
UCLA
UCLA Electronic Theses and Dissertations

Title
Multiphase Simulation Using Material Point Method

Permalink
https://escholarship.org/uc/item/52b8b82q

Author
Pradhana, Andre

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52b8b82q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Multiphase Simulation Using Material Point Method

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Andre Pradhana

2017

© Copyright by

Andre Pradhana

2017

ABSTRACT OF THE DISSERTATION

Multiphase Simulation Using Material Point Method

by

Andre Pradhana

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Joseph M. Teran, Chair

We present a discussion on how one can simulate sand as a continuum using elastoplasticity.

We showed the efficacy of Drucker-Prager plasticity model and St. Venant Kirchhoff with

Hencky strain to model sand. We discretized the continuum equation using Material Point

Method (MPM). We also present a multi-species model for the simulation of gravity driven

landslides and debris flows with porous sand and water interactions. We use continuum mix-

ture theory to describe individual phases where each species individually obeys conservation

of mass and momentum and they are coupled through a momentum exchange term. Water

is modeled as a weakly compressible fluid and sand is modeled with an elastoplastic law

whose cohesion varies with water saturation. We use Material Point Method to discretize

the governing equations. We use two grids, corresponding to water and sand phase. The

momentum exchange term in the mixture theory is relatively stiff and we use semi-implicit

time stepping to avoid associated small time steps. Our semi-implicit treatment is explicit in

plasticity and preserves symmetry of force linearizations. We develop a novel regularization

of the elastic part of the sand constitutive model that better mimics plasticity during the

implicit solve to prevent numerical cohesion artifacts that would otherwise have occurred.

Lastly, we develop an improved return mapping for sand plasticity that prevents volume gain

artifacts in the traditional Drucker-Prager model.

Finally, we revisit the problem of redistancing, which is native to the level set paradigms.

We used an interesting alternative view that utilizes the Hopf-Lax formulation of the solu-

ii

tion to the eikonal equation, as proposed by [LDO17, DO16]. In this approach, the signed

distance at an arbitrary point is obtained without the need of distance information from

neighboring points. We extend the work of Lee et al. [LDO17] to redistance functions de-

fined via interpolation over a regular grid.

iii

The dissertation of Andre Pradhana is approved.

Jeffrey D. Eldredge

Christopher R. Anderson

Andrea L. Bertozzi

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2017

iv

To The Redeemer,

You make all things new.

v

Table of Contents

1 Introduction . 1

2 Dry Sand . 2

2.1 Previous work . 2

2.2 Single Phase Continuum Theory . 4

2.2.1 Single Phase Kinematics . 4

2.2.2 The deformation gradient . 6

2.2.3 Single Phase Balance Laws . 8

2.3 Elastic material . 10

2.3.1 Constitutive Model . 11

2.4 Plasticity . 12

2.4.1 The Drucker-Prager yield condition . 12

2.4.2 Stress in the presence of plasticity . 17

2.4.3 Unilateral hyperelasticity . 17

2.5 Discretization . 20

2.5.1 Notation . 21

2.5.2 Deriving the MPM discretization . 24

2.5.3 Notes on discrete energy and force . 28

2.5.4 Plasticity in discrete setting . 29

2.5.5 Notes on volume change in projection . 31

2.6 Algorithm . 34

2.6.1 Transfer to grid . 35

vi

2.6.2 Grid update . 36

2.6.3 Transfer to particles . 37

2.6.4 Update particle state . 38

2.6.5 Plasticity, hardening . 40

2.6.6 Hardening . 40

2.6.7 Implicit velocity update . 42

2.6.8 Semi implicit velocity update . 42

2.6.9 Collisions . 43

2.6.10 Friction . 45

2.6.11 Initialization . 46

2.7 Results . 46

2.8 Discussion and Limitations . 48

3 Wet Sand and Water . 50

3.1 Previous Work . 50

3.2 Multiphase Continuum . 52

3.3 How to model water . 55

3.3.1 KKT Approach . 55

3.3.2 Weak compressibility . 59

3.4 How to model wet sand . 59

3.4.1 Momentum exchange . 60

3.4.2 Cohesion and Saturation . 61

3.5 Discretization . 62

3.5.1 Transfer to grid . 64

3.5.2 Update Grids Momenta . 64

vii

3.5.3 Update Particles . 66

3.6 Implementation and Results . 68

3.7 Limitations and future work . 69

4 Redistancing . 71

4.1 Introduction . 71

4.2 Previous works . 72

4.3 Our approach in continuous setting . 75

4.4 The Hopf-Lax Formula . 76

4.5 Discrete Setting . 77

4.5.1 Secant method . 78

4.5.2 Solving Hopf-Lax formula . 79

4.6 Results and discussions . 83

4.6.1 Computing in a narrow band . 83

4.6.2 Computing geometric quantities . 84

4.7 Results . 85

4.7.1 Scaling . 86

4.7.2 Level set advection . 87

References . 90

viii

List of Figures

2.1 Hourglass. Sand falls through the narrow neck of an hourglass, accumulating

at the bottom. 3

2.2 Deformation gradient. Relationship between deformation and F 6

2.3 Multiplication decomposition. Relationship between F , F E, and F P . . . 7

2.4 Plastic and elastic deformation. How F , F E, and F P transforms elemen-

tal vector dX, dx̃, and dx. 8

2.5 Avalanching. Sand is poured from a spout into a pile in a lab (left) and with

our method (right). Our simulation is able to capture avalanching phenomenon. 10

2.6 Coulomb friction illustration. An illustration of normal and frictional

force at a point x given an imaginary plane with normal n. 14

2.7 Multiplier region. The contour plot of the multiplier in strain space. Region

A is where the multiplier is equal to 1, region C is where the multiplier is 0,

and region B is where the multiplier transitions from 1 to 0 in C2 manner.

The green cone denotes the Drucker-Prager cone in principal strain space. . . 18

2.8 Unilateral extension. We demonstrate a 2D sand column collapse with dif-

ferent values of c0 coefficient in the unilateral modified energy density function.

From top to bottom, c0 = 1.1,2,2.5,3. The left image is of an early frame and

the right is of a later frame. Here parameters a and b from Equation (2.47) are

a = −0.5, and b = 0. As c0 increases, the envelopes in the unilateral extension

become increasingly poor approximations of the Drucker-Prager cone and we

see volume loss artifacts. 19

2.9 B-splines interpolation. Cubic (blue) and quadratic (red) splines used for

computing interpolation weights. 23

ix

2.10 Drucker-Prager region. The yield surface for Drucker-Prager is shown

in principal stretch space. The yield surface has the shape of a cone with

its tip at the origin, which corresponds to no stress. Green particles are

inside the yield surface and exhibit an elastic response. Blue particles are

under compression but experience more shear than friction allows. These

configurations are projected to the yield surface along a direction that avoids

volume change. Red particles are experiencing tension and are projected to

the tip of the conical yield surface. These particles separate freely without

stress. 30

2.11 Sand column collapse. A column of sand collapses into a pile. Sand par-

ticles are colored based on their current plastic deformation behavior. The

plot shows the locations of these particles in principal stress space. Green

particles lie within the yield surface and experience no plasticity. Blue par-

ticles are projected to the yield surface along a direction that avoids volume

change. Red particles are experiencing tension and are projected to the tip of

the conical yield surface; these particles are separating freely with no stress. . 31

2.12 Pouring sand. The top row depicts the result of an explicit simulation with

a coarser grid size (dx = 10−2), while the bottom row corresponds to a finer

grid size (dx = 10−3). The first and third column correspond to a projection

step without volume correction, while the second and fourth column uses our

volume correction algorithm. 32

2.13 2D hourglass. An hourglass is flipped two times. The left most hourglass

shaded grey depicts the initial state of sand at the beginning of the simulation.

Each set-of-three figures depicts the state of the sand after going through the

neck the first time, and after flipping the hourglass for the first and second

time. The first two sets and the last two sets have grid dx = 7.4 × 10−3 and

dx = 3.7×10−3 respectively. The first and third set are run without any volume

correction fix, while the second and last set are run with our volume fix. . . . 33

x

2.14 Overview of MPM stages. Breakdowns of an MPM algorithm. 34

2.15 Raking. A rake is dragged around a rock, producing a circular pattern in

the sand. 35

2.16 Effects of Young’s modulus. This simulation shows the effects of Young’s

modulus on the behavior of a simulation. Sand with a very low Young’s

modulus tends to be bouncy. The behavior is more like sand as the Young’s

modulus approaches its physical value. 37

2.17 Avalanching. Sand is poured from a spout into a pile in a lab (left) and with

our method (right). Our simulation is able to capture avalanching phenomenon. 38

2.18 Coupling with stiff material. A solid ball drops into a sandbox, spraying

sand in all directions. 39

2.19 Hardening. Three particles in a collapsing pile of sand are colored for refer-

ence. As these particles deform plasticly, their yield surface changes as they

undergo hardening, resulting in a wider cone for projection. Hardening causes

each particle to have its own yield surface. 40

2.20 Coupling with deformable object. A sand castle is hit with a deformable

ball while falling. The sand and ball are fully coupled in the simulation. 41

2.21 Effects of friction angle on piling. Varying the friction angle changes the

shape of a pile of sand. A larger angle produces a taller sand pile with steeper

sides. 43

2.22 Drawing in sand. A stick is dragged through a bed of sand, tracing out a

butterfly shape in the sand. 44

xi

2.23 2D sand pile. From top to bottom row: initial, middle, and final config-

uration of a 2D sand pile. The left column is an explicit simulation with

maximum ∆t = 10−4 . The two columns in the middle are the results of semi-

implicit simulation with the regular constitutive model and max ∆t = 10−2

and 10−3 respectively. Note that both suffer from artificial cohesion, although

it diminishes with smaller ∆t. On the right is semi-implicit time stepping

with our unilateral energy density function with maximum ∆t = 10−2. Note

that it does not suffer from artificial cohesion. 47

2.24 Fully implicit unilateral. Comparison of increasingly implicit time step-

ping schemes for 2D sand column collapse. The simulations on the left and

at the center are run with the semi-implicit scheme with the regular and uni-

lateral energy density functions respectively. The right-most figure shows a

fully implicit scheme with our modified energy density function. Note that

the unilateral density function with semi-implicit time stepping yields a good

approximation of the fully implicit result, while the regular energy density

suffers from artificial cohesion. 48

3.1 Dam breach. Water pours in from a reservoir and slowly erodes a dam. As

water seeps into the sand, its cohesivity decreases. When it eventually breaks,

the landslide creates interesting dynamics in the debris flow. 50

3.2 Dropping sand on wedges. A box of sand with various values of cohesion

is dropped onto a wedge. The top left simulation is done using an explicit

time-stepping scheme, while all the others are done using a semi-implicit time-

stepping scheme. 60

3.3 MPM algorithm with two grids. We use separate water and sand grids.

The blue and red dots denote water and sand particles respectively. In the

overlapping region, we compute the momentum exchange term between the

two species. We also compute the force based on individual constitutive model. 62

xii

3.4 2D dam breach. A 2D dam breach simulation showing the effect of reversible

term from Bandara and Soga [BS15]. The figure depicts the beginning, middle,

and the end of a dam breach scenario. At the top is a simulation with no

reversible term (as in [MAS10]) and at the bottom is a simulation with the

reversible term. 68

3.5 When the levee breaks. Here we demonstrate the effects of our parameters

on levee wall integrity. A simulation with lower drag momentum exchange

coefficient and lower cohesion will fail more easily. 69

4.1 Local minima illustration. The two vertical lines are the boundary of

minimization. Grid node xi = 1.8 is in the middle of the region, and also the

starting guess for projected gradient descent. The sequence of points leading

off to the right represent the subsequent steps of gradient descent. These

points converge to the incorrect argmin x = 2.5. The correct solution is at

x = 0.4. In order to converge to this point, the initial guess would have to be

less than 1.25 . 81

4.2 Random initial guess in 1D. The figure illustrates representative random

initial guesses used in solving for φ(xi, tk). In addition we use an initial guess

equal to the minimizer computed in the previous secant iteration shown in

magenta. 82

4.3 Different choice of random guesses and gradient discent iteration.

The plots above are the points (φ(xi, tk), tk) found when running our algo-

rithm with different choices of random guess and gradient descent iterations

on circle initial data. The left most plot was run with 100 random guesses,

and 1 gradient descent iteration. The middle plot was run with 1 random

guess, and 100 gradient descent iterations. The right plot was run with 1

random guess and 5 gradient descent iterations. Note that in all cases, the

correct root was found. 83

xiii

4.4 Random initial guesses in 2D. In this image, the red dot in the center is xi,

the solid red line represents the ball of radius tk and the dotted line represents

the ball of radius tk−1. The magenta point was the approximate argmin yk−1

of φ0 over the ball of radius tk−1. Since it is unlikely for the minimizer to

be inside of tk−1 we use coarse (random) grid initial guesses in the interior.

However, since it is possible that expanding t will move the minimizer to a

different location we take a large number of initial guesses along the boundary

of tk . 84

4.5 Narrow band and coarse grid. A coarse grid 8 times smaller than the fine

grid was solved for initially. Using those values the fine grid was only solved

on cells where the distance to the boundary could be less than 0.1 represented

as the solid areas of the left image. In the right image those coarse areas are

defined from bilinear interpolation. This coarse/banding approach provided

approximately a 2.5 times increase in performance. 85

4.6 Scaled circle. The initial data is φ0 = ex(0.125 − (0.5 − x)2 + (0.5 − y)2). . . . 86

4.7 Square. The initial data is φ0 =min{0.25 − ∣x − 0.5∣, .25 − ∣y − 0.5∣}. 87

4.8 Union of circles. The initial data is φ0 =max{0.25−∥(0.3,0.5)−(x, y)∥2,0.25−

∥(0.7,0.5) − (x, y)∥2}. 87

4.9 Many local minima. the objective function is φ0 = sin(4πx) sin(4πy) − 0.01. 88

4.10 Vortex test. Vortex advection test at t = 0,1,2,3,4,5. 89

xiv

List of Tables

3.1 Table of notation for multiphase simulation. 63

4.1 Parameters and timings. Table of parameters for examples and timings. . 83

4.2 Error. Average `2 error with different grid resolution. 88

xv

Acknowledgments

Thank You Lord Jesus, for this life, for meeting me in 2011 when it was the bleakest moment,

thank You for inviting me to give mathematics another chance and for this graduate school

opportunity, thank You for sustaining me day by day and for delivering me through grad

school. I love You.

Thank you to my advisor Prof. Joseph Teran who has been so patient with me days in

and days out, for being such a great researcher and mentor, for your sacrifice of going to the

lab at night, and for our conversations on Man United. Thank you Prof. Chris Anderson

for showing me the joy of doing applied mathematics and being the best math teacher I’ve

ever had. Thank you to Prof. Bertozzi for all of your help during my graduate school career

and for being in my defense even when you are still recovering from surgery. Thank you

Prof. Eldredge for your enthusiasm on science and being a role model on being a scientist

and mentor (I am always reminded of Caltech when I meet you) .

Greg: professionally, you introduced me to computer graphics and rendering, taught me

C++, programming, software architecture, and much more. You and Zsófi showed me the joy

of having a family. Thank you for all the random walks and the many conversations we had.

Thank you so much for blessing me in so many ways.

Thank you to Craig Schroeder, Chenfanfu Jiang, and Ted Ghast for helping me a lot

during the various stages of many projects and for showing me how research can be done.

Thank you especially to Fanfu for offering me a job after graduation.

Thank you Ken for your mentorship and a chance to do a summer internship at Dream-

Works. Thank you for showing me the joy of working in computer graphics. Thank you

Malena Español for your patient and mentorship back at Caltech. Thank you Jared Hersh

for being such a great TA, for showing me the cuteness of ODEs, and for convincing me to

do mathematics.

Thank you to Joel Wretborn and Max Budninskiy for all of our conversations and for

all of the fun that we had at DreamWorks. Thank you to Ibrahim for all your help with

xvi

getting JIXIE to compile at DreamWorks. Thank you to Jeff Budsberg and Stephen Wood

for showing me how to be passionate in doing your work and for all of the fun.

Thank you to Charlie and Nadine, and Daniel and Xiao. Grad school can be tough, but

I’ve won a few friends there. That by itself makes it worth it.

Thank you Michael for our collaboration on redistancing. Thank you for the people in

the lab: Qi for all of your help through the wet-sand paper and your always-positive attitude,

Kelly for your help on unilateral, and Stephanie for always willing to substitute for PIC10A.

Thank you Tomer for our friendship and feeding me so many times in the lab, Sharath for

all of your encouragements, Masaki for all the fun that you brought to the lab, and Tao for

your constant presence in the lab.

Thank you Cherrie for being such a close friend even long after Caltech. Thank you Roy

Qi for our friendship and all your help during the Santa Barbara years and beyond. Jacob

Houpis for being such a dear friend and for all the jokes.

Thank you Peter for the many times we prayed together and for taking care of all of our

apartment needs. Thank you Tom for your presence in our apartment. Thank you Jimmy for

the many times we hung out with each other and your prayers and encouragements. Thank

you Daniel for our adventures to K-Town and coffee shops together, I’ve always enjoyed our

conversations (every single one of them). Thank you David for being so positive, supportive,

and always pointing me towards Jesus. Thank you Soaps for always being so encouraging

and gentle. Thank you Jooeun and Kelly for showing me what a family life looks like and

for being a United fan.

Thank you John for all your prayers, phone calls, encouragements, and the many dinners

we had together. Thank you Joel for being such a close friend and a light in my life and

being there with prayers and encouragements when I am weak.

I can’t say enough to thank Dongyoon and Elaine. There is a friend that sticks closer

than a brother. Thank you for loving me in so many ways, for cooking me lunch boxes for

weeks leading up to my defense, for opening up your home time and time again, for our

xvii

study time, for all your encouragements, and prayers.

Thank you P. Abraham and Sarah for your prayers and blessings every time we met when

I was at Caltech, Cambridge, and whenever we met in the LA area again.

Thank you to P. Ray and Jackie and your family. What can I say? Thank you for your

love, prayers, blessings, encouragements, and for keeping me accountable for so many years.

I can’t ask for a better shepherd, mentor, and friend.

Thank you to Mom and Dad and Mba Thia. Thank you so much for all of your uncon-

ditional love, prayers, and for just being there. Mom and Dad, thank you for encouraging

me to pursue education, even to this point. Thank you for being the most amazing parents

a child could ask for and for all the amazing memories in Indonesia, Europe, and the U.S.

Mba, I always cherish our time in England together, and I love you. It’s really a privilege

to be part of this family, and I’ve won a lottery without buying a ticket.

There are many more people who have blessed me in so many ways over the past five

years. Unfortunately this list must end somewhere. I just want to say that I am thankful

for every single one of you.

I hope we’ll all talk about it again in the by and by.

xviii

Vita

2011 B.S. (Applied and Computational Mathematics), California Institute of

Technology.

2012 Master of Advanced Study (DAMTP), University of Cambridge.

2016 Summer Intern, DreamWorks Animation Studios

Publications

G. Klár, T. F. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J.M. Teran. “Drucker-

Prager Elastoplasticity for Sand Animation.” ACM Trans. Graph. (SIGGRAPH), 2016

A. Pradhana Tampubolon, T. F. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth.

“Multispecies Simulation of Porous Sand and Water Mixtures.” ACM Trans. Graph. (SIG-

GRAPH), 2017

M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, J. Teran, and S. Osher. “Parallel

redistancing using the Hopf-Lax formula.” Submitted, 2017

xix

CHAPTER 1

Introduction

I remember the day when my advisor called me into his office, and he told me, "We have to

do wet sand!"

Later on, during my Advancement-To-Candidacy talk, I showed a YouTube video about

a Lego dam breach in front of my committee members. My advisor claimed that we want to

do a simulation like that. This thesis tells that story.

Chapters 2 and 3 are slight modifications of [KGP16] and [PGK17]. They are supposed

to tell a story of how one can simulate a dam breach using Material Point Method (MPM).

Chapter 2 tells a story of how to simulate dry sand as an elastoplastic material using MPM.

One can view it as a study in plasticity as a continuum model of friction. Chapter 3 tells a

story of one way we can simulate water and wet sand using MPM, and how they can interact.

Chapter 4 is a slight modification of [RPL17]. This chapter is an oddity on its own, since

it is a revisiting of an old problem in level set, which is how to do redistancing. However,

with a modest tweak, one can show that the method looks promising as an alternative to do

a return-mapping algorithm in computational plasticity. Finally, the last chapter is a study

on parallel computation using GPU, where the future of scientific computing might lie.

1

CHAPTER 2

Dry Sand

Before we attempt to simulate wet sand, we need to figure out how to simulate dry sand. If

we model sand as a continuum, to a great extent, sand can be thought of as an elastoplastic

material. To a first order approximation one can think that up to a certain point, the

deformation of sand is governed by elasticity. Beyond this, plasticity imposes a certain

restriction on the grain of sand applies friction and slide against one another. This chapter

tells the story of simulating dry sand.

2.1 Previous work

We build on the work of Mast et al. [Mas13, MAM14a] and develop an implicit version

of their Drucker-Prager-based elastoplasticity model for granular materials. The Drucker-

Prager conception of elastoplasticity is often used in the mechanical engineering literature for

granular materials [DP52], and we show that it can be adopted to animation applications with

relatively simple implementation and efficient runtimes. This is useful because the models

are well developed and the literature can be consulted to reduce the difficulty of parameter

tuning. We use the Material Point Method (MPM) [SCS94] to discretize the model since

it provides a natural and efficient way of treating contact, topological change and history

dependent behavior. Furthermore, we show that this can be done with little more effort than

was used for simulating snow dynamics in the MPM approach of Stomakhin et al. [SSC13].

Lastly, we replace the particle/grid transfers used by Mast et al. with APIC transfers [JSS15]

and show that this allows for more stable behavior, particularly with simulations that have

higher numbers of particle per cell.

2

Figure 2.1: Hourglass. Sand falls through the narrow neck of an hourglass, accumulating
at the bottom.

Continuum approaches have been used in a number of graphics methods for granular

materials. Zhu and Bridson [ZB05] animate sand as a continuum with a modified Particle-

In-Cell fluid solver. Narain et al. [NGL10] improve on the method of Zhu and Bridson by

removing cohesion artifacts associated with incompressibility. Both of these works led to a

number of generalizations and improvements. Nkulikiyimfura et al. [NKK12] develop a GPU

version of the Zhu and Bridson approach. Laenerts and Dutre [LD09] use an SPH version

to couple water with porous granular materials. Alduán and Otaduy [AO11] generalize the

unilateral incompressibility developed by Narain et al. to SPH. Imhsen et al. [IWT13] show

how to improve the convergence of the method of Alduán and Otaduy [AO11] and also detail

refinement of base simulations to upscale to millions of grains. Chang et al. [CBZ12] use a

modified Hooke’s law to handle friction between grains.

Many methods are developed by modeling interactions between individual grains or parti-

cle idealizations of grains, rather than from a continuum. Miller and Pearce [MP89] simulate

interactions between particles to model sand, solid and viscous behaviors. Luciani et al.

[LHM95] use a similar approach. Bell et al. [BYM05] got very impressive results by simulat-

ing many sand grains as spherical rigid bodies with friction. Milenkovic [Mil96] also simulated

individual grains to solve for piles of rigid materials via energy minimization/optimization.

Mazhar et al. [MHN15] use Nestov’s method to simulate millions of individual grains. Ya-

3

suda et al. [YHK08] use the GPU to get real-time results with rigid grains. Alduan et

al. [ATO09] use an adaptive resolution version of the method by Bell et al. [BYM05] to

improve performance. Macklin et al. [MMC14] show that the extremely efficient position

based dynamics methods can be applied by casting granular interactions as hard constraints

in.

2.2 Single Phase Continuum Theory

To develop the theory for two phases, we first begin with the theory of kinematics and

continuum of one phase.

2.2.1 Single Phase Kinematics

There are two standard ways of working with the kinematics of a motion: the Lagrangian

and Eulerian description. In the Lagrangian viewpoint, one keeps track of the motion of

each point from its initial configuration over time. The motion of a material with respect to

its initial configuration is described by a flow map ϕ(⋅, t) ∶ Ω0 → Ωt, which is assumed to be

a smooth bijection (diffeomorphism). It maps a point X in a reference configuration to a

point x in the current configuration, i.e.

x(t) = ϕ(X, t), or X(t) = ϕ−1(x, t). (2.1)

This maps naturally defines the notion of velocity and acceleration:

V (X, t) ∶= ∂ϕ
∂t

(X, t), A ∶= ∂V
∂t

(X, t). (2.2)

The function V (⋅, t) and A(⋅, t) are parametrized by the reference configuration, and are

considered to be Lagrangian quantities. We define their Eulerian counterparts, which is

4

defined in terms of world-space configuration

v(x, t) ∶= V (ϕ−1(x, t), t), i.e. v(ϕ(X, t), t) ∶= V (X, t). (2.3)

Acceleration can also be similarly defined as

a(x, t) ∶=A(ϕ−1(x, t), t), i.e. a(ϕ(X, t), t) ∶=A(X, t). (2.4)

These can be thought of as the push-forward of their Lagrangian counterparts.

If we consider a total derivative of the push-forward velocity v(x, t) with respect to time,

we get

D

Dt
v(x, t) = D

Dt
v(ϕ(X, t), t) (2.5)

= ∇xv(ϕ(X, t), t)V (X, t) + ∂v
∂t

(ϕ(X, t), t) (2.6)

= ∇xv(ϕ(X, t), t)v(ϕ(X, t), t) + ∂v
∂t

(ϕ(X, t), t) (2.7)

= ∇xv(x, t)v(x, t) + ∂v
∂t

(x, t). (2.8)

It is understood that we have used x = ϕ(X, t). We call this type of derivative the material

derivative. For a generic function h(x, t) ∶ Ωt × (0, T) → R, the material derivative of h is

given by

Dh

Dt
(x, t) = ∂h

∂t
(x, t) + ∇xh(x, t) ⋅ v(x, t), (2.9)

and for h(x, t) ∶ Ωt × (0, T) → Rd, the material derivative of h is

Dh

Dt
(x, t) = ∂h

∂t
(x, t) + ∇xh(x, t)v(x, t). (2.10)

5

b

b

X0

X1

Ω0

b

b

x0

x1

Ωt

F

Figure 2.2: Deformation gradient. Relationship between deformation and F .

2.2.2 The deformation gradient

We define the deformation gradient tensor as

F (X, t) ∶= ∂ϕ

∂X
(X, t) = ∇Xϕ(X, t). (2.11)

It represents the infinitesimal local deformation of a body. Given the difference between two

points in the original configuration of a body: X1 −X0, and its corresponding image in the

current configuration x1−x0, these differences are related in this way: x1−x0 = F (X1−X0).

This is illustrated by Figure 2.2.

The determinant of the deformation gradient is denoted by J(X, t).

2.2.2.1 Multiplicative decomposition

Often, it is beneficial to factor the deformation gradient into elastic and plastic parts as

F = F EF P . The full deformation gradient is a measure of how a material has locally

rotated and deformed due to its motion. By factoring the deformation gradient in this way,

we divide this deformation history into two pieces. The plastic part, F P , represents the

portion of the material’s history that has been forgotten. If a metal rod is bent into a coiled

spring, the rod forgets that it used to be straight; the coiled spring behaves as though it was

always coiled (see Figure 2.3). The twisting and bending involved in this operation is stored

in F P . If the spring is compressed slightly, the spring will feel strain (deformation). This

is elastic deformation, which is stored in F E. The spring remembers this deformation. In

response, the material exerts stress to try to restore itself to its coiled shape. In this way,

6

original rest shape

new rest shape

current shape

FP

FE

F

Figure 2.3: Multiplication decomposition. Relationship between F , F E, and F P .

we see that only F E should be used to compute stress. The full history of the metal rod

consists of being bent into a spring shape (F P) and then being compressed (F E). For sand,

F E represents the remembered compression and shearing, while F P represents the forgotten

sliding and separation.

As in [BW08], we explain the mathematical consequence of this decomposition as follows.

LetX be a point in the reference configuration, and let dX be an elemental vector in a local

neighborhood of X. The point X will be mapped to x under ϕ, and the elemental vector

dx will be related to dX as

dx = F dX. (2.12)

However, the elastic rest state of x is defined by some other configuration, and we postulate

that there exists F E and F P such that

dx̃ = F PdX and dx = F Edx̃, (2.13)

i.e. F P carries dX to a new state dx̃, which defines a new elastic rest state, and the final

elemental vector dx is given by F Edx̃. This is illustrated in Figure 2.4.

7

Figure 2.4: Plastic and elastic deformation. How F , F E, and F P transforms ele-
mental vector dX, dx̃, and dx.

2.2.2.2 The evolution of the deformation gradient

We note the following useful equation dictating the evolution of the deformation gradient,

namely

∂F

∂t
(X, t) = ∇xv(x, t)∣

x=ϕ(X,t)
F (X, t), (2.14)

while the evolution of its determinant is governed by

∂J

∂t
(X, t) = J(X, t)∇x ⋅ v(x, t)∣

x=ϕ(X,t)
. (2.15)

2.2.3 Single Phase Balance Laws

Mass-balance. We assume the existence of a mass density field R(X, t) for our continuum,

and define ρ(x, t) as the push-forward of this Lagrangian density field.

ρ(x, t) ∶= R(ϕ−1(x, t), t), i.e. ρ(ϕ(X, t), t) ∶= R(X, t). (2.16)

8

Conservation of mass is the statement that the integral of mass density over all control

volume in the reference configuration and the world space should be the same, i.e. if Ω̃0 is

any subset of Ω0 and Ω̃t is its image under ϕ, then

∫
Ω̃0
R(X,0)dX = ∫

Ω̃t
ρ(x, t)dx = ∫

Ω̃0
J(X, t)R(X, t)dX, (2.17)

with the first equality is a statement of mass conservation and the second comes from a

change of variable. But this is true for any control volume Ω̃0, so

R(X,0) = R(X, t)J(X, t). (2.18)

The above is the Lagrangian formulation of mass-balance. To get the Eulerian counterparts,

we take the derivative of Equation (2.18) with respect to time:

0 = ∂

∂t
(R(X, t)J(X, t))

= ∂R
∂t

(X, t)J(X, t) + ∂J
∂t

(X, t)R(X, t)

= Dρ
Dt

(x, t)∣
x=ϕ(X,t)

J(X, t) + ∂J
∂t

(X, t)ρ(ϕ(X, t), t)

= Dρ
Dt

(x, t)∣
x=ϕ(X,t)

J(X, t) + J(X, t)∇x ⋅ v(x, t)∣
x=ϕ(X,t)

ρ(ϕ(X, t), t)

= [Dρ
Dt

(x, t)J(X, t) + J(X, t)∇x ⋅ v(x, t)ρ(x, t)] ∣
x=ϕ(X,t)

,

and dividing both sides by J(X, t), we arrive at

Dρ

Dt
(x, t) + ∇x ⋅ v(x, t)ρ(x, t) = 0.

Momentum-balance. For the model of deformable bodies that we are interested in, we

assume the existence of a stress field P (F (X, t)) which capture the internal traction in the

body. We call this stress tensor the first Piola-Kirchhoff tensor. Hence, the momentum

9

Figure 2.5: Avalanching. Sand is poured from a spout into a pile in a lab (left) and with
our method (right). Our simulation is able to capture avalanching phenomenon.

balance is

R(X,0)A(X, t) = ∇X ⋅P (F (X, t)) + f b(X, t), (2.19)

where f b(X, t) represents the body force acting on the body. In this case, we are mainly

interested in the force of gravity, so

f b(X, t) = R(X,0)g, (2.20)

with g being the gravitational acceleration constant.

2.3 Elastic material

Elastic materials are characterized by their ability to store potential energy and then release

it by doing work to cause motion (kinetic energy). Let Ψ be the total potential energy

stored by a material at a given time. In a real material, potential energy is stored locally

in response to deformation. This is called energy density, or energy per unit volume, and

represented by ψ. Since this depends only on the local deformation, we can write ψ(F).

10

The function ψ(F) captures the essential information about the way an elastic material

responds to deformation. This relationship depends on the material; we choose our model

in Section 2.3.1.

In much the same way that total mass is computed by integrating the density of a material

over its volume Ω, potential energy is computed by integrating energy density

Ψ = ∫
Ω0
ψ(F (X))dX. (2.21)

2.3.1 Constitutive Model

For hyperelastic material, the stress tensor P is a function of the deformation gradient F ,

and is related to the elastic energy density function ψ(F) which increases with non-rigid

deformation from the initial state in this way

P (F (X, t)) = ∂ψ

∂F
(F (X, t)). (2.22)

As in Mast et al. [Mas13], we use the St. Venant-Kirchhoff model with Hencky strain

energy density function to model the elastic response of sand. Given a measure of strain

ε(F), the St. Venant-Kirchoff energy density associated with this strain measure is defined

as

ψ̄(ε) = λ
2

tr(ε)2 + µε ∶ ε. (2.23)

The measure of strain we use for sand is the Hencky strain, and it is given by

ε(F) = 1

2
log (FF ⊺) . (2.24)

Here, we define the log of a symmetric matrix in terms of its eigenvalues. Indeed since FF ⊺

11

is symmetric, then its eigen-decomposition can be written as FF ⊺ = UΣ2U⊺. Then

log(FF ⊺) ∶= U log(Σ2)U⊺, (2.25)

where log(Σ2) is a diagonal matrix consisting of the logarithm of the eigenvalues of FF ⊺.

Hence, Equation (2.24) can be simplified to be

ε(F) = U log (∣Σ∣)U⊺. (2.26)

This combination of energy density function and measure of strain makes a number of

aspects of the Drucker-Prager plastic projection to be very simple. Indeed one can prove

that there is a linear relationship between stress and strain with this choice of modeling.

The force computation (2.86) requires the derivative of this, which is

∂ψ

∂F
(F) = U(2µΣ−1 log Σ + λ tr(log Σ)Σ−1)V ⊺. (2.27)

2.4 Plasticity

In this chapter, we introduce the notion of plasticity as a mathematical model that is used

to capture the behavior of granular materials. A lot of theoretical development in this

chapter is taken from [BW08]. Many materials behave in a way such that it returns to

a different equilibrium configuration after undergoing a large deformation, instead of its

original rest configuration at the beginning. This is due to the presence of permanent inelastic

deformation.

2.4.1 The Drucker-Prager yield condition

The Drucker-Prager yield condition is defined from the constraint that the shear stress should

be no larger than the compressive normal stress in all directions. This expresses a mechanical

12

interaction that is consistent with Coulomb friction. While dry sand is modeled effectively

with this assumption, it precludes the effects of cohesion. However, cohesive effects can be

modeled by modifying the elastic stress yield condition to be

cF tr(σs) + ∥σs − tr(σs)
d

I∥
F

≤ cC , (2.28)

where ∥ ⋅ ∥F denotes the Frobenius norm, d = 2,3 is the spatial dimension, cC ≥ 0 increases

with the amount of cohesion in the material and cF ≥ 0 increases with amount of friction

between grains. Dry sand is cohesionless, and so cC = 0. Inequality (2.28) is referred to as

the plastic yield condition, if it is satisfied, there will be no further plastic deformation. The

boundary of the region in stress space defined by cF tr(σs)+∥σs− tr(σs)
d I∥F = cC is called the

yield surface. For states of stress on the yield surface, plastic flow will commence when a

perfectly elastic assumption would drive the stress out of the region. The plasticity functions

as a means of satisfying this inequality constraint.

In two dimensions, this yield condition is derived from the frictional contact between

grains of sand. The stress condition defines a notion of admissibility for states of stress. In

stress space, this is a region whose boundary is often referred to as the yield surface. This

places a constraint on the constitutive model defining the mechanical response of the body.

The multiplicative decomposition of the deformation gradient into elastic and plastic parts is

a means for designing a constitutive model that meets these constraints. For states of stress

in the interior of the feasible region, there is no plastic flow since the elastic constitutive model

suffices. However, as a state on the boundary of the region (yield surface) is approached,

plastic flow will be defined as means of modifying the constitutive model to satisfy the

constraints.

Consider a Coulomb friction interaction between two grains in contact.If α̃ is the co-

efficient of friction, then the frictional force ff can only be as large as the coefficient of

friction times the normal force fn: ff ≤ α̃fn. The Drucker-Prager model generalizes this to

a continuum. At any point in the continuum body, the Cauchy stress σ expresses the local

13

x

n

d

−fnn

ffd

t

Figure 2.6: Coulomb friction illustration. An illustration of normal and frictional
force at a point x given an imaginary plane with normal n.

mechanical interactions in the material. Specifically, at point x, the tensor σ(x) relates the

force per area (or traction) t that material on one side of an imaginary plane with normal n

exerts on material on the other side, as t = σ(x)n. If we consider this interaction to be from

friction, we can use the Coulomb model to relate the frictional force (per area) ff = d⊺t to

the normal force (per area) fn = −n⊺t as d⊺t ≤ −α̃n⊺t. Here, d is the normalized projection

of the traction t into the plane orthogonal to n (see Figure 2.6). In terms of σ, this is

expressed as d⊺σ(x)n ≤ −α̃n⊺σ(x)n.

The frictional force (per area) ff = d⊺t is often referred to as the shear stress (at x, in

direction n) and the normal force (per area) is often referred to as the normal stress (at x,

in direction n). If we consider all shear stresses to arise from friction, then we get a notion

of states of stress consistent with the Coulomb model of frictional interaction. That is, we

consider the stress field σ(x) as admissible (or consistent with the Coulomb model) if

d⊺σ(x)n ≤ −α̃n⊺σ(x)n (2.29)

for all x in the material and for arbitrary directions d and n with d⊺n = 0.

When the normal stress n⊺σ(x)n is positive, the material on one side of the imaginary

plane is pulling on the material on the other side. This does not arise from a contact/frictional

interaction and is a cohesive interaction. Note that Equation (2.29) implies that in the

presence of a positive normal stress, the shear stress would have to be zero. In fact, it can

14

be shown that it is not possible to be consistent with Equation (2.29) (for all d and n) with

a positive normal stress, and thus cohesion is not possible with this model.

Consider the two dimensional case and states of stress consistent with Inequality (2.29).

In this case, given normal n, there are only two directions d orthogonal to it, namely d = ±Rn

where

R =
⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠
. (2.30)

In this case, satisfaction of Inequality (2.29) is achieved when

±n⊺Rσ(x)n + α̃n⊺σ(x)n ≤ 0 (2.31)

for all directions n. Since the Cauchy stress must be symmetric (by conservation of angular

momentum), it has an eigen-decomposition

σ =QSQ⊺ =Q
⎛
⎜
⎝

s1 0

0 s2

⎞
⎟
⎠
Q⊺ (2.32)

whereQ is a rotation matrix. Rewriting Inequality (2.31) in terms of the eigen-decomposition

gives

±n⊺RQSQ⊺n + α̃n⊺QSQ⊺n ≤ 0 (2.33)

and since R and Q commute (2D rotations commute), satisfaction of Inequality (2.31) is the

same as

ñ⊺ (±RS + α̃S) ñ ≤ 0 (2.34)

where ñ =Qn and

RS =
⎛
⎜
⎝

0 −s2

s1 0

⎞
⎟
⎠
. (2.35)

Since Inequality (2.34) must be true for all ñ and choice of sign, it is equivalent to require

15

that the maximum of

F (ñ, h) = ñ⊺ (hRS + α̃S) ñ (2.36)

subject to ∥ñ∥2 = 1 and h2 = 1, is less than 0. Using the method of Lagrange multipliers it

can be shown that this maximum is given by

s1 + s2

2
α̃ + ∣s1 − s2∣

2

√
1 + α̃2. (2.37)

Dividing by
√

1+α̃2√
2

we obtain

(s1 + s2)
α̃

√
2
√

1 + α̃2
+ ∣s1 − s2∣√

2
≤ 0,

which is equivalent to

tr(σ(x))α + ∥σ(x) − tr(σ(x))
2

I∥
F

≤ 0, (2.38)

with α = α̃√
2
√

1+α̃2
.

If we solve the analogous maximization problem in three dimensions we obtain the Mohr-

Coulomb yield surface [Mas13]. However, there is a simple generalization of Inequality (2.38)

that works for both two and three dimensions given by

tr(σ(x))α + ∥σ(x) − tr(σ(x))
d

I∥
F

≤ 0. (2.39)

where d is the number of space dimension. The Drucker-Prager model uses Inequality (2.39)

in both two and three dimensions, because it is easier to work with than the Mohr-Coulomb

model in 3D and it is a decent approximation of Mohr-Coulomb in that case. In three

dimensions, the Drucker-Prager yield surface takes the shape of a cone. In summary, the

Drucker-Prager model for the stress field σ requires that

y(σ(x)) ≤ 0 (2.40)

16

for all points x in the domain occupied by the material, where y(σ) = tr(σ)α+∥σ− tr(σ)
d I∥F .

Note that this function is actually defined in terms of the eigenvalues of σ as y(σ) = tr(S)α+

∥S − tr(S)
d I∥F .

2.4.2 Stress in the presence of plasticity

As mentioned before, in the case of large-strain elastoplasticity, there will be some permanent

(or plastic) deformation and the potential will only increase for deformation beyond this

state. Thus, when computing the stress from the energy density function, we need to take

the effects of plasticity into account. Therefore, we define

ψ̂(F) ∶= ψ(F E) = ψ (F (F P)−1) , (2.41)

where ψ(F E) is the elastic energy density designed to penalize non-rigid F E. The first

Piola-Kirchhoff stress is then given by

P (F E(X, t),F P (X, t)) = ∂ψ

∂F E
(F E(X, t))(F P (X, t))−⊺. (2.42)

The Cauchy stress is then

σ = 1

det(F)
∂ψ

∂F E
(F E)F E⊺. (2.43)

2.4.3 Unilateral hyperelasticity

In light of the Drucker-Prager cone, we propose a novel modifications that allow for more

efficient implicit time integration. We note that with the plastic yield condition from In-

equality (2.28), much of the energy landscape has no effect since it produces stresses outside

of the yield surface. To mitigate this we modify the energy density such that it smoothly

transitions to zero in these regions. This improves the performance of our semi-implicit time

stepping. Essentially, our modification modifies the elastic behavior outside the yield surface

17

Figure 2.7: Multiplier region. The contour plot of the multiplier in strain space. Region
A is where the multiplier is equal to 1, region C is where the multiplier is 0, and region B
is where the multiplier transitions from 1 to 0 in C2 manner. The green cone denotes the
Drucker-Prager cone in principal strain space.

to better resemble the effects of plasticity. Our approach is similar to, and indeed inspired by

the unilateral approaches in [AO11, IWT13, NGL10, DB16]. We thus refer to our modified

energy as the unilateral energy function ψ̃U(ε). We define this as the product of the original

energy function ψ̃(ε) and a multiplier h(ε)

ψ̃U(ε) = ψ̃(ε)h(ε). (2.44)

The multiplier makes sure that the energy density function to transition to zero in regions

outside of the yield surface (as smoothly as possible). We define it to be symmetric about

the hydrostatic axis in the principal strain space (axis of equal strain, see Figure 2.7) since

the original energy ψ̃ has this property and we wish to preserve it in ψ̃U . To construct it,

we partition strain space into the three regions labeled A, B, and C in Figure 2.7. In region

A, the value of the multiplier is simply one and the modified constitutive model is identical

to the original one. Conversely, in region C, the multiplier is set to zero. In region B, the

multiplier transitions from one to zero in a C2 manner. The boundary of region A and B

18

Figure 2.8: Unilateral extension. We demonstrate a 2D sand column collapse with
different values of c0 coefficient in the unilateral modified energy density function. From
top to bottom, c0 = 1.1,2,2.5,3. The left image is of an early frame and the right is of a
later frame. Here parameters a and b from Equation (2.47) are a = −0.5, and b = 0. As c0

increases, the envelopes in the unilateral extension become increasingly poor approximations
of the Drucker-Prager cone and we see volume loss artifacts.

defines two envelopes that are symmetric about the hydrostatic axis. To best preserve the

behavior of sand, we want region A to cover most of the region inside of the Drucker-Prager

cone, illustrated as the green cone in Figure 2.7.

The construction of this multiplier function is done as a composition of two functions:

hs which is a scalar function and f which is a function of the strain ε. If we let o denote the

hydrostatic axis (o = 1√
2
(1,1)⊺ in 2D or 1√

3
(1,1,1)⊺ in 3D), then we can compute u = ε ⋅ o

to be the component of the strain in the hydrostatic axis and v = ∥ε − uo∥. The function f

is defined as

f(ε) = co
v4

1 + ∣v∣3
. (2.45)

19

The coefficient co controls the opening of the envelope of region A and B around the

hydrostatic axis. The scalar function hs is chosen so that the multiplier function is twice

continuously differentiable, and is given by

hs(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if z < 0

0 if z > 1

1 − 10z3 + 15z4 − 6z5 otherwise.

(2.46)

The multiplier function is then defined for some choice of parameters a, b, and sC .

h(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if u + f(ε) < a + sC

0 if u + f(ε) > b + sC

hs (u+f(ε)−a−sCb−a) otherwise.

(2.47)

The parameter a and b determines the intersection of the hydrostatic axis with the boundary

of region A and B respectively. The parameter sC controls a shift of this multiplier region

along the hydrostatic axis.

2.5 Discretization

Traditional approaches for discretization are typically either Eulerian or Lagrangian, which

differ by their frame of reference. An Eulerian description computes quantities of interest at

fixed locations in space. These methods feature fixed grids. Eulerian methods are ideal for

handling collisions and changes in topology, making them a popular choice for fluids.

A Lagrangian description uses quantities that move with the material being described.

These methods tend to use moving particles often connected by a mesh. This representation

automatically conserves mass, and the mesh provides a straightforward way to determine

how deformed the material is. Lagrangian methods are preferred for elastic solids.

Some materials, such as sand, exhibit characteristics of both fluids and solids. Sand can

20

support a load like a solid, but it can also flow like a liquid. For materials like these, there

is growing interest in hybrid methods, such as the Material Point Method, which combine

aspects of both types of discretization, seeking to obtain some of the benefits of each.

The Material Point Method stores information on Lagrangian particles, but it computes

forces using a fixed Eulerian grid. The use of particles makes mass conservation trivial, and it

provides a simple means of moving information around. The use of a fixed grid provides auto-

matic handling of topology changes (merging and separating) and collisions between regions

of material. Since MPM uses two distinct representations, information must be transferred

between them. These transfers play a very important role in the numerical behavior of a hy-

brid method. Furthermore, to simplify topology changes, MPM does not store connectivity

between particles. This avoids the need for complex remeshing, but deformation must now

be tracked in an Eulerian way.

2.5.1 Notation

To this end, it is helpful to introduce the conventions we use in our choice of notations for

the discrete settings. Scalars are represented by non-bold Latin or Greek characters (mp,

αnp , Gk). Vectors are represented by bold lowercase Latin characters (vnp , x
n+1
i). Matrices

are represented by bold uppercase Latin characters or bold Greek characters (I, F̂ P,n+1
p , σ).

Derivatives alter this in the usual way, so that ∇Gki is a vector and (∇v)p is a matrix.

Many quantities are indexed with subscripts, which indicate where quantities are stored.

Quantities that are stored at grid nodes are indexed with i and particle quantities have the

index p. Collision-related quantities have an index k relating them to a particular collision

interaction. A quantity may have more than one subscript (wnip, ∇Gki).

Superscript n is used to indicate a quantity near the beginning of the time step, before

forces are applied, (mn
i , Cn

p). Superscript n+1 indicates a quantity near the end of the time

step, after forces are applied, (xn+1
i , F P,n+1

p).

Stars, tildes, and bars are used to distinguish intermediate quantities (v⋆i , ṽn+1
i , vn+1

i), and

21

some effort is made to group them, but the adornments do not have any intrinsic meaning.

Generally, quantities that are stored on particles have indicators of time, and those that

lack other adornments are state variables (αnp , F
E,n
p , xnp ; not vni , F̂

E,n+1
p). There are two

exceptions to this. We do not store the deformation gradient itself, so F n
p for us is not a

state variable. The mass mp is a state variable, but we omit a time indicator because it

never changes. State variables are those that persist from the end of one time step to the

beginning of the next.

Particle state. In MPM, the primary representation of state is stored on particles. We

maintain mass mp, position xnp , velocity vnp , and affine velocity spatial derivative Cn
p , which

is related to the affine momentum. The extra matrix Cn
p stored per particle is used for APIC

transfers [JSS15]. This quantity approximates the spatial derivative of the grid velocity field

at the end of the previous time step.

Note that while we use F E,n
p to compute forces, F P,n

p (the plastic components of the

deformation gradient) is not directly used in the force computation. One therefore has the

option of storing the pairs F E,n
p and F P,n

p or F E,n
p and F n

p . For plasticity, we must store one

parameter αnp , which defines the size of the yield surface and may change per particle as a

result of hardening.

Weights. We will frequently need to transfer information between particle and grid

representations. We do this by associating with each particle p and grid node i a weight wnip

which determines how strongly the particle and node interact. If the particle and grid node

are close together, the weight should be large. If the particle and node are farther apart, the

weight should be small. We compute our weights based on a kernel as wnip = N(xnp − xni),

where xnp and xni are the locations of the particle and grid node locations. We will also need

the spatial derivatives of our weights, ∇wnip = ∇N(xnp −xni), when we compute forces. We use

time indices on the fixed grid node locations xni to distinguish them from estimates (such as

xn+1
i) of where those nodes would end up if evolved with node velocities. We also indicate

time on weights wnip since they were computed using quantities at this time.

22

N̂(x)

Figure 2.9: B-splines interpolation. Cubic (blue) and quadratic (red) splines used for
computing interpolation weights.

Choosing a kernel N leads to trade offs with respect to smoothness, computational effi-

ciency, and the width of the stencil. We prefer tensor product splines for their computational

efficiency, as they are relatively inexpensive to compute, differentiate, and store. The mul-

tilinear kernel typically employed for FLIP fluid solvers is the simplest of these options, but

it is not suitable here. There are two reasons for this (see [SKB08]). The first is that ∇wnip
would be discontinuous and produce discontinuous forces. The second is that ∇wnip may be

far from zero when wnip ≈ 0, leading to large forces being applied to grid nodes with tiny

weights. Quadratic and cubic B-splines work well. The cubic B-splines is given by

N̂(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4 − ∣x∣2 0 ≤ ∣x∣ < 1

2

1
2
(3

2 − ∣x∣)2 1
2 ≤ ∣x∣ < 3

2

0 3
2 ≤ ∣x∣

, (2.48)

and the cubic B-splines is given by

N̂(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∣x∣3 − ∣x∣2 + 2

3 0 ≤ ∣x∣ < 1

1
6(2 − ∣x∣)3 1 ≤ ∣x∣ < 2

0 2 ≤ ∣x∣

. (2.49)

We plot the quadratic and cubic kernels in Figure 2.9.

In 3D, the kernel Ni(⋅) associated with a given grid node i, whose coordinate is located

23

at xi = (xi, yi, zi), is given by

Ni(x) = N(x −xi) = N̂(x − xi
dx

)N̂(y − yi
dx

)N̂(z − zi
dx

), (2.50)

where dx is the grid spacing.

2.5.2 Deriving the MPM discretization

To derive the MPM discretization of the equation to be solved, we first consider a purely

elastic model (i.e. no plasticity). We also note that in this section, the use of the gradient

operator ∇ should be clear from the context. To derive a weak formulation to our PDE, we

take the inner product of each term in Equation (2.19) against a test function W (X) be a

test function which vanishes at the boundary of Ω0 and integrate it over Ω0:

∫
Ω0
R(X,0)A(X, tn) ⋅W (X)dX = ∫

Ω0
∇ ⋅P (X, t) ⋅W (X)dX + ∫

Ω0
f b(X, t) ⋅W (X)dX.

(2.51)

Let

I inertia = ∫
Ω0
R(X,0)A(X, tn) ⋅W (X)dX, (2.52)

I internal = ∫
Ω0
∇ ⋅P (X, t) ⋅W (X)dX, (2.53)

Igrav = ∫
Ω0
f b(X, t) ⋅W (X)dX. (2.54)

Updated Lagrangian. The material point method can be viewed in an updated La-

grangian point of view. That is, we re-write the weak formulation from the original config-

uration at t0 in time tn configuration. To clean up the notation, we use Ωn to denote Ωtn .

24

We also write F (X, tn) as F n(X) and J(X, tn) as Jn(X). Furthermore, let

ρn(x, t) ∶= R(ϕ−1(x, tn), t), (2.55)

vn(x, t) ∶= V (ϕ−1(x, tn), t), (2.56)

an(x, t) ∶=A(ϕ−1(x, tn), t). (2.57)

Discrete inertial term. The left hand side of the Equation (2.51) can be discretized

as follow

I inertia = ∫
Ω0
R(X, t)J(X, t)A(X, t) ⋅W (X)dX (2.58)

= ∫
Ωn
ρn(x, t)an(x, t) ⋅ ŵ(x)dx (2.59)

where we have defined ŵ(x) =W (ϕ−1(x, tn)). By choosing a set of basis Ni(x) defined over

grid nodes, we may write

ŵ(x) = ∑
i

wiNi(x), ∇ŵ(x) = ∑
i

wi(∇Ni(x))⊺. (2.60)

We also discretize the velocity in a similar way, i.e.

v̂k(x) = ∑
i

vkiNi(x), ∇v̂k(x) = ∑
i

vki (∇Ni(x))⊺, (2.61)

where the superscript k denotes a discretization at time tk. Therefore, in light of Equa-

tion (2.59), one may discretize the acceleration term as follows

an(x, tn+1) =A(ϕ−1(x, tn), tn+1) ≈ 1

∆t
∑
j

(vn+1
j − vnj)Nj(xnp), (2.62)

where xp denotes the position of particle p. Treating the particles as quadrature point and

25

using index notation, we get

I inertia ≈ 1

∆t
∑
p
∑
i

wiαNi(xnp)R(Xp,0)∑
j

(vn+1
jα − vnjα)Nj(xnp)V 0

p (2.63)

= 1

∆t
∑
p
∑
i

wiαNi(xnp)mp∑
j

(vn+1
jα − vnjα)Nj(xnp) (2.64)

= 1

∆t
∑
i

wiαmi∑
j

(vn+1
jα − vnjα)Nj(xnp), (2.65)

where V k
p is the volume of particle p at time tk (so V 0

p is the volume of particle p initially).

Note that we have used Equation (2.91) for the last equality.

Force due to stress tensor. Applying the divergence theorem and assuming the free

surface boundary condition, we have

I internal = ∫
Ω0

(Pαβ(X, t)Wα),β (X)dX − ∫
Ω0
Pαβ(X, t)Wα,β(X)dX (2.66)

= −∫
Ω0
Pαβ(X, t)Wα,β(X)dX. (2.67)

Note that

∂Wα

∂Xβ

(X) = ∂ŵα
∂xγ

(ϕ(X, tn))
∂xγ
∂Xβ

(X, tn) = ∂ŵα
∂xγ

(ϕ(X, tn))Fγβ(X, tn). (2.68)

Hence, pulling Equation (2.67) forward to the time n configuration we may write

I internal = −∫
Ωn
J−1(ϕ−1(x, tn))Pαβ(F (ϕ−1(x, tn), t))F ⊺

βγ(ϕ−1(x, tn), t) ŵα,γ(x)dx. (2.69)

By treating the particles as quadrature point, we get

I internal ≈ −∑
i

wiα∑
p

Pαβ(F (Xp, t))Ni,γ(xnp)F n
pγβ

1

Jnp
V n
p (2.70)

= −∑
i

wiα∑
p

Pαβ(F (Xp, t))Ni,γ(xnp)F n
pγβV

0
p . (2.71)

26

From Equation (2.14), we approximate F (X, tn+1) as

F (X, tn+1) ≈ (I +∆t∑
j

vn+1
j ∇Nj(xnp))F n

p , (2.72)

and so

I internal ≈ −∑
i

wiα∑
p

Pαβ ((I +∆t∑
j

vn+1
j ∇Nj(xnp))F n

p)Ni,γ(xnp)F n
pγβV

0
p . (2.73)

Discrete gravitational force. The body force due to gravity is the easiest one to

discretize:

Igrav = ∫
Ω0
R(X,0)g ⋅W (X)dX (2.74)

= ∫
Ωn
ρn(x, t)g ⋅ ŵ(x)dx, (2.75)

and at time tn+1,

Igrav ≈ ∑
p
∑
i

wiαNi(xnp)R(Xp,0)∑
j

gNj(xnp)V 0
p (2.76)

= ∑
p
∑
i

wiαNi(xnp)mpg, (2.77)

= ∑
i

wiαmig, (2.78)

where the second equality comes from the partition of unity property due to our choice of

B-splines basis functions.

Full discrete equation. Combining all of these forces together, we get

∑
i

wiαmi∑
j

(vn+1
jα − vnjα)

∆t
Nj(xnp) = −∑

i

wiα∑
p

Pαβ(F (Xp, t))Ni,γ(xnp)F n
pγβV

0
p

+∑
i

wiαmig. (2.79)

27

Noting that the weights wiα can be arbitrary, the equation becomes

mi∑
j

(vn+1
jα − vnjα)

∆t
Nj(xnp) = −∑

p

Pαβ(F (Xp, t))Ni,γ(xnp)F n
pγβV

0
p +mig. (2.80)

We can further apply mass-lumping technique to get a diagonal mass matrix, and in this

case we get

mi

(vn+1
iα − vniα)

∆t
= −∑

p

Pαβ(F (Xp, t))Ni,γ(xnp)F n
pγβV

0
p +mig. (2.81)

When we simulate elastoplastic material, we evaluate P at F E, and the equation to be

solved becomes

mn
i

vn+1
iα − vniα

∆t
= −∑

p

Pαβ(F E
p (vn+1))Ni,γ(xnp)F n

pγβ V
0
p +mig. (2.82)

2.5.3 Notes on discrete energy and force

In the previous section, we presented how forces in an MPM discretization is derived in a

very similar way as an FEM discretization from a balance of linear momentum. We can

also view it as a byproduct of the discrete potential energy. We can discretize the potential

energy with a sum on particles, i.e.

Ψ = ∑
p

V 0
p ψ(F E

p). (2.83)

Note that V 0
p is the volume of material attributed to a particle in the initial configuration.

Only the elastic portion of the deformation gradient F E
p contributes to the energy [BW08].

If the state of the system is described by a finite number of positions x1, . . . ,xm (picture

a collection of point masses connected by springs), then the potential energy can be written

Φ(x1, . . . ,xm). Moving one of these points causes the amount of energy to change (energy is

required to stretch or compress the springs). The springs will push back on these points so

as to release this built-up energy. In this way, the force felt by particle j will be fj = − ∂Ψ
∂xj

.

28

With MPM, grid nodes are temporarily Lagrangian, and can be moved to define the

force. If the current grid node velocity is vi, then its position can be approximated as

xi = xni + ∆tvi. Considering a different ending position implies a different velocity to get

there. These node velocities are used in (2.100) to compute (∇v)p, which is in turn used

by (2.101) to compute a new deformation gradient F E
p . This deformation gradient will be

used to compute energy density using a model ψ(F E
p), which finally gives us total potential

energy. In this way, the potential energy of the material can be expressed in terms of the

locations of the grid nodes. We can use this relationship, summarized below, to compute

forces on grid nodes:

Ψ(xi) = ∑
p

V 0
p ψ(F E

p (xi)), (2.84)

with

F E
p (xi) = (I +∑

i

(xi −xni)(∇wnip)⊺)F E,n
p . (2.85)

This relationship can be differentiated to deduce the desired equation for computing grid

node forces

fi(F E
p) = − ∂Ψ

∂xi
= −∑

p

V 0
p (
∂ψ

∂F
(F E

p))(F E,n
p)⊺∇wnip. (2.86)

Note that F E
p is the function parameter but F E,n

p is a known value which is not changing

during the current time step. Also note that all deformation is assumed to be elastic. When

computing the force, the effect of further plastic flow is ignored [BW08].

2.5.4 Plasticity in discrete setting

Here, we describe our function Z(F E
p , αp), which projects the deformation gradient F E

p to

the yield surface defined by the parameter αp, which controls hardening, for example. As

mentioned before, in the space of principal stress, the yield surface looks like a cone (see

29

τ1

τ2

Figure 2.10: Drucker-Prager region. The yield surface for Drucker-Prager is shown in
principal stretch space. The yield surface has the shape of a cone with its tip at the origin,
which corresponds to no stress. Green particles are inside the yield surface and exhibit an
elastic response. Blue particles are under compression but experience more shear than friction
allows. These configurations are projected to the yield surface along a direction that avoids
volume change. Red particles are experiencing tension and are projected to the tip of the
conical yield surface. These particles separate freely without stress.

Figure 2.10). There are three possible cases that must be considered. If the stress lies

within the yield surface (Case I), then there is static friction between sand particles, and no

plasticity occurs. If the sand is undergoing expansion (Case II), then there is no resistance

to motion; this corresponds to the tip of the cone. Otherwise, there is dynamic friction (Case

III), and we should project to the side of the cone. Examples of these cases in an actual

simulation can be seen in Figure 2.11.

As with energy density, plasticity is most conveniently defined in terms of the singular

value decomposition of the deformation gradient, F E
p = UpΣpVp

⊺. Let εp = log Σp and

ε̂p = εp−
tr(εp)
d

I, δγp= ∥ε̂p∥F +
dλ + 2µ

2µ
tr(εp)αp, (2.87)

30

τ1

τ2

τ1

τ2

τ1

τ2

Figure 2.11: Sand column collapse. A column of sand collapses into a pile. Sand
particles are colored based on their current plastic deformation behavior. The plot shows
the locations of these particles in principal stress space. Green particles lie within the yield
surface and experience no plasticity. Blue particles are projected to the yield surface along a
direction that avoids volume change. Red particles are experiencing tension and are projected
to the tip of the conical yield surface; these particles are separating freely with no stress.

where d is the spatial dimension and δγp is the amount of plastic deformation. If δγp ≤ 0, then

the candidate F E
p is already in the yield surface and should be returned without modification

(Case I). If ∥ε̂p∥F = 0 or tr(εp) > 0, then we need to project to the cone’s tip (Case II), in

which case we should return UpVp
⊺. Otherwise, we should project to the cone surface (Case

III) by returning UpeHpVp
⊺, where

Hp = εp − δγp
ε̂p

∥ε̂p∥F
. (2.88)

Note that the operations log Σp and eHp involve diagonal matrices, so that the logarithm

and exponential functions are simply applied to the diagonal elements. Note also that the

result of this projection Z has a straightforward singular value decomposition (Up and Vp do

not change), and this decomposition will be required when computing the force. We avoid

the extra decomposition by returning the diagonal part (Σp, I, or eHp) rather than the full

result (F E
p , UpVp

⊺, or UpeHpVp
⊺).

2.5.5 Notes on volume change in projection

We present two ways of dealing with the volume change that might occur in during the

projection step when we apply plasticity. The method described so far has the desirable

feature that sand is prevented from compressing arbitrarily as a byproduct of losing volume

31

Figure 2.12: Pouring sand. The top row depicts the result of an explicit simulation with a
coarser grid size (dx = 10−2), while the bottom row corresponds to a finer grid size (dx = 10−3).
The first and third column correspond to a projection step without volume correction, while
the second and fourth column uses our volume correction algorithm.

in the plasticity projection. To see this, note that a change in det(F E
p) corresponds to a

change in volume of the elastic deformation. In Case I, F E
p is unchanged, so volume is not

changed. In Case II, the sand expands, and volume should be gained. In Case III, the sand

deforms plasticly and an associative flow rule [BW08] would lead to excessive volume gain.

Instead, noting that tr(ε̂p) = 0, the Drucker-Prager model uses a non-associative flow to

preserve volume during the plastic projection

det(Upe
HpVp

⊺) = etr(Hp) = etr(εp) = det(Σp) = det(F E
p).

The key to retaining volume in this case is to ensure that tr(Hp) = tr(εp), which means the

projection to the cone should locate the closest point on the cone that does not change the

trace, rather than the closest point on the cone.

However, while this approach is adequate for projection directions perpendicular to the

hydrostatic axis (Case III), (elastic) deformation gradient which is projected to the tip of the

Drucker-Prager cone (case II) can induce volume gain. This occurs when a particle undergoes

expansion that induces a cohesive elastic stress. In this case, stress is projected to the tip,

32

Figure 2.13: 2D hourglass. An hourglass is flipped two times. The left most hourglass
shaded grey depicts the initial state of sand at the beginning of the simulation. Each set-
of-three figures depicts the state of the sand after going through the neck the first time, and
after flipping the hourglass for the first and second time. The first two sets and the last two
sets have grid dx = 7.4× 10−3 and dx = 3.7× 10−3 respectively. The first and third set are run
without any volume correction fix, while the second and last set are run with our volume fix.

which is a stress free state. The particle is then in a new rest state and any motion that

would return it to its initial volume would be penalized elastically. This phenomena can lead

to some clearly non-physical behavior (see Figure 2.13) and there are existing corrections to

this in the mechanics literature, e.g. Dunatunga and Kamrin [DK15] model material as a

disconnected stress-free medium under sufficient expansion.

We combat this artifact by giving each sand particle an extra scalar attribute vcp which

tracks changes in the log of the volume gained during extension. This can be naturally taken

into account in the logarithmic-strain-based constitutive model to allow for compression in

the event of prior net expansion.

Since we need to keep track of vcp it is useful to discuss this step in the context of a

time-step, i.e. going from time tn to tn+1. Let F̂ E,n+1
p be defined as in Equation (2.101).

This is the part of the deformation gradient that needs to be projected. When we perform

the Drucker-Prager projection, we update Hn+1 according to

Hn+1
p = Z (εp +

vncp
d
I) , (2.89)

where Z is the projection operator described above. This can be interpreted as projecting

33

Particle state

Particle velocity (§5.3)

Updated positions (§5.4)

Plasticity, hardening (§5.5)

Grid velocity, mass (§5.1)

Forces (§6)

Collisions (§8)

Friction (§8.1)

Particles Grid

Figure 2.14: Overview of MPM stages. Breakdowns of an MPM algorithm.

the elastic strain plus the volume gain term. The quantity vcp is updated according to

vn+1
cp = vncp + log (det (F E,n+1)) − log (det (F̂ E,n+1)) , (2.90)

where v0
cp = 0. Lastly, we update F E,n+1 = UeHn+1

p V ⊺. See Figures 2.12 and 2.13 for a demon-

stration of this effect. We note that this projection is particularly defined for constitutive

models written in terms of the logarithmic strain. For a more general constitutive model, it

would require non-trivial modification.

2.6 Algorithm

Before presenting the algorithm in detail, we first provide an overview of the steps that are

involved in the algorithm and the role that they play, which is summarized in Figure 2.14.

1. Transfer to grid. Transfer mass and momentum from particles to the grid. Use mass

and momentum to compute velocity on the grid (§2.6.1).

2. Apply forces. Compute elastic forces using a deformation gradient that has been

projected into the plastic yield surface and apply the forces to the grid velocities

(§2.5.3).

3. Grid collisions. Project grid velocities for collisions against scripted bodies and ob-

stacles, ignoring friction (§2.6.9). For implicit, this is merged with the force application

step (§2.6.7).

34

Figure 2.15: Raking. A rake is dragged around a rock, producing a circular pattern in the
sand.

4. Friction. Compute and apply friction based on the collisions that were resolved. The

velocity before and after this step are retained for use during the transfers (§2.6.10).

5. Transfer to particles. Transfer velocities from grid to particles, being careful to

handle friction in a manner that does not lead to inconsistencies (§2.6.3).

6. Update particles. Update remaining particle state, including positions and defor-

mation gradient (§2.6.4).

7. Plasticity and hardening. Project the deformation gradient for plasticity, updating

the elastic and plastic parts. Perform hardening, which updates the plastic yield surface

(§2.6.5).

2.6.1 Transfer to grid

The first step of each time step is the transfer of state particles to the fixed Cartesian grid.

We begin by distributing the mass of each particle to its neighboring grid nodes:

mn
i = ∑

p

wnipmp. (2.91)

Grid nodes far enough from any particle that they do not receive mass are inactive and do

not participate in any further computations.

The next task is to transfer velocity. We do this using the APIC transfers in [JSS15]. The

velocity state on the particle is represented by vnp and Cn
p . The velocity spatial derivative

35

Cn
p is related to the affine momentum Bn

p through Cn
p = Bn

p (Dn
p)−1, where Dn

p is a matrix

that behaves as an inertia tensor and is

Dn
p = ∑

i

wnip(xni −xnp)(xni −xnp)⊺ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx2

3 I cubic

dx2

4 I quadratic
(2.92)

where dx is the grid spacing. Although the definition of the inertia tensorDn
p depends on the

relative positions of the grid nodes and particles through a relatively high-degree polynomial

(both explicitly and through wnip), it simplifies to a constant multiple of the identity in the

cases of the quadratic and cubic splines presented.

With Cn
p , we can define an affine velocity field vp(x) for particle p by vp(x) = vp+Cn

p (x−

xnp). The momentum contribution from particle p to node i is wnipmpvp(xni). This leads to

the full form of the velocity transfer, namely

vni =
1

mn
i

∑
p

wnipmp(vnp +Cn
p (xni −xnp)). (2.93)

2.6.2 Grid update

We next update velocities on the grid. This involves applying forces and processing for

collisions with scripted objects. We present three approaches for doing this, explicit, implicit,

and semi-implicit. For most of our examples, explicit is more efficient, since we are running

with relatively low stiffness. For stiff examples, implicit becomes advisable. We discuss the

implicit formulation in Section 2.6.7 and the semi-implicit formulation in Section 2.6.8.

The simplest approach for handling forces is explicit. In this case, we compute and apply

an explicit force as described in Section 2.5.3, namely

v⋆i = vni +
∆t

mn
i

fi(F E,n
p). (2.94)

After forces are applied, we can process the velocities for collisions v⋆i → v
n+1
i and then apply

36

E = 1kPa

E = 10kPa

E = 100kPa

E = 1000kPa

Figure 2.16: Effects of Young’s modulus. This simulation shows the effects of Young’s
modulus on the behavior of a simulation. Sand with a very low Young’s modulus tends to
be bouncy. The behavior is more like sand as the Young’s modulus approaches its physical
value.

friction vn+1
i → ṽn+1

i . The collision processing is described in Section 2.6.9.

2.6.3 Transfer to particles

Next we transfer velocities from the grid back to particles. Since we are using APIC, we

need to compute new velocities vn+1
p and the velocity spatial derivative Cn+1

p . Velocities are

interpolated back to particles in the straightforward way

vn+1
p = ∑

i

wnipṽ
n+1
i . (2.95)

37

Figure 2.17: Avalanching. Sand is poured from a spout into a pile in a lab (left) and
with our method (right). Our simulation is able to capture avalanching phenomenon.

The velocity spatial derivative is updated according to

Cn+1
p = ∑

i

wnipṽ
n+1
i ((Dn

p)−1 (xni −xnp))
⊺
, (2.96)

where the matrix Dn
p is defined in Equation (2.92). If we choose to work with the affine

momentum matrix, then the transfer for Bn+1
p is

Bn+1
p = ∑

i

wnipṽ
n+1
i (xni −xnp)⊺. (2.97)

2.6.4 Update particle state

Next, we update the particle’s position and deformation gradient.Positions are updated by

interpolating moving grid node positions

xn+1
p = ∑

i

wnipx
n+1
i . (2.98)

Since the particles move with the flow, the material derivative in Equation (2.14) is just

a normal time derivative and a simple difference yields the particle deformation gradient

38

Figure 2.18: Coupling with stiff material. A solid ball drops into a sandbox, spraying
sand in all directions.

update

F n+1
p = F n

p +∆t (∇v)pF n
p , (2.99)

where (∇v)p is calculated by differentiating (2.95)

(∇v)p = ∑
i

vn+1
i (∇wnip)⊺. (2.100)

In some of our implementations, we only store the elastic (F E,n
p) and plastic (F P,n

p) parts of

F n
p rather than F n

p itself. These are related by F n
p = F E,n

p F P,n
p . During this evolution step,

we assume that the plastic part is not changing (F̂ n+1
p = F n

p), which gives us the rule

F̂ E,n+1
p = F E,n

p +∆t (∇v)pF E,n
p . (2.101)

The plastic update is covered in Section 2.5.4.

Note that the update of the particle position and deformation gradient use vn+1
i while the

velocity and related quantities use ṽn+1
i . The use of the frictional velocity in the updates of

positional updates resulted in less stable behavior with implicit time stepping. With explicit

time stepping, ṽn+1
i could be used for both position and velocity related updates.

39

τ1

τ2φF

q

τ1

τ2φF

q

τ1

τ2φF

q

Figure 2.19: Hardening. Three particles in a collapsing pile of sand are colored for
reference. As these particles deform plasticly, their yield surface changes as they undergo
hardening, resulting in a wider cone for projection. Hardening causes each particle to have
its own yield surface.

2.6.5 Plasticity, hardening

The final step is to apply plasticity and hardening. Plasticity is performed by projecting the

elastic deformation gradient to its yield surface, an action denoted by Z(⋅, ⋅) which we have

described in detail in Section 2.5.4. Plasticity does not change the full deformation gradient,

so that F n+1
p = F̂ E,n+1

p F̂ P,n+1
p = F E,n+1

p F P,n+1
p . This allows us to update the plastic part.

F E,n+1
p = Z(F̂ E,n+1

p , αnp) (2.102)

F P,n+1
p = (F E,n+1

p)−1F̂ E,n+1
p F̂ P,n+1

p (2.103)

The last step is hardening which updates αnp → αn+1
p which is described in Section 2.6.6.

2.6.6 Hardening

We adopt the hardening model of Mast et al. [MAM14a], where plastic deformation can

increase the friction between sand particles. The amount of hardening depends on the

amount of correction that occurred due to plasticity. In Case I, no plasticity occurred, so

δqp = 0. In Case II, all of the stress was removed, so δqp = ∥εE,n+1
p ∥F . In Case III, the amount

of plasticity that occurred was δqp = δγp. In each case, δqp ≥ 0. We define our hardening

40

Figure 2.20: Coupling with deformable object. A sand castle is hit with a deformable
ball while falling. The sand and ball are fully coupled in the simulation.

update using

qn+1
p = qnp + δqp (2.104)

φF p = h0 + (h1q
n+1
p − h3)e−h2q

n+1
p (2.105)

αn+1
p =

√
2

3

2 sinφF p
3 − sinφF p

(2.106)

The quantity qnp is the hardening state, φF p is often referred to as the friction angle, the

internal coefficient of friction is tanφF p, and (2.105) models a curve with a maximum and

an asymptote. Plausible values of φF p lie in [0, π2), with φF p = 0 behaving as a fluid. Feasible

hardening parameters satisfy h0 > h3 ≥ 0 and h1, h2 ≥ 0. Figure 2.19 illustrates the change in

yield surface as particles undergo hardening in 2D.

41

2.6.7 Implicit velocity update

The implicit velocity update is

vn+1
i = vni +

∆t

mn
i

fi(F E,n+1
p) +∑

k

∇Gkiλk (2.107)

subject to the additional conditions Gk ≥ 0, λk ≥ 0, and Gkλk = 0. Here, Gk(xn+1
i) ≥ 0, with

xn+1
i = xni +∆tvn+1

i , is the collision-free criterion for all object-node collision pairs k. (§2.6.9)

These forces are implicit, since F E,n+1
p depends on vn+1

i through (2.101), (2.100), and (2.102).

As in the explicit case, we complete the grid update by applying friction vn+1
i → ṽn+1

i and

described in Section 2.6.9.

Note that we are implicit in plasticity, but we are not implicit in hardening or friction. In

the absence of plasticity, these are just the Karush-Kuhn-Tucker (KKT) conditions [NW06]

for minimization. Unlike solving a minimization problem, however, our linear systems are

not generally symmetric, and we do not have an objective with which to do line searches.

Solving the system. Since the collision constraints are independent, we use the pro-

jection method to eliminate the collisions. We solve the nonlinear system of equations using

Newton’s method. Note that because of plasticity, the systems will in general be asymmet-

ric, and we solve with GMRES. These systems usually converge sufficiently in three or fewer

iterations of GMRES, rarely (< 1%) taking more than four iterations. We limit GMRES to

15 iterations and allow multiple Newton iterations.

2.6.8 Semi implicit velocity update

This time-stepping scheme for sand is used in [PGK17]. This is also used by Stomakhin et

al. [SSC13] for simulation of snow. In a semi-implicit time-stepping, in going from time tn to

tn+1, one assumes that the material only has an elastic response in an implicit step to solve

for the velocity at time vn+1. Plasticity is then used as a post-process to redistribute the

elastic component and the plastic component of the deformations (F E and F P). Whenever

42

Figure 2.21: Effects of friction angle on piling. Varying the friction angle changes
the shape of a pile of sand. A larger angle produces a taller sand pile with steeper sides.

we are simulating dry sand with a semi-implicit time-stepping, we use the unilateral energy

density function as described in Section 2.4.3.

2.6.9 Collisions

We separate our collision response into two distinct steps: resolving the actual collision and

applying friction. The motivation for this is that the collision response can be added into

the implicit solve, but doing the same for friction would be more difficult. In the explicit

case, this separation does not matter.

We use a signed distance function φ(x) to represent each obstacle, with the convention

that negative is inside the object and positive is outside. If we could process particles for

collisions directly, then the collision constraint would be φ(xn+1
p) ≥ 0. In practice, processing

collisions directly on particles produces poor results, since it causes xn+1
p and F E,n+1

p to get

out of sync. This can cause objects to slowly seep into the ground. Instead, it is necessary

to process collisions using the grid velocities.

Since xn+1
p will be computed based on vn+1

i , one could adjust vn+1
i to enforce φ(xn+1

p) ≥ 0.

43

Figure 2.22: Drawing in sand. A stick is dragged through a bed of sand, tracing out a
butterfly shape in the sand.

While this would likely lead to good results, it complicates collision processing in both the

explicit and implicit cases. Instead, we process collisions against the nodes themselves as

in [GSS15]. This is difficult because φ(xn+1
i) ≥ 0 does not make sense. There should be

grid nodes inside obstacles. A set of constraints Gk(xn+1
i) ≥ 0 or Gk(xn+1

i) = 0 on grid

nodes is needed that avoid collisions for particles, at least approximately, but which can be

applied independently per grid node in an straightforward manner. This depends on the

type of collision being applied. We support three types of collisions: sticky, slipping, and

separating. Note that a grid node must have received mass during the transfer in order to

be considered for a collision constraint of any type.

Sticky. Sticky collisions enforce that a point remains fixed to a particular reference

point on the collision object. We enforce this by requiring vn+1
i = vn+1

b , where vn+1
b is the

velocity of the collision object at the candidate position. In terms of positions, this is

Gk(xn+1
i) = xn+1

i − xni −∆tvn+1
b = 0. The constraint can be enforced by directly setting the

velocity.

Separating. Separating constraints have two cases. If a node is already inside a collision

body (φ(xni) < 0), then it should not penetrate any deeper, φ(xn+1
i) ≥ φ(xni). If a node is

originally outside the object (φ(xni) ≥ 0) then it should remain φ(xn+1
i) ≥ 0. These cases can

be combined into the constraint φ(xn+1
i) ≥ min(φ(xni),0). Note that movement along and

away from the collision object are fully permitted by this rule, even if the collision surface

is curved. An unsatisfied constraint of the form φ(xi) ≥ a or φ(xi) = a can be enforced by

xi ← xi − (φ(xi) − a)∇φ(xi), noting that ∇φ is the normal direction.

44

Slipping. For a slipping constraint, we do not want to allow separation for existing

collisions, but sliding along the surface is permitted. If a node is already inside a collision

body (φ(xni) < 0), then it should stay at its current depth, φ(xn+1
i) = φ(xni). If a node is

originally outside the object (φ(xni) ≥ 0) then no collision constraint is enforced. By not

enforcing this constraint for non-penetrating nodes, penetration becomes possible and leads

to enforcement in the next time step. Slipping constraints are enforced as in the separating

case.

With a mathematical description for the constraints for all cases and a method for directly

enforcing those constraints, direct enforcement (v⋆i → v
n+1
i) is all that is required for the

explicit case. The implicit case uses the constraints Gk that have been defined in order to

couple collision enforcement with force application (see Section 2.6.7 for more details).

2.6.10 Friction

To apply friction, we look not at the manner in which collisions were enforced but the effect

that this enforcement had on the velocities. In the explicit case, velocities before (v⋆i) and

after (vn+1
i) are already available. ∆vi = vn+1

i − v⋆i is the velocity change attributable to

collisions.

In the implicit case, the collision contribution is from the last term of Equation (2.107).

We compute the velocity estimate before forces as v⋆i = vni + ∆t
mni
fi(F E,n+1

p). Although vn+1
i

would be the after-collision velocity if the implicit solve had converged, this is not often done

in practice. Instead, we repeat collision processing on v⋆i to compute the difference for ∆vi.

For both cases, ∆vi is the velocity change that collisions caused. Corresponding to this,

an impulse j =mn
i ∆vi must have been applied. Since each node participates in at most one

collision (the constraints do not mix), the normal direction n is known. (If it were not, it

could be approximated as n = j
∥j∥ . This divides velocity into normal and tangential parts:

vin = n ⋅vn+1
i and vit = vn+1

i −nvin. The tangential direction is t = vit
∥vit∥ . The Coulomb friction

law limits the amount of friction that can be applied to µb∥j∥, where µb is the coefficient of

45

friction. If ∥vit∥ ≤ µb
mni

∥j∥, then friction suffices to eliminate tangential motion entirely, and

ṽn+1
i = nvin. Otherwise, ṽn+1

i = vn+1
i − µb

mni
∥j∥t.

2.6.11 Initialization

Particle locations are initialized with Poisson disk sampling. Initial values for mp, xnp , and

vnp = v(xnp) are chosen based on the needs of the example, with v(x) the desired initial

velocity field. We initialize the matrix Cn
p =Bn

p (Dn
p)−1 = ∇v to be the gradient of the initial

velocity field and Dn
p is computed from (2.92). Our initial setups have no deformation, so

F E,n
p = F E,n+1

p = I. We initialize our hardening parameter with qnp = 0, from which we can

compute αnp using (2.105) and (2.106). Initial particle volume V 0
p is computed from the

seeding density.

2.7 Results

Flowing and Piling. We demonstrate the accuracy of our model by showing the character-

istic behaviors of sand flowing and piling. In Figure 2.1, we simulate sand flowing inside an

hourglass. The sand forms a smooth granular flow and piles up at the bottom. Figure 2.17

shows a stream of sand inflow hitting a high frictional surface. We compare this simu-

lation with real world footage. Our model successfully captures the interesting avalanche

instability [Yos03] of this experiment.

Easy Tuning. In Figure 2.21, we simulate columns of dry sand with different friction

angles collapsing on the ground. Different friction angles directly affect the interaction

between sand grains, therefore the final piling angle. While the real Young’s modulus of

sand is 3.537 × 107, we found that sometimes choosing a moderately smaller value does not

change the visual appearance. In Figure 2.16, we show 2D inflow simulations with different

Young’s modulus. A moderately smaller Young’s modulus improves the efficiency of the

implicit solve. However, the material may exhibit jiggling behavior if it is too small. We

assert physically accurate Young’s modulus is always the best choice unless an artistic elastic

46

Figure 2.23: 2D sand pile. From top to bottom row: initial, middle, and final configura-
tion of a 2D sand pile. The left column is an explicit simulation with maximum ∆t = 10−4

. The two columns in the middle are the results of semi-implicit simulation with the regular
constitutive model and max ∆t = 10−2 and 10−3 respectively. Note that both suffer from ar-
tificial cohesion, although it diminishes with smaller ∆t. On the right is semi-implicit time
stepping with our unilateral energy density function with maximum ∆t = 10−2. Note that it
does not suffer from artificial cohesion.

effect is desirable.

Two-way Coupling. The benefits of using MPM include automatic self collision and

coupling between different materials. In Figure 2.20, we show an elastic ball interacting

with a dry sand castle. MPM naturally handles the two-way coupling without requiring any

additional treatment other than assigning different constitutive models to different particles.

In Figure 2.18, a rigid ball is dropped into a 1m × 1m × 0.35m sand box with impact speed

6m/s. The impact dynamics are stable and almost noise-free, resulting in a smooth and

symmetric crown splash visual appearance.

Drawing. We further demonstrate the versatility of our method by performing various

tasks in a sand box. Figure 2.22 shows drawing a butterfly with a wooden stick. Figure 2.15

shows raking sand in a Zen garden.

Unilateral hyperelasticity and implicit time stepping. Figure 2.23 demonstrates

the effects of our unilateral constitutive model with semi-implicit time stepping. We note

that our unilateral potential removes artificial cohesion effects in the simulation of dry sand.

The cohesion in this simulation is zero so the sand should not stick together. When we use

the constitutive model from [KGP16] with a semi-implicit time integration scheme, we see

47

Figure 2.24: Fully implicit unilateral. Comparison of increasingly implicit time stepping
schemes for 2D sand column collapse. The simulations on the left and at the center are
run with the semi-implicit scheme with the regular and unilateral energy density functions
respectively. The right-most figure shows a fully implicit scheme with our modified energy
density function. Note that the unilateral density function with semi-implicit time stepping
yields a good approximation of the fully implicit result, while the regular energy density suffers
from artificial cohesion.

artificial cohesion that gets worse as we increase the time step size. Using our unilateral

elastic energy function removes this artificial cohesion. We further demonstrate that our

semi-implicit scheme gives results comparable to the more accurate, but more expensive

fully implicit backward Euler scheme in Figure 2.24. The importance of choosing the right

unilateral parameters is illustrated by Figure 2.8. If the regions A and B in Figure 2.7 do

not closely fit the Drucker-Prager cone, then the accuracy of the simulation is compromised

for large time steps.

2.8 Discussion and Limitations

Limitations. There are methods that are much faster, for example the position based dy-

namics approach in Macklin et al. [MMC14] or other existing continuum approaches such

as Narain et al. [NGL10]. However, when realism and intuitively designed parameters are

more important than raw performance, our method provides an alternative with competitive

computational expense. Also, although the framework would generalize to a wide range of

yield surfaces and elastic potentials, we only investigated the Drucker-Prager model. How-

ever, the Drucker-Prager cone is only equivalent to the Coulomb friction shear/normal-stress

48

relation in two dimensions. In three dimensions, the elastic regime is described by the more

complicated region in the Mohr-Coulomb model, but the Drucker-Prager model is a decent

approximation [Mas13].

Discussion. We note that explicit time stepping was often faster than implicit time

stepping. Although implicit steps are generally larger than explicit, the cost required to

solve the nonlinear equations of the implicit step was often larger than just taking more

inexpensive explicit steps. Improvements in stability of explicit integration may be partly

due to a better position update and APIC transfers providing more stability than FLIP/PIC

blends as in Stomakhin et al. [SSC13], whose implicit scheme also benefited from a symmetric

treatment. Tuning time step and solver tolerances proved difficult to optimize, requiring

different values for different examples.

49

CHAPTER 3

Wet Sand and Water

Figure 3.1: Dam breach. Water pours in from a reservoir and slowly erodes a dam. As
water seeps into the sand, its cohesivity decreases. When it eventually breaks, the landslide
creates interesting dynamics in the debris flow.

While wet sand is both ubiquitous and literally child’s play, simulating the underlying

interaction of water and sand certainly is not. This chapter presents one story on how one

can simulate the phenomenon of a dam breach using Material Point Method.

3.1 Previous Work

Probably the earliest work on water and sand in computer graphics is by Peachey [Pea86].

Rungjiratananon et al. simulate sand-water interaction in real-time using a hybrid Smoothed

Particles Hydrodynamics (SPH) and Discrete-Element Method (DEM) approach [RSK08].

Lenaerts and Dutre [LD09] also couple water with porous granular materials using SPH.

50

Notably, these approaches capture a wider range of porous phenomena than that con-

sidered in our approach. While we focus on gravity driven landslides and debris flows,

their approaches more accurately capture surface tension driven effects like capillary ac-

tion drawing water into dry sand. They can also handle landslides and debris flows, but

they do so with SPH, whereas we develop an MPM approach that naturally allows for im-

plicit time stepping and high resolution simulation. Other graphics approaches have shown

the efficacy of hybrid Lagrangian/Eulerian approaches like FLIP and MPM, including sand

[ZB05, NGL10, DB16, KGP16] and various other elastoplastic materials [SSC13, SSJ14,

YSB15, RGJ15, JSS15]. Unilateral incompressibility is an effective assumption for granular

materials [NGL10, AO11, IWT13, DB16].

Our approach is the first MPM technique in graphics that considers multi-species mod-

eling for porous sand/water. However, mixture theory and multi-species simulations have

been used for a wide range of effects in computer graphics. Nielsen and Osterby [NO13]

simulate spray and mist with a two-continua mixture model. Takashi et al. [TFK03] use the

Cubic Interpolation Propagation method to couple spray, water, and foam continua. Losasso

et al. [LTK08] and Yang et al. [YLH14] also represent spray and dense water with multiple

phases. Similar multi-species interaction ideas have been used for bubbles in incompressible

flow [SSK05, TSS07, MMS09, RJL15]. Liu et al. [LWG08] use two continua to simulate mix-

tures of air and dust. Multi-species approaches have been used for miscible and immiscible

fluids [BWZ10, KPN10, RLY14, HWZ15, YCR15].

Various researchers in engineering have shown the efficacy of simulating water and soil

interactions with the MPM. Abe et al. [ASB14] solve coupled hydromechanical problems of

fluid-saturated soil subjected to large deformation with a two grid MPM algorithm based

on Biot’s mixture theory. Bandara et al. use a single grid MPM method for saturated

and unsaturated soils that undergo large deformations in [BFL16] and two grid MPM to

represent soil skeleton and pore water layers in [BS15]. Jassim et al. [JSV13] also develop

a two grid MPM approach for soil mechanics problems. Mast et al. [MAM14b] use MPM

to simulate large deformation, gravity-driven landslides of porous soil. Mackenzie-Helnwein

51

et al. [MAS10] examine the multi-species momentum exchange terms for problems with

liquefaction, landslides, and sedimentation with two grid MPM.

3.2 Multiphase Continuum

We model sand and water as a multi-species continuum using mixture theory [AC76, Bor06].

With this approach, each species is given distinct material properties, and their motion is

derived from distinct velocity fields. This kinematic assumption allows sand and water to

occupy the same points in space at the same time to create the mixture. Since we are now

dealing with multiphase, we use superscript to differentiate the differing phase quantities.

We use superscript s to represent sand quantities and superscript w to represent water

quantities. Whenever we use the Greek letter α as a superscript, it is understood that it can

stand as s or w.

There are two material spaces Ωs,0 and Ωw,0, representing the original configuration of

sand and water materials originally. The diffeomorphism ϕα(⋅, t) maps points in Ωα,0 to

points in Ωα,t. As before, the deformation gradient and its determinant is defined as

F α(X, t) ∶= ∇Xϕα(X, t), and Jα(X, t) ∶= det(F α(X, t)). (3.1)

With this convention, the primary state is defined in terms of mass density Rα(X, t) and

material velocity V α(X, t) in Lagrangian form. Their counterparts in Eulerian form are

ρα(x, t) and vα(x, t), where it is understood that x ∶= ϕα(X, t).

Each species obeys the following conservation of mass with respect to its own motion,

i.e. in Lagrangian form

Rα(X,0) = Rα(X, t)Jα(X, t), α = s,w. (3.2)

52

In Eulerian form, it is written as

Dαρα

Dt
(x, t) + ρα(x, t)∇ ⋅ vα(x, t) = 0, α = s,w. (3.3)

Here the material derivative operator is taken with respect to the motion of species α, and

is defined as

Dαh

Dt
(x, t) = ∂h

∂t
(x, t) + vα(x, t) ⋅ ∇h(x, t), α = s,w, (3.4)

for a generic function h ∶ Ωα,t×(0, T) → R. For a function h ∶ Ωα,t×(0, T) → Rd, this operator

acts as

Dαh

Dt
(x, t) = ∂h

∂t
(x, t) + ∇h(x, t)vα(x, t), α = s,w. (3.5)

It is useful to introduce the notion of the mixture. The world space of the mixture,

denoted by Ωt is the union of the world spaces of the individual species,i.e.

Ωt = Ωs,t⋃Ωw,t. (3.6)

The total mass density of the mixture can be defined as

ρ(x, t) ∶= ρs(x, t) + ρw(x, t), (3.7)

and the total momentum of the mixture as

ρ(x, t)v(x, t) ∶= ρs(x, t)vs(x, t) + ρw(x, t)vw(x, t). (3.8)

This defines the notion of velocity for the mixture

v(x, t) = ρ
s(x, t)vs(x, t) + ρw(x, t)vw(x, t)

ρ(x, t)
. (3.9)

53

Summing Equation (3.3) over the two phases gives the standard conservation of mass for

the mixture:

Dρ

Dt
+ ρ∇ ⋅ v = 0, (3.10)

where for a generic function h ∶ Ωt × (0, T) → R,

Dh

Dt
(x, t) = ∂h

∂t
(x, t) + v(x, t) ⋅ ∇h(x, t). (3.11)

The conservation of linear momentum for each phase is written as

ρα
Dαvα

Dt
= ∇ ⋅σα + pα + ραg, α = s,w. (3.12)

where pα represents the transfer of momentum due to the relative motion of the constituents,

σα is the partial stress tensor associated with species α, and g is the gravitational acceler-

ation. Because pα represent the exchange of momenta between species, the sum ∑α p
α = 0

must be zero to not affect the total linear momentum of the mixture. Indeed with this

constraint, and noting that

ρ
Df

Dt
= ∑

α

ρα
Dαf

Dt
, (3.13)

we can show by summing over α in Equation (3.12) we get the conservation of momentum

of the mixture:

ρ
Dv

Dt
= ∇ ⋅σ + ρg. (3.14)

We have introduced σ = ∑ασ
α, which denotes the Cauchy stress in the mixture expressed as

the sum of the partial stresses in each species. In other words, with this notion of the Cauchy

stress, conservation of linear momentum for the individual species implies conservation of

linear momentum for the mixture.

54

3.3 How to model water

We model water as fluid with no viscosity. The stress tensor for the water species can then

be written as

σw = pwI, (3.15)

for some scalar field pw. Furthermore, if we impose the incompressibility condition of

∇ ⋅ vw = 0, (3.16)

then we can think of pw as the Lagrange multiplier associated with this divergence-free

constraint. As such, there are two routes we can take to model water: by solving for the

pressure pw that makes the velocity to be divergence-free, or by using an equation of states for

the pressure to model water as a weakly compressible fluid. Considering the first approach,

we end up with a KKT system, and it is discussed in Section 3.3.1. The approach of using

weak compressibility is discussed in Section 3.3.2.

3.3.1 KKT Approach

First, we consider an energy density function of the form [SHS12, SSJ14]

ψ(F w,E) = ψµ(F w,E) + ψλ(F w,E), (3.17)

where

ψµ(F w,E) ∶= µ ∥F w,E −Rw,E∥2

F
, ψλ(F w,E) ∶= λ

2
(Jw,E − 1)2. (3.18)

The matrix Rw,E comes from the polar decomposition of F w,E =Rw,ESw,E, with Rw,E being

a rotation matrix and Sw,E is a symmetric matrix. The scalar Jw,E is the determinant of

F w,E. We call ψµ and ψλ to be the deviatoric and volumetric part of the energy density

55

function respectively. It is clear that the volumetric energy density penalizes volume change.

We now revisited the arguments made by Stomakhin et al. [SSJ14] with regards to the no-

tion of pressure associated with ψλ and its evolution. Note that the Cauchy stress associated

by ψλ is given by

σλ =
1

Jw
(∂ψλ
∂Jw,E

∂Jw,E

∂F w,E
)(F w,E)⊺ = −pwI, (3.19)

with

pw ∶= 1

Jw,P
λ(Jw,E − 1), (3.20)

where Jw,P = det(F w,P) and Jw,E = det(F w,E). The temporal evolution of this pressure is

given by

Dpw

Dt
= −λJ

w,E

Jw,P
∇ ⋅ vw. (3.21)

In the absence of plasticity, we have Jw,E = Jw and Jw,P = 1. In this case Equation (3.20)

and (3.21) can be simplified to

pw ∶= λ(Jw − 1), (3.22)

and

Dpw

Dt
= −λJw∇ ⋅ vw. (3.23)

In this case, the momentum balance for the material is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρw
Dv

Dt
= −∇pw + ρwg +∇ ⋅σwµ ,

∇ ⋅ vw = − 1

λJw
Dpw

Dt
,

(3.24a)

(3.24b)

56

where σµ is the Cauchy stress associated with the energy density function ψµ. In the case

where µ = 0, Equation (3.24) is simplified to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρw
Dv

Dt
= −∇pw + ρwg,

∇ ⋅ vw = − 1

λJw
Dpw

Dt
.

(3.25a)

(3.25b)

When we solve Equation (3.25), we are solving for a momentum balance subject to the

constraint that the divergence of the velocity field being equal to the right hand side of

Equation (3.25b). When we take the limit as λ→∞, however, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρw
Dv

Dt
= −∇pw + ρwg,

∇ ⋅ vw = 0,

(3.26a)

(3.26b)

which has the standard divergence-free constraint.

For the discrete system to be solved at each time-step, we denote the discretization of

the density term by a matrix Rw and the discrete divergence matrix by D. The discrete

gradient operator is then given by −D⊺. We further denote the velocity degrees of freedom

at time tn and tn+1 by vw,n and vw,n+1, the pressure degrees of freedom at step n + 1 by

pw,n+1, and the degrees of freedom for the interpolated Jw,n to be J . With this conventions,

we may write the boundary condition constraint as

Bvw,n+1 = bc, (3.27)

for some boundary condition matrix B and vector of bc. Note that at time tn, we have

pw,n = −λ(Jw,n − 1). Therefore, we may approximate

Dpw

Dt
≈ p

w,n+1 + λ(J − 1)
∆t

. (3.28)

If 1 denotes the all ones vector, and Λn+1 is the Lagrange multiplier associated with the

57

constraint of Equation (3.27), then we may discretize Equation (3.25) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rwvw,n+1 −Rwvw,n

∆t
=D⊺pw,n+1 −B⊺Λn+1 +Rwg,

Dvw,n+1 = − 1

λ∆t
J−1 (pw,n+1 + λ(J − 1)) ,

Bvw,n+1 = bc,

(3.29a)

(3.29b)

(3.29c)

which can be rearranged to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

∆t
Rwvw,n+1 −D⊺pw,n+1 +B⊺Λn+1 = 1

∆t
Rwvw,n +Rwg,

−Dvw,n+1 − 1

λ∆t
J−1pw,n+1 = 1

∆t
(1 − J−1),

Bvn+1 = bc.

(3.30a)

(3.30b)

(3.30c)

The last equation is a KKT system and can be written as

⎛
⎜⎜⎜⎜⎜
⎝

1
∆tR

w −D⊺ B⊺

−D − 1
λ∆tJ

−1 0

B 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

vw,n+1

pw,n+1

Λn+1

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

Rwvw,n +Rwg

1
∆t (1 − J−1)

bc

⎞
⎟⎟⎟⎟⎟
⎠

. (3.31)

If we take the limit as λ→∞, we can discretize Equation (3.29) as

⎛
⎜⎜⎜⎜⎜
⎝

1
∆tR

w −D⊺ B⊺

−D 0 0

B 0 0

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

vw,n+1

pw,n+1

Λn+1

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

Rwvw,n +Rwg

0

bc

⎞
⎟⎟⎟⎟⎟
⎠

. (3.32)

One of the main difficulties in doing this is to choose the right discretization for D. We

need to make sure that the discretization is stable even though it is derived from B-splines

basis functions. Ideally, there will not be any spurious null-modes in the matrix. The works

of Rüberg and Cirak [RC12, RC14] address this problem on a collocated grid. However,

for our final examples, we settled to model water by choosing an equation of states for the

water pressure and enforcing a notion of weak-compressibility. This is explained in the next

58

section.

3.3.2 Weak compressibility

We model the water as weakly compressible [BT07] with the partial stress

σw = −pwI, pw = k (1

Jwγ
− 1) . (3.33)

We note that the water pressure is related to a potential ψw as pw = −∂ψ
w

∂Jw (Jw), with ψw(Jw) =

−k ((J
w)(1−γ)
1−γ − Jw). This pressure pw is designed to stiffly penalize the volume change of the

water phase, which is characterized in terms of the determinant of the water deformation

gradient Jw = det(F w). Intuitively, Jw is the ratio of the current to initial local volume of

material in the water phase. It evolves as

DwJw

Dt
= ∇ ⋅ vwJw. (3.34)

Here k is the bulk modulus of the water and γ is a term that more stiffly penalizes large

deviations from incompressibility.

3.4 How to model wet sand

Recall the yield condition that is used to define the behavior of dry sand in (2.28):

cF tr(σs) + ∥σs − tr(σs)
d

I∥F ≤ cC , (3.35)

with d = 2,3 is the spatial dimension, and the parameter cC ≥ 0 controls the amount of

cohesion in the material. A positive cC shifts the yield surface along the hydrostatic axis,

which allows the material to exhibit stress under tension and thus cohere to itself. In this

multiphase work, we model cohesivity as a function of water saturation in the sand. This is

naturally measured in terms of the volume fraction of water in the mixture φw = ρw

ρ so that

59

Figure 3.2: Dropping sand on wedges. A box of sand with various values of cohesion
is dropped onto a wedge. The top left simulation is done using an explicit time-stepping
scheme, while all the others are done using a semi-implicit time-stepping scheme.

cC = cC(φw).

3.4.1 Momentum exchange

The momentum exchange terms ps,pw for water and porous sand interactions can generally

be viewed as a combination of dissipative and reversible interactions [Bor06]. We follow the

formulation of Bandara and Soga [BS15] because like them we are concerned primarily with

gravity driven flows such as fast catastrophic landslides and debris flows. Their formulation

assumes

ps = cE (vw − vs) + pw∇φw, pw = −ps (3.36)

60

where cE = n2ρwg

k̂
and n is the sand porosity, k̂ is the sand permeability and g is the gravita-

tional acceleration, φw = ρw

ρ is the water volume fraction and pw is the water pressure. The

first term represents viscous forces generated by sand particles moving through the fluid.

Although it can be conceived from the view of an idealized particle moving through a Stokes

fluid, it simply amounts to a Coulomb-friction-like response [MAS10]. The second term is of-

ten called the “buoyancy term“ in mixture theories [RS13]. It can be conceived from entropy

equilibrium constraints or from the physical consideration that the pore fluid pressure multi-

plying the porosity is appropriate notion of reversible pressure, however there is some debate

about its appropriateness outside of immiscible mixtures [Dru00]. Mackenzie-Helnwein et

al. [MAS10] omit the second term and view the momentum exchange terms as purely dissi-

pative processes. We also follow this approach for the majority of the examples presented in

the paper, however we include one example demonstrating its effect in Figure 3.4. Even with

the inclusion of the active term from [BFL16], we are only capable of simulating a rather

narrow range of porous media phenomena. While this is sufficient for landslides and debris

flows, phenomena such as capillary action drawing water into dry sand is not achievable in

our approach.

3.4.2 Cohesion and Saturation

As in Robert and Soga in [RS13], we assume that the sand cohesion varies as a function

of water saturation. One option to measure saturation is as the percentage of water in

the mixture which we estimate as the ratio of the density of the water phase to the total

density φw = ρw

ρ . We can also choose a heuristic method to model saturation based on an

indicator function tracking the overlap region between water and sand. This is explained in

Section 3.5.3.3.

The cohesion of sand is zero when it is completely dry (φw = 0). Intuitively, as dry sand

becomes saturated with more water, the cohesivity of the wet sand should increase as wet

sand tends to better hold its shape. Indeed this was observed in the work of Robert and

Soga in [RS13]. However, they also observe that this increase only continues to a maximal

61

Figure 3.3: MPM algorithm with two grids. We use separate water and sand grids.
The blue and red dots denote water and sand particles respectively. In the overlapping region,
we compute the momentum exchange term between the two species. We also compute the force
based on individual constitutive model.

value cmax
C when the saturation is around φw = 0.4. Beyond this point the sand becomes

more compliant to flowing and less cohesively elastic. In all of our multispecies examples, we

model water interaction with wet sand that is capable of holding its shape. We thus set the

sand cohesion to be initially maximal, even in the absence of the water phase. Based on the

observations in Robert and Soga [RS13], we then assume that the cohesion decreases linearly

with increasing saturation beyond this point (with cohesion equal to zero at full saturation

φw = 1).

3.5 Discretization

The overall MPM algorithm in this case is very similar to the one described in the first

chapter. As in other approaches in the engineering literature [BS15, JSV13, MAS10], we

use two sets of grids (Figure 3.3): one for the solid particles and the other for the water

particles. This is the primary difference between a multispecies discretization and a single

species MPM algorithm.

First, we explain the notation used in the discretization section, some of which have been

used in Section 3.3.1. There are two sets of grids: one is associated with sand material and

the other is associated with water. As with the continuous equations, the superscript α = s,w

indicates the corresponding species. Whenever a symbol has a subscript i or j, this denotes

62

Variable Where Species Meaning

g - - gravitational constant
cE - - drag coefficient

mα
p particles both particle mass

V α0
p particles both initial particle volume

xα,np , xα,n+1p particles both particle position
vα,np , vα,n+1p particles both particle velocity
Fnp , F

n+1
p particles matrix deformation gradient

F sE,np , F sE,n+1p particles sand sand elastic deformation gradient
F sP,np , F sP,n+1p particles sand plastic deformation gradient
Jw,np , Jw,n+1p particles water determinant deformation gradient

ssp particle sand water saturation
vscp particle sand volume correction scalar
(∇v)αp particles matrix grid-based velocity gradient

mα,n
i grid both grid node mass

vα,ni grid both rasterized velocity
vα,n+1i grid both final grid velocity
xα,ni grid both Cartesian grid node locations
x̂α,n+1i grid both grid positions moved by vα,n+1i

φs,n+1i grid mixed water saturation
fαi grid both internal forces

Table 3.1: Table of notation for multiphase simulation.

one degree of freedom in grid node index i or j. Subscript p denotes attributes that belong

to a particle. A symbol that is not followed by a subscript refers to the whole collection of

grid nodes as degrees of freedom. For example vs,n+1 refers to all of the sand grid nodes that

are active at step n + 1.

The overview of the algorithm is as follows:

1. Transfer to grids: Transfer the mass and momentum of each species to its corre-

sponding grid (§3.5.1).

2. Update grids momenta: Solving for the coupled water and sand grid velocities using

semi-implicit backward Euler (§3.5.2).

3. Update particles: Update all particle state, including the cohesion based on satura-

tion as well as plasticity return mappings (§3.5.3).

Although many of these steps are very similar to the steps described in Chapter 2 (with

the modification of having superscript α in some of the symbols), we include them here for

completeness.

63

3.5.1 Transfer to grid

We transfer mass and momentum from sand and water particles to their respective grid just

like we did in the first chapter. For each species α, the particle p interacts with the grid node
α
i with weight wα,nip = N(xα,np − xαi). The weight is computed using the quadratic B-spline

interpolation kernel. Just as in Equation (2.91) mass on the grid is computed according to

mα,n
i = ∑

p

wα,nip m
α
p , (3.37)

and velocity according to

vα,ni = 1

mα,n
i

∑
p

wα,nip mα
p (vα,np +Cα,n

p (xα,ni −xα,np)) , (3.38)

where the matrix Cα,n
p is an extra matrix stored per particle which defines an affine velocity

field local to the particle [JSS15]. Cα,n
p is initialized with Cα,0

p = 0 and updated at the end

of the previous time step during the grid-to-particle transfer (Equation (3.50)).

3.5.2 Update Grids Momenta

Using MPM, the forces in the sand and water phases are computed as

f si (x̂s) = −
∂ψs

∂x̂si
= −∑

p

V 0
p (
∂ψU

∂F s
(F sE

p (x̂s))(F sE,n
p)⊺∇ws,nip , (3.39)

fwi (x̂w) = −∂ψ
w

∂x̂wi
= −∑

p

V 0
p (
∂ψw

∂Jw
(Jw(x̂w)))Jw,n∇ww,nip . (3.40)

As in [SSC13] we think of x̂αi as the position of the grid node i corresponding to species

α that has been deformed from its original position xαi by an amount of ∆tvα,n+1
i , i.e.

x̂αi = x̂αi (v
α,n+1
i) = xα,ni +∆tvα,n+1

i . The discrete momentum balance to be solved is

ms,n
i (vs,n+1

i − vs,ni) = ∆t (f si (x̂s) +m
s,n
i g + dsi(x̂)) (3.41)

mw,n
j (vw,n+1

j − vw,nj) = ∆t (f sj (x̂w) +m
w,n
j g + dwj (x̂)) , (3.42)

64

where the discrete interaction term is given by

dsij(x̂) = −cEms
i m

w
j (v

s,n+1
i − vw,n+1

j), (3.43)

dwji(x̂) = cEms
i m

w
j (v

s,n+1
i − vw,n+1

j), (3.44)

for some drag coefficient cE. Setting

M =
⎛
⎜
⎝

M s,n

Mw,n

⎞
⎟
⎠
, v =

⎛
⎜
⎝

vs

vw

⎞
⎟
⎠
, f(x̂(vn+1)) =

⎛
⎜
⎝

f s (x̂s)

fw (x̂w)

⎞
⎟
⎠
,

and Di to be the drag coefficient matrix derived from Equations (3.43) and (3.44), we can

write the coupled system as

(M +∆tDi)vn+1 =Mvn +∆t (Mg + f(x̂(vn+1))) . (3.45)

At each time step, we solve this nonlinear system using a few iterations of a modified

Newton’s method. Since the matrixDi is symmetric, and both f s and fw are derived as the

negative gradient of a potential, the whole system is symmetric when linearized (assuming

the effects of plasticity are ignored in the linearization) and can be solved using MINRES.

We note that we do not include the effect of plasticity when computing the derivatives of

f s. Doing otherwise results in non-symmetric sand force derivatives which would require

GMRES. Our omission of these terms in the linearization of the system is a modification to

the standard Newton’s method. However, it is essential that we use implicit time stepping

because of the stiff momentum exchange terms and our lagged plasticity approach is the key

to making this efficient.

65

3.5.3 Update Particles

3.5.3.1 Update Jw.

We do not keep track of the deformation gradient F w of water particles, instead we keep track

of its determinant Jw, which is updated according to the discretization of Equation (3.34),

i.e.

Jw,n+1
p = (I +∆t tr(∇vw,n+1

p))Jw,n.

We found that in practice, this discretization tends to offer more stability than the alternative

of evolving F w followed by computing its determinant.

3.5.3.2 Update F s.

Because we ignore the effects of plasticity during the implicit solve for momenta, F̂ sE,n+1

evolves with the grid during the grid momentum update as in Equation (2.101):

F̂ sE,n+1
p = (I +∆t ∇vs,n+1

p)F sE,n. (3.46)

F̂ sE,n+1
p is later processed for plasticity at the end of the time step to define F sE,n+1

p , which

we discuss below.

3.5.3.3 Saturation based cohesion

We define the water saturation on sand particles based on a heuristic. First, we populate a

grid whose domain is the union of the sand grid and water grid domain. We mark each node

that has a non-zero mass for both sand and water species as φw,n+1
i = 1, otherwise φw,n+1

i = 0.

One can think of this grid as tracking an indicator function of the overlap region between

the sand and water constituents. We then compute the saturation on the sand particle by

66

interpolating from the grid to the sand particle according to

φs,n+1
p = ∑

i

wns,ipφ
w,n+1
i . (3.47)

This approximates the saturation as equal to one (maximal) deep in the interior of the

overlap region with a ramp to zero exterior to the region. In all of our multi-species examples,

we assume that the wet sand is already saturated and has reached its maximum cohesion

level. Hence, any amount of additional water saturation will lower the cohesion level of the

sand. We vary cohesion in a linear fashion as a function of water saturation as discussed in

Section 3.4.2

cs,n+1
Cp = cs,0Cp(1 − φw,n+1

p) (3.48)

where we note that the saturation is always in (0,1). The approximation of the saturation

in Equation (3.47) has errors biased towards full saturation in the interior. This naturally

leads to more rapid failure in the landslides and debris flows we consider in our examples

since the cohesion decreases more rapidly than it should. This is an extreme simplification

to correct behavior defined in Robert and Soga [RS13], but we found that it was effective

for simulating these phenomena.

3.5.3.4 Update position and velocity.

Velocity is updated according to

vα,n+1
p = ∑

i

wα,nip v
α,n+1
i . (3.49)

Since we use quadratic B-splines in all of our multiphase examples, the velocity spatial

derivative matrix Cα
p is updated according to

Cα,n+1
p = ∑

i

wnipv
α,n+1
i ((4

dx2
) (xα,ni −xα,np))

⊺
, (3.50)

67

Figure 3.4: 2D dam breach. A 2D dam breach simulation showing the effect of reversible
term from Bandara and Soga [BS15]. The figure depicts the beginning, middle, and the end
of a dam breach scenario. At the top is a simulation with no reversible term (as in [MAS10])
and at the bottom is a simulation with the reversible term.

here dx is the Eulerian grid spacing. Lastly position is updated according to

xα,n+1
p = xα,np +∆tvα,n+1

p . (3.51)

3.6 Implementation and Results

We use the sparse grid structure provided by OpenVDB [Mus13].

In Figure 3.2 we demonstrate how varying cohesion gives rise to different wet sand be-

haviors. In Figure 3.5 we demonstrate our approach with an example that is representative

of the types of gravity driven flows we are interested in with our approach. As water flows

into the wall of a dam, the saturation increases weakening it. The cohesion of sand decreases

with saturation and the dam eventually breaks.

We demonstrate the effect of the active component of the momentum exchange terms in

Equation (3.36) using a simulation of a 2D dam breach, shown in Figure 3.4. Again water

pours in from a reservoir and slowly erodes a retaining wall. We note that the active term

has only a subtle effect on the bulk dynamics of the motion for these types of flows. We

68

Figure 3.5: When the levee breaks. Here we demonstrate the effects of our parameters
on levee wall integrity. A simulation with lower drag momentum exchange coefficient and
lower cohesion will fail more easily.

discretize the active term by adding

∑−pw,np ∇ws,nip
mw,n
i

ms,n
i +mw,n

i

(3.52)

to the water drag term in Equation (3.44). We then define the solid drag term to be equal

and opposite to the water drag in accordance with the zero-net-sum nature of the momentum

exchange.

3.7 Limitations and future work

Our approach has a number of limitations. The momentum exchange model we use in the

water/sand multispecies examples is rather simplified. While adequate for gravity driven

flows like landslides and levee breaches, it is inadequate for capillary driven phenomena like

water being drawn in to dry sand. Such phenomena has been captured by prior approaches

like that of Lenaerts and Dutre [LD09]. Furthermore we fail to capture behavior like those in

Rungjiratananon et al. [RSK08] where surface tension effects in wetting are more accurately

captured.

Although our approximation to the dependence of sand cohesion on saturation is use-

69

ful for facilitating rapid failure of water/sand mixtures, it is an extreme simplification to

the correct behavior defined in Robert and Soga [RS13] and this compromises its accuracy

dramatically. This reduces the applicability of our approach outside of visually plausible

simulation applications.

Large values of the momentum exchange coefficient cE can lead to ill-conditioning in the

linear systems that arise during implicit time stepping. We found that these cases required

many MINRES iterations to resolve and lead to excessive run times. This complicated the

simulation of slurry materials where the water and sand remain mixed. In the future we

would like to examine appropriate preconditioners to improve the performance. Also, while

we omit or use a very simplistic buoyancy term for the reversible momenta exchange in the

pα equations, we would like to examine the addition of more accurate terms to produce

phenomena like absorbent sponges interacting with liquids. Lastly, we would like to examine

the suitability of our multiple grid MPM framework for the simulation of more general

multi-species interactions like chemically reacting flow.

70

CHAPTER 4

Redistancing

4.1 Introduction

The level set method, as first introduced by Osher and Sethian in [OS88] has been proven

to be a really useful and effective computational frameworks in areas such as computational

fluid dynamics, seismic simulation, minimal surface computations, image and geometric pro-

cessing, among many other things. The signed distance function has proven to be a very

useful concept within this framework.

Given a set Ω ⊂ Rd (d = 2 or 3) and its boundary ∂Ω, the distance function d̂(x) measures

the shortest distance between the set ∂Ω with the point x. The signed-distance function is

defined as

φ̂(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−d̂(x) x ∈ Ω ∖ ∂Ω,

0 x ∈ ∂Ω,

d̂(x) x ∉ Ω ∪ ∂Ω.

However, when one advects a signed distance function over time, the result of this advection

is not a signed distance function. As such one often needs to do redistancing. We revisit this

problem by proposing an algorithm that is highly parallelizable.

One way to formalize the problem of compute φ̂(x) is by solving an Eikonal equation.

71

So for a given set Ω, let φ0 ∶ Rd → R be a function with the property

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ0(x) < 0, x ∈ Ω ∖ ∂Ω,

φ0(x) = 0, x ∈ ∂Ω,

φ0(x) > 0, x ∉ Ω ∪ ∂Ω.

(4.1a)

(4.1b)

(4.1c)

Finding the signed distance function φ̂(⋅) is equivalent as finding the solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥∇xφ(x)∥2 = 1,

sgn(φ(x)) = sgn(φ0(x)),

(4.2a)

(4.2b)

where sgn(x) is the sign function, and ∥ ⋅ ∥ is the `2-norm.

It is good to point out, as noted in the introduction of this thesis, that the algorithm that

we propose here can also be modified to handle a more general Hamilton-Jacobi equation.

It is conceivable that this algorithm can prove to be useful in plasticity theory.

4.2 Previous works

There is extensive previous work related to the solution of (4.2). The most commonly used

methods are the fast marching method (FMM) [Tsi95, Set96] and the fast sweeping method

(FSM) [Zha05]. First proposed by Tsitsiklis [Tsi95] using optimal control, the fast march-

ing method was independently developed by Sethian in [Set96] based on upwind difference

schemes. It is similar to Dijkstra’s method [Dij59] for finding the shortest path between nodes

in a graph. The fast marching method uses upwind difference stencils to create a discrete

data propagation consistent with the characteristics of the eikonal equation. Sorting is used

to determine a non-iterative update order that minimizes the number of times that a point

is utilized to create a strictly increasing (or decreasing) propagation. The operation count is

O(N log(N)) where N is the number of grid points and the log(N) term is a consequence of

the sorting. Fast sweeping is similar, but it uses a simpler propagation. Rather than using

72

the optimal update ordering that requires a heap sort, a Gauss-Seidel iterative approach is

used with alternating sweep directions. Typically, grid axis dimensions are used as the sweep

directions. For Rd it only requires 2d propagation sweeps of updating to properly evaluate

every point.

Notably, both the FMM and FSM approaches create data flow dependencies since in-

formation is propagated from the zero isocontour outwards and this complicates parallel

implementation. Despite this, various approaches have achieved excellent performance with

parallelization. The Gauss-Seidel nature of FSM makes it more amenable to parallelization

than FMM. Zhao initially demonstrated this in [Zha07] where each sweep direction was as-

signed to an individual thread with the final updated nodal value being the minimum nodal

value from each of the threads. This method only allowed for a low number of threads

and further scaling was achieved by splitting the individual sweeps into subdomain sweeps

with a domain decomposition approach. However, this strategy can require more sweep it-

erations than the original serial FSM and the required iterations increase with the number

of domains which reduces parallel efficiency. Detrixhe et al. [DGM13] developed a parallel

FSM that scales in an arbitrary number of threads without requiring more iterations than

in the serial case. Rather than performing grid-axis-aligned Gauss-Seidel sweeps, they use

Cuthill-McKee ordering (grid-diagonal) to decouple the data dependency. Since the upwind

difference stencil only uses grid axis neighbors, nodes along a diagonal do not participate in

the same equation and can thus be updated in parallel trivially. They extended these ideas to

hybrid distributed/shared memory platforms in [DG16]. They use a domain decomposition

strategy similar to Zhao [Zha07] to divide the grid among available compute nodes and a

fine grained shared memory method within each subdomain that utilizes their approach in

[DGM13] to achieve orders of magnitude performance increases.

FMM is more difficult to implement in parallel, however even Tsitsiklis [Tsi95] developed

a parallel FMM algorithm using a bucket data structure. A number of approaches use domain

decomposition ideas similar to Zhao [Zha07] and Detrixhe et al. [DG16] to develop parallel

FMM [Her03, YS17, JW07, BCG11]. In these approaches the grid is typically divided into

73

disjoint sub grids with a layer of ghost nodes continuing into adjacent neighbors. Each sub

grid is updated in parallel with the FMM update list typically leading to rather elaborate

communication between threads. Jeong et al. [JW07] developed the fast iterative method

(FIM), which is a parallel approach using domain decomposition but with a looser causal

relationship in the node update list to localize updates for Single Instruction Multiple Data

(SIMD) level parallelism. Simplifications to the update list in FMM improve parallel scaling,

but tend to increase the number of worst case iterations. Dang et al. [DE14] extended FIM

to a coarse/fine-grained approach based on domain decomposition with load balancing via

master/worker model that allowed for efficient performance on heterogeneous platforms.

Recently an interesting alternative to FMM and FSM has been proposed. Darbon and

Osher [DO16] and Lee et al. [LDO17] utilize the Hopf-Lax formulation of the solution to the

Hamilton-Jacobi form of the eikonal equation. Notably, the signed distance at an arbitrary

point is obtained without the need of distance information from neighboring points. This

allows for the solution at any given point in any order and prevents the need for commu-

nication across cores which greatly simplifies parallel implementation. Furthermore, this

inherently allows for updates done only in a narrow band near the zero-isocontour. FSM

must solve over the entire domain, and while FMM can be done in a narrow band, FMM

methods are generally more difficult to implement in parallel. These aspects make the Hopf-

Lax approaches in [LDO17, DO16] very compelling for parallel architectures. In this paper,

we extend the work of Lee et al. to handle functions defined via interpolation over a regular

grid. Lee et al. demonstrated compelling results with abstractly defined functions. However,

treatment of grid-based functions is essential for practical application in level set methods.

We demonstrate the effectiveness of our approach with Graphics Processing Unit (GPU)

parallel implementation.

74

4.3 Our approach in continuous setting

In light of the property of φ0(⋅) defined by (4.1), we consider a function φ(x, t) with φ(x,0) =

φ0(x). The equation for the isocontour of this function is

φ(x, t) = c, (4.3)

for some constant c. It is also useful to define the set Γt to be the zero isocontour of the

function φ(x, t), i.e.

Γt ∶= {x ∈ Rd ∶ φ(x, t) = 0}. (4.4)

Note that with t = 0, the set Γ0 is ∂Ω.

Taking the material derivative of (4.3) gives

Dφ

Dt
(x, t) = ∂φ

∂t
(x, t) + ∂x

∂t
(x, t) ⋅ ∇φ(x, t) = 0, (4.5)

where
∂x

∂t
(x, t) is the advection velocity of the level set. In the case where

∂x

∂t
(x, t) ∶= a ∇φ(x, t)

∥∇φ(x, t)∥2

, (4.6)

then (4.5) describes the advection of the level set of φ(x, t) with speed a in a direction

that is normal to the isocontour of the function. When the constant a is positive the front

propagates in an outward normal direction. When a < 0, then it moves in the inward normal

direction. When a is zero, the isocontour does not move over time. In particular, when a = 1,

the set Γt then defines an isocontour of a set which is a distance t from ∂Ω.

75

We are then led to consider the initial value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂φ

∂t
(x, t) = −∥∇φ(x, t)∥2,

φ(x,0) = φ0(x).

(4.7a)

(4.7b)

This reasoning gives us a strategy to compute the signed distance function φ̂(x) from

a boundary ∂Ω. Given x ∈ Rd, we compute φ(x, t) and solve for the time t̂ such that

φ(x, t̂) = 0. The time t̂ will be the distance from the point x to the boundary ∂Ω. The sign

of φ̂(x) is determined by the sign of φ0(x). This describes the big picture of the algorithm.

Note that for a given point x, this computation is fully parallelizable. There are two

details that need to be spelled out, namely the choice of algorithm to find the root of

φ(x, ⋅) = 0 and a way to compute the actual value of φ(x, t) for a given pair (x, t). The first

problem is solved discretely using modified secant method, and is explained in Section 4.5.1.

Computing φ(x, t) is done by using Hopf-Lax formula and is discussed in the next section.

4.4 The Hopf-Lax Formula

In this chapter, we discuss the Hopf-Lax formula in the context of a more general Hamilton-

Jacobi equation.

A Hamilton-Jacobi equation is an initial value problem of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
(x, t) +H (∇u(x, t)) = 0,

u(x,0) = g(x).

(4.8a)

(4.8b)

The functionH is usually assumed to be convex, and the function g is assumed to be Lipschitz

continuous. It is obvious that (4.7) is a Hamilton-Jacobi equation with H(⋅) = ∥ ⋅ ∥2.

The Hopf-Lax formula gives the solution to the Hamilton-Jacobi equation, and is defined

in terms of the Legendre transform of H.

76

Definition 4.4.1. Given a convex function H ∶ Rd → R. The Legendre transform H∗ ∶ Rd →

R of H is defined as

H∗(x) ∶= sup
y∈Rd

{x ⋅ y −H(y)} . (4.9)

For H being the `2-norm, its Legendre transform is

H∗(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ∥x∥2 ≤ 1,

+∞ otherwise.
(4.10)

We are now in a position to define the Hopf-Lax formula.

Definition 4.4.2. Let H be convex and g be Lipschitz. The Hopf-Lax formula is given by

u(x, t) = min
y∈Rd

{tH∗ (x − y
t

) + g(y)} . (4.11)

The implementation of this formula in the discrete setting is discussed in Section 4.5.2.

4.5 Discrete Setting

As in Lee et al. [LDO17], we treat the problem as root finding and use the secant method.

However, unlike Lee et al. we are specifically interested in redistancing grid based functions.

Thus we assume that the initial function is defined in terms of its interpolated values from

grid nodes with bilinear interpolation kernel. If we denote the kernel associated with grid

node xi as Ni(x), then we may write

φ0(x) = ∑
i

φ0
iNi(x), and φ(x) = ∑

i

φiNi(x), (4.12)

77

with

φ0
i = φ0(xi) and φi = φ(xi). (4.13)

Also, when we solve for the redistanced values, we do so only at grid nodes (i.e. we solve for

φi = φ(xi) = t̂).

4.5.1 Secant method

To find the roots of φ(xi, t̂) = 0, we use secant method. Since we only solve for the signed dis-

tance value at the grid nodes, the secant method only requires the evaluation of the function

φ(xi, tk) for iterative approximation tk → t̂. We next discuss the practical implementation

of the secant method and evaluation of φ(xi, tk) for grid based data.

In order to use the secant method to solve for the root in this context we use the iterative

update

tk+1 = tk − φ(xi, tk)
tk − tk−1

φ(xi, tk) − φ(xi, tk−1)
. (4.14)

The initial guess t0 can either be set from neighboring nodes that have been recently updated,

or generally from a priori estimates of the distance (see Section 4.6.1). However, when no

such information is possible or when it would negatively effect parallel performance we use

t0 = 0. We set t1 = t0 + h̃ where h̃ is proportionate to the grid cell size.

The main concern with using the secant method in this context is that while φ(xi, t) is

monotonically decreasing in t, it is not strictly monotonic. This means that there can be

times t where d
dtφ(xi, t) = 0. For example, if the minimum of φ0(xi) over the ball centered at

xi of radius t is in the interior of the ball (at a point of distance s from xi), then d
dtφ(xi, r) = 0

for s ≤ r ≤ t (see Section 4.5.2). The secant method is not well defined if we have iterates

with equal function values. To compensate for this, if secant would divide by zero, and we

have not already converged, we simply increase or decrease tk+1 = tk ± ∆tmax in the correct

direction. The correct direction is trivial to find, because if φ(xi, tk) > 0 then we need to

78

increase tk. Otherwise we need to decrease tk. In practice, we use ∆tmax proportionate to a

grid cell size.

Another issue is that errors in the approximation of φ(xi, tk) can lead to more secant

iterations. This can be reduced by solving for φ(xi, tk) to a higher tolerance. However,

requiring more iterations to approximate φ(xi, tk) more accurately can be more costly than

just using more secant iterations with a less accurate (but more efficient) approximation to

φ(xi, tk).

For a given tolerance parameter ε and εt, our modified secant algorithm is summarized

in Algorithm 1.

Algorithm 1 Modified Secant Method
while ∣φ(xi, tk+1)∣ > ε do

∆t = −φ(xi, tk) tk−tk−1
φ(xi,tk)−φ(xi,tk−1)

if ∣∆t∣ > εt then

if φ(xi, tk) > 0 then

∆t = ∆tmax

else

∆t = −∆tmax

tk+1 = tk +∆t

4.5.2 Solving Hopf-Lax formula

As mentioned in Section 4.4, for a given time tk, the Hopf-Lax formula gives us a strategy

to compute φ(xi, tk):

φ(xi, tk) = min
y∈Rd

{φ0(y) + tkH∗ (xi − y
tk

)} , (4.15)

79

or equivalently

φ(xi, tk) = min
y∈B(xi,tk)

φ0(y), (4.16)

where B(xi, tk) is the ball of radius tk around grid node xi. Thus the problem of evaluating

φ(xi, tk) amounts to finding the minimum of the initial φ0 over a ball. While Lee et al

[LDO17] use Split Bregman iteration to solve this, we instead simply use projected gradient

descent. We used a few hundred projected gradient iterations in practice since this was

faster than Split Bregman in parallel implementations due to its relative simplicity. Using

y0
k as an initial guess for the argmin of φ0 over the ball B(xi, tk), we iteratively update the

approximation from

ỹj+1
k = yjk − γ∇φ

0(yjk) (4.17)

yj+1
k = PROJ

B(xi,tk)
(ỹj+1

k) (4.18)

where

PROJ
B(xi,tk)

(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

y ∥xi − y∥2 ≤ tk,

xi − tk xi−y
∥xi−y∥2 otherwise.

(4.19)

In practice, we set the step size γ equal to the grid spacing ∆x. Note that the gra-

dients ∇φ0(yjk) are computed using the bilinear interpolation kernels Nj(x) as ∇φ0(yjk) =

∑j φ
0
j∇Nj(yjk). We emphasize that for efficiency the sum over j can be taken over only the

four grid nodes surrounding the cell that the argument yjk is in. We further note that the

index for the cell containing the argument yjk can be found in constant time using floor(y
j
αk

∆x)

where yjαk are the components of yjk.

In general, φ0 is a non-convex function defined from the grid interpolation and projected

gradient descent will only converge to a local minimum. We illustrate this in Figure 4.1.

Failure to converge to the global minimum can lead to large errors in the approximation

80

Figure 4.1: Local minima illustration. The two vertical lines are the boundary of
minimization. Grid node xi = 1.8 is in the middle of the region, and also the starting guess
for projected gradient descent. The sequence of points leading off to the right represent the
subsequent steps of gradient descent. These points converge to the incorrect argmin x = 2.5.
The correct solution is at x = 0.4. In order to converge to this point, the initial guess would
have to be less than 1.25

of φ(xi, tk). In order to guarantee that we find the global minimizer for the problem, we

randomly use multiple initial guesses and take the minimum over the local minima that

they determine. In practice, on the order of one guess per grid cell in the ball B(xi, tk) is

sufficient. For problems without many local extrema the number of initial guesses can be

reduced. In general when finding φ(xi, tk) we use as initial guesses PROJ
B(xi,tk)

(yk−1) where

yk−1 = argmin
y∈B(xi,tk−1)

φ0(y), (4.20)

is the argmin of φ0 used in the previous secant iteration as well as a small number of random

points in B(xi, tk). We use this strategy because PROJ
B(xi,tk)

(yk−1) tends to be a good guess for

the global minimum. In general, it is very likely that at the next step, the minimum will

either be the same point, or along the boundary. Therefore, we prioritize random initial

guesses near the boundary of the ball. In fact, for tk−1 < tk we know that the argmin will be

at a distance s from xi with tk−1 ≤ s ≤ tk so in theory we should only sample in the annulus.

81

Figure 4.2: Random initial guess in 1D. The figure illustrates representative random
initial guesses used in solving for φ(xi, tk). In addition we use an initial guess equal to the
minimizer computed in the previous secant iteration shown in magenta.

However, in practice we do not have full confidence in the argmin attained at iteration k − 1

since our procedure is iterative. Allowing for initial guesses at some locations closer to xi

than tk−1 admits the possibility of finding a more accurate argmin. Thus, we found that

skewing the sampling density to be higher towards the boundary of the ball struck a good

balance between efficiency and accuracy. We illustrate this process in Figure 4.4.

Failure to find the global minimum over the ball can cause unpredictable behavior in

the secant iteration for t̂. This includes false positives where a tk is incorrectly interpreted

as a root. However, continuing to run secant to a fixed large number of iterations usually

corrects for this. In general, there is a tradeoff between the number of initial guesses and

iterations of projected gradient and the number of secant iterations. We illustrate this in

Figure 4.3 which shows the path to convergence for a few choices of iteration parameters.

When φ(xi, tk) is solved with high accuracy, the secant iteration converges with minimal

overshoot in 7 iterations. When φ(xi, tk) is not solved to high accuracy, secant overshoots

by a large margin, and takes 16 iterations to converge, but notably still converges. However

because each iteration is cheaper, the total runtime is lower to reach the same convergence

82

Figure 4.3: Different choice of random guesses and gradient discent iteration.
The plots above are the points (φ(xi, tk), tk) found when running our algorithm with different
choices of random guess and gradient descent iterations on circle initial data. The left most
plot was run with 100 random guesses, and 1 gradient descent iteration. The middle plot was
run with 1 random guess, and 100 gradient descent iterations. The right plot was run with 1
random guess and 5 gradient descent iterations. Note that in all cases, the correct root was
found.

for t̂. In practice we found that a few hundred projected gradient iterations combined with

our initial guess sampling strategy struck a good balance between accuracy and efficiency.

4.6 Results and discussions

4.6.1 Computing in a narrow band

In many applications, only data close to the interface is needed. Since each grid node can

be solved for independently, the Hopf-Lax approach naturally lends itself to narrow banding

strategies for these applications. We provide a narrow banding strategy based on a coarse

Problem num_secant num_rand num_proj Timing (ms)
Circle 10 5 100 47.567

Two Points 10 5 100 45.199

Vortex(Per Frame) 10 5 200 73.248

Square 10 4 200 67.582

Sine 10 5 200 71.429

Table 4.1: Parameters and timings. Table of parameters for examples and timings.

83

Figure 4.4: Random initial guesses in 2D. In this image, the red dot in the center is
xi, the solid red line represents the ball of radius tk and the dotted line represents the ball of
radius tk−1. The magenta point was the approximate argmin yk−1 of φ0 over the ball of radius
tk−1. Since it is unlikely for the minimizer to be inside of tk−1 we use coarse (random) grid
initial guesses in the interior. However, since it is possible that expanding t will move the
minimizer to a different location we take a large number of initial guesses along the boundary
of tk

initial grid computation followed by a fine grid update in the narrow band. We first redistance

the function on the coarse grid, then we interpolate values from the coarse grid to the fine

grid. We then only recompute values on the fine grid that are smaller than a threshold

value and we use the value interpolated from the coarse nodes as an initial guess t0 for the

computation on the fine grid. As an example see Figure 4.5.

4.6.2 Computing geometric quantities

The Hopf-Lax formulation naturally allows us to compute normals (n = ∇φ) and curvatures

(∇ ⋅ n) at the grid nodes. As pointed out in Lee et al. [LDO17], as the argmin yk from

Equation (4.17) is iterated to convergence, it approaches the closest to point to the grid

node xi on the zero isocontour of φ0. Therefore, recalling that when tk has converged

84

Figure 4.5: Narrow band and coarse grid. A coarse grid 8 times smaller than the fine
grid was solved for initially. Using those values the fine grid was only solved on cells where
the distance to the boundary could be less than 0.1 represented as the solid areas of the left
image. In the right image those coarse areas are defined from bilinear interpolation. This
coarse/banding approach provided approximately a 2.5 times increase in performance.

(within a tolerance) to the root t̂ of φ(x, t̂) = 0, then tk is approximately the distance to the

zero isocontour, we can compute the unit normal at the grid node from

n(xi) =
xi − yk
tk

. (4.21)

Notably, this approximation is very close to the exact signed distance function with zero

isocontour determined by the bilinearly interpolated φ0. It is as accurate as the argmin

yk so it essentially only depends on the accuracy of the secant method. We get this very

accurate geometric information for free. Moreover, the curvature (∇ ⋅ n) can be computed

accurately by taking a numerical divergence of n(xi) that would have accuracy equal to the

truncation error in the stencil (since no grid-based errors are accumulated in the computation

of n(xi)).

4.7 Results

All of the following results were run on an Intel 6700k processor with an Nvidia GTX 1080.

The domain for each problem was set to be [0,1] × [0,1] and was run on a 512 × 512 grid.

85

Figure 4.6: Scaled circle. The initial data is φ0 = ex(0.125 − (0.5 − x)2 + (0.5 − y)2).

To ensure efficient performance on the GPU, both projected gradient descent and the secant

method were run for a fixed number of iterations rather than to a specific tolerance.

Figure 4.6 shows initial data φ0 with a zero-isocontour given by a circle with radius 0.25.

Figure 4.7 shows a more complicated test. The zero-isocontour is a square bounded between

[0.25,0.75] in x and y. The corners present rarefaction fans, and the inside needs to handle

sharp corners along the diagonals. Because of these difficulties (especially the sharp gradient

in our original interpolated φ0), more work is needed in resolving the projected gradient

descent step to ensure quick convergence of secant method. The zero-isocontour shown in

Figure 4.8 is the union of two overlapping circles. Like in Figure 4.6 the gradient is fairly

smooth and thus requires less computation to successfully converge in gradient descent.

In Figure 4.9 we demonstrate our algorithm with a large number of local minima. This

problem requires more projected gradient iterations than the simpler examples.

4.7.1 Scaling

All of the following problems were run with the square given in Figure 4.7 with the same

parameters. The poor scaling at the low resolutions is due to not using all of the threads

possible on the GPU.

86

Figure 4.7: Square. The initial data is φ0 = min{0.25 − ∣x − 0.5∣, .25 − ∣y − 0.5∣}.

Figure 4.8: Union of circles. The initial data is φ0 = max{0.25−∥(0.3,0.5)−(x, y)∥2,0.25−
∥(0.7,0.5) − (x, y)∥2}.

4.7.2 Level set advection

Figure 4.10 shows our method being used in a level set advection scheme using a simple

vortex test. Like previous problems it was run on a 512 × 512 grid. For this problem the

average time per frame for redistancing was 73.248 ms.

87

Figure 4.9: Many local minima. the objective function is φ0 = sin(4πx) sin(4πy) − 0.01.

Size Timing (ms) Average `2 error
32 × 32 3.303 6.67 × 10−5

64 × 64 3.392 1.59 × 10−5

128 × 128 4.477 3.87 × 10−6

256 × 256 17.840 9.74 × 10−7

512 × 512 67.533 2.46 × 10−7

1024 × 1024 274.216 6.43 × 10−8

2048 × 2048 1185.870 2.38 × 10−8

Table 4.2: Error. Average `2 error with different grid resolution.

88

Figure 4.10: Vortex test. Vortex advection test at t = 0,1,2,3,4,5.

89

References

[AC76] R. Atkin and R. Craine. “Continuum theories of mixtures: basic theory and
historical development.” Quart. J. Mech. App. Math., 29(2):209–244, 1976. 52

[AO11] I. Alduán and M. Otaduy. “SPH granular flow with friction and cohesion.” In
Proc. ACM SIGGRAPH/Eurograph. Symp. Comp. Anim., pp. 25–32, 2011. 3,
18, 51

[ASB14] K. Abe, K. Soga, and S. Bandara. “Material Point Method for Coupled Hy-
dromechanical Problems.” J. Geotech. Geoenv. Eng., 140(3):04013033, 2014.
51

[ATO09] I. Alduán, A. Tena, and M. Otaduy. “Simulation of high-resolution granular
media.” In Proc. Cong. Español Inf. Graf., 2009. 4

[BCG11] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel. “An adaptive domain-
decomposition technique for parallelization of the fast marching method.” App.
Math. Comp., 218(1):32–44, 2011. 73

[BFL16] S. Bandara, A. Ferrari, and L. Laloui. “Modelling landslides in unsaturated
slopes subjected to rainfall infiltration using material point method.” Int. J.
Num. Anal. Meth. Geomech., 40(9):1358–1380, 2016. 51, 61

[Bor06] R. Borja. “On the mechanical energy and effective stress in saturated and un-
saturated porous continua.” Int. J. Solids Struct, 43:1764–1786, 2006. 52, 60

[BS15] S. Bandara and K. Soga. “Coupling of soil deformation and pore fluid flow using
material point method.” Comp. Geotech., 63:199–214, 2015. xiii, 51, 60, 62, 68

[BT07] M. Becker and M. Teschner. “Weakly compressible SPH for free surface flows.”
In D. Metaxas and J. Popovic, editors, ACM SIGGRAPH/Eurograph. Symp.
Comp. Anim. The Eurographics Association, 2007. 59

[BW08] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element anal-
ysis. Cambridge University Press, 2008. 7, 12, 28, 29, 32

[BWZ10] K. Bao, X. Wu, H. Zhang, and E. Wu. “Volume fraction based miscible and
immiscible fluid animation.” Comp. Anim. Virtual Worlds, 21(3-4):401–410,
2010. 51

[BYM05] N. Bell, Y. Yu, and P. Mucha. “Particle-based simulation of granular materials.”
In Proc. ACM SIGGRAPH/Eurograph. Symp. Comp. Anim., pp. 77–86, 2005.
3, 4

[CBZ12] Y. Chang, K. Bao, J. Zhu, and E. Wu. “A particle-based method for granular
flow simulation.” Sci. China Inf. Sci., 55(5):1062–1072, 2012. 3

90

[DB16] G. Daviet and F. Bertails-Descoubes. “A Semi-implicit Material Point Method
for the Continuum Simulation of Granular Materials.” ACM Trans. Graph.,
35(4):102:1–102:13, 2016. 18, 51

[DE14] F. Dang and N. Emad. “Fast iterative method in solving eikonal equations: a
multi-level parallel approach.” Proc. Comp. Sci., 29:1859–1869, 2014. 74

[DG16] M. Detrixhe and F. Gibou. “Hybrid massively parallel fast sweeping method for
static Hamilton–Jacobi equations.” J. Comp. Phys., 322:199–223, 2016. 73

[DGM13] M. Detrixhe, F. Gibou, and C. Min. “A parallel fast sweeping method for the
eikonal equation.” J. Comp. Phys., 237:46–55, 2013. 73

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs.” Numer.
Math., 1(1):269–271, 1959. 72

[DK15] S. Dunatunga and K. Kamrin. “Continuum modelling and simulation of granular
flows through their many phases.” J. Fluid Mech., 779:483–513, 2015. 33

[DO16] J. Darbon and S. Osher. “Algorithms for overcoming the curse of dimensionality
for certain Hamilton–Jacobi equations arising in control theory and elsewhere.”
Res. Math. Sci., 3(1):19, 2016. iii, 74

[DP52] D. Drucker and W. Prager. “Soil mechanics and plasticity analysis or limit
design.” Quart. App. Math., 10:157–165, 1952. 2

[Dru00] D. Drumheller. “On theories for reacting immiscible mixtures.” Int. J. Eng. Sci.,
38(3):347 – 382, 2000. 61

[GSS15] T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. “Optimization
Integrator for Large Time Steps.” IEEE Trans. Vis. Comp. Graph., 21(10):1103–
1115, 2015. 44

[Her03] M Herrmann. “A domain decomposition parallelization of the fast marching
method.” Technical report, DTIC Document, 2003. 73

[HWZ15] X. He, H. Wang, F. Zhang, H. Wang, G. Wang, K. Zhou, and E. Wu. “Simulation
of Fluid Mixing with Interface Control.” In Proc. ACM SIGGRAPH/Eurograph.
Symp. Comp. Anim., pp. 129–135. ACM, 2015. 51

[IWT13] M. Ihmsen, A. Wahl, and M. Teschner. “A Lagrangian framework for simulating
granular material with high detail.” Comp. Graph., 37(7):800–808, 2013. 3, 18,
51

[JSS15] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. “The Affine
Particle-In-Cell Method.” ACM Trans. Graph., 34(4):51:1–51:10, 2015. 2, 22,
35, 51, 64

91

[JSV13] I. Jassim, D. Stolle, and P. Vermeer. “Two-phase dynamic analysis by material
point method.” Int. J. Num. Anal. Meth. Geomech., 37:2502–2522, 2013. 51, 62

[JW07] W. Jeong and R. Whitaker. “A fast eikonal equation solver for parallel systems.”
In SIAM Conf. Comp. Sci. Eng. Citeseer, 2007. 73, 74

[KGP16] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran.
“Drucker-prager Elastoplasticity for Sand Animation.” ACM Trans. Graph.,
35(4):103:1–103:12, 2016. 1, 47, 51

[KPN10] N. Kang, J. Park, J. Noh, and S. Shin. “A Hybrid Approach to Multiple Fluid
Simulation using Volume Fractions.” Comp. Graph. Forum, 29(2):685–694, 2010.
51

[LD09] T. Lenaerts and P. Dutré. “Mixing Fluids and Granular Materials.” Comp.
Graph. Forum, 28(2):213–218, 2009. 3, 50, 69

[LDO17] B. Lee, J. Darbon, S. Osher, and M. Kang. “Revisiting the redistancing problem
using the Hopf–Lax formula.” J. Comp. Phys., 330:268–281, 2017. iii, 74, 77,
80, 84

[LHM95] A. Luciani, A. Habibi, and E. Manzotti. “A multi-scale physical model of gran-
ular materials.” In Proc. Graph. Int., pp. 136–146, 1995. 3

[LTK08] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. “Two-Way Coupled SPH
and Particle Level Set Fluid Simulation.” IEEE Trans. Visu. Comp. Graph.,
14(4):797–804, 2008. 51

[LWG08] S. Liu, Z. Wang, Z. Gong, and Q. Peng. “Simulation of Atmospheric Binary
Mixtures Based on Two-fluid Model.” Graph. Mod., 70(6):117–124, 2008. 51

[MAM14a] C. Mast, P. Arduino, P. Mackenzie-Helnwein, and R. Miller. “Simulating granular
column collapse using the Material Point Method.” Acta. Geotech., 10(1):101–
116, 2014. 2, 40

[MAM14b] C. Mast, P. Arduino, G. Miller, and M. Peter. “Avalanche and landslide simula-
tion using the material point method: flow dynamics and force interaction with
structures.” Comp. Geosci., 18(5):817–830, 2014. 51

[MAS10] P. Mackenzie-Helnwein, P. Arduino, W. Shin, J. Moore, and G. Miller. “Modeling
strategies for multiphase drag interactions using the material point method.” Int.
J. Num. Meth. Eng., 83(3):295–322, 2010. xiii, 52, 61, 62, 68

[Mas13] C. M. Mast. Modeling landslide-induced flow interactions with structures using
the material point method. PhD thesis, University of Washington, 2013. 2, 11,
16, 49

92

[MHN15] H. Mazhar, T. Heyn, D. Negrut, and A. Tasora. “Using Nesterov’s method to
accelerate multibody dynamics with friction and contact.” ACM Trans. Graph.,
34(3):32:1–32:14, 2015. 3

[Mil96] V. Milenkovic. “Position-based physics: simulating the motion of many highly
interacting spheres and polyhedra.” In Proc. SIGGRAPH, pp. 129–136, 1996. 3

[MMC14] M. Macklin, M. Müller, N. Chentanez, and T. Kim. “Unified particle physics for
real-time applications.” ACM Trans. Graph., 33(4):153:1–153:12, 2014. 4, 48

[MMS09] V. Mihalef, D. Metaxas, and M. Sussman. “Simulation of two-phase flow with
sub-scale droplet and bubble effects.” Comp. Graph. Forum, 28(2):229–238,
2009. 51

[MP89] G. Miller and A. Pearce. “Globular dynamics: a connected particle system for
animating viscous fluids.” Comp. Graph., 13(3):305–309, 1989. 3

[Mus13] K. Museth. “VDB: High-resolution Sparse Volumes with Dynamic Topology.”
ACM Trans. Graph., 32(3):27:1–27:22, July 2013. 68

[NGL10] R. Narain, A. Golas, and M. Lin. “Free-flowing granular materials with two-way
solid coupling.” ACM Trans. Graph., 29(6):173:1–173:10, 2010. 3, 18, 48, 51

[NKK12] D. Nkulikiyimfura, J. Kim, and H. Kim. “A real-time sand simulation using a
GPU.” In Comp. Tech Inf. Man., volume 1, pp. 495–498, 2012. 3

[NO13] M. Nielsen and O. Osterby. “A Two-continua Approach to Eulerian Simulation
of Water Spray.” ACM Trans. Graph., 32(4):67:1–67:10, 2013. 51

[NW06] J. Nocedal and S.J. Wright. Numerical Optimization. Springer series in opera-
tions research and financial engineering. Springer, 2006. 42

[OS88] S. Osher and J. A. Sethian. “Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations.” J. Comp. Phys., 79(1):12–
49, 1988. 71

[Pea86] D. Peachey. “Modeling Waves and Surf.” SIGGRAPH Comp. Graph., 20(4):65–
74, 1986. 50

[PGK17] A. Pradhana-Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and
K. Museth. “Drucker-Prager Elastoplasticity for Sand Animation.” ACM Trans.
Graph., 36(4), July 2017. 1, 42

[RC12] T. Rüberg and F. Cirak. “Subdivision-stabilised immersed b-spline finite ele-
ments for moving boundary flows.” Comp. Meth. Appl. Mech. Eng., 2012. 58

[RC14] T. Rüberg and F. Cirak. “A fixed-grid b-spline finite element technique for fluid-
structure interaction.” Int. J. Num. Meth. Fluids, 2014. 58

93

[RGJ15] D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kaveh-
pour. “A material point method for viscoelastic fluids, foams and sponges.” In
Proc. ACM SIGGRAPH/Eurograph. Symp. Comp. Anim., pp. 157–163, 2015.
51

[RJL15] B. Ren, Y. Jiang, C. Li, and M. Lin. “A simple approach for bubble modelling
from multiphase fluid simulation.” Comp. Vis. Media, 1(2):171–181, 2015. 51

[RLY14] B. Ren, C. Li, X. Yan, M. Lin, J. Bonet, and S. Hu. “Multiple-Fluid SPH
Simulation Using a Mixture Model.” ACM Trans. Graph., 33(5):171:1–171:11,
2014. 51

[RPL17] M. Royston, A. Pradhana, B. Lee, Y. T. Chow, W. Yin, and S. Osher. Submitted,
2017. 1

[RS13] D. Robert and K. Soga. “Soil-Pipeline Interaction in Unsaturated Soils.” In
Lyesse Laloui, editor, Mechanics of Unsaturated Geomaterials, chapter 13, pp.
303–325. Wiley Online Library, 2013. 61, 62, 67, 70

[RSK08] W. Rungjiratananon, Z. Szego, Y. Kanamori, and T. Nishita. “Real-time An-
imation of Sand-Water Interaction.” Comp. Graph. Forum, 27(7):1887–1893,
2008. 50, 69

[SCS94] D. Sulsky, Z. Chen, and H. Schreyer. “A particle method for history-dependent
materials.” Comp. Meth. App. Mech. Eng., 118(1):179–196, 1994. 2

[Set96] J. A. Sethian. “A fast marching level set method for monotonically advancing
fronts.” Proc. Nat. Acad. Sci., 93(4):1591–1595, 1996. 72

[SHS12] A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. “Energetically consistent
invertible elasticity.” In Proc. Symp. Comp. Anim., pp. 25–32, 2012. 55

[SKB08] M. Steffen, R. M. Kirby, and M. Berzins. “Analysis and reduction of quadra-
ture errors in the material point method (MPM).” Int. J. Numer. Meth. Eng.,
76(6):922–948, 2008. 23

[SSC13] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. “A Material Point
Method for snow simulation.” ACM Trans. Graph., 32(4):102:1–102:10, 2013.
2, 42, 49, 51, 64

[SSJ14] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. “Aug-
mented MPM for phase-change and varied materials.” ACM Trans. Graph.,
33(4):138:1–138:11, 2014. 51, 55, 56

[SSK05] O. Song, H. Shin, and H. Ko. “Stable but Nondissipative Water.” ACM Trans.
Graph., 24(1):81–97, 2005. 51

94

[TFK03] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and
H. Ueki. “Realistic Animation of Fluid with Splash and Foam.” Comp. Graph.
Forum, 22(3):391–400, 2003. 51

[Tsi95] John N Tsitsiklis. “Efficient algorithms for globally optimal trajectories.” IEEE
Trans. Auto Cont., 40(9):1528–1538, 1995. 72, 73

[TSS07] N. Thürey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M. Gross. “Real-time
Simulations of Bubbles and Foam Within a Shallow Water Framework.” In Proc.
ACM SIGGRAPH/Eurograph. Symp. Comp. Anim., pp. 191–198. Eurographics
Association, 2007. 51

[YCR15] T. Yang, J. Chang, B. Ren, M. Lin, J. Zhang, and S. Hu. “Fast Multiple-fluid
Simulation Using Helmholtz Free Energy.” ACM Trans. Graph., 34(6):201:1–
201:11, 2015. 51

[YHK08] R. Yasuda, T. Harada, and Y. Kawaguchi. “Real-time simulation of granular
materials using graphics hardware.” In Comp. Graph. Imag. Vis., pp. 28–31,
2008. 4

[YLH14] L. Yang, S. Li, A. Hao, and H. Qin. “Hybrid Particle-grid Modeling for Multi-
scale Droplet/Spray Simulation.” Comp. Graph. Forum, 33(7):199–208, 2014.
51

[Yos03] N. Yoshioka. “A sandpile experiment and its implications for self-organized crit-
icality and characteristic earthquake.” Earth, planets and space, 55(6):283–289,
2003. 46

[YS17] J. Yang and F. Stern. “A highly scalable massively parallel fast marching method
for the Eikonal equation.” J. Comp. Phys., 332:333–362, 2017. 73

[YSB15] Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. “Continuum foam:
a material point method for shear-dependent flows.” ACM Trans. Graph.,
34(5):160:1–160:20, 2015. 51

[ZB05] Y. Zhu and R. Bridson. “Animating sand as a fluid.” ACM Trans. Graph.,
24(3):965–972, 2005. 3, 51

[Zha05] H. Zhao. “A fast sweeping method for eikonal equations.” Math. Comp.,
74(250):603–627, 2005. 72

[Zha07] H. Zhao. “Parallel implementations of the fast sweeping method.” J. Comp.
Math., pp. 421–429, 2007. 73

95

	Introduction
	Dry Sand
	Previous work
	Single Phase Continuum Theory
	Single Phase Kinematics
	The deformation gradient
	Single Phase Balance Laws

	Elastic material
	Constitutive Model

	Plasticity
	The Drucker-Prager yield condition
	Stress in the presence of plasticity
	Unilateral hyperelasticity

	Discretization
	Notation
	Deriving the MPM discretization
	Notes on discrete energy and force
	Plasticity in discrete setting
	Notes on volume change in projection

	Algorithm
	Transfer to grid
	Grid update
	Transfer to particles
	Update particle state
	Plasticity, hardening
	Hardening
	Implicit velocity update
	Semi implicit velocity update
	Collisions
	Friction
	Initialization

	Results
	Discussion and Limitations

	Wet Sand and Water
	Previous Work
	Multiphase Continuum
	How to model water
	KKT Approach
	Weak compressibility

	How to model wet sand
	Momentum exchange
	Cohesion and Saturation

	Discretization
	Transfer to grid
	Update Grids Momenta
	Update Particles

	Implementation and Results
	Limitations and future work

	Redistancing
	Introduction
	Previous works
	Our approach in continuous setting
	The Hopf-Lax Formula
	Discrete Setting
	Secant method
	Solving Hopf-Lax formula

	Results and discussions
	Computing in a narrow band
	Computing geometric quantities

	Results
	Scaling
	Level set advection

	References

