vs. inferior), we divided the ROI into four quadrants (Figure 

1.12). These were defined by calculating equiangular line segments radiating outwards 

from the centroid of the FAZ. We used quadrants in order to (i) maximize the amount of 
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data used to calculate capillary density, and (ii) minimize effects due to the proximity to 

feeding arterioles, since there is a capillary free zone (Michaelson 1954) that surrounds 

arterioles, which would alter measurements of capillary density. To generate the LTot/A 

measure, we took the sum of capillary lengths in each of the quadrants and divided by 

the area of the ROI contained within the quadrant. To determine statistically whether 

there was a difference in capillary density in different directions, we used the Kruskal-

Wallis One-Way ANOVA (Glantz 2002). 
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Figure 1.11: Illustration of the automated algorithm for ROI extraction. (A) Visual 

representation of the distance map, showing the distance to the nearest point in the FAZ. 

Inside the FAZ, the distance is 0, represented as black; as one moves farther away from 

the FAZ, the distance increases towards the maximum distance, represented as white. 

(B) The resulting ROI. 
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Figure 1.12: Capillary extraction in the ROI, from 840 nm videos. (A) Montage of 

processed frames showing parafoveal capillaries (frame edges are visible in the image; 

the corresponding image after removal of frame edges, as described in the text, is shown 

in Figure 1.14).  (B) Portion of the processed montage corresponding to the ROI. S, I, 

N, and T directions are labeled. The scale bar is 300 μm. (C) Extracted capillaries, 

divided into four quadrants originating from the centroid of the FAZ. 
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Comparisons 

Since FA’s are considered the gold standard for studying the retinal vessels, we 

performed a comparison between the vessels identified using our method and using a 

standard FA, for one normal subject. Although FAs are not performed on normal 

subjects, we had access to two FAs due to a special case for one subject where the FA 

was performed for a different reason. In the first case, the FA was acquired using a 

digital fundus camera with a 30 degree field (Topcon 50 EX, Topcon, Livermore, CA). 

2.5 mL of sodium fluorescein 25% in sterile water (Hub Pharmaceuticals, Rancho 

Cucamonga, CA) was injected into an antecubital vein using a 25 gauge needle, 

followed by 5 mL of normal saline. Photos were acquired at the time of injection and 

through the early transit phase in the left eye, followed by photos in the each eye in the 

mid transit and late phases. In the second case, the FA was acquired using a Spectralis 

HRA (Heidelberg Engineering, Carlsbad, CA). The goal of this comparison was to see 

that vessels were being properly identified. 

 We also compared vessels identified using the AOSLO to a retinal functional 

imager (RFI) for one subject. The RFI provides an alternate method to noninvasively 

visualize retinal vessels and is based on fundus photography (Nelson, Krupsky et al. 

2005). 

Finally, we compared images acquired using two different laser wavelengths 

(532 and 840 nm), acquired at different time points, in order to demonstrate that we 

could achieve similar results (i) with different imaging sessions, and (ii) using different 

imaging parameters. 
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1.4 Results 

Video and image processing algorithms were implemented using MATLAB (The 

MathWorks, Inc). The approximate time to construct and analyze a high-quality, 8-

video montage of the FAZ using 40 second videos was 2.5 hours, including time for 

preprocessing and deletion of bad frames. Vessels were mapped for 10 subjects. An 

example of vessel perfusion mapping is shown for one subject (Figure 1.13). A larger 

montage showing the parafoveal capillary network with arterioles and venules is also 

shown (Figure 1.14). 

For all 10 subjects, FAZs were quantified. The area of the FAZs was 0.323 mm2 

+/- 0.107 mm2, and the effective diameter was 633 +/- 103 μm (mean +/- standard 

deviation), similar to results from other studies (Table 1). 

Since we used some video sets that were acquired for the purpose of other 

studies, there were some montages that were missing data near the FAZ; thus we were 

only able to extract and analyze capillaries on 7 out of the 10 subjects (Figure 1.15). 

The average capillary densities were 34.0, 31.5, 30.3, and 30.7 mm-1 in the S, I, N, and 

T directions (Figure 1.16), similar in magnitude to capillaries in the brain (Zheng, 

LaMantia et al. 1991). 

For two subjects, the parafoveal region of the FA was extracted and compared to 

the vessels extracted using our method (Figures 1.17, 1.18). For the second subject, 

images were also compared to a fundus photograph and an image generated using an 

RFI. The same eye was imaged twice at different times using different parameters 

(Figure 1.19). 
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Figure 1.13: Example of capillary mapping in the parafoveal region, using 60 

overlapping videos acquired using an 840 nm laser. (A) The montage from unprocessed 

videos, showing photoreceptors. (B) The montage from processed videos, showing 

perfused vessels. Scale bar, 300 μm. 
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Figure 1.14: Montage showing parafoveal capillaries generated by applying motion 

contrast enhancement to 76 overlapping AOSLO videos acquired noninvasively without 

contrast agent. Arrows denote arterioles. Scale bar, 500 µm. 
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Table 1.1 Comparison of FAZ sizes to other studies 

Method Mean area (mm2) Mean diameter (μm) Subject criterion 
AOSLO1 0.323 633 No ocular disease 
SLO + FA2 0.231  5425 Non diabetics 
FA3 0.350 730 Non diabetics 
FA4  0.2216 

 0.2926 
530 
610 

10 < Age < 39 
Age > 40 

1 Our method. 
2 (Arend, Wolf et al. 1991) 
3 (Bresnick, Condit et al. 1984) 
4 (Laatikainen and Larinkari 1977) 
5 Effective diameter calculated from the area. 
6 Area estimated from diameter measurement. 
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Figure 1.15: Extracted capillaries in the ROI for all the subjects that were analyzed. OD 

images were flipped horizontally to match OS images, in order to label the four 

directions (S, I, N, T). The scale bar is 900 μm. 
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Figure 1.16: Capillary density in four directions (S, I, N, T), where density is defined as 

LTot/A, the total length of capillary segments divided by the area of the analysis region. 

There was no significant difference in densities in four directions (p = 0.31). 
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Figure 1.17: Comparison of FA to our method, for one subject imaged using a 532 nm 

laser. (A) The posterior pole region from a FA. The box shows the location of the fovea 

and parafoveal capillaries. (B) Contrast-enhanced FA in the parafoveal region (box 

from A). The location of a single video location is shown in the small box. (C) Contrast-

enhanced FA, with the montage from processed images overlaid. (D) Contrast-enhanced 

FA at the edge of the FAZ (box from B). (E) Image from a single processed video 

showing perfused capillaries (at box from B). (F) Single frame from the unprocessed 

video showing photoreceptors (at box from B). 
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Figure 1.18: Comparison of AOSLO images to alternate imaging modalities, for one 

subject imaged using an 840 nm light source. (A) AOSLO image of photoreceptors. 

Although some larger capillaries can be seen, many are not visible. Black regions 

correspond to areas that were not imaged by the AOSLO. (B) Motion contrast enhanced 

AOSLO image of capillaries. (C) FA acquired using a Spectralis HRA (Heidelberg 

Engineering). (D) Image of vessels acquired using a Retinal Function Imager (Optical 

Imaging, Ltd). 
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Figure 1.19: Montages of processed videos showing vessels from two separate imaging 

sessions. The parafoveal region of the same eye was imaged twice: (A) using a 532 nm 

wavelength laser, and (B) using an 840 nm wavelength laser, 53 months later. 
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1.5 Discussion 

This chapter presents a method to visualize and analyze the FAZ and parafoveal 

capillary network noninvasively. The approach is based on the idea of using motion as 

intrinsic contrast. The key assumption is that blood cells move relative to their 

surrounding photoreceptors – thus, by extracting motion from videos of the eye, one can 

visualize perfused vessels. Motion is extracted using multi-frame division videos: using 

division images enables multiple division images to be averaged together arithmetically. 

This averaging enhances the final SNR. In general, non-invasive videos of the 

microcirculation from many imaging modalities suffer from low contrast, a common 

challenge for many vessel analysis algorithms. Our technique for motion contrast 

enhancement is general, and can be applied as an enabling step for more advanced 

analyses, such as quantification of the FAZ and parafoveal capillary density. 

There are several advantages to using this approach. Most importantly, it is non-

invasive, and can potentially be applied with low risk for subjects ranging from normal 

to pre-disease to disease states. The comparison of the vessel montage to FA shows that 

the method is able to detect retinal capillaries and generate a complete parafoveal map. 

FAs were not performed on all subjects to avoid unnecessary risks associated for eyes 

with no ocular conditions. Another advantage of this technique is the availability of 

other retinal measurements from the same dataset. For example, the structural integrity 

of the photoreceptor mosaic can be analyzed from the same videos (Figures 1.13 and 

1.18). Also, it is possible to investigate the speed and pulsatility of individual 
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leukocytes as they move through capillaries, using offline analysis (Martin 2005; Martin 

2009). Finally, one can extend the analysis to compute statistics such as vessel density, 

as illustrated in this chapter. 

The main limitations to the method are (i) it may be too time consuming for 

immediate clinical use, (ii) subjects must have clear ocular media, and (iii) good subject 

compliance is necessary. First, our technical methods for visualization of the parafoveal 

capillaries were developed to demonstrate a new concept, and not for immediate clinical 

implementation. Also, the time to acquire overlapping videos may influence which 

subjects might be good candidates. Second, there are many potential subjects that have 

clear ocular media, particularly subjects in normal and pre-diseased states, as well as 

some subjects with certain diseases; these subjects are usually precluded from invasive 

procedures such as FA. Finally, good subject compliance is needed during imaging 

session, which may limit the pool of potential patients; however, the subject tasks are 

relatively straightforward, involving fixation on targets presented at various locations, 

and it is possible to successfully perform AOSLO assessment on cooperative patients 

(Duncan, Zhang et al. 2007). 

There are tradeoffs when imaging with two different laser wavelengths. A prior 

study showed that green laser wavelengths were optimal for vessel contrast in scanning 

laser ophthalmoscopy (SLO) systems (Reinholz, Ashman et al. 1999). While we found 

that the contrast of vessels and flow through vessels was higher for the 532 nm laser 

compared to the 840 nm laser (Figure 1.19), we did not observe any differences in the 

vessels that could be identified for analysis. However, there are major advantages to 

using the 840 nm laser. The SNR of the photoreceptors is much higher for videos 
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acquired at 840 nm, an important consideration when evaluating photoreceptor health; 

this was because we imposed conservative light exposure limits. To insure safe light 

levels, the power that reached the subjects’ retinas was maintained at a level that was at 

10x below the Maximum Permissible Exposure limit defined by ANSI (2007). Since the 

SNR improves as the power of light increases, and since we imposed our conservative 

light exposure limits, the videos acquired at 532 nm had considerably lower SNRs. 

Finally, the lower brightness 840 nm light source (~ 50 trolands) was better for subject 

comfort. 

For one subject, we performed an extended imaging session using the 840 nm 

light source  (Figure 1.14). It appears that the methods presented in this chapter work 

best for the parafoveal capillaries closest to the FAZ, due to the lower capillary density 

(there is a single layer of capillaries immediately outside of the FAZ). Further from the 

FAZ, capillaries are still identifiable, but the higher capillary density makes it difficult 

to delineate specific capillary paths, a consideration for future work relating to the 

quantification of capillary hemodynamics. 

Motion contrast enhancement is based on the assumption that fluctuations in 

intensity are due to motion. These fluctuations in intensity are inherently weak signals; 

considering an idealized model of the situation, application of flow visualization tools 

can lead to either decreases or increases in vessel contrast (Figure 1.20). It is possible 

for artifacts to arise in the presence of any signals stronger than the motion signal. 

Specifically, any fluctuation in intensity not due to motion of blood cells will lead to an 

artifact. Two common sources of artifacts include dust and failed stabilization (Figure 

1.21).



 

47 

 

 

 

 

Figure 1.20: Motion contrast enhancement demonstration on a simulated video. 

(A,B,C) Three consecutive frames from a simulated video showing a diagonal dark 

vessel with a single bright leukocyte traveling downwards, with Gaussian noise in the 

background. (D) The standard deviation image from a longer video sequence, which 

shows that vessel detection methods based on image statistics can actually decrease the 

contrast of the vessel. (E,F,G) The corresponding consecutive frames after motion 

contrast enhancement methods were applied. (D) The standard deviation image of the 

division video, which shows that the variation in the image intensities in the vessel 

region has increased when compared to the original video. 
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Figure 1.21: Sources of artifacts. (A) A piece of dust was present during video 

acquisition. The piece of dust remained stationary in the video while the eye moved 

around. After video stabilization (e.g. correction for eye motion), the piece of dust 

appeared to move around, leading to fluctuations in intensity and manifesting as the spot 

on the vessel perfusion image (arrow). (B) Failure to stabilize all portions of the video 

frame resulting in a subset of frames with bright intensity below the line and dark 

intensity above the line (arrow); since these failed frames were interspersed throughout 

the video, they appear as a source of intensity fluctuation. This artifact can be removed by 

deleting all failed frames prior to the motion contrast enhancement process. 
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Despite variations in imaging parameters, we were able to achieve good results 

overall with our algorithms. Such variation would potentially require variations in video 

and image processing parameters; however, we were able to apply the same general 

method to all videos. We describe a set of optimized parameters for visualization of 

retinal capillaries using motion contrast enhancement. We also showed that we could 

achieve similar results using videos from different imaging sessions (Figure 1.19). Due 

to the unique nature of this approach, there are no direct methods to validate the 

approach other than comparison to FA. Even when contrast agents are combined with 

SLO (Arend, Wolf et al. 1991; Paques, Boval et al. 2000), the level of detail that we 

achieved was not observed. Previously, the only established method for non-invasive 

visualization of the FAZ and parafoveal capillary network was based on the entoptic 

blue field phenomenon (Bradley, Zhang et al. 1998). 

 There are many areas for future work. Since detection of parafoveal capillaries 

was the goal of this chapter, there remains much work in image analysis for automation, 

enhanced segmentation, classification, and registration of vessels from motion contrast 

enhanced images. There are also important applications in clinical medicine based on 

FAZ quantification and capillary density, including the development of potential 

biomarkers for disease, measures of retinal health in disease progression, or endpoint 

measures for clinical trials. 
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CHAPTER 2 

HEMODYNAMICS 

2.1 Abstract 

Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) can be used to 

noninvasively investigate single-file flow through live human retinal parafoveal 

capillaries. We developed a system of video and image analysis to enable accurate 

quantification of object speeds, and used the system to characterize, in detail, single-file 

flow dynamics through the parafoveal capillary network of one subject. There are two 

key components to the system: motion contrast enhanced spatiotemporal plots, and a 

slope modification procedure to accurately calculate speed of moving objects. 

Spatiotemporal plots, which are used to visualize and track moving objects, are difficult 

to implement in AOSLO videos due to the low contrast of blood cells and capillaries. 

However, we were able to implement spatiotemporal plots using motion contrast 

enhancement. The second component is a method to quantify object speed. Speed 

quantification is confounded by several simultaneous motions. During video 

acquisition, the objects of interest are in constant motion relative to the background 

tissue (object motion). The background tissue is in constant motion relative to the 

AOSLO, due to continuous eye motion during video recordings (eye motion). The 

location at which AOSLO acquires data is also in continuous motion, since the imaging 

source is swept in a raster scan across the retina (raster scanning). Object motion, eye 

motion, and raster scanning must all be taken into consideration for accurate 

quantification of object speeds. We validated these methods on both experimental 
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AOSLO videos as well as synthetic videos generated by a virtual AOSLO. Finally, we 

characterized in detail the flow of plasma gaps and leukocytes through the parafoveal 

capillary network of one subject. We found that both the capillary topology and the 

flow dynamics were heterogeneous. Certain capillaries accounted for a clear majority of 

leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily 

featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a 

protective mechanism to prevent inactivated leukocytes from entering exchange 

capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the 

presence of a leukocyte in a neighboring LPP. The methods developed in this chapter 

enable noninvasive and accurate investigations of flow dynamics through a live human 

capillary network. 

 

2.2 Introduction 

The flow of individual cells through capillary networks is dependent on a number of 

interacting factors, including metabolic demand and organ-specific factors (Zweifach 

1961; Hogg and Doerschuk 1995), network topology (Schmid-Schonbein, Skalak et al. 

1980), heart rate (Zweifach 1974; Zweifach 1974; Martin 2009), and the presence and 

distribution of erythrocytes and leukocytes (Lipowsky 2005; Popel and Johnson 2005). 

Although erythrocytes outnumber leukocytes by a ratio of about 1000:1, the role of 

leukocytes in the microcirculation is particularly important, because leukocytes are 

larger and less deformable than erythrocytes (Schmid-Schonbein 1980), and thus travel 

significantly slower through the microcirculation (Kuebler, Kuhnle et al. 1994; Ben-nun 
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1996). The transit of leukocytes through narrow capillaries compresses the glycocalyx 

(Damiano and Stace 2005) and upsets the normally faster-moving erythrocytes (Ben-

nun 1996), creating a plasma zone immediately upstream of the leukocyte (Fitz-Gerald 

1972) with a corresponding erythrocyte train immediately downstream (Schmid-

Schonbein, Usami et al. 1980; Pries, Secomb et al. 1990). Further upstream, at the prior 

branch point, the channel of higher flow (Schmid-Schonbein, Skalak et al. 1980) may 

shift from one branch to the other as the flow resistance is temporarily increased in the 

branch containing the leukocyte (Sutton and Schmid-Schonbein 1992). Thus, there is a 

dynamic interaction between leukocytes and erythrocytes in capillary networks, 

particularly at the level of single-file flow. It is important to characterize the nature of 

single-file flow to better understand diseases that affect the microcirculation, such as 

diabetic retinopathy. 

 The human parafoveal capillary network, a highly organized system residing in 

the inner layers of the retina, can be observed noninvasively and in situ using an 

Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) (Roorda, Romero-Borja et 

al. 2002; Martin 2005; Zhang, Poonja et al. 2006; Tam, Martin et al. 2010). Of 

particular interest is the terminal capillary network near the fovea, marked by the foveal 

avascular zone (FAZ), a zone approximately 500-600 μm in diameter that is free of 

vascularization in the inner retina (Laatikainen and Larinkari 1977). Immediately 

outside the FAZ, the parafoveal capillaries are single-layered and planar (Snodderly, 

Weinhaus et al. 1992). Flow is necessarily single-file. Erythrocytes, which have a mean 

major diameter of 7.82 μm (Evans and Fung 1972), lymphocytes, with diameters of 

5.75 μm, and neutrophils, monocytes, and eosinophils, with diameters of 7.25 μm 
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(Schmid-Schonbein 1980), must squeeze through narrow parafoveal capillaries with 

lumen diameters of 3.5-6 μm (Lutty, Cao et al. 1997). This network is fed by 

interdigitating arterioles and venules oriented in directions normal to the FAZ contour; 

in contrast, the capillaries are preferentially oriented in directions tangential to the FAZ 

contour (Snodderly, Weinhaus et al. 1992; Yu, Balaratnasingam et al. 2010). 

Immediately exterior to each arteriole, there is a zone of reduced capillary density; 

farther from the arteriole, the capillary density gradually increases, reaching a 

maximum at the location of each venule (Michaelson 1954). These observations show 

that at the cellular level, the parafoveal capillary network is locally heterogeneous. 

 The distribution of individual blood cells in capillary networks is also 

heterogeneous, both spatially across different capillaries (Schmid-Schonbein, Skalak et 

al. 1980), and temporally within the same capillary (Kleinfeld, Mitra et al. 1998). At a 

bifurcation spawning two daughter vessels of unequal flow, the distribution function of 

erythrocytes is highly nonlinear (Schmid-Schonbein, Skalak et al. 1980). Thoroughfare 

channels, which connect terminal arterioles to collecting venules, contain high volumes 

of blood flow relative to neighboring capillaries (Zweifach and Metz 1955; Hudetz 

1997). The remaining capillaries have been termed exchange, or true capillaries, 

through which a normal ebb and flow of cells can sometimes be observed (Hudetz 

1997). In many capillary networks, flow is regulated by precapillary sphincters; 

however, this does not appear to be the case in the cat retina (Friedman, Smith et al. 

1964). Erythrocytes have been observed to fluctuate in both concentration and flow 

direction in the cat retina (Friedman, Smith et al. 1964), and spontaneously pause during 

flow through monkey retinal capillaries (Flower, Peiretti et al. 2008); however, a 
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separate study using invasive endoscopy found variations in erythrocyte speed in cat 

retinal capillaries, but no evidence of plasma skimming, stasis, or intermittent flow 

(Jensen and Glucksberg 1997). Leukocytes have also been observed to preferentially 

flow through specific channels in the retina (Nishiwaki, Ogura et al. 1996). These 

peculiarities can be lost with ex-vivo approaches. To our knowledge, the distribution of 

blood constituents in thoroughfare and exchange capillaries in humans has not yet been 

characterized in vitro. 

 It is important to utilize a noninvasive, in situ method to investigate the behavior 

of single cells in parafoveal capillaries, since any invasive method can potentially 

change the nature of flow, particularly at the level of single-file flow. Currently, most 

imaging methods for investigating the microcirculation are (i) invasive, (ii) require 

administration of a contrast agent, or (iii) cannot be performed in humans. A notable 

exception is the Retinal Function Imager (Nelson, Krupsky et al. 2005), which can 

investigate blood flow noninvasively in humans using intrinsic motion signals; 

however, there are two considerations. First, this method is limited to an imaging 

sequence consisting of 6 snapshots spaced 17 milliseconds apart, for a total observation 

time of about 100 milliseconds; and second, it is uncertain whether there is sufficient 

detail to examine the dynamic activity in the smallest capillaries. Another example, 

which is minimally invasive, uses fluorescein labeled autologous leukocytes to study 

flow dynamics in humans; however, the authors find evidence of leukocyte activation 

(Paques, Boval et al. 2000). The process of removing, labeling, and reinserting 

leukocytes increases the spontaneous activation of leukocytes (Becker, Chen et al. 

2004), which alters their mechanical properties (Schmid-Schonbein, Sung et al. 1981), 
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thereby changing the characteristics of the flow. We have recently described a method 

to noninvasively visualize human parafoveal capillaries using AOSLO videos acquired 

without administration of contrast agents (Tam, Martin et al. 2010). 

 There are key issues that must be addressed to make AOSLO an effective 

system for the study of hemodynamics. Methods to quantify object speeds in AOSLO 

videos are important for hemodynamics, but are confounded by raster scanning, eye 

motion, and object motion. Since videos are acquired using a raster scanning system, 

different pixels within a video frame are acquired at different points in time. This 

affects the appearance of moving objects – the apparent object speed is dependent on 

the speed of the raster scan (Figure 2.1). The magnitude of the error in measured speed 

due to raster scanning depends on the configuration of AOSLO imaging parameters, but 

can be as large as 37.8% (as derived in this chapter). There is also constant eye motion 

that occurs during acquisition of video frames (Martinez-Conde, Macknik et al. 2004; 

Stevenson, Roorda et al. 2010). Since the raster scan continuously scans in a fixed 

pattern, this results in unique distortions in each video frame (Vogel 2006; Yang, 

Arathorn et al. 2007). Finally, the object itself is also in constant motion, simultaneous 

to raster scanning and eye motion. The motions of the object, eye, and raster scan must 

be considered simultaneously for accurate quantification of object speeds in an AOSLO 

system. 
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Figure 2.1: Raster scan problem formulation showing speed overestimation for a 

downward moving object from frame k to k+1. The vertical speed of the scanner is vs. 

In frame k, the object (solid black circle) is at line l1. After exactly one frame, when the 

scanner has reached line l1 on frame k+1, the object is at line l2. However, the scanner 

catches the object at line l3. The object speed, vo, is overestimated as ve. 
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In this chapter, we describe methods for tracking and accurate speed 

quantification of moving objects in AOSLO videos. We use spatiotemporal (ST) plot 

analysis and motion contrast enhancement to track moving objects and measure 

apparent object speeds. Apparent object speeds are then corrected using a slope 

modification method to correct for errors introduced by eye motion and raster scanning. 

The accuracy of the proposed methods is validated using synthetic data sets generated 

by a virtual AOSLO. Finally, we apply these methods to characterize single-file flow 

through capillaries in a living human eye. 

 

2.3 Materials and Methods 

The experiments described in this study were approved by the University of California, 

Berkeley Committee for Protection of Human Subjects. After detailed explanation of 

the procedures, written informed consent was obtained. For the first two subjects, a 37-

year-old male and a 26-year-old female, we used previously acquired videos. For the 

third subject, we recruited one 24-year-old female subject. All three subjects had no 

history of ocular or systemic disease at the time of imaging. 

 

Biometry Measurements 

Axial length was directly measured after maximal dilation was achieved (IOL Master, 

Carl Zeiss Meditec Inc., Dublin, CA, USA). For the first and third subjects, anterior 

chamber depth and corneal curvature were also measured, using the same instrument. 

For the second subject, these two parameters were estimated using a model eye (Bennett 
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1990). These measurements were used to make accurate conversions from visual angle 

to retinal distance (Li, Tiruveedhula et al. 2010; Tam, Martin et al. 2010), which were 

the units used in the spatiotemporal plot analysis.  

 

Fundus Photography 

For the third subject, in order to identify arterioles and venules for the extended 

characterization of flow dynamics, a digital fundus camera was used to acquire a red-

free photograph of the posterior pole of the right eye at a 30o field size (Zeiss Visucam 

NM/FA, Carl Zeiss Meditec Inc., Dublin, CA, USA). Red-free fundus photography is 

the gold standard for noninvasively imaging retinal vessels, in the absence of contrast 

agents. 

 

AOSLO Imaging 

AOSLO videos were acquired as described previously (Martin 2005; Tam, Martin et al. 

2010). One randomly selected eye from each subject was dilated (2.5% Phenylephrine 

Hydrochloride, 1% Tropicamide). 

AOSLO videos can be acquired using different imaging configurations, 

depending on the application. We consider three different configurations of imaging 

parameters (Type 1, 2, and 3), as described in Table 2.1. 
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Table 2.1. Imaging Parameters 

Specification Type 1 Type 2 Type 3 
Imaging wavelength [nm] 532 840 840 
Frame rate [Hz] 30 30 60 
Raw video frame size [pixels2] 525x512 512x512 512x525
Field of view (approx.) [deg2] 1.5 x 1.5 1.2 x 1.2 1.5 x 1.5
X scale factor [pixels / deg] 342 414 328 
Y scale factor [pixels / deg] 342 409 330 
Length of video [seconds] 40 2-10 40 
Retinal scale factor [mm/deg] 0.28008 0.28697 0.28889 
Subject age 37 26 24 
Refractive error, sphere [D] +1.0 -1.0 +0.5 
Refractive error, cylinder [D] -0.25 0.0 0.0 

Imaging parameters and subject data for various types of AOSLO videos. Three 

representative configurations of imaging parameters used for AOSLO imaging, for 

three different subjects. Representative values are given for the scale factors, which 

vary by small amounts across different imaging sessions due to small variations in 

hardware alignment and eye morphology. 
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Figure 2.2: Examples of retinal images acquired noninvasively in human subjects using 

an AOSLO, for a Type 1 (top row), Type 2 (middle row), and Type 3 (bottom row) 

video. The first column shows the averaged image of all frames for each video. The 

remaining three columns are three consecutive frames, showing a leukocyte (circled) 

traveling through a parafoveal retinal capillary. The frames in these videos have been 

preprocessed. The foveal center is near the top right corner for all three videos. Circular 

dots are photoreceptors, and dark, fuzzy lines usually correspond to capillaries. 

However, the locations of all capillaries are not obvious. Scale bar, 100 μm. 
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The three video types correspond to the three subjects that were used in this 

study. Type 1 videos were acquired for the purpose of analyzing blood flow, Type 2 for 

analyzing photoreceptors, and Type 3 for analyzing both blood flow and 

photoreceptors. Type 1 videos were acquired using a green wavelength laser, which has 

been reported to be the optimal wavelength for obtaining good contrast in blood flow 

imaging (Reinholz, Ashman et al. 1999). Type 2 and 3 videos were acquired using a 

near-IR laser – a more desirable wavelength in terms of (i) risks due to laser damage on 

the retina, (ii) compatibility with the AOSLO hardware, and (iii) overall subject 

comfort. Type 1 and 3 videos were acquired for longer durations in order to increase the 

number of leukocytes that could be counted. Examples of frames from Type 1, 2, and 3 

videos are shown in Figure 2.2. 

An extended session of AOSLO imaging was performed for the third subject, 

using parameters that were optimized for blood flow imaging (Tam, Martin et al. 2010). 

As described in Chapter 1, it is important to select an appropriate plane of focus. It is 

advantageous to acquire images near the photoreceptor layer, since this layer contains 

high contrast spatial features that are useful for stabilizing videos to correct for eye 

motion. However, since the inner capillary layers reside anterior to the photoreceptors, 

it is also advantageous to acquire images near the capillary layers, to maximize both the 

sharpness of the resulting vascular images and also the motion contrast of the individual 

cells. Thus, we selected a plane of focus that was slightly anterior to the photoreceptor 

layer. A total of 76 overlapping videos were acquired in one 2 hour session, with 9 

videos acquired near the FAZ (40 second videos with 1.5o field sizes), and 68 videos 
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farther from the FAZ (15 second videos with 1.8o field sizes), for a combined field of 

approximately 6.5o x 9.5o (height and width). 

For the third subject, videos were acquired at 60 frames per second (fps), using 

an 840 nm super luminescent diode. The AOSLO normally acquires images at 30 fps, 

using the forward sweep of a fast resonant scanner that operates at 16 kHz; to achieve 

60 fps, we incorporated both the forward and return sweeps of the scanner. Instead of 

recording 512 lines of the forward sweep at 30 fps, we recorded 256 lines of the 

forward sweep and 256 lines of the return sweep at twice the line spacing as normal, in 

order to achieve 60 fps imaging without compromising the pixel density within each 

frame. To insure safe light levels, we maintained an exposure level that was more than 

10x below the Maximum Permissible Exposure limit defined by the American National 

Standards Institute (ANSI 2007). There was no injection of a contrast agent. 

Raw videos were preprocessed to correct for distortions due to raster scanning 

and eye motion, without considering object motion. As described in Chapter 1, 

preprocessing involves desinusoiding, stabilization, cropping, and frame deletion. The 

process of desinusoiding and stabilization generates a high-frequency eye motion trace, 

which is stored in a data file and used in the calculation of the distance that a moving 

object has traveled. The number of lines at the top edge that were removed due to 

cropping was also stored in a lookup table, and used in the calculation of object speeds. 

Note that deletion of frames is important for generation of high quality images of 

photoreceptors and vessels; however, we did not delete any frames for the speed 

analysis since deletion of frames would increase the apparent speed of a moving object. 
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Figure 2.3: Visualization of vessels and moving objects by applying motion contrast 

enhancement to the Type 1 (top row), Type 2 (middle row), and Type 3 (bottom row) 

AOSLO videos shown in Figure 2.2. The first column shows the standard deviation 

image, which enhances the contrast of vessels. The next three columns show three 

consecutive frames of the multi-frame division video, which enhances the contrast of 

moving objects. Scale bars, 100 μm. 



 

65 

Motion Contrast Enhancement 

Since spatial contrast is low, motion contrast enhancement is used to visualize moving 

objects and vessels (Figure 2.3). Methods for motion contrast enhancement have been 

described previously (Sato 1997; Japee, Ellis et al. 2004; Nelson, Krupsky et al. 2005; 

Tam, Martin et al. 2010). We implement a method that works well with AOSLO videos 

(Tam, Martin et al. 2010), using a multi-frame division video and a standard deviation 

image. The multi-frame division videos were used to visualize moving objects, and the 

standard deviation image was used to visualize vessels. Median and Gaussian filtering 

were applied before and after calculation of the multi-frame division video, 

respectively. 

A preprocessed video has moving blood cells in front of a stationary background 

tissue, consisting of photoreceptors and vessels. Given two frames, Ij(x,y) and Ij+1(x,y), 

the division image ( ) ( )
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=  emphasizes the objects in motion as long as the 

intensity of background tissue remains relatively constant. Here, Ij(x,y) represents the 

intensities of frame j at position (x,y). We defined a multi-frame division video as 
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= . To visualize the perfused vessels, an image was 

calculated from the multi-frame division video, using the geometric standard deviation. 

For a video with n frames, the geometric standard deviation image, S(x,y), is defined in 

Equations 1 and 2. 
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Spatiotemporal Plots 

Spatiotemporal (ST) plots (also known as kymograms) are used to visualize motion in 

many custom video microscopy systems. Some examples include visualization of 

intracellular structures, such as vesicles (Racine, Saschse et al. 2007) and microtubules 

(Smal, Grigoriev et al. 2009), as well as blood cells within small vessels, in the hamster 

muscle (Ellis, Ellsworth et al. 1992), rat mesentery (Sato 1997), rat neocortex 

(Kleinfeld, Mitra et al. 1998), and cat retina (Jensen and Glucksberg 1997). We use ST 

plots to visualize hemodynamics. There are two major advantages. First, the ST plot 

representation is more compact, which assists in pattern identification. Variables such 

as density, frequency, and variations in speed both spatially and temporally can easily 

be observed on ST plots, but not from direct examination of the original video. Second, 

the dimensional complexity of the problem is reduced from a 4-dimensional (3D+1T) 

problem to a 3-dimensional (2D+T) problem, which minimizes the computation cost. In 

the case of single-file flow, there is no loss of speed information when switching from 

the X-Y-T representation to the s-T representation. This is because (i) the size of the 

vessels is small enough to feature single-file flow of cells, and (ii) the spatial location of 
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the vessel can be determined using motion contrast enhancement. These plots have also 

been used in AOSLO systems (Zhong, Petrig et al. 2008; Tam and Roorda 2010). 

ST plots were generated by converting an X-Y-T coordinate system into an s-T 

coordinate system (Figure 2.4). Consider an arbitrary vessel in a sequence of frames, 

with an object that moves along the trajectory of the vessel, given by f(x,y). By plotting 

intensity values along the vessel, and discarding all other pixel values, a two-

dimensional plot can be generated that shows the movement of individual objects 

traveling through a one-dimensional line, given by f(s), where the mapping f(x,y) ↔  

f(s) is defined naturally, with the first coordinate of f(x,y) mapping to the first element 

of f(s), the second coordinate to the second element, and likewise for the remaining 

elements. Since we are exactly specifying the mapping from each pixel in X-Y-T space 

to s-T space, the mapping is invertible. 
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Figure 2.4: Conversion of X-Y-t coordinate system (left) into s-t coordinate system 

(right). Three consecutive frames, (k-1, k, k+1), are shown with a dark circle 

representing a single leukocyte traveling along a vessel centerline. 
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Motion contrast enhancement improves ST plot implementation by increasing 

the accuracy of vessel centerline extraction, and by increasing the contrast of cell paths 

(Tam and Roorda 2010) (Figure 2.5). Using motion contrast enhanced ST plots, we 

manually extracted cell traces for the tracking and speed quantification. To identify 

traces, the user was presented with a graphical user interface (GUI) showing a portion 

of a ST plot. The user identified traces by selecting points along that trace. For 

consistency, points were selected at the border between the dark and bright regions of 

the trace, on the leading edge (Figure 2.6). After points were selected, interpolation was 

performed using piecewise splines constrained to the pixel resolution. 

ST plots can also be used to label cells on the unprocessed AOSLO video (i.e. 

cell tracking). To do cell tracking, the coordinates of each extracted trace were used to 

register the location of the blood cells in the video. ST coordinates (s, t) were converted 

back to video coordinates (x, y, t) using the invertible mapping defined during 

generation of ST plots. Video coordinates were compiled into a list and then used to 

mark object locations to visualize the tracking results, and to verify that objects were 

being identified correctly. 
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Figure 2.5: Single trace before and after motion contrast enhancement. The vessel 

centerline was identified with motion contrast enhancement, and the same centerline 

was used to generate the spatiotemporal plot of a single trace in both cases. Motion 

contrast enhancement incorporates information in both the spatial and temporal 

directions. The process of motion contrast enhancement thickens traces and enhances 

the contrast. 
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Figure 2.6: Generation of motion contrast enhanced ST plots from AOSLO videos 

using the same videos shown in Figure 2.2. The first column shows the vessel 

centerline that was selected for analysis. The second column shows ST plot analysis. On 

the ST plots, diagonal streaks represent moving objects, while vertical streaks represent 

blinks or saccades, where the video intensity drops for 1-3 frames. Extracted traces are 

shown directly beneath the corresponding ST plot. (top) Type 1 video, all frames (1 to 

1200), and frames 201 to 400 magnified from entire strip. (middle) Type 2 video, all 

frames (1 to 126). (bottom) Type 3 video, all frames (1 to 2387), and frames 1987 to 

2387 magnified from entire strip. Vessel image scale bars, 100 μm; ST plot horizontal 

scale bars, 0.5 seconds, vertical scale bars, 0.25 mm. 
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Quantification of object speeds 

In the absence of eye motion, the speed of an object in a raster scanning system can be 

explicitly computed using line information from pairs of frames (Xu, Manivannan et al. 

2002). The correction is based on computing the actual time at which a given line was 

acquired, as opposed to assuming that the entire frame was acquired at the same time. 

The true time, t, can be computed as 
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+=

1

121
N

llTt f ,         (3) 

where Tf is the time per field, l1 and l2 the scan lines of the object center in the first and 

second frames, and N1 the number of scan lines per frame. However, this approach 

(Equation 3)  must be modified for AOSLO videos since the effect of the raster scan is 

confounded with eye motion and desinusoiding. 

In a non-raster scanning system without eye motion, the speed of an object can 

be computed by simply computing the slope of the extracted trace from an ST plot. 

However, in the AOSLO, the slope of the trace gives speeds in time units of frames. We 

present a slope modification procedure to correct speeds, based on computing the 

acquisition time the coordinates in the extracted traces. In order to perform the 

correction, line numbers on preprocessed videos need to be transformed back to line 

numbers on the raw videos (not preprocessed). This is important because the correction 

for intraframe eye motion results in local stretching or compression of pixels, thereby 

altering line numbers. 

The AOSLO uses a fast horizontal scan and a slower vertical scan, from left to 

right and top to bottom directions, respectively.  The main component of the error is due 
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to the slower vertical scan; the error due to the horizontal scan is small and does not 

need to be corrected (discussed in more detail in subsequent sections). As an example, 

in the absence of eye motion, a downward moving object will have a larger observed 

displacement compared to the actual displacement, since the scan is chasing a moving 

target. More generally, any object that is moving in a non-horizontal trajectory has a 

vertical component of velocity that needs to be corrected. If there is eye motion, then 

the actual displacement is also dependent on the amount that the eye has moved. 

Consider coordinates from the extracted traces, given as (frame number, s). The 

acquisition time for each line (in units of partial frames) can be computed as: 

acquisition time = frame number +
512
L       (4) 

L is the line number at which the data was taken on the raw video, and can be recovered 

in the following manner: 

1. Recover the line number, Lcrop, of the object on the cropped video by 

determining the y coordinate from the inverse transformation s -> (x,y). 

2. Correct the line number for cropping by adding back the number of lines at the 

top of the image that were removed during cropping, dLcrop, stored during 

preprocessing. 

3. Correct for eye motion by applying the inverse transformation, S-1, from raw to 

stabilized videos. S-1 was stored during preprocessing in the eye motion trace. 
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Compute L = S-1(Lcrop + dLcrop). The extracted traces are then plotted as (acquisition 

time, s). 

For each corrected trace, a linear regression was applied and the slope of the 

line, with units of pixels/frame, was used to compute the speed of the leukocyte (in units 

of mm/s) through the selected vessel segment in the following manner: 

slope * 
⎟
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Sample conversion parameters for Type 1, 2, and 3 videos are summarized in Table 2.1. 

The mm/deg conversion factor on the retina was estimated as described previously (Li, 

Tiruveedhula et al. 2010; Tam, Martin et al. 2010). 

 

Virtual AOSLO 

The AOSLO is a custom-built, unique instrument with ~5x the resolution of a 

commercial Scanning Laser Ophthalmoscope. Typically, ground truth for new systems 

is generated using manual analysis performed by subject experts. However, due to the 

low contrast of the moving objects, it is difficult and unreliable to analyze videos by 

naked eye. Therefore, we used a virtual AOSLO to simulate realistic videos to create a 

synthetic dataset for use as ground truth in order to validate our methods. 

 

Virtual AOSLO Parameters 

A virtual AOSLO has previously been used to characterize scanning distortions due to 

raster scanning and eye motion for static images (Campanelli, Vogel et al. 2003). We 
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modified this virtual AOSLO to simulate the acquisition of a video in the presence of an 

object that is moving at the same time as the scanner. For the virtual AOSLO, we 

selected scanning parameters for a Type 1 video, which is the data set on which the 

proposed methods were developed. Since we were able to specify exactly the speed and 

position of the moving object, we considered the simulated videos to be ground truth. 

Due to the complexity of the AOSLO, the following assumptions were used for the 

virtual AOSLO: 

1. The imaging laser is a perfect, dimensionless dot that samples with true fidelity 

one pixel of the input image at one time. 

2. The retina is rigid and planar across the field of view. 

3. Eye motion is strictly translational, with no torsional component. 

4. Imaging parameters are constant. 

The first assumption bypasses sampling and resolution issues introduced by the optics 

of a human eye. This means that the quality and appearance of the simulated video 

depends primarily on the input image. Second, for the field of view of the simulation 

(1.5 degrees in each direction), it is reasonable to assume that this region is both rigid 

and planar. Third, as described previously, the primary components of eye motion are 

translational (Martinez-Conde, Macknik et al. 2004). While we have observed torsional 

motions, they are typically small (unpublished experimental observations). The final 

assumption is that imaging parameters are constant – in actual practice, due to 

additional complexities such as calibration and temperature-dependent drift of 
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electronic components, different imaging sessions have minor variations in imaging 

parameters (these variations are addressed using calibration steps prior to each imaging 

session). 

An overview of the virtual AOSLO is shown in Figure 2.7, and a summary of 

the parameters selected for the simulation are shown in Table 2.2. The input image was 

generated using individual frames from overlapping AOSLO videos near the fovea, 

which were scaled to the appropriate size (circle diameter = 3.75 degrees). The spatial 

resolution of the input image was selected to be twice that of the output video, and 

sampled by the virtual AOSLO using nearest neighbor interpolation. Thus, the 

simulated videos are similar to actual AOSLO videos, which allow us to apply the same 

correction steps that we would have applied to actual AOSLO videos. 
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Figure 2.7: Overview of virtual AOSLO used to simulate videos of a moving object in 

the presence of raster scanning and eye motion. An arbitrary vessel and flow direction 

was inserted into a retinal input image, and an object speed was specified. The rigid 

input image, vessel, and object were translated according to specified X and Y eye 

motion (EM) inputs. The frames in the output video were generated using the scan 

parameters and configuration described in Table 2.2. Scale bars, 100 μm. 
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 Table 2.2. Virtual AOSLO Parameters 

Parameter Value 
Horizontal raster frequency 15.36 kHz 
Vertical raster frequency 30 Hz 
Video frame size 512 x 512 pixels 
Video acquisition rate 30 fps 
Sampling band Central 80% of forward sweep 
Retinal scale factor 0.296 mm/deg 
X and Y scale factors 341.33 pixels/deg 
Vessel diameter 5 µm 
Leukocyte length 15 µm in the direction of travel 
Leukocyte speeds 1.00 to 3.00 mm/s 
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Simulated videos were generated pixel by pixel. The basic steps were to (i) 

calculate the pixel timing given the raster parameters, (ii) convert timings to spatial 

coordinates on the input image, and (iii) sample the input image at the specified spatial 

coordinates. The time that each pixel is sampled can be computed directly using the 

raster scan parameters. To convert times to spatial coordinates, two calculations were 

done. First, the spatial coordinates were calculated assuming a static image. Second, the 

spatial coordinates were translated horizontal and vertically as specified by the X and Y 

components of eye motion, corresponding to the timing at each pixel location. Finally, 

sampling was performed after insertion of a moving object into the input image. For the 

moving object, we specified the trajectory and speed and used a high contrast, elongated 

object oriented along the direction of travel. The time-dependent input image was then 

sampled at the corresponding spatial coordinate for each pixel to generate a simulated 

AOSLO video. 

 

Experiments using the virtual AOSLO 

The virtual AOSLO was used to generate a synthetic data set for validation. The 

synthetic data set consisted of simulated videos with different configurations, varying in 

object speed, vessel geometry and orientation, eye motion, and noise (Table 2.3). A 

single moving object was used for each of the videos. 
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Table 2.3. Parameters for simulated videos 

Video code Vessel orientation Object speed Eye motion
H3 Horizontal 3 mm/s No 
V1 Vertical 1 mm/s No 
V3 Vertical 3 mm/s No 
V1_EM Vertical 1 mm/s Yes 
A2 Arbitrary 2 mm/s No 
A2_EM Arbitrary 2 mm/s Yes 
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The goals of these experiments were to (i) verify that the error in measured 

speed was negligible in the horizontal direction, (ii) verify that the theoretical errors in 

measured speeds were consistent in the vertical direction, and (iii) examine the expected 

effects on calculated speeds due to experimental conditions. H3 was used to quantify 

the error due to raster scanning in the horizontal case, for an object moving at 3 mm/s – 

the faster the object moves, the greater the error expected. Most objects traveled at 

speeds between 1 and 3 mm/s. V1 and V3 were used to quantify the error due to raster 

scanning alone for an object traveling in the vertical direction. For the experimental 

conditions, the two factors that contribute most to changes in measured speeds were 

considered: vessel trajectory and eye motion. For the vessel trajectory videos (A2, 

A2_EM), we used the vessel centerline extracted from the Type 1 video as the vessel 

input. For the eye motion, we used the extracted eye motion trace from the first 1.3 

seconds of the Type 1 video. We considered these two factors both separately (V1_EM, 

A2), and simultaneously (A2_EM). 

 

Measurements of flow dynamics across the capillary network 

For the third subject, we acquired a more extensive set of AOSLO videos, and used 

these videos to measure various aspects of flow dynamics. Specifically, every capillary 

segment near the FAZ was individually analyzed using ST plots. For each ST plot, 

sloped traces were manually extracted to derive the following information about flow 

dynamics: frequency, flow direction, speed, and pulsatility. Frequency information 

could be computed by simply counting the number of extracted traces, and dividing by 

the length of the video. To compute flow direction of each trace, a linear regression was 
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applied, and the sign (positive or negative) of the slope was used to determine the flow 

direction. The speed was quantified using the procedure described above that corrects 

for measurement errors due to raster scanning and eye motion. 

 To measure pulsatility, a photoplethysmograph (MED Associates Inc., St. 

Albans, VT, USA) was attached to the subject’s thumb, and the output was 

continuously recorded in a data file during video recordings, using a data acquisition 

(DAQ) device (USB-6008, National Instruments, Austin, TX). The output was 

simultaneously analyzed in real-time to detect the location of the largest peak of the 

pulse waveform, and then encoded onto the video by marking the frame at which the 

detection occurred with a small white square (referred to as a “pulse blip” in the 

remainder of the manuscript). Typically, the pulse waveform consists of two peaks. The 

absolute and relative amplitudes of the two peaks varied depending on the individual. 

Although a pulse detection algorithm had already been previously implemented (Martin 

2009), we found that the previous algorithm occasionally identified false blips in 

situations when the subjects’ secondary waveform peak was very prominent. Thus, we 

developed a new algorithm. The real-time algorithm that was implemented in order to 

detect the location of the largest peak of each waveform is described in pseudocode 

below. This algorithm is based on finding the first peak of the approximated first 

derivative of each pulse waveform. After the imaging session, the encoded blips were 

checked against the recorded data files to verify proper detection and proper encoding 

into videos. 
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Pulse waveform peak detection algorithm 

 
 
% Continuously calculate pairwise differences 
current_pairwise_difference_value = current_waveform_value-
previous_waveform_value; 
[continuously record these values in the pulse data file] 
 
--------------- 
 
% Initialization (run once after stable waveform achieved) 
 
% Calculate the RMS average of at least 3 complete waveforms 
RMS_avg; % Store result in RMS_avg 
% set threshold to twice the RMS_avg 
threshold = RMS_avg*2; 
 
--------------- 
 
% Detection code (run continuously during video acquisition) 
 
% Look for a peak if the threshold is breached 
if(current_pairwise_difference_value > threshold) 
        % keep going until first peak; then stop 
        while(current_pairwise_difference > currentmax) 
            currentmax = current_pairwise_difference; 
        end 
        % When at the first peak, stop and record it. 
        [Mark a blip on the current frame] 
        [Mark the peak location in the pulse data file] 
 
        % Reset current max to get ready for the next blip 
        currentmax = 0; 
           
        % Wait until the next waveform before continuing 
        while(current_pairwise_difference_value > threshold) 
            [Do nothing] 
        end 
end 
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To quantify a pulsatility index, a velocity waveform was generated using the 

encoded pulse blips. Since each pair of pulse blips corresponded to one pulse cycle, a 

velocity waveform could be generated by combining all pairs of pulse blips across a 

video. Speeds were plotted as a function of time relative to the pulse cycle, given by (FT 

– FB’) / (FB’’ – FB’), where FT is the central frame of the extracted trace, and FB’ and FB’’ 

are the frames of the pulse blips immediately preceding and following FT (Figure 2.8). 

At the beginning of the video, when there is no preceding pulse blip, the timing is 

estimated by extrapolating from the next two pulse blips, given by (FT – FB’’) / (FB’’’ – 

FB’’), where FB’’ and FB’’’ are the frames of the next two pulse blips. A similar procedure 

is used at the end of the video, if there is no pulse blip after an extracted trace. This 

process normalizes measured speeds to the current heart rate, and is appropriate when 

the heart rate stays reasonably constant for the duration of the recording session. To 

compute an averaged velocity waveform, the pulse cycle was divided into five equal 

segments, and data within each segment was averaged, as described previously (Martin 

2009). These segments were used to compute the pulsatility index, given by Vmax – Vmin 

/ Vmean, where Vmax and Vmin are the maximum and minimum calculated speeds across 

the entire video for a given vessel, and Vmean is the average (Riva and Petrig 1980). 

Artifacts due to blinks or failures to properly correct for eye motion are easily 

distinguished from actual signal due to blood flow, since they give rise to purely 

vertical lines on the spatiotemporal plots. 
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Figure 2.8: Generation and analysis of a spatiotemporal plot. An example is shown for 

one capillary segment from one video. A vessel centerline is identified on the image of 

perfused capillaries. Vessel coordinates are converted from (x,y) coordinates to (s) 

coordinates to reduce data by one spatial dimension. To generate the spatiotemporal 

plot, intensities along s are plotted for each frame of the division video. A 120-frame 

segment of the spatiotemporal plot for the selected vessel is shown. Sloped traces, 

which correspond to motion of fluid parcels, are manually extracted. Purely vertical 

traces are due to artifacts – one example, due to a blink, is shown (arrow). Two example 

traces that were extracted are shown. The extracted traces were analyzed to give 

information about flow direction, frequency, speed, and pulsatility as described in the 

text. FT1 and FT2 are the frames at which traces were extracted; FB’, FB’’, and FB’’’ are the 

frames at which pulse blips occurred. 
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2.4 Results 

Since the Type 1 videos had the highest spatial contrast for the moving blood cells, we 

developed our methods using only Type 1 videos, and used Type 2 and 3 videos as well 

as synthetic videos generated by a virtual AOSLO for verification. The proposed 

methods performed well on both the synthetic data set generated using the virtual 

AOSLO, and on experimental videos acquired on the AOSLO. 

 

Expected error due to raster scanning 

The raster scan error is significant for AOSLO videos.  In this section, we develop a 

theoretical model to quantify the magnitude of the raster scan error. To understand the 

nature of the expected raster scan error, consider the case of a vertically oriented vessel 

with a downward-moving object that starts at the top of the image (Figure 2.1). 

Assuming that there is no eye motion, we derive the expected raster scan error in the 

vertical and horizontal cases for comparison to actual measured error rates, and show 

that it is significant in the vertical direction, but not the horizontal direction. 

 

We introduce the dimensionless number, 

 (6) 

 

where vo  is the speed of the object, and vs is the speed of the scanning line.
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If RS > 1, then the system is unable to image the object and the error becomes infinite. 

When RS = 0.5, the error is exactly 100%. When so vv << , 0→RS , and the raster scan 

error is negligible. By convention, leukocyte speeds on the retina are reported in mm/s. 

For an object speed given in mm/s, ov , with scan speed, sv , given in pixels/frame, with 

scale factor as defined in Table 2.1, RS can be calculated as 

RS = 
s

o

v
v

retinatheonmmrateframe
directionscaninfactorscale *

deg/*
  (7) 

When the object is moving in the same direction as the raster scan, the speed of the 

object as measured by the system, ev , will be overestimated. The percent error due to 

raster scanning is given by  

percent error =
o

oe

v
vv −

 (8) 

Assuming the object and scan have speeds of ov  and sv , the relationship between 

object speed and measured speed is: 

RS
v

v o
e −
=

1
          (9) 

The percent error due to the raster scan is 

percent error =100% * 
RS

RS
−1

        (10) 

For a model object moving downwards at 1 mm/s in the vertical direction, the 

overestimation is 8.1% for a Type video, 10.1% for a Type 2 video, and 4.0% for a 

Type 3 video, assuming no eye motion. At 3 mm/s, the overestimation is 29.1% for a 

Type 1 video, 37.8% for a Type 2 video, and 13.0% for a Type 3 video (Figure 2.9).  
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Thus, the raster scan error increases when one or more of the following occur: vs 

decreases, ov  increases, or the field of view decreases (the field of view varies 

inversely with the scale factor in the scan direction). 

A similar analysis can be used to estimate the expected error in the horizontal 

scan direction. Since the scan speed is defined as the number of rows required to reach 

the edge of the frame, for the horizontal direction, 512/verticalhorizontal RSRS = . The 

percent error in the horizontal direction = 100% * 
vertical

vertical

RS
RS
−512

. Since 

1<verticalRS for objects of interest, the percent error in the horizontal direction will 

always be less than 0.20%. When 5.0=verticalRS , the percent error in the horizontal 

direction drops to 0.098%. Therefore, we do not need to apply the raster scan correction 

to the horizontal component of calculated speeds. 
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Figure 2.9: Expected raster scan error assuming no eye motion, for a vessel that is 

oriented in the same direction as the scanner. The range of errors for an object moving 

between 1 and 3 mm/s is shown for a Type 1 (T1), Type 2 (T2), and Type 3 (T3) 

AOSLO video. The portion of the plot corresponding to each video type is marked. 
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Evaluation of accuracy and validity using a virtual AOSLO 

We applied the proposed methods for tracking and speed quantification (Figure 2.10). 

To measure speeds in the simulated videos, we repeated the analysis 5 times and took 

the average of computed speeds, in order to reduce the errors due to operator bias and 

differences in data precision. The data precision varied since there were 3 times as 

many data points that could be extracted to measure speeds at 1 mm/s vs. 3 mm/s. At 3 

mm/s, due to large pixels/frame displacements, the traces on the ST plots were 

disconnected. 

To validate that objects were being tracked correctly, we generated a tracked 

video and used frame-by-frame examination. As expected, for all videos, the extracted 

traces corresponded to the moving objects. However, the labeled lines would sometimes 

lead or lag the moving objects by small amounts. Since the amount of lag/lead was 

preserved for each moving object, the slope of the traces was accurate. The error was 

due to the estimation of frame number from the coordinates of the extracted traces, due 

to the low temporal resolution relative to the speed of the leukocytes. Taking this into 

consideration, there were no false positives and no false negatives. 
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Figure 2.10: Tracking and speed quantification on V1_EM. (A) First frame in which 

the object appears from a preprocessed video. (B) Corresponding frame in the multi-

frame division video. (C) Standard deviation image calculated from 15 frames. (D) 

Extracted vessel for offline generation of the ST plot. (E) ST plot for the selected 

vessel. (F) Extracted trace from the ST plot (dotted line on left), and the corrected trace 

taking into consideration both raster scanning and eye motion (solid line on right). 

Notice that the speed was overestimated prior to correction, as expected. (G) Three 

consecutive frames of the video showing tracking results. 
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Table 2.4. Evaluation of Speed Quantification 

Video code H3 V1 V3 V1_EM A2 A2_EM 
No RS [mm/s] 3.0082 1.1428 3.9370 1.1242 1.8956 2.0067 
RS [mm/s] 3.0110 1.0552 3.0608 1.0361 1.9766 2.0283 
No RS vs. RS % -0.09% 8.31% 28.63% 8.50% -4.10% -1.07% 
RS vs. Actual % 0.37% 5.52% 2.03% 3.61% -1.17% 1.42% 
 

Speeds are reported before (No RS) and after (RS) the proposed correction. Actual 

speeds are the object speeds corresponding to each video, as listed in Table 2.3. 
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We compared the corrected speeds to the actual speeds (Table 2.4). We define 

the residual error as the percent difference between corrected and actual speeds, and 

found that the residual error was on average 2% for moving objects traveling between 1 

and 3 mm/s. The sources of error are most likely due to vessel and trace extraction, 

which are dependent on user interaction. For experimental data, these sources of error 

are likely to increase due to (i) lack of prior information about vessel trajectories and 

(ii) variations in trace slopes. For the synthetic data sets, extraction is more accurate due 

to prior knowledge about the shape of the vessel (since it was specified), and due to the 

fact that object speeds are uniform (so that there is no variation in trace slopes). 

H3 confirms that the error in measured speed is negligible in the horizontal 

direction, since the calculated error was -0.09%. This is also in agreement with the 

theoretical model, which specifies an upper bound of 0.20% for the error. Therefore, it 

is a reasonable assumption to neglect the error due to horizontal scanning. 

V1 and V3 confirm the theoretical errors due to the vertical component of raster 

scanning. We found errors of 8.3% and 28.6%, which are in agreement with the 

theoretical errors of 8.1% and 29.1%. Therefore, in the absence of eye motion, the 

computed errors are in agreement with the expected errors. 

Eye motion can either increase or decrease the magnitude of the error. If eye 

motion is random and isotropic, then over time the average speed should not be affected 

by eye motion. However, if the eye favors motion along a preferred direction, then the 

computed speed is affected – the computed speed is maximally increased when the 

object, raster scan, and eye motion are in the same direction (i.e. all vertical and 
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downward). Initially, the vertical component of the eye motion trace input is in the same 

direction of the scan – as expected, the error for V1_EM is slightly larger than V1. 

In practice, vessels are rarely horizontal or vertical, particularly when 

considering capillaries. First, the magnitude of the error in calculated speed depends on 

the trajectory of the vessel at the object location, since only the vertical component of 

speed is corrected. Therefore, deviations from a vertically-oriented vessel should result 

in diminishing error magnitudes. Second, the start and end points of the vessel 

ultimately determine whether speeds are over- or underestimated. The vessel in A2 and 

A2_EM has both upward and downward components, but the since the endpoint is 

lower than the starting point, this means that we should expect speeds to be 

underestimated when comparing A2 to V2. Since the eye motion results in a slight 

overestimation (comparing V1_EM to V1 and using the same eye motion input), this 

explains why the error for A2_EM is less than the error for A2. 

 

Evaluation on experimental AOSLO videos 

We performed the proposed methods on 40 vessels from 10 AOSLO videos; first we 

report results across all videos, and then we show detailed results for one representative 

vessel for each video Type. 

10 vessels were analyzed from 1 Type 1 video; 10 vessels from 3 Type 2 videos; 

and 20 vessels from 6 Type 3 videos. The average absolute error in measured speed was 

2.59% for the Type 1 video, 3.39 % for the Type 2 video, and 2.04% for the Type 3 

video, where absolute error was defined as the absolute value of the percent difference 

between corrected and non-corrected speeds for one trace, and the average absolute 
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error was defined as the average absolute error across all extracted traces for each video 

Type. For comparison, we estimated the error using the RS parameter defined at the 

beginning of this section, taking ov  to be the average object speed. In the absence of 

eye motion, for a vertically-oriented vessel, the theoretical error was 12.56% for the 

Type 1 video, 12.84% for the Type 2 video, and 5.27% for the Type 3 video. This 

suggests that either vessel orientations are horizontally biased, or that eye motion is not 

uniformly distributed across all orientations. 

We selected three representative vessels from Type 1, Type 2, and Type 3 

videos to further characterize the error in measured speeds. For each vessel, traces were 

extracted from ST plots and used for tracking on the original videos and speed 

quantification (Figure 2.11). Close examination of Figure 2.11 shows that the 

orientation of the vessel has an effect on the slope modification as long as the effect due 

to eye motion is small (i.e. one can see whether the slope was over- or under- estimated 

corresponding to a downward- and upward-oriented vessel). We will discuss this effect 

in more detail considering the actual errors in average speeds that were calculated 

(Table 2.5). In experimental videos, there are complexities such as arbitrary vessel 

shapes and orientations, eye motion, and variations in cell speeds both temporally and 

spatially.  There is also noise due to variations in the intensity of the background 

photoreceptor tissue, likely due to dynamic scattering changes over time (Pallikaris, 

Williams et al. 2003), and also coherence artifacts (Jonnal, Rha et al. 2007; Putnam, 

Hammer et al. 2010). These variations generate noise in the multi-frame division 

videos, and affect the appearance of the ST plots. Therefore, the actual error in 
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calculated speeds due to raster scanning and eye motion will be different. We compared 

our corrected speeds to uncorrected speeds, where uncorrected speeds were taken as 

simply the slope of the manually extracted trace, which assumes that the entire frame 

was acquired at the same moment in time. 

The actual error in the average speeds is 2.51% for the Type 1 video, 9.25% for 

the Type 2 video, and 2.83% for the Type 3 video. As described previously, the 

magnitude and sign of the error is determined largely by the trajectory of the vessel. For 

all three Types, the vessels deviate from a purely vertical vessel, and so the magnitude 

of the error is diminished compared to the model. In addition, because the end point of 

each vessel is lower than the start point, we expect an overestimation of speed for all 

three Types. The Type 2 video has the largest error, as predicted by the theoretical 

model (Figure 2.9). Notice that there is a nonlinear shift that results due to the raster 

scan correction. Close examination of the Type 1 traces in Figure 2.11 show that the 

slopes at the bottom of individual traces were decreased after application of the raster 

scan correction, while slopes at the top were increased. This suggests that the entrance 

side of the path segment underestimated speeds, while the exit side overestimated 

speeds, corresponding to a net upwards and net downwards vertical orientations, 

respectively. As can be seen from Figure 2.6, this was exactly the case. 
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Figure 2.11: Effect of raster scan showing extracted traces (dotted lines on left) and 

raster scan corrected traces (solid lines on right), for Type 1 (T1, frames 800-830), Type 

2 (T2, frames 48-60), and Type 3 (T3, frames 2278-2302) videos. The shifts are 

nonuniform due to the confounding effects of eye motion. Vertical scale bars, 0.1 mm; 

horizontal scale bars, 0.1 seconds. 
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Table 2.5. Summary of cell speeds 

Parameter Type 1 Type 1 Type 2 Type 2 Type 3 Type 3 
RS no yes no yes no yes 
N 50 50 4 4 12 12 
Mean [mm/s] 2.04 1.99 1.89 1.73 2.18 2.12 
SD [mm/s] 0.62 0.58 0.30 0.26 0.45 0.43 
Min [mm/s] 0.93 0.94 1.62 1.50 1.56 1.53 
Max [mm/s] 3.47 3.27 2.16 1.97 2.90 2.80 
 

Summary of cell speeds in selected vessel segments with and without the raster scan 

correction. 
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As a final comparison, for the Type 1 video, the error was 2.51%, compared to -

1.07% for the same vessel in A2_EM. The reason for this is due to a small difference in 

the starting and ending points of the vessel. Although we used the same trajectory, the 

end point of the vessel terminates slightly higher than the starting point for A2_EM, 

which explains the difference in the sign of the error. 

To verify that each extracted trace corresponded to an object on the input video, 

extracted traces were registered (illustrated in Figure 2.12). We individually verified 

each extracted trace by examining the tracked video frame-by-frame. Overall, the 

labeled lines tracked the leukocytes well. There were no false positives; it was not 

possible to calculate a false negative rate. 
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Figure 2.12: Moving objects labeled using white lines in the cropped video using 

extracted traces from ST plots, for a Type 1 (top), Type 2 (middle), and Type 3 

(bottom) video. For visualization purposes, we thickened the line by 2 pixels. Scale 

bars, 100 μm. 
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Detailed characterization of single-file flow 

For the third subject, a montage of parafoveal capillaries was generated by first 

applying motion contrast enhancement to each AOSLO video, and then combining 

overlapping images using image editing software (Adobe Photoshop; Adobe Systems, 

Inc., San Jose, CA, USA) (Figure 2.13). For display purposes, image intensities were 

normalized and image borders were deleted. This had no effect on the ST plot analysis, 

since we used non-edited images for the analysis of each video. Arterioles and venules 

were identified on a fundus photograph of the same eye by a retina specialist; 

identification of arterioles and venules on the AOSLO montage was then performed by 

overlaying the montage onto the fundus photograph (Figure 2.14). We confirmed many 

features of the parafoveal capillary network that have been previously described: an 

FAZ, surrounded by a single layer of capillaries in the zone immediately outside the 

FAZ; interdigitation of arterioles and venules; arterioles and venules oriented in 

directions normal to the contour of the FAZ, and capillaries oriented tangentially. 

Although some arterioles exhibited reduced capillary density compared to venules, this 

effect was less apparent near the macular region, as previously reported (Yu, 

Balaratnasingam et al. 2010). 
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Figure 2.13: Montage showing parafoveal capillaries generated by applying motion 

contrast enhancement to 76 overlapping AOSLO videos acquired noninvasively without 

contrast agent. Arrows denote arterioles. Scale bar, 500 µm. 
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Figure 2.14: Comparison of AOSLO with red free fundus photography. (A) AOSLO 

overlay on fundus photograph. The black box is magnified in panels (B) and (C). 
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Comparison to red-free fundus photography 

Vessels were overlaid onto the red-free fundus photography for comparison (Figure 

2.14). Red-free fundus photography was the best option for visualization of vessels in 

the clinic for this subject, since fluorescein angiography, which involves injection of 

contrast agent, is not routinely performed for subjects with no systemic or ocular 

disease. All vessels that could be identified on the red-free were seen on the AOSLO 

image; the AOSLO image also showed additional capillaries that were not visible on the 

red-free fundus. 

 

Interpretation and analysis of spatiotemporal plots 

There was considerable variation in the appearance of spatiotemporal plots (Figure 

2.15). In situations where contrast is generated invasively, interpretation of 

spatiotemporal plots is straightforward: traces on spatiotemporal plots correspond either 

to fluid gaps from injected dyes, or to individual cells from fluorescently-labeled cells. 

In the case of cell labeling, one can exactly verify the type of cell that is being analyzed. 

Since AOSLO images are acquired without contrast agents, direct verification is not 

possible. We present an interpretation of two unique patterns of the spatiotemporal 

plots, which we attribute to leukocytes and plasma gaps. 

The first category of traces included those that were (i) thick, (ii) high contrast, 

(iii) sparse, and (iv) unidirectional. We classified these traces as leukocytes traces when 

all four criteria were met, for the following reasons. First, since leukocytes are larger 

than erythrocytes, they have a longer length in single-file flow; this corresponds to a 

thicker trace on the spatiotemporal plot. Second, as described earlier, the fluid 
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mechanics model of single-file leukocyte flow features an erythrocyte-free plasma zone 

immediately upstream of the leukocyte, followed by an erythrocyte-packed zone 

immediately downstream. The size of the plasma and erythrocyte-packed zones are 

large compared to the size of normal red cell spacings in the absence of 

leukocytes(Schmid-Schonbein, Usami et al. 1980). At the imaging wavelength (840 

nm), erythrocytes are strongly absorbing relative to plasma (Meinke, Muller et al. 

2007). We suspect that leukocytes have low absorbance at near infrared. Taken 

together, these assumptions would lead to high contrast leukocyte traces on the 

spatiotemporal plots for single-file capillaries. Third, leukocytes were sparse, appearing 

only in a minority of frames, and absent in the majority of frames; this corresponds to 

sparse traces on the spatiotemporal plots. Finally, examining the videos directly, 

leukocytes were always observed to flow in a single direction, with no pausing or 

dwelling; this corresponds to unidirectional traces. By direct comparison of videos to 

spatiotemporal plots (i.e. by labeling videos with the coordinates of extracted traces), 

we verified that when these four conditions were met, extracted traces corresponded to 

leukocytes on AOSLO videos. 

The second category of traces included those that were (i) thin and (ii) dense. 

We classified these traces as plasma gap traces. These traces tended to have lower 

contrast than leukocyte traces, which is consistent with direct observations of AOSLO 

videos, where leukocyte-type objects exhibit higher spatial contrast compared to higher 

frequency fluctuations that are due to other elements of blood flow. First, a thinner trace 

corresponds to an object that is shorter; thin traces are unlikely to correspond to 

leukocytes. This suggests that thin traces are due to either individual erythrocytes or to 
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plasma gaps between erythrocytes. However, since the density of erythrocytes in 

capillary flow is high, we do not expect to have the spatial and temporal resolution to 

reliably visualize the motion of individual erythrocytes. Second, denser traces 

correspond to higher frequencies. Many of the thin traces occurred at frequencies that 

were too high to be generated by leukocytes. Some of these traces also exhibited some 

evidence of bidirectionality (i.e. reversal of flow direction). 

 

Identification of Leukocyte-Preferred Paths and Plasma-Gap Capillaries 

Spatiotemporal plots were generated for selected capillary segments near the FAZ, and 

analyzed for leukocytes and plasma gaps. A total of 114 traces due to leukocytes and 

1711 traces due to plasma gaps were identified across 21 capillary segments. We 

confirmed that the distribution of leukocytes and plasma gaps across the parafoveal 

network was not uniform. 

Leukocyte traffic was not observed through most capillaries. To investigate the 

distribution of leukocytes, we calculated the frequency of leukocyte flow for each 

capillary segment, and then generated a histogram showing the distribution of leukocyte 

frequencies across all capillary segments (Figure 2.16). Capillaries tended to either 

have very few leukocytes (non leukocyte-preferred-paths, non-LPPs), or have many 

leukocytes (leukocyte-preferred-paths, LPPs); we arbitrarily drew a line in the 

histogram to separate non-LPPs and LPPs. Next, we labeled non-LPPs and LPPs on a 

larger montage to show the spatial distribution of leukocyte flow, and found that LPPs 

were connected capillary segments that corresponded to a subset of thoroughfare 
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channels, which were the simplest and most direct paths connecting arterial to venous 

circulations (Figure 2.17). 

Plasma gaps were observed in all capillaries, but the distribution was also 

nonuniform. First, we generated a histogram showing the frequency of plasma gaps 

across all capillary segments (Figure 2.16). There was a clear separation in the 

histogram showing two capillary segments that exhibited steady plasma-gap patterns 

across the entire spatiotemporal plots (plasma gap capillaries, PGCs), shown to the right 

of the line in the histogram. Next, we labeled PGCs on a larger montage and found that 

PGCs were short capillary segments that served as anastomoses between more direct 

paths (Figure 2.17). 

To verify the computed flow directions, we also recorded the direction of flow 

for all the leukocytes, and found that they were in agreement with the direction of flow 

from arteries to veins as identified on the red-free fundus. 
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Figure 2.15: Interpretation of spatiotemporal plots, showing representative traces due to 

(A) plasma gaps and (B) leukocytes. These traces were isolated from full 

spatiotemporal plots to illustrate the two categories of traces that were identified for 

analysis. Plasma gap traces are thin and dense, while leukocyte traces are thick, high 

contrast, sparse, and unidirectional. 200-frame segments of spatiotemporal plots are 

shown from capillary segments that were identified as a (C) PGC, (D) LPP, and (E) 

neither a PGC nor a LPP. Note the areas of apparent bidirectionality in the PGC (arrow 

in C), and artifacts due to poor stabilization when correcting for eye motion (arrows in 

D) and a blink (arrow in E). Vertical scale bar, 0.5 mm; Horizontal scale bar, 0.5 

seconds. 
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Figure 2.16: Identification of leukocyte-preferred paths (LPPs) and plasma gap 

capillaries (PGCs). The distribution of leukocyte and plasma gap frequencies [#/min] 

are shown across all analyzed capillary segments. Vertical lines are inserted at breaks in 

the histograms to define LPPs and PGCs. 
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Figure 2.17: Spatial distribution of LPPs (green), PGCs (yellow), and all others 

capillaries that were selected for analysis (gray). Terminal arterioles (red) and collecting 

venules (blue) are shown for reference. 
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Speed and pulsatility of leukocytes and plasma gaps 

The speed of leukocytes and plasma gaps were similar in LPPs, and the pulsatility of 

leukocytes and plasma gaps were similar when considering all capillary segments. To 

investigate speeds, we calculated the average speeds of leukocytes and plasma gaps. 

There was sufficient data to calculate plasma gap speeds across all vessels; however, for 

the leukocytes, only the six capillary segments corresponding to LPPs contained 

sufficient data for leukocyte speed quantification. All values are reported as mean +/- 

standard deviation. Leukocytes had a speed of 1.80 +/- 0.22 mm/s (n = 114 leukocytes 

in 6 LPP segments), significantly higher than the speed of plasma gaps, which was 1.30 

+/- 0.55 mm/s (n = 1711 plasma gaps in 21 capillary segments) (p<0.05). However, the 

speed of plasma gaps through the same 6 capillary segments selected for the leukocyte 

speed measurement was 1.73 +/- 0.28 mm/s (n = 311 plasma gaps in 6 LPP segments), 

which was not statistically different compared to the leukocyte speeds (p=0.64). 

To investigate pulsatility, we generated averaged velocity waveforms as a 

function of time relative to the pulse cycle. The pulse cycle was divided into five equal 

segments to generate an averaged waveform for the calculation of the pulsatility index 

(Figure 2.18). We calculated pulsatility indices only when there was more than one 

speed measurement in each of the five segments. For the leukocytes, 2 out of 6 LPP 

segments satisfied these criteria; for the plasma gaps, there were 19 out of 21 capillary 

segments. There was no significant difference in the pulsatility indices for leukocytes, 

0.54 +/- 0.05 (n = 45 leukocytes in 2 LPP segments), and plasma gaps, 0.61 +/- 0.14 (n 

= 1652 plasma gaps in 19 capillary segments) (p=0.50). There was no apparent 

difference in pulsatility index across the capillary network. 
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The average heart rate across all videos was 64.8 +/- 5.0 bpm (n = 225 

measurements). 
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Figure 2.18: Examples of averaged velocity waveforms for leukocytes in a single 

representative LPP segment (top) and plasma gaps in a single representative PGC 

(bottom), demonstrating the existence of pulsatility in capillaries with single-file flow. 

Data from extracted leukocytes and plasma gaps are averaged for five equal segments 

of the cardiac cycle to generate an averaged waveform. 
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2.5 Discussion 

Tracking and speed quantification of moving objects 

This chapter demonstrates a method for quantifying object speeds in AOSLO videos. 

We demonstrated a multi-frame approach for motion contrast enhancement that 

improves the contrast of moving objects and vessels. Motion contrast enhanced ST plots 

were used to visualize hemodynamics, and individual traces were extracted for analysis. 

Extracted traces were used to track objects on the input videos and also for speed 

quantification. Speed quantification was done using a slope-modification technique that 

corrects for raster scanning in the presence of eye motion. We validated our results 

using a virtual AOSLO. The combination of selected techniques is significant in terms 

of putting together a complete system of video and image analysis for non-invasive 

vascular video imaging. 

Our results are similar to other methods. A previously reported method using 

manual identification and analysis on the same vessel from the same Type 1 AOSLO 

video used in this chapter found a total of 35 objects with a speed of 1.82 +/- 0.42 

mm/s, without considering the error due to raster scanning or eye motion; our 

uncorrected speed was 2.04 +/- 0.62 mm/s for 50 objects. While the numbers are 

similar, the discrepancies can be explained with the following considerations: The 

number of objects identified by the manual method was less than our method, probably 

due to difficulties in visualizing objects without motion contrast enhancement. It may 

have been more difficult to visualize objects that were traveling at faster speeds using 
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the manual method. Finally, the vessel trajectory may not have been as accurate in the 

manual method. 

There are a few similar results from different imaging modalities. Using 

fluorescein-aided scanning laser ophthalmoscopy, blood flow velocity was measured to 

be 3.29 mm/s (SD 0.45) in the parafoveal capillaries of 21 healthy volunteers (Arend, 

Wolf et al. 1991). Our measured speeds are similar in magnitude to these results, but we 

can explain the discrepancies as follows. First, the location and size of the capillaries 

was different. Second, we measured leukocyte speeds, while they measured whole 

blood speeds using fluorescein. It is known that leukocytes travel slower through 

capillaries than erythrocytes (Ben-nun 1996), which constitute the majority of blood by 

volume. Thus, differences in spatial locations, small sample size, and differences in the 

element of blood that is being measured could account for differences in measured 

speeds. The blue field entoptic phenomenon is another method to examine capillary 

flow in the parafoveal region that can be used for estimating blood velocities (Arend, 

Harris et al. 1995). The blue field entoptic phenomenon refers to the movement of 

“flying corpuscles” that can be seen when looking at an illuminated blue background 

(Loebl and Riva 1978).  It is thought that these “flying corpuscles” are in fact 

leukocytes. By having observers compare the speeds of these moving objects to those of 

simulated velocity fields, one can estimate speeds. One study found a speed of 0.89 +/- 

0.2 mm/s (Arend, Harris et al. 1995), while another found speeds between 

approximately 0.5 and 1 mm/s (Riva and Petrig 1980). These speeds are similar in 

magnitude to those that we obtained, but one needs to be cautious since the blue field 

technique is subjective in nature. 
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The methods presented in this chapter can be potentially applied to other high-

resolution scanning systems with moving objects. There are many areas for future work, 

including full automation and application of more advanced detection and tracking 

methods. There are also important microcirculation studies that can be performed, 

including development of a family of hemodynamic markers to investigate leukocyte 

behavior. Such markers could be used to quantify changes in leukocyte behavior for 

normal and diseased retinas. The human eye allows for a unique opportunity to directly 

examine the microcirculation, which has been made possible due to improvements in 

imaging techniques (AOSLO) combined with the image analysis algorithms presented 

in this chapter. 

Raster scanning and eye motion contribute to significant sources of error when 

quantifying speed on AOSLO videos. The magnitude of this error depends on the speed 

of the moving object, configuration of AOSLO imaging parameters, the orientation of 

the vessel, and the isotropy of the eye motion, but can be as large as 37.8%. Slope 

modification on ST plots can correct for this error, improving the accuracy of 

hemodynamics using AOSLO. 

 

Characterization of single-file flow 

We demonstrate a noninvasive method to characterize single-file flow of leukocytes and 

plasma gaps through live retinal capillaries in the living human eye. Noninvasive 

methods are important to confirm previous reports of peculiarities in the 

microcirculation that have been observed using invasive methods. Motion contrast 

enhancement, combined with AOSLO, can be used to visualize and analyze the 
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capillary network. We confirmed and quantified the distribution of leukocytes and 

plasma gaps across the network, and identified two specific types of capillaries. 

Leukocyte-preferred-paths (LPPs), a subset of thoroughfare channels, accounted for a 

clear majority of leukocyte traffic, and plasma-gap capillaries (PGCs), a subset of 

exchange capillaries, featured continuous flow of plasma gaps with occasional changes 

in flow direction. LPPs may be important as a protective mechanism to prevent 

leukocytes from entering non-LPP capillaries, where they can potentially become 

lodged, resulting in plugged capillaries. PGCs may be important for serving as relief 

valves for when a leukocyte enters a nearby LPP. Disruption of normal flow dynamics 

by neighboring leukocytes may be one of the factors that cause changes in the flow 

direction; spontaneous changes in flow direction have been previously reported 

(Kleinfeld, Mitra et al. 1998). Thus, bidirectionality in PGCs may serve as an adaptive 

mechanism to minimize flow disruptions. 

We also showed that both leukocytes and plasma gaps exhibit pulsatility. We 

report a pulsatility index of 0.54 and 0.61 for leukocytes and plasma gaps, which 

compares well to a previously published result using AOSLO data, which found a 

leukocyte pulsatility index of 0.45 +/- 0.09 (Martin 2009). A blue-field entoptic study 

reported a slightly higher pulsatility index of 0.98 in retinal capillaries, varying between 

0.80 and 1.17 across 5 subjects (Riva and Petrig 1980). These measurements may have 

been taken from larger capillaries, since the pulsatility index increases from small 

capillaries to large capillaries to small arterioles, and our measurements were taken at 

the level of the smallest capillaries. Noninvasive measurements of velocity waveforms 

in human retinal arterioles showed pulsatility indices of 1.13 for first order arterioles 
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(those originating from the optic disc) and 0.93 for second order arterioles (those after 

the first branch point) (Nagaoka and Yoshida 2006).  

Interestingly, leukocyte speeds appear to be significantly higher than plasma gap 

speeds when comparing the leukocytes found in LPPs to the plasma gaps found across 

all capillaries (p<0.05). However, since leukocytes could not be reliably identified in 

non-LPPs, this difference is likely skewed, since thoroughfare channels should have a 

higher flow speed than exchange capillaries. Indeed, there is no significant difference 

between leukocyte and plasma gap speeds when considering only the LPPs. Still, 

previous studies have reported that erythrocytes travel at a faster speed than leukocytes 

in the microcirculation. This suggests that either plasma gap speed is not a good proxy 

for erythrocyte speed, or leukocytes and erythrocytes do travel at similar speeds when 

restricted to only single-file capillaries. Inclusion of either pre-capillary arterioles or 

post-capillary venules would decrease measured leukocyte speeds, due to initial 

deformations needed to enter a narrow capillary, and leukocyte-vessel wall interactions, 

respectively. One study reported that the frequent attachments between leukocytes and 

the endothelium are disrupted by plasma fluid stresses upon entering single-file 

capillaries (Schmid-Schonbein, Usami et al. 1980). When examining the videos, no 

leukocytes were observed to pause at the level of single-file flow. 

As was the case for vessel perfusion mapping, it was important to select an 

appropriate plane of defocus. All methods described in this chapter were developed for 

a focus level posterior to the capillaries. When focused at the level of the capillaries, the 

appearance of the capillary is very different. Although it was sometimes possible to see 

individual objects moving through capillaries when focused at the level of the 



 

119 

capillaries (Figure 2.19), such details were typically difficult to see due to the presence 

of a strongly reflective vessel reflex. The vessel reflex is likely due to scattering from 

moving erythrocytes. Interestingly, when the plane of focus was set to the level of the 

large vessels, a vessel reflex could also be seen, suggesting that the dark appearance of 

the larger vessels in the videos focused at the photoreceptor level is not due to the fact 

that they are optically opaque, but rather, due to the fact that they are too far out of the 

plane of focus, similar to the phenomenon as the smaller vessels. That said, there is 

some optical opacity associated with a larger-sized column of blood cells (any light 

transmitted by a leukocyte or plasma gap is likely to be obscured by an erythrocyte 

along the optical path when considering the larger vessels). This explanation is 

consistent with the anatomy of larger vessels. Anatomically, larger vessels reside in an 

anterior plane compared to the capillary beds in the inner retina (Snodderly, Weinhaus 

et al. 1992). In the future, it may be possible to investigate erythrocyte dynamics in both 

capillaries and larger vessels, simply by changing the plane of focus. However, further 

studies are needed. 
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Figure 2.19: Defocus and ST Plots. The ascending slope of the M shaped vessel from 

the Type 1 video shown in Figure 2.3 was imaged using an 840 nm wavelength light 

source with a focus level set at the level of the capillaries. Although the vessel reflex 

dominates the signal, it is sometimes possible to see large moving objects, as shown 

here. These are likely the same objects that are seen when setting the focus near the 

photoreceptors. A short segment from the ST plot that shows two distinct traces after 

motion contrast enhancement is shown. At this magnification, individual frames can be 

seen on the ST plot. The three corresponding frames are labeled. 
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A clear limitation to using a noninvasive approach is that it is not possible to 

directly verify the types of cells that are being analyzed. This limitation is partly due to 

issues of low contrast. When imaging in humans, safety is a key consideration that 

limits the methods that can be applied. Thus, we needed to apply new methods to better 

visualize signals from plasma gaps and leukocytes. Due to noise and errors in frame-to-

frame registration, the process of spatiotemporal analysis is subjective. We used a 

conservative approach by extracting only those elements that were clearly visible on the 

spatiotemporal plots. This results in under-extraction, but minimizes false extractions. 

Therefore, reported frequencies should not be interpreted as absolute measurements, but 

rather as relative measurements. Since the same criteria were applied across all 

spatiotemporal plots, comparisons can be made between vessels. To insure 

repeatability, we repeated the leukocyte extraction two times, and compared the 

percentages of leukocytes found in each vessel. Two months elapsed between analysis 

sessions to minimize memory effects for the analysis sessions, which require user 

interaction. The average absolute difference in leukocyte percentages was 1.2%, and the 

same LPPs were identified in both analysis sessions. Finally, to minimize bias, pulse 

blips were not displayed on spatiotemporal plots during extraction. 

There are other important limitations. First, the imaging and data analysis 

procedures are time consuming, as they have not been fully optimized. Although 

vascular perfusion imaging can be performed using as few as 300 frames, the leukocyte 

analysis requires longer imaging times in order to collect sufficient data for speed and 

pulsatility quantification. In this chapter, to characterize flow dynamics in the third 

patient, we collected 2400 frames at 60 fps, which enabled us to apply a very 



 

122 

conservative approach for identifying leukocyte traces. However, with a more 

aggressive approach, fewer frames could be used. Second, it is difficult to apply the 

methods to larger vessels, since larger vessels (i) tend to be out of the plane of focus, 

which decreases the visibility of flow through the vessel, and (ii) the spatial and 

temporal resolution requirements are higher for larger vessels compared to single-file 

flow in smaller capillaries. However, it may be possible to characterize larger vessels by 

setting the focus level to the vessel reflex; vessel reflexes can be seen even in larger 

vessels. Third, the analysis method is difficult in regions of high capillary density, since 

it is difficult to identify sufficiently long capillary segments for generation of 

spatiotemporal plots. Fourth, it is possible that the analysis method detects aliased traces 

on the spatiotemporal plot, particularly when interpreting regions where flow reverses 

direction. Finally, it is difficult to analyze motion due to individual erythrocytes, since 

the spatial density is high, which is disadvantageous for spatiotemporal plot analysis. 

In this chapter, we examined leukocytes and plasma gaps in single-file flow 

through retinal parafoveal capillaries, using a noninvasive approach that we developed 

and validated for the AOSLO. The major advantage of a noninvasive approach is that 

there is no potential disruption of the natural flow and cell distribution, which can be 

caused by spontaneous activation of normally inactivated leukocytes; the tradeoff is that 

direct verification of specific cell types is difficult. We identified two distinct categories 

of capillaries, one which accounted for the majority of leukocyte traffic (LPPs), and the 

other which primarily featured plasma gap flow (PGCs). LPPs may serve as a protective 

mechanism to prevent inactivated leukocytes from entering exchange capillaries, and 

PGCs may serve as relief valves to minimize flow disruption due to the presence of a 
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leukocyte in a neighboring LPP. The noninvasive method presented in this chapter may 

be useful for imaging fine vascular details such as microaneurysms and other capillary 

defects that manifest in retinal diseases, and for studying leukocytes in live human 

capillaries. 
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CHAPTER 3 

CAPILLARIES IN EARLY-STAGE DIABETIC 

RETINOPATHY 

3.1 Abstract 

Vascular remodeling has long been implicated as a key factor in diabetic retinopathy. 

We used motion contrast enhancement methods and an adaptive optics scanning laser 

ophthalmoscope (AOSLO) to investigate the appearance of the parafoveal capillary 

network in adult subjects with diabetes. We performed a longitudinal study and a cross 

sectional study. For the longitudinal study, we recruited one adult subject with type 1 

diabetes and severe non-proliferative diabetic retinopathy, and acquired AOSLO videos 

on four separate visits spaced over a 16 month time period. The goal of the longitudinal 

study was to identify subclinical capillary changes in a patient with diabetic retinopathy, 

in relation to the surrounding photoreceptors, capillaries, and leukocytes. Retinal 

features were tracked longitudinally. Although the majority of capillary segments were 

stable over a period of 16 months, one capillary segment dropped out, leading to a 

small, but significant increase in FAZ size. There were also signs of microaneurysm 

formation and disappearance, as well as the formation of tiny capillary bends. The 

leukocytes in the capillary network were found to preferentially travel through the same 

routes in all four visits. For the cross-sectional study, we compared 12 adult subjects 

with type 2 diabetes and no diabetic retinopathy to 11 control subjects with no diabetes. 

The goal of the cross-sectional study was to establish that the retinal parafoveal 
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capillary network is altered prior to the onset of diabetic retinopathy in adult patients 

with type 2 diabetes. Arterio-venous (AV) channels were identified on AOSLO images 

as the least tortuous capillary channels connecting terminal arterioles to postcapillary 

venules. We found that the average tortuosity of AV channels was 26% higher in 

patients with type 2 diabetes when compared to controls, even though there were no 

signs of diabetic retinopathy in any of the eyes that were assessed (p<0.05). 

Additionally, metrics of capillary dropout showed small changes (between 3 to 7%), 

leukocyte speed was 14% lower, and pulsatility was 25% higher, but none of these 

differences were statistically significant. Although it is often difficult to find consistent 

changes in the microvasculature due to large intersubject variability, we demonstrate 

that motion contrast enhanced AOSLO imaging can be used to noninvasively visualize 

parafoveal capillaries and identify AV channels, which appear to be altered in type 2 

diabetes even before onset of diabetic retinopathy. 

 

3.2 Introduction 

Diabetes is a disease that produces gradual changes in many different systems 

throughout the body, including the retinal parafoveal capillary network, one of the most 

vulnerable capillary beds in the body due to the metabolic demands imposed by the 

surrounding retinal tissue. In the eye, diabetes can cause diabetic retinopathy (DR). The 

prevalence of DR has been reported to be 35% in patients who have had diabetes for 12 

years (Wong, Cheung et al. 2008). The first stage of DR, non-proliferative DR (NPDR), 

is marked by gradual capillary dropout. Associated with NPDR are a set of clinically-
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observable changes in the microcirculation. The earliest clinical signs are 

microaneurysms (MAs), small outpouchings of the capillaries, and dot intraretinal 

hemorrhages; other clinical signs include intraretinal microvascular abnormalities 

(IRMAs), which are focal disruptions of the capillary topology. 

Although the natural progression of DR from these signs into the late stages has 

been well-characterized, the early microvascular changes that precede DR are not well 

established, since it is very difficult to assess live human retinal capillaries, due to their 

small size and low optical contrast. These clinically-observable changes are noticeable 

mainly because they are larger in size than the surrounding capillaries. For example, 

fundus photography is a noninvasive method to detect MAs, visible as small dots. New 

dots appear and existing dots disappear over time (Hellstedt and Immonen 1996), 

presumably due to formation of new outpouchings and non-perfusion of existing 

outpouchings. However, using fundus photography, it is not possible to investigate the 

relationship of MAs to the surrounding capillaries. This is because it is difficult to 

image capillaries, due to their small size and low contrast. The gold standard for 

investigating human retinal capillaries is fluorescein angiography (FA). There are clear 

advantages for using FA to evaluate DR. These include the improved ability to detect 

MAs, as well as the ability to assess regions of capillary dropout or capillary 

remodeling. Typically, FA is performed by injecting a bolus of fluorescein dye into a 

peripheral vein, and then imaging the passage of the dye using a fundus camera. 

However, FA is not performed under normal situations on patients with type 2 diabetes 

and no DR, since there is little clinical justification for performing an FA at this stage; 

also, as with any invasive procedure, there is a small risk of adverse side effects (Kwan 
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2006). Moreover, there are very few animal models that investigate the capillary 

network before the onset of DR (Alder, Su et al. 1997), and even fewer that investigate 

both type 2 diabetes and DR (Kim, Johnson et al. 2004). Thus, there have been many 

efforts to develop instruments to noninvasively image the capillaries, in order to assess 

the early stages of DR, and to investigate other retinal diseases. 

 Capillary networks are complex. In a terminal capillary bed, there are arterioles, 

capillaries, and venules. In general, capillaries can be classified into two categories: 

thoroughfare channels, and exchange capillaries. Thoroughfare channels can be 

identified as those capillaries which, under normal conditions, provide the most direct 

path for blood cells from terminal arterioles to postcapillary venules (Chambers and 

Zweifach 1944; Hasegawa, Ravens et al. 1967; Tam, Tiruveedhula et al. 2011); all 

remaining neighboring capillaries are exchange capillaries. Assessment of capillary 

hemodynamics without consideration of the type of capillary or the proximity of the 

capillary to a thoroughfare channel can lead to misinterpretation of results. Although 

there have been previous studies which have investigated capillary hemodynamics in 

live human retinal capillaries (Arend, Wolf et al. 1994; Ludovico, Bernardes et al. 

2003), the measurements were performed on isolated capillary segments without taking 

into consideration the relationship of the capillary to the surrounding network. 

 Assessment of the human parafoveal capillary network is commonly quantified 

using a macroscopic metric such as foveal avascular zone (FAZ) size and shape 

(Bresnick, Condit et al. 1984; Mansour, Schachat et al. 1993; Sander, Larsen et al. 

1994; Hilmantel, Applegate et al. 1999; Conrath, Giorgi et al. 2005), or perifoveal 

intercapillary area (Sander, Larsen et al. 1994). Although there is a relationship between 
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FAZ size and DR severity, there is large intersubject variability; the average FAZ area 

of non-diseased eyes has been reported by three different studies as 0.152±0.086 

(Conrath, Giorgi et al. 2005), 0.367±0.090 (Sander, Larsen et al. 1994), and 

0.405±0.559 (Mansour, Schachat et al. 1993) (mean±standard deviation, in mm2, as 

measured using FA). Thus, the large intersubject variability makes it difficult to detect 

changes, especially in the early stages of the disease. Moreover, these metrics mask 

several unique topological features of the parafoveal capillary network. First, vessels 

are oriented in a specific manner. Capillaries are preferentially oriented 

circumferentially, while arterioles and venules are preferentially oriented radially; 

arterioles and venules are also arranged in an interdigitating manner (i.e. as one moves 

circumferentially around the FAZ, one encounters an arteriole, then a venule, followed 

by an arteriole, and another venule, etc.) (Snodderly, Weinhaus et al. 1992; Yu, 

Balaratnasingam et al. 2010). There are on average 2.9 terminal arterioles that directly 

supply the capillaries at the edge of the FAZ (Snodderly, Weinhaus et al. 1992). 

Second, there is a variation in capillary density in the circumferential direction. The 

capillary density is slightly increased near venules and slightly decreased near arterioles 

(Michaelson and Campbell 1940; Snodderly, Weinhaus et al. 1992; Yu, 

Balaratnasingam et al. 2010), due to a small capillary free zone that surrounds 

arterioles. However, this effect is diminished as one approaches the edge of the FAZ 

(Yu, Balaratnasingam et al. 2010). Finally, there is also a variation in capillary density 

in the radial direction. The capillaries form a planar, single-layered structure 

immediately outside of the FAZ; as one moves radially outwards, a deeper capillary 

layer begins, although this deeper layer is more sparse than the superficial layer (Yu, 
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Balaratnasingam et al. 2010). Consequently, in the parafoveal capillary network, 

capillary density is more dependent on proximity from the edge of the FAZ than on 

eccentricity. Any of these topological features could become affected in DR with little 

consequence on a macroscopic metric of capillary density. Thus, there is a need for 

more sensitive imaging biomarkers to characterize DR. 

 DR is a heterogeneous disease. Although it is often assumed that capillary 

dropout is a gradual process that occurs in NPDR, existing evidence is based on images 

of large areas of dropout; it is unclear whether the dropout occurs at the level of 

individual capillary segments. This is largely due to technical limitations preventing the 

ability to track individual capillary segments over time. In the early stages, most 

vascular lesions are focal, affecting only a small subset of capillaries. This is not 

surprising, given that the topography of the capillary network is highly heterogeneous. 

However, it makes it difficult to define quantitative metrics when assessing early signs 

of capillary disruption and blood flow, since normal regions of the microvasculature 

will likely dominate focal abnormal regions when quantifying any given metric. We 

hypothesize that there exist specific capillary channels within the parafoveal capillary 

network which are affected in DR. Disruption of such channels would lead to a change 

in the distribution of blood flow through the network, which could lead to the 

development of clinical signs of DR. 
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Figure 3.1: High resolution images of a live human retina, generated using an adaptive 

optics scanning laser ophthalmoscope (AOSLO). Both images were generated 

noninvasively, from the same AOSLO video. (A) This image was generated by 

averaging frames across the video. Small circular dots are cone photoreceptors. Dark, 

fuzzy lines generally correspond to capillaries; however, in many areas, the spatial 

contrast is low, making it difficult to determine the location of the capillaries. (B) Image 

of capillaries generated using intrinsic motion contrast signals, without the use of 

injected contrast agents. Scale bar, 100 µm. 
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Recently, we have developed noninvasive methods to visualize and assess the 

human parafoveal capillary network (Tam, Martin et al. 2010; Tam and Roorda 2011), 

with the ability to assess hemodynamics of specific capillaries in relation to the 

surrounding capillary network (Tam, Tiruveedhula et al. 2011), using an adaptive optics 

scanning laser ophthalmoscope (AOSLO) (Roorda, Romero-Borja et al. 2002; Zhang, 

Poonja et al. 2006) (Figure 3.1). In this chapter, we use a novel application of the 

AOSLO to determine the relationship between capillary channels, capillary network 

topology, and capillary hemodynamics in patients with type 2 diabetes and no DR. The 

detailed images generated using the AOSLO may enable us to detect changes in 

individual capillaries that were previously undetectable. 

 

3.3 Materials and Methods 

Research procedures adhered to the tenets of the Declaration of Helsinki. After a 

detailed explanation of procedures, written informed consent was obtained from all 

participants. The research protocols were approved by the University of California, 

Berkeley Committee for Protection of Human Subjects. 

 

Subjects 

For the longitudinal study, we invited one 26-year-old human male subject with type 1 

diabetes and severe non-proliferative DR (NPDR) to participate in a series of imaging 
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and assessment visits to determine whether we could detect any capillary changes as 

well as any signs of capillary dropout. 

For the cross-sectional study, we recruited 30 human subjects: 15 adult patients 

diagnosed with type 2 diabetes for at least five years, with no diabetic retinopathy in at 

least one eye (T2DM_NoDR), and 15 adult age-matched control subjects with no 

history of diabetes (control). 

 

Longitudinal Study Design 

Detection of capillary dropout is most likely during severe NPDR, because the next 

stage of the disease, proliferative DR, is marked by neovascularization. In addition, it is 

important to perform all assessments in the same eye, in order to make meaningful and 

detailed comparisons. To assess the capillaries, we utilized a method based on AOSLO 

imaging that enables the generation of highly detailed capillary images. In addition, we 

also performed conventional clinical tests to characterize the patient. There were a total 

of 8 visits spaced over a time-period of 16 months, with 4 visits corresponding to 

AOSLO imaging, 3 visits corresponding to screening tests consisting of conventional 

clinical measures, and 1 visit corresponding to a routine FA. A summary of the visit 

dates is shown in Table 3.1. For all visits, the subject’s left eye was selected. 
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 Table 3.1. Longitudinal Study Visit Information 

 Visit 1 Visit 2 Visit 3  Visit 4 
AOSLO Date 10/21/2009 11/24/2009 7/6/2010 2/6/2011 
Screening Date 9/30/2009 - 4/27/2010a 1/30/2011 
Screening Result Severe NPDRb - Severe NPDR Severe NPDRc

HbA1c 9.8% - 9.8% 10.8% 
Visual Acuityd 20/20 - 20/20 20/20 
log CSe 1.50 - 1.50 1.50 
Blood Pressuref 125/74 - 116/74 126/62 

a Fluorescein angiogram was performed on 5/28/2010. 
b

 Severe non-proliferative diabetic retinopathy. 
c Contralateral eye developed clinically-significant macular edema (CSME). 
d Snellen visual acuity. 
e Contrast sensitivity. 
f Blood pressure, left arm standing. 
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Screening Visits 

Prior to three of the AOSLO visits, the subject was invited for additional screening to 

monitor the clinical progression of the patient’s retinal health. Each screening visit was 

paired to one of AOSLO visits. For the screening visits, the procedures listed in Table 

3.1 were performed, as well as a medical history, spectral domain optical coherence 

tomography (SDOCT) (Cirrus HD-OCT Model 4000, Carl Zeiss Meditec, Inc, Dublin, 

CA), and color fundus photography (Zeiss Visucam Pro NM, Carl Zeiss Meditec, Inc., 

Dublin, CA). A 20o x 20o macular cube was acquired using the SDOCT. The fundus 

photograph was examined by a retina specialist to assess the grade of DR. The 

assessment was performed offsite with no information about the patient or disease 

history. 

 Between AOSLO visits 2 and 3, the patient developed clinically-significant 

macular edema (CSME) in the contralateral eye, and was subsequently referred for a FA 

study. The FA was acquired using a digital fundus camera (Zeiss Visucam NM/FA, 

Carl Zeiss Meditec, Inc., Jena, Germany). Photos were acquired using standard 

protocols. The photo that most clearly showed the parafoveal capillaries in the left eye 

was selected for comparison to AOSLO imaging. The goal of the comparison was to 

verify that capillaries and clinical features such as MAs could be properly identified. 

 

AOSLO Visits 

For the AOSLO visits, a series of overlapping videos were acquired near the foveal 

region of the retina. Individual photoreceptors could be resolved in the videos; the flow 

of individual leukocytes through retinal capillaries could also be seen. Videos were 
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processed to generate high contrast images of photoreceptors and capillaries. On the 

first visit, a short series of exploratory videos were taken in 15 overlapping regions on 

the retina, resulting in an image of the foveal avascular zone (FAZ), but not of the 

surrounding capillary network. The FAZ is a large capillary-free area; the severity of 

DR is associated with the size of the FAZ, with a larger size corresponding to a greater 

severity (Mansour, Schachat et al. 1993). On subsequent visits, videos were taken in 

additional regions (up to 43 locations per visit), and used to generate images of both the 

FAZ as well as the surrounding capillaries. AOSLO imaging was performed using 

parameters optimized for capillary imaging (40 second videos, 60 fps) (Tam, 

Tiruveedhula et al. 2011). During video acquisition, the subject’s pulse was 

simultaneously recorded. 

 We analyzed photoreceptors, capillaries, and leukocytes using the AOSLO 

videos. To analyze the photoreceptors, locations of individual cones were labeled, and 

cone spacing was quantified (Rodieck 1991; Duncan, Zhang et al. 2007). To assess the 

capillaries, the FAZ was extracted using a semi-automated procedure (Tam, Martin et 

al. 2010), and the diameter quantified to determine the precision with which FAZ size 

could be quantified. We analyzed the distribution and measured the speed of leukocytes 

across visits using spatiotemporal plot analysis (Tam and Roorda 2011; Tam, 

Tiruveedhula et al. 2011). Previously, we showed that a small subset of capillary 

channels called leukocyte-preferred paths (LPPs) account for a clear majority of 

leukocyte traffic (Tam, Tiruveedhula et al. 2011). However, it was uncertain whether 

the same LPPs would be identified on different visits, particularly in the presence of 

DR. 
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 AOSLO images were compared across visits to detect structural changes in the 

capillary network, including any formation of new MAs or disappearance of existing 

MAs, as well as dropout of capillaries. The FAZ was also assessed to determine 

whether there were any changes. 

 

Cross Sectional Study Design 
 
Exclusion criteria were prior ocular surgery (including refractive surgeries), cataract or 

media opacities, and ocular diseases not associated with diabetes (including any 

retinopathy); patients who were pregnant or nursing (lactating) were also excluded. 

 
AOSLO Imaging 

One eye from each subject was selected for imaging. In a few subjects, only one eye 

satisfied all inclusion criteria. If both eyes satisfied all inclusion criteria, then the eye 

with the lower spherical equivalent refractive error was selected for imaging. The 

selected eye was dilated (2.5% phenylephrine hydrochloride, 1% tropicamide). 

Images of the parafoveal capillary network were generated noninvasively, 

without the injection of contrast agent, as described previously (Tam, Martin et al. 

2010; Tam, Tiruveedhula et al. 2011). Briefly, overlapping AOSLO videos were 

acquired in the parafoveal region (1.8 deg field size, 40 seconds, 60 Hz). The subject’s 

pulse was measured using a photoplethysmograph (MED Associates Inc., St. Albans, 

VT, USA), and simultaneously recorded in a data file during acquisition of all videos. 

Custom motion-contrast enhancement algorithms were applied offline to generate 

capillary perfusion images from each of the acquired AOSLO videos, and the resulting 
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capillary perfusion images were assembled to generate a montage of the parafoveal 

capillary network, showing the foveal avascular zone (FAZ) and surrounding parafoveal 

capillaries (Figure 3.2). 

AOSLO images of the parafoveal capillary network were successfully generated 

in 12 out of 15 T2DM_NoDR subjects and 12 out of 15 control subjects. The overall 

success rate for AOSLO imaging was 24 out of 30 subjects (80%). The proportion of 

subjects undergoing conventional FA who had images of sufficient quality for the 

delineation of individual parafoveal capillaries was 13 out of 17 in a prior study (76%) 

(Sander, Larsen et al. 1994). The success rate of delineating the FAZ using oral FA 

combined with confocal scanning laser ophthalmoscopy was 16 out of 34 (47%) 

(Garcia, Rivero et al. 1999). Notably, AOSLO images are generated with minimal risk 

considering the noninvasive nature of the method. Images of perfused capillaries were 

used to compare the two groups for qualitative differences. Specifically, we examined 

AOSLO images for subclinical capillary peculiarities, such as capillary bends and 

possible precursors to microaneurysms, as well as possible breakdown of the 

topological organization of the capillary network. 
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Figure 3.2: Example of AOSLO imaging for one control subject. In this example, 

overlapping videos were taken in 21 different locations on the retina, processed to 

generate capillary images, and then compiled to generate a montage of the parafoveal 

capillary network. (A, B) 45 degree fundus photograph, with and without AOSLO 

images. (C,D) Zoom of white box from (B), showing portion of the fundus photograph, 

with and without AOSLO images. Scale bar, 500 µm. (E,F) Zoom of white box from 

(D), showing fundus photograph, with and without one AOSLO image generated from a 

single video. Scale bar, 100 µm. 
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Medical history 

All subjects underwent a medical history to verify inclusion and exclusion criteria as 

outlined above. One control subject was excluded due to a diagnosis of age-related 

macular degeneration (AMD). For the T2DM_NoDR subjects, hemoglobin A1c 

(HbA1c) levels were measured, and a slit-lamp examination was performed to verify 

the absence of cataract prior to AOSLO Imaging. 

 

Biometry Measurements 

Axial length, anterior chamber depth, and corneal curvature were measured and used to 

make accurate conversions from visual angle to distance, as described previously (Li, 

Tiruveedhula et al. 2010) (IOL Master, Carl Zeiss Meditec Inc., Dublin, CA, USA). 

 

Fundus Photography and Grading 

A digital fundus camera was used to acquire 45 deg fundus photographs near the 

posterior pole for all subjects (Zeiss Visucam Pro NM, Carl Zeiss Meditec Inc., Dublin, 

CA, USA). For the T2DM_NoDR subjects, two additional photographs were taken 

(nasal and temporal to the fovea), and the three overlapping color fundus photographs 

were evaluated by a retina specialist to determine whether there were signs of any 

retinopathy. Photographs were evaluated off-site with no subject-identifying 

information and no information about the subject’s medical history. They were assigned 

a grading of no retinopathy, mild non-proliferative diabetic retinopathy (NPDR), 

moderate NPDR, severe NPDR, or proliferative diabetic retinopathy (PDR); in addition, 
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macular edema and any other signs of retinopathy not related to diabetes were also 

noted. 

The retina specialist assigned a grading of “no retinopathy” to all T2DM_NoDR 

eyes that were selected for AOSLO imaging. Three of the T2DM_NoDR subjects were 

assigned a grading of “mild NPDR” in the contralateral eye. After excluding the one 

subject from the control group who presented with AMD (as described above), AOSLO 

images of the parafoveal capillary network from 12 T2DM_NoDR subjects and 11 

control subjects were generated and used for comparison. The mean and standard 

deviation of the ages were 55.5±7.6 years for the T2DM_NoDR subjects and 52.2±10.6 

years for the control subjects. Detailed information about these subjects is presented in 

Table 3.2. There was a difference in the composition of the ethnicities between the two 

groups (ethnicity was neither an inclusion criteria nor an exclusion criteria, and thus no 

attempt was made to select for ethnicity during subject recruitment). Although the 

prevalence of diabetes is higher in the Mexican-American population, the prevalence of 

DR is similar when compared to a Caucasian population (West, Klein et al. 2001). Thus 

far there have been no major studies that have shown any ethnic differences in the 

parafoveal capillary network near the FAZ. 
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Table 3.2. Subject characteristics 

Subject1 Sex Age Eye Ethnicity Duration 
[years] HbA1c 

C2 F 33 OS Caucasian N/A N/A 
C3 M 37 OD Caucasian N/A N/A 
C4 F 59 OS Caucasian N/A N/A 
C5 F 53 OD Caucasian N/A N/A 
C6 F 52 OD Caucasian N/A N/A 
C7 M 51 OD Caucasian N/A N/A 
C9 M 63 OS Black N/A N/A 
C11 M 55 OD Caucasian N/A N/A 
C12 M 70 OD Caucasian N/A N/A 
C14 M 47 OS Caucasian N/A N/A 
C15 M 54 OS Caucasian N/A N/A 
D1 M 38 OD2 Asian 14 6.1 
D3 M 56 OD Native American 6 13.1 
D6 F 45 OD2 Hispanic 12 7.2 
D7 M 57 OD Caucasian 8 7.5 
D8 F 53 OS Hispanic 10 7.4 
D9 F 63 OS Hispanic 10 6.8 
D10 M 57 OD Caucasian 8 6.6 
D11 M 64 OS Caucasian 8 7.3 
D12 F 53 OS Hispanic 5 7.8 
D13 F 63 OS Caucasian 12 6.5 
D14 F 63 OD2 Hispanic 10 7.3 
D15 F 54 OS Hispanic 14 7.8 

1 C2 to C15 are control subjects; D1 to D15 are T2DM_NoDR subjects. 
2 Subject presented with mild NPDR in the contralateral eye. 
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Identification of Arterio-Venous Channels 

We identified AV channels (defined here as the simplest, most direct capillary paths 

connecting arteries to veins), and calculated tortuosity. The concept of AV channels is 

based on thoroughfare channels (Chambers and Zweifach 1944; Hasegawa, Ravens et 

al. 1967). In the absence of anastomoses (bypass vessels between macular arterioles or 

venules), as has been shown in the human retina (Yu, Balaratnasingam et al. 2010), 

thoroughfare channels can be identified as the simplest, most direct paths connecting 

arterioles to venules. We used the following steps to identify AV channels (Figure 3.3): 

 First, we identify the locations of arterioles and venules. The largest vessels in 

the AOSLO images were matched to the smallest vessels in the color fundus 

photographs. By following arteries and veins directly into the AOSLO images, locations 

of arterioles and venules could be identified. Second, we draw paths to represent 

candidate AV channels, starting at an arteriole and ending at a venule, applying a simple 

rule at each branch point. At each branch point, we select the branch with the smallest 

branch angle, where branch angle is defined as the angle between the centerline of the 

vessel upstream of the branch point, and the centerline of the branch. If both branch 

angles are similar, then both paths were selected. By proceeding in this manner for all 

arterioles and branch points, a set of candidate AV channels is generated. Finally, we 

identify the three least tortuous AV channels. There are on average about three terminal 

arterioles that feed the capillaries immediately outside of the FAZ (Yu, Balaratnasingam 

et al. 2010); thus, we expect on average about three AV channels. 
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Figure 3.3: Identification of AV channels on AOSLO Images. The steps are: (A) 

identify locations of arterioles (red) and venules (blue), (B) identify candidate AV 

channels satisfying the branch selection rule, and (C) select the three least tortuous AV 

channels 
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To quantify tortuosity, we selected a metric that emphasizes areas of high 

curvature and de-emphasizes areas of low curvature, noting that the curvature of smaller 

vessels is greater than larger vessels (Hart, Goldbaum et al. 1997). This definition of 

tortuosity is fairly consistent with the clinical notion of tortuosity (Hart, Goldbaum et al. 

1997): 

L
TSC

lineoflength
lineofcurvaturesquaredtotaltortuosity ==  

 
(1)

To minimize the effect of the discrete nature of pixel representation, we used a sliding 

least squares polynomial fitting scheme to calculate the curvature. To calculate the 

curvature at each point along the channel, we extracted a 20 µm segment centered 

around the point, and calculated the least squares cubic polynomial fit for that segment. 

We used the polynomial fit to calculate the curvature, based on taking the first and 

second derivatives of the polynomial, as described previously (Hart, Goldbaum et al. 

1997). 

We identified the three least tortuous AV channels and calculated the average 

tortuosity of these three channels. Not all AOSLO images could be analyzed for AV 

channel tortuosity, due to variations in data quality both within and across subjects. We 

attempted to quantify AV channel tortuosity only in the subjects whose FAZs could be 

delineated using the AOSLO. Thus, the quality of the AOSLO images was sufficient to 

enable AV channel tortuosity measurements in 11 out of 11 control subjects and 11 out 

of 12 T2DM_NoDR subjects. 
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Macroscopic Measures of Capillary Dropout 

We calculated three measures of capillary dropout: FAZ size, FAZ shape, and capillary 

density. We attempted to quantify measures only in those subjects whose FAZs could 

be delineated using the AOSLO. Due to variations in the appearance of the FAZ, the 

number of overlapping AOSLO videos required to fully visualize the FAZ ranged from 

9 to 21 videos. Since there were variations in the quality of videos both within and 

across subjects, sometimes it was not possible to quantify a specific metric across all 

subjects. However, in all cases, metrics were quantified in as many subjects as possible. 

 

FAZ Size: The borders of the FAZs were extracted using a semi-automated algorithm, 

as described previously (Tam, Martin et al. 2010). We identified the FAZ as the largest 

avascular zone near the fovea. The area of the extracted region was quantified in pixels2 

and then converted to mm2 using a model eye parameterized by the biometry 

measurements from each subject. The effective diameter of the FAZ was calculated as 

the diameter of the circle with equal area: 

π
Areadiametereffective 2=  

 
(2) 

The quality of the AOSLO images was sufficient to enable quantification of the FAZ 

Size in 11 out of 11 control subjects and 12 out of 12 T2DM_NoDR subjects. 

 

FAZ Shape: We measured the shape of the FAZ using the following acircularity metric: 

areaequalwithcircletheofperimeter
FAZtheofperimetertyacirculari =  

 
(3) 
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A perfectly circular FAZ has an acircularity equal to 1. Deviations from a circular shape 

increase the value of this acircularity metric. 

The quality of the combined AOSLO images was sufficient to enable FAZ shape 

measurements in 11 out of 11 control subjects and 9 out of 12 T2DM_NoDR subjects. 

 

Capillary density: The centerlines of all vessels in a region of interest (ROI) within 0.15 

degrees of the edge of the FAZ were extracted using a semi-automated extraction 

process, as described previously (Tam, Martin et al. 2010). The inner border of the ROI 

was defined as the edge of the FAZ, and the outer border was defined as the contour 

spaced 0.15 degrees from the edge of the FAZ. In the parafovea, capillary density 

increases in a discontinuous manner, from zero inside to FAZ, to an intermediate value 

in the region of single-layered capillaries, with subsequent increases corresponding to 

the introduction of additional capillary layers. The eccentricities at which the additional 

capillary layers begin depend largely on the size of the FAZ; moreover, with an 

irregularly-shaped FAZ, the transition may occur at different eccentricities depending 

on the direction (e.g. superior vs. inferior). Therefore, to minimize confounding factors, 

we elected to use the ROI defined by the actual shape of the FAZ in order to capture the 

approximate zone where the capillary network is single-layered. We defined the 

capillary density metric as: 

A
L

ROItheofarea
scapillarieextractedalloflengthtotaldensitycapillary ==  

 
(4) 
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The quality of the AOSLO images was sufficient to enable capillary density 

measurements in 8 out of 11 control subjects and 9 out of 12 T2DM_NoDR subjects. 

 

Capillary Hemodynamics 

We calculated two measures of capillary hemodynamics: leukocyte speed and 

pulsatility index. As for the previous metrics, we attempted to quantify hemodynamics 

only on those subjects whose FAZs could be delineated using the AOSLO. 

 

Leukocyte speed: We quantified the speed of leukocytes through selected AV channels. 

Under normal physiological conditions, there is considerable variation in the 

distribution of leukocytes across the parafoveal capillary network (Tam, Tiruveedhula 

et al. 2011). Some AV channels contained many leukocytes, while others did not. We 

identified the least tortuous AV channel that also contained many leukocytes, and 

measured the speed of all leukocytes that could be clearly identified in the 

corresponding 40 second AOSLO video. The speed of each leukocyte was quantified 

directly, incorporating corrections for raster scanning and eye motion, as described 

previously (Tam and Roorda 2011). We then calculated the average leukocyte speed by 

plotting leukocyte speed vs. relative cardiac cycle, dividing the cardiac cycle into 5 

bins, calculating the average speed of each bin, and then taking the average speed of the 

5 bins. Relative cardiac cycle was determined from the subject’s pulse data, which was 

simultaneously recorded during video acquisition. Thus, leukocyte speeds were 

normalized for variations due to the cardiac cycle. 
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The quality of the AOSLO videos was sufficient to enable leukocyte speed 

measurements in 8 out of 11 control subjects and 7 out of 12 T2DM_NoDR subjects. 

 

Pulsatility index: We calculated the pulsatility index (PI) for leukocytes using a method 

described previously (Tam, Tiruveedhula et al. 2011). Briefly, leukocyte speeds were 

plotted vs. relative cardiac cycle, and divided into 5 bins. We defined Vmax as the bin 

with highest average speed, Vmin as the bin with the lowest speed, and Vmean as the 

average speed of all 5 bins. PI was calculated as: 

meanV
VVPI minmax −=  

 
(5) 

We calculated PI only when there were at least two leukocytes identified in each bin. 

Applying this criteria, we calculated PI in 7 out of 11 control subjects and 5 out of 12 

T2DM_NoDR subjects. 

 

Statistical analysis 

We compared the two groups using two-tailed unpooled t-tests with a significance level 

of 0.05. 

 

3.4 Results 

Longitudinal Study 

The patient was diagnosed with type 1 diabetes 20 years prior to his first visit, with no 

history of hypertension or hyperlipidemia. The SDOCT showed no clinically significant 

changes across visits: macular thickness was within normal limits, and the IS/OS 
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junction was intact (an abnormal junction would be indicative of photoreceptor 

disruption). For all visits, the retina specialist determined that the patient had severe 

non-proliferative diabetic retinopathy (NPDR). The retina specialist also assessed the 

FA study and determined that the patient had severe NPDR. The HbA1c, visual acuity, 

contrast sensitivity, and blood pressure were also similar across the visits (Table 3.1). 

These tests show that the patient was stable as assessed by conventional clinical tests 

over all visits. 

Detailed images of the vasculature were successfully generated using 

noninvasive AOSLO methods. The AOSLO images of capillaries, arteries, and veins 

were in good agreement with images generated by conventional clinical methods 

(Figures 3.4, 3.5). 
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 Figure 3.4: Comparison of AOSLO imaging to color fundus photography. (A,B) Color 

fundus photo, with and without the AOSLO image from visit 4. Scale bar, 2.5 mm. (C) 

Zoom of box from (B). A total of 43 overlapping AOSLO videos were combined to 

generate this image. In the center of the capillary network is a region free of capillaries, 

called the foveal avascular zone (FAZ). Near the FAZ, microaneurysms and capillary 

bends can be seen. It is important to identify and monitor microaneurysms in patients 

with diabetes. Scale bar, 500 µm. 
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 Figure 3.5: Comparison of AOSLO imaging to fluorescein angiography (FA). (A) 

Capillaries and MAs as visualized using FA. A portion of the FA near the fovea is 

shown. (B) AOSLO image from visit 3, with the FA in the background, showing good 

agreement between the AOSLO and the FA. Scale bar, 500 µm. 
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Repeatability of AOSLO imaging 

Qualitatively, the same general structure of the capillary network was identified in each 

of the visits, with the exception of the fourth visit, where a single capillary segment 

dropped out, leading to a small increase in FAZ size (Figure 3.6). 

To quantify repeatability, the FAZ was extracted and the diameter quantified for 

all visits (Figure 3.7). The diameter was calculated as the diameter of the circle with 

equal area. Assuming that there was no change in the FAZ for the first three visits, the 

FAZ diameter based on the first three visits was between 749 and 759 µm (99% 

confidence interval). The FAZ diameter on the fourth visit was 763 µm, a significant 

increase in size due to the dropout of a single capillary segment (p<0.01). This suggests 

that AOSLO imaging can be used to quantify FAZ diameter to a precision of ± 5 µm. 

 

Microaneurysms and intra-retinal microvascular abnormalities 

In general, there was good agreement between the MAs identified on the FA and on the 

AOSLO images. All MAs identified on the FA could be identified in the AOSLO image 

from visit 3 (taken approximately one month later); there were some changes that could 

be identified when comparing these images with the other visits, which included 

development of a new MA and disappearance of an existing MA. There was also an 

object that appeared to be a multi-lobed MA (Figure 3.8) and microaneurysm-like 

object with two lobes (Figure 3.8C), from visit 4, 300 out of 2400 frames shown in real 

time). One intraretinal microvascular abnormality (IRMA) was imaged in visits 3 and 4 

There were several areas that were similar in appearance to the IRMA, but may have 
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been too small to be detected by FA. One of these micro-IRMAs developed a new 

capillary protrusion between visits 2 and 3, suggesting that these micro-IRMAs may be 

precursors to larger, clinically significant IRMAs. 

 

Capillary bends 

A large number of capillary bends were observed using the AOSLO; such bends were 

not resolved by the FA (Figure 3.9). 
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 Figure 3.6: Capillary dropout at the right edge of the FAZ. The same region on the 

retina is shown from the (A) fluorescein angiogram (FA), (B) visit 2, (C) visit 3, and 

(D) visit 4. Note that the FA was taken between visits 2 and 3. Scale bar, 100 µm. 
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Figure 3.7: Extracted FAZs for size quantification for (A) visit 1, (B) visit 2, (C) visit 

3, and (D) visit 4. Note the increase in FAZ size at the right edge of visit 4 (arrow). 

Scale bar, 200 µm. 
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Figure 3.8: Microaneurysms (MAs) and intraretinal microvascular abnormalities 

(IRMAs). (A,B,C) From left to right, the columns are images from fluorescein 

angiography (FA), visit 1, visit 2, visit 3, and visit 4. Black regions are areas that were 

not imaged by the AOSLO on that visit. The FA was performed between visits 2 and 3. 

(A) The same MAs could be seen across multiple visits. (B) There was one new MA 

which developed after visit 2 (top row) and one MA which disappeared between the FA 

and visit 4 (middle row). One small MA appeared to grow in size between visits 2 and 4 

(arrow in bottom row).  (C) MA-like object with two lobes. (D) One IRMA was 

identified. From left to right, the IRMA as seen by FA, visit 3, and visit 4. (E) Possible 

micro-IRMAs that were too small to be detected by FA. In one of the micro-IRMAs, a 

small capillary protrusion developed between visit 2 and the FA (arrow). Scale bar, 100 

µm. 
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Figure 3.9: Examples of capillary bends. The columns from left to right indicate 

images from fluorescein angiography (FA), visit 1, visit 2, visit 3, and visit 4. The FA 

was performed between visits 2 and 3. Scale bar, 100 µm. 
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Capillary dropout 

Aside from the dropout of the capillary segment at the edge of the FAZ, there were also 

other areas of potential subclinical capillary dropout. In normal eyes, there are several 

capillary-free zones in the human retina that must be taken into consideration when 

identifying regions of capillary dropout. The largest capillary-free zone is the FAZ (in 

this patient, the FAZ had an area of 0.46 mm2). Near the FAZ, the capillary network is 

single-layered. Because capillaries are arranged in a circumferential manner around the 

FAZ, there are several rings of capillary-free zones called peri-foveal intercapillary 

areas, which correspond to this region of single-layered capillaries; the average area of 

these regions is approximately 0.001 mm2, based on a previous study (Sander, Larsen et 

al. 1994). At larger eccentricities one would not expect to find capillary-free zones of 

this size, except around arteries. There is a small capillary-free zone that surrounds 

arteries, but not veins (Michaelson and Campbell 1940). 

There were two regions of capillary dropout (Figure 3.10). The first region was 

classified as a region of capillary dropout because of the size of the capillary-free zone. 

This region was located at an eccentricity too large to be a perifoveal inter-capillary 

area, and the zone extended too far away from an artery to be a capillary-free zone from 

an artery (the areas of the regions of capillary dropout shown were between 0.020 and 

0.022 mm2). Interestingly, this region was also a region where a MA disappeared. A 

second region of capillary dropout surrounded a vein, again at an eccentricity where 

there should have been multiple layers of capillaries. 
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 Figure 3.10: Subclinical capillary dropout. Regions of capillary dropout are marked 

with an asterisk (*). Images are taken from the fluorescein angiogram (left) and the 

AOSLO on visit 4 (right). (A) Two regions of capillary dropout next to an artery (A). 

The circled region is not considered to be capillary dropout since it is part of the 

capillary-free zone surrounding the artery. Note the disappearance of a microaneurysm 

at the area of capillary dropout. (B) Two regions of capillary dropout next to a vein (V). 

A venous bend is circled. Scale bar, 100 µm. 
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Distribution and speed of leukocytes 

Leukocytes were analyzed on visits 2, 3, and 4. For each visit, 10 capillary segments 

near the FAZ were identified, and analyzed for leukocyte speed and frequency. In total, 

295 leukocytes were identified across all three visits. A histogram of leukocyte 

frequency was used to determine the set of capillaries that accounted for a clear 

majority of leukocyte traffic. These capillaries were called leukocyte-preferred paths 

(LPPs) (Tam, Tiruveedhula et al. 2011) (Figure 3.11). In all three visits, the same four 

LPPs were identified; collectively, these LPPs accounted for 67%, 62%, and 68% of all 

leukocytes identified for visits 2, 3, and 4, respectively. 

The speed of the leukocytes in each of the LPPs varied across visits, ranging 

from 1.24 to 1.97 mm/s (Figure 3.12). Leukocyte speeds were averaged across the 

cardiac cycle and then normalized for heart rate using the subject’s pulse data recorded 

during video acquisition. 
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Figure 3.11: Leukocyte-preferred paths (LPP) shown on the AOSLO image from visit 

2.  The same four LPPs were identified in visits 2, 3, and 4. Shown are capillaries 

identified as LPPs (green) as well as capillaries which were assessed but not identified 

as LPPs (gray). Arterioles (red) and venules (blue) are shown for reference. Scale bar, 

100 µm. 
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Figure 3.12: Leukocyte speed. LPP 1, 2, 3, and 4 refer to the channels as labeled on 

Figure 3.11. Speeds were averaged across the cardiac cycle and then normalized for 

heart rate. Error bars represent the standard deviation of the leukocyte speeds measured 

in the specified LPP and visit. 
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Assessment of cone photoreceptors 

The same videos that were used to generate perfusion images were used to generate 

high resolution images and montages of the cone mosaic. Cone spacing was assessed in 

various locations within the montage for each visit. Spacing was estimated by manually 

selecting cone centers in contiguous unambiguous patches of cones and inferring the 

spacing from a histogram of all intercone distances within that set. Details on how cone 

spacing was estimated are reported elsewhere (Rodieck 1991; Duncan, Zhang et al. 

2007). Cone spacing for each respective location was compared with expected spacing 

from a database of 27 normal eyes. Deviations from normal were quantified as z-scores, 

or the number of standard deviations from the normal mean at that location. In this 

particular patient, it was determined that cone spacing was normal (z-scores within +/- 

2), except at the foveal center, where cone spacing was higher than expected (i.e. cone 

density was lower than expected) (Figure 3.13). The cone spacing measures were 

consistent between visits and there were no signs of any progression over the four visits. 



 

164 

 

Figure 3.13: AOSLO photoreceptor montage of the foveal region superimposed on top 

of the corresponding AOSLO perfusion image, from visit 4. The black circle indicates 

the patient’s preferred retinal locus for fixation. Cone spacing results are plotted as z-

scores (# of standard deviations from the normal mean) at all locations where cone 

spacing was measured. Locations with z-scores greater than 2 are indicated with dashed 

circles. Near fixation, cone density is decreased; further away from fixation, cone 

density returns to normal. Scale bar, 300 µm. 
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Cross-sectional Study 

In general, there were no obvious homogeneous differences that could be observed 

between the T2DM_NoDR and control groups (Figure 3.14). The interdigitating 

arteriole and venule organization was maintained in all images. It appeared that there 

were areas of focal capillary disruption, notably around areas of capillary bend 

formation. Interestingly, capillary bends were present in both groups, suggesting that 

some aspects of capillary disruption may be present even in healthy subjects (Figure 

3.15). There were also objects which might be precursors to microaneurysms present in 

both groups; such objects were not clinically identified as microaneurysms based on 

fundus photography. When identifying such objects, it should be noted that 

interpretation of AOSLO images is different than interpretation of FA images, as 

sources of hyper- and hypo- intensity are different; in FA, intensity is a measure of 

fluorescein dye accumulation, and may be indicative of leakage; in AOSLO images, 

intensity is a measure of high relative flow, with no information about leakage. 

AV channels were identified, extracted, and quantified for tortuosity (Figure 

3.16). Extracted FAZs and capillaries are shown (Figures 3.17, 3.18). 

 

Statistical Analysis 

The average AV channel tortuosity was 26% higher in T2DM_NoDR subjects 

compared to controls (p<0.05). There were no statistically significant differences in 

capillary dropout or capillary hemodynamics (Figure 3.19). Comparing T2DM_NoDR 

to controls, the average FAZ size was 7.4% higher, FAZ shape 3.4% higher, capillary 

density 3.7% lower, leukocyte speed 14.4% lower, and pulsatility index 25% higher. It 
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was difficult to assess whether all variables followed a normal distribution, particularly 

in the case of FAZ shape, where there was one outlier. Therefore, we also performed 

Wilcoxon rank sum tests, which confirmed that AV channel tortuosity was significantly 

higher (p<0.05), with none of the other metrics testing as significantly different. 
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Figure 3.14: Examples of parafoveal capillary montages generated using custom 

motion contrast enhancement algorithms. Higher intensities denote areas of greater 

intensity fluctuations due to blood flow as seen on unprocessed AOSLO videos. Subtle 

variations in intensity in non-capillary areas are artifacts due to the use of multiple 

overlapping videos. There were no obvious qualitative differences in appearance 

between the two groups. Shown are examples: (A) four control subjects and (B) four 

T2DM_NoDR subjects. Arrows denote examples of peculiar capillary bends (shown in 

more detail in Figure 3.4). The asterisk in (B) denotes a rather large avascular region 

outside of the FAZ, which may be indicative of early capillary dropout. Scale bar, 500 

µm. 
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Figure 3.15: Examples of capillary abnormalities, in (A) control and (B) T2DM_NoDR 

subjects. There were capillary bends and dead-end capillaries present in both groups 

(top two rows), as well as objects of various sizes that were similar in appearance to 

microaneurysms (arrows in bottom row), despite the absence of microaneurysms on 

color fundus photographs. Scale bar, 100 µm. 
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Figure 3.16: The 3 least tortuous AV channels from the (A) control and (B) 

T2DM_NoDR subjects. The capillary segments are arranged to best fill the space in 

each panel of the figure. The color map shows the range of tortuosities (Arbitrary Units, 

generated by calculating TSC/L * 105). Scale bar, 500 µm. 
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Figure 3.17: Extracted FAZs for (A) control and (B) T2DM_NoDR subjects. Three 

FAZs could not be extracted due to poor data quality, as described in the text. Of the 

extracted FAZs, three FAZs were not used for quantification of FAZ shape, due to poor 

quality data in one or more videos showing the edge of the FAZ (asterisk). For these 

FAZs, the extracted FAZ was estimated from the AOSLO image and quantified for size 

but not shape. Scale bar, 500 µm. 
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 Figure 3.18: Extracted capillaries for (A) control and (B) T2DM_NoDR subjects. 

Some subjects could not be analyzed due to poor data quality in one or more portions 

within the ROI, as described in the text. Scale bar, 500 µm. 
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Figure 3.19: Results from statistical analyses, for control (A) and T2DM_NoDR (B) 

groups. AV channel tortuosity was significantly higher in the T2DM_NoDR group 

compared to the control group (p<0.05). For FAZ shape, which had one outlier, a 

Wilcoxon rank sum test confirmed that the difference between groups was not 

statistically significant (p=0.26). 
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3.5 Discussion 

In the longitudinal study, we show that AOSLO imaging can reliably image capillaries 

and capillary defects in NPDR, on the basis of repeated application of AOSLO imaging 

alongside comparison to FA, the gold standard for visualizing human retinal capillaries. 

In the cross-sectional study, we show, without fluorescein angiography, that AV 

channels in the human retinal parafoveal capillary network are disrupted in the early 

stages of type 2 diabetes, even before any signs of DR. Since most capillaries are 

exchange capillaries, with only a select few comprising the AV channels, it is relatively 

difficult to detect this change when using macroscopic metrics to assess the parafoveal 

capillary network. 

 

Longitudinal study 

Both clinical and subclinical features can be identified using the AOSLO. Clinical 

features, including MAs and IRMAs, tended to be larger in size, while subclinical 

features, such as capillary bends, micro-IRMAs, and the flow of individual leukocytes, 

tended to be smaller, similar in size to the smallest capillaries. The relationship between 

subclinical and clinical features can potentially be investigated using the methods 

presented in this chapter, since the assessment of clinical features using the AOSLO 

was consistent with the assessment by conventional clinical measures. Moreover, we 

show that subtle vascular changes occur even when the patient appears stable when 

assessed by conventional clinical measures. 
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 MAs are dynamic capillary defects, spontaneously forming and disappearing 

with a half life of about 2 years for patients with type 1 diabetes and mild DR (Hellstedt 

and Immonen 1996). The mechanism of MA formation is not completely established, 

but generally there is a weakening of the capillary wall due to pericyte loss (Hammes, 

Lin et al. 2002) or basement membrane disruption (Ashton 1963; Cunha-Vaz, Faria de 

Abreu et al. 1975), leading to focal endothelial cell proliferation. We found evidence of 

one MA increasing in size (Figure 3.8B), which may suggest that MAs increase in size 

before disappearing. There was also one MA which disappeared (Figures 3.8B and 

3.10A). The region near the MA disappearance is also one of capillary dropout, 

consistent with prior observations that MAs disappearances are associated with 

capillary closure (Cunha-Vaz and Bernardes 2004). Disappearance of a MA is most 

likely due to thrombogenesis (Boeri, Maiello et al. 2001). It has been suggested that 

thrombotic phenomenon in MA is facilitated by changes in erythrocyte and leukocyte 

flow through the capillaries (Cunha-Vaz and Bernardes 2004). In this eye, there are no 

LPPs in the supero-temporal region of the parafovea (Figures 3.4 and 3.11). The 

absence of LPPs in this region could lead to a disruption of erythrocyte and leukocyte 

flow near that region; the location of the MA disappearance is in the supero-nasal 

region, although at a greater retinal eccentricity (Figures 3.4C and 3.10A). 

The large number of capillary bends may be indicative of endothelial cell 

proliferation. Significantly, MAs were not observed at the tips of capillary bends, 

suggesting that bends and MAs are the result of endothelial cell proliferation occurring 

under different conditions. Unfortunately, it was difficult to determine whether any of 

these bends increased in size over the four visits. In one of the microIRMAs, a new 
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capillary bend developed (Figure 3.8E), suggesting that capillary bends may also 

evolve over time. In FA, small capillary bends are typically not resolved, and can 

potentially be mistaken as MAs. The detail with which retinal features can be resolved 

may enable the AOSLO to detect precursors to MAs and IRMAs. 

FAZ size is often used as a proxy for capillary dropout, with larger FAZs 

indicative of more serious levels of retinopathy (Mansour, Schachat et al. 1993). It is 

often assumed that increases in FAZ size are the direct consequence of capillary 

dropout; in this chapter, we show direct evidence of capillary dropout leading to an 

increase in FAZ size. Although the sensitivity of FAZ size as an imaging biomarker is 

limited due to large intersubject variability, noninvasive assessment of the FAZ may be 

important for longitudinal comparisons within the same patient (that is, changes to the 

size of the FAZ in an individual may be more significant than the absolute size of the 

FAZ compared to a population; at the end of this chapter, we estimate that 160 subjects 

would be needed to achieve a significance for a change in FAZ diameter). The AOSLO 

can be used to identify subtle events that cause the FAZ to increase in size. In this 

subject, we also show some areas of subclinical capillary dropout; such areas are likely 

too small in size to be captured by FA. 

Leukocytes are involved in the development of DR (Chibber, Ben-Mahmud et 

al. 2007). However, the direct relationship between leukocytes and clinical signs of DR 

has not been shown in humans, due to the difficulty of assessing leukocytes in vivo. In 

this study, we showed that the distribution of leukocytes in the capillaries near the FAZ 

are stable over a period of 15 months, even in the presence of small changes in the 

neighboring capillaries (Figure 3.11). At the venous end of the LPP at the right of the 
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FAZ, there is a MA. Interestingly, the presence of this MA does not appear to affect the 

upstream flow of the leukocytes into the LPP. There were no MAs or IRMAs along the 

path of the other LPPs. Whether the dropout of such a MA would result in a 

redistribution of leukocytes remains to be seen. Leukocyte speed through LPP1 was 

consistently higher when compared to the other LPPs. Thus, an important consideration 

for the interpretation of capillary speed measurements in other studies is that the speed 

is dependent on the specific capillary that is being measured. 

The state of cone photoreceptor spacing in DR is unknown. Although there is an 

increase in foveal cone spacing for this patient, it is uncertain whether this result is due 

to diabetes or another unknown variable. Photoreceptors are not clinically assessed, 

since the ability to image them in live human subjects has only been enabled with recent 

advances in imaging technology. There is evidence of neural damage in DR(Barber 

2003), suggesting that the photoreceptors may also be affected. In this patient, there was 

no evidence of photoreceptor disruption across visits as assessed by SDOCT; the 

increase in cone spacing as observed by the AOSLO may have subclinical significance. 

However, further studies are needed to answer this question, and to further investigate 

the results presented in this chapter. 

The main limitation of this study is that one subject was assessed. However, it is 

important to consider that there is a large amount of data that can be quantified from the 

AOSLO videos, each consisting of 2400 video frames, enabling both static histological 

comparisons as well as dynamic blood flow assessments (as an example, we quantified 

the speed of 295 leukocytes over 3 visits). Although no conclusions can be made about 

the natural progression of DR, there are several important clinical implications. First, 
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we show that subtle capillary changes exist even when the patient appears to be stable. 

Such changes include the enlargement of an existing MA, development of IRMA-like 

capillary bends, and the dropout of a single capillary segment leading to the FAZ 

enlargement. Second, we show that the distribution of leukocytes traveling through the 

parafoveal capillary network is maintained over time, even in the presence of subtle 

changes in the neighboring capillaries. Moreover, we demonstrate the importance of 

specifying the capillary through which speed measurements are performed, since certain 

capillaries consistently feature faster flow rates than other capillaries. Finally, we show 

that areas of subclinical capillary dropout exist, even when accounting for natural 

capillary-free zones in the parafoveal capillary network. These isolated areas may lead 

to the more widespread capillary dropout that is seen in the later stages of DR. 

Simultaneous assessment of photoreceptors, capillaries, and leukocytes can 

potentially give rise to novel imaging biomarkers, which could be used to monitor the 

progression of DR. Future work includes establishing a procedure for clinical 

interpretation of AOSLO images, since the sources of hyper- and hypo- intensity are 

different than what is conventionally expected. The quality of the AOSLO images 

increased over the visits due to continual modifications that were made to the AOSLO, 

which is a custom-built research instrument. Standardization of the technology will help 

ensure that the data quality is consistent across visits. Despite these limitations, 

reproducible, detailed images of capillary features were successfully generated. Our 

results show that additional AOSLO studies involving patients with diabetes are 

warranted. 
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In conclusion, AOSLO imaging may give insights into how DR affects the 

photoreceptors, capillaries, and leukocytes. AOSLO imaging is repeatable, and sensitive 

enough to detect changes such as the dropout of MAs and individual capillary segments, 

as well as the development of new MAs and IRMAs. The distribution of leukocytes 

seems to be unaffected by neighboring microvascular changes in the time course of 15 

months. However, the relationships among the different vascular changes in DR are 

complex. Our results show that subclinical changes to the capillaries may exist even 

when conventional clinical measures detect no change. 

 

Cross-sectional study 

Based on the results of this study, we propose a novel hypothesis for the development of 

clinical microvascular changes (Figure 3.20). Unlike prior studies, this model links 

microvascular changes and hemodynamics to account for clinical signs. 
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Figure 3.20: Flow chart showing the proposed mechanism for progression from AV 

channel disruption to NPDR. EC, endothelial cells; MAs, microaneurysms; IRMAs, 

intraretinal microvascular abnormalities; CWS, cotton wool spots. 
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We hypothesize that there is an ongoing cycle of AV channel disruption, which 

propagates with a redistribution of leukocytes out of AV channels and into exchange 

capillaries. A redistribution of blood flow prior to the onset of DR has been previously 

reported in a streptozotocin rat model for diabetes (Alder, Su et al. 1997). Initially, with 

incremental changes in tortuosity, existing AV channels are likely to be replaced by 

new AV channels, which would be the next least tortuous path connecting arterioles to 

venules. However, replacement AV channels would likely include some exchange 

capillaries, which may not be suitable for increased leukocyte traffic. Specifically, the 

passage time for leukocytes through exchange capillaries is likely to be much higher 

than for leukocytes through AV channels. This would lead to an overall accumulation of 

leukocytes in the network, consistent with previous findings (Kim, Johnson et al. 2005). 

These leukocytes inside exchange capillaries may lead to focal capillary dropout, for 

which many leukocyte-based mechanisms have been proposed (Chibber, Ben-Mahmud 

et al. 2007), which may be triggered by a decrease in the deformability and increase in 

activation of diabetic polymorphonuclear leukocytes (Braun, Fisher et al. 1996; 

Miyamoto and Ogura 1999). As the cycle of AV channel disruption continues, one can 

imagine that there could be two points of no return: first, when all AV channels have 

been replaced by exchange capillaries, and second, due to progressive disruption, when 

there are finally no longer any more viable replacement AV channels. 

This cycle could lead to clinical signs of DR, with endothelial cell remodeling 

resulting in the formation of microaneurysms and intra-retinal microvascular 

abnormalities. If leukocytes were to accumulate inside microaneurysms, as has been 
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qualitatively observed (Ashton 1963; Kim, Johnson et al. 2005), then this could lead to 

the subsequent disappearance of the affected microaneurym. This accumulation of 

leukocytes inside microaneurysms would be aided by any redistribution of leukocytes 

resulting from AV channel disruption. Simultaneously, since leukocytes have such a 

dominant role in determining the flow mechanics in capillaries, disruption of the tissue 

homeostasis may lead to neural damage or formation of cotton wool spots. Therefore, 

disruption of AV channels could lead to the formation of clinically observed changes. 

There are several potential explanations for why AV channel tortuosity is higher 

in the T2DM_NoDR group. First, it is possible that the increase is due to endothelial 

cell proliferation. However, given that our results occur prior to the formation of 

clinically-identifiable microaneurysms (a sign of endothelial cell proliferation), it is 

unlikely that the increase in tortuosity can be attributed to endothelial cell proliferation 

alone. Second, it is possible that a flow parameter such as increased intramural pressure 

could contribute to an increase in tortuosity, as has been modeled using 7.9 mm 

diameter latex tubing (Kylstra, Wierzbicki et al. 1986). However, it is unclear whether 

the mechanisms for increased tortuosity of larger vessels can be applied to capillaries, 

since capillaries are by nature more tortuous than larger vessels. Although it is tempting 

to apply existing mechanisms for increases in vessel tortuosity, it is important to keep in 

mind that our definition of AV channel tortuosity is based on finding the least tortuous 

paths. Hence, a higher AV channel tortuosity implies that the set of least tortuous paths 

is higher, but does not necessarily imply that the tortuosity of any one capillary segment 

has increased. Given these considerations, along with our hypothesis (Figure 3.20), a 
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higher AV channel tortuosity in patients without retinopathy may simply be the result of 

the progressive loss of key capillary segments. 

 Our results are consistent with previous studies that have investigated capillary 

dropout, which is a hallmark of NPDR. There are several methods to quantitatively 

assess capillary dropout. The most intuitive method is to quantify the size of the FAZ, 

with a larger FAZ corresponding to capillary dropout in the parafovea. While some 

studies have found statistically significant increases in FAZ size in NPDR (Mansour, 

Schachat et al. 1993; Conrath, Giorgi et al. 2005), data from other studies show 

increases only in the later stages (Hilmantel, Applegate et al. 1999); this is likely due to 

the large intersubject variability in FAZ size. There is also some evidence that the FAZ 

becomes more acircular in DR, with greater effects on the perimeter than on the size 

(Bresnick, Condit et al. 1984; Conrath, Giorgi et al. 2005). Our measurements of FAZ 

size and shape are consistent with the numbers reported in these studies, falling between 

the numbers reported for normal and diabetic FAZs. Finally, our capillary density 

metric is similar to perifoveal intercapillary area, which has been found to increase in 

NPDR (Arend, Wolf et al. 1994; Sander, Larsen et al. 1994), with the change likely to 

occur between mild NPDR and moderate NPDR (Sander, Larsen et al. 1994). These 

studies and the data from our study suggest that macroscopic capillary dropout is a 

gradual process that likely occurs only after the manifestation of clinical signs of DR. 

 There have been many studies of blood flow in DR. However, results are 

potentially confounded by differences in measurement location (e.g. arteriole, venule, or 

capillary; papillary, macular; retina, choroid), disease severity (e.g. NPDR, PDR), 

disease type (e.g. type 1, type 2), object of measurement (e.g. erythrocyte, leukocyte, 
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plasma bolus), or even disease model (e.g. rat, monkey, human). Considering only 

results from human subjects, it appears that blood flow in arteries and veins are 

decreased prior to the onset of DR (Feke, Buzney et al. 1994; Bursell, Clermont et al. 

1996; Konno, Feke et al. 1996) and increased during NPDR (Kohner, Hamilton et al. 

1975; Cunha-Vaz, Fonseca et al. 1978; Patel, Rassam et al. 1992; Konno, Feke et al. 

1996). Perifoveal capillary velocity was found to be decreased in patients with diabetes 

(Arend, Wolf et al. 1994), consistent with the data in this study; however, 

papillomacular capillary blood flow was found to be increased in patients with type 2 

diabetes but no DR (Ludovico, Bernardes et al. 2003), suggesting that changes to the 

blood flow are heterogeneous in nature. Finally, studies investigating the pulsatility of 

blood in choroidal vessels have found increases in pulsatility in the later stages of DR 

(severe NPDR, PDR) (Geyer, Neudorfer et al. 1999; Savage, Hendrix et al. 2004), but 

the results are inconsistent in the earlier stages, with decreases (Geyer, Neudorfer et al. 

1999), no change (Savage, Hendrix et al. 2004), and increases (MacKinnon, O'Brien et 

al. 2009) shown. In our study, leukocyte speed was 14% lower, and pulsatility index 

25% higher. We identified capillary segments using AV channels in order to perform 

leukocyte speed measurements in the same corresponding location of the parafoveal 

capillary network in all subjects; furthermore, measured speeds were normalized for the 

cardiac cycle. The average heart rate, which was simultaneously recorded during the 

acquisition of every AOSLO video, was similar in both groups (66.4±11.7 for 

T2DM_NoDR and 64.7±9.4 for controls, reported as mean±standard deviation, in beats 

per minute). Increased AV channel tortuosity is consistent with decreased leukocyte 

speed, since leukocytes must deform to travel through small capillaries in single-file 
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(Schmid-Schonbein, Usami et al. 1980), and any increase in tortuosity is likely to 

require additional deformations for leukocyte passage. In addition, the decreased 

leukocyte speed is consistent with the increased rigidity of diabetic leukocytes 

(Pécsvarády, Fisher et al. 1994). Although the results of statistical testing for these 

hemodynamic measures were not significant (i.e. inconclusive), such metrics may still 

be of clinical importance. 

 There are several limitations to this study. 

First, the sample sizes of the control and T2DM_NoDR groups are small. Due to 

the small sample size, it was not meaningful to examine correlations with variables such 

as HbA1c, disease duration, or age. The age range in this study was narrow, as it was 

pre-determined mostly by the inclusion criteria of type 2 diabetes with no DR, and at 

least 5 years disease duration; by 15 years duration, nearly 80% of type 2 diabetes 

patients have signs of DR (Klein, Klein et al. 1984). Despite the small sample size, AV 

channel tortuosity was significantly different when comparing patients with type 2 

diabetes and controls, suggesting that this metric is highly sensitive. In this study, we 

selected the three least tortuous channels. To explore the robustness of this metric, we 

also compared the least tortuous channel, as well as the average of the two least, four 

least, and five least tortuous channels, and found statistically significant differences in 

all cases. However, larger studies should be undertaken to validate our findings. 

Second, the ethnicity is markedly different between the two groups. While there 

are no studies to suggest that the parafoveal capillaries are different with respect to 

ethnicity, it is possible that changes may be due to ethnicity. We did not find changes in 
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the macroscopic measures of capillary dropout, which supports our assumption that 

there are no significant ethnic differences. 

Finally, the process of AOSLO imaging combined with video and image 

analysis is time consuming, and requires specialized equipment that is not yet 

commercially available. In this study, AOSLO imaging for one eye from each subject 

required about 2.5 hours, followed by about 20 hours of offline processing per eye to 

generate images of parafoveal capillaries and to quantify the metrics described in this 

study. However, these methods are not yet optimized, as nearly every step utilizes 

custom hardware and software. Future optimization and automation of imaging and 

processing will certainly result in significant improvements in speed. 

In the future, studies should be performed to validate the AV channel tortuosity 

metric, perhaps by examining high-quality FAs to evaluate AV channel tortuosity in 

NPDR and PDR. Results from this study are important for planning future studies. As 

examples, our results suggest that about 180 subjects would be needed to achieve 

significance for a change in FAZ shape (when including the outlier), 160 subjects for a 

change in FAZ diameter, 120 subjects for capillary density, and about 30 subjects for 

leukocyte speed or pulsatility index (assuming a two-sided t-test, significance level 

0.05, and power level 0.80). 

In conclusion, we demonstrate a unique method to noninvasively assess retinal 

capillaries and leukocytes in patients with type 2 diabetes and no DR. Although there 

are now several methods to noninvasively visualize capillaries in humans (Nelson, 

Krupsky et al. 2005; Kim, Fingler et al. 2011; Schmoll, Singh et al. 2011), the system of 

imaging and analysis described in this chapter is unique in that capillaries and 
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leukocytes can be analyzed from the same dataset. Furthermore, we offer a “causative” 

model that links microvascular changes and blood flow to clinical signs of DR (Figure 

3.20). 

These new methods may be useful for assessing the microcirculation in other 

diseases, particularly as advances in technology reduce the time commitment for 

analysis and allow for larger study populations. This application may find the most use 

in cases when FA is not performed (for whatever clinical reason), or for establishing a 

normal database of parafoveal capillaries, since our data suggests that subclinical 

capillary peculiarities may exist even before the onset of disease (Figure 3.14). 

Although it is often difficult to find changes in the microvasculature due to large 

intersubject variability, AV channels in the parafoveal capillary network are disrupted 

even before the presence of any clinical signs (p<0.05), and this change appears to 

precede measureable levels of capillary dropout as well as alterations to leukocyte flow. 

As such, AV channel tortuosity is the most promising candidate as an imaging 

biomarker for evaluating the efficacy of a therapeutic agent, or as a tool to assess the 

onset and progression of DR. 
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CHAPTER 4 

CONCLUSIONS 

4.1 Summary of Findings 

The objective of this work was to develop a better understanding of capillaries and 

moving blood cells seen by adaptive optics scanning laser ophthalmoscopy, in order to 

extend the applicability of the overall imaging system for studying normal and diseased 

retinas. To address this objective, novel approaches were taken. In summary, the novel 

methodologies were: 

(A)  Development of custom motion contrast enhancement algorithms in order to 

noninvasively generate detailed images of the retinal vasculature, without the 

use of injected contrast agents (Chapter 1). 

(B)  Development of a system of video and image analysis based on motion contrast 

enhanced spatiotemporal plots for accurate tracking and speed quantification of 

moving objects in a raster scanning system that acquires images in the presence 

of eye motion (Chapter 2). 

(C)  Development of image analysis tools to quantify metrics about the parafoveal 

capillary network, including measurement of the foveal avascular zone, 

parafoveal capillary density, pulsatility of moving objects, and tortuosity of 

arterio-venous capillary channels (Chapters 1,2,3). 
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The major scientific findings were: 

1. Parafoveal capillary density in the single-layered region is uniform in the superior, 

inferior, nasal, and temporal directions. 

2. Leukocytes and plasma gaps are distributed in a heterogeneous manner around the 

parafoveal capillary network, with certain capillaries accounting for a clear majority 

of leukocyte traffic (leukocyte preferred paths), and others primarily featuring 

plasma gap flow (plasma gap capillaries). 

a. Leukocyte preferred paths may serve as a protective mechanism to prevent 

inactivated leukocytes from entering exchange capillaries. 

b. Plasma gap capillaries may serve as relief valves to minimize flow disruption 

due to the presence of a leukocyte in a neighboring capillary. 

3. Arterio-venous capillary channels are disrupted in type 2 diabetes even before the 

onset of diabetic retinopathy. 

a. Disruption of arterio-venous channels would result in a redistribution of 

leukocytes out of thoroughfare channels and into exchange capillaries. 

b. This redistribution could lead to clinically observed signs of diabetic 

retinopathy, such as microaneurysms, intra-retinal microvascular abnormalities, 

and cotton wool spots. 

c. Arterio-venous channel tortuosity is a promising candidate as an imaging 

biomarker for evaluating the efficacy of a therapeutic agent, or as a tool to 

assess the onset and progression of diabetic retinopathy. 
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4.2 Future Directions 

There are many areas for future work. We describe four potential directions: (i) further 

investigation of diabetic retinopathy, (ii) application of motion contrast imaging to other 

retinal diseases, (iii) development of an engineering model for microhemodynamics of 

retinal capillaries, and (iv) optimization and automation of video and image processing 

algorithms. For each area, we describe the scientific questions of interest, key technical 

problems that need to be solved, and proposed approaches. 

 

4.2.1 Diabetic Retinopathy 

There are many questions that remain to be answered, in patients with no diabetic 

retinopathy, non-proliferative diabetic retinopathy (NPDR), or proliferative diabetic 

retinopathy (PDR). 

 

Leukocyte studies 

The system of AOSLO imaging combined with video and image processing allows for 

the noninvasive investigation of leukocytes in live human capillaries. In Chapter 3, we 

hypothesized that a redistribution of leukocytes out of AV channels and into 

surrounding capillaries could lead to the formation of clinical signs seen in NPDR. If 

this were true, then we would expect a decrease in leukocyte frequency through AV 

channels. For the 7 T2DM_NoDR and 8 control subjects on which leukocyte speed 

quantification was performed, the frequency at which leukocytes flowed through 
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selected AV channels was 30.0±21.6 leukocytes/minute for the T2DM_NoDR group, 

and 54.8±32.8 leukocytes/minute for the Control group (mean±standard deviation, two 

sided unpooled t-test, p = 0.11). Although these numbers are in agreement with the 

hypothesis, there are several important considerations. First, it should be noted that 

leukocyte frequency measurements are highly dependent on the quality of the videos, 

and as such, these results could simply reflect a lower video quality in the 

T2DM_NoDR group. Second, identification of leukocyte traces is based on a user-

defined criteria for evaluation of spatiotemporal plots, as described in Chapter 2. The 

key assumption is that the traces identified on spatiotemporal plots are due to 

leukocytes. Finally, there are many factors that can lead to changes in leukocyte 

frequency, both systemically, and locally within a tissue. Although our hypothesis is 

based on local factors, differences in systemic white blood cell counts could also have 

an impact. It has been shown that white blood cell counts are increased in patients prior 

the onset of type 2 diabetes (Vozarova, Weyer et al. 2001), and also in smokers 

(Nakanishi, Yoshida et al. 2002). However, the fact that we observed a decrease in 

leukocyte frequency despite any increase in systemic white blood cell count suggests 

that AV channel leukocyte frequency probably is in fact diminished. To be certain, 

before reporting absolute measures of leukocyte frequency, a method for normalizing 

frequencies, along with a series of validation experiments, need to be performed. 

As with any imaging system, validation of the objects being imaged using 

experimental conditions is important. Direct verification of leukocyte imaging can be 

performed using fluorescent labeling and a nonhuman primate. An AOSLO equipped 
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with fluorescent imaging capabilities is needed (Gray, Merigan et al. 2006). Leukocytes 

can either be labeled in vivo or ex vivo. A popular dye for in vivo (intravital) labeling of 

leukocytes is Acridine Orange (AcOr), a DNA-staining probe that spares erythrocytes 

due to their lack of a nucleus; the dye is not fluorescent until it diffuses across the cell 

membrane and binds to the DNA, and has similar absorption and emission spectra as 

fluorescein, making it a convenient choice for retinal imaging systems. Other candidate 

dyes for leukocyte imaging that have similar absorption and emission spectra include 

fluoroisothiocyanate (FITC), calcein-AM, and carboxyfluorescein diacetate (CFDA) 

(Tsujikawa and Ogura 2011). The AcOr dye can be injected systemically, as has been 

done in monkeys (Nishiwaki, Ogura et al. 1995), rats (Komatsu, Koo et al. 1990; 

Nishiwaki, Ogura et al. 1996; Miyamoto, Hiroshiba et al. 1998; Tsujikawa, Kiryu et al. 

2000), and snake (Zwick, Elliott et al. 1999). In the case of retinal imaging, the 

choroidal circulation is largely blocked due to staining of the RPE nuclei (relevant for 

widefield imaging techniques). The main limitation of using AcOr is its low quantum 

yield (0.20); it may be possible to find a different probe with a higher quantum yield. 

Additionally, all types of leukocytes are equally likely to be labeled by the dye. The 

second possibility based on ex vivo labeling is to extract whole blood, isolate 

leukocytes, stain with a fluorescent dye, and reinject the leukocytes into the circulation. 

This strategy has been done using fluorescein dye in humans (Paques, Boval et al. 

2000). Although the number of labeled objects is likely to be small, a potential 

advantage of this method is that it would be possible to specify the type of leukocyte 

that is being measured. Incorporation of flow cytometry after isolation of leukocytes 

and before staining would enable selective staining of specific classes of leukocytes, 
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which would be useful for studying the different types of leukocytes. As examples, 

monocytes and granulocytes are more likely to cause injury to the capillaries, since their 

activation releases proteases and O2-derived free radicals (Fantone and Ward 1982). As 

additional evidence, an increase in post-mortem granulocyte density (also known as 

polymorphonuclear leukocytes) was found in diabetic monkeys in the parafoveal region 

(p<0.01) (Kim, Johnson et al. 2004). 

 Finally, peculiarities in leukocyte flow are currently uncharacterized. As 

examples, leukocyte flow retardation along the walls of microaneurysms, leukocyte 

flow through sharp capillary bends, and spontaneous reversals in flow direction can be 

observed in select patients and controls. Temporary occlusion of a capillary segment by 

a plugged leukocyte may not be visible unless there are changes that can be observed on 

the time scale of imaging (40 seconds in this dissertation). Although it may be difficult 

to observe leukocyte dwelling, we did observe an example of a leukocyte changing 

speeds in one of the AV channels from one of the T2DM_NoDR patients (Figure 4.1). 

Irregularities in flow could lead to the formation or evolution of focal capillary defects, 

such as the formation of a new capillary bend or the enlargement of an existing 

microaneurysm. However, it is challenging to identify these regions of abnormal flow 

and to characterize them in normal and pathological conditions, and further work is 

needed. 
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Figure 4.1: Two leukocyte traces from an AV channel of a subject from the 

T2DM_NoDR group. The start of the vessel is at the top of the spatiotemporal plot. The 

trace on the left is a typical trace that shows no appreciable variation in speed. The trace 

on the right shows that the speed slowed down in the center of the capillary segment, 

before speeding up again. 
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Neuro-vascular relationships 

Broadly, the abnormalities in DR can be classified as neural or vascular. Using AOSLO 

imaging, we can assess capillary structure, hemodynamics, and the structural integrity 

of photoreceptors. Studies investigating cone photoreceptor spacing in the 

T2DM_NoDR patients are currently in progress. 

Neural function can also be examined using a multifocal electroretinogram 

(mfERG). Recently, a method to identify local regions of abnormalities in neural 

function has been developed using mfERG implicit time measurements (Bearse, Adams 

et al. 2006). A stimulus array comprised of 103 hexagons spanning 20 radial degrees 

from the foveal center is used to measure implicit time, a marker of neural function. 

Implicit time is an important metric in early diabetic retinopathy, because delays in 

implicit time have been shown to predict sites of new retinopathy (Han, Bearse et al. 

2004). In order to match up AOSLO data with mfERG data, we acquired AOSLO 

videos in locations corresponding to the central 7 hexagons of the mfERG stimulus grid 

(Figure 4.2). 
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Figure 4.2: Diagram showing the locations at which AOSLO videos were taken. (A) 

Videos were taken in 21 locations (combined area of light and dark gray shading. These 

are the same 21 locations that were selected for imaging in the cross-sectional study of 

Chapter 3). 7 of these locations were centered in one of the central 7 hexagons of the 

mfERG stimulus grid (dark gray squares). (B) Overlay of mfERG grid on a fundus 

photograph. 
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 Unfortunately, we were unable to reliably quantify capillary density within the 

outer 6 hexagons, due to the presence of multiple capillary layers, and large variations 

in data quality. Moreover, the high capillary density made it difficult to delineate clear 

capillary paths for hemodynamic analysis. Thus, it was difficult to derive AOSLO-

based metrics for the videos inside the outer 6 hexagons (the central hexagon has little 

or no capillaries due to the presence of the FAZ). In the future, with further technical 

development, it may be interesting to explore neural-vascular relationships in the outer 

hexagons. 

 Instead, to investigate whether neural and vascular abnormalities are related, we 

compared AV channel tortuosity to implicit time. AV channel tortuosity was defined as 

the average tortuosity of the 3 least tortuous capillary channels, consistent with the 

methods described in Chapter 3. We converted AV channel tortuosity values in the 

T2DM_NoDR group to z-scores by using the group of age-matched controls. Implicit 

time was measured using the mfERG in each of the T2DM_NoDR patients within one 

month of the AOSLO imaging session, and converted to z-scores using a database of 

normal subjects. AV channel tortuosity z-scores were then plotted against implicit time 

z-scores in order to determine whether there was a correlation between the two metrics. 

We found that there was no apparent correlation between the two metrics (R2 = 0.007) 

(Figure 4.3). 
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Figure 4.3: Comparison of neural and vascular abnormalities for 11 T2DM_NoDR 

subjects. The metric for vascular abnormality is average AV channel tortuosity z-score, 

generated from the AOSLO data, which is plotted against implicit time z-score, 

generated from mfERG data. 
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 The early changes in type 2 diabetes are complex. Although there are local 

regions of retinal damage that manifest even prior to the onset of DR, with respect to 

both neural function measured by the mfERG (Bearse, Adams et al. 2006) and capillary 

channel disruption measured by the AOSLO (Tam, Dhamdhere et al. 2011), it appears 

that the two are not correlated. The fact that we do not observe a correlation suggests 

that diabetes can affect different components of the retina through different 

mechanisms. Specifically, the mechanisms for capillary channel disruption appear to be 

different from the mechanisms that damage the cell bodies of bipolar cells, the location 

from which mfERG implicit time is derived (Hood, Frishman et al. 2002). Thus, 

different strategies may be necessary for the therapeutic treatment of damage to neural 

and vascular components of the retina. 

 

Evaluation in NPDR and PDR 

It is unclear whether AV channels are further disrupted in NPDR and PDR. In Chapter 

3, we suggested that there is a “point of no return” when all viable AV channels have 

been lost, which may mark the transition in PDR. Careful delineation of capillary 

channels in patients with NPDR and PDR would be needed to determine whether this is 

the case. 

 We quantified AV channel tortuosity in the patient with type 1 diabetes and 

severe NPDR described in Chapter 3 (Figure 4.4). This patient had an average AV 

channel tortuosity of 0.32, compared to 0.18 ± 0.04 for the T2DM_NoDR group, and 

0.14 ± 0.03 for the control group (arbitrary units, all numbers average ± standard 
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deviation), consistent with our hypothesis. Detailed comparison of the metrics for 

capillary dropout and hemodynamics quantified in Chapter 3 are presented in Table 4.1. 

Except for leukocyte speed, the metrics measured in the patient with NPDR were in the 

same general direction as the T2DM_NoDR group (i.e. increased or decreased relative 

to controls). However, as described in the discussion of Chapter 3, blood flow is 

decreased prior to the onset of DR, and increased during NPDR. Thus, our data is still 

consistent with expected changes reported in prior studies. To further explore 

relationships in NPDR and PDR, additional patients are needed. 

 

Conclusions 

There are several promising areas that should be further explored. These areas include 

leukocyte redistribution, relationships between neural and vascular abnormalities, and 

capillary abnormalities in NPDR and PDR. 
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Figure 4.4: Identification of AV channels in the patient with NPDR. (A) AOSLO 

montage from visit 2, along with all candidate AV channels. (B) The three least tortuous 

AV channels. 
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Table 4.1. Evaluation of study metrics in NPDR 

Metric NPDR1 T2DM_NoDR Control 

AV Channel Tortuosity 0.32 0.18 ± 0.04 0.14 ± 0.03 

FAZ Size [µm] 780  627 ± 118 584 ± 136 

FAZ Shape 2.57 1.56 ± 0.15 1.51 ± 0.17 

Capillary Density 31.30 31.43 ± 5.52 33.45 ± 5.23 

Leukocyte Speed2 [mm/s] 1.90 ± 0.46 1.50 ± 0.32 1.75 ± 0.29 

Pulsatility Index 0.50 0.52 ± 0.10 0.65 ± 0.17 

 

1Numbers from visit 2 are shown for the patient with type 1 diabetes and severe NPDR. 
2For the patient with type 1 diabetes and severe NPDR, LPP 1 was identified as the least 
tortuous AV channel that also exhibited leukocyte traffic. 
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4.2.2 Capillaries in Other Retinal Diseases 

There are many diseases affecting the retinal capillaries. Motion contrast imaging using 

the AOSLO would be most useful for situations where fluorescein angiography is not 

routinely performed, or where subclinical changes are suspected to occur. Examples 

include (i) establishing a normal database of the retinal capillaries, (ii) investigating the 

early stages of diseases (in cases where fluorescein angiography is not performed until 

the later stages), (iii) longitudinal investigation of diseases where the subclinical time 

course of disease progression is suspected to be rapid. In the long term, motion contrast-

based metrics might be useful as endpoint measures for assessing the efficacy of novel 

therapeutic agents. In this section, we show brief case examples of images acquired in 

patients with diseases other than diabetic retinopathy; further work is needed to develop 

an understanding of the capillary pathologies that are being imaged. 

 

Case 1: Macular Telangiectasia 

Macular Telangiectasia (MacTel) is a disease affecting the vasculature near the fovea. 

Example capillary images are shown from two patients with MacTel. One feature of this 

disease is a disruption of the planar orientation of vessel planes, leading to vessels 

oriented in unexpected directions (Figure 4.5). The unexpected orientation of these 

vessels would make it difficult to accurately quantify hemodynamics, since a key 

assumption in Chapter 2 is that capillaries are planar. There are also new sources of 

artifacts that need to be taken into consideration when interpreting images (Figure 4.6). 
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Figure 4.5: Example of vessels in different planes at the same retinal location, in 

MacTel. Averaged images and motion contrast enhanced images taken at two different 

planes of focus, (A,B) near the photoreceptors, and (C,D) anterior to the photoreceptors. 

Out of focus vessels can be seen in both images. 
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Figure 4.6: Parafoveal capillaries in a patient with MacTel. (A) Montage showing 

parafoveal capillaries. (B) Close-up of box in (A), showing a circular “bubble” that 

appears on the image of photoreceptors. (C) The bubble from (B) generates an artifact 

after motion contrast enhancement. 
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Case 2: Retinal Vein Occlusion 

Retinal vein occlusion (RVO) is an obstruction of the retinal vein. We present images 

from a 48-year-old male patient. During a routine eye examination by the referring 

physician, it was discovered that the patient had previously had a RVO in the right eye. 

Subsequently, a fluorescein angiogram was performed. Two months later, we acquired 

AOSLO images of the patient and used motion contrast enhancement to generate 

images of the capillary network. Images of the FAZ are shown, along with what appears 

to be a large microaneurysm and two vessel abnormalities (Figure 4.7). 
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Figure 4.7: Example images from a patient who was previously diagnosed with a 

retinal vein occlusion. (A) Montage of capillaries overlaid on a FA. (B, C, D) Close up 

of various regions, showing the photoreceptor image, capillary image, and FA. 
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Case 3: Age-Related Macular Degeneration 

Age-related macular degeneration (AMD) is a disease that causes gradual deterioration 

of central vision. AMD can occur with or without the new formation of abnormal 

vessels (wet-AMD and dry-AMD, respectively). In the cross-sectional study in Chapter 

3, we excluded one control subject who presented with dry-AMD. Motion-contrast-

enhanced AOSLO images from this patient are shown below (Figure 4.8). Since there 

are no new vessels that form in dry-AMD, it is especially relevant to consider motion 

contrast artifacts that result from the breakdown of the assumption that intensity 

fluctuations are due only to blood flow. These artifacts need to be carefully considered 

when using motion contrast enhancement to evaluate any retinal disease. Motion 

contrast enhancement may be of interest for evaluating wet-AMD. 
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 Figure 4.8: AOSLO images of a patient with dry-AMD. (A) An example of a capillary 

that appears after motion contrast enhancement. (B) Dark areas on the retina in the 

foveal avascular zone generate non-vascular artifacts that need to be taken into 

consideration. 
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Areas for further technical development 

The unique features of certain retinal diseases can potentially violate the motion 

contrast assumption that all intensity fluctuations are due to blood flow. Development 

of a clinical interpretation of sources of hyper- and hypointensity in motion contrast 

enhancement would be needed prior to evaluating new diseases. Based on the definition 

of high relative motion (i.e. the standard deviation of intensity ratios), there are two 

mechanisms for contrast generation: high intensity fluctuation or low background 

intensity. It is instructive to consider the case of small vessels and large vessels 

separately. For small vessels, the object intensity is typically high. This is due to two 

reasons: first, the capillaries are smaller and therefore more optically transparent, and 

second, the capillaries are near the plane of focus, and are therefore either bright, 

transparent, or slightly dark. Hence, the mechanism for contrast generation in capillaries 

is mostly due to high intensity fluctuation. For larger vessels, the object intensity if 

typically low, for the opposite reasons: not only is the vessel larger and more optically 

opaque, but the vessel is typically further away from the plane of focus, which would 

cause it to appear darker. The nonlinearity of division results in a high value when the 

denominator approaches zero. It is likely that this effect would be reduced if one were 

to use subtraction instead of division, since subtraction is a linear operation. In our case, 

the mechanism for contrast generation in larger vessels is mostly due to low background 

intensity. The artifacts which appear due to dark objects on the retina typically follow 

this second principle. 
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A second area for future development is the ability to differentiate multiple 

capillary beds. This would expand the analysis of capillaries and hemodynamics beyond 

the region of interest immediately near the FAZ (further away from this region, there 

are multiple layers of capillary beds, and it is currently difficult to distinguish whether 

neighboring capillary segments belong to the same capillary layer). Specifically, it 

would be useful to develop methods to separate capillary beds in order to separate the 

superficial and deep capillary beds in the para- and peri-foveal regions of the retina, and 

to separate the four layers of retinal peripapillary capillaries. These capillaries surround 

the fovea and the optic disc, respectively, two regions of particular importance in many 

retinal diseases. 

 An important first step is to develop a method to distinguish, at the capillary 

level, whether two vessels are branching or crossing. A simple, but tedious method to 

accomplish this is to examine the spatiotemporal plots. On the one hand, if two vessels 

are crossing each other, then there should be no change in the appearance of the cell 

traces in the spatiotemporal plots at the site of the crossing; on the other hand, if two 

vessels are connected and branching, then the cell traces would have change in 

appearance representing the fact that the flow is disrupted by the presence of a branch. 

We illustrate an example of this strategy below (Figure 4.9). 
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Figure 4.9: Strategy for distinguishing a vessel crossing from a vessel branching. The 

normal subject that was imaged in Figure 1.18 is shown. (A) Capillaries feeding into a 

venule at the edge of the FAZ. This venule is at a plane anterior to the capillaries. (B,C) 

A clearly distinguishable vessel crossing was identified and extracted (beginning of 

segment marked with red circle). (D) Portion of spatiotemporal plot corresponding to 

the capillary in (C). Traces extend the entire length of the spatiotemporal plot without 

sharp deviations. (E, F, G) Example of capillary branching from the same subject. (H, I, 

J) Example traces showing sharp deviations (arrows). Downstream of the branch point, 

the “trace thickening” phenomenon illustrated in Figure 4.10 can be seen. 
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 Flow disruption at a branch point is often subtle, but may be useful for studying 

erythrocyte dynamics. As a special case, two consecutive leukocytes were identified 

flowing through a capillary in a single-file manner (Figure 4.10). At first glance, it 

appears that the trace has thickened (“trace thickening”). In this case, the thickening is 

due to the presence of a branch point midway through the capillary segment. The speed 

of the leukocyte is 2.23 mm/s before the branch point, and 1.62 mm/s after the branch 

point. If the diameter of the capillaries are the same, then by flow conservation, this 

suggests that the velocity of the erythrocytes in the branch point is 0.61 mm/s. One 

might be able to use this concept of trace thickening to study erythrocyte trains in the 

absence of a branch point, as described in the microhemodynamics section below. 

 Potential methods for differentiation of capillary beds include the use of defocus 

cues or the incorporation of multi-modal information. To use defocus cues, one can take 

advantage of the fact that the intensity of a vessel centerline is brightest when the plane 

of focus is set at the level of the capillary, and darker above and below the capillary. 

Hence, capillary beds can be optically separated by generating “fly-through” videos of 

varying defocus. By carefully controlling the defocus parameter (e.g. by simultaneously 

recording the defocus parameter during video acquisition), one can begin to determine 

the relative z-locations of neighboring capillary segments. Incorporation of optical 

coherence tomography (OCT) might also be useful for differentiation multiple capillary 

beds, and for introduction of a speed correction for sloping vessels (since we assume 

that the capillary bed is planar to perform the speed quantification in Chapter 2). 
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Figure 4.10: Special case of two leukocyte flowing by a branch point. (A) A capillary 

segment is extracted (start of segment marked by red circle). (B) Two leukocyte traces 

are disrupted at the site of the branch point (marked by red line). (C) The extracted 

leukocyte traces show that the speed of the second leukocyte has decreased from 2.23 

mm/s to 1.62 mm/s. Since flow is necessarily single-file, this decrease in speed can be 

attributed to the branch point. 
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The imaging of patients also poses unique challenges, since a small but 

significant level of cooperation is needed from each patient for successful imaging. The 

series of cases presented in this section, along with the images in Chapter 3, 

demonstrate that the AOSLO technology is at a mature enough stage to enable clinical 

imaging. However, future advances in imaging technology can help to ensure that 

AOSLO imaging is successful in a larger pool of patients. 

 

Conclusions 

Motion contrast imaging can give new insights into many other retinal diseases. Unique 

aspects of retinal diseases, such as drusen, may give rise to imaging artifacts, which 

need to be interpreted in light of the motion contrast enhancement method. These 

methods may also be useful for studying diseases that affect specific blood cells, such 

as sickle cell anemia, which would likely result in the formation of large plasma gaps 

due to inefficient erythrocyte deformation, and leukemia, which would result in altered 

leukocyte flow. In addition, development of new techniques for imaging different 

capillary beds would enable delineation of capillary paths outside of the parafoveal 

region, and allow for a more comprehensive picture of microhemodynamics. 

 

 

 

 



 

216 

4.2.3 Microhemodynamics 

Quantitative models based on solid and fluid mechanics are useful for characterizing 

diseases affecting the vasculature. Although there are many such models that have been 

developed in the past few decades, one notable example is the discovery that there is a 

relationship between wall shear stress and atherosclerotic plaques (Ku, Giddens et al. 

1985). This has led to the use of noninvasive imaging methods to assess hemodynamics 

in patients with specific conditions, such as the use of magnetic resonance angiography 

to assess the relationship between wall shear stress and intracranial aneurysm growth 

(Jou, Wong et al. 2005). Ultimately, quantitative models of hemodynamics could be 

useful for generating noninvasive, imaging-based biomarkers for disease. As there are 

many retinal diseases affecting the microvasculature, it would be useful to develop a 

quantitative model for retinal microhemodynamics. However, there are many 

complications that need to be addressed, which arise due to heterogeneities in cell 

distribution, cell-cell and cell-vessel interactions. These complications challenge 

common modeling assumptions such as fluid homogeneity and the constancy of fluid 

material properties. 

 In the retinal capillaries, a relationship between shear stress and pathology may 

exist. A recent in vitro study found that laminar shear stress affected the expression of 

endothelial nitric oxide synthase, endothelin-1, and thrombomodulin in cultured human 

retinal microvascular endothelial cells (Ishibazawa, Nagaoka  et al. 2011). In vivo 

assessment of shear stress may give new insights into the natural progression of disease 

at the capillary level. Shear stress could potentially be assessed using noninvasive 
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optical imaging combined with an engineering model for microhemodynamics. This 

model could test the hypothesis that there is a relationship between shear stress and 

capillary defects, such as microaneurysms or intraretinal microvascular abnormalities. 

 In this section, we discuss the considerations needed to formulate an 

engineering-based model, and then propose a new approach to model the single-file 

flow of leukocytes through retinal capillaries. With further work, such a model could 

potentially be used to characterize the flow seen in AOSLO videos. 

 

Background 

There are many features of the microcirculation which affect hemodynamics. To begin, 

hemodynamics in the microcirculation can be complicated by factors such as 

irregularities in vessel cross sections, retardation of the plasma layer, asymmetry of 

erythrocytes, and leukocyte plugging (Pries, Secomb et al. 1990). We will focus on the 

leukocytes, which play an important role in the flow dynamics through capillary 

systems. The equivalent resistance of a non-activated leukocyte through a capillary has 

been estimated to be that of 750 erythrocytes (Sutton and Schmid-Schonbein 1992). The 

behavior of leukocytes in the microcirculation is also dependent on the organ system; 

for example, dramatic leukocyte sequestration occurs in the pulmonary capillaries 

(Kuebler, Kuhnle et al. 1994; Hogg and Doerschuk 1995). There are also many different 

types of leukocytes, including lymphocytes, which have a diameter of about 5.75 μm, 

and neutrophils, monocytes, and eosinophils, which have diameters of about 7.25 μm 

(Schmid-Schonbein, Skalak et al. 1980). Hemodynamics also depend on the size scale 

of the microcirculation, which can range from cell-free flow in capillaries that are 
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extremely small ( 3 μm), to single-file flow in small capillaries ( 5-6 μm), to multi-

file flow in larger capillaries and small arterioles and venules ( 15 μm). To further 

complicate things, leukocytes can spontaneously activate, resulting in changes in 

mechanical properties (Schmid-Schonbein, Sung et al. 1981). Finally, leukocyte 

distribution through capillaries is not homogeneous, with respect to both space 

(Schmid-Schonbein, Skalak et al. 1980) and time (Kleinfeld, Mitra et al. 1998). To 

summarize, the mechanics of leukocyte flow through capillaries set up a unique and 

interesting regime for analysis. In this section, we will examine the problem of 

leukocyte deformation in single-file flow through retinal capillaries, and suggest novel 

application of the AOSLO to develop a quantitative engineering model. 

To the best of the author’s knowledge, modeling of single-file flow of 

leukocytes through small capillaries using in vivo leukocyte data has not been done 

before. This is probably due to the difficulty in measuring leukocyte deformation and 

transit in vivo (Zhou, Yue et al. 2007). However, there are many related problems that 

have been studied in the microcirculation, including mechanics of the vessel wall, cell 

cytoplasm, cell membrane, and plasma. Clearly, a complete model that takes into 

consideration all of the nonlinearities presented by these problems will be extremely 

difficult. Zhou, et. al., assumed a rigid vessel wall to model neutrophil entrance and 

transit in single-file flow (Zhou, Yue et al. 2007). Using Newtonian and viscoelastic 

drop models for a neutrophil cytoplasm, they found that the entrance time of neutrophils 

from a reservoir into a fixed, small capillary is dependent on both the size and geometry 

of the capillary and the viscosity and viscoelasticity of the cytoplasm. In particular, 

entrance times increased with cell viscosity according to a power law with coefficient 



 

219 

1/7, and viscoelasticity in the cytoplasm helped to facilitate cell deformation and 

shorten entrance times. An obvious shortcoming of this model is the simplification of 

the cytoplasm to a viscoelastic or Newtonian drop; in fact, leukocyte nuclei are 

probably a major contributor to leukocyte mechanical properties (Schmid-Schonbein, 

Sung et al. 1981). To address this concern, a number of two-layered models of 

leukocytes including the drop-rigid-particle model and the compound-drop model have 

been proposed (Jin, Verdier et al. 2007). The area of cellular fluid mechanics is rich and 

complicated, and reader is referred to a review (Kamm 2002). 

One shortcoming of the model is that friction between the leukocyte and vessel 

wall is ignored. For example, it is known that the endothelium possesses a glycocalyx 

consisting of proteoglycans, glycoproteins, glycosaminoglycans, and adherent plasma 

proteins (Damiano and Stace 2005). The glycocalyx is transiently stripped down when a 

leukocyte traverses a capillary, subsequently recovering within a few seconds (Popel 

and Johnson 2005). To investigate this phenomenon, a model of the flow and 

deformation of the glycocalyx on the vessel wall in the wake of a leukocyte was 

developed to estimate bulk material properties of the glycocalyx (Damiano and Stace 

2005). In this model of single-file flow, they assumed that leukocytes press on the 

glycocalyx, resulting in a transient wake. Erythrocytes, which are smaller and more 

easily deformed, were ignored. For a 5 μm diameter capillary with a leukocyte traveling 

at 50 μm/s, they found a glycocalyx recovery time on the order of 1 s, with a recovery 

length of 50 μm. This interaction would be important in modeling leukocyte rolling, a 

well-known phenomenon observed in post-capillary venules (caused by transient 
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leukocyte adhesion to the vessel wall). The glycocalyx is usually neglected in most 

models. 

It is instructive to consider the Reynolds (Re) and Womersley (α) numbers. For 

a capillary of diameter 6 μm, with speed 1 mm/s, viscosity 2 cP, density 1 g/cm3, and 

heart rate 1 Hz, the Reynolds number is  .003 and the Womersley number is  .002. 

Based on these parameters, common assumptions are to assume that viscous forces 

dominate (Re << 1), and that transient, convective acceleration is negligible (α << 1). 

By further assuming Newtonian fluid properties, Stokes flow has been previously used 

as a preliminary model for microcirculatory blood flow (Fung 1997; Schmid-Schonbein 

1999). Using this model, the fluid shear stress distribution on the leukocyte membrane 

in the microcirculation was found to be inhomogeneous with sharp increases at 

locations of membrane attachments to the vessel wall (Sugihara-Seki and Schmid-

Schonbein 2003). Thus, there may be high temporal stress gradients on the leukocyte 

membrane. It should be noted that they used a capillary of diameter 10 μm, which is not 

single-file flow. An earlier model investigated the leukocyte adhesion to the 

endothelium by deriving an equilibrium between hydrodynamic and adhesive forces 

(Dong, Cao et al. 1999). The model was based on an elastic ring adhered to a surface 

under fluid shear stresses - again, a model of flow through larger capillaries. Leukocytes 

were modeled with a leading edge, at which new adherent bonds were formed, and a 

trailing edge, at which the leukocyte membrane peeled away from the endothelium; the 

extent of the peeling zone was found to be less than 5% of the total contact interface. 

Thus far, the discussion has been regarding only leukocytes. In fact, most of the 

work in microvascular hemodynamics ignores leukocytes in favor of erythrocytes, 
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which we have shown should not be the case at the level of single-file flow. For 

completeness, we present a brief survey of a few relevant concepts. Perhaps the most 

famous of these is the Fahraeus effect, which states that tube hematocrit decreases in 

flow through small bore tubes, resulting in a lower than expected value for tube 

viscosity (Lipowsky 2005). As a side note, a further differentiation between erythrocrit 

and leukocrit (Lichtman, Gregory et al. 1973) introduces the question of whether these 

concepts apply to leukocytes as well - particularly in disease states such as leukemia. As 

a result of the Fahraeus effect, there has been much work in the area of viscosity and 

effective viscosity estimation in vessels, due to this effect of variations in blood 

constituents, and hence viscosities, at different vessel diameters. One important 

consequence of this effect is phase separation (Lee and Smith 2008), where uneven 

erythrocyte distributions at branch points result in non-uniform viscosity distributions in 

vessels, which is observed in the microcirculation. Another consequence is the shear-

thinning property of blood, which is observed experimentally when erythrocyte-

erythrocyte interactions are inhibited. When in their natural setting in vivo, erythrocytes 

can form spontaneous trains and clusters, the behavior of which is not well understood. 

Single erythrocytes also spontaneously deform into characteristic shapes that have been 

colorfully described as bullets, slippers, parachutes, and tanks. There is a model for 

some of these deformations based on a boundary-integral method for axisymmetric 

Stokes flow (Pozrikidis 2005). 
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Figure 4.11: Illustrated schematic showing author’s interpretation of problem, showing 

erythrocytes (red), a single leukocyte (white and gray), membrane folds in the leukocyte 

(protrusions on leukocyte), plasma (yellow), endothelial cells (gray), and glycocalyx 

(protrusions on endothelial cells). Due to differences in cells speeds, we propose that 

there is an erythrocyte-free area (Zone 1) in front of the leukocyte, glycocalyx 

compression at the leukocyte (Zone 2), and an erythrocyte train behind the leukocyte 

(Zone 3). Note that the leukocyte geometry is unknown. We assume a spherical endcap 

on the leading edge and an unstable endcap on the trailing edge in the spirit of bubble 

mechanics. The erythrocyte in front of Zone 1 is shown in a classic parachute 

formation. 
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Proposed Model 

To simplify the problem, we make a few remarks based on the idealized situation 

presented in Figure 4.11: 

1. Existence of an erythrocyte-free zone (Zone 1). It is well established that 

leukocytes travel slower than erythrocytes through small capillaries. We 

hypothesize that there is a significant erythrocyte-free zone in front of the 

leukocyte. If we ignore effects due to platelets and plasma proteins, then we can 

model plasma as a Newtonian fluid. Moreover, we can take the viscosity of 

plasma as constant (and don’t need to worry about hematocrit distributions, in 

particular). With these considerations, the Navier-Stokes equations can be 

written as: 
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(1) 

 

where u, v, and w denote the Cartesian components of velocity, ρ denotes 

density, µ viscosity, and X, Y, and Z the body forces acting on the object. Since 

Re << 1 (viscous forces dominate) and α << 1 (transient forces and convective 
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acceleration are negligible), we can simplify the equations for Zone 1, and write 

the governing equations in the form of Stokes flow: 
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(2) 

Because the membrane of a leukocyte is wrinkled due to an abundance of 

folding, we can model the leading edge as a rough endcap on the leading edge. 

If we use a spherical endcap, then we suggest a modification of Stokes solution 

for a falling sphere (by adding friction and/or a gravity-like term to account for 

the force of the erythrocyte train, plus additional boundary conditions), or some 

sort of bolus flow (Prothero and Burton 1961; Fitz-Gerald 1972). 

2. Negligible normal flow component. Normally, there is flow in the direction 

normal to the vessel centerline due to capillary permeability. However, in the 

inner retinal vasculature, a blood-retinal-barrier is established by tight junctions. 

Therefore, we ignore flow in the normal direction. 

3. Glycocalyx compression in Zone 2, followed by restoration in Zone 3. In Zone 

2, lubrication theory would be most valuable, in a similar manner that has been 

developed for erythrocytes through very narrow capillaries (Secomb, Skalak et 

al. 1986). However, the exact location of the transition from Zone 1 to Zone 2 

will depend on the distance between the leukocyte and the endothelial cell wall 

– near the spherical endcap, the distance will quickly become too large for the 

regime of lubrication theory. 
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4. Zone 3 is the most complicated, and it may be most worthwhile to define bulk 

fluid properties using an apparent viscosity. In particular, viscosity may be 

modeled as a Newtonian part plus a non-Newtonian part, as described 

previously (Sirs 1991). It may also be worthwhile to consider combining the 

erythrocyte train with the trailing edge of the leukocyte in order to derive a bulk 

flow condition, for use as a boundary condition for Zone 2. A more complex 

simulation will be needed to identify the characteristics of the flow in this zone. 

5. Appropriate boundary conditions need to be defined for each of the interfaces. 

At the interface between the leukocyte and the fluid, a solid mechanics model 

for the leukocyte may need to be matched with the fluid mechanics model. 

Possible approaches that have been previously adopted were described in the 

background section, which include the leukocyte drop models; further modeling 

may consider the fact that there are multiple types of leukocytes, with varying 

sizes and configurations of the nucleus body. Since the nucleus tends to be the 

stiffest portion of the cell, it would be important to incorporate this into the 

model. A second interface occurs between the vessel wall and the fluid. 

Although irregular cross sections likely exist, due to bulges of the endothelial 

cells at the locations of the nuclei, currently most models do not take this into 

consideration. A more significant irregularity could be due to a pathological 

condition, such as the presence of a microaneurysm or the development of some 

other capillary defect. 

Further work is needed to develop solutions to the proposed model. 
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In vivo data acquisition 

Ultimately, it would be meaningful to pair any proposed model with in vivo data. Using 

an AOSLO, we can noninvasively acquire videos in the parafoveal region of the retina 

on human subjects and visualize individual leukocytes traveling through small 

capillaries. We provide an example of an isolated retinal capillary that could be used for 

quantitative measurements. 

As a proof of concept, an example of a capillary segment that could be used for 

investigating microhemodynamics is shown in Figures 4.12 and 4.13. We identified a 

straight segment away from branching and approximately free of axial curvature at the 

top of the capillary segment shown in Figure 4.12. At this location, the capillary 

network forms a single, planar layer, providing a good location for analysis. Briefly, we 

applied image processing algorithms to enhance the vessel contrast using dynamic 

analysis from multiple frames in the video. The idea is to use in vivo measurements to 

better account for the complexities due to the cell environment and cell-cell interactions 

(Zharov, Galanzha et al. 2006). These considerations, in particular, are typically ignored 

in current models of leukocyte flow through capillaries. 
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Figure 4.12: Selection of a capillary for microhemodynamics modeling. A montage of 

the parafoveal capillary network generated from unprocessed AOSLO images (left) is 

converted into a montage that shows the capillary network (right) using image 

processing algorithms. A straight capillary segment free of branching is selected near 

the FAZ (shown again in Figure 4.13). 
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Figure 4.13: Example of capillary segment for microhemodynamics modeling. Two 

consecutive frames of a parafoveal capillary showing leukocytes moving through the 

capillary (left), one frame showing highlighted leukocyte (middle right), and a view of 

the capillary network (right), generated using image analysis algorithms. This region is 

marked with a white rectangle in Figure 4.12. 
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 When analyzing the in vivo data, measurement of vessel diameter is important 

for development of a flow model. However, as shown in Figure 1.8, the apparent 

diameter of the vessel changes as a function of defocus. One method to standardize 

measurement of vessel diameter would be to set the plane of focus to the level of the 

vessel, in order to measure the diameter of the blood column. In any given video, it is 

unclear how far from the plane of defocus any given vessel is. Thus, by focusing at the 

level of the vessel, diameter measurements can be standardized. 

 Other potential metrics that would be useful to quantify for the 

microhemodynamics model include: plasma gap and leukocyte lengths, deformability 

index (length / width), and acceleration. Measurement of variations in speed are 

important for deriving measures of wall shear. 

 

Conclusions 

Clearly, there are many areas that need further investigation. Future work includes 

development of better theoretical models, coupled with in vivo data on leukocyte 

morphometry and deformation, and determination of shear or pressure distributions 

based on the model presented. Ultimately, calculation of the wall shear stress could be 

useful for investigation of retinal disease. 
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4.2.4 Computer Vision 

Although we have developed a set of algorithms for motion contrast enhancement, there 

are still many areas for future work, particularly in the areas of automation and 

optimization. We demonstrate a potential method for the automated extraction of cell 

traces on ST plots, and then describe additional areas for further optimization or 

automation. 

 

Extraction of Cell Traces on Spatiotemporal Plots 

We describe a method to extract high-contrast leukocyte traces from ST plots. First, we 

enhance the cell paths on the ST plot by suppressing the background. We assume that 

(i) cell paths are one dimensional and monotonic, (ii) cell paths do not cross each other, 

and (iii) cell paths are sparse. These assumptions are valid for the smaller retinal 

capillaries under consideration. The steps are: (i) background suppression, (ii) 

thresholding, (iii) morphological opening, and (iv) least squares fitting. 

 

Background Supression 

We use an approach based on Frangi “vesselness” (Frangi, Niessen et al. 1998), which 

detects tubular structures. Motion contrast enhanced cell paths satisfy “vesselness” due 

to their appearance (white lines with black borders). Locally, the elements of the 

Hessian matrix are given by  



 

231 

ji

2

ij xx
LH
∂∂

∂
=  

 
(3) 

where L is a local image region. The eigenvalues of H, λ1 and λ2, are ordered such that 

|λ1| ≤ |λ2|. Regions of “vesselness” are identified where |λ1| ≈ 0 and |λ1| << |λ2|. 

 

Thresholding 

Three-step thresholding is used to segment the cell paths, an extension of a previously 

proposed two-step thresholding method (Sato, Chen et al. 1995). The goal of the 

thresholding step is to identify the brightest cell paths (i.e. the cells that are most visible 

on the raw video). Selection of the threshold parameter presents a tradeoff. On the one 

hand, a high threshold value will exclude undesired image regions, but may also 

exclude portions of desired image regions (clipping), resulting in false negatives. On the 

other hand, a low threshold value will include desired image regions, but may also 

include undesired image regions, resulting in false positives. Multi-step thresholding 

addresses this tradeoff. High, medium, and low threshold values are applied to the ST 

plot image, and stored as ST_h, ST_m, and ST_l, respectively. ST_l contains both 

desired  and undesired image regions that are not present in ST_h. The idea is to include 

the desired image regions of ST_l and exclude the undesired regions of ST_l, using both 

ST_m and ST_h. First, ST_m is compared against ST_h. Image points (x,y)∈ST_m are 

kept if they are connected to an identified region of ST_h, and deleted if they are not 

connected to any identified regions of ST_h. The result is compared against ST_l, and 

the procedure is repeated. Thus, three-step thresholding minimizes the number of false 

positives while reducing clipping of desired image regions. 
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Morphological Opening 

Morphological opening is performed to connect pieces of the cell paths together. This 

step is important for low SNR ST plots, since cell paths are not well connected. A line 

structural element oriented vertically is used, because the orientations of cell paths are 

approximately vertical in pixel space when viewed locally (note that cell paths do not 

appear to be vertical due to rescaling for display purposes; the aspect ratio for display 

purposes is 1:20). 

 

Least Squares Fitting 

Least-squares polynomial fits are used for extraction of segmented cell paths. Prior to 

extraction, the following conditions must be met: first, the length of the cell path must 

be sufficiently long; second, the slope of the cell path must be sufficiently different 

from horizontal. We also require that the fit results be monotonic. 

 

Results 

We tested the algorithms on retinal videos, which were collected on separate days from 

two subjects with no systemic or ocular disease, using an AOSLO. For the first data set, 

40-second videos were acquired at 30 Hz using a 532 nm wavelength laser; for the 

alternate data set, 40 second videos were acquired at 60 Hz using an 840 nm wavelength 

laser. Videos were preprocessed offline. The steps in preprocessing were (i) correction 

for frame distortions (Vogel 2006), (ii) registration of frames to a single reference frame 

(Vogel 2006), (iii) cropping registered videos to eliminate inconsistent boundaries, and 

(iv) a median filter to reduce the effects of noise. We used the first dataset to calibrate 
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the analysis parameters, and repeated the analysis on the alternate dataset using the 

same parameters. Results of the proposed algorithms using the first data set are shown 

in Figure 4.14. 

For the multi-frame division videos, instabilities in division were handled by 

trimming responses to lie within the bit depth of the images: [0, 255]. An example of 

division instability can be seen as black and white horizontal lines on the ST plots, 

which were due to the subject blinking during the imaging session, resulting in frames 

with near-zero intensity. 

We performed manual cell path extraction for comparison with the automatic 

method. Manual extraction was performed using a graphical user interface, asking the 

user to select points along each cell path. The extracted cell paths were assumed to be 

ground truth. For the first dataset, the automatic approach correctly identified 42 out of 

50 cell paths (Figures 4.14, 4.15). The false negatives were all cell paths that were not 

distinct enough, possibly due to (i) proximity to a neighboring cell path, violating the 

assumption of sparseness, or (ii) lack of connectivity among segmented image regions. 

For the alternate dataset, the automatic approach correctly identified 26 out of 29 cell 

paths, and incorrectly identified 1 cell path. The incorrectly identified cell path was due 

to a cell path that was too close to an imaging artifact. The alternate dataset had more 

noise compared to the first dataset, and also more imaging artifacts (Figure 4.16). 

Overall, the automatic method correctly identified 86% of all the cell paths in low SNR 

datasets cluttered with imaging artifacts. 
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Figure 4.14: ST plots are shown after each of the intermediate steps proposed for 

automated cell path extraction. Each pair of two rows is one continuous ST plot, split 

into two rows for display purposes. To the right of the labels is a close up of the first 

trace from the first row of the ST plots. The effect of each step of processing is as 

follows: increase the contrast of the trace; suppress the background; eliminate the 

background; connect the traces together; extract the objects that satisfy the extraction 

criterion. 
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Figure 4.15. Errors of automated extraction. For each of these errors, either the 

assumption of sparseness or of connectedness was violated. 
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Figure 4.16: Automated extraction results on the alternate data set. (A,B) Capillary 

segment before and after motion contrast enhancement, with extracted vessel centerline 

shown in blue. (C) ST plot split into 4 rows for display purposes. (D) Close-ups. I, three 

correctly extracted cell paths (aspect ratio set to 1:20), II, three false negatives due to 

lack of connectedness, and III, one false positive due to a blink. 



 

237 

Areas for further technical development 

Improvements in the motion contrast enhancement processing software can lead to both 

improved results as well as faster processing times. The key areas are described 

chronologically, starting with preprocessing, and followed by motion contrast 

enhancement and analysis of videos. 

 

Weaving and Drift 

To image at 60 Hz, the forward and backward sweeps of the raster scan are recorded on 

one continuous line, with a configuration such at 256 lines are acquired in the vertical 

direction, while 1128 pixels are acquired in the horizontal direction. To reconstruct a 60 

Hz video that has the same pixel sampling in the horizontal and vertical directions, raw 

videos are “woven” by interleaving lines from the forward and backward sweeps of the 

raster scan (Figure 4.17). In order to achieve this, the pixels from the backward sweep 

need to be reversed in order, and then registered to the neighboring lines. Currently, this 

is achieved by manually displacing lines until a “properly-woven” image is generated. 

Due to hardware drift, the amount of displacement varies across the imaging session, 

typically on the order of 3-4 pixels per hour. However, this also depends on how long 

the scanning components have been turned on prior to the start of the imaging session. 

Thus, the amount of displacement is determined for each video in the imaging session. 

Automation of the weaving procedure along with a method to account for the drift can 

streamline the process of generating 60 Hz videos. 
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Figure 4.17: Demonstration of proper weaving used to generate 60 Hz videos. (A) 

Unprocessed AOSLO video acquired at 60 Hz using 256 vertical lines and 1128 

horizontal pixels. (B) Improperly woven video frame. (C) Properly woven video frame. 

(D,E) Averaged image of photoreceptors generated from (D) improperly and (E) 

properly woven videos. Consider the sheared appearance of the photoreceptor marked 

by the arrow, as well as a general distortion over the entire image. Subtle differences 

between (B) and (C) lead to larger differences in the averaged images of photoreceptors. 
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  One possible method to improve the process of weaving and drift correction is 

to implement a cross-correlation scheme to register lines from the forward and 

backward sweep to each other. Since the amount of displacement is relatively stable, it 

would only need to be calculated every 5-10 minutes during imaging to maintain proper 

weaving, for the current AOSLO system. As a further refinement, one could also allow 

for sub-pixel displacements, using an interpolation scheme that maps the sub-pixel 

displaced lines back into the pixel space.  

 

Cropping the video 

During preprocessing, due to eye motion, the borders of stabilized videos is variable. A 

simple method to crop the video is to calculate the standard deviation image of the 

stabilized video (Figure 4.18). 
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Figure 4.18: Video cropping strategy. A simple method to remove the variable black 

border from the stabilized video is to calculate the standard deviation of the stabilized 

video. The resulting image shows three distinct regions. Region 1 is an area where no 

portion of the video was present; region 2 marks the area where the video was 

sometimes present, and sometimes absent; and region 3 marks the area where the video 

was present in the majority of frames. A red rectangle marks the area that was selected 

for cropping. 
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Although it is simple to crop videos for motion contrast processing, future 

versions of motion contrast enhancement may consider eliminating the need for 

cropping. For each pixel, the frame numbers corresponding to of non-black pixels can 

be determined, and division and standard deviation calculations can be performed on 

the subset of non-black pixels. As an example, in Figure 4.18, since there are only 

black pixels in region1, no motion contrast enhanced image would be generated. In 

region 2, using a subset of frames, a motion contrast image with reduced SNR could be 

generated. Finally, in region 3, the conventional motion contrast image can be 

generated. The main problem that needs to be addressed is a strategy for efficient 

indexing of data, since there are 512x512 pixels in each of 1200 frames that need to be 

organized. The key advantage would be more efficient retinal coverage of the AOSLO 

videos (i.e. fewer videos would be needed to acquire capillary images of the same 

region on the retina). 

 

Deletion of Poorly-Stabilized Frames 

Although there will be continual improvements in the accuracy and robustness of 

stabilization algorithms to correct for intra-frame eye motion artifacts, the fact remains 

that there will be frames or portions of frames which were poorly stabilized. 

Identification and removal of these frames is perhaps the easiest strategy for improving 

the quality of motion contrast images of vessels. In Chapter 3, in order to generate 

videos of near-perfect stabilization, approximately 40-60% of all frames were removed. 

Manual deletion of frames is time-consuming, given that 40 seconds of video at 60 Hz 
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results in 2400 frames; 21 video locations in one imaging session would result in 50,400 

frames, out of which 25,200 need to be deleted. Thus, to streamline the process, 

automated frame deletion methods were developed and used. Improvement of these 

methods can significantly reduce the processing time needed to generate motion 

contrast perfusion images, while improving the overall quality of the image. 

 The most obvious method to identify poorly-stabilized frames is to access the 

stabilization data of the software that was used to stabilize the video. Most conventional 

algorithms for stabilization will have some sort of “goodness of fit” parameter that 

marks how successful the stabilization was for any given portion of the video or frame. 

In Chapter 2, we generated a look-up table for eye motion that was used in the speed 

quantification. Embedded in the lookup table was data from the stabilization software 

that marked questionable frames, due to poor cross-correlation scores. Approximately 

15-30% of poorly-stabilized frames fit in this category. Thus, the first step in automated 

frame deletion was to remove the frames marked by the stabilization software. 

 The next step was to remove all frames that deviated too far from a reference 

image. A reference image was generated by calculating the averaged image of the 

video, using the video with the software-identified frames removed. Individual frames 

were compared to this reference image, and removed if they were too dissimilar in 

appearance. To implement this strategy, we performed the following steps: (i) for each 

frame, divide the frame by the reference image, and calculate the average value of the 

resulting division image (thus generating a single number for each frame that represents 

the deviation of that frame from the reference image; this single number can be plotted 
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against frame number to generate a trace); (ii) calculate the first derivative of the trace 

from (i) and delete all frames that deviate from the mean by more than 0.3 times the 

standard deviation of the trace. This second step removed approximately 50-70% of the 

remaining poorly-stabilized frames. The remaining frames were deleted manually. 

 The remaining poorly-stabilized frames, which were not identified by either of 

the two methods above, were primarly “twitch” frames. At large field sizes, 

approximately every 12 seconds, for 1 second at a time, the left and right edges of the 

frame contract and expand (Figure 4.19). Although subtle, if one does not remove these 

“twitch” frames from the video, subtle blurring and distortions at the edges of frames 

can be noticed in both the motion contrast enhanced image of vessels as well as the 

averaged image of photoreceptors. Although twitching is very noticeable in the 

calibration videos of grids, it is difficult to identify during imaging due to the 

confounding eye motion. An automated method to identify and remove twitching can be 

useful when very high quality images are needed. 
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 Figure 4.19: Demonstration of twitching. A calibration grid was imaged using the 

AOSLO and a video was acquired during a twitch. Shown are horizontal strips from the 

calibration grid at frame numbers 5, 10, 15, … , 55. Red lines are vertical reference 

lines. Notice that the location of the grid lines at the left and right edges of the frame 

change during the twitch, while the center of the frame remains constant. 
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Post-processing 

Additional strategies for post-processing can also be applied to improve image quality. 

Potential areas for exploration include the use of the Frangi Vesselness filter (Frangi, 

Niessen et al. 1998), incorporation of additional spatial or frequency-domain filtering, or 

application of histogram stretching techniques. 

 In addition, there are many methods for contrast enhancement, which can be 

applied after motion contrast enhancement has been applied. A simple example is to 

compute the image raised to an exponential power. Consider an image, I(x,y), which is the 

motion contrast enhanced image. By computing In(x,y), where n is an integer greater than 

1, the contrast of the resulting image can be further enhanced. Application of additional 

contrast enhancement techniques could potentially result in further improvements in 

image quality. 

 

Conclusions 

Motion contrast enhancement is an effective tool for detection of cell paths in ST plots, 

and an important precursor to automated analysis. We demonstrate that ST plot analysis 

can be successfully applied to high resolution retinal videos of the microcirculation, 

despite challenges such as low SNR, and similarities in texture between moving cells 

and the background tissue. The method is most promising for noninvasive, in vivo 

assessment of hemodynamics through small capillaries, where contrast and noise issues 

are prevalent. Further optimization of key algorithms can lead to significant 

improvements in processing time. 
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