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Abstract

Sublogarithmic-Transexponential Series

by

Adele Lee Padgett

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

This thesis is motivated by the open question of whether there are transexponential o-
minimal structures. As a candidate for a transexponential o-minimal structure, we suggest
Ran,exp expanded with new symbols for a transexponential function, its derivatives, and their
compositional inverses, which we call Rtransexp. The main result of the thesis is that the
germs at +∞ of Rtransexp-terms are ordered and thus form a Hardy field. If Rtransexp is shown
to have quantifier elimination in the future, then o-minimality would follow. Chapter 1
provides background on the open problem and more information on Rtransexp.

The work of the thesis is to adapt the construction of the field of logarithmic-exponential se-
ries in [8] to build an ordered differential field of sublogarithmic-transexponential series. The
sublogarithmic-transexponential series field is constructed to embed the germs of Rtransexp-
terms, showing that they are ordered. The challenge is to gradually build up the field of
series so that we know how the partial structure should be ordered at each stage. We dis-
cuss how the ordering quickly becomes complicated even for relatively simple finite sums in
Chapter 2.

The construction of the sublogarithmic-transexponential series can be divided into three
parts. First, in Chapter 3, we prove that the group ring of certain kinds of finite sums is
ordered by giving an algorithm to determine the sign on a sum and showing the algorithm
terminates. Next, in Chapter 4, we adapt the construction of the logarithmic-exponential
series in [8] to build a field of series closed under log, exp, and restricted analytic functions,
starting from a field of coefficients and group of monomials satisfying certain assumption.
Finally, in Chapter 5, we iterate the construction from Chapter 4 to build the full field of
sublogarithmic-transexponential series. We also define a derivation that works like “differ-
entiation with respect to the formal variable of the series.”
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Chapter 1

Introduction

1.1 Background

The study of o-minimality began in the 1980s as a framework for generalizing the tools of
semialgebraic geometry [5]. In 1991, Wilkie proved that the field of real numbers with expo-
nentiation, Rexp, is model complete [19]. This, along with Khovanskii’s work on Fewnomials
[13], proved that Rexp is o-minimal. Wilkie’s result indicated that key qualities of semialge-
braic geometry extend beyond the semialgebraic context to other important functions and
that o-minimality is the right extension of semialgebraicity to consider.

The o-minimality of Rexp also spurred an investigation into the growth rates of func-
tions defined in o-minimal fields: First, van den Dries, Macintyre, and Marker observed the
following:

Lemma 1.1.1. An expansion R of the ordered field of real numbers is o-minimal if and only
if the germs at +∞ of its definable functions form a Hardy field.

They used this fact to greatly simplify the proof that the expansion of Rexp by restricted
analytic functions, denoted Ran,exp, is o-minimal [9]. Second, Miller proved that either R
defines x 7→ ex, or all its definable functions are bounded in absolute value by a polynomial,
i.e., R is either exponential or polynomially bounded [16].

It is a natural step to consider which o-minimal structures are exponentially bounded,
meaning that every definable function is bounded in absolute value by exp◦n(x) for some
n ∈ N. Some o-minimal structures, including Rexp and Ran,exp [7], are known to be ex-
ponentially bounded, but currently none are known to be non-exponentially-bounded, i.e.,
transexponential. In fact, this is a longstanding open question:

Question 1.1.2. Are there transexponential o-minimal structures?

The first reference (known to the author) to the possible existence of transexponential
o-minimal structures is a 1996 paper of van den Dries and Miller [10]. In [15], Marker and
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Miller suggest that an expansion of Rexp by a new function symbol that represents a real
analytic function E : (a,+∞) → R satisfying

E(x+ 1) = eE(x)

could be o-minimal. Any function satisfying this difference equation must be transexponen-
tial, and in [3], Boshernitzan shows that there are solutions whose germs at +∞ belong to
a Hardy field [3]. Boshernitzan refers to an earlier paper of Kneser [14] for the existence of
real analytic solutions to this difference equation.

Marker and Miller also discuss expanding Rexp by a “half-iterate”

e1/2(x) = E

(
E−1(x) +

1

2

)
of exp(x) whose germ at +∞ also belongs to a Hardy field [3]. Since (e1/2 ◦ e1/2)(x) = exp x,
the growth rate of e1/2 is strictly between polynomial and exponential. It is also open whether
such functions of intermediate growth could be defined in o-minimal structures.

Since Kneser’s function E is transexponential and contained in a Hardy field, Rexp(E) is
a natural candidate for a transexponential o-minimal structure. Thinking through a proof
of o-minimality, however, suggests that Ran,exp(E) may be a more promising candidate. Van
den Dries, Macintyre, and Marker’s proof that Ran,exp is o-minimal is simpler than Wilkie’s
proof that Rexp is o-minimal, and it is also more straightforward to adapt. A key part
of their proof is that the theory of Ran,exp(log) has quantifier elimination and a universal
axiomatization, which Rexp notably does not. With quantifier elimination, one need only
consider germs of terms instead of germs of all definable functions when using Lemma 1.1.1.
This gives a second version of Lemma 1.1.1, also from [9]:

Lemma 1.1.3. If R is an expansion of the real field and T = Th(R) has quantifier elim-
ination, then T is o-minimal if and only if for each term t(X) in a single variable with
parameters in R, there is m ∈ R such that either

1. t(x) > 0 for all x > m,

2. t(x) = 0 for all x > m, or

3. t(x) < 0 for all x > m.

Lemma 1.1.3 gives the following general two-part strategy for proving an expansion R of
the real field is o-minimal:

1. Find a language L in which Th(R) has quantifier elimination.

2. Prove that the germs at +∞ of L-terms in a single variable with parameters in R are
ordered.
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To apply this strategy to Ran,exp(E), we first consider Part (1), i.e., what new symbols
would be needed in order for Th(Ran,exp(E)) to have quantifier elimination? Just as Ran,exp

needs a symbol for log to have quantifier elimination, we include a symbol L = E−1 for the
functional inverse of E. Derivatives are definable with quantifiers using an order symbol, so
we also add symbols E ′, E ′′, E ′′′, . . . , for the derivatives of E. (We will also use the notation
E(d) to denote the dth derivative of E, for d ∈ N.) These are new function symbols, so
we must add symbols for their functional inverses (E ′)−1, (E ′′)−1, (E ′′′)−1, . . . too. We do
not need new symbols for the derivatives of L, (E ′)−1, (E ′′)−1, (E ′′′)−1, . . . because we can
express them in terms of the symbols we already have. For example,

L′(x) =
1

E ′(L(x))
.

Thus, we suggest the following as a reasonable language in which to try to show Th(Ran,exp(E))
has quantifier elimination:

Definition 1.1.4. Let Ltransexp = Lan(exp, log) ∪
{
E(d) : d ∈ N} ∪ {

(
E(d)

)−1
: d ∈ N

}
.

The main result of this thesis is the following:

Theorem 1.1.5. The germs at +∞ of Ltransexp-terms in a single variable with parameters
in R are ordered.

This solves Part (2) for the language Ltransexp.

1.2 Thesis work

To prove Theorem 1.1.5, we will build an ordered differential field of sublogarithmic-transex-
ponential series, based on van den Dries, Macintyre, and Marker’s construction of the field of
logarithmic-exponential transseries in [8]. The sublogarithmic-transexponential series field
will be constructed to embed the germs at +∞ of Ltransexp-terms as a substructure. The
order on the sublogarithmic-transexponential series then induces an order on the germs.

The sublogarithmic-transexponential series satisfy a theory Ttransexp, defined as follows.
Let Tan(exp, log) be the universal axiomatization for Ran(exp) given in [9] in the language
Lan(exp, log). Let Ttransexp be the following set of universal axioms:

1. Universal axioms for Tan(exp, log);

2. Axioms identifying the restrictions of each of the new function symbols to [0, 1] with
the corresponding restricted analytic function symbols, i.e.,

a) 0 ≤ x ≤ 1 → E(d)(x) = Ẽ(d)(x), where Ẽ(d) is the restricted analytic function
symbol corresponding to the function E(d);

3. For all x ≥ 0, E(x+ 1) = expE(x);
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4. For all x < 0, E(d)(x) = 0, for d ∈ N;

5. Axioms stating that the symbols for the inverse functions are indeed inverses, i.e.,

a) (x ≥ 1 → E(L(x)) = x) ∧ (x < 1 → L(x) = 0) and

b)
(
x ≥ 1 → E(d)

(
(E(d))−1(x)

)
= x

)
∧
(
x < 1 → (E(d))−1(x) = 0

)
;

6. An axiom for each d ∈ N stating that E(d+1) is indeed equal to the derivative of E(d),
i.e.,

∀x > 0,∀ϵ > 0,∀y > 0

(
0 < |x− y| < min

(
1,

ϵ

E(x+ 1)

)
→∣∣∣∣E(d)(y)− E(d)(x)

y − x
− E(d+1)(x)

∣∣∣∣ < ϵ

)
Each axiom in this schema is just the usual ϵ − δ statement of the derivative, with

δ := min
(
1, ϵ

E(x+1)

)
.

Given F ⊨ Ttransexp, we will build a fieldMF of sublogarithmic-transexponential transseries
with coefficients in F that satisfies Ttransexp. We also define a derivation on MF that works
like differentiation with respect to the variable of the transseries field. The difficulty is to
build MF so that a unique ordering is maintained at each stage of the construction.

In Chapter 2, we present some basic computations involving E and its derivatives that
we will use without reference later on. We also introduce the main challenge in defining an
ordering on MF , which arises from expressions involving E and its derivatives that grow at
equivalent rates.

The construction ofMF is divided into Chapters 3-5. In Chapter 3, we prove that certain
finite sums of monomials built from E and its derivatives are uniquely ordered, if we assume
some simple partial ordering relations.

In Chapter 4, we adapt the construction of the logarithmic-exponential series in [8] to
start with monomials built from E and its derivatives. The resulting structure is a model
of Tan,exp(log). The key change from the original construction is to allow only finite sums
of certain kinds of monomials at a time. This restriction allows us to use the result from
Chapter 3 to order the structure we build.

In Chapter 5, we build MF by iterating the construction in Chapter 4 to close off under
E, its derivatives, and the inverse function symbols. We also define the derivation on MF .

1.3 Fields of series and transseries

Transseries can be understood as a generalization of Laurent series that represent (often
divergent) asymptotic expansions of real functions at +∞. They were initially studied
independently by Dahn and Göring [4] in work on Tarski’s problem on the real exponential



CHAPTER 1. INTRODUCTION 5

field and Ecalle in work on the Dulac problem [11]. We refer to van den Dries, Macintyre,
and Marker’s construction of the logarithmic-exponential (log-exp) series in [8], which closely
follows Dahn and Göring’s original construction. Elements of the field of log-exp series are
infinite sums of “log-exp monomials” arranged in decreasing order. For example,

2ee
x − 1

2
xe2x − x1/3 + 3 log x+ 1 + x−1 + x−2 + x−3 + · · ·+ xe−x

is a log-exp series. Chapter 4 of this thesis is an adaptation of van den Dries, Macintyre, and
Marker’s presentation of the log-exp series construction to “transexponential monomials.”

Both the construction of the log-exp series and the work in Chapter 4 make frequent use
of Hahn series. We will present an overview of Hahn series in the next section and conclude
the chapter with a brief discussion of transexponential transseries constructions.

Hahn series and Mal’cev-Neumann series

The definitions and results in this section can be found in [17], though we follow the notation
of [8].

Let k be a ring and G a multiplicative ordered group. The Mal’cev-Neumann ring k((G))
with monomials in G and coefficients in k consists of formal sums

s =
∑
g∈G

cgg

with cg ∈ k such that Supp(s) := {g ∈ G : cg ̸= 0} is reverse well-ordered in G.
We must check that k((G)) is indeed a ring. Addition is defined in the obvious way, and

it is clear than k((G)) is closed under addition and scalar multiplication. Multiplication of
series is also defined in the usual way: If

∑
g∈G agg,

∑
g∈G bgg ∈ k((G)), define(∑

g∈G

agg

)(∑
g∈G

bgg

)
:=
∑
g∈G

∑
g1g2=g

ag1bg2g.

However, it is not obvious that the series on the right is an element of k((G)). The following
lemma [17, 3.2 and 3.21] tells us that the inner sum on the right is always finite:

Lemma 1.3.1. Let A,B ⊂ G be reverse well-ordered. Then AB is also reverse well-ordered.
Furthermore, for any fixed u ∈ AB, there are only finitely many pairs (a, b) ∈ A × B such
that u = ab.

We will also need to know that for any ϵ ∈ k((G)) with Supp(ϵ) < 1 ∈ G and any
sequence c0, c1, c2, · · · ∈ k, the sum

∞∑
n=0

cnϵ
n
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is an element of k((G)). It follows from Lemma 1.3.1 that for any well-ordered set A ⊂ G<1,
An is reverse well-ordered, and thus

⋃k
n=1A

n is reverse well-ordered. However, it takes
significant work to show that

⋃∞
n=1A

n is reverse well-ordered and to show that any element
of
⋃∞

n=1A
n appears in only finitely many sets in this union. This result is usually called

Neumann’s Lemma [17, 3.4 and 3.5]:

Lemma 1.3.2 (Neumann’s Lemma). Let A ⊂ G<1 be reverse well-ordered. Then
⋃∞

n=1A
n

is reverse well-ordered, and any element of
⋃∞

n=1A
n lies in An for only finitely many n ∈ N.

By Neumann’s Lemma, k((G)) is closed under taking power series with coefficients in k
of infinitesimal elements.

We now introduce some notation. For an element 0 ̸= s =
∑
cgg ∈ k((G)), define

1. Lm(s) = max(Supp(s)) to be the leading monomial of s,

2. Lc(s) = cLm(s) to be the leading coefficient of s, and

3. Lt(s) = Lc(s)Lm(s) to be the leading term of s.

Define Lm(0) = Lc(0) = Lt(0) = 0.
With additional assumptions on k, we can say more about k((G)). First, if k is ordered,

then we can order k((G)) by taking s > 0 if and only if Lc(s) > 0. Second, if Lc(s) ∈ k×,
then we can compute the multiplicative inverse of s in k((G)) using the usual trick for
computing the inverse of an infinite series. So if k is a field, then so is k((G)). Since Hahn
was the first to study the structure k((G)) when k is a field [12], in this case k((G)) is called
the Hahn series field with coefficients in k and monomials in G.

Previous transexponential transseries constructions

In this subsection, we discuss existing work on transseries fields built using a transexponential
function. Schmeling, in his 2001 PhD thesis [18], presents a variety of interesting results on
transseries fields containing transfinite iterates expα and logα of exp and log for α < ωω. For
Schmeling, the ωth iterate of exp satisfies the same difference equation

f(x+ 1) = exp f(x)

that we take E to satisfy in this thesis. Schmeling also gives a formal definition of what it
means for a generalized power series field C[[M]] to be a transseries field and develops a
theory of derivations and compositions for transseries fields and their transfinite exponential
expansions. However, Schmeling does not construct a derivation on the field of transseries
containing the transfinite iterates of exp and log.

Van den Dries, van der Hoeven, and Kaplan extend Schmeling’s thesis work in [6] to
build a field L of logarithmic hyperseries that contains all transfinite iterates of log. They
also construct natural differentiation, integration, and composition operations on L.
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In [2], Bagayoko, van der Hoeven, and Kaplan generalize Schmeling’s methods and exploit
the properties of L to build a hyperserial field H that contains all transfinite iterates of log
and exp, though H is not yet shown to be closed under differentiation. Bagayoko’s upcoming
thesis also contains promising results in related areas [1].

The hyperserial fieldH differs from the sublogarithmic-transexponential series constructed
in this thesis in two ways: First, in addition to being closed under all ordinal iterates of exp
and log, H also allows many kinds of sums that are not in the field of sublogarithmic-
transexponential series. The notion of summability in the sublogarithmic-transexponential
series is quite restrictive. In order to use the ordering result of Chapter 3 and to define
a derivation in a natural way, certain kinds of finiteness are built in through the whole
construction.

Second, H is not yet known to be a differential field, while a derivation on the sublog-
arithmic-transexponential series is defined in Section 5.3 and respects exp and E. It is
necessary to the proof of Theorem 1.1.5 for the sublogarithmic-transexponential series to be
a differential field.
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Chapter 2

Basic properties of E and its
derivatives

In [14], Kneser constructs a real analytic “half-iterate” of ex, i.e., a function h such that
h(h(x)) = ex. Finding half-iterates of a function ψ reduces to finding solutions to the Abel
functional equation, which in its full generality is the following:

g(ψ(x)) = g(x) + c.

After constructing a real analytic solution g to the Abel equation with c = 1 and ψ = exp,
Kneser defines h(x) = g−1

(
g(x) + 1

2

)
, so that

h(h(x)) = g−1

(
g

(
g−1

(
g(x) +

1

2

))
+

1

2

)
= g−1 (g(x) + 1)

= g−1(g(expx))

= expx.

However, we are concerned not with partial iterates of exp, but with Kneser’s solution g
to the Abel equation with c = 1 and ψ = exp. If g satisfies g(exp(x)) = g(x) + 1, then g−1

satisfies
g−1(x+ 1) = exp(g−1(x)).

Any such g−1 must be transexponential. Kneser’s construction gives the following:

Theorem 2.0.1 (Kneser). The functional equation g(expx) = g(x) + 1 has a real analytic
solution on x > 0.

This functional equation actually has infinitely many real-analytic solutions, but we will
use Kneser’s, which may be taken to satisfy g(1) = 0. We will call the solution given by
Kneser’s construction L. We will call its inverse E. We will also use E and L to refer to the
corresponding operators on germs of functions at +∞ and as formal symbols.
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We now give several simple identities and relations derived from the functional equation
E satisfies.

Remark 2.0.2. Whenever we write a relation, it should be understood that it holds for all
large enough x.

1. E(x+ 1) > E(x)a for any a ∈ R, and lim
x→∞

E(x)a

E(x+ 1)
= 0.

2. E ′(x+1) = eE(x)E ′(x) = E(x+1)E ′(x) by the chain rule, so that E ′(x) > E(x). Again

lim
x→∞

E(x)

E ′(x)
= 0. This also shows that E(d1)(x) > E(d2)(x) if d1 > d2.

3. Repeatedly differentiating both sides of E(x+1) = expE(x) gives algebraic-difference-
differential equations of all orders, which are of the form

E(d)(x+ 1) = E(x+ 1)
d∑

k=1

∑
j̄

d!

j1! · · · jd−k+1!

(
E ′(x)

1!

)j1

· · ·
(
E(d−k+1)(x)

(d− k + 1)!

)jd−k+1

where the second sum is taken over all sequences j1, . . . , jd−k+1 in Z+ satisfying

j1 + j2 + · · ·+ jd−k+1 = k

j1 + 2j2 + · · ·+ (d− k + 1)jd−k+1 = d.

The double sum in the above equation is the formula for the dth complete Bell poly-
nomial with arguments E ′(x), . . . , E(d)(x), which we will denote by Bd(x), i.e.,

Bd(x) :=
d∑

k=1

∑
j̄

d!

j1! · · · jd−k+1!

(
E ′(x)

1!

)j1

· · ·
(
E(d−k+1)(x)

(d− k + 1)!

)jd−k+1

.

Bell polynomials are used in the study of set partitions, though they arise here as
an instance of Faà di Bruno’s formula, which generalizes the chain rule by computing
higher derivatives of a composition of functions.

The following lemma comes from Boshernitzan in [3] and will help us derive more identities
involving E and its derivatives.

Lemma 2.0.3. Let g(x), h(x) > 0 be continuous, lim
x→∞

h(x) = +∞, and assume that

h(x+ 1) > 2h(x)

|g(x+ 1)− g(x)| ≤ h(x+ 1)

for all large enough x. Then |g(x)| < 3h(x) for all large enough x.
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Proof. Using the second inequality n times, we have

g(x+ n) ≤ g(x+ (n− 1)) + h(x+ n)

≤ [g(x+ (n− 2)) + h(x+ (n− 1))] + h(x+ n)

...

≤ g(x) +
n−1∑
k=0

h(x+ (n− k)).

Now using the first inequality n times, h(x + n) > 2h(x + (n − 1)) > · · · > 2nh(x), so
h(x)

h(x+ n)
<

1

2n
. So we have

lim
n→∞

g(x+ n)

h(x+ n)
≤ lim

n→∞

g(x) +
∑n−1

k=0 h(x+ (n− k))

h(x+ n)

≤ lim
n→∞

(
n−1∑
k=0

1

2k
+

g(x)

h(x+ n)

)
< 3.

If we take g(x) = log(E ′(x)) and h(x) = log(E(x)) then we can apply Lemma 2.0.3
because:

h(x+ 1) = log(E(x+ 1)) = log(eE(x)) = E(x) = eE(x−1)

> 2E(x− 1) = 2h(x)

|g(x+ 1)− g(x)| = log(E ′(x+ 1))− log(E ′(x))

= log

(
E ′(x+ 1)

E ′(x)

)
= log(E(x+ 1)) = h(x+ 1).

Lemma 2.0.3 gives that log(E ′(x)) < 3 log(E(x)), and exponentiating, we get E ′(x) < E(x)3.
From here, we can make a sequence of comparisons.

Lemma 2.0.4. For all large enough x, we have

1. E(d)(x) < E(x)E(x− 1)3d

2. E(d)(x) < E(x)2

3. E(d)(x− 1)a < E(x) for all a ∈ R

4. E(d)(x− r)a < E(x) for all a ∈ R and r > 0
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Proof. The first part is proven in [3], using Lemma 2.0.3. The second part follows from the
first part and Lemma 2.0.3:

lim
x→∞

E(d)(x+ 1)

E(x+ 1)2
= lim

x→∞

E(x+ 1)E(x)3d

E(x+ 1)2

≤ lim
x→∞

E(x)3d

E(x+ 1)

= lim
x→∞

E(x)3d

eE(x)

= 0.

The third part uses Lemma 2.0.3 and the fact that lim
x→∞

E(x)a

E(x+ 1)
= 0 for any a ∈ R:

lim
x→∞

E(d)(x− 1)a

E(x)
≤ lim

x→∞

(E(x− 1)E(x− 2)3d)a

E(x)

≤ lim
x→∞

E(x− 1)a+1

E(x)

= 0.

For the fourth part, we need only show that lim
x→∞

E(x− r)m

E(x)
= 0 for any m ∈ N, since

the second part tells us that lim
x→∞

E(d)(x− r)a

(E(x− r)2)a
= 0. The proof is the same as for the third

part, using the fact that partial iterates of the exponential also have faster-than-polynomial
growth. First assume r is rational. Write e1/q to denote a 1/qth iterate of exp (meaning

exp =

q times︷ ︸︸ ︷
e1/q ◦ · · · ◦ e1/q) and write ep/q to denote p iterates of e1/q, i.e., ep/q =

p times︷ ︸︸ ︷
e1/q ◦ · · · ◦ e1/q.

Then

lim
x→∞

E(x− r)m

E(x)
= lim

x→∞

e1−r(E(x− 1))m

eE(x−1)

= lim
y→∞

ym

er(y)

≤ lim
y→∞

ym

ya
for any a

= 0 for a > m.

If r is irrational, then there is a rational r′ such that 0 < r′ < r, so

lim
x→∞

E(x− r)m

E(x)
≤ lim

x→∞

E(x− r′)m

E(x)
= 0.
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2.1 Monomials with equivalent growth rates and

logarithmic derivatives

Note that what is actually proven in each part of Lemma 2.0.4 is that the limit of the
quotient of the smaller expression by the larger expression is 0. This means that in each of
these comparisons, the larger expression is not only larger, but also has a faster growth rate
as x→ ∞.

However, it is possible for simple expressions involving E and its derivatives to have
equivalent growth rates. For example,

lim
x→∞

E(x)E ′′(x)

E ′(x)2
= lim

x→∞

E(x)2
(
E ′(x− 1)2 + E ′′(x− 1)

)
E(x)2E ′(x− 1)2

= lim
x→∞

(
1 +

E ′′(x− 1)

E ′(x− 1)2

)
= 1.

by Lemma 2.0.4, so E(x)E ′′(x) and E ′(x)2 grow at the same rate as x approaches infinity.
Even though E(x)E ′′(x) and E ′(x)2 have the same growth rate, it is easy to determine

that E(x)E ′′(x) > E ′(x)2 :

E(x)E ′′(x)− E ′(x)2 = E(x)2
(
E ′(x− 1)2 + E ′′(x− 1)

)
− E(x)2E ′(x− 1)2

= E(x)2E ′′(x− 1)

> 0.

However, it can be quite complicated to compute the sign of an expression involving many
terms with equivalent growth rates. To remedy this, it will be useful to be able to rewrite
expressions involving E and its derivatives in terms of different functions that all have distinct
growth rates. To this end, we follow Boshernitzan in [3] and introduce a useful sequence of
functions.

Definition 2.1.1. Let E0(x) = E(x) and let Ed+1(x) =
E′

d(x)

Ed(x)
for d ∈ N.

Each function in the sequence is the logarithmic derivative of the previous one.

Lemma 2.1.2. For d ≥ 2, we have Ed(x) = E ′(x − d) + Rd(x) where Rd(x) is such that

limx→∞
Rd(x)

E′(x−d−1)
= 1.

Proof. We know E0(x) = E(x) and E1(x) =
E′(x)
E(x)

= E ′(x− 1). Then,

E2(x) =
E ′′(x− 1)

E ′(x− 1)
=
E ′(x− 2)2 + E ′′(x− 2)

E ′(x− 2)
= E ′(x− 2) +

E ′′(x− 2)

E ′(x− 2)
.

Let R2(x) :=
E′′(x−2)
E′(x−2)

, which is real analytic on x > 0. The same calculation as above, shifted

down by 1, shows that R2(x) = E ′(x− 3) + E′′(x−3)
E′(x−3)

. So limx→∞
R2(x)

E′(x−3)
= 1.

We proceed by induction. Suppose
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1. Rd(x) has been defined so that limx→∞
Rd(x)

E′(x−d−1)
= 1 and Rd is real analytic at all large

enough values of x.

2. Ed(x) = E ′(x− d) +Rd(x).

Then

Ed+1(x) =
E ′′(x− d) +R′

d(x)

E ′(x− d) +Rd(x)

=
E(x− d)

(
E ′(x− d− 1)2 + E ′′(x− d− 1)

)
+R′

d(x)

E ′(x− d) +Rd(x)

+
Rd(x)E

′(x− d− 1)−Rd(x)E
′(x− d− 1)

E ′(x− d) +Rd(x)

=
E(x− d)E ′(x− d− 1)2 +Rd(x)E

′(x− d− 1)

E(x− d)E ′(x− d− 1) +Rd(x)

+
E(x− d)E ′′(x− d− 1) +R′

d(x)−Rd(x)E
′(x− d− 1)

E ′(x− d) +Rd(x)

=E ′(x− d− 1) +
E(x− d)E ′′(x− d− 1)−Rd(x)E

′(x− d− 1) +R′
d(x)

E ′(x− d) +Rd(x)
.

Now we would like to define Rd+1(x) to be

E(x− d)E ′′(x− d− 1)−Rd(x)E
′(x− d− 1) +R′

d(x)

E ′(x− d) +Rd(x)

so we must show this expression satisfies the induction hypothesis. The expression is real
analytic at large x because the denominator is large when x is large. So it remains to show
the expression has the same growth rate as E ′(x− d− 2). We will show E(x−d)E′′(x−d−1)

E′(x−d)+Rd(x)
has

the same growth rate at E ′(x− d− 2), and
−Rd(x)E

′(x−d−1)+R′
d(x)

E′(x−d)+Rd(x)
approaches 0 as x→ ∞.

By induction, we know lim
x→∞

Rd(x)

E ′(x− d− 1)
= 1. Since Rd is differentiable at large x,

lim
x→∞

R′
d(x)

E ′′(x− d− 1)
= 1. So

lim
x→∞

−Rd(x)E
′(x− d− 1) +R′

d(x)

E ′(x− d) +Rd(x)
= lim

x→∞

−Rd(x)E
′(x− d− 1) +R′

d(x)

E(x− d)
(
E ′(x− d− 1) + Rd(x)

E(x−d)

) = 0

since E ′(x− d− 1)n < E(x− d) for all n ∈ N by Lemma 2.0.4.
Now we can rewrite

E(x− d)E ′′(x− d− 1)

E(x− d)E ′(x− d− 1) +Rd(x)
=
E(x− d− 1)

(
E ′(x− d− 2)2 + E ′′(x− d− 2)

E(x− d− 1)E ′(x− d− 2) + Rd(x)
E(x−d)

=
E ′(x− d− 2)2 + E ′′(x− d− 2)

E ′(x− d− 2) + Rd(x)
E(x−d)E(x−d−1)

.
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So again by Lemma 2.0.4

lim
x→∞

E′(x−d−2)2+E′′(x−d−2)

E′(x−d−2)+
Rd(x)

E(x−d)E(x−d−1)

E ′(x− d− 2)
= lim

x→∞

E ′(x− d− 2)2 + E ′′(x− d− 2)

E ′(x− d− 2)2
= 1.

Corollary 2.1.3. For all large enough x and all d, n ∈ N, we have Ed(x) > Ed+1(x)
n.

This corollary follows immediately from Lemmas 2.0.4 and 2.1.2, and it is also proved in
[3] via different computations.

For each d ∈ N, we can rewrite E(d) as a polynomial with integer coefficients in E0, . . . , Ed.
For example,

E ′ = E0 · E1

E ′′ = E0 · (E1)
2 + E0 · E1 · E2.

We get similar expressions for all derivatives of E because

E ′
d = EdEd+1

for all d ∈ N.
The importance of the above corollary is that it allows us to rewrite expressions involving

the derivatives of E in terms of E0, E1, E2, . . . to identify a dominant term. For example,
we showed earlier that E(x)E ′′(x) and E ′(x)2 grow at the same rate as x→ ∞. This is easy
to see when we rewrite these expressions in terms of E0, E1, E2, . . .

E(x)E ′′(x) = E0(x)
2E1(x)

2 + E0(x)
2E1(x)E2(x)

E ′(x)2 = E0(x)
2E1(x)

2.

We can also rewrite Ed(x) for d > 0 in terms of E0(x− 1), . . . , Ed(x− 1). For example,

E1(x) = E ′(x− 1) = E0(x− 1)E1(x− 1)

E2(x) =
E ′

1(x)

E1(x)

=
E ′

0(x− 1)E1(x− 1) + E0(x− 1)E ′
1(x− 1)

E0(x− 1)E1(x− 1)

=
E0(x− 1)E1(x− 1)2 + E0(x− 1)E1(x− 1)E2(x− 1)

E0(x− 1)E1(x− 1)

= E1(x− 1)

(
1 +

E2(x− 1)

E1(x− 1)

)
.



CHAPTER 2. BASIC PROPERTIES OF E AND ITS DERIVATIVES 15

The computation for d = 3 below illustrates the general pattern:

E3(x) =
E ′

2(x)

E2(x)

=
E ′

1(x− 1) + E ′
2(x− 1)

E1(x− 1) + E2(x− 1)

=
E1(x− 1)E2(x− 1) + E2(x− 1)E3(x− 1)

E1(x− 1) + E2(x− 1)

= E2(x− 1)

(
1 +

−E2(x− 1) + E3(x− 1)

E1(x− 1) + E2(x− 1)

)
.

The following lemma shows how roughly this same computation can be used for all d ≥ 3.

Lemma 2.1.4. Let ϵ2(x) =
E2(x−1)
E1(x−1)

. For all d ≥ 2, Ed+1(x) = Ed(x− 1)(1 + ϵd+1(x)), where

ϵd+1(x) =
ϵ′d(x)

Ed(x−1)
· 1
1+ϵd(x)

and ϵd+1(x) is expressed in terms of E1(x− 1), . . . , Ed+1(x− 1).

Proof. We will use induction. In the base case,

ϵ3(x) =

(
E2(x−1)
E1(x−1)

)′
E2(x− 1)

(
1 + E2(x−1)

E1(x−1)

)
=

E1(x−1)E2(x−1)E3(x−1)−E1(x−1)E2(x−1)2

E1(x−1)2

E2(x− 1)
(
1 + E2(x−1)

E1(x−1)

)
=
E3(x− 1)− E2(x− 1)

E1(x− 1) + E2(x− 1)

and our earlier computation shows E3(x) = E2(x)(1 + ϵ3(x)).
Suppose the hypotheses hold for n = 2, . . . , d. Then

Ed+1 =
E ′

d(x)

Ed(x)

=
E ′

d−1(x− 1)(1 + ϵd(x)) + Ed−1(x− 1)ϵ′d(x)

Ed−1(x− 1)(1 + ϵd(x))

=
E ′

d−1(x− 1)

Ed−1(x− 1)
+

ϵ′d(x)

1 + ϵd(x)

= Ed(x− 1)

(
1 +

ϵ′d(x)

Ed(x− 1)
· 1

1 + ϵd(x)

)
= Ed(x− 1)(1 + ϵd+1(x)).

By induction, ϵd(x) can be expressed in terms of E1(x−1), . . . , Ed(x−1). Since for all n ∈ N
we have

E ′
n(x− 1) = En(x− 1)En+1(x− 1)
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we can express ϵ′d(x) in terms of E1(x− 1), . . . , Ed+1(x− 1).

Corollary 2.1.5. For all d ≥ 1, limx→∞

(
Ed−1(x−1)

Ed(x−1)

)
E(x−d)

= 1.

Proof. By Lemma 2.1.2

Ed−1(x− 1)

Ed(x− 1)
=

E ′(x− d) +Rd−1(x− 1)

E ′(x− d− 1) +Rd(x− 1)

=
E ′(x− d) +Rd−1(x− 1)

E ′(x− d− 1)

(
1

1 + Rd(x−1)
E′(x−d−1)

)
.

Also by Lemma 2.1.2, we know

lim
x→∞

Rd−1(x− 1)

E ′(x− d− 1)
= 1

lim
x→∞

Rd(x− 1)

E ′(x− d− 1)
= 0.

So limx→∞
Ed−1(x−1)

Ed(x−1)
= E(x− d) + 1 and the result follows.

We will use these results, in which E0, E1, . . . are functions, to give intuition for how to
order purely formal sums of monomials in the remaining chapters.



17

Chapter 3

Ordering the E-sums

In the previous section, we used the difference equation for E and the difference-differential
equations for its derivatives to derive some simple relations among these functions. We
also introduced the sequence of logarithmic derivatives E0, E1, . . . as a different “basis” for
expressions involving E and its derivatives, which allows us to identify a dominant monomial.
In this chapter, we introduce the formal notions of E-sums and E∗-sums and impose relations
upon them to match the properties derived in Chapter 2. We also show that under some
simple hypotheses, the E-sums can be uniquely ordered.

In the following definitions, we use the same symbols we used for functions in the previous
chapter (e.g., E(d)(x), Ed(x), etc.) to represent purely formal objects. We do this to highlight
the connection to results of the previous chapter and for consistency of notation.

Definition 3.0.1 (E,m-sums). Let X be a set of variables, and let k be a field. Fix m ∈ Z.

1. First, let Gm be the multiplicative abelian group generated by expressions of the form
E(d)(x−m)a for d ∈ N, x ∈ X, and a ∈ k, where we identify expressions of the form
E(d)(x−m)aE(d)(x−m)b with E(d)(x−m)a+b.

2. Second, let Λm be the multiplicative abelian group generated by expressions of the form(
logE ′(x − m)

)a
for x ∈ X and a ∈ k, where we identify expressions of the form(

logE ′(x−m)
)a(

logE ′(x−m)
)b

with
(
logE ′(x−m)

)a+b
.

We will call the group ring k[Gm] the E,m-sums. We will call the group ring k[GmΛm] the
log-E,m-sums.

We will write logE ′(x−m)a instead of
(
logE ′(x−m)

)a
to avoid using too many paren-

theses. The parentheses should be implicitly understood as surrounding logE ′(x − m). If
we intend an exponent to apply only to E ′(x−m), we will instead write log

(
E ′(x−m)a

)
.

Definition 3.0.2 (E∗,m-sums). Let X be an ordered set of variables, and let k be an ordered
field. Fix m ∈ Z. Let Hm be the multiplicative abelian group generated by expressions of the
form Ed(x −m)a and E0(x −m + k)a for d, k ∈ N, x ∈ X, and a ∈ k, where we identify
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expressions of the form Ed(x−m)aEd(x−m)b with Ed(x−m)a+b and E0(x−m+k)aE0(x−
m+ k)b with E0(x−m+ k)a+b.

Define an order on Hm as follows: We can write any h ∈ Hm as

h =

p∏
j=1

E0(xj −m+ k)αj,k · · ·E0(xj −m)αj,0E1(xj −m)βjE2(xj −m)aj,2 · · ·Ed(xj −m)aj,d

for some p, k, d ∈ N and x1 > · · · > xp. Let

1. αl = (α1,l, α2,l, . . . , αp,l) for l = 0, . . . , k

2. β = (β1, β2, . . . , βp)

3. al = (a1,l, a2,l, . . . , ap,l) for l = 2, . . . , d

Define h > 1 if and only if the first nonzero element of the following sequence is positive:

αk, αk−1, . . . , α0, β, a2, . . . , ad.

Let the E∗,m-sums be the Hahn series field k((Hm)).

At this point, it is not yet clear how we should define a derivation on k((Hm)), but we
can define a derivation on a subfield generated by monomials with only integer exponents.

Definition 3.0.3. Let X be an ordered set of variables, and let k be an ordered differential
field. Let H ′

m ⊂ Hm be the subgroup generated by expressions of the form Ed(x − m)n for
d ∈ N, x ∈ X, n ∈ Z. Then k((H ′

m)) is a subfield of k((Hm)). Define a derivation on
k((H ′

m)) by
∂m(Ed(x−m)) = Ed(x−m)Ed+1(x−m)

which comes from the definition Ed+1 =
E′

d

Ed
of the sequence of logarithmic derivatives from

section 2.1.

In this section, we will only discuss k[Gm] and k[GmΛm] with m = 0, and k((Hm)) with
m = 0, 1, though the proofs work the same for any consecutive pair m = n, n+ 1 ∈ Z.

Remark 3.0.4. The goal of this section is to show that the log-E-sums k[G0Λ0] are ordered.
We will first show that k[G0] is ordered by defining an injective ring homomorphism

σ0 : k[G0] → k((H0)).

Since k((H0)) is an ordered Hahn series field, σ0 will induce an order on k[G0]. We will
then define an order-preserving embedding ν0 : σ0(k[G0]) → k((H1)) and use it to define an
“approximation map”

ρ0 : k[G0Λ0] → k((H1))

so-called because it approximates log-E-sums by elements of k((H1)) well enough to induce
a unique ordering of k[G0Λ0] compatible with the order induced on k[G0].
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3.1 The order on k((H0)) induces an order on k[G0]

We will define a homomorphism σ0 : k[G0] → k((H0)). Intuitively, we want σ0(s) to be
s ∈ k[G0] “rewritten” using the expressions for the derivatives of E as polynomials in
E0, E1, . . . from Chapter 2. We can begin by defining σ0(E

(d)(x)) exactly according to this
intuition:

σ0(E
(d)(x)) := E0(x)E1(x)

d + · · ·+ E0(x) · · ·Ed(x)

is the polynomial expression for E(d)(x) in terms of the logarithmic derivative sequence
E0(x), . . . , Ed(x).

Next, we must extend the definition to generators ofG0 of the form E(d)(x)a. If a = n ∈ N,
then we can define σ0(E

(d)(x)n) := σ0(E
(d)(x))n. If a ̸∈ N, then we cannot define σ0(E

(d)(x)a)
to be σ0(E

(d)(x))a because σ0(E
(d)(x))a is not formally an element of k((H0)) (unless d = 1).

To represent σ0(E
(d)(x))a as an element of k((H0)), we reason as follows:

σ0(E
(d)(x))a =

(
E0(x)E1(x)

d + · · ·+ E0(x) · · ·Ed(x)
)a

= E0(x)
aE1(x)

da

(
1 +

E1(x)
d−1E2(x) + · · ·+ E1(x) · · ·Ed(x)

E1(x)d

)a

= E0(x)
aE1(x)

da

∞∑
k=0

(
a

k

)(
E1(x)

d−1E2(x) + · · ·+ E1(x) · · ·Ed(x)

E1(x)d

)k

where the infinite sum in the final line comes from the Taylor series for (1 + (·))a. The sum
in the final line expands to a valid element of k((H0)), so we take this to be the definition
of σ0(E

(d)(x)a). Note that this definition extends the definition of σ0(E
(d)(x))n for n ∈ N

above.
To summarize, we define σ0 : k[G0] → k((H0)) by

1. σ0(E(x)
a) = E0(x)

a

2. σ0(E
′(x)a) = E0(x)

aE1(x)
a

3. σ0(E
(d)(x)a) = E0(x)

aE1(x)
da
∑∞

k=0

(
a
k

) (
E1(x)d−1E2(x)+···+E1(x)···Ed(x)

E1(x)d

)k
for d > 1

4. Extend σ0 to products and sums so that it is a k-algebra homomorphism, i.e., for
g1, . . . , gn ∈ G0 and c1, . . . , cn ∈ k, define

a) σ0(g1 · · · gn) = σ0(g1) · · ·σ0(gn)
b) σ0(c1g1 + · · ·+ cngn) = c1σ0(g1) + · · · cnσ0(gn)

We must check that σ0 is well defined, i.e., that

1. for each generator g of G0, σ0(g) and g satisfy the same relations, and

2. for each s ∈ k[G0], σ0(s) is a valid sum in the Hahn series field k((H0)).
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First, the only relations among the generators of G0 are

E(d)(x)a+b = E(d)(x)aE(d)(x)b.

For d > 1, we can compute that

σ0
(
E(d)(x)a+b

)
= E0(x)

a+bE1(x)
d(a+b)

∞∑
k=0

(
a+ b

k

)(
σ0(E

(d)(x))

E0(x)E1(x)d
− 1

)k

= E0(x)
aE1(x)

da

∞∑
k=0

(
a

k

)(
σ0(E

(d)(x))

E0(x)E1(x)d
− 1

)k

· E0(x)
bE1(x)

db

∞∑
k=0

(
b

k

)(
σ0(E

(d)(x))

E0(x)E1(x)d
− 1

)k

= σ0
(
E(d)(x)a

)
σ0
(
E(d)(x)b

)
.

Also, we immediately have

σ0
(
E(x)a+b

)
= σ0 (E(x)

a)σ0
(
E(x)b

)
σ0
(
E ′(x)a+b

)
= σ0 (E

′(x)a)σ0
(
E ′(x)b

)
.

Second, since σ0(g) is a valid sum in k((H0)) for each generator g of G0, and only finitely
many generators of G0 appear in any s ∈ k[G0], σ0(s) is a valid sum in k((H0)).

Remark 3.1.1. Let s ∈ k[G0]. Because σ0 is defined using the Taylor expansion of (1+(·))a,
any monomial in Supp(σ0(s)) must be of the form

p∏
j=1

E0(xj)
αj · E1(xj)

βjE2(xj)
nj,2 · · ·Ed(xj)

nj,d

with αj, βj ∈ k and nj,2, . . . , nj,d ∈ N for all j = 1, . . . , p, for some d, k ∈ N. The key
observation is that the exponents of E2, . . . , Ed generators are not just any elements of k—
they must be natural numbers.

Remark 3.1.2 (Ordering and separation assumptions). We will now give assumptions from
which we can prove that k[G0] is totally ordered:

1. k is an ordered field.

2. X is a subset of an ordered field L.

3. We have the following partial order: For all m ∈ N, all x, y ∈ X with x > y, and all
a ∈ k

a) E(x−m) > k
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b) E(x−m) > E(y −m)a.

4. There is a map r : X ×X → Q ∩ (0, 1) such that for all x, y ∈ X with x > y, we have
x− y < r(x, y).

Notice that if we identify
E0(x−m) = E(x−m)

then the ordering already defined on each k((Hm)) extends the partial order generated by
these assumptions.

Lemma 3.1.3. Suppose X and k satisfy the ordering and separation assumptions in Remark
3.1.2. Then σ0 is injective.

Proof. Let 0 ̸= s =
∑n

i=1 cigi ∈ k[G0] with all ci ̸= 0. Then σ0(s) is a possibly infinite sum in
k((H0)). To show that σ0(s) ̸= 0, we will find a monomial of σ0(s) with nonzero coefficient.

Enumerate all the variables that appear in g1, . . . , gn as x1 > · · · > xp. Split each
gi =

∏p
j=1 gi(xj) into blocks for each of the xj’s. Let d be largest such that for some j,

E(d)(xj) appears in some gi. By definition of σ0, we can express

σ0(gi(xj)) = σ0(E(xj)
ai,j,0)σ0(E

′(xj)
ai,j,1)σ0(E

′′(xj)
ai,j,2) · · ·σ0(E(d)(xj)

ai,j,d)

= E0(xj)
ai,j,0+···+ai,j,dE1(xj)

ai,j,1+2ai,j,2+···+dai,j,d ·(
∞∑

k2=0

(
ai,j,2
k2

)(
E2(xj)

E1(xj)

)k2
)
· · ·

(
∞∑

kd=0

(
ai,j,d
kd

)(
· · ·+ E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd
)

with ai,j,0, . . . , ai,j,d ∈ k. When we fully expand out this product of sums, we have that for
each kd ∈ Z+, the coefficient of the term

E0(xj)
ai,j,0+···+ai,j,dE1(xj)

ai,j,1+2ai,j,2+···+dai,j,d

(
E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd

is
(
ai,j,d
kd

)
. This is because the only times Ed(xj) appears anywhere in σ0(gi(xj)) come from

instances of
E2(xj)···Ed(xj)

E1(xj)d−1 . So the coefficient of the term(
E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd p∏
l=1

E0(xl)
ai,l,0+···+ai,l,dE1(xl)

ai,l,1+2ai,l,2+···+dai,l,d

in σ0(gi) = σ0(gi(x1)) · · ·σ0(gi(xp)) is still
(
ai,j,d
kd

)
, since Ed(xj) does not appear in σ0(gi(xl))

for l ̸= j.
Let I ⊂ {1, . . . , n} be maximal such that for all j = 1, . . . , p and all i1, i2 ∈ I, we have

ai1,j,0 + · · ·+ ai1,j,d = ai2,j,0 + · · ·+ ai2,j,d

ai1,j,1 + 2ai1,j,2 + · · ·+ dai1,j,d = ai2,j,1 + 2ai2,j,2 + · · ·+ dai2,j,d.
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For the remainder of the argument, fix some j ∈ {1, . . . , p}. Then the coefficient of(
E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd p∏
l=1

E0(xl)
ai,l,0+···+ai,l,dE1(xl)

ai,l,1+···+dai,l,d

in σ0(
∑n

i=1 cigi) is ∑
i∈I

ci

(
ai,j,d
kd

)
.

Suppose ai,j,d for i ∈ I are distinct. If
∑

i∈I ci
(
ai,j,d
kd

)
= 0 for kd = 0, . . . , |I| − 1, then we

would have c1 = · · · = c|I| = 0, a contradiction. If
∑

i∈I ci
(
ai,j,d
kd

)
̸= 0 for some kd < |I|, then

we are done because this shows σ0(s) ̸= 0.
So assume ai,j,d for i ∈ I are not all distinct. Let 1 < q < |I| be the number of

distinct values among ai,j,d for i ∈ I. Let (P1, . . . , Pq) partition I so that for any i1, i2 ∈ Pl,
αl,j := ai1,j,d = ai2,j,d, and αl1,j ̸= αl2,j for l1 ̸= l2. Consider the sums∑

i∈Pl

ci
gi

E(d)(xj)αl,j

for l = 1, . . . , q. Each of these sums has strictly fewer terms than s, and its monomials have
one less multiplicand, since E(d)(xj) does not appear.

We will proceed by induction with the hypothesis that for each l = 1, . . . , q, we can find

a leading term bltl of σ0

(∑
i∈Pl

ci
gi

E(d)(xj)
αl,j

)
, where 0 ̸= bl ∈ k and tl ∈ G0. Since E(d)(xj)

does not appear in
∑

i∈Pl
ci

gi
E(d)(xj)

αl,j , Ed(xj) does not appear in tl. Now let I0 ⊂ {1, . . . , q}
be the set of indices l at which

E0(xj)
αl,jE1(xj)

dαl,j tl

is maximized in H0.
Consider the sum∑

l∈I0

σ0(E
(d)(xj)

αl,j)bltl =
∑
l∈I0

E0(xj)
αl,jE1(xj)

dαl,jbltl

∞∑
kd=0

(
αl,j

kd

)(
· · ·+ E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd

.

For each kd, the following is the largest monomial of the sum with kd as the exponent of
Ed(xj):

E0(xj)
αl,jE1(xj)

dαl,j tl

(
E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd

.

Its coefficient is ∑
l∈I0

(
αl,j

kd

)
bl
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since Ed(xj) only appears in instances of
E2(xj)···Ed(xj)

E1(xj)d−1 . If the coefficient is 0 for all kd =

0, . . . , |I0| − 1, then that forces b1 = · · · = bq = 0, since the αl,j’s are all distinct. But this
contradicts the induction hypothesis. So some

∑q
l=1

(
αl,j

kd

)
bl must be nonzero for kd < |I0|,

which means we have found a monomial of σ0(s) with nonzero coefficient.

Since σ0 is injective, the ordering of k((H0)) induces an order on k[G0] by defining s > 0
if and only if σ0(s) > 0.

3.2 Defining the order preserving embedding ν0

In Lemma 2.1.4, we showed that for the functions Ed, Ed+1, and ϵd with d ≥ 2, we have

Ed(x) = Ed−1(x− 1)(1 + ϵd(x)).

The proof of this lemma does not actually use any properties of Ed, Ed+1, and ϵd as functions.

Only the identities E0 = E, Ed+1 =
E′

d

Ed
for d ∈ N, and the difference-differential identities

for the derivatives of E are needed. Thus, the conclusion of Lemma 2.1.4 still holds in any
purely formal context in which the necessary identities have been imposed.

Our goal is to formally build an ordered field of series that embeds the germs at +∞
of Ltransexp-terms as an ordered differential field. Thus, we must impose the conclusion of
Lemma 2.1.4 if we hope to build something consistent with the identities used to prove this
Lemma.

In this section, we will first show how to represent ϵd(x) as an element of k((H1)) for
each d ∈ N. We will also prove a lemma about the form this representation takes, which will
be necessary in the next section. Then we will define an order preserving embedding

ν0 : σ0(k[G0]) → k((H1)).

It is important that we restrict the domain of ν0 to σ0(k[G0]) ⊊ k((H0)). Sums in the image
of σ0 can be infinite, but they are limited in two key ways:

1. Only finitely many elements of X appear in any sum.

2. For each sum, there is some d ∈ N such that only E0, . . . , Ed generators may appear.

Arbitrary elements of k((H0)) do not have these two properties, and this causes problems
when trying to extend the definition of ν0 to all of k((H0)) in the natural way. Fortunately,
we will only ever need to embed elements of σ0(k[G0]) into k((H1)), so this is not a problem
for us.

Fix x ∈ X. We will represent each ϵd(x) by an element of k((H ′
1)) ⊂ k((H1)), by

induction. In the base case, we can immediately represent ϵ2(x) by
E2(x−1)
E1(x−1)

∈ k((H1)). We

can also immediately identify the nth derivative of ϵ2 with (∂1)
◦n
(

E2(x−1)
E1(x−1)

)
∈ k((H ′

1)) for all

n ∈ N.
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Now suppose ϵd(x) is represented by sd ∈ k((H ′
1)). We will use the formula

ϵd+1(x) =
ϵ′d(x)

Ed(x− 1)
· 1

1 + ϵd(x)

from Lemma 2.1.4, replacing ϵd(x) by sd, ϵ
′
d(x) by ∂1(sd), and

1
1+ϵd(x)

by an infinite sum.

Following the formula, we represent ϵd+1(x) by

∂1(sd)

Ed(x− 1)

∞∑
j=0

(−sd)j ∈ k((H ′
1)).

We can then represent the nth derivative of ϵd+1 by

(∂1)
◦n

(
∂1(sd)

Ed(x− 1)

∞∑
j=0

(−sd)j
)

∈ k((H ′
1))

for all n ∈ N. In what follows, we will write ϵd(x) instead of writing out the sums as above
in order to highlight the connection with the computations of Section 2.1.

Lemma 3.2.1. Let x ∈ X and d ∈ N. Then we have the following:

1. The exponent of Ed(x− 1) in any monomial of ϵd(x) is either 0 or 1.

2. Ed+k(x− 1) does not appear in ϵd(x) for any k ≥ 1.

3. The sum of the exponents of generators in any monomial of ϵd(x) is 0.

Proof. All three claims are immediate for d = 2. Suppose the results hold for ϵd(x). We will
show they hold for ϵd+1(x).

Since ϵd+1(x) =
ϵ′d(x)

Ed(x−1)

∑∞
j=1(−ϵd(x))j, every monomial of ϵd+1(x) is of the form

M1

Ed(x− 1)
M2

where M1 is a monomial of ϵ′d(x) and M2 is a monomial of
∑∞

j=1(−ϵd(x))j.
Since Ed+k(x− 1) does not appear in ϵd(x), it does not appear in

∑∞
j=1(−ϵd(x))j either.

Also, since the sum of exponents in every monomial of ϵd(x) is 0, the same is true for∑∞
j=1(−ϵd(x))j. So we can ignore M2 when proving (1), (2), and (3).
Now we will consider the possible forms M1 can take. Any monomial of ϵ′d(x) arises as

a monomial of ∂1(M) for some monomial M of ϵd(x). Let E1(x − 1)n1 · · ·Ed(x − 1)nd be a
monomial of ϵd(x), with n1, . . . , nd−1 ∈ Z and nd ∈ {0, 1}. Then

∂1
(
E1(x− 1)n1 · · ·Ed(x− 1)nd

)
=

d∑
l=1

nl

(
E1(x− 1)n1 · · ·Ed(x− 1)nd

)
· El+1(x− 1).
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In this sum, Ed+1(x − 1) can only appear with exponent 0 or 1, which finishes (1). No
Ed+k(x− 1) with k ≥ 2 appears, which finishes (2). For (3), observe that each monomial in
the sum has one new generator El+1(x − 1) with exponent 1. So the sum of exponents in
any M1 must be 1, which means the total sum of exponents in M1

Ed(x−1)
M2 is 0.

We now define an order-preserving field embedding ν0 : σ0(k[G0]) → k((H1)) with the
intuition of rewriting elements of σ0(k[G0]) ⊂ k((H0)) using the difference equations

Ed(x) = Ed−1(x− 1)(1 + ϵd(x))

from Lemma 2.1.4. Define ν0 : σ0(k[G0]) → k((H1)) as follows for all a ∈ k and n ∈ N:

1. ν0(E0(x)
a) = E0(x)

a

2. ν0(E1(x)
a) = E0(x− 1)aE1(x− 1)a

3. ν0(Ed(x)
n) = Ed−1(x− 1)n(1 + ϵd(x))

n for d ≥ 2.

4. Extend ν0 to products and sums so that it is a k-algebra homomorphism. For genera-
tors g1, . . . , gl of H0, let

ν0(g1 · · · gl) = ν0(g1) · · · ν0(gl).

For
∑

g∈H0
cgg ∈ σ0(k[G0]), let

ν0

(∑
g∈H0

cgg

)
=
∑
g∈H0

cgν0(g).

We can check with an easy computation that for each g ∈ H0, ν0(g) satisfies the same
relations as g. The only relations among the elements of H0 are

Ed(x)
aEd(x)

b = Ed(x)
a+b

for all d ∈ N, x ∈ X, and a, b ∈ k. We must check that ν0(Ed(x)
a)ν0(Ed(x)

b) = ν0(Ed(x)
a+b).

This is clear for d = 0, 1, so suppose d > 1. Then

ν0(Ed(x)
n)ν0(Ed(x)

m) = Ed−1(x− 1)n
n∑

j=0

(
n

j

)
ϵd(x)

j · Ed−1(x− 1)m
m∑
j=0

(
m

j

)
ϵd(x)

j

= Ed−1(x− 1)n+m

n+m∑
j=0

(
n+m

j

)
ϵd(x)

j.

So ν0(Ed(x)
n) satisfies the same relations as Ed(x)

n.
It is more difficult to check that ν0 does indeed map to k((H1)).
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Lemma 3.2.2. For every s ∈ k[G0], ν0(σ0(s)) is an element of the Hahn series field k((H1)).

Proof. Let σ0(s) =
∑

g∈H0
cgg. We will show that ν0

(∑
g∈H0

cgg
)
is a valid sum in k((H1)).

Since each g ∈ H0 is a finite product of generators, ν0 is well defined on monomials. So it
suffices to check that

(
cgν0(g) : g ∈ H0

)
is summable, i.e., that

1. For each h ∈ H1 there are only finitely many g ∈ H0 such that cg ̸= 0 and h ∈
Supp(ν0(g)).

2.
⋃

g∈Supp(σ0(s))

Supp(ν0(g)) is reverse well-ordered in H1.

First we introduce some notation and setup. Let x1 > x2 > · · · > xp be the elements of
X that appear in s, and let d be order of the largest derivative that appears in s.

Enumerate Supp(σ0(s)) as (gi : i < δ), a reverse well-ordered sequence in H0. By Remark
3.1.1, we can write

gi =

p∏
j=1

E0(xj)
αi,j · E1(xj)

βi,jE2(xj)
ni,j,2 · · ·Ed(xj)

ni,j,d

with αi,j, βi,j ∈ k and ni,j,2, . . . , ni,j,d ∈ N for j = 1, . . . , p. Then

ν0(gi) =

p∏
j=1

(
E0(xj)

αi,j · E0(xj − 1)βi,jE1(xj − 1)βi,j

· E1(xj − 1)ni,j,2(1 + ϵ2(xj))
ni,j,2 · · ·Ed−1(xj − 1)ni,j,d(1 + ϵd(xj))

ni,j,d

)
=

p∏
j=1

(
E0(xj)

αi,j · E0(xj − 1)βi,jE1(xj − 1)βi,j+ni,j,2E2(xj − 1)ni,j,3 · · ·Ed−1(xj − 1)ni,j,d

· (1 + ϵ2(xj))
ni,j,2 · · · (1 + ϵd−1(xj))

ni,j,d

)
.

We will use the following observations about the final line (1+ϵ2(xj))
ni,j,2 · · · (1+ϵd−1(xj))

ni,j,d

above, which follow from the fact that ϵ2, . . . , ϵd ∈ k((H ′
1)):

(A) All the exponents are integers.

(B) Only E1(xj − 1), . . . , Ed(xj − 1) may appear for j = 1, . . . , p. No E0 generator may
appear. Thus, the exponents of the E0 generators are fixed across all monomials of
ν0(gi).

To finish the setup, we introduce notation for tuples of exponents in gi for i < δ. Let

• αi = (αi,1, αi,2, . . . , αi,p)
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• βi = (βi,1, βi,2, . . . , βi,p)

• ni,l = (ni,1,l, ni,2,l, . . . , ni,p,l) for l = 2, . . . , d.

Now we will prove (1). It suffices to show that if h ∈ Supp(ν0(g0)), then h ∈ Supp(gi)
for only finitely many i < δ.

So suppose h ∈ Supp(ν0(g0)). Then by Observation (B), h must be of the form

h =

p∏
j=1

E0(xj)
α0,jE0(xj − 1)β0,jE1(xj − 1)β0,j+Nj,1E2(xj − 1)Nj,2 · · ·Ed(xj − 1)Nj,d

with (Nj,1, . . . , Nj,d) ∈ Zd by Observation (A).
Similarly, if h ∈ Supp(ν0(gi)) for i > 0, then again by Observations (A) and (B), h must

be of the form

h =

p∏
j=1

E0(xj)
αi,jE0(xj − 1)βi,jE1(xj − 1)βi,j+Mj,1E2(xj − 1)Mj,2 · · ·Ed(xj − 1)Mj,d

with (Mj,1, . . . ,Mj,d) ∈ Zd. So we must have αi,j = α0,j and βi,j = β0,j for j = 1, . . . , p.
By the way the order on H1 is defined, since gi < g0, we must have

(αi, βi, ni,2, ni,3, . . . , ni,d) < (α0, β0, n0,2, n0,3, . . . , n0,d)

in the lexicographic order on k2p × Np(d−1). Since the first parts of each of these sequences
are equal, we must have

(ni,2, ni,3, . . . , ni,d) < (n0,2, n0,3, . . . , n0,d)

in the lexicographic order on Np(d−1). Any reverse well-ordered sequence in Np(d−1) with
the lexicographic order must be finite, so there can be only finitely many i < δ with
(ni,2, ni,3, . . . , ni,d) < (n0,2, n0,3, . . . , n0,d), i.e., only finitely many i with h ∈ Supp(ν0(gi)).
This finishes the proof of (1).

For (2), let ∅ ̸= B ⊂
⋃

ι<α Supp(ν0(gι)). We will show B has a greatest element by
building an increasing sequence b0, b1, b2, . . . in B and showing it must terminate. In the
base case, let B0 = B ̸= ∅. Given ∅ ̸= Bi ⊂ B, we define γi ∈ H0, bi ∈ B, and Bi+1 ⊂ B
as follows: Since Supp(σ0(s)) is reverse well-ordered and Bi ̸= ∅, there must be a greatest
element g ∈ Supp(σ0(s)) such that Bi ∩ ν0(g) ̸= ∅.

1. Let γi := g.

2. Let bi := max
(
Bi ∩ Supp(ν0(γi))

)
, which exists since Supp(ν0(γi)) is reverse well-

ordered.

3. Let Bi+1 := {b ∈ B : b > bi}.
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If Bi+1 ̸= ∅, we continue. Note that bi ∈ Bi \Bi+1, so Bi+1 ⊊ Bi. So when we continue, we
will have γi+1 < γi and bi+1 > bi. If Bi+1 = ∅, then bi is the largest element of B and the
sequence terminates.

We must show that the sequence b0, b1, . . . terminates. Again by Remark 3.1.1, write

γi =

p∏
j=1

E0(xj)
αi,j · E1(xj)

βi,j · E2(xj)
ni,j,1 · · ·Ed(xj)

ni,j,d

with αi,j,k, . . . , αi,j,0, βi,j ∈ k and ni,j,2, . . . , ni,j,d ∈ N for j = 1, . . . , p. Then, again by
Observations (A) and (B), we can write bi as

bi =

p∏
j=1

E0(xj)
αi,jE0(xj − 1)βi,j · E1(xj − 1)βi,j+Ni,j,1E2(xj − 1)Ni,j,2 · · ·Ed(xj − 1)Ni,j,d

with Ni,j,1, . . . , Ni,j,d ∈ Z.
We will now show that the inequalities γi < γ0 and bi > b0 for i > 0 imply that the

sequence b0, b1, . . . terminates. First, since γi < γ0, we must have that

(αi, βi) ≤ (α0, β0)

in the lexicographic order on k2p. Since bi > b0, we must have

(αi, βi) ≥ (α0, β0)

in the lexicographic order on k2p. Thus αi,j = α0,j and βi,j = β0,j for all j = 1, . . . , p.
So once again, γi < γ0 implies

(ni,2, ni,3, . . . , ni,d) < (n0,2, n0,3, . . . , n0,d)

in the lexicographic order on Np(d−1). Since Supp(σ0(s)) is reverse well-ordered, and any
reverse well-ordered sequence in Np(d−1) with the lexicographic order must be finite, the
sequence γ1, γ2, . . . must terminate after finitely many steps. Thus, the sequence b0, b1, . . .
terminates too, and its final element is the largest element of B. This completes the proof
of (2).

Thus the map ν0 : σ0(k[G0]) → k((H1)) is well defined.
The next corollary and remark follow from computations in the proof of Lemma 3.2.2,

but we state them separately for clarity and completeness.

Corollary 3.2.3. If s ∈ σ0(k[G0]) and g1 > g2 are two monomials of s, then Lm(ν0(g1)) >
Lm(ν0(g2)).
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Proof. Let x1 > x2 > · · · > xp be the elements of X that appear in g1 or g2, let k be largest
such that E0(xj + k) appears in either g1 or g2 for some xj, and let d be largest such that
some Ed generator appears in g1 or g2. Then we can write

gi =

p∏
j=1

E0(xj)
αi,j · E1(xj)

βi,j · E2(xj)
ni,j,2 · · ·Ed(xj)

ni,j,d

with αi,j, βi,j ∈ k and ni,j,2, . . . , ni,j,d ∈ N for j = 1, . . . , p and i = 1, 2. Then

Lm(ν0(gi)) =

p∏
j=1

E0(xj)
αi,jE0(xj − 1)βi,jE1(xj − 1)βi,j+ni,j,2 · · ·Ed−1(xj − 1)ni,j,d .

Since g1 > g2, we must have

(α1, β1, n1,2, n1,3, . . . , n1,d) > (α2, β2, n2,2, n2,3, . . . , n2,d)

in the lexicographic order on kp(d+1). So we also have Lm(ν0(g1)) > Lm(ν0(g2)).

Remark 3.2.4. Suppose g1 and g2 are as in Corollary 3.2.3, and also that

(α1, β1) > (α2, β2)

in the lexicographic order on k2p. By observation (B) from the proof of Lemma 3.2.2, the
exponents of the E0 generators are fixed across all monomials of ν0(gi) for i = 1, 2. Thus,
every monomial of ν0(g1) is greater than every monomial of ν0(g2), i.e.,

Supp(ν0(g1)) > Supp(ν0(g2)).

Corollary 3.2.5. ν0 is order-preserving and thus injective.

Proof. Let s ∈ σ0(k[G0]) and let g1 = Lm(s). We will show that

Lt(ν0(s)) = Lc(s) · Lt(ν0(g1))

and thus ν0(s) > 0 if and only if Lc(s) > 0 if and only if s > 0.
This is clear if s is a single term, so suppose s has some other monomial g2. By Lemma

3.2.3, we know Lm(ν0(g1)) > Lm(ν0(g2)). Since this holds for any g2 ̸= g1, we must have

Lm(ν0(s)) = Lm(ν0(g1))

and
Lt(ν0(s)) = Lc(s) · Lt(ν0(g1))

as desired.
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3.3 Showing k[G0Λ0] is ordered

To define an order on k[G0], we embedded it into k((H0)), which induced an order on k[G0].
The embedding was defined based on intuition from “rewriting” expressions involving the
derivatives of E as polynomials in E0, E1, . . . . We would like to replicate this idea to define
an order on k[G0Λ0], but the generators logE ′(x)a of Λ0 are an obstacle. Recall that the
difference-differential equation for E ′ is E ′(x) = E(x)E ′(x− 1). Taking log of both sides, we
get

logE ′(x) = E(x− 1) + logE ′(x− 1).

There is not a clear (to us) way of “rewriting” logE ′(x) in terms of E0(x−1), E1(x−1), . . . .
However, we can “approximate” logE ′(x) by

logE ′(x) ≈ E0(x− 1) + E1(x− 1).

We get this approximation by identifying E(x−1) = E0(x−1), and since E ′(x−1) < E(x−1)2

implies
logE ′(x− 1) < 2E(x− 2) < E ′(x− 2) = E1(x− 1).

In this section, we will define an embedding

ρ0 : k[G0Λ0] → k((H1))

so that

1. ρ0 is “true” on elements of k[G0], meaning that if s ∈ k[G0], then ρ0(s) = ν0(σ0(s))

2. ρ0(logE
′(x)) = E0(x− 1) + E1(x− 1).

We can extend ρ0 to generators of the form logE ′(x)b of Λ0 using the Taylor series for
(1+ (·))b. We will call ρ0 the “approximation map” because its effect will be to approximate
every t ∈ k[G0Λ0] well enough by elements of k((H1)) that the sign of t is determined by
the ordering and separation assumptions on k and X and the order on k((H1)).

It is reasonable to approximate logE ′(x) by E0(x− 1) +E1(x− 1) because the approxi-
mation does not affect the leading monomial E0(x − 1). We could work to find an element
of k((H1)) that better approximates logE ′(x), but we will show that our approximation is
close enough to determine how k[G0Λ0] should be ordered.

To summarize, we define the “approximation map” ρ0 : k[G0Λ0] → k((H1)) by

1. ρ0(s) = ν0(σ0(s)) for s ∈ k[G0]

2. ρ0(logE
′(x)b) = E0(x− 1)b

∞∑
k=0

(
b

k

)(
E1(x− 1)

E0(x− 1)

)k

3. Extend ρ0 to products and sums so that it is a k-algebra homomorphism, i.e., for
g1, . . . , gn ∈ G0Λ0 and c1, . . . , cn ∈ k, define
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a) ρ0(g1 · · · gn) = ρ0(g1) · · · ρ0(gn)
b) ρ0(c1g1 + · · ·+ cngn) = c1ρ0(g1) + · · · cnρ0(gn).

We can check that ρ0 is well defined in the same way we checked that σ0 is well defined: it
respects the relations among generators of G0 and Λ0, and for each s ∈ k[G0Λ0], ρ0(s) is a
valid sum in k((H1)).

We can write any t ∈ k[G0Λ0] = k[G0][Λ0] as

t = s1g1 + · · ·+ sngn

with si ∈ k[G0] and gi ∈ Λ0 for i = 1, . . . , n and gi1 ̸= gi2 for i1 ̸= i2.

Remark 3.3.1. Given s ∈ k[G0Λ0], we will define a sum Init(s), which we intend to be an
initial subsum of s. In Lemma 3.3.2, we will show that Init(s) ̸= 0, and therefore

Lm
(
ρ0(s)

)
= Lm

(
Init(s)

)
.

From this, we will conclude that ρ0 is injective.
Let s = s1g1 + · · ·+ sngn ∈ k[G0Λ0] with si ∈ k[G0] and gi ∈ Λ0. Let x1 > x2 > · · · > xp

list the elements of X appearing in s. Let d be the largest derivative appearing in any si.
We will define Init(s) by looking at ρ0(s) and figuring out what form its largest monomials

could take. First, we look at the images of the si’s under ρ0. By definition, ρ0(si) =
ν0(σ0(si)). By Remark 3.1.1, for each i = 1, . . . , n write

Lm(σ0(si)) =

p∏
j=1

E0(xj)
αi,j · E1(xj)

βi,j · E2(xj)
ni,j,2 · · ·Ed(xj)

ni,j,d

with αi,j, βi,j ∈ k and ni,j,2, . . . , ni,j,d ∈ N for each j = 1, . . . , p. Let ti be the initial subsum
of σ0(si) with monomials of the form

p∏
j=1

E0(xj)
αi,j · E1(xj)

βi,j · E2(xj)
mi,j,2 · · ·Ed(xj)

mi,j,d

with mi,j,2, . . . ,mi,j,d ∈ N and all other exponents the same as in Lm(σ0(si)). Then ti is a
finite sum because any reverse well-ordered sequence of tuples of exponents in Np(d−1) must
be finite.

For any monomial M of ti, we have

ν0(M) =

p∏
j=1

E0(xj)
αi,jE0(xj − 1)βi,jE1(xj − 1)βi,j+ni,j,2

E2(xj − 1)ni,j,3 · · ·Ed−1(xj − 1)ni,j,d(1 + ϵ2(xj))
ni,j,2 · · · (1 + ϵd−1(xj))

ni,j,d
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If M1 ∈ Supp(σ0(si)) \ Supp(ti), then by Remark 3.2.4, Supp(ν0(M)) > Supp(ν0(M1)), i.e.,
every monomial of ν0(M) is greater than every monomial of ν0(M1).

Now we look at the images of the gi’s under ρ0. Let gi =
∏p

j=1 logE
′(xj)

bi,j for each
i = 1, . . . , n. Then

ρ0(gi) =

p∏
j=1

E0(xj − 1)bi,j
∞∑
k=0

(
bi,j
k

)(
E1(xj − 1)

E0(xj − 1)

)k

.

Observe that the leading monomial of ρ0(gi) is
∏p

j=1E0(xj − 1)bi,j . If

M2 ∈ Supp(ρ0(gi)) \ {Lm(ρ0(gi))}

then the exponent of E0(xj − 1) in M2 is strictly less than bi,j, for some j = 1, . . . , p. So

Supp(Lm(ρ0(gi))) > Supp(M2)

Altogether, this shows that

Supp
(
ν0(ti) · Lm(ρ0(gi))

)
> Supp

(
ρ0(sigi)− ν0(ti) · Lm(ρ0(gi))

)
i.e., ν0(ti) · Lm(ρ0(gi)) is an initial subsum of ρ0(sigi).

Now we select the indices i for which the initial subsum ν0(ti) ·Lm(ρ0(gi)) of ρ0(sigi) may
possibly contribute to the leading monomial of ρ0(s). Define I0 ⊂ {1, . . . , n} to be the set of
indices such that

(αi, βi + bi)

is maximal in the lexicographic order on k2p (where the addition βi + bi is coordinatewise).
If i0 ∈ I0 and i1 ̸∈ I0, then every monomial of ν0(ti0) · Lm(ρ0(gi0)) is greater than every
monomial of ν0(ti1) · Lm(ρ0(gi1)) by Remark 3.2.4.

Finally, we define

Init(s) :=
∑
i∈I0

ν0(ti) · Lm(ρ0(gi)).

Observe that if s ∈ k[G0Λ0] and logE ′(x)b appears in s, then the sign of Init(s) is only
(possibly) affected by the leading monomial of ρ0(logE

′(x)b).

Lemma 3.3.2. Suppose X, and k satisfy the order and separation assumptions in Remark
3.1.2. Then ρ0 is injective.

Proof. Let s ∈ k[G0Λ0]. If Init(s) ̸= 0, then it follows from the definition of Init(s) in
Remark 3.3.1 that Init(s) is an initial subsum of ρ0(s). Thus

Lm
(
Init(s)

)
= Lm

(
ρ0(s)

)
.
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Like the proof of Lemma 3.1.3, we will find a monomial of Init(s) with a nonzero coefficient.
Following the notation of Remark 3.3.1, we may assume without loss of generality that

αi,j = βi,j + bi,j = 0 for all i ∈ I0, j = 1, . . . , p, by rescaling or factoring out common terms.
Let qi be the (finite) number of terms in ti, and let ci,l be the coefficient of the lth monomial
of ti. Then we can write

Init(s) =
∑
i∈I0

qi∑
l=1

ci,l

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2

E2(xj − 1)mi,j,l,3(1 + ϵ3(xj))
mi,j,l,3 · · ·Ed−1(xj − 1)mi,j,l,d(1 + ϵd(xj))

mi,j,l,d .

with ci,l ̸= 0 for all i, l. Note that βi,j depends on i and j, but not on l. Let

Init(s)i,l :=

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2

E2(xj − 1)mi,j,l,3(1 + ϵ3(xj))
mi,j,l,3 · · ·Ed−1(xj − 1)mi,j,l,d(1 + ϵd(xj))

mi,j,l,d .

If Supp (Init(s)i1,l1)∩Supp (Init(s)i2,l2) ̸= ∅, then βi1,j and βi2,j must be in the same Z-orbit
for all j = 1, . . . , p. So without loss of generality, we may assume βi,j ∈ N for all i ∈ I0,
j = 1, . . . , p.

We will now proceed by induction on d. If d = 1, then Init(s) has just one term, and its
coefficient is nonzero, so we are done. The base case of our induction will be d = 2.

If d = 2, then

Init(s) =
∑
i∈I0

qi∑
l=1

ci,l

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2 .

Recall that ϵ2(xj) =
E2(xj−1)

E1(xj−1)
. So for any i, l, the sum of the exponents of E1(xj − 1) and

E2(xj − 1) in any monomial of Init(s)i,l is βi,j +mi,j,l,2. If this value differs for some pairs
i1, l1 and i2, l2 and some j = 1, . . . , p, then

Supp(Init(s)i1,l1) ∩ Supp(Init(s)i2,l2) = ∅.

Additionally, since the monomials of ti are enumerated in decreasing order, we have

Supp(Init(s)i,l1) > Supp(Init(s)i,l2)

for all i ∈ I0 and l1 < l2.
So it will suffice to find a monomial with a nonzero coefficient among the sum

S :=
∑
i∈I1

ci,1

p∏
j=1

E1(xj − 1)βi,j+mi,j,1,2(1 + ϵ2(xj))
mi,j,1,2
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where I1 ⊂ I0 is set of indices at which

(βi,1 +mi,1,1,2, . . . , βi,p +mi,p,1,2)

is maximal in the lexicographic order on Np. Let Nj := βi,j +mi,j,l,2 for any i ∈ I1. Without
loss of generality, we may assume that for each j = 1, . . . , p, there are some i1, i2 ∈ I1 such
that βi1,j ̸= βi2,j, since if βi,j is fixed across all i ∈ I1 for some j, then so is mi,j,1,2, and we
can just factor out

E1(xj − 1)βi,j+mi,j,1,2(1 + ϵ2(xj))
mi,j,1,2

from each term in S without affecting the sign of S.
To simplify notation for the rest of the d = 2 case, we drop the second index from the

coefficients ci,1 and the last two indices from the exponents mi,j,1,2.
If |I1| = 1, then we are done, since S would be a sum of a single monomial with a

nonzero coefficient. So suppose |I1| > 1. We will now find a monomial of S with nonzero
coefficient. We will do this by inductively eliminating terms from S until we are left with a
single monomial.

1. Let j1 be the smallest index for which there are i1, i2 ∈ I1 such that mi1,j1 ̸= mi2,j1 .
Such an index exists because if i1 ̸= i2, then there is some j such that βi1,j ̸= βi2,j
(since we assumed gi1 ̸= gi2 for i1 ̸= i2), and thus mi1,j ̸= mi2,j.

2. Let n1 = maxi∈I1(mi,j1).

Then for k = 0, . . . , n1, the coefficient of(
p∏

j=1

E1(xj − 1)Nj

)
· ϵ2(xj1)k

is ∑
i∈I1

ci

(
mi,j1

k

)
.

If the mi,j1 are all distinct for i ∈ I1, then we are done because these coefficients cannot all
be zero, as the ci’s are nonzero.

If the mi,j1 are not all distinct, then we proceed by induction: Given Il, jl, and nl with
mi,jl ̸= nl for some i ∈ Il, we define Il+1, jl+1, and nl+1 as follows:

1. Let Il+1 := {i ∈ Il : mi,jl = nl}. Then |Il+1| < |Il| by our choice of jl.

2. Let jl+1 be the smallest index for which there are i1, i2 ∈ Il+1 such that mi1,jl+1
̸=

mi2,jl+1
, which exists by the same reasoning as above.

3. Let nl+1 = maxi∈Il+1
(mi,jl+1

).
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Then for each k = 1, . . . , nl+1, the coefficient of(
p∏

j=1

E1(xj − 1)Nj

)
·
(
ϵ2(xj1)

n1 · · · ϵ2(xjl)nl

)
· ϵ2(xjl+1

)k

is ∑
i∈Il+1

ci

(
n1

n1

)
· · ·
(
nl

nl

)
·
(
mi,jl+1

k

)
=
∑
i∈Il+1

ci

(
mi,jl+1

k

)
.

If |Il+1| = 1, or if the values of mi,jl+1
for i ∈ Il+1 are all distinct, then we find a nonzero

coefficient. Since |Il+1| < |Il| < · · · < |I0| ≤ n, this algorithm must terminate. So we find a
term of S with nonzero coefficient, which means Init(s) ̸= 0. This proves the Lemma in the
d = 2 case.

Now, we will show that if the Lemma holds in case d− 1, then it holds in case d. Let

(ℓ1, . . . , ℓp) := max{(mi,1,l,d, . . . ,mi,p,l,d) : i ∈ I0, l ∈ N}

in the lexicographic order on Np. Let I be the set of pairs (i, l) at which this maximum is
achieved, i.e., at which (mi,1,l,d, . . . ,mi,p,l,d) = (ℓ1, . . . , ℓp).

Recall that

Init(s)i,l =

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2

E2(xj − 1)mi,j,l,3(1 + ϵ3(xj))
mi,j,l,3 · · ·Ed−1(xj − 1)mi,j,l,d(1 + ϵd(xj))

mi,j,l,d .

By Lemma 3.2.1, the only place Ed(xj − 1) appears in this expression is in ϵd(xj). Further-
more, Ed(xj − 1) can only ever appear with exponent 1 in monomials of ϵd(xj). Let ϵd∗(xj)
be the subsum of ϵd(xj) with monomials in which Ed(xj − 1) appears.

Let Sd be the subsum of Init(s) such that for every monomial in Supp(Sd) and for each
j = 1, . . . , p, the exponent of Ed(xj − 1) is ℓj. Then we can write

Sd =
∑

(i,l)∈I

ci,l

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2

E2(xj − 1)mi,j,l,3 · (1 + ϵ3(xj))
mi,j,l,3 · · ·Ed−2(xj − 1)mi,j,l,d−1(1 + ϵd−1(xj))

mi,j,l,d−1

Ed−1(xj − 1)ℓj · ϵd∗(xj)ℓj .

By definition, the last line Ed−1(xj − 1)ℓj · ϵd∗(xj)ℓj above must be the same for all (i, l) ∈ I,
so we can factor it out to write

Sd =

(
p∏

j=1

Ed−1(xj − 1)ℓj · ϵd∗(xj)ℓj
)

· S ′
d
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where

S ′
d =

∑
(i,l)∈I

ci,l

p∏
j=1

E1(xj − 1)βi,j+mi,j,l,2(1 + ϵ2(xj))
mi,j,l,2

E2(xj − 1)mi,j,l,3(1 + ϵ3(xj))
mi,j,l,3 · · ·Ed−2(xj − 1)mi,j,l,d−1(1 + ϵd−1(xj))

mi,j,l,d−1 .

By induction, we can find a monomial of S ′
d with nonzero coefficient, which gives a monomial

of Init(s) with nonzero coefficient.

Remark 3.3.3. Lemma 3.3.2 shows that ρ0 is injective, so the order on k((H1)) induces
an order on k[G0Λ0]. However, we need the induced order to be compatible with how
we intend to interpret elements of k[G0Λ0] as germs of functions. Because ρ0 is defined
using the intuition that we can “approximate” logE ′(x) = E(x − 1) + logE ′(x − 1) by
E0(x− 1) + E1(x− 1), it may not be immediately clear that the order induced by k((H1))
via ρ0 is the one we want.

If s ∈ k[G0Λ0] and logE ′(x)b appears in s, then by the way Init(s) is defined in Remark
3.3.1, then the only term of ρ0

(
logE ′(x)b

)
that has any possibility of contributing to Init(s)

is Lm
(
ρ0
(
logE ′(x)b

))
. The “error” in the approximation ρ0

(
logE ′(x)b

)
of logE ′(x)b ap-

pears in every term except the leading monomial. So the sign of S is not distorted by the
approximation.

Corollary 3.3.4. Λ0 is ordered lexicographically on the exponents of its generators, i.e., if
x1 > x2 > · · · > xp ∈ X and b1, b2, . . . , bp ∈ k×, then

p∏
j=1

logE ′(xj)
bj > 1

if and only if b1 > 0.
If s ∈ k[Λ0], then s > 0 if and only if the coefficient of its largest monomial is positive.

Proof. Tracing through the proof of Lemma 3.3.2, we first want to determine the sign of

p∏
j=1

logE ′(xj)
bj − 1.

If b1 > 0, then Init(s) =
∏p

j=1E0(xj − 1)bj > 0, and if b1 < 0, then Init(s) = −1 < 0.

If g1 > g2 > · · · > gn ∈ Λ0 and c1, c2, . . . , cn ∈ k×, then we want to determine the sign of

s =
n∑

i=1

cigi.

In this case, Init(s) = c1Lm(ρ0(g1)), so the sign of s is determined by the sign of c1.
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Chapter 4

A logarithmic-exponential series field
constructed from E-monomials

In this chapter, we adapt the construction of the logarithmic-exponential series in [8] to
build a logarithmic-exponential series field starting with monomials involving E and its
derivatives. The first part of the logarithmic-exponential series construction in [8] begins with
the multiplicative group xk of monomials and inductively adds new monomials for increasing
levels of exponentiation to end up with an exponential field k((x−1))e. The second part of the
construction uses an embedding φ : k((x−1))e → k((x−1))e such that every element in the
image of φ has a logarithm in k((x−1))e. If this approach is adapted naively to monomials
of the form

p∏
j=1

E(xj)
aj,0 · E ′(xj)

aj,1 · · ·E(dj)(xj)
aj,d

for x1 > · · · > xp ∈ X and aj,l ∈ k, three problems arise.

1. First, a logarithm of E(d)(x) for d ≥ 1 would not arise naturally from the first part of
the construction.

2. Second, some monomials of the form above are “small” relative to others. For example,
as functions we have

exp

(
E ′(x)1/2

E(x)1/2

)
= exp

(
E ′(x− 1)1/2

)
< E(x)

since E ′(x − 1)1/2 < E(x − 1). So it does not make sense to add exp
(

E′(x)1/2

E(x)1/2

)
as a

new monomial over a field of coefficients that contains E(x).

3. Third, it does not always make sense to take infinite sums of some “small” monomials.
For example,

E ′(x)2

E(x)E ′′(x)
=

1

1 + E′′(x−1)
E′(x−1)2

< 1
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but it does not make sense to sum the infinite reverse well-ordered family{(
E ′(x)2

E(x)E ′′(x)

)n

: n ∈ N
}

because each of these monomials is approximately 1.

To fix these issues, we include monomials for logE ′ and for exp of some “small” infinite
monomials at the very beginning of the construction. Then at successive stages, we add
new monomials only for exp applied to “large” monomials. We also only ever allow finite
sums of monomials whose quotient is “small.” The result is that in our adaptation of the
first part of the logarithmic-exponential series construction, we build a ring with a partially
defined exponential function. The second stage of our construction is similar to [8] in that we
build embeddings between countably many partial exponential rings constructed as in stage
one and then show that every element of each of these rings has a multiplicative inverse, a
logarithm, and an exponential under a finite sequence of embeddings.

4.1 Part 1: Building partial exponential rings

Let X and k satisfy the ordering and separation assumptions in Remark 3.1.2, so that
k[G0Λ0] is totally ordered by Lemma 3.3.2. Assume also that k ⊨ Tan(exp, log).

We start this section by pinning down the starting group of monomials ΓX,0, from which
we will build a partial exponential ring. We want ΓX,0 to include G0Λ0 along with new
monomials to represent exp of the “small” positive purely infinite elements of k[G0Λ0]. We
illustrate the issue with another example:

Example 4.1.1. Treating E(x) as a function, we can compute that

exp

(
E ′′(x)

E ′(x)

)
> exp

(
E ′(x)

E(x)

)
= exp

(
E ′(x− 1)

)
> E(x)n

for any n ∈ N, since E ′(x− 1) > nE(x− 1). However,

exp

(
E ′′(x)

E ′(x)
− E ′(x)

E(x)

)
= exp

(
E ′′(x− 1)

E ′(x− 1)

)
< E(x).

So even though the “small” monomial issue does not arise with exp
(

E′′(x)
E′(x)

)
or exp

(
E′(x)
E(x)

)
separately, it does not makes sense to take a group containing both of these as monomials
over a field of coefficients that contains E(x).

The examples point toward the following definition of which elements of G0 are “small”
enough to cause a problem.
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Definition 4.1.2. Let g ∈ G0 and write

g =

p∏
j=1

E(xj)
aj,0 · E ′(xj)

aj,1 · · ·E(d)(xj)
aj,d

with p, d ∈ N, x1 > · · · > xp ∈ X, and aj,0, . . . , aj,d ∈ k. Let ξxj
= aj,0 + · · · + aj,d. We say

g is small if ξx1 = · · · = ξxp = 0.

Note that 1 is small, and if g1, g2 ∈ G0 are both small, then so is g1g2. So the small
elements of G0 form a subgroup.

Since it does not make sense to add new monomials for exp(g) with small infinite g ∈
k[G0Λ0] at later stages, we could try to include such monomials as part of our starting
group of monomials ΓX,0. But the examples above show that exp(g) would intersperse with
elements of G0Λ0 for some such g, and that could make it challenging to figure out how to
order ΓX,0. To prevent ΓX,0 from becoming too complicated, we will only include monomials
exp(g) for certain relatively simple small infinite g ∈ G0Λ0. Define

TX :=

〈
c

p∏
j=1

logE ′(xj)
aj,−1

E ′′(xj)
aj,2 · · ·E(d)(xj)

aj,d

E ′(xj)aj,2+···+aj,d
: c ∈ k; p, d, aj,l ∈ N;x ∈ X;

∃(j, l)
(
aj,l ̸= 0

)
;
(
aj,−1 = 1

)
→ ∃(k, l) ̸= (j,−1)

(
ak,l ̸= 0

)〉

where TX is generated additively. The final conditions ensure that k ̸⊂ TX and c logE ′(x) ̸∈
TX for any c ∈ k, x ∈ X, since we already know how to exponentiate such elements—we
assumed k is an exponential field, and we want to define exp of c logE ′(x) to be E ′(x)c.

If X and k satisfy the ordering and separation assumptions in 3.1.2, then TX is totally
ordered because it is a subgroup of k[G0Λ0]. Let eTX

(TX) be a multiplicative copy of TX via
an order preserving isomorphism eTX

: TX → eTX
(TX).

Define
ΓX,0 := G0Λ0eTX

(TX).

We will show how to order ΓX,0 over the course of the next few lemmas.

Remark 4.1.3. For consistency of notation, we will always express elements of TX as sums
of the standard monomials of the group ring k[G0Λ0] instead of as sums of the generators of
TX itself.

Lemma 4.1.4. Suppose X and k satisfy the ordering and separation assumptions in Remark
3.1.2. If t ∈ TX ∩k[G0], then the leading term of σ0(t) has a positive integer power of E1(x)
as a generator, for some x ∈ X.
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Proof. Let t =
∑n

i=1 cigi ∈ TX ∩ k[G0] with ci ̸= 0. Let x1 > x2 > · · · > xp list the elements
of X appearing in t, and let d be the largest derivative appearing in any gi. Then we can
write

gi =

p∏
j=1

E ′′(xj)
ai,j,2 · · ·E(d)(xj)

ai,j,d

E ′(xj)ai,j,2+···+ai,j,d

σ0(gi) =

p∏
j=1

E0(xj)
ai,j,2+···+ai,j,d−(ai,j,2+···+ai,j,d)E1(xj)

2ai,j,2+···+dai,j,d−(ai,j,2+···+ai,j,d)

(
ai,j,2∑
k2=0

(
ai,j,2
k2

)(
E2(xj)

E1(xj)

)k2
)
· · ·

(
ai,j,d∑
kd=0

(
ai,j,d
kd

)(
· · ·+ E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd
)
.

Note that σ0(gi) is a finite sum because ai,j,2, . . . , ai,j,d are natural numbers for each j =
1, . . . , p. In every monomial of σ0(gi), the exponent of E0(xj) is 0 and the exponent of
E1(xj) is a natural number for all j = 1, . . . , p.

If d = 2, then the leading monomial of σ0(t) is

p∏
j=1

E1(xj)
2ai,j,2

for the single index i at which ai,2 is maximized. So we may assume d > 2.
We will trace through the proof of Lemma 3.1.3 to show that we find a monomial with

E1(xj) as a generator for some j = 1, . . . , p. Let I be as in Lemma 3.1.3, and let

Aj = ai,j,2 + 2ai,j,3 + · · ·+ (d− 1)ai,j,d

for all i ∈ I. Without loss of generality we may assume I = {1, . . . , n}. In Lemma 3.1.3, we
proceeded with the argument using some fixed j. Here we will use j = 1.

First suppose a1,1,d, . . . , an,1,d ∈ N are all distinct. By possibly renumbering g1, . . . , gn,
we may assume a1,1,d < · · · < an,1,d. Note that this means ai,1,d ≥ i − 1. The coefficient∑n

i=1 ci
(
ai,1,d
kd

)
of (

E2(x1) · · ·Ed(x1)

E1(x1)d−1

)kd p∏
j=1

E1(xj)
Aj

cannot be 0 for each kd = 0, . . . , n − 1 because then we would have c1 = · · · = cn = 0. So
some coefficient must be nonzero for some k∗ ≤ n− 1 ≤ an,1,d. If p > 1 or if (d− 1)k∗ < A1

then this monomial has some power of E1(xj) as a generator, and we are done. So suppose
p = 1 and (d− 1)k∗ = A1.

Since p = 1, we remove the index corresponding to j in the following computations to
lighten notation.

Since (d− 1)k∗ = A = an,2 + 2an,3 + · · ·+ (d− 1)an,d, we must have the following:
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1. k∗ = n − 1 = an,d is the smallest value of kd such that
∑n

i=1 ci
(
ai,d
kd

)
̸= 0, and 0 ̸=∑n

i=1 ci
(
ai,d
kd

)
= cn

2. an,2 = 0 = an,3 = · · · = an,d−1 = 0.

So A = (d− 1)(n− 1). Observe also that since a1,d < · · · < an,d, we must have ai,d = i− 1.
In particular an−1,d = n− 2. Since

(d− 1)(n− 1) = A = an−1,2 + · · ·+ (d− 2)an−1,d−1 + (d− 1)(n− 2)

we have that an−1,d−1 ≤ d−1
d−2

≤ 2.
We will use the fact that 0 ≤ ai,d−1 ≤ 2 to show that the coefficient of the following

monomial with E1(x) as a generator is nonzero:

M :=

(
E2(x) · · ·Ed(x)

E1(x)d−1

)n−2(
E2(x) · · ·Ed−1(x)

E1(x)d−2

)
E1(x)

A.

Observe that E2(x)···Ed−1(x)

E1(x)d−2 appears only in
(
· · ·+ E2(x)···El(x)

E1(x)l−1

)
for l = d− 1, d. Its coefficient

is 1 if l = d− 1, and its coefficient is d if l = d. So the coefficient of M is

n∑
i=1

ci

((
ai,d
n− 2

)(
ai,d−1

1

)
+

(
ai,d
n− 1

)(
n− 1

1

)
d

)
.

The first term of the summand comes from building M as a product of the monomials(
E2(x) · · ·Ed(x)

E1(x)d−1

)n−2

from

(
ai,d
n− 1

)(
· · ·+ E2(x) · · ·Ed(x)

E1(x)d−1

)n−2

(
E2(x) · · ·Ed−1(x)

E1(x)d−2

)
from

(
ai,d−1

1

)(
· · ·+ E2(x) · · ·Ed−1(x)

E1(x)d−2

)1

.

The second term of the summand comes from seeing M as a monomial of(
ai,d
n− 1

)(
· · ·+ d

E2(x) · · ·Ed−1(x)

E1(x)d−2
+ · · ·+ E2(x) · · ·Ed(x)

E1(x)d−1

)n−1

.

Since ai,d = i− 1, most of the terms in the sum are 0. We can calculate(
ai,d
n− 2

)(
ai,d−1

1

)
+

(
ai,d
n− 1

)(
n− 1

1

)
d = 0 for i = 1, . . . , n− 1(

an−1,d

n− 2

)(
an−1,d−1

1

)
+

(
an−1,d

n− 1

)(
n− 1

1

)
d ≤ 1 · 2 + 0 · (n− 1)d = 2(

an,d
n− 2

)(
an,d−1

1

)
+

(
an,d
n− 1

)(
n− 1

1

)
d = (n− 1) · 0 + 1 · (n− 1)d = (n− 1)d.
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Altogether, the coefficient of M is δ · cn−1 + (n− 1)d · cn with δ ∈ {0, 1, 2}. Since

0 =
n∑

i=1

ci

(
ai,d
n− 2

)
= cn−1 + (n− 1)cn

and d > 2, we must have δ · cn−1 + (n− 1)d · cn ̸= 0. This finishes the proof in the case that
a1,d, . . . , an,d ∈ N are all distinct.

Suppose ai,1,d ∈ N are not all distinct for i = 1, . . . , n. We will modify the inductive
argument of Lemma 3.1.3 to find a monomial with some E1(xj).

Let 1 < q < n be the number of distinct values among ai,1,d. Let (P1, . . . , Pn) partition
{1, . . . , n} so that for any i1, i2 ∈ Pl, αl := ai1,1,d = ai2,1,d and αl1 ̸= αl2 for l1 ̸= l2. Consider
the sums ∑

i∈Pl

E1(xj)
αl

E(d)(xj)αl
gi

for l = 1, . . . , q. Each of these sums is an element of TX with strictly fewer terms than t,
and the monomials in each sum have one less multiplicand, since E(d)(x1) does not appear.

We proceed by induction. As in Lemma 3.1.3, assume that for each l = 1, . . . , q we can

find a leading term bltl of σ0

(∑
i∈Pl

E′(xj)
αl

E(d)(xj)
αl
gi

)
, where 0 ̸= bl ∈ k and tl ∈ G0. Assume

further that each tl has some E1(xj) as a generator. By the same reasoning as in Lemma
3.1.3, the sum

q∑
l=1

σ0

(
E(d)(x1)

αl

E ′(x)αl

)
bltl =

q∑
l=1

E1(x1)
(d−1)αlbltl

αl∑
kd=0

(
αl

kd

)(
· · ·+ E2(x1) · · ·Ed(x1)

E1(x1)d−1

)kd

has a nonzero monomial M . Our additional hypothesis guarantees that M has some E1(xj)
as a generator. Since Lm

(
σ0(t)

)
≥M , Lm

(
σ0(t)

)
must have E1(xj′) as a generator for some

j′ ≤ j.

Lemma 4.1.5. Suppose X and k satisfy the ordering and separation assumptions in Remark
3.1.2. If t ∈ TX ∩ k[G0], then no term of ρ0(t) is of the form E0(x − 1)n for any x ∈ X,
n ∈ N.

Proof. As in the previous lemma, if t =
∑n

i=1 cigi ∈ TX ∩ k[G0], then for some p, d ∈ N we
can write

gi =

p∏
j=1

E ′′(xj)
ai,j,2 · · ·E(d)(xj)

ai,j,d

E ′(xj)ai,j,2+···+ai,j,d

σ0(gi) =

p∏
j=1

E0(xj)
ai,j,2+···+ai,j,d−(ai,j,2+···+ai,j,d)E1(xj)

2ai,j,2+···+dai,j,d−(ai,j,2+···+ai,j,d)

(
ai,j,2∑
k2=0

(
ai,j,2
k2

)(
E2(xj)

E1(xj)

)k2
)
· · ·

(
ai,j,d∑
kd=0

(
ai,j,d
kd

)(
· · ·+ E2(xj) · · ·Ed(xj)

E1(xj)d−1

)kd
)
.
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As noted above, σ0(gi) is a finite sum because ai,j,2, . . . , ai,j,d are natural numbers for each
j = 1, . . . , p, and the exponent of E0(xj) is 0 in every term of σ0(gi). Additionally, in
every term of σ0(gi) the sum of the exponents of generators composed with xj is Aj =
ai,j,2 + 2ai,j,3 + · · ·+ ai,j,d.

Every monomial of ρ0(t) = ν0(σ0(t)) is an element of Supp(ν0(M)) for some i = 1, . . . , n
and some monomial M of σ0(gi). We can write any monomial M of σ0(gi) as

M =

p∏
j=1

E1(xj)
Nj,1 · · ·Ed(xj)

Nj,d

with Nj,1, . . . , Nj,d ∈ N and
d∑

k=1

Nj,k = Aj

for each j = 1, . . . , p. Now

ν0(M) =

p∏
j=1

E0(x− 1)Nj,1E1(x− 1)Nj,1+Nj,2(1 + ϵ2(xj))
Nj,2 · · ·Ed−1(xj)

Nj,d(1 + ϵd(xj))
Nj,d .

By Lemma 3.2.1, we know any ϵl(xj) for l = 2, . . . , d, j = 1, . . . , p contributes 0 to the
sum of the exponents and involves only E1(xj − 1), . . . , El+1(xj − 1). So the sum of the

exponents of E1(xj−1), . . . , Ed(xj−1) is always
∑d

k=1Nj,k = Aj for each j = 1, . . . , p. Since
at least one of these sums must be nonzero, ν0(M) cannot have any generators of the form
E0(x− 1)n.

Now we will show that there is a unique way to order ΓX,0 that respects the ordering
defined in Lemma 3.1.3 and the way we wish to define log. However, since we cannot define a
logarithm on G0Λ0 yet, we instead use a function l̂og : ρ0(G0Λ0) →

⋃
n∈NHn to approximate

the way we will define the logarithm. Later in this chapter, we will define log(g · ℓ) to be an

infinite sum, and in Corollary 4.4.5 l̂og(ρ0(g · ℓ)) is shown to correspond to an initial subsum
of ρd+1(log(g · ℓ)) where d is the largest derivative occurring in g.

Define l̂og : ρ0(G0Λ0) →
⋃

n∈NHn as follows:

1. l̂og(c) = log c for c ∈ k.

2. l̂og(E0(x− 1 + k)a = aE0(x− 2 + k) for k = 0, 1.

3. l̂og(E1(x− 1)a) = aE0(x− 3)

4. Extend l̂og to products by l̂og(g1 · · · gp) = l̂og(g1) + · · ·+ l̂og(gp).

5. Extend l̂og to sums by truncating after the leading term, i.e., l̂og(s) = l̂og(Lt(s)).
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Since Ed(x− 1) never appears in Lm(ρ0(g · ℓ)) for d ≥ 2, this fully defines l̂og.

Lemma 4.1.6. Suppose X and k satisfy the ordering and separation assumptions in Remark
3.1.2. Then there is a unique way to order ΓX,0 that respects the ordering defined in Lemma

3.1.3 and l̂og.

Proof. Let g · ℓ ∈ G0Λ0 and 0 ̸= t ∈ TX . We will compare g · ℓ with eTX
(t) by comparing

l̂og
(
ρ0(g · ℓ)

)
with ρ0(t), and we will show that this uniquely determines an order on ΓX,0.

First, l̂og(ρ0(g·ℓ)) = l̂og(Lt(ρ0(g·ℓ))), which is a finite sum of terms of the form aE0(y−n)
for a ∈ k, y ∈ X, and n = 1, . . . , d+ 2, where d is the highest order of derivative appearing
in g. Since E0(y − 1) ∈ H1, any term of the form aE0(y − 1) is comparable to ρ0(t). It is
not immediately clear how to compare other terms to elements of k((H1)), however.

Write t = s1ℓ1 + · · ·+ snℓn with s1, . . . , sn ∈ k[G0] and ℓ1, . . . , ℓn ∈ Λ0. By Lemmas 4.1.4
and 4.1.5, we know Lm

(
σ0(si)

)
= E1(x)

kh for some x ∈ X, k ∈ N>0, and some 1 ̸= h ∈ H0.
So

Lm
(
ρ0(si)

)
= Lm

(
ν0(E1(x)

k · h)
)

= E0(x− 1)kE1(x− 1)kLm
(
ν0(h)

)
.

By the definition of TX , each Lm(ρ0(ℓi)) is of the form
∏p

j=1E0(xj − 1)bj with bj ∈ N.
Recall that in Remark 3.3.1, given s ∈ k[G0Λ0] we defined Init(s), and in Lemma 3.3.2,

we showed that Init(s) ̸= 0, so that Lm
(
ρ0(s)

)
= Lm

(
Init(s)

)
. Consider Init(t). Every

monomial of Init(t) has a positive integer power of E0(x− 1) for some x ∈ X. Therefore, we
should interpret every monomial of Supp

(
Init(t)

)
as being strictly larger than terms of the

form l̂og
(
Ed(y− 1)a

)
= aE0(y− d− 2) for all d ∈ N, y ∈ X, and a ∈ k. This gives a unique

way to order ΓX,0 compatible with the order on k[G0Λ0] and that respects l̂og.

We now introduce the subgroup of ΓX,0 of small elements.

Definition 4.1.7. Let ΓX,0,small := {g · ℓ : g ∈ G0 is small, ℓ ∈ Λ0}.

ΓX,0,small is a subgroup of ΓX,0 because the small elements of G0 form a subgroup.

Corollary 4.1.8. ΓX,0,small is a convex subgroup of ΓX,0.

Proof. Let g0 ∈ G0 be small and ℓ0 ∈ Λ0 with g0 · ℓ0 > 1. Let 1 < g1 · ℓ1 · eTX
(t1) ∈ ΓX,0, and

suppose g1 · ℓ1 · eTX
(t1) < g0 · ℓ0. We will show g1 · ℓ1 · eTX

(t1) ∈ ΓX,0,small, i.e., t1 = 0 and g1
is small.

Following the way ΓX,0 is ordered via Lemma 4.1.6, 1 < g1 · ℓ1 · eTX
(t1) < g0 · ℓ0 means

0 < ρ0(t1) + l̂og
(
ρ0(g1 · ℓ1)

)
< l̂og

(
ρ0(g0 · ℓ0)

)
.
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We can write Lm
(
ρ0(g0 · ℓ0)

)
as

p∏
j=1

E0(xj)
αjE0(xj − 1)βj+bjE1(xj − 1)βj+Nj,1 .

Since g0 is small, we must have αj = 0. So l̂og
(
ρ0(g0 · ℓ0)

)
can be no larger than E0(x− d)

for some x ∈ X, d ≥ 2 (in the sense of Lemma 4.1.6).
By Lemmas 4.1.4 and 4.1.5, if t1 ̸= 0 then Lm(ρ0(t1)) must be of the form E0(x− 1)k · h

with 1 ̸= h ∈ H1. Since l̂og
(
ρ0(g1 · ℓ1)

)
is a single generator with exponent 1, Lm(ρ0(t1)) ̸=

l̂og
(
ρ0(g1 · ℓ1)

)
.

If Lm(ρ0(t1)) > l̂og
(
ρ0(g1 · ℓ1)

)
, then we must have Lc(ρ0(t)) > 0 because ρ0(t1) +

l̂og
(
ρ0(g1 · ℓ1)

)
> 0. But this contradicts ρ0(t1) + l̂og

(
ρ0(g1 · ℓ1)

)
< l̂og

(
ρ0(g0 · ℓ0)

)
.

So Lm(ρ0(t1)) < l̂og
(
ρ0(g1 · ℓ1)

)
. We can write Lm

(
ρ0(g1 · ℓ1)

)
as

p∏
j=1

E0(xj)
α′
jE0(xj − 1)β

′
j+b′jE1(xj − 1)β

′
j+N ′

j,1 .

Since αj = 0 and Lt
(
l̂og(ρ0(g1 · ℓ1))

)
< Lt

(
l̂og(ρ0(g0 · ℓ0))

)
, we must have α′

j = 0 too, i.e.,

g1 is small. But then the only way to have Lm(ρ0(t1)) < l̂og
(
ρ0(g1 · ℓ1)

)
is if t1 = 0. Thus

g1 · ℓ1 · eTX
(t1) = g1 · ℓ1 ∈ ΓX,0,small.

Since ΓX,0,small is a convex subgroup of ΓX,0, the quotient group ΓX,0/ΓX,0,small is an
ordered group.

We will now define a modification of the Hahn series field that disallows infinite sums of
monomials whose quotient is in ΓX,0,small. We will also add an additional restriction that
will be necessary in Section 5.3, when we define a derivation on the field of transexponential-
sublogarithmic series. Even though we have not yet discussed how to define the derivation,
we include the following example now, to motivate this restriction.

Example 4.1.9. Let x be the germ of the identity function, and let

X =

{
E(x) + r +

1

E(xr)
: r ∈ (0, 1) ∩ R

}
.

Let k be any ordered exponential field such that k and X satisfy the ordering and separation
assumptions of Remark 3.1.2 (for example, k = R works). Then we would want to define

d

dx
E

(
E(x) + r +

1

E(xr)

)
= E ′

(
E(x) + r +

1

E(xr)

)(
E ′(x)− rxr−1E ′(xr)

E(xr)2

)
.

Now, E ′
(
E(x) + r + 1

E(xr)

)
will be in any structure built from X, for all r ∈ (0, 1). However,

due to the finitary nature of the full sublogarithmic-transexponential series construction,
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there is no structure in which {E(xr) : r ∈ C} can appear in a sum for any infinite C ⊂ (0, 1).
This is because (xr)r∈(0,1) all have different growth rates. So we cannot allow any sum s with
generators built from infinitely many elements of X because the “derivative” of such an
element will not be a valid sum.

Because of the issue that arises in Example 4.1.9, any element s of our modified Hahn
series construction must only involve generators built from some finite subset X0 ⊂ X. A
similar issue may arise if the derivations of exponents and coefficients in some sum s do
not all lie in one structure. So we will also set up a framework to be able to restrict how
exponents and coefficients from k may appear in a sum.

Remark 4.1.10. The construction introduced in the remainder of this section prevents
problematic sums of the form ∑

n∈N

(
E ′(x)

E(x)E ′′(x)

)n

from arising. It also removes other sums that are not obviously problematic. So it is possible
that this construction may be more restrictive than it needs to be.

Definition 4.1.11. Let k be an ordered field, let (kα)α∈A be a family of subfields of k, and
let X be a set. Let Γ = Γ(k, X) be an ordered multiplicative group depending on k and X,
with convex subgroup H = H(k, X). Assume k[H] is an ordered ring. Define

k((Γ))H

to be the ring whose elements are sums of the form

s =
∑

M∈Γ(kα,X0)

cMM

for some finite subset X0 ⊂ X and cM ∈ kα, for some α ∈ A, where

1. for each coset w ∈ Γ(kα, X0)/H, {M ∈ w : cM ̸= 0} is finite, and

2. Supp(s) = {M ∈ Γ(kα, X0) : cM ̸= 0} is reverse well-ordered.

For s ∈ k((Γ))H , define Lv(s) to be the coset Lm(s)H of Γ/H. Define s > 0 in k((Γ))H if
and only if ∑

M∈Lv(s)

cM
M

Lm(s)
> 0

in k[H]. For w ∈ Γ/H, we will write s|w to denote the finite subsum of s with monomials
in w.
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Since Supp(s) is reverse well-ordered in Γ, {MH :M ∈ Supp(s)} is reverse well-ordered
in H. Since H is convex, if M < Lm(s) in Γ then MH ≤ Lv(s) in Γ/H. Note that k((Γ))H
is not a field because sums of elements with more than one element in the leading coset may
not have multiplicative inverses.

Assume k and X satisfy the ordering and separation assumptions in Remark 3.1.2, and
let (kα)α∈A be any collection of subfields of k. By Lemma 4.1.6, ΓX,0 is an ordered group
depending on X and k. By Lemma 4.1.8, ΓX,0,small is a convex subgroup of ΓX,0. By Lemma
3.3.2, k[ΓX,0,small] is ordered. So we can construct KX,0 := k((ΓX,0))ΓX,0,small

. Notice that
the order on KX,0 extends the order on k[G0Λ0] from Lemma 3.3.2.

Define

AX,0 := {s ∈ KX,0 : Supp(s) > ΓX,0,small}
BX,0 := {s ∈ KX,0 : ∀M ∈ Supp(s),∃M0 ∈ ΓX,0,small with M ≤M0}
B∗

X,0 := TX ⊕ k ⊕ {s ∈ KX,0 : Supp(s) < ΓX,0,small}.

Define eX,0 : B
∗
X,0 → (KX,0)

>0 by

eX,0(t+ r + ϵ) = eTX
(t) exp(r)

∞∑
n=0

ϵn

n!

for t ∈ TX , r ∈ k, and ϵ ∈ BX−m,0 with Supp(ϵ) < ΓX,0,small. Notice that the only elements
of k[ΓX,0,small] on which it makes sense to define eX,0 are TX ⊕ k. For example, there is no

element of KX,0 to represent the exponential of the “large” infinitesimal E(x)
E′(x)

= 1
E′(x−1)

.
Additionally, we introduce a family

(Kα,X0)(α,X0)∈A×[X]<ω

of subfields of KX,0. Given α ∈ A and X0 a finite subset of X, define Kα,X0 to consist of
sums of the form s =

∑
M∈Γ(kα,X0)

cMM with all cM ∈ kα.
We now adapt the notion of the first extension of a pre-exponential ordered field from

[8]: An almost pre-exponential ordered ring (K,A,B,B∗, e) consists of an ordered ring K,
an additive subgroup A of K, a convex subgroup B of K with K = A⊕ B, a subgroup B∗

of B, and a strictly increasing homomorphism e : B∗ → (K)>0. We will also assume we are
given a family (Kβ)β∈B of subfields of K.

Define the first extension (K ′, A′, B′, (B∗)′, e′) of an almost pre-exponential ordered ring
(K,A,B,B∗, e):

1. Take a multiplicative copy e(A) of the ordered additive abelian group A with order-
preserving isomorphism eA : A→ e(A).

2. Define K ′ = K((e(A))){1} using the family (Kα)α∈A of subfields of K, where {1} is the
trivial subgroup of e(A). Then K ′ is a subring of the usual Mal’cev-Neumann series
ring over K with monomial group e(A).
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3. Let A′ = {s ∈ K ′ : Supp(s) > 1}, and B′ = {s ∈ K ′ : Supp(s) ≤ 1}, so that
K ′ = A′ ⊕B′ and B′ is a convex subring of K ′.

4. Let (B∗)′ = A⊕B∗ ⊕m(B′), and extend e to e′ : (B∗)′ → (K ′)>0 by

e(a+ b+ ϵ) = eA(a)e(b)
∞∑
n=0

ϵn

n!

for a ∈ A, b ∈ B∗, and ϵ ∈ m(B′).

5. Associate with the first extension the family (K ′
β)β∈B of subfields of K ′, where K ′

β is
such that for every term ce(a) of every element of K ′

β, we have c, a ∈ Kβ.

Then (K ′, A′, B′, (B∗)′, e′) is an almost pre-exponential ordered ring, and e′ is defined on all
of A⊕B∗ ⊂ K.

Starting with (KX,0, AX,0, BX,0, B
∗
X,0, eX,0) and (Kα,X0)(α,X0)∈A×[X]<ω , define

(KX,n+1, AX,n+1, BX,n+1, B
∗
X,n+1, eX,n+1)

to be the first extension of (KX,n, AX,n, BX,n, B
∗
X,n, eX,n). Given (Kβ,n)β∈B associated with

(KX,n, AX,n, BX,n, B
∗
X,n, eX,n), define (Kβ,n+1)β∈B to be (K ′

β,n)β∈B. Then

B∗
X,n+1 = AX,n ⊕ · · · ⊕ AX,0 ⊕B∗

X,0 ⊕m(BX,1)⊕ · · · ⊕m(BX,n+1).

Let KX =
⋃

n∈NKX,n, B
∗
X =

⋃
n∈NB

∗
X,n, and let eX : B∗

X → (KX)
>0 be the common

extension of all the eX,n.
Define an increasing sequence of multiplicative subgroups of KX starting with ΓX,0 and

taking ΓX,n+1 := ΓX,neX(AX,n). Since ΓX,n is convex in ΓX,n+1, by induction ΓX,0,small is a
convex subgroup of ΓX,n+1 for all n ∈ N.

Lemma 4.1.12. Let k be an ordered field, Γ an ordered group with convex subgroup G1 such
that Γ is the internal direct product of G1 and another subgroup G2. Let H be a convex
subgroup of G1. Then k((G1))H((G2)) ∼= k((Γ))H .

Proof. The isomorphism is given by

∑
M∈G

cMM 7→
∑

M2∈G2

( ∑
M1∈G1

cM1M2M1

)
M2.

We know KX,0 = k((ΓX,0))ΓX,0,small
. Assume KX,n = k((ΓX,n))ΓX,0,small

. Then using
Lemma 4.1.12,

KX,n+1 = KX,n((e(AX,n))) = k((ΓX,n))ΓX,0,small
((e(AX,n))) = k((ΓX,n+1))ΓX,0,small

.

So by induction, KX,n = k((ΓX,n))ΓX,0,small
for all n ∈ N. In the next section, it will be

helpful to use this expression for KX,n, rather than the inductive definition above.
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4.2 Part 2: Building a logarithmic-exponential field

Suppose X and k satisfy the ordering and separation assumptions of Remark 3.1.2. Since
X is assumed to be a subset of an ordered field, we may define

X −m := {x−m : x ∈ X}

for any m ∈ N. Note that if X and k satisfy the ordering and separation assumptions, so
do X −m and k.

In the previous section, we showed how to build a partial exponential ring KX starting
with X and k. In this section, we would like to construct a logarithmic-exponential field,
starting from KX . We motivate the construction in this section with several examples.

Example 4.2.1. The difference equation for E tells us that the logarithm of E(x) should
be E(x− 1). There is no element E(x− 1) of KX , but if we build KX−1 using X − 1 instead
of X, then E(x − 1) and eX−1

(
E(x − 1)

)
are both elements of KX−1, and we can identify

them with logE(x) and E(x) respectively.

Example 4.2.2. Although E(x)
E′(x)

does not have an exponential in KX , if we identify E(x)
E′(x)

with 1
E′(x−1)

∈ KX−1, then

eX−1

(
1

E ′(x− 1)

)
=

∞∑
n=0

1

n!E ′(x− 1)n
∈ KX−1.

Example 4.2.3. The natural way to represent the multiplicative inverse of E ′(x) +E(x) is
by the following computation:

1

E ′(x) + E(x)
=

1

E ′(x)
(
1 + E(x)

E′(x)

) =
1

E ′(x)

∞∑
n=0

(
−E(x)

E ′(x)

)n

.

Since E ′(x) and E(x) are in the same coset of ΓX,0,small, the infinite sum
∑∞

n=0

(
− E(x)

E′(x)

)n
is not an element of KX . However, if we identify E(x) with eX−1

(
E(x − 1)

)
, E ′(x) with

eX−1

(
E(x− 1)

)
E ′(x− 1), and E(x)

E′(x)
with 1

E′(x−1)
, then we have a multiplicative inverse

1

eX−1

(
E(x− 1)

)
E ′(x− 1)

∞∑
n=0

(
− 1

E ′(x− 1)

)n

∈ KX−1

of eX−1

(
E(x− 1)

)
E ′(x− 1) + eX−1

(
E(x− 1)

)
.

In this section, we will construct embeddings φm : KX−m → KX−m−1 for m ∈ N which
formally “identify” elements of KX−m with the corresponding elements of KX−m−1. We
will show that for all s ∈ KX−m, the image of s under finitely many embeddings has a
multiplicative inverse, a logarithm, and an exponential in some KX−m−j.
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4.3 Defining φm

We begin defining φm,0 : KX−m,0 → KX−m−1,1 as follows:

1. φm,0

(
logE ′(x)b

)
= E(x− 1)b

∞∑
n=0

(
b

n

)(
logE ′(x− 1)

E(x− 1)

)n

Since
(

logE′(x−1)
E(x−1)

)n
< ΓX−m−1,0,small for n > 0, this sum is allowed in KX−m−1,0.

2. φm,0

(
E(x)a

)
= eX−m−1

(
E(x− 1)

)a
3. φm,0

(
E ′(x)a

)
= eX−m−1

(
E(x− 1)

)a
E ′(x− 1)a

4. φm,0

(
E(d)(x)a

)
= eX−m−1(E(x− 1))aE ′(x− 1)da

∞∑
n=0

(
a

n

)
δd(x)

n

for d > 1, where δd(x) =
Bd(x−1)−E′(x−1)d

E′(x−1)d
=

(d2)E′(x−1)d−2E′′(x−1)+···+E(d)(x−1)

E′(x−1)d
.

Since Supp(δd(x)
n) < ΓX−m−1,0,small for n > 0, this sum is allowed in KX−m−1,0.

5. Extend φm,0 to k[GmΛm] so that it is a k-algebra homomorphism.

In particular, we have now defined φm,0 on TX−m. Before we extend φm,0 further, we
will show that φm,0 is order preserving on k[ΓX−m,0,small]. Ultimately, this follows from the
results of Section 3 and Section 4.1, but the orderings on k[ΓX−m,0,small] and KX−m−1,0 are
defined using the maps σl, νl, and ρl for l = m,m + 1, which are rather delicate. For this
reason, it takes some maneuvering to use the results proven so far to show that φm,0 is order
preserving. We show that φm,0 is order preserving on k[ΓX−m,0,small] in Lemma 4.3.6.

Lemma 4.3.1. Assume k and X satisfy the ordering and separation assumptions in Remark
3.1.2. If t ∈ TX−m ∩ k[Gm], then

σm+1

(
φm,0(t)

)
= νm

(
σm(t)).

Proof. It suffices to show the result for expressions of the form E(d)(x)
E′(x)

∈ TX−m ∩Gm because
σm+1, φm,0, νm, and σm are k-algebra homomorphisms. First, note that σm+1 is defined on

φm,0

(
E(d)(x)
E′(x)

)
because

φm,0

(
E(d)(x)

E ′(x)

)
=
eX−m−1

(
E(x− 1)

)
Bd(x− 1)

eX−m−1

(
E(x− 1)

)
E ′(x− 1)

=
Bd(x− 1)

E ′(x− 1)
∈ k[Gm+1].
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If x is the germ of a function and we view all the following expressions as functions, we have

E(d)(x)

E ′(x)
= σm

(
E(d)(x)

E ′(x)

)
by definition of E0, E1, . . .

= νm

(
σm

(
E(d)(x)

E ′(x)

))
by Lemma 2.1.4

E(d)(x)

E ′(x)
= φm,0

(
E(d)(x)

E ′(x)

)
by the Bell polynomial expression for E(d)

= σm+1

(
φm,0

(
E(d)(x)

E ′(x)

))
by definition of E0, E1, . . .

Since νm

(
σm

(
E(d)(x)
E′(x)

))
and σm+1

(
φm,0

(
E(d)(x)
E′(x)

))
are expressed using the same standard

basis E0(x−1), E1(x−1), . . . , Ed(x−1) for monomials inHm+1, they must also be equal in the

sense of k((Hm+1)). Since the computations of νm

(
σm

(
E(d)(x)
E′(x)

))
and σm+1

(
φm,0

(
E(d)(x)
E′(x)

))
are the same regardless of whether x is the germ of a function, these two expressions must
be equal formally.

Remark 4.3.2. We can extend Lemma 4.3.1 beyond TX−m ∩ k[Gm] to include monomials
of the form E(x)aE ′(x)−a for any a ∈ k and products of such monomials with elements of
TX−m ∩ k[Gm], since

φm,0

(
E(x)aE ′(x)−a

)
= eX−m−1

(
aE(x− 1)− aE(x− 1)

)
E ′(x− 1)−a = E ′(x− 1)−a.

However, we cannot extend Lemma 4.3.1 any further because monomials in ΓX−m,0,small of
other forms either involve logarithms, or their image under φm,0 is an infinite sum.

Define sd,N,a(x) := E(x)a
E ′(x)da

E(x)da

N∑
k=0

(
a

k

)(
E(x)d−1E(d)(x)

E ′(x)d
− 1

)k

for d ≥ 2.

Lemma 4.3.3. The first N terms (at least) of σm
(
E(d)(x)a

)
and σm(sd,N,a(x)) are equal.

Proof. Notice that sd,N,a(x) is obtained by paralleling the definition of σm. E(x)
a corresponds

to E0(x)
a, E′(x)da

E(x)da
corresponds to E1(x− 1)da, and E(x)d−1E(d)(x)

E′(x)d
− 1 corresponds to

E1(x)
d−1E2(x) + · · ·+ E1(x) · · ·Ed(x)

E1(x)d
=

E0(x)
d
(
E1(x)

d + E1(x)
d−1E2(x) + · · ·+ E1(x) · · ·Ed(x)

)
E0(x)dE1(x)d

− 1.

If d = 2, then the sum of the first N terms of σm(E
(d)(x)a) is exactly σm(sd,N,a(x)). The

result also immediately holds for N = 1. So assume d > 2 and N > 1.
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Let ζd(x) =
E1(x)d−1E2(x)+···+E1(x)···Ed(x)

E1(x)d
. Since E2(x)

E1(x)
is the largest monomial of ζd(x), the

largest monomial of ζd(x)
n is

(
E2(x)
E1(x)

)n
, which has E1(x)

n as its denominator. The second

largest monomial of
∑∞

k=0

(
a
k

)
ζd(x)

k is E2(x)2

E1(x−1)2
, which appears in ζd(x) since d > 2, and has

E1(x)
2 as its denominator. So the result holds for N = 2.

For N > 2, the Nth monomial g of
∑∞

k=0

(
a
k

)
δd(x)

k has E1(x)
l as its denominator for

some l < N , so it must appear before ζd(x)
N . Thus the first N terms of σm

(
E(d)(x)

)
and

σm(sd,N,a(x)) agree.

Corollary 4.3.4. Assume k and X satisfy the ordering and separation assumptions in Re-
mark 3.1.2. Let s = c1g1 + · · ·+ cngn ∈ k[Gm], and write

gi =

p∏
j=1

E(xj)
ai,j,0 · · ·E(d)(xj)

ai,j,d

with x1 > · · · > xp. Suppose ξxj
(gi) = 0 for all j = 1, . . . , p. Then for every N0 there exists

some N1 such that the first N0 terms (at least) of σm(s) and σm(c1u1+ · · ·+ cnun) are equal,
where

ui =

p∏
j=1

E(xj)
ai,j,0E ′(xj)

ai,j,1s2,N1,ai,j,2(xj) · · · sd,N1,ai,j,d(xj).

Proof. Let N0 ∈ N. Let t be the finite initial subsum of σm(s) defined as in Remark 3.3.1.
Enumerate Supp(σm(gi)) as (hi,k)k∈N with hi,k > hik+1. Let ni ∈ N be smallest such that

Supp(t) ∩ {hi,k : k > ni} = ∅.

Let N1 = max(n1, . . . , np). Let

ui =

p∏
j=1

E(xj)
ai,j,0E ′(xj)

ai,j,1s2,N1,ai,j,2(xj) · · · sd,N1,ai,j,d(xj).

So it suffices to show that the first N0 terms of νm(σm(s)) and νm(σm(c1u1 + · · ·+ cnun))
agree. By Lemma 4.3.3, the first N1 terms of σm(ui) and σm(gi) agree. By our choice of N1,
the first N0 terms of σm(c1u1 + · · · + cnun) and σm(s) agree. So at least the first N0 terms
of νm(σm(c1u1 + · · ·+ cnun)) and νm(σm(s)) agree, and we are done.

Remark 4.3.5. Observe that

1. ξx(g) = a for every monomial g of sd,N,a,

2. φm(sd,N,a) is a finite sum.
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Let gi and ui be as in Lemma 4.3.4. By the first observation, no monomial of φm,0(ui) has
any generator of the form eX−m−1(E(x − 1))a. So Supp(φm(ui)) ⊂ Gm+1. This along with
the second observation means we have φm(ui) ∈ k[Gm+1]. So σm+1 is defined on φm(ui). In
fact, by Lemma 4.3.1 and Remark 4.3.2,

σm+1(φm(ui)) = νm(σm(ui)).

So σm+1(φm(c1u1 + · · ·+ cnun)) = νm(σm(c1u1 + · · ·+ cnun)).

Lemma 4.3.6. φm,0 is order preserving on k[ΓX−m,0,small].

Proof. Let s = s1ℓ1 + · · · + snℓn with si ∈ k[Gm] and ℓi ∈ Λm. We will show s > 0 if and
only if φm,0(s) > 0.

Recall from Lemma 3.3.2 that the sign of Init(s) determines the sign of s. We will show
that φm,0(s)|Lv(φm,0(s)) ∈ k[Gm+1], which means the sign of φm,0(s) is determined by the sign
of σm+1

(
φm,0(s)|Lv(φm,0(s))

)
. We will then show that σm+1

(
φm,0(s)|Lv(φm,0(s))

)
= Init(s).

Let ti be as in Lemma 3.3.2, and let Ni,0 = |Supp(ti)|. Let N0 = max(N1,0, . . . , Np,0).
For each i = 1, . . . , p, let Ni,1 and ci,1ui,1+ · · ·+ ci,kiui,ki be given by Lemma 4.3.4, using N0.
Define ui := ci,1ui,1 + · · ·+ ci,kiui,ki .

By Remark 4.3.5,
σm+1

(
φm,0(ui)

)
= νm

(
σm(ui)

)
= ρ0(ui).

If we write ℓi =
∏p

j=1 logE
′(xj)

bi,j , then Lm
(
φm,0(ℓi)

)
=
∏p

j=1E(xj − 1)bi,j , so

σm+1

(
Lm(φm,0(ℓi))

)
=

p∏
j=1

E0(xj − 1)bi,j .

Following the proof of Lemma 3.3.2, Init(s) ̸= 0 is the initial subsum of

ρm(u1)

p∏
j=1

E(xj − 1)b1,j + · · ·+ ρm(un)

p∏
j=1

E(xj − 1)bn,j =

σm+1

(
φm,0(u1)Lm(φm,0(ℓ1)) + · · ·+ φm,0(un)Lm(φm,0(ℓn))

)
so both these expressions have the same sign as Init(s). Recall from Remark 3.3.1 that
Init(s) is defined by having tuples of exponents of E0(x1− 1), . . . , E0(xp− 1) maximized. By
the way σm+1 is defined, if g ∈ k[Gm+1] and ξxj

(g) = a, then the exponent of E0(xj − 1)
in σm+1(g) is a. So Init(s) must be the image under σm+1 of

(
φm,0(u1)Lm(φm,0(ℓ1)) + · · ·+

m, 0(un)Lm(φm,0(ℓn)
)
|w, where

w = Lv
(
φm,0(u1)Lm(φm,0(ℓ1)) + · · ·+m, 0(un)Lm(φm,0(ℓn)

)
.

Since for any

g ∈ Supp
(
φm,0(ui)

(
φm,0(ℓi)− Lm(φm,0(ℓi))

))
σm+1(g) < Init(s), we must have Lv

(
φm,0(s)

)
= w. This completes the proof.
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We would now like to extend φm,0 to all of ΓX−m,0 by defining

φm,0

(
eX−m(t)

)
= eX−m−1

(
φm,0(t)

)
for t ∈ TX−m, but we must check that eX−m−1 is defined on φm,0(t).

Lemma 4.3.7. Assume k and X satisfy the ordering and separation assumptions in Remark
3.1.2. If t ∈ TX−m, then eX−m−1

(
φm,0(t)

)
is defined in KX−m−1,1.

Proof. Since any element of TX−m is a finite sum of generators, it suffices to show that
eX−m−1 is defined on the generators of TX−m. Let

t = c

p∏
j=1

logE ′(xj)
aj,−1

E ′′(xj)
aj,2 · · ·E(d)(xj)

aj,d

E ′(xj)aj,2+···+aj,d

be a generator of TX−m, with x1 > · · · > xp ∈ X − m and aj,−1, aj,2, . . . , aj,d ∈ N. Notice
that for d ≥ 1,

φm,0(E
(d)(x)) = eX−m−1(E(x− 1))Bd(x− 1)

which matches the difference-differential equation for E(d)(x). For each term of Bd(x − 1),
ξx−1 ≥ 1, with ξx−1 = 1 only for the smallest term E(d)(x − 1). So for each term of

δd(x) =
Bd(x−1)−E′(x−1)d

E′(x−1)d
, −(d− 1) ≤ ξx−1 ≤ −1, with ξx−1 = −(d− 1) only for the smallest

term E(d)(x−1)
E′(x−1)d

.
By the definition of φm,0, we can write

φm,0

(
c

p∏
j=1

logE ′(xj)
aj,−1

E ′′(xj)
aj,2 · · ·E(d)(xj)

aj,d

E ′(xj)aj,2+···+aj,d

)
=

c

p∏
j=1

E(xj − 1)aj,−1E ′(xj − 1)aj,2+2aj,3+···+(d−1)aj,d

(
aj,−1∑
n=0

(
aj,−1

n

)(
logE ′(xj − 1)

E(xj − 1)

)n
)(

aj,2∑
n=0

(
aj,2
n

)
δ2(xj)

n

)
· · ·

(
aj,d∑
n=0

(
aj,d
n

)
δd(xj)

n

)
.

This is a finite sum. For every term in the sum, ξxj−1 ≥ 0 for all j = 1, . . . , p. For every
term except the smallest term, ξx1−1 + · · · + ξxp−1 > 0. Therefore, every term except the
smallest term is in AX−m−1,0. The smallest term is

c

p∏
j=1

E(xj − 1)aj,−1E ′(xj − 1)aj,2+2aj,3+···+(d−1)aj,d

(
aj,−1

aj,−1

)(
logE ′(xj − 1)

E(xj − 1)

)aj,−1
(
aj,2
aj,2

)(
E ′′(xj − 1)

E ′(xj − 1)2

)aj,2

· · ·
(
aj,d
aj,d

)(
E(d)(xj − 1)

E ′(xj − 1)d

)aj,d

=

c

p∏
j=1

logE ′(xj − 1)aj,−1
E ′′(xj − 1)aj,2 · · ·E(d)(xj − 1)aj,d

E ′(xj − 1)aj,2+···+aj,d
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and is an element of TX−m−1. Thus eX−m−1(t) ∈ KX−m−1,1.

Remark 4.3.8. In the proof of Lemma 4.3.7, observe that the smallest term of φm,0(t) is
exactly t with each xj replaced by xj − 1.

We can now extend φm,0 : KX−m,0 → KX−m−1,1 to all of ΓX−m,0.

6. φm,0

(
eX−m(t)

)
= eX−m−1(φm,0(t))

7. Extend φm,0 to k[ΓX−m,0] so that it is a k-algebra homomorphism.

Finally, we would like to define

φm,0

 ∑
M∈ΓX−m,0

cMM

 =
∑

M∈ΓX−m,0

cMφm,0(M)

but we must check that
∑

M∈ΓX−m,0
cMφm,0(M) is a valid sum in KX−m−1,1. We will check

this using the next two lemmas.

Lemma 4.3.9. LetMi = gi ·ℓi ·eX−m(ti) ∈ ΓX−m,0 for i = 1, 2. IfM1 andM2 are in different
cosets of ΓX−m,0/Γx−m,0,small and M1 > M2, then Supp(φm,0(M1)) > Supp(φm,0(M2)).

Proof. Let x1 > · · · > xp list the elements of X that appear in M1,M2. We can write

φm,0(Mi) = eX−m−1

(
φm,0(ti) +

p∑
j=1

ξxj
(Mi)E(xj − 1)

)
si

for some s ∈ KX−m−1,0. So it suffices to show that

φm,0(t1) +

p∑
j=1

ξxj
(M1)E(xj − 1) > φm,0(t2) +

p∑
j=1

ξxj
(M2)E(xj − 1).

M1 > M2 means

ρm(t1) +

p∑
j=1

ξxj
(M1)E0(xj − 1) > ρm(t2) +

p∑
j=1

ξxj
(M2)E0(xj − 1)

i.e., ρm(t1 − t2) >

p∑
j=1

(
ξxj

(M2)− ξxj
(M1)

)
E0(xj − 1).

Express t1 − t2 = h1λ1 + · · · + hnλn as a sum in k[GmΛm], with hi ∈ Gm and λi ∈ Λm.
Let Init(t1 − t2) be the initial subsum of ρm(t1 − t2), defined in Remark 3.3.1. We know
νm(σm(hi,1)) = σm+1(φm,0(hi,1)) by Lemma 4.3.1. We also know the only term of ρm(λi)
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that can contribute to Init(t1 − t2) is Lm
(
ρm(λi)

)
for all i = 1, . . . , n. Let Lm

(
ρm(λi)

)
=∏p

j=1E0(xj − 1)bi,j . So we must have

n∑
i=1

σm+1(φm,0(hi))

p∏
j=1

E0(xj − 1)bi,j >

p∑
j=1

(
ξxj

(M2)− ξxj
(M1)

)
E0(xj − 1).

Since σm+1 is order preserving, we must have

φm,0(hi)

p∏
j=1

E(xj − 1)bi,j >

p∑
j=1

(
ξxj

(M2)− ξxj
(M1)

)
E(xj − 1).

Just as in Lemma 4.3.6, φm,0(t1− t2)|Lv(φm,0(t1−t2)) is a subsum of φm,0(hi)
∏p

j=1E(xj −1)bi,j .
So

φm,0(t1 − t2) >

p∑
j=1

(
ξxj

(M2)− ξxj
(M1)

)
E0(xj − 1)

as desired.

Lemma 4.3.10. Assume k and X satisfy the ordering and separation assumptions in Re-
mark 3.1.2. If s ∈ KX−m, then φm,0(s) is an element of KX−m−1,1.

Proof. Let s =
∑

M∈ΓX−m,0
cMM . We will show φm,0

(∑
M∈ΓX−m,0

cMM
)
is a valid sum in

KX−m−1,1. Since each M ∈ ΓX−m,0 is a finite product of generators, φm,0 is well defined on
monomials. So it suffices to check that (cMM : M ∈ ΓX−m,0) is summable in the sense of
Definition 4.1.11, i.e.,

1. For each coset NΓX−m−1,0,small of ΓX−m−1,1/ΓX−m−1,0,small, there are only finitely many
M ∈ ΓX−m,0 such that cM ̸= 0 and NΓX−m−1,0,small ∩ Supp(φm,0(M)) ̸= ∅.

2.
⋃

M∈Supp(s)

Supp(φm,0(M)) is reverse well-ordered in ΓX−m−1,1.

We start with (1). Let N = g · ℓ · eX−m−1(t) · eX−m−1(α) ∈ ΓX−m−1,1 with g ∈ Gm+1,
ℓ ∈ Λm+1, t ∈ TX−m−1, and α ∈ AX−m−1,0. Note that t and α are fixed across all elements of
NΓX−m−1,0,small. Let Mi = gi · ℓi · eX−m(ti) ∈ ΓX−m,0 for i = 1, 2, and let x1 > · · · > xp list
the elements of X that appear in M1,M2. Suppose NΓX−m−1,0,small ∩ Supp(φm,0(Mi)) ̸= ∅
for i = 1, 2.

We can write

φm,0(Mi) = eX−m−1

(
φm,0(ti) +

p∑
j=1

ξxj
(Mi)E(xj − 1)

)
si
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for some si ∈ KX−m−1,0. M1 and M2 must be in the same coset of ΓX−m,0/ΓX−m,0,small, or
else by Lemma 4.3.9 we would have

φm,0(t1) +

p∑
j=1

ξxj
(M1)E(xj − 1) ̸= φm,0(t2) +

p∑
j=1

ξxj
(M2)E(xj − 1)

which contradicts that NΓX−m−1,0,small ∩ Supp(φm,0(Mi)) ̸= ∅ for both i = 1, 2. Since there
are only finitely many M in the same coset asM1,M2 such that cM ̸= 0, we have proven (1).

Now we prove (2). Let B ⊂
⋃

M∈Supp(s)

Supp(φm,0(M)). We will find a largest element

of B. Since s|w is finite for any coset w ∈ ΓX−m,0/ΓX−m,0,small, B ∩ Supp(φm,0 (s|w)) has a
largest element. By Lemma 4.3.9, if M1 > M2 then Supp(φm,0(M1)) > Supp(φm,0(M1)). So
the largest element of B is the largest element of B ∩ Supp

(
φm,0

(
s|Lv(s)

))
.

We repeat the full definition of φm,0 : KX−m,0 → KX−m−1,1:

1. φm,0

(
logE ′(x)b

)
= E(x− 1)b

∞∑
n=0

(
b

n

)(
logE ′(x− 1)

E(x− 1)

)n

Since
(

logE′(x−1)
E(x−1)

)n
< ΓX−m−1,0,small for n > 0, this sum is allowed in KX−m−1,0.

2. φm,0

(
E(x)a

)
= eX−m−1

(
E(x− 1)

)a
3. φm,0

(
E ′(x)a

)
= eX−m−1

(
E(x− 1)

)a
E ′(x− 1)a

4. φm,0

(
E(d)(x)a

)
= eX−m−1(E(x− 1))aE ′(x− 1)da

∞∑
n=0

(
a

n

)
δd(x)

n

for d > 1, where δd(x) =
Bd(x−1)−E′(x−1)d

E′(x−1)d
=

(d2)E′(x−1)d−2E′′(x−1)+···+E(d)(x−1)

E′(x−1)d

Since Supp(δd(x)
n) < ΓX−m−1,0,small for n > 0, this sum is allowed in KX−m−1,0.

5. Extend φm,0 to k[GmΛm] so that it is a k-algebra homomorphism.

6. φm,0

(
eX−m(t)

)
= eX−m−1(φm,0(t))

7. φm,0(g1 · · · gn) = φm,0(g1) · · ·φm,0(gn) for generators g1, . . . , gn ∈ ΓX−m,0

8. φm,0

 ∑
M∈ΓX−m,0

cMM

 =
∑

M∈ΓX−m,0

cMφm,0(M).

Corollary 4.3.11. φm,0 is order preserving on KX−m,0.
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Proof. Let s ∈ KX−m,0. By Lemma 4.3.9, if M1 ∈ Supp
(
s|Lv(s)

)
and M2 ̸∈ Supp

(
s|Lv(s)

)
,

then Supp(φm,0(M1)) > Supp(φm,0(M1)). So the sign of φm,0(s) is determined by the sign

of φm,0

(
s|Lv(s)

)
. The sign of φm,0

(
s|Lv(s)

)
is the same as the sign of φm,0

(
s|Lv(s)

Lm(s)

)
, and

s|Lv(s)

Lm(s)
∈ k[ΓX−m,0,small]. Apply Lemma 4.3.6 to finish the proof.

Now given φm,n : KX−m,n → KX−m−1,n+1, define φm,n+1 : KX−m,n+1 → KX−m−1,n+2 as
follows:

φm,n+1

(∑
faeX−m(a)

)
=
∑

φm,n(fa)eX−m(φm,n(a))

for fa ∈ KX−m,n and a ∈ AX−m,n. This is a valid sum in KX−m−1,n+2, and since φm,n is
order preserving, so is φm,n+1. Let φm : KX−m → KX−m−1 be the common extension of all
φm,n, which is also order preserving.

4.4 Finding logarithms, exponentials, and

multiplicative inverses

In the remainder of this section, we will show that for every s ∈ KX−m, there is some l ∈ N
such that

1. eX−m−l−1

(
(φm+l ◦ · · · ◦ φm)(s)

)
is defined in KX−m−l−1 (Lemma 4.4.7),

2. if s > 0 then there is some s′ ∈ KX−m−l−1 such that

(φm+l ◦ · · · ◦ φm)(s) = eX−m−l−1(s
′)

i.e., this element has a logarithm (Lemma 4.4.4), and

3. (φm+l ◦ · · · ◦ φm)(s) has a multiplicative inverse in KX−m−l−1 (Lemma 4.4.10).

We find multiplicative inverses with the more general result that if s1, . . . , sn ∈ KX−m with
Supp(si) < 1, then there is l ∈ N such that

∞∑
j1,...,jn=0

aj1,...,jn

n∏
i=1

(φm+l ◦ · · · ◦ φm)(si)
ji ∈ KX−m−l−1

for all (aj1,...,jn)j∈Nn ∈ kω (Lemma 4.4.9). This result will be necessary in order to show our
construction is closed under restricted analytic functions.

Lemma 4.4.1. If s = eX−m(s
′) for some s′ ∈ B∗

X−m, then φm(s) = eX−m−1

(
φm(s

′)
)
.

Proof. Since s′ ∈ B∗
X−m,n for some n ∈ N, we can write

s′ = a+ t+ r + ϵ
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with a ∈ AX−m,n−1 ⊕ · · · ⊕ AX−m,0, t ∈ TX−m, r ∈ k, and ϵ ∈ BX−m,0 ⊕ · · · ⊕ BX−m,n with
Supp(ϵ) < ΓX−m,0,small. So

φm(s) = φm

(
eX−m(a)eX−m(t)eX−m(r) ·

∞∑
k=0

ϵk

k!

)

= eX−m−1

(
φm(a)

)
eX−m−1

(
φm(t)

)
eX−m−1

(
φm(r)

) ∞∑
k=0

φm(ϵ)
k

k!

= eX−m−1

(
φm(a+ t+ r + ϵ)

)
= eX−m−1

(
φm(s

′)
)

as claimed.

Lemma 4.4.2. If M ∈ ΓX−m,0, then there is s′ ∈ KX−m−2 such that φm+1

(
φm(M)

)
=

eX−m−2(s
′).

Proof. Let M = g · ℓ · eX−m(t) with g ∈ Gm, ℓ ∈ Λm, and t ∈ TX−m. Since

φm+1

(
φm(eX−m(t))

)
= eX−m−2

(
φm+1(φm(t))

)
and φm and φm+1 are ring homomorphisms, it suffices to show that for any x ∈ X − m,
d ∈ N, a, b ∈ k, we can find s1, s2 ∈ KX−m−2 such that

φm+1

(
φm

(
E(d)(x)a

))
= eX−m−2(s1)

φm+1

(
φm

(
logE ′(x)b

))
= eX−m−2(s2).

First,

φm

(
E(d)(x)a

)
= eX−m−1(E(x− 1))aE ′(x− 1)da

∞∑
k=0

(
a

k

)
δd(x)

k.

Recall that Supp(δd(x)) < ΓX−m−1,0,small, so

Supp

(
∞∑
k=1

(
a

k

)
δd(x)

k

)
< ΓX−m−1,0,small

and thus Supp
((∑∞

k=1

(
a
k

)
δd(x)

k
)l)

< ΓX−m−1,0,small for all 0 < l ∈ N. So we can express

E ′(x− 1)da
∞∑
k=0

(
a

k

)
ϵk = eX−m−1

da logE ′(x− 1) +
∞∑
l=1

(−1)l+1

l

(
∞∑
k=1

(
a

k

)
δd(x)

k

)l
 .

By Lemma 4.4.1, we can take s1 = φm+1

(
da logE ′(x− 1) +

∑∞
l=1

(−1)l+1

l

(∑∞
k=1

(
a
k

)
δd(x)

k
)l)

.
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Next we will find s2. We can calculate

φm+1

(
φm

(
logE ′(x)b

))
= φm+1

(
E(x− 1)b

∞∑
k=0

(
b

k

)(
logE ′(x− 1)

E(x− 1)

)k
)

= eX−m−2

(
E(x− 2)

)b ∞∑
k=0

(
b

k

)(
E(x− 2) + logE ′(x− 2)

)k
eX−m−2

(
E(x− 2)

)k .

Since Supp

(∑∞
k=1

(
b
k

)(E(x−2)+logE′(x−2)
)k

eX−m−2

(
E(x−2)

)k
)

< ΓX−m−2,0,small, we can now bring the sum

inside eX−m−2 to get φm+1

(
φm

(
logE ′(x)b

))
= eX−m−2(s2) where

s2 = bE(x− 2) +
∞∑
l=1

(−1)l+1

l

(
∞∑
k=1

(
b

k

)(
E(x− 2) + logE ′(x− 2)

)k
eX−m−2

(
E(x− 2)

)k
)l

.

Lemma 4.4.3. Let s ∈ k[ΓX−m,0,small] and let d be the value of the largest derivative ap-
pearing in s. Let s̃ = (φm+d ◦ · · · ◦ φm)(s). Then s̃|Lv(s̃) is a single term of the form

ceX−m−d−1(α)

p∏
j=1

E ′(xj − d− 1)aj

with c ∈ k× α ∈ AX−m−d−1,0 ⊕ · · · ⊕ AX−m−d−1,d and aj ∈ k.

Proof. In Lemma 4.3.6, we showed that φm,0(s)|Lv(φm,0(s)) ∈ k[Gm+1], and

Lm
(
ρm(s)

)
= Lm

(
σm+1

(
φm,0(s)|Lv(φm,0(s))

) )
.

Write

Lm
(
ρm(s)

)
=

p∏
j=1

E0(xj − 1)aj,0E1(xj − 1)aj,1 · · ·Ed(xj − 1)aj,d .

We now inductively define a sequence s = s0, s1, . . . , sd with sn ∈ k[ΓX−m−n,0,small] for

n = 0, . . . , d. Let s0 = s. Let s1 =
φm,0(s0)|Lv(φm,0(s0))∏p

j=1 E(xj−1)aj,0
∈ k[ΓX−m−1,0,small], so that

Lm
(
σm+1(s1)

)
=

p∏
j=1

E1(xj − 1)aj,1 · · ·Ed(xj − 1)aj,d

Lm
(
ρm+1(s1)

)
=

p∏
j=1

E0(xj − 2)aj,1E1(xj − 2)aj,1+aj,2E2(xj − 2)aj,3 · · ·Ed−1(xj − 2)aj,d .
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Now given sn for n < d such that

Lm
(
ρm+n(sn)

)
=

p∏
j=1

E0(xj − n− 1)aj,1+···+aj,nE1(xj − n− 1)aj,1+···+aj,n+1

E2(x− n− 1)aj,n+2 · · ·Ed−n(xj − n− 1)aj,d

let

sn+1 =
φm+n,0(sn)|Lv(φm+n,0(sn))∏p

j=1E(xj − n− 1)aj,1+···+aj,n
.

Then sn+1 ∈ k[ΓX−m−n−1,0,small] and

Lm
(
σm+n+1(sn+1)

)
= σm+n+1

(
φm+n,0(sn)|Lv(φm+n,0(sn))∏p

j=1E0(xj − n− 1)aj,1+···+aj,n

)

=
σm+n+1

(
φm+n,0(sn)|Lv(φm+n,0(sn))

)∏p
j=1E0(xj − n− 1)aj,1+···+aj,n

=

p∏
j=1

E1(xj − n− 1)aj,1+···+aj,n+1 · · ·Ed−n(xj − n− 1)aj,d

by Lemma 4.3.6. So

Lm
(
ρm+n+1(sn+1)

)
= Lm

(
σm+n+1(Lv(φm+n+1,0(sn+1)))

)
=

p∏
j=1

E0(xj − n− 2)aj,1+···+aj,n+1E1(xj − n− 2)aj,1+···+aj,n+1+aj,n+2

E2(xj − n− 2)aj,n+3 · · ·Ed−n−1(xj − n− 2)aj,d

and we can continue the induction.
Note that

Lm
(
ρm+d(sd)

)
=

p∏
j=1

E0(xj − d− 1)aj,1+···+aj,dE1(xj − d− 1)aj,1+···+aj,d .

Let Init(sd) be as in Remark 3.3.1. Since sd ∈ k[Gm+d] involves no log generators, and the
only possible exponents of El(xj − d − 1) for l ≥ 2 in Init(sd) are natural numbers, the
preimage of Init(sd) under σm+d+1 must be the single term

c

p∏
j=1

E ′(xj − d− 1)aj,1+···+aj,d = φm+d(sd)|Lv(φm+d(sd))
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for some 0 ̸= c ∈ k. Let t0 = (φm+d ◦ · · · ◦φm+1)
(∏p

j=1E(xj − 1)aj,0
)
∈ AX−m−d−1,d, and for

l = 1, . . . , d−1, let tl = (φm+d◦· · ·◦φm+l+1)
(∏p

j=1E(xj − l − 1)aj,1+···+aj,l

)
∈ AX−m−d−1,d−l.

Then

s̃|Lv(s̃) = (φm+d ◦ · · · ◦ φm)(s|Lv(s))|Lv(s̃)

= (φm+d ◦ · · · ◦ φm+1)

(
s1

p∏
j=1

E(xj − 1)aj,0

)∣∣∣∣∣
Lv(s̃)

= (φm+d ◦ · · · ◦ φm+1)(s1)|Lv(s̃) · t0

= (φm+d ◦ · · · ◦ φm+2)

(
s2

p∏
j=1

E(xj − 2)aj,1

)∣∣∣∣∣
Lv(s̃)

· t0

= (φm+d ◦ · · · ◦ φm+2)(s2)|Lv(s̃) · t0t1
...

= φm+d

(
sd

p∏
j=1

E(xj − d)aj,1+···+aj,d

)∣∣∣∣∣
Lv(s̃)

t0 · · · td−2

= c

p∏
j=1

E ′(xj − d− 1)aj,1+···+aj,d · t0 · · · td−1.

So s̃|Lv(s̃) is a single term of the specified form.

The following lemma shows that we can eventually find a logarithm of any positive
element of KX−m, after applying enough embeddings.

Lemma 4.4.4. For all s ∈ (KX−m)
>0, there is l ∈ N and s′ ∈ KX−m−l−1 such that

(φm+l ◦ · · · ◦ φm)(s) = eX−m−l−1(s
′).

Proof. Let Lm(s) = eX−m(α+ t) · g · ℓ with α ∈ AX−m,n ⊕ · · · ⊕AX−m,0, t ∈ TX−m, g ∈ Gm,
and ℓ ∈ Λm. Let x1 > · · · > xp list the elements of X that appear in g or ℓ and let aj = ξxj

(g)
for j = 1, . . . , p. Then we can write

s = s0 · eX−m(α + t)

p∏
j=1

E(xj)
aj

with Lv(s0) = ΓX−m,0,small. Let d be the largest derivative that appears in s0|Lv(s0). Then

(φm+d ◦ · · · ◦ φm)

(
eX−m(α + t)

p∏
j=1

E(xj)
aj

)
=

eX−m−d−1

(
(φm+d ◦ · · · ◦ φm)(α + t) +

p∑
j=1

aj(eX−m−d−1)
◦(d+1)

(
E(xj − d− 1)

))
.
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By Lemma 4.4.3, we can write

(φm+d ◦ · · · ◦ φm)(s0) =

(
ceX−m−d−1(α

′)

p∏
j=1

E ′(xj − d− 1)aj,1+···+aj,d

)
(1 + ϵ)

with Supp(ϵ) < ΓX−m−d−1,0,small. Note that c > 0 since s > 0 and all φk are order preserving
for k ∈ N. So log c ∈ k is defined, and we can express (φm+d ◦ · · · ◦ φm)(s) = eX−m−d(s

′)
where

s′ = log c+ α′ +

p∑
j=1

(aj,1 + · · ·+ aj,d) logE
′(xj − d− 1) +

∞∑
k=1

(−1)k+1

k
ϵk

+ (φm+d ◦ · · · ◦ φm)(α + t) +

p∑
j=1

aj(eX−m−d−1)
◦(d+1)

(
E(xj − d− 1)

)
.

Since Supp(ϵ) < ΓX−m−d−1,0,small,
∑∞

k=1
(−1)k+1

k
ϵk ∈ KX−m−d−1.

Corollary 4.4.5. The order induced in Lemma 4.1.6 on ΓX,0 using l̂og matches the order
given by defining

g · ℓ > eTX
(t) if and only if s′ > ρd+1

(
(φd ◦ · · · ◦ φ0)(t)

)
where s′ is such that (φm+d ◦ · · · ◦ φm)(g · ℓ) = eX−m−d−1(s

′).

Proof. Find s′ by applying Lemma 4.4.4 to g · ℓ. The sum
∑p

j=1 aj(eX−m−d−1)
◦(d+1)

(
E(xj −

d − 1)
)
+ α′ is an initial subsum of s′ since α = t = 0. Tracing through the proof of

Lemma 4.4.4, α′ arises from s0, which is a single monomial. We can express Lm(ρ0(s0)) =∏p
j=1E0(xj − 1)bjE1(xj − 1)cj . So tracing through the proof of Lemma 4.4.3,

α′ =

p∑
j=1

(
bj(eX−m−d−1)

◦d(E(xj − d− 1)) + cj(eX−m−d−1)
◦(d−1)(E(xj − d− 1)) + · · ·

)
where the + · · · contains lesser terms. Then

p∑
j=1

(
aj(eX−m−d−1)

◦(d+1)(E(xj − d− 1))+

bj(eX−m−d−1)
◦d(E(xj − d− 1)) + cj(eX−m−d−1)

◦(d−1)(E(xj − d− 1))
)

exactly matches l̂og(ρ0(g ·ℓ)) if we identify E0(xj−n) with (eX−m−d−1)
◦(d+1−n)(E(xj−d−1))

for n = 0, 1, 2.

Lemma 4.4.6. If s ∈ KX−m and eX−m(s) is defined, so are eX−m

(
± eX−m(s)

)
.
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Proof. Suppose s ∈ B∗
X−m,n, so we can write s = a+ t+c+ϵ with Supp(a) > ΓX−m,0,small (or

a = 0), t ∈ TX−m, c ∈ k, and Supp(ϵ) < ΓX−m,0,small (or ϵ = 0). Note that eX−m(a+ t)ϵk ̸∈
ΓX−m,0,small for all k ∈ N. So we can separate

eX−m(a+ t+ c+ ϵ) = eX−m(c)
∞∑
k=0

eX−m(a+ t)ϵk

k!
= a′ + ϵ′

with Supp(a′) > ΓX−m,0,small and Supp(ϵ′) < ΓX−m,0,small. So eX−m(a+t+c+ϵ) ∈ B∗
X−m,n+1.

The same argument shows eX−m(−a− t− c− ϵ) ∈ B∗
X−m,n+1.

Corollary 4.4.7. For all s ∈ KX−m, there is l ∈ N such that

eX−m−l−1

(
(φm+l ◦ · · · ◦ φm)(s)

)
is defined.

Proof. Let s ∈ KX−m, and write s = u|s| with u = ±1. By Lemma 4.4.4, we know there is
some l ∈ N and s′ ∈ KX−m−l−1 such that

(φm+l ◦ · · · ◦ φm)(|s|) = eX−m−l−1(s
′).

By Lemma 4.4.6, eX−m−l−1

(
u · eX−m−l−1(s

′)
)
is defined. So

eX−m−l−1

(
u · eX−m−l−1(s

′)
)
= eX−m−l−1

(
u(φm+l ◦ · · · ◦ φm)(|s|)

)
= eX−m−l−1

(
(φm+l ◦ · · · ◦ φm)(s)

)
is defined.

Lemma 4.4.8. Let s1, . . . , sn ∈ KX−m with Supp(si) < 1. Then there is l ∈ N such that

∞∑
j1,...,jn=0

aj1,...,jn

n∏
i=1

(φm+l ◦ · · · ◦ φm)(si)
ji ∈ KX−m−l−1

for any (aj1,...,jn)j∈Nn ∈ (kα)
ω, for any α ∈ A.

Proof. It suffices to show that for some l ∈ N,

Supp
(
(φm+l ◦ · · · ◦ φm)(si)

)
< ΓX−m−l−1,0,small

for all i = 1, . . . , n. If Supp
(
(φm+l ◦ · · · ◦ φm)(si)

)
< ΓX−m−l−1,0,small for some l, then

Supp
(
(φm+l′ ◦ · · · ◦ φm)(si)

)
< ΓX−m−l′−1,0,small for all l

′ > l. So we will find li that works
for i and take l = max(l1, . . . , ln).

If Supp(si) < ΓX−m,0,small, then we can use l = 0, so we may assume Lv(si) = ΓX−m,0,small.
Let di be the largest derivative that appears in si|Lv(si). Let x1 > · · · > xp list the elements
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of X that appear in s1|Lv(s1), . . . , sn|Lv(sn). Let s̃i = (φm+d◦· · ·◦φm)(si). Since Supp(si) < 1,
we must have Supp(s̃i) < 1. By Lemma 4.4.3, we can write

s̃i|Lv(s̃i) = cieX−m−d−1(αi)

p∏
j=1

E ′(xj − d− 1)ai,j

with αi ∈ AX−m−d−1,0⊕· · ·⊕AX−m−d−1,d. No monomial of this form can be in ΓX−m−d−1,0,small,
so we must have Supp(s̃i) < ΓX−m−d−1,0,small.

Corollary 4.4.9. Let s1, . . . , sn ∈ KX−m with Supp(si) < 1. Let f ∈ R{X1, . . . , Xn}, and
let (r1, . . . , rn) ∈ kα ∩ [−1, 1]n for some α ∈ A. Then there is l ∈ N such that

f
(
r1 + (φm+l ◦ · · · ◦ φm)(s1), . . . , rn + (φm+l ◦ · · · ◦ φm)(sn)

)
∈ KX−m−l−1.

Proof. The coefficient of any monomial

n∏
i=1

(φm+l ◦ · · · ◦ φm)(si)
ji

can be shown to converge because f converges in a neighborhood of [−1, 1]n.

Corollary 4.4.10. For all s ∈ KX−m, there is l ∈ N such that (φm+l ◦ · · · ◦ φm)(s) has a
multiplicative inverse in KX−m−l−1.

Proof. We can write s = Lm(s)(1 + ϵ), with Supp(ϵ) < 1. By Lemma 4.4.9, there is l ∈ N
such that

∞∑
k=0

(
− (φm+l ◦ · · · ◦ φm)(ϵ)

)k
is defined in KX−m−l−1. Then

(φm+l ◦ · · · ◦ φm)

(
1

Lm(s)

)
·

∞∑
k=0

(
− (φm+l ◦ · · · ◦ φm)(ϵ)

)k
the multiplicative inverse of (φm+l ◦ · · · ◦ φm)(s) in KX−m−l−1.

Definition 4.4.11. Let DX(k) be the direct limit of the directed system

(KX−m, φm+l ◦ · · · ◦ φm)l,m∈N.

Corollary 4.4.12. DX(k) can be made into a model of Tan(exp, log).

Proof. DX(k) is an ordered ring that is closed under log by Lemma 4.4.4, closed under exp
by Lemma 4.4.7, closed under restricted analytic functions by Corollary 4.4.9, and is a field
by Lemma 4.4.10. So DX(k) can be made into a model of Tan(exp, log).
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Lemma 4.4.13. For all s ∈ DX(k)+∞ and x ∈ X, there are n1, n2 ∈ N such that

log◦n1 E(x) < s < exp◦n2 E(x).

Proof. Identify s with a corresponding element s′ of some KX−m,n, and let x ∈ X. Then
(eX−m)

◦k(E(x−m)
)
∈ AX−m,k for all k ∈ N. So

s′ < (eX−m)
◦(n+1)

(
E(x)

)
∈ eX−m(AX−m,n)

and thus s′ < exp◦(n+1−m)E(x) in DX(k).
Now we must find n1 such that

log◦n1 E(x) < s.

As in the proof of Lemma 4.4.4, write

s′ = s0 · eX−m(α + t)

p∏
j=1

E(xj −m)aj

with α ∈ AX−m,n ⊕ · · · ⊕ AX−m,0, t ∈ TX−m, and Lv(s0) = ΓX−m,0,small. Since s is positive
and infinite, so is s′.

We now split into cases based on the form of Lm(s′). First, if α ̸= 0, then we must have
α > 0 since s′ is positive and infinite. Then

s′ > E(x−m) ∈ KX−m,0

so s > log◦mE(x).
Second, if α = 0 and ex−m(t)

∏p
j=1E(xj −m)aj ̸= 1, then we must have

ex−m(α + t)

p∏
j=1

E(xj −m)aj > 1

again since s′ is infinite. Let y be the smallest element of X appearing in Lm(t) (or y = +∞
if t ̸= 0), and let x∗ = min(y, xp). We can find 0 < a ∈ k such that

E(x∗ −m)a < ex−m(α + t)

p∏
j=1

E(xj −m)aj .

If t ̸= 0 or if p > 1, then a = 1 works. If t = 0 and x∗ = x1, then let a = |a1|
2
. Now since

Lv(s0) = ΓX−m,0,small, we must have s0 > E(x∗ −m)−a/2. So

s′ > E(x∗ −m)a · E(x∗ −m)−a/2 = E(x∗ −m)a/2.
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And thus s > E(x∗ −m)a/2 > E(x−m− 1) = log◦(m+1)E(x).
Third, suppose s′ = s0. Let d be the largest derivative appearing in s0|Lv(s0). Let

s̃0 = (φm+d ◦ · · · ◦ φm)(s0), which must be positive and infinite since s′ is. By Lemma 4.4.3,
we can write

s̃0|Lv(s̃0) = ceX−m−d−1(α)

p∏
j=1

E ′(xj − d− 1)aj

with c > 0, α ∈ AX−m−d−1,0 ⊕ · · · ⊕ AX−m−d−1,d, and aj ∈ k. Since s̃0 ∈ KX−m−d−1 is of
a form handled by either the first or second case, we get either s̃0 > E(x −m − d − 1) or
s̃0 > E(x∗ −m− d− 1)a/2. We have

s > E(X −m− d− 2) = log◦(m+d+2)E(x)

in either case.
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Chapter 5

An Ltransexp differential series field

Let F ⊨ Ttransexp. We will build an increasing sequence (Hi : i ∈ N) of ordered log-exp
differential fields, starting with H0 = F ((τ−1))le where we take τ > F for the ordering. We
will build this sequence so that

MF :=
⋃
i∈N

Hi

is a Lan(exp, log)-structure closed under E, its derivatives E(d), and their functional inverses.
We will then define a derivation onMF that works like differentiation with respect to τ . Each
Hi+1 will be constructed from Hi using the constructions in Sections 4.1 and 4.2 to add new
monomials for E, its derivatives, and L applied to certain elements of Hi.

We do not need to create new monomials for E, its derivatives, and L applied to all
elements of Hi. For example, there is no need to add new monomials for E composed with
elements in the same Z-orbit—if we include E(x) when building H1, then we automatically
have expressions that represent E(x + k), k ∈ Z. Also, if x, y ∈ Hi are “too close” in the
sense that x > y but E(x) < E(y)a for some a, then we cannot add both E(x) and E(y) as
new elements over a field of coefficients containing a because the separation assumptions of
Remark 3.1.2 would not be satisfied. This will not be an issue because we will be able to
express E(x) and E(y) in terms of each other.

5.1 Constructing Hi+1 from Hi

Suppose H0, . . . , Hi have been constructed. If i > 0, assume we have also constructed order-
preserving embeddings ιj : Hj → Hj+1 for j = 0, . . . , i− 1 such that if j > 0, z ∈ Hj−1, and
E(z) is defined in Hj, then

ιj
(
E(z)

)
= E

(
ιj−1(z)

)
.

For each j = 0, . . . , i, let

Fin(Hj) =
{
f ∈ Hj : ∃n ∈ N

(
|f | ≤ n

)}
.
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Since Fin(Hj) is a convex subgroup of Hj, the quotient Hj/Fin(Hj) inherits an order
from Hj. For each j = 1, . . . , i − 1, ιj(Hj)/Fin (ιj (Hj)) is a (non-convex) subgroup of
Hj+1/Fin (Hj+1).

Definition 5.1.1. If s ∈ Hj+1 and s > F , define λ(s) to be the unique (if it exists) one of

1. β =
{
E
(
L◦(j+2)(τ)

)}
or

2. β ∈ Hj/Fin(Hj)

such that for some z ∈ β and n ∈ N, E(z ± n) are defined in Hj+1 and

E(z − n) < s < E(z + n).

Suppose also that for each s ∈ (Hj+1)>F for j = 0, . . . , i − 1, λ(s) exists. We will prove
by induction in Lemma 5.1.9 that λ(s) exists for all s ∈ (Hi+1)>F .

The goal of this section is to construct Hi+1 from Hi as follows: Any coset F < α ∈
Hi/Fin(Hi) viewed as a subset of Hi consists only of positive elements of Hi that are infinite
relative to F . For each such α, we will define Xα ⊆ α and create new monomials E(d)(x) and
logE ′(x) for all x ∈ Xα and d ∈ N. We will do this by building a field Cᾱ,i ⊨ Tan(exp, log)
for each finite increasing sequence

ᾱ = {α0 < α1 < · · · < ak} ⊂
(
Hi/Fin(Hi)

)
>F

using the constructions in Sections 4.1 and 4.2. We will then define Hi+1 to be the direct
limit of

(
Cᾱ,i : α ∈ (Hi/Fin(Hi))>0

)
, and show that for each infinite (relative to F ) s ∈ Hi+1,

λ(s) exists. Finally, we will define an order preserving embedding ιi : Hi → Hi+1.

Constructing Cᾱ,i

First suppose ᾱ is the empty sequence. We will build C∅,i in two steps. First, let X ′
i =

{L◦(i+2)(τ)}, a single element set. Note that X ′
i and F trivially satisfy the ordering and

separation assumptions of Remark 3.1.2. Since F ⊨ Tan(exp, log), we can build DX′
i
(F ) ⊨

Tan(exp, log), using the one-element family {F} of subfields of F .
Second, let Xi = {L◦(i+1)(τ)}, another single element set. We would like to define C∅,i :=

DXi
(DX′

i
(F )), so we must check that Xi and DX′

i
(F ) satisfy the ordering and separation

assumptions of Remark 3.1.2. Most of the assumptions are satisfied trivially, but we must
show that

E
(
L◦(i+1)(τ)−m

)
> DX′

i
(F )

for all m ∈ N. We have not yet defined how E
(
L◦(i+1)(τ) − m

)
compares to elements of

DX′
i
(F ), but by Lemma 4.4.13, any element s ∈ DX′

i
(F ) is bounded above by

exp◦nE
(
L◦(i+2)(τ)

)
= exp◦n L◦(i+1)(τ)
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for some n ∈ N. Since we want E > exp◦l for any l ∈ N, we extend the ordering so that

E
(
L◦(i+1)(τ)−m

)
= log◦mE

(
L◦(i+1)(τ)

)
> log◦m

(
exp◦(n+m)(L◦(i+1)(τ))

)
= exp◦n (L◦(i+1)(τ)

)
> s

for all m ∈ N. Since the assumptions of Remark 3.1.2 are now satisfied, we may take

C∅,i := DXi
(DX′

i
(F )) ⊨ Tan(exp, log)

Again using the one-element family {DX′
i
(F )} of subfields of DX′

i
(F ).

Next, we will define the sets Cᾱ,i for ᾱ = {α0 < · · · < αk} ⊂
(
Hi/Fin(Hi)

)
>0

by induction,
again using the construction DX(k) from Section 4.2. To define C{α},i for a singleton {α},
we use k = C∅,i as the field of coefficients, and the collection (kα)α∈A = {C∅,i}, which we
call κ∅,i. To define Cᾱ,i for ᾱ = {α0 < · · · < αk−1 < α}, we use k = C{α0<···<αk−1},i as the
field of coefficients. Let

κ{α0<···<αk−1},i =
{
DX(k) : X ⊂ Xαk−1

finite, k ∈ κ∅,i

}
if k = 1

κ{α0<···<αk−1},i =
{
DX(k) : X ⊂ Xαk−1

finite, k ∈ κ{α0<···<αk−2},i
}

if k > 1.

We will use κ{α0<···<αk−1},i as the family of subsets of C{α0<···<αk−1},i in the construction
Cᾱ,i = DXαk

(C{α0<···<αk−1},i) from Section 4.2. In both these cases, we will use the same set
X = Xαk

⊂ αk to build the monomials.
We define Xα for α ∈

(
Hi/Fin(Hi)

)
>F

as follows:

Definition 5.1.2. If i > 0 and α ∈
(
ιi−1(Hi−1)/Fin(ιi−1(Hi−1))

)
>F

, then let

X ′
α = ιi−1

(
X(ιi−1)−1(α)

)
.

If i > 0 and E
(
L◦(i+1)

)
∈ α, let X ′

α =
{
E
(
L◦(i+1)

)}
. Otherwise, let X ′

α = ∅.
Extend X ′

α to a maximal set Xα of representatives from α satisfying the following condi-
tions:

1. The elements of Xα are not too close: Suppose i > 0, x > y, and 1
x−y

is infinite. If

α ≤ λ

(
1

x− y

)
then at most one of x, y is in Xα.

2. The elements of Xα not too far apart: there exists r : Xα ×Xα → Q ∩ (0, 1) such that
for all x, y ∈ Xα with x > y, we have x− y < r(x, y)
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Remark 5.1.3. The intuition for why the first condition means x and y are “not too close”
comes from its equivalence via Lemma 5.1.6 to the ordering and separation assumption from
Remark 3.1.2 requiring that E(x −m) > E(y −m)a whenever x > y, m ∈ N, and a is in
the field k of coefficients and exponents. We use the equivalent condition here to make it
clear that the same set Xα will satisfy the ordering and separation assumptions regardless
of which field of coefficients we pair it with.

Remark 5.1.4. The cases used to define X ′
α in Definition 5.1.2 are disjoint. Every infinite

monomial in Hi−1 is bounded below by log◦l(τ) for some l ∈ N if i = 1, and by

log◦lE
(
L◦i(τ)

)
∈ DX′

i−2
(F )

for some l ∈ N if i > 1 by Lemma 4.4.13. If E
(
L◦(i+1)

)
∈ α, then

α <
(
ιi−1(Hi−1)/Fin(ιi−1(Hi−1))

)
>F
.

So the different definitions of X ′
α do not conflict.

If i > 0 and α ∈ ιi−1(Hi−1)/Fin(ιi−1(Hi−1)), we must check that X ′
α satisfies the two

conditions in Definition 5.1.2, so that it is possible to extend it to a maximal set Xα that
satisfies these conditions.

1. To see that X ′
α satisfies Condition (1), let x > y ∈ X ′

α and suppose 1
x−y

is infinite.

If i = 1, then we must have ι−1
0

(
1

x−y

)
∈ H0. Then

λ

(
1

x− y

)
=
{
E
(
L(L(τ))

)}
since H0 is exponentially bounded and we identify E

(
E(L(L(τ))) + n

)
with exp◦n(τ)

for all n ∈ Z. So we have α > λ
(

1
x−y

)
.

If i > 1, then (ιi−1)
−1(x), (ιi−1)

−1(y) ∈ X(ιi−1)−1(α) means that

(ιi−2)
−1(α) > λ

(
1

(ιi−1)−1(x− y)

)
.

Since ιi−1

(
E(z)

)
= E

(
ιi−2(z)

)
, we must have ιi−2

(
λ(s)

)
= λ

(
ιi−1(s)

)
because

E(z − n) < s < E(z + n) if and only if ιi−1

(
E(z − n)

)
< ιi−1(s) < ιi−1

(
E(z + n)

)
i.e., E

(
ιi−2(z)− n

)
< ιi−1(s) < E

(
ιi−2(z)− n

)
.

So α > ιi−2

(
λ
(

1
(ιi−1)−1(x−y)

))
= λ

(
1

x−y

)
.
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2. Since X(ιi−1)−1(α) satisfies Condition (2) and ιi−1 is order preserving, X ′
α satisfies Con-

dition (2).

Since X ′
α satisfies Conditions (1) and (2) in Definition 5.1.2, it can be extended to a maximal

set Xα that satisfies the two conditions.
In order to define

C{α0},i := DXα0
(C∅,i) {α0} a singleton

Cᾱ,i := DXαk
(C{α0<···<αk−1},i) ᾱ = {α0 < · · · < αk}, k > 0

we must check that the ordering and separation assumptions of Remark 3.1.2 are satisfied
in each case. Any Xα is a subset of an ordered field, and each C∅,i and C{α0<···<αk−1},i is
constructed to be an ordered exponential field. Note that Condition (2) in Definition 5.1.2
of the sets Xα matches the final ordering and separation assumption of Remark 3.1.2. So all
that remains to show are assumptions (3a) and (3b).

First, we will check that for all x ∈ Xαk
and m ∈ N, we have

E(x−m) > C∅,i if k = 0

E(x−m) > C{a0<···<ak−1},i if k > 0.

Lemma 5.1.5. Let k ∈ N, ᾱ = {α0 < · · · < αk}, and x ∈ Xαk
.

1. If k = 0, then E(x−m) > C∅,i for all m ∈ N.

2. If k > 0, then E(x−m) > C{a0<···<ak−1},i for all m ∈ N.

Proof. If k = 0, let s ∈ C∅,i and z = L◦(i+1)(τ). Since x ∈ Xα0 ⊂ α0 ∈
(
Hi/Fin(Hi)

)
>F

, x
is positive and infinite. The smallest positive infinite elements of Hi come from DX′

i−1
(F ).

Since z ∈ X ′
i−1, by Lemma 4.4.13 there is some l ∈ N such that

x > log◦lE(z).

Since z ∈ Xi, by Lemma 4.4.13 there is some n ∈ N such that

s < exp◦nE(z).

We have not yet defined how E(x − m) compares to elements of C∅,i, but since we want
E > exp◦k for all k ∈ N, we extend the ordering so that

E(x−m) = log◦mE(x)

> log◦mE
(
log◦lE(z)

)
> log◦m exp◦(n+m+l)

(
log◦lE(z)

)
= exp◦nE(z)

> s
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for all m ∈ N.
If k > 0, let s ∈ C{a0<···<ak−1},i. By Lemma 4.4.13, there is some z ∈ Xαk−1

and n ∈ N
such that s < exp◦nE(z). We have not yet defined how E(x−m) compares to elements of
C{a0<···<ak−1},i, but since αk > αk−1 in Hi/Fin(Hi), we know x−m > z + n for any m ∈ N.
So we extend the ordering to have

E(x−m) > E(z + n) = exp◦nE(z) > s

for all m ∈ N.

To finish checking the assumptions of Remark 3.1.2, we must show that

E(x−m) > E(y −m)a

for all m ∈ N, where

1. if k = 0, then x, y ∈ Xα0 with x > y and a ∈ C∅,i, and

2. if k > 0, then x, y ∈ Xαk
with x > y and a ∈ C{a0<···<ak−1},i.

We prove this from the first condition on Xαk
from Definition 5.1.2.

Lemma 5.1.6. Let i ∈ N and let β > ᾱ ∈ (Hi/Fin(Hi))>F , so that E(x−m) > Cᾱ,i for all
x ∈ Xβ and m ∈ N. Then the following are equivalent:

1. Xβ satisfies Condition (1) of Definition 5.1.2.

2. For x, y ∈ Xβ with x > y, m ∈ N, and a ∈ Cᾱ,i, we have E(x−m) > E(y −m)a.

Proof. Let x, y ∈ Xβ with x > y. We will need to extend the partial order on expressions
involving E, L, and log so that for any m ∈ N and any a ∈ (Cᾱ,i)>1,

E(x−m) > E(y −m)a if and only if E(x−m− 2) > E(y −m− 2) + log a

if and only if x−m− 2 > L
(
E(y −m− 2) + log a

)
if and only if x− y > L

(
E(y −m− 2) + log a

)
− L

(
E(y −m− 2)

)
.

Expanding L
(
E(y−m− 2)+ log a

)
using the Taylor series for L around E(y−m− 2) gives

L(E(y −m− 2) + log a)− L(E(y −m− 2)) =
∞∑
j=1

L(j)(E(y −m− 2))(log a)j

j!

=
log a

E ′(y −m− 2)
+

(log a)2E ′′(y −m− 2)

2E ′(y −m− 2)3
+ · · ·

which is a valid sum in the structure DX′(Cᾱ,i) for any X
′ ∋ y such that X ′ and Cᾱ,i satisfy

the ordering and separation assumptions of Remark 3.1.2.
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First suppose 1
x−y

∈ Fin(Hi). Then Condition (1) is trivially satisfied. Since there is

some n ∈ N such that 1
x−y

< n, and since E(y−m)
log a

is infinite, we have 1
x−y

< E(y−m)
log a

. By the

computations above, this shows that E(x−m) > E(y −m)a.

Now suppose 1
x−y

̸∈ Fin(Hi). Let z ∈ λ
(

1
x−y

)
, and let n ∈ N be such that

E(z − n) <
1

x− y
< E(z + n).

If E(x−m) ≤ E(y −m)a for some m ∈ N and a ∈ (Cᾱ,i)>1, then

E(z + n) >
1

x− y
>
E ′(y −m− 2)

2 log a
> E(y −m− 2).

So z+n > y−m− 2, and thus λ
(

1
x−y

)
≥ β. Conversely, if λ

(
1

x−y

)
≥ β, then there is some

m ∈ N such that z − n > y −m. So

1

x− y
> E(z − n) > E(y −m) >

E ′(y −m− 2)

2 log a

and by the computations above, this means E(x−m) ≤ E(y −m)a.

It follows from Lemma 5.1.6 that the ordering and separation assumptions in Remark
3.1.2 are satisfied in the cases k = 0 and k > 0. So we can define

C{a0},i := DXαm
(C∅,i)

Cᾱ,i := DXα0

(
C{a0<···<ak−1},i

)
for k > 0.

Defining Hi+1 and ιi : Hi → Hi+1

We would like to define Hi+1 as the direct limit of the sets Cᾱ,i, so we must show that these
sets form a directed system ordered by inclusion.

Lemma 5.1.7. Let ᾱ = {α0 < · · · < αk} ⊂ (Hi/Fin(Hi))>F , and let β ∈ (Hi/Fin(Hi))>F

such that β ̸= αj for j = 1, . . . , k. Then Cᾱ,i is a substructure of Cᾱ∪β,i.

Proof. If β > αk, then Cᾱ,i ⊂ DCᾱ,i
(Xβ) = Cᾱ∪β,i.

If β < α0, then

C∅,i ⊂ C{β},i ⇒ C{α0},i ⊂ C{β<α0},i

⇒ C{α0<α1},i ⊂ C{β<α0<α1},i
...

⇒ C{α0<···<αk},i ⊂ C{β<α0<···<αk},i.
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Similarly, if αl < β < αl+1, then

C{α0<···<αl},i ⊂ C{α0<···<αl<β},i ⇒ C{α0<···<αl+1},i ⊂ C{α0<···<αl<β<αl+1},i
...

⇒ C{α0<···<αk},i ⊂ C{α0<···<αl<β<αl+1<···<αk},i

as claimed.

Corollary 5.1.8.
(
Cᾱ,i : ᾱ ∈ (Hi/Fin(Hi))>F

)
forms a directed system.

Build Hi+1 from Hi as the direct limit of the directed system(
Cᾱ,i : ᾱ ∈ (Hi/Fin(Hi))>F

)
.

Hi+1 can be made into a model of Tan(exp, log) because each Cᾱ,i ⊨ Tan(exp, log).

Lemma 5.1.9. For all s ∈ (Hi+1)+∞, λ(s) exists.

Proof. Let s ∈ Cᾱ,i with s > F . We divide into several cases:

1. If s is bounded in DX′
i
(F ), then

λ(s) :=
{
E
(
L◦(i+2)(τ)

)}
works, by Lemma 4.4.13.

2. If s > DX′
i
(f) and is bounded in DXi

(
DX′

i
(F )
)
, then

λ(s) := β

for E
(
L◦(i+1)(τ)

)
∈ Xβ ⊂ β ⊂ Hi works, again by Lemma 4.4.13.

3. If s > C∅,i, then we may write ᾱ = {α0 < · · · < αk} for some k ≥ 0. If s is bounded
in C{α0},i, then

λ(s) := α0

works, by Lemma 4.4.13.

4. Finally, if s > C{α0<···<αl},i and is bounded in C{α0<···<αl+1},i for some l < k, then use

λ(s) := αl+1

by Lemma 4.4.13.

So λ(s) is defined for all s > F in Hi+1.
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We will now define an order preserving embedding ιi : Hi → Hi+1. If i = 0, we think
of ι0 : H0 → H1 as substituting E(L(τ)) for τ . Let s ∈ H0 = F ((τ−1))le. We follow the
notation of [8], in which F ((τ−1))e is the direct limit of (Kn : n ∈ N), and F ((τ−1))le is the
direct limit of (Ln : n ∈ N). We may identify s with a unique element of C∅,0 ⊂ H1 as
follows:

1. If s =
∑
arτ

r ∈ K0, then define ι0(s) =
∑
arE(L(τ))

r

2. If s =
∑
fae(a) ∈ Kn+1, then define ι0(s) =

∑
ι0(fa)e(ι0(a))

3. For any s ∈ Ln, let ŝ = ηn(s) ∈ F ((τ−1))e, and express

s = ŝ
(
log◦n(τ)

)
.

a) If ŝ =
∑
arτ

r ∈ K0, then define

ι0,n(ŝ) =
∑

ar log
◦nE(L(τ))r.

b) If ŝ =
∑
fae(a) ∈ Km+1, then define

ι0,n(ŝ) =
∑

ι0,n(fa)e(ι0,n(a)).

Define ι0(s) = ι0,n(ŝ).

Now suppose i > 0. We inductively define ιi on the generators built from X ′
i−1, Xi−1,

and Xα for α ∈
(
Hi−1/Fin(Hi−1)

)
>F

. For all d ∈ N and a ∈ F , define

ιi
(
E(d)(L◦(i+1)(τ))a

)
= E(d)

(
L◦(i+1)(τ)

)a ∈ C∅,i.

Since the image of each generator is a single generator, we can extend ιi so that ιi
(
DX′

i−1
(F )
)
=

DXi
(F ) ⊂ C∅,i.
For all d ∈ N and a ∈ DX′

i−1
(F ), define

ιi
(
E(d)(L◦i(τ))a

)
= E(d)

(
E(L◦(i+1)(τ))

)ιi(a) ∈ C{β},i

where β is such that E(L◦(i+1)(τ)) ∈ Xβ. Again, since the image of each generator is a single
generator, we can extend ιi to identify C∅,i−1 with an isomorphic copy of itself in C{β},i.

Now assume we have defined ιi on Cᾱ,i for some ᾱ ⊂
(
Hi−1/Fin(Hi−1)

)
>F

. Let β > ᾱ.
For all d ∈ N and a ∈ Cᾱ,i, define

ιi
(
E(d)(x)a

)
= E(d)

(
ιi−1(x)

)ιi(a).
Again, we can extend ιi to identifyDXβ

(Cᾱ,i−1) with an isomorphic copy of itself in Cιi−1(ᾱ∪{β}),i.
Thus, we have identified Hi with an isomorphic copy of itself ιi(Hi) ⊂ Hi+1. We will

often suppress the ιj maps and identify Hj with this isomorphic copy in Hi+n.
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5.2 Building a structure closed under the symbols of

Ltransexp

Let MF be the direct limit of the directed system given by (Hi, ιi). Next we will show that
MF is closed under E, its derivatives, L, and the inverses of the derivatives of E.

Lemma 5.2.1. For all s ∈ (Hi)>F and d ∈ N, E(d)(s) ∈ Hi+1.

Proof. Let s ∈ β ∈ (Hi/Fin(Hi))>F . If s − l ∈ Xβ for some l ∈ Z, then E(d)(s) ∈ C{β},i by
construction.

If s − l ̸∈ Xβ for any l ∈ Z, then we must have i > 0, and each s − l must have been
excluded from Xβ for a reason. Let m ∈ N and x ∈ Xβ be the unique elements such that
s −m and x violate Condition (1) and satisfy Condition (2). For ease of notation we may
assume m = 0. Let β > α ∈ (Hi/Fin(Hi))>F . By Lemma 5.1.6, either s > x and there is
some 1 < a ∈ C{α},i and n ∈ N such that

E(s− n) ≤ E(x− n)a

or x > s and there are a and n as above with

E(x− n) ≤ E(s− n)a.

Following the computation in Lemma 5.1.6, this means that

|s− x| < 1

E(x− n− 3)
.

Let k = n+ 3. Since s− x ∈ Hi, we have ιi(s− x) ∈ Cᾱ,i ⊂ Hi+1 for some ᾱ ∈ Hi/Fin(Hi).
So we can represent E(l)(s− k) by

∞∑
n=0

E(l+n)(x− k)

n!
(s− x)n ∈ Cᾱ∪{β},i

for l ∈ N. Then for m = 0, . . . , k − 1, we can represent E(s−m) by

exp◦(k−m)

(
∞∑
n=0

E(n)(x− k)

n!
(s− x)n

)
.

Finally, we express E(d)(s) in terms of the expressions we have found for E(l)(s − k) and
E(s−m), l,m ∈ N, using the Bell polynomial difference-differential equations for E.

We will use the following technical lemma to show that for all positive infinite (relative
to F ) elements s ∈ Hi, we can identify L(s) with an element of Hi+1.
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Lemma 5.2.2. Suppose X and k satisfy the ordering and separation axioms of Remark 3.1.2.
Then for any positive infinite (relative to k) element s ∈ DX(k), there are n0, n1, n2 ∈ N for
which we can express log◦n0(s) in the form

log◦n0(s) = exp◦n1 E(x− n2) + s0

with Supp
(

s0
exp◦n1 E(x−n2)

)
< ΓX−n2,0,small.

Proof. By Lemma 4.4.3, there is some m ∈ N for which s can be identified with an element
cM0(1 + ϵ) ∈ KX−m with c > 0, Supp(ϵ) < ΓX−m,0,small, and M0 of the form

eX−m(α)

p∏
j=1

E ′(xj −m)aj

with α ∈ AX−m,k and x1 > · · · > xp ∈ X. We will also call this element s. Then

log s = log
(
cM0(1 + ϵ)

)
= α +

p∑
j=1

aj logE
′(xj −m) + log c+

∞∑
l=1

(−1)l+1

l
ϵl

∈ KX−m.

If α = 0, then we must have a1 > 0 since s > F . We can compute that

log◦2 s = E(x1 −m− 2) + log a1 + log

(
log s− a1E(x1 −m− 1)

a1E(x1 −m− 1)

)
.

So log◦2 s ∈ KX−m−2, and Supp
(

log◦2 s−E(x1−m−2)
E(x1−m−2)

)
< ΓX−m−2,0,small. So n0 = 2, n1 = 0, and

n2 = m+ 2 work in the case α = 0.
If 0 ̸= α ∈ AX−m,0, then we can write

α = s1

q∏
j=1

E(yj −m)bj

with b1 > 0 and Lv(s1) = ΓX−m,0,small. By Lemma 4.4.4, there is some m′ such that s1 and
log s1 have logarithms in KX−m−m′ . Then we can compute that

Lm
(
log◦2(φm+m′−1 ◦ · · · ◦ φm)(log s)

)
= (eX−m−m′)◦(m

′−2)
(
E(y1 −m−m′)

)
and Supp

(
log◦2(φm+m′−1◦···◦φm)(log s)

(eX−m−m′ )◦(m
′−2)
(
E(y1−m−m′)

)) < ΓX−m−m′,0,small. So we use n0 = 3, n1 = m′ − 2,

and n2 = m+m′.
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If 0 ̸= α ∈ AX−m,n+1, then let αn+1 = α. There are cl, αl, ϵl for l = 0, . . . , n such that

αl+1 = cleX−m(αl)(1 + ϵl)

with cl ∈ KX−m,l, αl ∈ AX−m,l, and ϵl ∈ m
(
BX−m,l+1

)
. Write

α0 = s1

q∏
j=1

E(yj −m)bj

with b1 > 0 and Lv(s1) = ΓX−m,0,small. Again by Lemma 4.4.4, there is some m′ such that
s1, log cl, · · · , log◦l cl ∈ KX−m−m′ for all l = 0, . . . , n. Then

Lm
(
log◦(2+(n+1))(φm+m′−1 ◦ · · · ◦ φm)(log s)

)
= (eX−m−m′)◦(m

′−2)
(
E(y1 −m−m′)

)
and Supp

(
log◦(2+(n+1))(φm+m′−1◦···◦φm)(log s)

(eX−m−m′ )◦(m
′−2)
(
E(y1−m−m′)

) ) < ΓX−m−m′,0,small. So we use n0 = 2+(n+1)+1 =

n+ 4, n1 = m′ − 2, and n2 = m+m′.

Lemma 5.2.3. For all s ∈ (Hi)>F , L(s) ∈ Hi+1.

Proof. First suppose i = 0, so that s ∈ F ((τ−1))le. Then there are some n, k ∈ N such that

Lm (log◦n(s)) = log◦k(τ).

So log◦n(s) = r log◦k(τ)(1 + ϵ) with r > 0. Then we can represent L(s) as follows:

L(s) = L
(
log◦(n+1)(s)) + n+ 1

= L
(
log◦(k+1)(τ) + log r + log(1 + ϵ)

)
+ n+ 1

= L
(
log◦(k+1)(τ)

)
+

∞∑
l=1

L(l)
(
log◦(k+1)(τ)

)
l!

(
log r + log(1 + ϵ)

)l
+ n+ 1.

Now L
(
log◦(k+1)(τ)

)
= L(τ)−k−1, and differentiating, we get L′

(
log◦(k+1)(τ)

)
·
(
log◦(k+1)(τ)

)′
=

L′(τ). So

L′
(
log◦(k+1)(τ)

)
=

L′(τ)(
log◦(k+1)(τ)

)′ = L′(τ) log◦k(τ) · · · log τ · τ.

We can continue differentiating to obtain expressions for L(l)
(
log◦(k+1)(τ)

)
in terms of

L′(τ), . . . , L(l)(τ) and log◦k(τ), . . . , log τ, τ , all of which are elements of C∅,i. This allows
us to finish expressing L(s) as

L(s) =n− k + L(τ) +
(
L′(τ) log◦k(τ) · · · log τ · τ

)(
log r + log(1 + ϵ)

)
+
(
L′′(τ) log◦k(τ) · · · log τ · τ + L′(τ)

(
log◦k(τ) · · · log τ · τ

)′)(
log r + log(1 + ϵ)

)2
+ · · · .
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Since the lth derivative of log◦k(τ) · · · log τ · τ is infinitesimal with τ l−1 in the denominator
for l > 1, this sum is an element of C∅,0. So L(s) ∈ H1.

Now suppose i > 0, and let s ∈ (Hi)>F . Then we can identify s with an element, which we
also call s, of Cᾱ,i−1 for some ᾱ ⊂ Hi−1/Fin(Hi−1). By Lemma 5.2.2, there are n0, n1, n2 ∈ N
such that we can express

log◦n0(s) = exp◦n1 E(x− n2) + s0

with Supp
(

s0
exp◦n1 E(x−n2)

)
< ΓX−n2,0,small and x ∈ X, where X is either X ′

i, Xi, or Xα for

some α ∈ Hi−1/Fin(Hi−1). So identifying exp◦n1 E(x − n2) with E(x + n1 − n2), we can
represent L(s) by

L(s) = L
(
log◦n0(s)

)
+ n0

= L
(
E(x+ n1 − n2) + s0

)
+ n0

= x+ n0 + n1 − n2 +
∞∑
l=1

L(l)
(
E(x+ n1 − n2)

)
l!

(s0)
l

= x+ n0 + n1 − n2 +
s0

E ′(x+ n1 − n2)
+

(s0)
2E ′′(x+ n1 − n2)

E ′(x+ n1 − n2)3
+ · · ·

∈ KX−n2 .

So we have identified L(s) with an element of Hi+1.

We will use the next two lemmas to show that for all positive infinite (relative to F )

elements s ∈ Hi, we can represent
(
E(d)

)−1
(s) by an element of Hi+3.

Lemma 5.2.4. For any infinite x ∈ Hi and 0 < a ∈ Hi+1 such that log a
E(x−1)

is infinitesimal,

we can compute ϵa,d(x) ∈ Hi+1 such that

E(x+ ϵa,d(x)) = aE(d)(x)

in Hi+2.

Proof. Note that E(x+ ϵa,d(x)) = aE(d)(x) if and only if (taking log twice)

E(x− 2 + ϵa,d(x)) = E(x− 2) + log

(
1 +

logBd(x− 1) + log a

E(x− 1)

)
.

Let C(x) = log
(
1 + logBd(x−1)+log a

E(x−1)

)
, an infinitesimal. Now

E
(
x− 2 + ϵa,d(x)

)
= E(x− 2) + C(x) if and only if

E
(
L(x) + ϵa,d(L(x) + 2)

)
= x+ C

(
L(x) + 2

)
if and only if

L(x) + ϵa,d
(
L(x) + 2

)
= L

(
x+ C(L(x) + 2)

)
.
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Rearranging terms, we get

ϵa,d
(
L(x) + 2

)
= L

(
x+ C(L(x) + 2)

)
− L(x) =

∞∑
n=1

C
(
L(x) + 2

)n
L(n)(x)

n!
.

And substituting E(x− 2) for x, we get

ϵa,d(x) =
C(x)

E ′(x− 2)
− C(x)2E ′′(x− 2)

2!E ′(x− 2)3
+ . . .

which is an element of KX−2.

Lemma 5.2.5. For all s ∈ (Hi)>F and d ∈ N,
(
E(d)

)−1
(s) ∈ Hi+3.

Proof. We will find f ∈ Hi+2 such that

0 ≤ s

E(d)(f)
− 1 ≤ 1

E(f − 1)1/2
.

Let µ = s
E(d)(f)

− 1. This suffices to prove the Lemma because then(
E(d)

)−1
(s) =

(
E(d)

)−1 (
E(d)(f) + µE(d)(f)

)
=

∞∑
n=0

((
E(d)

)−1
)(n) (

E(d)(f)
)

n!

(
µE(d)(f)

)n
= f +

µE(d)(f)

E(d+1)(f)
− µ2E(d)(f)2E(d+2)(f)

2!E(d+1)(f)3
+ . . .

= f +
µBd(f − 1)

Bd+1(f − 1)
− µ2Bd(f − 1)2Bd+2(f − 1)

2!Bd+1(f − 1)3
+ . . .

= f + µ
Bd(f − 1)

E ′(f − 1)d+1

∞∑
n=0

(
1− Bd+1(f − 1)

E ′(f − 1)d+1

)n

− µ2Bd(f − 1)2Bd+2(f − 1)

2!E ′(f − 1)3d+3

∞∑
n=0

(
1− Bd+1(f − 1)3

E ′(f − 1)3d+3

)n

.

We will show the final sum is an element of Hi+3 if f ∈ Hi+2. We must show it is a valid
sum in some Cᾱ,i+2 containing both s and E(d)(f). Let ᾱ = {α0 < · · · < αk} and m ∈ N be
such that s, E(d)(f) ∈ KXαk

−m.

The above expansion of each
((
E(d)

)−1
)(n)(

E(d)(f)
)
·E(d)(f)n for n > 0 is a valid infinite

sum involving only integer powers of E(k)(f − 1) for k ∈ N. The sum of exponents in each
term is a negative integer, and the largest term of each sum is 1

E′(f−1)
. Also, for each l,

there are only finitely many terms with sum of exponents equal to l that can appear in the

expansion of
((
E(d)

)−1
)(n)(

E(d)(f)
)
·E(d)(f)n for some n ∈ N. So if 0 ≤ µ ≤ 1

E(f−1)1/2
, then

the final sum representing
(
E(d)

)−1
(s) is summable:
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1. For each monomial M appearing in the expression, there are only finitely many n ∈ N
such that

N ∈ Supp

(
µn
((
E(d)

)−1
)(n)(

E(d)(f)
)
· E(d)(f)n

)
for some N ∈MΓXαk

−m,0,small.

2.
⋃
n>1

Supp

(
µn
((
E(d)

)−1
)(n)(

E(d)(f)
)
· E(d)(f)n

)
is reverse well-ordered.

So we need only find an element f satisfying the required inequalities.

Define f := L(s)−
d logE ′(L(s)− 1) + 1

E(L(s)−1)1/2

E ′
(
L(s)− 2

)
E
(
L(s)− 1

) . We will show that

E(d)(f) ≤ s ≤
(
1 +

1

E(L(s)− 1)1/2

)
E(d)(f).

Since we can compute ϵa,d(f) such that aE(d)(f) = E
(
f + ϵa,d(f)

)
, this amounts to showing

that

f + ϵ1,d(f) ≤ L(s) ≤ f + ϵ1+ 1

E(L(s)−1)1/2
,d(f)

ϵ1,d(f) ≤ L(s)− f ≤ ϵ1+ 1

E(L(s)−1)1/2
,d(f)

ϵ1,d(f) ≤
d logE ′(L(s)− 1) + 1

E(L(s)−1)1/2

E ′
(
L(s)− 2

)
E
(
L(s)− 1

) ≤ ϵ1+ 1

E(L(s)−1)1/2
,d(f).

Let

δ = L(s)− f

=
d logE ′(L(s)− 1) + 1

E(L(s)−1)1/2

E ′
(
L(s)− 2

)
E
(
L(s)− 1

)
=
dE(L(s)− 2) + d logE ′(L(s)− 2) + 1

E(L(s)−1)1/2

E ′
(
L(s)− 2

)
E
(
L(s)− 1

) .

So δn ≈ dn

E′(L(s)−3)nE(L(s)−1)n
. We can compute ϵa,d(f) using Lemma 5.2.4. First we compute

E(d)(f −m) for m ≥ 1:

E(d)(f −m) = E(d) (L(s)− δ −m)

=
∞∑
n=0

E(d+n)(L(s)−m)

n!
(−δ)n.
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Now compute C(f):

C(f) = log

(
1 +

logBd(f − 1) + log a

E(f − 1)

)
=

∞∑
k=1

(−1)k+1

k

(
logBd(f − 1) + log a

E(f − 1)

)k

=
∞∑
k=1

(−1)k+1

k

dE(x− 2) + d logE ′(f − 2) + log a+ log
(

Bd(f−1)
E′(f−1)d

− 1
)

E(f − 1)

k

=
dE(f − 2) + d logE ′(f − 2) + log a

E(f − 1)
+ · · ·

=
d
∑∞

n=0
E(n)(L(s)−2)

n!
δn + d log

∑∞
n=0

E(1+n)(L(s)−2)
n!

δn + log a∑∞
n=0

E(n)(L(s)−1)
n!

δn
+ · · ·

=
dE(L(s)− 2) + d logE ′(L(s)− 2) + log a

E(L(s)− 1)
+ · · ·

where the “· · · ” has terms with E(L(s)− 1)n in the denominator for n ≥ 2.
Finally, we compute ϵa,d(f):

ϵa,d(f) =
C(f)

E ′(f − 2)
− C(f)2E ′′(f − 2)

2!E ′(f − 2)3
+ · · ·

=

dE(L(s)−2)+d logE′(L(s)−2)+log a
E(L(s)−1)

+ · · ·∑∞
n=0

E(1+n)(L(s)−2)
n!

δn

−

(
dE(L(s)−2)+d logE′(L(s)−2)+log a

E(L(s)−1)
+ · · ·

)2∑∞
n=0

E(2+n)(L(s)−2)
n!

δn

2!
(∑∞

n=0
E(1+n)(L(s)−2)

n!
δn
)3 + · · ·

=
dE(L(s)− 2) + d logE ′(L(s)− 2) + log a

E(L(s)− 1)E ′(L(s)− 2)
+ · · ·

where again the “· · · ” has terms with E(L(s)− 1)n in the denominator for n ≥ 2. Since

E(L(s)− 2)n

E(L(s)− 1)
<

∞∑
k=1

(−1)k+1

k

(
1

E(L(s)− 1)1/2

)k

= log

(
1 +

1

E(L(s)− 1)1/2

)
for all n ∈ N, we have

ϵ1,d(f) < δ < ϵ1+ 1

E(L(s)−1)1/2
,d(f)

as claimed.
Since L(s) ∈ Hi+1 by Lemma 5.2.3, we have f ∈ Hi+2 by Lemma 5.2.1, and thus(

E(d)
)−1

(s) ∈ Hi+3 again by Lemma 5.2.1.
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So we have shown that if s ∈ (Hi)>F , then E
(d)(s), L(s) ∈ Hi+1 and

(
E(d)

)−1
(s) ∈ Hi+3.

If s < 0, then we define E(d)(s) = 0, and if s ≤ 1 then we define L(s) =
(
E(d)

)−1
(s) = 0.

If 0 ≤ s ∈ Hi is bounded in F , then there are r ∈ F+ and ϵ ∈ µ(Hi), the infinitesimals of
Hi relative to F , such that s = r + ϵ. Since F ⊨ Ttransexp, E

(d)(r) ∈ F for all d ∈ N, so we
identify E(d)(s) with the series

∞∑
n=0

E(d+n)(r)

n!
ϵn ∈ Hi

which is an element of Hi by Lemma 4.4.9.
If s > 1, then we can define

L(s) =
∞∑
n=0

L(n)(r)

n!
ϵn ∈ Hi

(
E(d)

)−1
(s) =

∞∑
n=0

((
E(d)

)−1
)(n)

(r)

n!
ϵn ∈ Hi.

So MF can be made into a Ltransexp-structure and a model of Ttransexp.

5.3 A derivation on MF

There is a derivation ∂0 on H0 = F ((τ−1))le, which can be thought of as differentiation with
respect to τ . Its field of constants is F . We will show that given a derivation ∂i on Hi that
we think of as differentiation with respect to τ , we can extend it to a derivation ∂i+1 on
Hi+1.

Let i > 0. We first define how ∂i+1 acts on generators built from X ′
i. We will extend it

to DX′
i
(F ), then to C∅,i, and then to Cᾱ,i inductively for each ᾱ ⊂

(
Hi/Fin(Hi)

)
>F

.

The derivation on DX ′
i
(F )

First, let x′i = L◦(i+2)(τ) and let

y′i =
1

E ′
(
L◦(i+1)(τ)

)
E ′
(
L◦i(τ)

)
· · ·E ′

(
L(τ)

)
which is intended to be the derivative of x′i. For all d ∈ N and a ∈ F , define

∂i+1

(
E(d)(x′i −m)a

)
= aE(d)(x′i −m)a−1 · E(d+1)(x′i −m) · y′i

∂i+1

(
logE ′(x′i −m)a

)
= a logE ′(x′i −m)a−1 · E

′′(x′i −m)

E ′(x′i −m)
· y′i
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which are elements of C{αi<···<α1},i where αj is such that E ′(L◦j(τ)
)
∈ Xαj

⊂ αj for j =

1, . . . , i. (Recall that E ′(L◦(i+1)(τ)−m
)
∈ C∅,i.) Extend ∂i+1 to products so that it satisfies

the Leibniz rule. Extend ∂i+1 to sums in KX′
i−m,0 by

∂i+1

 ∑
M∈ΓX′

i
−m,0

cMM

 =
∑

M∈ΓX′
i
−m,0

cM∂i+1(M).

Extend the derivation to monomials with exp by defining ∂i+1(e(a)) = e(a)∂i+1(a). We must
show that ∂i+1 maps to Hi+1 and that it is well defined.

Lemma 5.3.1. For each s ∈ KX′
i−m, we have ∂i+1(s) ∈ C{αi<···<α1},i where αj is such that

E ′(L◦j(τ)
)
∈ Xαj

⊂ αj for j = 1, . . . , i.

Proof. If s ∈ KX′
i−m, then every monomial of ∂i+1(s) is a product of a monomial of KX′

i−m

with y′i. We will show that if s ∈ KX′
i−m, then

∂i+1(s)
y′i

is a valid sum in KX′
i−m and thus an

element of C∅,i.

Note that the sum of exponents in
∂i+1

(
E(d)
(
x′
i−m
)a)

y′i
is still a. Using this, we make two

observations:

1. If g ∈ ΓX′
i−m,0,small, then

∂i+1(g)
y′i

∈ F [ΓX′
i−m,0,small].

2. If t ∈ TX′
i−m, then

∂i+1(t)
y′i

∈ TX′
i−m ⊂ F [ΓX′

i−m,0,small].

So if M = eX′
i−m(t)g is in a coset w ∈ ΓX′

i−m,0/ΓX′
i−m,0,small, then

∂i+1(M)

y′i
= eX′

i−m(t)

(
∂i+1(t)

y′i
g +

∂i+1(g)

y′i

)
and Supp

(
∂i+1(M)

y′i

)
is a finite subset of w. So if s ∈ KX′

i−m,0, then
∂i+1(s)

y′i
is a valid sum in

KX′
i−m,0.

Now assume that for all l = 0, . . . , n, if s ∈ KX′
i−m,l, then ∂i+1(s)

y′i
∈ KX′

i−m,l. Let

s =
∑
caeX′

i−m(a) ∈ KXi−m,n+1 where a, ca ∈ AX′
i−m,n. Then

∂i+1(s)

y′i
=

∑
a∈AX′

i
−m,n

(
∂i+1(ca)

y′i
+ ca

∂i+1(a)

y′i

)
eX′

i−m(a).

By assumption, ∂i+1(ca)
y′i

+ ca
∂i+1(a)

y′i
∈ KX′

i−m,n, so
∂i+1(s)

y′i
∈ KX′

i−m,n+1.

Lemma 5.3.2. Let s ∈ KX′
i−m. Then

φm

(
∂i+1(s)

y′i

)
=
∂i+1(φm(s))

y′i
.
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Proof. It suffices to prove the maps commute on generators built from X ′
i. We can compute

φm

(
∂i+1

(
E(d)(x′i)

a
)

y′i

)
=φm

(
aE(d)(x′i)

a−1E(d+1)(x′i)
)

=aeaE(x′
i−1)E ′(x′i − 1)d(a−1)

∞∑
n=0

(
a− 1

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

·Bd+1(x
′
i − 1)

∂i+1(φm(s))

y′i
=
∂i+1

(
eaE(x′

i−1)E ′(x′i − 1)da
∑∞

n=0

(
a
n

) ( Bd(x
′
i−1)

E′(x′
i−1)d

− 1
)n)

y′i

=eaE(x′
i−1)

(
aE ′(x′i − 1) · E ′(x′i − 1)da

∞∑
n=0

(
a

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

+ daE ′(x′i − 1)da−1

∞∑
n=0

(
a

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

+

(
E ′(x′i − 1)da

∞∑
n=1

n

(
a

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n−1

· Bd(x
′
i − 1)′E ′(x′i − 1)d − dBd(x

′
i − 1)E ′(x′i − 1)d−1

E ′(x′i − 1)2d

))
.

To show these two expressions are equal, observe first that eaE(x′
i−1) appears in all monomials

of both, so we may divide it out. Next, we will factor

aφm

(
E(d)(x′i)

a−1
)
= aE ′(x′i − 1)d(a−1)

∞∑
n=0

(
a− 1

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

out of the second expression, and show that what remains is equal to Bd+1(x
′
i − 1). Note

∞∑
n=0

(
a

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

=

(
∞∑
n=0

(
a− 1

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n
)

· Bd(x
′
i − 1)

E ′(x′i − 1)d

∞∑
n=1

n

(
a

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n−1

= a

∞∑
n=1

((
a

n

)
−
(
a− 1

n

))(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n−1

= a

∞∑
n=0

((
a

n+ 1

)
−
(
a− 1

n+ 1

))(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

= a

∞∑
n=0

(
a− 1

n

)(
Bd(x

′
i − 1)

E ′(x′i − 1)d
− 1

)n

.
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So when we factor out aφm

(
E(d)(x′i)

a−1
)
of the second expression we are left with

∂i+1(φm(s))
y′i

aφm

(
E(d)(x′i)

a−1
) =E ′(x′i − 1)Bd(x

′
i − 1) + d

Bd(x
′
i − 1)

E ′(x′i − 1)

+ E ′(x′i − 1)d
(
Bd(x

′
i − 1)′

E ′(x′i − 1)d
− d

Bd(x
′
i − 1)

E ′(x′i − 1)d+1

)
=E ′(x′i − 1)Bd(x

′
i − 1) +Bd(x

′
i − 1)′

=Bd+1(x
′
i − 1).

The computation showing the maps commute on generators of the form logE ′(x′i)
a is very

similar.

Lemma 5.3.2 shows that ∂i+1 is well defined on DX′
i
(F ).

The derivation on C∅,i

Let xi = L◦(i+1)(τ) and

yi =
1

E ′
(
L◦i(τ)

)
E ′
(
L◦(i−1)(τ)

)
· · ·E ′

(
L(τ)

)
which is intended to be the derivative of xi. For all d ∈ N and a ∈ DX′

i
(F ), define

∂i+1

(
E(d)(xi −m)a

)
=E(d)(xi −m)a

(
∂i+1(a) log

(
E(d)(xi −m)

)
+ a

E(d+1)(xi −m)

E(d)(xi −m)
yi

)
∂i+1

(
logE ′(xi −m)a

)
= logE ′(xi −m)a(

∂i+1(a) log
(
logE ′(xi −m)

)
+ a

E ′′(xi −m)

logE ′(xi −m)E ′(xi −m)
yi

)
which are elements of C{αi<···<α1},i where αj is such that E ′(L◦j(τ)

)
∈ Xαj

⊂ αj. Extend
∂i+1 to products so that it satisfies the Leibniz rule. Extend ∂i+1 to sums in KXi−m,0 by

∂i+1

 ∑
M∈ΓXi−m,0

cMM

 =
∑

M∈ΓXi−m,0

∂i+1(cM)M + cM∂i+1(M).

Extend the derivation to monomials with exp by defining ∂i+1(e(a)) = e(a)∂i+1(a). We must
show that ∂i+1 maps to Hi+1 and that it is well defined.
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Remark 5.3.3. Compute that

log
(
E(d)(xi −m)

)
=E(xi −m− 1) + d logE ′(xi −m− 1)

+
∞∑
k=1

(−1)k+1

k

(
Bd(xi −m− 1)

E ′(xi −m− 1)d
− 1

)k

log
(
logE ′(xi −m)

)
=E(xi −m− 2) +

∞∑
k=1

(−1)k+1

k

(
logE ′(xi −m− 1)

E(xi −m− 1)

)k

.

So if s =
∑

M∈ΓXi−m,0
cMM , then every monomial of

∑
M∈ΓXi−m,0

cM∂i+1(M) is a product of

a monomial of KXi−m−2 with either y′i or yi, i.e., we can split this sum into∑
M∈ΓXi−m,0

cM∂i+1(M) = s0y
′
i + s1yi

with Supp(s0), Supp(s1) ⊂ ΓXi−m−2,2.
Inductively, if s =

∑
a∈AXi−m,n

caeXi−m(a) ∈ KXi−m,n+1, then we have∑
a∈AXi−m,n

ca∂i+1

(
eXi−m(a)

)
=

∑
a∈AXi−m,n

caeXi−m(a)∂i+1(a).

Since we can split each ∂i+1(a), we can also split∑
a∈AXi−m,n

ca∂i+1

(
eXi−m(a)

)
= s0y

′
i + s1yi

with Supp(s0), Supp(s1) ⊂ ΓXi−m−2,n+3.

Lemma 5.3.4. For each s ∈ KXi−m, we have ∂i+1(s) ∈ C{αi<···<α1},i, where αj is such that
E ′(L◦j(τ)

)
∈ Xαj

⊂ αj.

Proof. If s =
∑

M∈ΓXi−m,0
cMM ∈ KXi−m,0, then so is

∑
M∈ΓXi−m,0

∂i+1(cM )
y′i

M since Lemmas

5.3.1 and 5.3.2 show each ∂i+1(ca)
y′i

∈ DX′
i
(F ), the field of coefficients. So we need only worry

about ∑
M∈ΓXi−m,0

cM∂i+1(M).

Write
∑

M∈ΓXi−m,0
cM∂i+1(M) = s0y

′
i + s1yi as in Remark 5.3.3. To prove the Lemma, we

must show s0, s1 are valid sums in KXi−m−2.
By the exact same argument as Lemma 5.3.1, the preimage of s1 is a valid sum in KXi−m,

and thus s1 is a valid sum in KXi−m−2.



CHAPTER 5. AN Ltransexp DIFFERENTIAL SERIES FIELD 89

Now we show s0 is a valid sum in KXi−m−2. Let w ∈ ΓXi−m,0/ΓXi−m,0,small be a coset
with representatives appearing in s. Since s|w is finite, there is some largest derivative d
appearing in s|w. Thus the part of ∂i+1

(
s|w
)
that contributes to s0 can be split into

t−1 log logE
′(xi −m) + t0 logE(xi −m) + · · ·+ td logE

(d)(xi −m)

where t−1 is the image under φm+1 ◦ φm of the subsum of s|w with monomials containing
logE ′(xi−m), and tj is the image under φm+1◦φm subsum of s|w with monomials containing
E(j)(xi −m). This expression gives a valid sum in KXi−m−2 because each subsum of s|w is
finite. Since φ(s|v) > φ(s|w) if v > w, the whole of s0 is a valid sum in KXi−m−2.

Now assume the result holds for all elements of KXi−m,l, for l = 0, . . . , n. Suppose

s =
∑

a∈AXi−m,n

caeXi−m(a) ∈ KXi−m,n+1

where a, ca ∈ AXi−m,n. Just as above,
∑

a∈AXi−m,n

∂i+1(ca)
y′i

eXi−m(a) ∈ KXi−m,n+1 by Lemmas

5.3.1 and 5.3.2. By Remark 5.3.3, write∑
a∈AXi−m,n

ca∂i+1

(
eXi−m(a)

)
= s0y

′
i + s1yi.

Again, s1 ∈ KXi−m−2 by the same argument as Lemma 5.3.1. And

s0 =
∑

a∈AXi−m

(φm ◦ φm+1)
(
eXi−m(a)

)
a0

where a0 is such that ∂i+1(a) = a0y
′
i+ a1yi. By assumption, a0 ∈ KXi−m−2, so s0 ∈ KXi−m−2

as well.

Lemma 5.3.5. Let s ∈ KXi−m. Write

∂i+1(s) = s0y
′
i + s1yi

∂i+1

(
φm(s)

)
= t0y

′
i + t1yi

as in Remark 5.3.3, where s0, s1, t0, t1 ∈ C∅,i by Lemma 5.3.4. Then φm(s0) = t0.

Proof. It suffices to show that the maps commute on generators built from Xi. First let

s = E(d)(xi)
a. Let Y =

(
Bd(xi−1)
E′(xi−1)d

− 1
)
. Then
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φm(s0)y
′
i =φm

(
E(d)(xi)

a logE(d)(xi)
)
∂i+1(a)

=E(xi)
aE ′(xi − 1)da∂i+1(a)

∞∑
n=0

(
a

n

)
Y n

(
E(xi − 1) + dE ′(xi − 1) +

∞∑
k=1

(−1)k+1

k
Y k

)

t0y
′
i =E(xi)

a logE(xi)∂i+1(a) · E ′(xi − 1)da
∞∑
n=0

(
a

n

)
Y n

+ E(xi)
aE ′(xi − 1)da logE ′(xi − 1)∂i+1(da)

∞∑
n=0

(
a

n

)
Y n

+ E(xi)
aE ′(xi − 1)

∞∑
n=0

∂i+1

((
a

n

))
Y n

=E(xi)
aE ′(xi − 1)da(

∞∑
n=0

(
a

n

)
Y n
(
E(xi − 1) + dE ′(xi − 1)

)
∂i+1(a) +

∞∑
n=0

∂i+1

((
a

n

))
Y n

)

Matching like terms, all that remains to show is that(
∞∑
n=0

(
a

n

)
Y n

)(
∞∑
k=1

(−1)k+1

k
Y k

)
∂i+1(a) =

∞∑
n=0

∂i+1

((
a

n

))
Y n

which follows from the identity

d

dX

(
X

n

)
=

n−1∑
j=0

(−1)n−j−1

n− j

(
X

j

)
for binomial coefficients. The argument for s = logE ′(xi)

a is very similar.

To see that ∂i+1 is well defined on C∅,i, write

∂i+1(s) = s0y
′
i + s1yi

∂i+1

(
φm(s)

)
= t0y

′
i + t1yi

as in Remark 5.3.3, where s0, s1, t0, t1 ∈ C∅,i by Lemma 5.3.4. By Lemma 5.3.5, φ(s0) = t0.
By the same argument as in Lemma 5.3.2, φm(s1) = t1. So ∂i+1 commutes with the maps
φm.
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The derivation on Cᾱ,i

Before extending the derivation, we will associate to every s ∈ Hi+1 a finite sequence χ(s) ⊂
Hi+1. χ(s) will list all the elements that some E(d)(·) is composed with, including instances
in the coefficients and exponents of s.

1. For s ∈ DX′
i
(F ), let χ(s) := (y′i).

2. For s ∈ C∅,i \DX′
i
(F ), let χ(s) := (y′i, yi).

3. Assume we’ve defined χ(a) for all a ∈ Cᾱ,i. Assume also that if s0, s1 ∈ k ∈ κᾱ,i but
s0, s1 ̸∈ k0 ⊊ k for any k0 ∈ κᾱ,i, then χ(s0) = χ(s1).

Let β > ᾱ and ᾱ minimal such that s ∈ Cᾱ∪{β},i \ Cᾱ,i. Then s must be in DX(k) for
some minimal finite X = {x1, . . . , xp} ⊂ Xβ and some minimal k ∈ κᾱ,i. Define

χ(s) := χ(s0)⌢ (ιi(x1), . . . , ιi(xp))

where s0 ∈ k ∈ κᾱ,i with s0 ̸∈ k0 ⊊ k for any k0 ∈ κᾱ,i.

Now we extend the derivation. Let ᾱ ∈
(
Hi/Fin(Hi)

)
>F

, and assume we have defined
∂i+1 on Cᾱ,i. Let β > ᾱ. For all d ∈ N, x ∈ Xβ, and a ∈ Cᾱ,i, define

∂i+1

(
E(d)(x−m)a

)
= E(d)(x−m)a

(
∂i+1(a) log

(
E(d)(x−m)

)
+ a

E(d+1)(x−m)

E(d)(x−m)
ιi
(
∂i(x)

))
and

∂i+1

(
logE ′(x−m)a

)
= logE ′(x−m)a

(
∂i+1(a) log

(
logE ′(x−m)

)
+ a

E ′′(x−m)

logE ′(x−m)E ′(x−m)
ιi
(
∂i(x)

))
which are elements of Cᾱ∪{β}∪γ̄,i where γ̄ is such that ∂i+1(y) ∈ Cγ̄,i for all

y ∈ χ
(
E(d)(x−m)a

)
= χ

(
logE ′(x−m)a

)
.

Extend ∂i+1 to products so that it satisfies the Leibniz rule. Extend ∂i+1 to sums in KXi−m,0

by

∂i+1

 ∑
M∈ΓXi−m,0

cMM

 =
∑

M∈ΓXi−m,0

∂i+1(cM)M + cM∂i+1(M).

Extend the derivation to monomials with exp by defining ∂i+1(e(a)) = e(a)∂i+1(a). Just like
earlier, we must show that ∂i+1 maps to Hi+1 and that it is well defined.
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Remark 5.3.6. Let s =
∑

M∈ΓXβ−m,0
cMM , and let χ(s) = (z1, . . . , zq;x1, . . . , xp). For any

x ∈ Xβ, we can compute logE(d)(x −m) and log
(
logE ′(x −m)

)
just as in Remark 5.3.3.

So every monomial of
∑

M∈ΓXβ−m,0
cM∂i+1(M) is a product of a monomial of KXβ−m−2 with

one of ∂i+1(z1), . . . , ∂i+1(z1), ∂i+1(x1), . . . , ∂i+1(xp). So we can split∑
M∈ΓXβ−m,0

cM∂i+1(M) = s1∂i+1(z1) + · · ·+ sp∂i+1(zq) + sp+1∂i+1(x1) + · · ·+ sp+q∂i+1(xp)

with Supp(sj) ⊂ ΓXβ−m−2 for j = 1, . . . , p+ q.

Lemma 5.3.7. For each s ∈ KXβ−m, we have

∂i+1(s) ∈ Cᾱ∪{β}∪γ̄,i

for some γ̄ ⊂
(
Hi/Fin(Hi)

)
>F

.

Proof. Let s ∈ KXβ−m, and write χ(s) = (z1, . . . , zq;x1, . . . , xp). Let γ̄ be such that
∂i+1(zj), ∂i+1(xl) ∈ Cᾱ∪γ̄,i for j = 1, . . . , q, l = 1, . . . , p.

First suppose s =
∑

M∈ΓXβ−m,0
cMM ∈ KXβ−m,0. Then for each M , we can write

∂i+1(cM) = cM,1∂i+1(z1) + · · ·+ cM,q∂i+1(zq)

with cM,1, . . . , cM,q ∈ Cᾱ,i. Since s is a valid sum, so is
∑

M∈ΓXβ−m,0
cM,jM for each j =

1, . . . , q. Thus

∑
M∈ΓXβ−m,0

∂i+1(cM)M =

 ∑
M∈ΓXβ−m,0

cM,1M

 ∂i+1(z1) + · · ·+

 ∑
M∈ΓXβ−m,0

cM,qM

 ∂i+1(zq)

is a valid sum in Cᾱ∪{β}∪γ̄,i.
Following Remark 5.3.6, write∑

M∈ΓXβ−m,0

cM∂i+1(M) = s1∂i+1(z1) + · · ·+ sp∂i+1(zq) + sp+1∂i+1(x1) + · · ·+ sp+q∂i+1(xp).

To show
∑

M∈ΓXβ−m,0
cM∂i+1(M) is a valid sum, we must show that each sj ∈ KXβ−m−2.

For sq+1, . . . , sq+p, this follows from the argument of Lemma 5.3.1. For sp+1, . . . , sp+q, this
follows from the argument of Lemma 5.3.4. In fact, each sj ∈ KXβ−m−2,2 since s ∈ KXβ−m,0.

Now assume the result holds for all s ∈ KXβ−m,l for l = 1, . . . , n. Suppose

s =
∑

a∈AXβ−m,n

caeXβ−m(a) ∈ KXβ−m,n+1.
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The same argument as above shows∑
a∈AXβ−m,n

∂i+1(ca)eXβ−m(a) ∈ Cᾱ∪{β}∪γ̄,i.

To show
∑

a∈AXβ−m,n
caeXβ−m(a)∂i+1(a) is a valid sum, note that by induction, we can write

∂i+1(a) = a1∂i+1(z1) + · · ·+ ap∂i+1(zq) + ap+1∂i+1(x1) + · · ·+ ap+q∂i+1(xp)

with each aj ∈ KXβ−m−2,n+2. And∑
a∈AXβ−m,n

caeXβ−m

(
(φm+1 ◦ φm)(a)

)
aj

is a valid sum in KXβ−m−2,n+3 for each j = 1, . . . , p+ q.

Remark 5.3.8. To show that ∂i+1 is well defined on Cᾱ∪{β},i, it suffices to show that ∂i+1

and φm commute on generators, i.e., for each x ∈ Xβ and a ∈ Cᾱ,i, if we write

∂i+1

(
φm(E

(d)(x−m))
)
= t0∂i+1(a) + t1∂i+1(x)

then

t0 = φm

(
E(d)(x−m)a logE(d)(x−m)

)
t1 = φm

(
aE(d)(x−m)a

E(d+1)(x−m)

E(d)(x−m)

)
and similarly for logE ′(x−m). The first equality follows from the computations of Lemma
5.3.5, and the second equality follows from the computations of Lemma 5.3.2. So ∂i+1 is well
defined on Cᾱ∪{β},i.

Having defined ∂i+1 on all Cᾱ,i, we may extend it to the direct limit Hi+1. It is well
defined on the direct limit by Lemma 5.1.7. So MF is a differential field.

5.4 Ordering of germs of terms at +∞
Let G be the ring of germs at +∞ of functions f : R → R, and let T (x) be the algebra of
Ltransexp-terms in a single variable x over R. Define θ : T (x) → G by sending each term t(x)
to the germ of the function x 7→ t(x) at +∞.

Theorem 5.4.1. θ
(
T (x)

)
is totally ordered.

Proof. Let M0 be the Ltransexp-substructure of MR generated by τ . Define ψ : M0 → G as
follows:
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1. ψ(τ) is the germ of the identity function.

2. If ψ(si) = gi ∈ G for i = 1, . . . , n and f̃ ∈ Ltransexp is an n-ary function symbol
corresponding to the function f , then ψ(f̃(s1, . . . , sn)) = f(g1, . . . , gn).

By Lemma 5.1.6, for each i ∈ N and each {α0 < · · · < αk} ⊂ (Hi/Fin(Hi))>F , Xαk
and

C{α0<···<αk−1},i satisfy the ordering and separation assumptions of Remark 3.1.2. Thus there
can be no relations among the many different monomials of MR other than those arising
from the difference equation E(x + 1) = expE(x). Therefore, ψ is a map, i.e., it associates
to each element of M0 a single element of G.

SinceM0 is a field, ψ is injective. ψ(M0) is formally real, and since every s > 0 inM0 is a
square, the order on ψ(M0) coming from M0 is unique. So θ

(
T (x)

)
= ψ(M0) is ordered.
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[14] Hellmuth Kneser. “Reelle analytische Lösungen der Gleichung φ(φ(x)) = ex und ver-
wandter Funktional-gleichungen”. In: J. Reine Angew. Math. 187 (1949), pp. 56–67.
issn: 0075-4102.

[15] David Marker and Chris Miller. “Levelled o-minimal structures”. In: vol. 10. Special
Issue, suppl. Real algebraic and analytic geometry (Segovia, 1995). 1997, pp. 241–249.

[16] Chris Miller. “Exponentiation is hard to avoid”. In: Proc. Amer. Math. Soc. 122.1
(1994), pp. 257–259. issn: 0002-9939. doi: 10.2307/2160869. url: https://doi.
org/10.2307/2160869.

[17] B. H. Neumann. “On ordered division rings”. In: Trans. Amer. Math. Soc. 66 (1949),
pp. 202–252. issn: 0002-9947. doi: 10.2307/1990552. url: https://doi.org/10.
2307/1990552.
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