
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
A Proposal to Revise the Alice Test for Software Patents

Permalink
https://escholarship.org/uc/item/5299z7rs

Author
Farsi, Mojdeh

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5299z7rs
https://escholarship.org
http://www.cdlib.org/

A Proposal to Revise the Alice Test for Software Patents

By

Mojdeh Farsi

 A dissertation submitted as part of the

requirements for the degree of

Doctor of the

Science of Law

of the

University of California, Berkeley

Committee in charge:

Professor Robert P. Merges, Chair

Professor David J. Teece

Professor Richard M. Buxbaum

Spring 2020

A Proposal to Revise the Alice Test for Software Patents

© 2020

By Mojdeh Farsi

 1

ABSTRACT

Most human innovations begin from an abstraction, a judicial exception that by itself is not patent-

eligible. Abstract ideas are considered basic tools of scientific and technological work, which

courts prefer not to award with a monopoly because exclusive ownership of these essential

elements would only serve to hinder economic and innovative progress. The problem concerning

patent eligibility under §101 is that we do not have any measurement or indicator to differentiate

when a claim consists of only an abstract idea and when a claim does not. Currently, courts rely

on precedent that is ambiguous rather than relying on more concrete measures based on the specific

type of underlying software. Lacking this measurement, coupled with inherent software

complexity, has resulted in inconsistent jurisprudence that is often inscrutable. These

inconsistencies in the jurisprudence of cases involving computer programs stem from lacking a

proper framework based on the functional nature of computer programs. There are several different

proposals with inconsistent explanations as to how to apply the judicially created framework in

determining patent eligibility. Still, none of them suggest a practical test specifically for software

fields based on the functional nature of computer software to solve the patent eligibility

problem. Additionally, proper disclosures are needed to combat high invalidity rates due to the

lack of quality of patent applications.

This study addressed the confusion regarding the existing judicial framework (Alice’s framework)

in determining patent eligibility (§101) of software inventions. It proposed a new framework for

determining patent eligibility in which the meaning of an abstract idea is defined in a practical

way, as routine building blocks, based on the functional characteristics of software programs.

These routine building blocks are not patent-eligible because the only embodiment is its

fundamental components that are common in all inventions in that type of software. Granting any

patent to claims of these essential elements will preempt other’s innovative progress in that specific

type of software. The functionality of this framework was tested on some software patent cases

dealing with the §101 issue, as well as on one actual AI (Artificial Intelligence) pending patent

application. Additionally, this study suggested proper disclosures through examples to improve

the quality of patent applications by specifying some factors that might affect the validity of a

software patent regarding the sufficiency of its disclosure.

Giving robust indicators to the patent examiners, judges, jurists, patentees, and practitioners to

increase the certainty of predicting the outcome of the case based on the content quality of the

underlying claims is the main contribution of this study. The result is significant because, with this

legal paradigm, the unavoidably subjective assessments of computer programs in determining

patent eligibility are formalized.

Keywords: Intellectual Property, Software Patent, Abstract Idea, Alice Test, Patent Eligibility

Test, Sufficient Disclosure, Artificial Intelligence, Building Blocks, Section 101, Section 112, U.S.

Patent Act.

 i

Dedicated to

My Beloved Parents for their Blessings

And

My dear husband and soulmate for his love and endless support

 ii

TABLE OF CONTENT

INTRODUCTION ... v

A NOTE ON THE NATURE OF COMPUTER SOFTWARE .. 1

CHAPTER ONE: PATENT ELIGIBILITY PROPOSAL ... 4

1.1 Patent Eligibility Related Terms ... 4

1.2 Analyzing the problem of Abstractness in patent eligibility under § 101................................... 5

1.3 Patent-Eligibility Proposal ... 6

1.3.1 Proposed Patent Eligibility Test: Routine Building Blocks Determination 7

1.3.1.1 Routine Building Block determination: Berkheimer v. HP Inc. case 9

1.3.2 Determining “anything more than Routine Building Blocks” ... 11

1.3.2.1 Determining “anything more than Routine Building Blocks” : Berkheimer case........... 13

1.4 Applying Patent Eligibility Test on Two software patent cases .. 14

1.4.1 Enfish, LLC v. Microsoft Corporation ... 14

1.4.1.1 Routing Building Block Determination: Enfish, LLC v. Microsoft Corporation, et al. 21

1.4.1.2 Determining “anything more than Routine Building Blocks” : Enfish case 21

1.4.2 McRo, Inc. v. Bandai Namco Games America (McRo Case) .. 23

1.4.2.1 Routine Building Block Determination: McRO, Inc. v. Bandai Namco Games Am. Inc

Case .. 30

1.4.2.2 Determining “anything more than Routine Building Blocks”: McRo Case 31

1.5 Addressing some challenges in the field .. 33

1.5.1 The nature of the software vs. the breadth or scope of the invention 33

1.5.2 Preemption rational .. 33

1.5.3 Something more than routine building blocks but nonetheless trivial 35

CHAPTER TWO: HYPOTETICAL DISCLOSURE .. 36

2.1 The relationship between § § 101 and 112 of U.S. Patent Act in this Study 36

2.2 Hypothetical Disclosure Factors .. 38

2.2.1 Pseudocode Algorithm .. 38

2.2.2 Test case/ Best mode .. 38

2.2.3 UML diagrams .. 38

2.2.4 Method used by the invention ... 38

2.3 Applying Hypothetical Disclosure Factors on Some Cases ... 40

2.3.1 Hypothetical disclosure: Berkheimer case .. 40

2.3.1.1 Hypothetical Pseudocode: Berkheimer case ... 40

2.3.1.1 UML Diagram v. Flowchart: Berkheimer case .. 44

 iii

2.3.2 Hypothetical Disclosure: McRo Case ... 47

2.3.2.1 Hypothetical Pseudocode: McRo Case ... 47

2.3.2.2 UML Diagram v. Flowchart: McRo case ... 50

2.3.2.2 The method used by the invention: McRO case ... 53

CHAPTER THREE: AI RELATED INVENTIONS.. 54

3.1 AI invention: Deep Embedding Forest Model .. 54

3.2 Applying Patent Eligibility Test: AI Invention ... 56

3.2.1 Routine Building Blocks determination: Deep Embedding Forest Model 56

3.2.2 Determining “Anything more than Routine Building Block”: AI Invention..................... 56

3.3 HYPOTETICAL DISCLOSURE: AI RELATED INVENTIONS ... 57

3.3.1 Pseudocode: AI Invention ... 57

3.3.2 Testing practice (Best mode) :AI Invention .. 58

3.3.3 UML Diagram v. Flowchart: AI Invention .. 60

3.3.4 Method used by the invention statement: AI Invention ... 64

CONCLUSION .. 65

BIBLIOGRAPHY ... 67

APPENDIX A .. 71

 iv

LIST OF FIGURES

Figure 1: Proposed Patent Eligibility Test Flowchart……………………………………… . 8

Figure 2: Application of Proposed Patent Eligibility Test: Berkheimer Case………………..11

Figure 3: Proposed Patent Eligibility Test in Relation with other Patentability Provisions....12

Figure 4: Primary key and the Foreign key in Database……………………………………..15

Figure 5: Relational database tables………………………………………………………….16

Figure 6: Self- Referential Table……………………………………………………………..16

Figure 7: The correspondence between cells of the table and a stored key word index……..18

Figure 8: The relationship between certain data records and key word index records………18

Figure 9: The relationship of Figure 8 in graphical form…………………………………….19

Figure 10: Structure of the word processor of the present invention………………………...20

Figure 11: Application of Proposed Patent Eligibility Test: Enfish Case……………………23

Figure 12: Mouth positions for Phonemes…………………………………………………...24

Figure 13: Morph targets…………………………………………………………………… .24

Figure 14: Keyframes……………………………………………………………………….. 24

Figure 15: The sliders control the morph weights to adjust different lip and facial positions 25

Figure16. Morph Weight Set Stream……………………………………………………… 27

Figure 17. Rule (If … Then … Else)………………………………………………………... 28

Figure 18: Application of Proposed Patent Eligibility Test: McRo Case…………………… 32

Figure 19. Original flowchart from Berkheimer patent application………………………… 44

Figure 20. Suggested Sequence diagram for Berkheimer case…………………………….....45

Figure 21. Suggested Activity diagram for Berkheimer……………………………………….….46

Figure 22. Original Application Flowchart from McRo Case………………………………..51

Figure 23. Suggested Sequence Diagram for McRo Case…………………………………....52

Figure 24. Suggested Activity Diagram for McRo Case……………………………………..53

Figure 25:The Deep Embedding Forest Model………………………………………………55

Figure 26: The Deep Crossing Model used to initialize the embedding layers of DEF……...55

Figure 27: Application of Proposed Patent Eligibility Test: AI Invention…………………..56

Figure 28: Pseudocode: Three-step Deep Embedding Forest………………………………..58

Figure 29: Experiment with 3 Million Samples: Log Loss Comparison & Experiment with 3

Million Samples………………………………………………………………………………59

Figure 30: Comparison of performance and prediction time per sample between Deep Crossing

and DEF……………………………………………………………………………………….59

Figure 31: Comparison of performance and prediction time per sample between the Deep

Crossing and Two-Step DEF using LightGBM that are trained with 60M samples………….59

Figure 32: The same as Figure 21 but for the models trained by 1B samples…………….….60

Figure 33: The original diagram from the patent application- the Deep Crossing Model, used to

initialize the embedding layers of DEF………………………………………………………..61

Figure 34: Suggested Sequence diagram for the invention……………………………….62-64

 v

INTRODUCTION

The field of software patent has received a lot of attention over the past three decades has

been debated extensively because of its complicated nature. Although it is now generally well-

accepted that innovations in computer programming are best protected by patent law, a few

decades ago this was far from apparent.1 The confusion regarding whether copyright law or patent

law is best suited for protecting software innovations stemmed from attempts to draw analogies

between this new arena of software innovation and the more familiar fields of human creativity,

namely tool-making and expression of ideas in the form of language or art. By accepting that patent

law is best suited for protecting computer-related innovations, another unique challenge arises

when it comes to the current patent eligibility regime. The current patent eligibility jurisprudence

is comprised of a case-by-case, subjective analysis by judges and jury members who have different

levels of knowledge in software programming. As a result, many software-related claims are

invalidated inconsistently or even wrongfully, making the outcome of future cases uncertain.

The complexity of software patents increased in 2014 when the Supreme Court in Alice

Corp. Pty. Ltd. v. CLS Bank Int’2 invalidated a software patent for a business method, viewing it

as an abstract idea3 under 35 U.S.C § 101.4 The Court’s defined framework in determining patent

eligibility made the issue even more complicated. After Alice, there was confusion as to how to

apply the Alice two-step patent eligibility test on inventions, specifically software patent

inventions.5

The problem of patent eligibility under §101 is that we do not have any measurement or

indicator to differentiate when a claim covers an abstract idea and when a claim does not.

Determining the patent eligibility of a disputed patent or claim is dependent on previous cases that

are decided by the court, and it is not based on the specific type of its underlining software. Lacking

this measurement coupled with software inherent complexity has resulted in inconsistent

jurisprudence that is often inscrutable. These inconsistencies in the jurisprudence of cases

involving computer programs stem from lacking a proper framework based on the functional

nature of computer programs. Also, a lack of specific guidelines for determining efficient

disclosures in patent applications affects the validity rate of software innovations.

There are several different proposals with inconsistent explanations as to how to apply the

judicially created framework in determining patent eligibility. Still, none of them suggest a

practical test specifically for software fields based on the functional nature of computer software

to solve the patent eligibility problem.6 Additionally, there has been almost no proposal out there

to recommend any specific disclosure to improve the quality of patent application to this day. This

study will examine the following research questions:

1- How does having a concrete indicator (test) in determining patent eligibility in software

patent based on the functional nature of software affect the certainty of predicting the

outcome of the case consistently?

1 Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the Software Industry, 89 Cal. L. Rev. 1, 4 (2001).
2 Alice Corp. Pty. Ltd. v. CLS Bank Int’ l, No. 13-298 (Jun. 19, 2014); see also Molecular Pathology v. Myriad Genetics,
Inc., 569 U.S. _, 133 S. Ct. 2107, 2116, 106 USPQ2d 1972, 1979 (2013). See Also MPEP § 2106.04 .
3 See generally Interval Licensing, LLC v. AOL, Inc., 896 F.3d 1335, 1343 (Fed. Cir. 2018)
4 See generally Molecular Pathology v. Myriad Genetics, Inc., 569 U.S. _, 133 S. Ct. 2107, 2116, 106 USPQ2d 1972, 1979
(2013). See also MPEP § 2106.04 for detailed information on the judicial exceptions.
5 David O. Taylor, Patent Eligibility and Investment, Cardozo L. Rev.,(forthcoming), http://ssrn.com/abstract=3340937.
6 See generally Jeff Lefstin, Peter Menell, & David Taylor, Final Report of the Berkeley Center Workshop: Addressing Patent
Eligibility Challenges, 33 BERK. TECH. L.J. 551 (2018).

http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0405940501&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0214967601&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0214967601&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
https://www.uspto.gov/web/offices/pac/mpep/s2106.html#ch2100_d29a1b_139db_e0
https://www.uspto.gov/web/offices/pac/mpep/s2106.html#ch2100_d29a1b_139db_e0

 vi

2- What factors of disclosure in patent applications make a software patent more or less likely

to be invalidated?

This study addresses the confusion regarding the existing judicial framework in determining

patent eligibility (§101) of software inventions. It proposes a new framework for determining

patent eligibility in which the meaning of an abstract idea is defined in a practical way based on

the functional characteristics of software programs. Additionally, it suggests proper disclosures

through examples to improve the quality of patent applications by specifying some factors that

might affect the validity of a software patent regarding the sufficiency of its disclosure.

 The key connection between the first part of my proposal on §101 and the second part of my

proposal on disclosure §112 is the patent claim(s). Claims can be invalidated under §101 if the

claims are not supported and justified in more detailed disclosure under §112. Detailed disclosures

are needed to justify detailed claims, and if a claim is not supported by sufficient disclosure, it

might be invalidated under both §101 and §112.

Giving robust indicators to the patent examiners, judges, jurists, patentees, and practitioners to

increase the certainty of predicting the outcome of the case based on the content quality of the

underlying claims is the main contribution of this study. The result is significant because by having

a concrete framework based on the functional nature of the software, the outcomes of the disputed

patents are made consistent. This consistency happens because there is no substantial confusion

on how to apply the framework to future cases. Additionally, by having a unified and efficient

template of software patent applications, the “inventive step” of the program will be more easily

apparent and applied. As a result, applications themselves would be shorter and more concise, and

judges/examiners will not need to spend so much time and effort combing through past

cases/precedent to try to determine validity that end up often producing inconsistent findings.

In my research, I formalize the definition of software program and some patent eligibility terms

that appear in this study, such as an abstract idea, and conventional and routine building blocks.

After defining the problem with the existing judicial framework for the patent eligibility test under

35 U.S.C § 101, I formally propose a concrete and practical framework in determining patent

eligibility in software patents based on the functional nature of software. I apply this framework

on some software patent cases to show the applicability of my proposed test. Also, I propose proper

disclosure to improve patent applications, and illustrate some examples to show the efficiency of

this proposed disclosure. Finally, I apply the proposed disclosure on a specific field of software,

AI (Artificial Intelligence) inventions.

Part I of this study is pertinent to clarify the meanings, definitions and concepts of some

words and expressions, which will be used many times in this work. It explores the problem with

the existing judicial framework for the patent eligibility test under 35 U.S.C § 101, and its inherent

confusion in applying the test to software patent cases. It also proposes a concrete framework in

determining patent eligibility in software patents based on the functional nature of software. The

functionality of this framework will be tested on some software patent cases dealing with the §101

issue, as well as on one actual AI pending patent application.

Part II describes the problems of current patent applications and proposes a hypothetical

disclosure as an example to improve the quality of patent applications. This proposed disclosure

specifies some factors that might affect the validity of a software patent regarding the sufficiency

of its disclosure. This hypothetical disclosure is applied on some recent cases to illustrate the

efficiency of the proposed disclosure.

Part III Applies the patent eligibility proposal on one actual AI pending patent

application. It also describes the hypothetical disclosure on Artificial Intelligence (AI) related

inventions with slightly different changes based on the nature of the AI inventions, as well as

applying it on the same actual AI pending patent application.

 vii

ACKNOWLEDGEMENT

First and foremost, I thank God for all his blessings in my life.

I would like to take this opportunity to give special appreciation to my mentor, sponsor, supervisor,

and the chair of my Dissertation Committee, Professor Robert P. Merges, who has brought me all

the way to my doctorate degree. I will always remember him as a person who gave me an

opportunity of a lifetime. His supervision, insight, and knowledge of the subject matter accompany

me through this research. His faith in me has been a constant source of motivation.

I am grateful to my Dissertation Committee members, Professor David J. Teece and Professor

Richard M. Buxbaum, for their generosity, time, and guidance.

I cannot adequately express my gratitude to Professor Malcolm Feeley, my professor, and mentor,

for his endless support and being a great source of inspiration for me. He is an example of a

wonderful human being.

 I am so grateful to the Dean of Berkeley School of law, Dean Chemerinsky, for his friendship,

dedication, and fatherly support.

Most of all, I am grateful to Mrs. Evelyn Borchert, the director of the JSD program and the

Academic Advisor. For so many years, she has provided guidance and endless support for many

students, including myself. Her beautiful smile always brings me comfort.

I am grateful to other faculty members and staff at UC Berkeley, who have helped me along the

way.

I am so grateful to all of my professors and staff at my previous University, the Bahai institute for

higher education (BIHE), for all of their sacrifices in preparing me to achieve this accomplishment.

I am grateful to all of my professors and staff at the University of Delhi in India for helping me to

get to where I am now.

I am so thankful to my sister, Marjan Farsi, for always being there for me. This project would have

never been accomplished without her intellectual insights, detailed criticism, and scholarly

discussions that helped me sharpen my thinking and define my arguments.

I am so grateful to my cousin, Tanya Zabeti, who has edited and improved this manuscript in

countless ways. Her commitment and dedication have surpassed any expectations I could have

hoped for.

I am so thankful to my friend, Dr. Holakou Rahmanian, for his intellectual help and support.

I wish to thank my Father, Jamshid Farsi, whom this dissertation mattered to the most, for his

unfailing support and always being a source of inspiration to me. My love and prayers to my

Mother, Jinous Yazdani, who is not in this world, but even now, I feel her constant and unwavering

love and support.

I am so grateful to my Brother, Matin Farsi, who renders unending inspiration on how to be strong

and not giving up during hard times.

My biggest appreciation is to my loving and supportive husband, Afshin Taghipoor, who helped

me to fulfill my dream. This achievement would have never been accomplished without his

understanding, encouragement, and utmost love and care.

I am so thankful to my Aunt, Janet Zabeti, who showered me throughout the years with her love,

guidance, and endless support.

My special thanks to my dear friend, Ruhi Tavakoli, who is an exceptional woman with a kind and

loving heart, for her love and support during the progress of this manuscript.

I am so grateful to my in-laws, who have supported my choices and gave me their utmost love.

My thanks to my dear friend, Anush Gasparyan, who has shown me, by her example, what a strong

woman should be.

 viii

My sincere thanks to my aunts and uncles for their love and support.

Last but not least, I am indebted to my grandparents for their blessings and being wonderful role

models in my life.

I am so fortunate to have all of you in my life.

 1

A NOTE ON THE NATURE OF COMPUTER SOFTWARE

The definition of software program as a “functional machine part”, comprised of

algorithms, in combination with the specific function, the application, and the platform, on which

they are employed, comprise a machine that may be tested for patentability.

Although most human innovations begin from an abstraction, the protection afforded by

law has historically depended upon the form, in which ideas are cast. If an idea is implemented for

the purpose of performing a useful function or task, the particular application, not the idea, may

be suitable for grant of a patent. If an idea is expressed in some tangible medium, the individuating

attributes of the particular expression of the idea, not the idea itself, may be protected by the

copyright law.

Although it is now generally well-accepted that innovations in computer programming are

best protected by the Patent law, a few decades ago this was far from being apparent.7 The

confusion regarding whether copyright law or patent law is best suited for protecting software

innovations stemmed from the nature of computer programs; while they are machines, created to

perform specific tasks, their inner workings are comprised of written language, that is to say, ideas

are cast in the medium of notation. The Copyright Act defines a computer program as “a set of

statements or instructions to be used directly or indirectly in a computer in order to bring about a

certain result.”8 The combination of the words “written instruction” and “result” in the definition

of a computer program reveals the dual nature of the identity of software programs. Computer

programs are “Written statements, directions or instructions that directly or indirectly bring about

a certain result.” 8 If a computer programs is simply a form of writing in the traditional sense, it

would be an expression of ideas and concepts, designed to interact with the human mind, in order

to transfer and disseminate the knowledge contained therein. This is clearly not the case with the

computer program. Although computer programs contain information within their forms,

structures, algorithms and formulae, these abstractions are, with rare exceptions, connected to a

function or a set of functions.

To complicate the matter further, while some of the code may be directed at machines

or other programs, some of the notation is intended to interact with the human mind. The parts of

the code, which interact with a machine or another program, are meant only to trigger a function

in that machine or program. As such, they are a part of the “machine”. Alan Turing11 apparently

thought so when he called his software model a “machine.” The particular expression, form,

format, language and notation of the code are not directly relevant to the function that is performed.

The parts of the code that are meant to interact with the human mind, and which can be

conceived as expressions of ideas, may be designed to do more than create impressions on the

human mind; they may be designed to trigger a response or a feedback from the human mind, in

which case the expression is connected to a function of the machine and is, therefore, part of the

machine function.

The holding of Baker v. Selden9 that provides that blank forms are not copyrightable, even

if the structure of the forms reflects the essence of an original work of literature, shows that those

aspects of a work, which are incidental to the idea, and which are inextricable from the function,

system or process described by the work, are not copyrightable.

7 Julie E. Cohen & Mark A. Lemley, supra note 1.
8 Cohen et al., Copyright in a Global Information Economy, (3d ed. 2010) Wolters Kluwer, United States.
9 Baker v. Selden, 101 U.S. 99 (1879).

http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0405940501&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0214967601&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)

 2

In Lotus Dev’t Corp. v. Borland Int’l10, the court held that the human interface of the

program is not copyrightable, chiefly because it is tangled with the “method of operation”, and the

interaction of the program with the human mind is considered a part of the machine function.

It is largely undisputed that the literal aspects of the code, its notation and expression, are

protected under the copyright law.18 In computer software innovations, which protection is sought

lies entirely on the functional aspect of the program; the notation and expression are largely

irrelevant. According to the Merger Doctrine11, if the expression is inextricably merged with a

function, it would not be protected by copyright law, but rather by the patent law.

In the Baker case, although the book was protected as original literary expression, the form

was held to be a means of putting the ideas contained in the book into practice, i.e. a function.

Unlike patent law, since Copyright law only covers expression, here it is not a suitable paradigm

to protect the functionality of the Baker’s invention.

Copyright protection for software innovation permits to use of a particular expression if

based on efficiency or external exigencies that expression is the only way, or one of a few ways,

that a function can be achieved. In Oracle v. Google12, the portion of the Google code, which was

copied verbatim from Oracle’s code was considered necessary for the performance of the

program’s functions within the constraints of the Java API. Google had re-written 97% of the code

in its program in order to achieve the very same functions that the Oracle program’s methods and

subroutines achieved. It was in substantially the same order, with the same structure as the Oracle’s

program. It was successfully argued by Google that compatibility with the Java Application

Program Interface (API) dictated the use of not only the structure and the functions, but also the

3% of the code that was copied verbatim. The code in question was comprised of headers, required

by java to introduce the particular methods that followed. The structure was more or less dictated

by the Java environment, and was proven to be the most efficient structure for the achievement of

the functions. Moreover, the structure merged with the functions of the program, which precluded

it from protection under the copyright law. None of the emulated functions were the property of

Oracle under the patent law, and copyright law did not protect these functions. The court in this

case held that:

So long as the specific code used to implement a method is different, anyone is free under

the Copyright Act13 to write his or her own code to carry out exactly the same function or

specification of any methods used in the Java API. It does not matter that the declaration

or method header lines are identical.14

Inventing a new method to deliver a new output can be creative, even inventive, including the

choices of inputs needed and outputs returned. The same is true for classes. But such inventions—

at the concept and functionality level—are protectable only under the Patent Act. Duplication of

the command structure is necessary for interoperability.

10 Lotus Dev’t Corp. v. Borland Int’l516 U.S. 233 (1996).
11 Pamela Samuelson, Questioning Copyrights in Standards, Boston College L. Rev, 48:193, 215 (2007).

As Samuelson puts it: “The merger doctrine holds that if there is only one or a very small number of ways to express an idea,

copyright protection will generally be unavailable to that way or those few ways in order to avoid protecting the idea.” Oracle

v. Google, 847 F.Supp.2d 1178 (2012).
12 Oracle Am., Inc v. Google Inc, 847 F.Supp.2d 1178. (2012).
13 Copyright Act 1976, 17 U.S.C.A. § 101 et seq.
14 Oracle Am., Inc v. Google Inc, 872 F. Supp. 2d 974 (N.D. Cal. 2012).

http://en.wikipedia.org/wiki/Case_citation
http://en.wikipedia.org/wiki/Case_citation
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
http://www.westlaw.com/Link/Document/FullText?findType=L&pubNum=1000546&cite=17USCAS101&originatingDoc=Ie65f8141ac2d11e1b66bbd5332e2d275&refType=LQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=L&pubNum=1000546&cite=17USCAS101&originatingDoc=Ie65f8141ac2d11e1b66bbd5332e2d275&refType=LQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=L&pubNum=1000546&cite=17USCAS101&originatingDoc=Ie65f8141ac2d11e1b66bbd5332e2d275&refType=LQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
https://www.leagle.com/decision/infdco20120601k39

 3

On May 9, 2014, the Federal Circuit Court partially reversed the district court ruling and

remanded the issue of fair use back to the district court.15 The Federal Circuit Court held that

declaring code and the structure, sequence, and organization of the API packages are entitled to

copyright protection.16

In my opinion, APIs are designed to trigger a response or a feedback from the human mind, in

which case the expression is connected to a function of the machine and is, therefore, part of the

machine function. As a result, APIs are patentable not copyrightable.

 One of the more interesting attempts to stretch the scope of the copyright law to cover

computer software is the substantial similarity test.17According to this test, in order to examine

two software programs for similarity of expression, one must analyze the “golden nugget” of

expression that is copyrightable by removal of certain elements of the program from consideration.

Abstractions, such as mathematical and logical algorithms are the first to be removed from

consideration.18 Next, one must filter out what exists in the public domain. The elements of the

program that are dictated by efficiency - that is to say, the best way of achieving a function - are

removed from consideration, as they represent a merging of expression and function. External

exigencies, such as the mechanical specification of the machine that is being addressed,

compatibility requirement of operating systems and other programs, computer design standards,

demands of the industry serviced, and widely accepted industry practices are also omitted from

consideration in the comparison.

In Computer Associates Int'l, Inc. v. Altai, Inc19 the test of substantial similarity was applied

and, not surprisingly, after all of the filtrations and removals from consideration, not much was

left to compare, and no relief was provided to Computer Associates Int'l, Inc.

The dual nature of computer programs and their inherent complexity has resulted in

inconsistent jurisprudence. Describing the nature of computer programs as a functional machine

part, created to perform a specific task, help us to make an appropriate framework to protect

software innovations, and overcome the problems of the existing regime.

15 Oracle Am., Inc v. Google Inc - Cross - Appellant. Court of Appeals for the Federal Circuit. May 9, 2014. (last visited

May10,2020). See, Rosenblatt, Seth (May 9, 2014). Court sides with Oracle over Android in Java patent appeal. CNET. (last
visited May 10, 2020)
16 Ibid.
17Altai introduced a new test for determining Substantial Similarity for Computer Program named, Abstraction-
FiltrationComparison. “Initially, in a manner that resembles reverse engineering on a theoretical plane, a court should dissect the

allegedly copied program`s structure and isolate each level of abstraction contained within it. This process begins with the code
and ends with an articulation of the program`s ultimate function.” https://www.bitlaw.com/source/cases/copyright/altai.html (last
visited May 28, 2020).
“For filtration, as Professor Nimer suggests, a “successive filtering method” for separating protectable expression from non-
protectable material. This process entails examining the structural components at each level of abstraction to determine whether
their particular inclusion at that level was “idea” or was dictated by consideration of efficiency, so as to be necessary inc idental to
that idea; required by factors external to the program itself; or taken from the public domain and hence is nonprotectable
expression. “ Peter J Groves, Sourcebook on Intellectual Property Law, p.304(1997) Cavendish Publishing limited, London.
“The third and final step of the test for substantial similarity entails a comparison.
Once a court has sifted out all elements of the allegedly infringed program which are “ideas” or are dictated by efficiency or
external factors, or taken from the public domain, there may remain the core of protectable expression.”
https://www.bitlaw.com/source/cases/copyright/altai.html. (last visited May 28, 2020).
See, Cohen et al., supra note 8.
18 Cohen et al., supra note 8.
19 Computer Associates Int'l, Inc. v. Altai, Inc, 982 F.2d 693 2d Cir. 1992.

http://en.wikipedia.org/wiki/Remand_%28court_procedure%29
http://www.cafc.uscourts.gov/images/stories/opinions-orders/13-1021.Opinion.5-7-2014.1.PDF
http://www.cafc.uscourts.gov/images/stories/opinions-orders/13-1021.Opinion.5-7-2014.1.PDF
http://www.cafc.uscourts.gov/images/stories/opinions-orders/13-1021.Opinion.5-7-2014.1.PDF
http://www.cafc.uscourts.gov/images/stories/opinions-orders/13-1021.Opinion.5-7-2014.1.PDF
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
https://www.bitlaw.com/source/cases/copyright/altai.html
https://www.bitlaw.com/source/cases/copyright/altai.html

 4

CHAPTER ONE: PATENT ELIGIBILITY PROPOSAL

1.1 Patent Eligibility Related Terms

In the following, I redefine some of the patent eligibility terms that appear in the court

holdings and patent-related documents for use in my proposal. I also define a new term, “Routine

Building Block”, that applies in my patent eligibility test proposal:

• Abstract Idea: Basic or fundamental concept or idea, the routine building block

• Conventional: Generally accepted standards

• Routine: Customary or regular course of procedure; general steps of a process

• Building Block: Basic or essential element(s) or component(s) of a system

• Routine Building Block (RBB): Basic and essential element(s), steps, or

component(s) of a process or system. High-level functions in each type of computer

software, capable of operating for its primary purpose.

Before diving into the main point, it is necessary to differentiate between the “building

block of human ingenuity” mentioned by the court in Alice Corp. Pty. Ltd. v. CLS Bank Int’ 20 and

the “routine building block” concept I define. The “building blocks of human ingenuity” include

the abstract idea, natural phenomena, and laws of nature, whereas “routine building blocks,” as I

define here, mean the basic, primary, or minimum steps for accomplishing the primary action of

the specific system. As an illustrative example, with the help of a recent case, Berkheimer v. HP

Inc.21, and knowledge of the skilled person in the art, the routine building block activities for asset

management systems is determined as follows:

1. Converting the file format to one that is acceptable by conventional computers.

2. Extracting data with conventional tools available in programming languages.

3. Storing data into a data model.

4. Retrieving, searching, sorting, editing, and deleting.

These are necessary procedures for this asset management system, with which the system functions

for its primary purposes. Even a small and trivial contribution beyond these building blocks will

permit a claim to pass §101 under my proposal.22

20 Alice Corp. Pty. Ltd. v. CLS Bank Int’ l, No. 13-298 (Jun. 19, 2014) (the specification of Alice`s invention is: “The
management of risk relating to specified, yet unknown, future events by employing an intermediary to facilitate simultaneous
exchange of obligations. “In this case, the court stated that “there is no significant “inventive concept” in the asserted method
claims. All the method steps exist in the prior art (use of an escrow.) The Alice provide the abstract idea of third-party
intermediation and adding the words: “apply it” on a computer.” The Supreme Court holds that Alice’s patent claims “are drawn
to a patent-ineligible abstract idea under 35 U.S.C. § 101” http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-
v-cls-bank-international/)
21 Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018) (holding that claims 1–3 and 9 of the ’713 patent are ineligible under 35
U.S.C. § 101.) “Id., cert. denied, F.3d (U.S. Jan.13.2020)”. (the Supreme Court has denied certiorari in HP Inc. v.
Berkheimer (18-415) patent eligibility petition.)
22 I will give more examples of my approach, starting on page 11.

http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-v-cls-bank-international/
http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-v-cls-bank-international/

 5

1.2 Analyzing the problem of Abstractness in patent eligibility under § 101

The reason why an abstract idea is not patent-eligible and would preempt other innovations

is that the only embodiment is its fundamental components that are the building blocks common

in all inventions in that type of software. Since these building blocks are high-level functions that

exist in all inventions in that type of software, they are considered too broad and not patent-eligible.

Therefore, by granting a patent for these essential elements, other innovations are hindered from

patenting. The problem lies not only in patenting these basic ideas that are mainly the sum of these

basic essential elements, but also the potential harm in preventing others from protecting their

novel and technological innovations.

In my opinion, the problem of patent eligibility under §101 is we do not have any

measurement or indicator to differentiate when a claim covers an abstract idea and when a claim

does not. Lacking this measurement coupled with software inherent complexity has resulted in

inconsistent jurisprudence that is often inscrutable.

 The complexity of software patents increased in 2014 when the Supreme Court in Alice

invalidated a software patent for a business method, viewing it as an abstract idea.23 The Court’s

defined framework made the issue even more complicated. The Alice framework consists of two

steps24: 1) whether the claimed invention falls into the § 101 judicial exception of an abstract idea;

and if so, 2) determine if there is any significant limitation in the components of the claimed

invention or the invention as a whole to transform the abstract idea into the patent-eligible

application.

After Alice, there was confusion on how to apply the Alice two-step patent eligibility test

on inventions, specifically software patent inventions.25 There are several different proposals with

inconsistent explanations as to how to apply Alice’s two-step test in determining patent

eligibility.26

Professor Robert Merges states in his article entitled “Go Ask Alice,”27 that the problem

lies in determining “when does a claim cover an abstract idea and when does it not?” With this

ambiguity surrounding the Alice’s two-step test, I propose a concrete way to address the problem

and determine patent eligibility in a more clearly defined manner: by determining the definition of

an abstract idea in a practical way to be applied consistently. Then I establish the relationship

between step two of the Alice test with other patentability provisions.

23 Alice, supra note 20.
24 See generally Mayo Collaborative Services v. Prometheus Laboratories, Inc., 566 U.S. 66 (2012)
25 Taylor, supra note 5.
26 See generally Jeff Lefstin, Peter Menell, & David Taylor, Final Report of the Berkeley Center Workshop: Addressing Patent
Eligibility Challenges, 33 BERK. TECH. L.J. 551 (2018)
27 Robert Merges, Go Ask Alice: What Can You Patent After Alice v. CLS Bank?, Berkeley Technology L.J. SCOTUS blog.
(2014).

 6

1.3 Patent-Eligibility Proposal

In considering whether an invention is patent-eligible, we should determine if it is a basic

idea in its essence; that is, whether there is nothing more than a basic idea and routine building

blocks in the method, component, or any combination of components. If so, then it is patent

ineligible under § 101. If it has anything more than these routine building blocks, trivial or not,

then it is patent-eligible under § 101. Determining whether these additional elements have an

inventive step, or is novel and non-obvious enough, should be a question of patentability under §§

102 and 103 rather than the existing court method of using §101 as the eligibility test.

 Here, the difference between my proposal and the Alice framework is that Alice’s two-step

test for determining patent eligibility requires measuring and assessing that “something more” than

an abstract idea to pass §101. In contrast, my proposal suggests that “anything,” trivial or not,

beyond routine building blocks, makes the software claim pass the §101 threshold. For measuring

the inventive step of the invention, the claim should be examined under §§102, 103, and 112 for

testing its patentability rather than §101 as the eligibility test. The reason for that is “anything

more” than routine building blocks is not the same as building blocks. Therefore, the provisions

that the routine building blocks will be examined should be different from the provisions that non-

routine building blocks will be assessed. As a result, this anything more than routine building

blocks should be assessed under other patent provisions such as §§102, 103, and 112 rather than

101.

Some scholars question the existing practice by asking, “Why should there be a step two in an

abstract idea analysis at all? If a method is entirely abstract, is it no less abstract because it contains

an inventive step?”28 These scholars believe that

If a claim recites ‘something more,’ an ‘inventive’ physical or technological step, it is not

an abstract idea and can be examined under established patentability provisions such as

§§102 and 103. Step two’s prohibition on identifying something more from ‘computer

functions [that] are well-understood, routine, conventional activity [ies] previously known

to the industry,’ is essentially a §§102 and 103 inquiry. Section 101 does not need a two-

step analysis to determine whether an idea is abstract…§ 101 requires further authoritative

treatment.29

This acknowledgement of shortcomings of existing practices is what my proposed test is

attempting to improve. Therefore, based on my proposal, determining the “inventive step” of the

claimed invention falls under patentability provisions §§ 102, 103, and 112 and not the patent

eligibility test under § 101.

Another major difference between my proposal and the existing practice is that I define the

abstract idea in a practical way, as routine building blocks, which help me to propose a particular

measurement based on the nature of the underlying type of software. This measurement is for

differentiating between the routine building blocks and non-routine building blocks (anything

more). Routine building blocks as I defined are the basic, primary, or minimum steps for

accomplishing the primary action of the specific system. The non-routine building blocks are the

ones that, although without them the invention’s primary functionality is fulfilled, they are

considered “anything more” than the routine building blocks to be evaluated under other

28 Menell, Peter S. and Lemley, Mark A. and Merges, Robert P., Intellectual Property in the New Technological Age, p.316
(2019).
29 Ibid.

 7

patentability provisions. Further explanation on this concept will be provided in the following

section.

In determining patent eligibility subject matter under 35 U.S.C § 101, I suggest the

following one step proposal:

1.3.1 Proposed Patent Eligibility Test: Routine Building Blocks Determination

In order to ascertain the abstractness of a specific claim/invention, we need to determine

the fundamental and essential steps or components of the underlying software, the “Routine

Building Blocks” of that particular type of software. These Routine Building Blocks are so

essential as to be incapable of removal without destroying the invention’s primary functionality.

For example, a “data asset management system” being separated from its necessary procedures,

such as converting the document to the standard input file format, extracting data, storing data into

a data model, retrieving, searching, editing, and deleting, would impair its functionality and

essential purpose of the system.

In determining these building blocks, the examiners or the courts need to be more familiar

with the routine building blocks in the field of computer science or software engineering that they

are assigned to evaluate. Helpful guidance includes court precedent,30 expert input, and knowledge

of a skilled person in the art. By defining the routine building blocks of the underlying software,

we are able to more narrowly delineate an unambiguous construction of the term abstract idea into

a tighter framework. Not to mention, that routine building blocks of software innovation may be

different from one type of software to another. The following flowchart (FIG.1) illustrates my

patent eligibility test proposal:

30 Merges, supra note 27.

 8

Figure 1: Proposed Patent Eligibility Test Flowchart

 9

1.3.1.1 Routine Building Block determination: Berkheimer v. HP Inc. case

As I mentioned in the section titled “patent eligibility related terms,” the building block

activities for asset management systems consists of:

5. Converting the file format to one that is acceptable by conventional computers.

6. Extracting data with conventional tools available in programming languages.

7. Storing data into a data model.

8. Retrieving, searching, sorting, editing, and deleting.

9.

These are necessary procedures for any asset management system, with which the system functions

for its primary purposes.

The U.S. Patent No. 7447713 (‘‘the ‘713 patent’’) relates to digitally processing and

archiving files in a digital asset management system. In this case, “Berkheimer has sued HP

alleging infringement of the '713 Patent. The allegedly infringing products and services are HP's

enterprise document automation software and platforms, such as HP EXSTREAM.”31

The Patentee in the Berkheimer case considered “reducing redundancy in his asset

management system and enabling one-to-many editing as the purported improvements”.32 The

Federal Circuit held that the “claims are directed to the abstract ideas of parsing and comparing

data (claims 1-3 and 9), parsing, comparing, and storing data (claim 4), and parsing, comparing,

storing, and editing data (claims 5-7) based upon a comparison of these claims to claims held to

be abstract in prior Federal Circuit decisions.” 33

 Although the Court tries to determine the routine and conventional activities of the system,

which make it patent-ineligible, there is no specific measurement or concrete indicator that the

court follows in distinguishing an abstract idea to be able to further recognize these “abstract ideas”

in future cases. In my proposal, instead of using the word “abstract idea,” which is vague and

unclear, I use “routine building blocks” for the underlying software. The word “routine” implies

the base process steps in an invention. Therefore, the “routine building blocks” describes the basic,

primary, or minimum steps required for accomplishing the primary action of the system in each

type of computer software. The reason that I emphasize the “underlying software” is that these

building blocks vary from one type of software to another. For example, building blocks of data

asset management systems are different from the building blocks of database systems.

In Berkheimer’s case, the Court should be more precise in determining the system building

blocks as I have enumerated in my applied proposal. The Court held that “claims 4-7 do contain

limitations directed to purported improvements described in the specification (e.g., claim 4 recites

"storing a reconciled object structure in the archive without substantial redundancy," which the

specification explains improves system operating efficiency and reduces storage costs), raising a

genuine issue of material fact as to whether the purported improvements were more than well-

understood, routine, conventional activity previously known in the industry.”34. The Federal

Circuit, therefore, “reversed the district court's decision on summary judgment that claims 4-7 are

patent-ineligible and remanded for further fact-finding as to the eligibility of those claims.”35

31 Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018) (Mem.)(2018),
https://www.uspto.gov/sites/default/files/documents/memo-berkheimer-20180419.PDF.(last visited Mar. 27,2020).
32 Berkheimer, Ibid.
33 Berkheimer, 881 F.3d at 1366-6.
34 Id. at 1370.
35 Ibid.

https://www.uspto.gov/sites/default/files/documents/memo-berkheimer-20180419.PDF

 10

Regardless of whether the Federal Court’s finding was correct, and Berkheimer’s invention

improves the system efficiency and could, therefore, be patent-eligible, this determination should

be examined under §§ 102, 103, and 112 and not under §101 as the Court decided. I will further

discuss this below.

In the following, I apply my patent eligibility test proposal to the Berkheimer case to show

how Berkheimer’s invention will be rejected under my analysis.

The routine building blocks of the Berkheimer case are as follows:

1- Converting the documents into standard input formats: This step is considered a routine

building block since, to access the data, we need to convert it to a standard format that is

understandable for the computer (e.g., pdf, gif, jpeg).

2- Parsing and tagging (extracting data from the standard format input document): This step

is also considered a routine building block. For manipulating the data in a document (editing,

removing, adding, and deleting), it is essential to parse and read (extract) the document and element

properties and values by pre-defined tools and libraries in conventional programming languages.

3- Defining rules for data storing and manipulation: Defining rules is also another routine

building block. Here, inventor designs and implements a User Interface (UI), which allows the

user to define the rules himself to store and manipulate (e.g., editing, reconciling, deleting) the

data automatically or manually.

4- Creating a data model and storing data in a data model: This is a routine building block as

well because after you extract the data from the document by performing the above steps, there is

no way but to store this data into storage called a data model. Here, the inventor uses a conventional

data model, object-oriented, to store and organize the data.

5- Data manipulation functionalities (edit (reconciliation), delete, add) and data retrieving

and searching: These should be considered routine building blocks since these functionalities are

essential for every asset management system.

All other actions, such as comparing, notifying, downloading/uploading are secondary

functionalities derived from previous steps. Once you get access to the content or data and store it

on a storage media, you may compare it with other contents and notify a user about the differences

or similarities of the contents or you can download/upload it with the conventional commands or

libraries available in each programming language. The following flowchart (FIG.2) is a visual

demonstration of my patent eligibility test as it applies to the Berkheimer case:

 11

Figure 2: Application of Proposed Patent Eligibility Test: Berkheimer Case

As illustrated, the test of routine building blocks was applied to Berkheimer and, not

surprisingly, after all the filtrations and removals from consideration, nothing was left to be

patentable, and no relief can be provided to him. Each claim and combination of all claims in the

application was routine and conventional.36 Therefore, Berkheimer did indeed wrongfully obtain

a patent on a very basic idea of asset management systems.

1.3.2 Determining “anything more than Routine Building Blocks”

There is a possibility that in addition to the basic steps (routine building blocks), the

inventor introduces new components or methods. If so, the claim passes the § 101 threshold. The

reason for passing the § 101 threshold is because there is something in the claim that is more than

routine building blocks of the specific type of the software. Then, I propose that the additional

elements should be examined under §§ 102, 103, and 112 to see if they qualify for granting a

patent. The following flowchart (FIG.3) illustrates my patent eligibility test proposal and its

relationship with other patentability provisions:

36 Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018) (“The question of whether a claim element or combination of elements is
well-understood, routine and conventional to a skilled artisan in the relevant field is a question of fact. Any fact, such as this one,
that is pertinent to the invalidity conclusion must be proven by clear and convincing evidence.”) (quoting Microsoft Corp. v. i4i
Ltd. P’ship, 564 U.S. 91, 95 (2011)).

 12

Figure 3: Proposed Patent Eligibility Test in Relation with other Patentability Provisions

As an illustrative example for adding a new step to the initial building blocks of an invention, if

we assume the steps of searching, choosing, paying and receiving the product as building blocks

of the online shopping process, any additional steps or any specific improvement or creativity in

 13

the shopping routine steps may pass the patent eligibility criteria. For example, if someone adds

the feature or step “Undo your purchase” in online shopping, it goes beyond the enumerated routine

building block steps. It means by eliminating this step, the primary functionality of the online

shopping is remaining. Therefore, the online shopping invention that has this limitation (Undo

your purchase) passes the § 101 threshold. Then the novelty or non-obviousness and sufficiency

of the disclosure of this additional element should be examined under §§ 102,103 and §112. In

another example, adding a limitation in the searching step of the online shopping (which is one of

the routine building block steps) makes it patent-eligible under § 101. For example, assuming the

routine building block of searching in online shopping is searching one database for generating an

appropriate purchase order, the claimed invention that searches between more than one database

for the specific purpose of matching products to customer queries passes the § 101 threshold.

Determining the degree of inventiveness, obviousness, or novelty of that specific searching

method/algorithm can be examined under established patentability provisions such as §§ 102 and

103.37

1.3.2.1 Determining “anything more than Routine Building Blocks” : Berkheimer case

There is no additional component(s), element(s) or step(s) in Berkheimer’s invention other

than routine building blocks. Features such as “workflow, version controlling system, and

reporting system” are out of the scope of Berkheimer’s claimed invention. They are some

independent systems that are integrated into this system, and all of them are found in the prior

art. Therefore, he should not have explained these features in his application in detail.

Berkheimer’s invention can be summarized into “Many-to-one and One-to-many

relationship”: by applying specific system design and rules on a pile of data/documents (many), a

system or model, here, object-oriented system model (one) was created to serve and organize new

input documents (many) in the system. Here, only a conventional expression was used to explain

how the system components are related. Therefore, his argument38, refusing to accept claim one

as a representative, and asserting that dependent claims 4–7 include inventive limitations

(“reducing redundancy and enabling one-to-many editing”,) is not legitimate. None of his

dependent claims “transform the nature of the claim into a patent-eligible application.”39

Therefore, there was no additional component(s), element(s) or, step(s) other than Routine

Building Blocks residing in his claimed invention or the invention as a whole.

Since Berkheimer’s invention does not have anything other than routine building blocks,

the relationship between my patent eligibility test and other patentability provisions cannot be

demonstrated. Therefore, to properly demonstrate the full applicability of my proposed test, I will

apply my patent eligibility test on the following software patent cases, Enfish, LLC v. Microsoft

Corporation, et al.40 and McRo, Inc. v. Bandai Namco Games America41:

37 Menell et al., supra note 28.
38 Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018)
39 Ibid. (quoting Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66, 78–79 (2012)).
40 Enfish, LLC v. Microsoft Corp., 822 F.3d 1327, 2016 U.S. App. LEXIS 8699, 118 U.S.P.Q.2D (BNA) 1684
41 McRO, Inc. v. Bandai Namco Games Am. Inc., 837 F.3d 1299, 1302, 2016 U.S. App. LEXIS 16703, *1, 120 U.S.P.Q.2D
(BNA) 1091, 1093

https://advance.lexis.com/api/document/collection/cases/id/5JRX-8XY1-F04B-M008-00000-00?cite=822%20F.3d%201327&context=1000516
https://advance.lexis.com/api/document/collection/cases/id/5KPB-NGK1-F04B-M062-00000-00?page=1093&reporter=9898&cite=837%20F.3d%201299&context=1000516
https://advance.lexis.com/api/document/collection/cases/id/5KPB-NGK1-F04B-M062-00000-00?page=1093&reporter=9898&cite=837%20F.3d%201299&context=1000516

 14

1.4 Applying Patent Eligibility Test on Two software patent cases

1.4.1 Enfish, LLC v. Microsoft Corporation

The U.S. Patent No. 6151604 (“the ’604 patent”) and U.S. Patent No. 6,163,775 (“the ’775

patent”) are directed to a self-referential model for a computer database, “a method and apparatus

configured according to a logical table having cell and attributes containing address segments.”42

The Enfish43 invention’s abstract is as follows:

The information management and database system of the present invention comprises a

flexible, self-referential table that stores data. The table of the present invention may store

any type of data, both structured and unstructured, and provides an interface to other

application programs. The table of the present invention comprises a plurality of rows and

columns. Each row has an object identification number (OID) and each column also has an

OID. A row corresponds to a record and a column corresponds to a field such that the

intersection of a row and a column comprises a cell that may contain data for a particular

record related to a particular field, a cell may also point to another record. To enhance

searching and to provide for synchronization between columns, columns are entered as

rows in the table and the record corresponding to a column contains various information

about the column. The table includes an index structure for extended queries.44

To analyze the Enfish invention and investigate its proposed features, we need to review

the following common concepts and definitions in conventional relational database systems:

Database: “A database is a collection of information in tables that are organized in terms of rows

and columns so that it can easily be accessed, managed, and updated.”45

Relational Database

In a relational database, each table has a primary key that “uniquely identifies a record in

the table” 46 and could act as a foreign key in another table. Through these foreign keys (which are

like primary keys, but with different tasks47), different tables can interconnect. In the illustration

below (FIG 4) 48, “Customer No” is a primary key in the “Customers Table”, which at the same

time is used as a foreign key in the “Orders” table to connect “Customers Table” to the “ Orders”

table. Table “Orders” by itself has “OrderNo” as its primary key, which is used as a foreign key to

connect with other tables.

42 “U.S. Patent No 6,163,775 (issued Dec 19, 2000)” http://patft1.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=61637
75.PN.&OS=PN/6163775&RS=PN/6163775 (last visited May 25, 2020).
43 Enfish, LLC v. Microsoft Corp., supra note 40.
44 “U.S. Patent No 6,163,775” supra note 42.
45 Margaret Rouse, database (DB), TechTarget, https://searchsqlserver.techtarget.com/definition/database (last visited May 25,
2020)
46 Shailendra Chauhan, Difference between Primary Key and Foreign Key, DotNetTricks,
https://www.dotnettricks.com/learn/sqlserver/difference-between-primary-key-and-foreign-key (last visited May 25, 2020)
47 Ibid.
48 Figure resource: https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9 (last
visited May 25, 2020)

http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6163775.PN.&OS=PN/6163775&RS=PN/6163775
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6163775.PN.&OS=PN/6163775&RS=PN/6163775
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6163775.PN.&OS=PN/6163775&RS=PN/6163775
https://advance.lexis.com/api/document/collection/cases/id/5JRX-8XY1-F04B-M008-00000-00?cite=822%20F.3d%201327&context=1000516
https://www.techtarget.com/contributor/Margaret-Rouse?_ga=2.85857049.1272326276.1590426686-1229159605.1590337106
https://searchsqlserver.techtarget.com/definition/database
https://www.dotnettricks.com/mentors/shailendra-chauhan
https://www.dotnettricks.com/learn/sqlserver/difference-between-primary-key-and-foreign-key
https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9

 15

Figure 4: Primary key and the Foreign key in Database

 A user of the database could apply a query and obtain a view of the database that fits the

user's needs. For example, a manager might like a view or report on the list of the names of the

customers. An accountant of the same company could, from the same tables, obtain a report on the

list of the suppliers.

Self-referential table

A self-referential table is a table in which there is one or more fields or columns pointing

to the records from the same table. All entities in this invention, in contrast to a relational model,

are accumulated in one table and the logical relationships between the elements of these tables

(rows and columns) are established by pointers (OIDs or Object Identifications). Also, the self-

referential model can define the “table’s columns by rows.”49

The following illustration (FIG.5) 50 provides an example of how the tables in a relational

database are accumulated in one table to form a self-referential table (FIG.6)51:

49 "U.S. Patent No 6,163,775” Supra note 42 .
50 Ibid.
51 Ibid.

 16

Figure 5: Relational database tables

Figure 6: Self- Referential Table

In the above table, for example, the “Author” column is pointing to a record with ID #2.

This means that the table is referring to itself. This specific table architecture, with its self-

referential innovative aspect will be explained in greater detail in the following section.

 17

Summary of the invention

The system used in this invention can be divided into two main related parts:

1- Backend: comprised of “Table structure” (data storage) and the “Indexing system,” that

consists of the “Knowledge base and Thesaurus system.”

2- User Interface: comprised of the “Word processor system.”

1- Backend components

a. Table structure

“The information management and database system of the present invention comprises a

flexible, self-referential table that stores data...The table of the present invention may store any

type of data, both structured and unstructured”52

b. Indexing system

The indexing system in any database helps to enhance the search process like the book

indexing system that enhances the searching in a book. There are some conventional methods of

indexing53 in the database field, but the invention suggests the new indexing system - the self-

referential indexing system - which is new and not similar to any of the existing indexing systems.

In this invention, the new indexing system consists of the following two steps:

 i. Key phrase extraction system

“To generate a sorted list of keywords, the system must first extract the key phrases or

words from the applicable cells.”54 There are four different key phrase extraction systems

available: full text extraction, column extraction, automatic analysis extraction and manual

selection extraction. “In full text extraction, every word is indexed, which is typical for standard

text retrieval systems. In column extraction, the whole contents of the column are indexed which

corresponds to a standard database system. According to a third type of extraction, automatic

analysis, the contents of the text are analyzed, and key phrases are extracted based on matching

phrases, semantic context, and other factors. Finally, in manual selection extraction, the user or

application explicitly marks the key phrase for indexing.”55

 Referring to the application claims in Enfish, “In this invention, the combination of

structured information and text allows various combinations of key phrase extraction to be

used.”56Therefore, all four extraction systems were applied to the invention.

52 “Structured data vs. unstructured data: structured data is comprised of clearly defined data types “such as primary data types
like string, integer, etc. that “whose pattern makes them easily searchable; while unstructured data – “everything else” – is
comprised of data that is usually not as easily searchable, including formats like audio, video, and social media postings.”
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
53 Some conventional indexing systems are as follows: Dense Indexing, Sparse Indexing, Single-Level Indexing including
(Primary indexing, Clustered indexing, and Secondary indexing), and Multilevel Indexing including (B Tree and B+ Tree)

https://www.datacamp.com/community/tutorials/introduction-indexing-sql.
54 “U.S. Patent No 6,163,775” supra note 42.
55 Ibid.
56 Ibid.

https://www.datamation.com/big-data/structured-data.html
https://www.datamation.com/big-data/unstructured-data.html
https://www.datamation.com/big-data/structured-vs-unstructured-data.html
https://www.datacamp.com/community/tutorials/introduction-indexing-sql

 18

ii. Indexing the extracted text

The extracted key phrases from the previous step are stored in the important words list.

Any keywords that occur in any cells are saved into the important words list with the pointer to

the cells where this keyword resides. For instance, as illustrated below57 (FIG.7), the word

“Ventura” occurs in different cells and this word is saved into the keyword list with the pointer to

the cells that this keyword resides.58

Figure 7: The correspondence between cells of the table and a stored key word index

Similarly, the record containing that specific key word has a pointer to the same keyword

in the important words list. Therefore, “the associations between the list of records with text and

the list of key phrases is two-way since the cells that include text point to the key

words.”59(FIG.8)60 illustrates this two-way relationship, “each record can point to multiple key

phrases, and each key phrase can point to multiple records.” For example, as illustrated below, the

record #1124 in the main table has a pointer to record #1206 and #1207 for ‘HTML’ and

‘HYPERTEXT’ key words in the key phrases table. Note that all these tables reside in one table

(table 100), and only for the purpose of illustration, the tables are showed separately.61

Figure 8: The relationship between certain data records and key word index records

Therefore, as illustrated below (FIG.9), there are many-to-many relationships between the record

containing that specific key word and the same keyword in the important words list.

57 Ibid.
58 Ibid.
59 Ibid.
60 Ibid.
61 Ibid.

 19

Figure 9: The relationship of Figure 8 in graphical form

c. How data is retrieved based on the key phrases

“The present system uses a new approach (Hypertext system) based on a dynamic

association between records. Hypertext systems typically associate a region of text with a pointer

to another record. In the preferred embodiment, each hypertext region is associated with a key

phrase, not a normal record.” When a user clicks on a hypertext, all the records associated with the

key phrase are retrieved and ranked using any associative search techniques. “If the target record

is absent, the hypertext jump will fail. The application can then display on the display screen either

the highest ranked item [more relevant words or concepts] or present all the retrieved items and

allow the user to pick the one to access.”62

d. Knowledge Base and Thesaurus System

 The invention includes a knowledge base or thesaurus system to improve the indexing

system capabilities and enhance searching.63 The point is that the database system, including this

knowledge base and thesaurus system, is stored in one table. Key phrases (terms) and concepts are

stored as records in this system.64

 The invention, by weighing the relevancy between the concepts and key words in a table,

provides a knowledge base or thesaurus system. The keywords (terms) and the relevant words with

the same concepts are connected through pointers (OID’s). For example, the key phrase “IBM” is

related to the concept “IBM PC” with an assigned weight of 100%, where the weight percentage

reflects the relevancy and similarity between the initial term "IBM" and the related concept "IBM

PC." Also, the term “IBM” is related to the concept of "Microsoft" with a weight of 70%, “where

the weight percentage reflects the relevancy and similarity between the initial term "IBM" and the

related concept ‘Microsoft.’65Here, “each important term (IBM) included within the thesaurus

62 Ibid.
63 Ibid.
64 Ibid.
65 Ibid.

 20

contains a pointer to a `concept` record [here, the concept of “Microsoft”], and to the terms that

are included within the bounds of that concept [e.g. computer companies].”66

2. User Interface: Word processor system

“The structured word processor of the present invention uses the ‘boxes and glue’

paradigm. Boxes may be attached to other boxes with ‘glue.’”67 According to this paradigm, a

page of text is created by starting with individual characters and concatenating characters (each

character considers as a box) to form a word, concatenate (glue) words to form lines, concatenate

(glue) lines to form a paragraph, and concatenate (glue) a paragraph to form a page of a text, and

eventually to form documents.68

When a record of the table is edited, each word and field definition is converted into boxes.

The system organizes these boxes into a tree structure of line boxes and paragraph boxes.

Each box is kept as a bitmap... so, the system displays the tree structure by displaying all

of the bitmaps corresponding to the boxes in the tree. To edit the tree structure, a user may

click a cursor on a part of the text…The system locates the word box or glue that is being

edited by a recursively descending through the tree structure. If the tree is changed for

example by adding a new word, only the new word box and a relatively small number of

adjacent boxes need to be recalculated.69

This word processor system is one of the inventive steps in the invention that makes the invention

unique. In the following, the word processing system is illustrated70 (FIG.10).
Figure 10: Structure of the word processor of the present invention

(20 a: A Character and word box structure, 20 b: The word and horizontal and the horizontal line box structure, 20c:

The vertical box structure)

66 Ibid.
67 Ibid.
68 Ibid.
69 Ibid.
70 Ibid.

 21

1.4.1.1 Routing Building Block Determination: Enfish, LLC v. Microsoft Corporation, et al.

The routine building blocks of the Enfish case are as follows:

1- Converting the external resources to plain text: This step is considered a routine building

block since, to access the data, we need to convert it to a standard format that is understandable

for the system.

2- Having a data structure (table): This step is also considered a routine building block because

the extracted data should be stored in a data structure. The data structure should have the

capability of storing, editing, and deleting the data.

3- Designing a User Interface (UI): This step is also considered a routine building block. For

manipulating the data in a document (editing, adding, and deleting), the user and database must

be interacting with each other via UI.

4- Retrieving data with indexing system: This is a routine building block as well because after

you extract the data from the document and store it in data storage, you should be able to

retrieve the data through a search system equipped with the indexing system to make it more

efficient.

In this invention, the unique indexing method, and the word processor system are something

more than these routine building blocks, which take the invention out of §101 threshold.

1.4.1.2 Determining “anything more than Routine Building Blocks” : Enfish case

The Enfish’s invention adds improvements to some of the building blocks of the system,

which takes the invention out of §101 threshold. These additional features occur in both backend

(table structure and the Indexing system consist of the knowledge base and thesaurus system) and

the User Interface (which comprises the “Word processor system”) of the system.

 In the backend, the unique indexing method is something more than routine building

blocks. The uniqueness of this indexing system is its self-referential feature and its knowledge

base and thesaurus system. This knowledge base and thesaurus system resides in the indexing

system, which makes it different from the basic and conventional indexing systems. This

knowledge base and thesaurus system, equipped with the filtering and weighting features, make

the search and retrieval system unique. In this invention, the knowledge base system is created

based on the key phrases extracted from the table records. The weighting feature is for ranking the

relevancy of the retrieved record.

The present invention includes a thesaurus and knowledge base that enhances indexed

searches. The thesaurus is stored in the table and allows a user to search for synonyms and

concepts and also provides a weighting mechanism to rank the relevance of retrieved

records.71

Another additional feature is the word processor system residing in Enfish’s invention.

This word processor system, with its “Boxes and Glue” model and bitmap data structure, combines

data (structured and unstructured) with different data types (text, graphic, hyperlink, number, etc.).

71 Ibid.

 22

Then the system stores them in one cell of the table. In the conventional version of data storing,

only one plain data type value can be stored in one cell of the table.

A bitmap representation in the tree structure of the display system provides a user interface

in which the data can be edited. “ The novel word processor of the present invention is integrated

with the table of the present invention to allow cells to be edited with the word processor.” 72 This

editing method makes the system unique since the user, by clicking on the specific point on the

screen, can change the content of that specific spot. It happens without affecting the rest of the

words, lines, or paragraphs. In this way, for example, by adding a new word in the line, “only the

new word box and a relatively small number of adjacent boxes need to be recalculated. Similarly,

line breaks or restructuring of a paragraph does not alter most of the word boxes, which may be

reused, and only the line boxes need to be recalculated.”73 Only the edited characters or words

need to be recalculated and saved after editing, not the whole record.

 The Court of Appeals for the Federal Circuit in the Enfish case held that “the district court

erred in finding all claims patent-ineligible under 35 U.S.C.S. § 101 because the claims were not

directed to an abstract idea within the meaning of step one of the Alice analysis. Rather, they were

directed to a specific improvement to the way computers operate, embodied in the self-referential

table.”74

Here, the novelty or non-obviousness and sufficiency of the disclosure of these additional

elements should be examined under §§ 102,103 and §112. The following flowchart (FIG.11) is a

visual demonstration of my patent eligibility test as it applies to the Enfish case:

Figure 11: Application of Proposed Patent Eligibility Test: Enfish Case

72 Ibid.
73 Ibid.
74 Enfish, LLC v. Microsoft Corp., supra note 40.

https://advance.lexis.com/search/?pdmfid=1000516&crid=16e25cac-c203-4c7b-92de-d4e3fa951fc4&pdsearchterms=Enfish%2C+LLC+v.+Microsoft+Corp.%2C+822+F.3d+1327&pdstartin=hlct%3A1%3A1&pdtypeofsearch=searchboxclick&pdsearchtype=SearchBox&pdqttype=and&pdquerytemplateid=&ecomp=9gr9k&prid=86cb55df-10d1-4b04-8deb-95201e988dd7
https://advance.lexis.com/api/document/collection/cases/id/5JRX-8XY1-F04B-M008-00000-00?cite=822%20F.3d%201327&context=1000516

 23

1.4.2 McRo, Inc. v. Bandai Namco Games America75 (McRo Case)

“The U.S. Patent Nos. 6,307,576 (‘‘the ’576 patent’’) and 6,611,278 (‘‘the ’278 patent’’)

were both issued to Maury Rosenfeld and are both titled ‘Method for Automatically Animating

Lip Synchronization and Facial Expression of Animated Characters.’”76 In the following, after

determining some definitions related to computer animation, I will apply the proposed patent

eligibility test on the McRo case.

Definitions

Phoneme: “A “phoneme” is defined as the smallest unit of speech, and corresponds to a

single sound such as “th,” “aah,” “ee,”, “oh”, etc. The goal of lip synchronization animation is to

match the character’s lip and facial expression to spoken dialogue.”77 (FIG.12)78

Figure 12: Mouth positions for Phonemes

Viseme or morph target: “A viseme is an image of a face speaking a certain phoneme. In

computer animation, the artist starts with the neutral model and then creates a library of visemes

showing what that character looks like when speaking the various sounds [or phonemes].”79

“Accordingly, a morph target has the same number of vertices as the neutral model, and each

75 McRO, Inc. v. Bandai Namco Games Am. Inc., supra note 41.
76 https://www.bitlaw.com/source/cases/patent/MCRO.html
77Reply brief of Petitioner McRO, Inc, McRO, Inc. v. Bandai Namco Games Am. Inc.(docket number 755) (2016)(Nos. 15-

1080, 15-1099). Retrieved from
https://www.law.berkeley.edu/wp-content/uploads/2016/05/McRO-v-Bandai-Namco-appellate-argument-FJC-Program.pdf
78 Figure resource: https://images.app.goo.gl/teRwSUTgC2vfnpH3A. (last visited Mar.6, 2020)
79 Supra note 77.

https://advance.lexis.com/api/document/collection/cases/id/5KPB-NGK1-F04B-M062-00000-00?page=1093&reporter=9898&cite=837%20F.3d%201299&context=1000516
https://www.bitlaw.com/source/cases/patent/MCRO.html
https://www.law.berkeley.edu/wp-content/uploads/2016/05/McRO-v-Bandai-Namco-appellate-argument-FJC-Program.pdf
https://images.app.goo.gl/teRwSUTgC2vfnpH3A

 24

vertex on the morph target corresponds to a vertex on the neutral model.”80 “A morph target

[FIG.13] 81 is created by manipulating the vertices of the neutral model to form a different facial

shape.”82

Figure 13: Morph targets

Keyframe: The keyframe (FIG.14)83 is the important moment in an animation sequence

where the motion is at its extreme. It means at this moment the specific phoneme is pronounced

and its corresponding morph target is displayed.84

Figure 14: Keyframes

Morph weight: “A morph weight is a value, between 0 (0%) and 1 (100%) that is applied

to determine how far the neutral model’s vertices should be moved toward the morph target. A

morph weight represents the degree to which the lip or facial shape corresponding to the morph

target is expressed. For example85, if the morph target for the “oh” viseme is assigned a morph

weight of 1, the neutral model would be modified to look exactly like the “oh” viseme, but if the

“oh” viseme is assigned a morph weight of .5, the neutral model’s vertices would be moved only

halfway toward the “oh” viseme.”86 In the prior art, “Manual approach”, the artist uses a slider to

assign a number between 0 and 1 as a morph weight to determine the degree to which the lip should

80 Ibid.
81 Figure resource: https://images.app.goo.gl/QE12sb9a7roF5MEy5 (last visited Mar.6, 2020).
82 Supra note 77.
83 Figure resource: https://images.app.goo.gl/WQ4qPcm6rjjj4ega7 (last visited Mar.6, 2020).
84 Supra note 77.
85 Ibid.
86 Ibid.

https://images.app.goo.gl/QE12sb9a7roF5MEy5

 25

be moving. In the illustration below, (FIG.15)87 the artist uses the slider to adjust different lip and

facial positions:

Figure 15: The sliders control the morph weights to adjust different lip and facial positions

In the second approach in the prior art, which is more automated, “each viseme is given a

morph weight of 1 or 0, with nothing in-between, the viseme is either fully expressed or not

expressed at all. The software then uniformly interpolates between those keyframes to generate an

image at each frame of the animation.”88

Morph weight set: “A morph weight set is a set of values in which each entry represents the

weight of one of the morph targets (visemes). As the district court explained, when a morph weight

set is “applied” to the neutral model, it “transform[s]” the model to a particular facial expression.”89

Setting a keyframe: “Assigning a morph weight set to a specific time in the animation is called

“setting a keyframe.”90

TAPT: “Time aligned phonetic transcriptions (TAPTS) are a phonetic transcription of a recorded

text or soundtrack, where the occurrence time of each phoneme is also recorded.91For example, a

TAPT representing the spoken word “hello” could be configured as it is illustrated in table 192:

Table 1: Time aligned phonetic transcriptions (TAPTS)

Time Phoneme:

0.0 silence begins

0.8 silence ends, “h” begins

1.0 “h” ends, “eh” begins

1.37 “eh” ends, “1” begins

1.6 “1” ends, “oh” begins

2.1 “oh” ends, silence begins.

87 Figure resource: Internet.
88 Supra note 77.
89 Ibid.
90 Ibid.
91 “U.S. Patent No 6,307,576(issued Oct. 23,2001).” http://patft1.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=63075
76.PN.&OS=PN/6307576&RS=PN/6307576
92 Table resource: Ibid.

http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6307576.PN.&OS=PN/6307576&RS=PN/6307576
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6307576.PN.&OS=PN/6307576&RS=PN/6307576
http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6307576.PN.&OS=PN/6307576&RS=PN/6307576

 26

Morph weight set stream: This term, which is used in this new invention, is a sequence

of morph weight sets, each set enclosed into a time frame. Morph weight set stream works as a

function of phoneme sequence and time of said phoneme sequence.

As table 1 shows, for example, at the 1.6 seconds of animation, the “l” phoneme ends, and

the “oh” phoneme begins. This new invention is using TAPT to create an output morph weight set

stream.

As illustrated in table 293, for example, at the 0.8 and 0.98 second, the (“h”) phoneme

should be pronounced. The correspondence morph weight set for (“h”) phoneme is 100000. At the

1.037 and 1.333 second (keyframe) of animation, the “eh” phoneme should be pronounced. The

correspondence morph weight set for a (“eh”) phoneme is 010000. The collection of these morph

weight sets along with their associated times (keyframes) will form the morph weight set stream.

 Table2: Output morph weight set stream

D.S.1 D.S.2 D.S.3 D.S.4 D.S.5

Time (“h”) (“eh”) (“1”) (“oh”) (aux“oh”) D.S.6

0.0 0 0 0 0 0 0

0.78 0 0 0 0 0 0

0.8 1 0 0 0 0 0

0.98 1 0 0 0 0 0

1.037 0 1 0 0 0 0

1.333 0 1 0 0 0 0

1.403 0 0 1 0 0 0

1.667 0 0 1 0 0 0

1.74 0 0 0 1 0 0

2.1 0 0 0 1 0 0

2.14 0 0 0 0 0 0

In the new invention, this binary sub-sequence (morph weight set), which represents a

phoneme, is assigned to the corresponding graphical representation (morph target). The timed

Sequence of these morph weight sets (morph weight set stream) is then sent to the graphic section

to map to the morph targets in animation characters. In the following, the morph weight set stream

is illustrated (FIG.16)

Figure16. Morph Weight Set Stream

 Keyframe morph weight set

Time (“h”) Time (“h”) Time (“eh”) Time (“eh”)

0.8 100000 0.98 100000 1.037 010000 1.333 010000

93 Table resource: Ibid.

 27

Meaning of Sequence of 0 and 1:

In computer science, we can assume that “1” means on or the existence of something and

“0” means off or a lack of something. Here in this invention, this convention is used to show if a

phoneme exists or not. It means that we put a number one under the phonemes, which are

supposed to show at the specific time, and we should use zero wherever we do not want the

pronunciation of those phonemes. As a result, we can show the number of phonemes that are

pronounced by characters by creating a stream of 0 and 1. For example, in the third and fourth

line from table 2, the 1 0 0 0 0 0 stream means that the “h” phoneme is pronounced at 0.8

seconds and continues until 0.98 seconds. Considering the fifth and sixth line and the 0 1 0 0 0 0

stream, we can see that at 1.037 seconds of animation the” eh” phoneme is pronounced and

continues until 1.333 seconds.

Time Aligned Emotional Transcriptions (TAET):

TAET corresponds to facial models of emotions (surprise, anger…), which can be

implemented by creating an additional morph weight set stream to represent the special

emotional state.

A further extension of the present method is to make a parallel method or system that

uses time aligned emotional transcriptions (TAET) that correspond to facial models of

those emotions. Using the same techniques as previously described, additional morph

weight set streams can be created that control other aspects of the character that reflect

the facial display of emotional state.94

The present method is extensible by adding new rules that use Time Aligned Emotional

Transcriptions (TAET) that correspond to the facial models of different emotions like “surprise,”

“disgust, “embarrassment,” “timid smile” etc. This will affect the output data (morph target)

according to additional rules (emotional rules which are converted to the sequence of 0 and 1)

that take these emotemes into account. Each rule comprises criteria and function, as in an “if . . .

then . . . else” construct.

In addition, the TAET data can be used in conjunction with the lip synchronization

secondary rules to alter the lip synchronization output stream. For example, Criteria: An

“L” is encountered in the TAPT (Time Aligned Phonetic Transcription), and the nearest

“emoteme” in the TAET is a “smile.” As a result, several parallel systems may be used

on different types of timed data, and the results concatenated.”95

Rule (If … Then … Else):

In conventional programming languages, there are several conditional control structures.

One of them is an If…Then…Else flow controlling feature. By applying these conditional

structures or rules, we can control the flow of the program and determine under which condition

(criteria) things should be done (function). To explain how this feature works, consider the

following schematic (FIG.17)96:

94 Ibid.
95 Ibid.
96 Figure resource: https://images.app.goo.gl/9oqcwaSv6X7qoJrVA. (last visited Mar.6, 2020)

https://images.app.goo.gl/9oqcwaSv6X7qoJrVA

 28

Figure 17. Rule (If … Then … Else)

In this new invention, this very popular programming feature, “if … then … else” is used

to generate and apply the appropriate rules to automatically control and determine the animating

lip synchronization and facial expression of three-dimensional characters for films, videos,

cartoons, etc.

 Each “Criteria” is equivalent to “If” clause, and each “Function” is equivalent to the

“Then” clause in Pseudocode. To make this test case more readable, the inventor could also

provide these samples of rules in the form of “If… Then….Else.” For example, the default rules

for the first two lines can be written as follows:

 IF Encounter an “h” as in “house” Then

Use morph weight set (1,0,0,0,0,0) as transition target.

The equivalent Pseudo code format of this rule is as follows, which has been already

drafted above in the Pseudocode section of this paper:

 If p[i] == “h” then

 MorphWeight[i] = 100000;

In this rule, we check a condition in the “if” clause. If the condition is fulfilled, then the “then”

clause will be executed; otherwise, the “else” condition will be performed. The “if “clause or

criteria works as a gatekeeping. If the gatekeeping criteria are satisfied, then the program

determines its proper rule to apply. The “if” section would be including the condition or criteria

under which the specific phoneme should be pronounced in the “then” section. For example:

“Criteria or if: Encounter an “h” as in ‘house.’”97

The “then” section would be including the appropriate sequence of 0 and 1 as a morph

weight set to assign a phoneme to a specific morph target to represent the pronunciation of “h.”

“Function or then: Use morph weight set (1,0,0,0,0,0) as transition target.”98

In “else” clause(s) or other condition(s), the next phoneme(s) which should be

pronounced are determined.

“Next Criteria or else: Encounter an “eh” as in “bet”: Use morph weight set (0,1,0,0,0,0) as

transition target.”99

97 Ibid.
98 Ibid.
99Ibid.

 29

In the following, different rule categories which are used in the present invention is explained:

Default, Secondary(auxiliary) and Post-processing rules:

“The rules of the present method may be categorized into three main groupings; default

rules, auxiliary rules, and post-processing rules. The default rules must be complete enough to

create valid output for any TAPT encountered at any point in the TAPT. The secondary rules are

used in special cases; for example, to substitute alternative morph weight set correspondences

and/or transition rules if the identified criteria are met. The post-processing rules are used to

manipulate the morph weight set stream further after the default or secondary rules are applied,

and can further modify the members of the morph weight sets determined by the default and

secondary rules and interpolation.”100

Default rules can be generated as required to represent different lip and facial positions.

Secondary and post-process rules are complementary rules that can be included in the emotional

state of different characters. The following example shows how, and by which order, the default,

secondary, and post-processing rules are executed. Note that “If a timed phoneme or sub-

sequence of timed phonemes do not fit the criteria for any of the secondary rules, the default

rules are applied” 101

In the following example, the default rule condition (Criteria_1) should be checked, but

nothing happens until the software checks the secondary rule condition (Criteria_2). If the

animation has a secondary rule, then the secondary rule function (Function_2) will be executed;

otherwise (Else_2), the software runs the function of the default rule (Function_1). This means

that the software first checks in the sequence of rules whether the secondary rule condition exists

or not. If the secondary rule’s condition is true, the software runs the secondary rule function;

otherwise, it performs the default rule function in the “else” section. This happens because the

secondary rule is a complementary rule of the default rule and expresses it in a specific way.

“For example, if a character says “HELLOOOOOOO!” then a more exaggerated “oh”

model,”102as a secondary rule, should be executed. This rule is complementary to the default rule

about the “oh” phoneme.

“Post-processing rules can be applied before interpolation or after interpolation”103, and

like the default and secondary rules, they generate a stream of 0 and 1 as a morph weight in order

to produce a specific auxiliary morph target. “In post-processing rules, for example, the auxiliary

morph target might be used in a cyclical manner over time. For instance, if the auxiliary morph

target had the character’s mouth moved to the left periodically, the output animation would have

the character’s mouth cycling between centers to the left as he spoke.”104This approach can be

extended by generating more default rules, secondary rules, or post-process rules to get more and

diverse lip and facial positions. All of these rules are essentially extendable.

100Ibid.
101Ibid.
102Ibid.
103Ibid.
104Ibid.

 30

Default rule: If (Criteria) _1: Encounter an “oh” as in “old”

Secondary rule: If (Criteria) _2: Encounter an “oh” longer than 1 second long.

Then (Function) _2: Insert transitions between a defined group of morph weight sets at 0.5-

second intervals, with transition duration’s of 0.2 seconds until the next “normal” transition start

time is encountered. (0100000)

 Else (Otherwise) _2

Then (Function) _1: Use morph weight set (0,0,0,1,0,0) as transition target.

Post-processing rule: If (Criteria) _3: Auxiliary morph target had the character’s

 the mouth moved to the left cyclically

 Then (Function) _3: output animation would have the

 character’s mouth cycling between

 centers to left as he spoke.

Note: In this new invention, the morph weight set corresponding to each phoneme are created

based on 7-bit binary codes in which each bit can be represented by two states of 0 and 1. As a

result, in total, we can have the maximum number of 2*2*2*2*2*2*2= 2^7=128 different facial

and lip positions. By increasing the number of bits, it is possible to increase the number of

different positions in the lips and face of the actors in animation. In earlier inventions, this

extension could not have been accomplished easily, because instead of each new face or lip

position, the artist had to calculate a new delta set as a morph weight and then assign it to the

new lip or facial position”

Interpolation:

It is a mathematical term, which is “an estimation of a value within two known values in a

sequence of values.”105 This method, which is used in the prior art manual approach, was applied

to show a state or value between two keyframes and creating the morph weight and eventually

corresponding morph target for that value to make the animation more natural. “Because

interpolation generates the property values between keyframes, interpolation is sometimes

called “tweening.’”106

1.4.2.1 Routine Building Block Determination: McRO, Inc. v. Bandai Namco Games Am. Inc

Case

The building block activities for computer animation is determined as follows:

1- Using a Time aligned phonetic transcriptions (TAPT)

2- Generate morph weight for each phoneme in TAPT

3- Interpolating between keyframes

4- Assigning the sequence of morph weights to the morph targets at the keyframes determined

in TAPT

These are necessary procedures for any animation computer, with which the system functions for

its primary purposes.

105 Margaret Rouse, extrapolation and interpolation, TechTarget, https://whatis.techtarget.com/definition/extrapolation-and-

interpolation, (last visited May, 2020)
106 About spatial and temporal keyframe interpolation, Adobe, https://helpx.adobe.com/after-effects/using/keyframe-

interpolation.html, (last visited Aug. 2016)

file:///C:/Users/Afshin/Desktop/Dissertation/Dissertation-%20Final/Margaret%20Rouse
https://whatis.techtarget.com/definition/extrapolation-and-interpolation
https://whatis.techtarget.com/definition/extrapolation-and-interpolation

 31

1.4.2.2 Determining “anything more than Routine Building Blocks”: McRo Case

In the McRO case, the “binary sub-sequence rule-based” method, is a specific way for

automatically animating the lip synchronization and facial expressions of 3D characters and has

an “inventive concept” sufficient to transform the abstract idea into a patent-eligible application.

The Federal Circuit District held that: “In a patent infringement case involving patents

relating to automating part of a preexisting 3-D animation method, the district court erred in finding

that asserted patent claims were invalid as directed to patent-ineligible subject matter under 35

U.S.C.S. § 101 because the ordered combination of claimed steps, using unconventional rules that

relate sub-sequences of phonemes, timings, and morph weight sets, was not directed to an abstract

idea and was therefore patent-eligible subject matter under § 101.”107

The following flowchart (FIG.18) is a visual demonstration of my patent eligibility test as

it applies to the McRo case:

107 McRO, Inc. v. Bandai Namco Games Am. Inc., 837 F.3d 1299, 1302, 2016 U.S. App. LEXIS 16703, *1, 120 U.S.P.Q.2D
(BNA) 1091, 1093

https://advance.lexis.com/api/document/collection/cases/id/5KPB-NGK1-F04B-M062-00000-00?page=1093&reporter=9898&cite=837%20F.3d%201299&context=1000516
https://advance.lexis.com/api/document/collection/cases/id/5KPB-NGK1-F04B-M062-00000-00?page=1093&reporter=9898&cite=837%20F.3d%201299&context=1000516

 32

Figure 18: Application of Proposed Patent Eligibility Test: McRo Case

 33

1.5 Addressing some challenges in the field

1.5.1 The nature of the software vs. the breadth or scope of the invention

In my patent eligibility proposal, determining the routine building blocks of the software

is based on the nature of the specific type of software, which is different from the breadth or scope

of the invention. If the court or examiner decide that the invention contains only routine building

blocks, and as such preempts all the inventions in that specific type, narrowing the breadth of the

invention does not change the nature of the software. As an illustrative example, assume that the

underlined invention is a data asset management system that does not have anything more than

routine building blocks. Here, if the patentee claims to narrow the breadth of his invention by

confining the applicability of his invention to retail stores only, for example, such a claim does not

change the nature of the software. Determining the building blocks and determining the breadth of

an invention are two completely separate matters.

 Here, the patentee, by narrowing the breadth of his invention, claims that he limits the

number of software programs that his invention covers - in other words, anything with the same

structure that is used outside of the narrow field he has attempted to define would not be covered

by this patent. This narrowly claimed invention is still patent ineligible because it is an abstract

idea which includes only routine building blocks, the basic, primary, or minimum steps required

for accomplishing the primary action for any database systems.

Therefore, as I mentioned before, the key question in determining the patent eligibility

under § 101 is whether or not the patent covers only building blocks. Although the outcome of not

allowing patents on building blocks may help prevent preemption, preemption is not the key

question. The key question is preventing to patent building blocks.

1.5.2 Preemption rational

Although preemption has a fundamental role in the § 101 analysis and is regarded as the

primary policy in determining patent eligibility,108 it is not the essence of my test, but a secondary

consideration.

Preemption Type 1: Abstract Idea

The first type of preemption concerns granting a patent on an abstract idea or routine

building blocks. Based on my proposed eligibility test, after determining the routine building

blocks or abstract ideas of the specific type of underlined software, if the invention has anything

more than these routine building blocks, it passes § 101. If not, it will be rejected under § 101.

The reason why an abstract idea is not patent-eligible and would preempt other innovations

is because the only embodiment is its fundamental components that are the building blocks

common in all inventions in that type of software. Since these building blocks are high-level

functions that exist in all inventions in that type of software, they are considered not patent eligible,

and the claim has the risk of preempting future inventions in the same field.109 Therefore, by

granting a patent for these essential elements, other innovations are hindered from patenting. Thus,

the problem lies not only in patenting these basic ideas that are mainly the sum of these basic

108 Alice, 2014 U.S.134 S. Ct. at 2354.
109 CLS, 717 F.3d at 1282 (Lourie, J., concurring), cited approvingly in Accenture Global Services, GmbH v. Guidewire
Software, Inc., 728 F.3d 1336 (Fed. Cir. 2013).

 34

essential elements, but also the potential harm in preventing others from protecting their novel and

technological innovations.

Preemption Type 2: Broadness

The second type of preemption concerns granting a patent on a very broad claimed

invention. This type of preemption involves when the “something more” mentioned above is too

broad and preempts other innovation in the same field or any other fields. The problem here is that

we do not know what the practical definition of broadness is and the extent to which it is applied.

In my opinion, broadness can be divided into the following two categories:

1- Where the “something more” includes only mathematical formulas or pure or general

algorithms, both will be rejected under § 101.

Mathematical formulas are considered laws of nature and are therefore too broad to be patent

eligible. Viewed similarly as mathematical formulas, pure or general algorithms, such as “Decrease

and Conquer algorithms,” are also patent ineligible because they can be used in different

applications and can solve a variety of problems. Thus, both are too broad and rejected under

judicial exception of § 101.

2- Where the invention has something, anything more than building blocks, but it is too broad,

it may still pass § 101.

If the particular method used is, so far, the only way of implementing the specific type of ideas in

the same field, it should not be rejected under § 101 based on the preemption rational. The reason

is because we do not know what will happen in the future, whether there are other ways of

implementing the same functions of the claimed invention or not. Therefore, in my opinion, the

courts or examiner should not invalidate the patent in this case. In his article titled” Alice on

Software Patents: Preemption and Abstract Ideas,” Robert Saches discusses:

The “known unknown” preemption that we cannot determine because we cannot know

what will happen in the future: whether the technology will be successful in the

marketplace, whether others will adopt it, or design around it, or any other myriad factors

that influence how “fundamental” an invention will be. A court or a patent examiner

certainly cannot evaluate the level of “known unknown” preemption, and hence should not

use speculations (or hand-waving) about this kind of preemption risk to invalidate a

patent.110

Therefore, one way to determine that an invention does not preempt other inventions in that

specific type of software is when the patentee can show other alternative methods for achieving

the same result in his application. For example, in McRO v. Bandai Namco111, the district court

held that the claims are patent-eligible by stating that, “there are numerous ways to perform lip-

synchronization animation, automated lip synchronization, and even automated, rules-based lip

synchronization, that do not infringe the patents.” Therefore, “it is clear that the patents do not

seek to monopolize anything remotely resembling the ‘building blocks of human ingenuity’ or ‘the

110 Robert Saches, Alice on Software Patents: Preemption and Abstract Ideas,IPWatching, Jun. 29, 2014
https://www.ipwatchdog.com/2014/06/29/alice-on-software-patents-preemption-and-abstract-ideas/id=50210/
111 McRO, Inc. v. Bandai Namco Games America Inc. (Fed. Cir. 2016) (“The U.S. Patent Nos. 6,307,576 (‘‘the ’576 patent’’)

and 6,611,278 (‘‘the ’278 patent’’) were both issued to Maury Rosenfeld and are both titled “Method for Automatically

Animating Lip Synchronization and Facial Expression of Animated Characters.” The Federal Circuit held that “the ordered

combination of claimed steps, using unconventional rules that relate subsequences of phonemes, timings, and morph weight sets,

is not directed to an abstract idea and is, therefore, patent-eligible subject matter under § 101.”)

https://www.ipwatchdog.com/2014/06/29/alice-on-software-patents-preemption-and-abstract-ideas/id=50210/

 35

basic tools of scientific and technological work.’”112 However, even if the patentee could not show

other alternative methods for achieving the same result in his application, it should still pass the

§ 101 threshold because we cannot expect that the inventor be so burdened to invent other possible

inventions around his patent in order to prove that his invention does not preempt all other

inventions in that specific field in the future.

Preemption Type 3: Metes and Bounds

The third type of preemption, known as the “ metes and bounds”113 of the invention is the

essence of the patent system "to promote the progress of science and useful arts, by securing for

limited times to authors and inventors the exclusive right to their respective writings and

discoveries."114 A monopoly is, therefore, granted to an individual or a corporation to exclusively

practice the art while simultaneously depriving (or preempting) the public at large from this

privilege. The economic justification for grants of intellectual property is to ensure that sufficient

incentive exists for authors and inventors to invest time and resources in pursuit of innovations.115

1.5.3 Something more than routine building blocks but nonetheless trivial

Assume that, in our previous example, a patentee invents the database, which has

something more than routine building blocks, but this something more is too trivial and small. For

example, the inventor adds to his database one additional step, which allows the user to choose the

color of the display of the database. It is not an essential component for databases. Therefore, in

my proposal I name it as “anything more” than a routine building block. The color selection feature

is in a prior art, and is conventional, and although this “anything more” passes the § 101 threshold,

it will be invalidated under § 102 and § 103 because it is not novel and too obvious.

112 Alice, 134 S. Ct. at 2354.
113 Saches, supra note 110.
114 U.S. Const. Art. 1. § 8 cl.8.
115 Merges, Menell, Lemley , Intellectual Property in the New Technological Age, 5nd ed, 2010),Wolters

Kluwer. 3 Federico, Pasquale J., Origin and early history of patents., J. Pat. Off. Soc'y11 (1929): 292.

 36

CHAPTER TWO: HYPOTETICAL DISCLOSURE

2.1 The relationship between § § 101 and 112 of U.S. Patent Act in this Study

The sufficiency of disclosure has a substantial role in the validity of a software patent.

Sufficient disclosure is the “heart of Patent Act § 112”.116 “The standard of adequate disclosure is

to allow a notional worker in the field, one with an expected level of skills, to implement the

method as disclosed [enablement].”117 “It also requires that the inventor must describe what she

claims and must claim what she represents.”118 Furthermore, “it requires that others could

determine the boundaries of the claimed invention [scope of the claim].”119

The key connection between the first part of my proposal on §101 and the second part of

my proposal on disclosure §112 is the patent claim(s). Claims can be invalidated under §101 if the

claims are not supported and justified in more detailed disclosure under §112. Detailed disclosures

are needed to justify detailed claims, and if a claim is not supported by sufficient disclosure, it will

be invalidated under both §101 and §112.

Here, the consequence of insufficiency under §112 on rejection under §101 will be

examined. To explain this matter, assume that the patentee invents a data asset management system

with five claims in total. The first four claims of the invention are routine building blocks. In the

fifth claim, the patentee claims, “I configure this data asset management system in a way it works

in retail stores only.” He claims that his invention has something more than routine building blocks,

but does not disclose any corresponding structure of it anywhere in the application. The question

here is whether his application will be rejected under §101, §112, both §101 and §112, or none of

them?

Compare this example with our previous “online shopping” illustration, where we assume

that the steps of searching, choosing, paying, and receiving the product are building blocks of the

online shopping process. Here patentee claims, “ I add the step of “Undo your purchase” into the

routine building blocks of online shopping.” He claims that his invention has something more than

routine building blocks but does not disclose any corresponding structure of it anywhere in the

application. Again, the question here is whether his claim should be rejected under §101, §112,

both §101 and §112, or none of them?

In response to this question, I divide the software patent cases into two categories: “easy

cases” and “hard cases.” As a result, under the proposed eligibility test, their treatments are

different. We have “easy cases” in determining “anything more” than routine building blocks such

as our “Undo your purchase” example, and we have “hard cases” like our “retail store” example.

When there is no prior art associated with the new feature in the invention, I consider it an “easy

case”. In other words, when the invention has feature(s), component(s), or step(s) that did not exist

before, something more than routing building blocks is easy to recognize. Therefore, even if the

patentee does not disclose any correspondence structure of that new feature, here “undo your

purchase,” the case passes the §101 threshold. Therefore, the insufficiency of the disclosure will

not affect the validity under §101.

In contrast, I consider other cases as “hard cases” if, based on the inventor’s claims, we

realize that adding something more than routine building blocks occurred in existing functionality

or subsystems. It is a “hard case” if determining “anything more” than routine building blocks

116 Robert Merges. P. & John Duffy Fitzgerald, Patent Law and Policy: Cases and Materials, (7th ed. 2017)
117 Maram Suresh Gupta, Sufficiency of Disclosure in Patent Specification, 14 Journal of Intellectual Property Rights. 307,316
(2009).
118 Merges & Duffy, supra note 116.
119 Ibid.

 37

requires further analysis of the case, and the functionality of the claimed features, components, or

steps are not apparent.

In our retail store example (our hard case scenario), it seems that the patentee only narrows

the scope of the invention by saying that “I configure this data asset management system in a way

it works in retail stores only.” In this situation, further examination is required to determine

whether he actually adds anything more than routine building blocks. Here, we should carefully

examine the specifications to see what the corresponding structure to that feature or improvement

is. Here is where §112 comes into play. If the patentee only claims that he designs a specific data

asset management system for retail stores without any support in the specification, the patent will

be rejected under both §101 and §112. It is rejected under §112 since the inventor does not

sufficiently describe what he claims. Therefore, due to the lack of proper disclosure, our attempt

to determine something more than routine building blocks fails. In other words, if the patentee

does not disclose the corresponding structure of that specific feature, we do not know whether it

contains anything more than a routine building block or not. It seems that it is just a trick to getting

around building blocks, which, based on my proposal, is not patent-eligible.

Note that in our hard case scenario, the proposed eligibility test should be applied on that

specific software type as a whole (here, data asset management system for retail stores). The

inventor might design a particular customized data asset management system for retail stores. He

might add some step(s) or feature(s) to his routine building block of the asset management system

to optimize the system for retail stores. If this is the case, in determining the routine building blocks

of the invention, which is our key focus, we should see the whole invention “asset management

system for retail stores” as one software type. We should determine whether in designing the

customized data asset management system for retail stores, the inventor adds “anything more” than

routine building blocks or not. If so, it passes the §101. If not, it is rejected under §101.

Now with a more consistent and efficient test for patent eligibility, the patentee can choose

to include some or all of the following factors (components), depending on the nature of the

underlying claim in the patent application to fulfill the sufficiency of the disclosure requirement

under both §101 and §112. In the following, I propose a hypothetical disclosure as an example to

improve the quality of patent applications.

 38

2.2 Hypothetical Disclosure Factors

Some factors, as I have discussed below, might affect the validity of a software patent,

which I will examine in my proposal. Inadequacy or lack of these factors qualitatively affects the

validity of software patent cases and would fail the §101 test if the disclosure is not detailed

enough to narrow the claim. I will give robust indicators to the patent examiners, jurists, and

practitioners to increase the certainty of predicting the outcome of the case based on the content

quality of the underlying claims.

Factors:

2.2.1 Pseudocode Algorithm

2.2.2 Test case/ Best mode

2.2.3 UML diagrams120

a. Structural Diagrams

i. Class diagram

ii. Object diagram

iii. Component diagram

iv. Deployment diagram

b. Behavioral Diagrams

i. Use case diagram

ii. Sequence diagram

iii. Collaboration diagram

iv. State chart diagram

v. Activity diagram

2.2.4 Method used by the invention

 Explaining the Factors:

In the following, I will explain each of these factors in detail and apply the model to some

existing software patent cases (e.g., Berkheimer case121). This hypothetical disclosure model can

be used by patentees to test the patentability of their product and establish the boundaries of

sufficient disclosure before applying for the patent. It can be used by courts to evaluate the validity

of patent claims, and it may eventually become the basis for national and international standards

in software patenting.

1- Pseudocode

Any implementation of the software algorithm could be explained by pseudo code.

120 “UML has provided features to capture the dynamics of a system from different angles. Sequence diagrams and collaboration
diagrams are isomorphic; hence they can be converted from one another without losing any information. This is also true for
Statechart and activity diagram.” https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm.(last visited Mar. 27,2020).
121 Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018).

https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm

 39

a. What is Pseudocode?

“An outline of a program, written in a form that can easily be converted into real

programming statements.”122 Pseudocode is not a complete coding of the system, or it is not a real

code, “…but it looks like code. It helps people to understand a problem domain or solution better

without having to add all the baggage necessary when using a real language.”123

b. Advantages of the Pseudocode

Pseudocode shows the functionality of each function or subsystem of the software in a

way that is more understandable and readable for humans rather than reading the actual code.

Therefore, nothing will be left undefined or vague since the Pseudocode gives us a complete and

detailed view of the functionality of the whole system.

For a software patent, the patentee should show the “inventive step” of his program and

other parts of his invention. By generating the Pseudocode in software patent application, the

“inventive step” of the program will stand out, and its position with other parts of the software

will emerge.

2- Test Case/ Best mode

“Test case” has a specific meaning in software engineering: “[It] is a set of conditions or

variables under which a tester will determine whether an application or software system is

working correctly or not.”124

The best mode, in the patent system, is considered “the most advantageous or preferable

mode”125 compared to other disclosures in the patent application. “The best mode disclosure

requirement helps to improve the quality of the patent grant and helps to ensure that the public

receives a full and honest disclosure in return for the grant of exclusivity.”126

In my proposal, the “ best mode” disclosure is different and distinct from the “test case”

disclosure, and both are required to have sufficient disclosure. I define the best mode as the best

and comprehensive example that shows how different parts of the software work together. It is

like an integration test applied to the whole system to show the system’s behavior from the

beginning to the end. A test case, however, is an example that can be used for clarifying and

explaining how each part of the system is working individually. In other words, the test case is

for unit testing that demonstrates the functionality of any individual unit of the system.

In my opinion, the functionality of the system can be properly described using the

combination of the test case and the best mode in the patent applications.

122 Definition of 'Pseudocode'. The Economics Time, https://economictimes.indiatimes.com/definition/pseudocode (last visited
Mar.30, 2020).
123 What is Pseudocode? Software Engineering, 2/22/12, https://softwareengineering.stackexchange.com/questions/136292/what-
is-pseudocode/136354 (last visited Mar.30, 2020).
124 How to write a good test case, Apache Open Office, 7/27/2012,

https://wiki.openoffice.org/wiki/QA/Testcase/How_to_write_test_case (last visited Mar.30, 2020).
125 Bingbin Lu, Best Mode Disclosure for Patent Applications: An International and Comparative Perspective, Journal of
Intellectual Property Rights Vol 16, September 2011, pp 409-417. Available at SSRN: https://ssrn.com/abstract=1938859
126 Ibid.

https://economictimes.indiatimes.com/definition/pseudocode
https://softwareengineering.stackexchange.com/questions/136292/what-is-pseudocode/136354
https://softwareengineering.stackexchange.com/questions/136292/what-is-pseudocode/136354
https://wiki.openoffice.org/wiki/QA/Testcase/How_to_write_test_case
https://ssrn.com/abstract=1938859

 40

3- UML diagram

By UML (Unified Modeling Language] diagrams127, we can determine the different parts

of the system and their relations with each other and with the whole software. The inventive step

of the program will appear, and as a result, the examiner or the judges can easily decide if there

is an inventive step that resides in the invention in comparison with the prior art. In fact, the most

common tools between the designer and the programmer to communicate and understand each

other regarding software production are UML diagrams. Depending on the nature of the invention,

patentee should disclose different diagrams as much as the functionality of the system fully

described.

UML diagrams are useful for decreasing the invalidity of software applications because: “UML

diagrams describe the boundary, structure, and the behavior of the system and the objects within

it.”128 “The Unified Modeling Language (UML) was created to forge a common, semantically and

syntactically rich visual modeling language for the architecture, design, and implementation of

complex software systems both structurally and behaviorally.”129 “These diagrams are used by

software developers and business professionals to understand requirements for a new system or

to document an existing process.”130(See Appendix A for different types of UML diagrams)

4- The method used by the invention

Software patent cases are mostly invalidated under §112 (lack of sufficient disclosure)

since the patentee does not usually explain any corresponding structure for achieving his claimed

invention. To prevent invalidity in this sense, mentioning the specific way for implementing the

software in the application in one sentence or two will be helpful and essential. I named this

specific way, the method used by the invention.

2.3 Applying Hypothetical Disclosure Factors on Some Cases

2.3.1 Hypothetical disclosure: Berkheimer case

2.3.1.1 Hypothetical Pseudocode: Berkheimer case

In the following, a hypothetical Pseudocode of the Berkheimer case is illustrated. To

explain Berkheimer’s Object-Oriented data model, I propose an example of an Object-Oriented

design of his system to explain how this type of disclosure (Pseudocode) could be helpful to

understand the system better. For implementing the Berkheimer system, I define three classes, one

base class, and two other classes that are derived or inherited from the base class. Each inherited

class possessed all the attributes and methods of the base class, and it may or may not have

additional attributes or methods to the base class. Here, in this design sample, both of our inherited

127 Although UML has a direct relation to object-oriented analysis and design, “ it can be well applicable for non-object-oriented
software architecture such as procedural paradigm.” See https://www.lucidchart.com/pages/what-is-UML-unified-modeling-
language; also see, https://www.sparxsystems.eu/resources/project-development-with-uml-and-ea/introduction-to-uml/
https://stackoverflow.com/questions/29145545/is-uml-for-object-oriented-only
https://stackoverflow.com/questions/26212374/are-uml-diagrams-only-for-object-oriented-approach?noredirect=1&lq=1
https://softwareengineering.stackexchange.com/questions/78407/software-design-for-procedural-programming
128 What is Unified Modeling Language? Lucidchart, https://www.lucidchart.com/pages/what-is-UML-unified-modeling-
language. (last visited Mar 30, 2020).
129 Ibid.
130 Ibid.

https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.sparxsystems.eu/resources/project-development-with-uml-and-ea/introduction-to-uml/
https://stackoverflow.com/questions/29145545/is-uml-for-object-oriented-only
https://stackoverflow.com/questions/26212374/are-uml-diagrams-only-for-object-oriented-approach?noredirect=1&lq=1
https://softwareengineering.stackexchange.com/questions/78407/software-design-for-procedural-programming
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language

 41

classes, Document and CommonElements do not have any additional attributes or methods. For

making the Pseudocode more understandable, I simplify the Object-Oriented notation. For

example, here, I ignore the data type of each attribute or return value data type of the method.

 Notational Conventions:

The following notational conventions are used throughout this pseudocode:

• Comments or explanation of the pseudocode in green is enclosed by /* */

• The “reserved” or “keywords” used in programming languages are in blue.

• “D” or “doc” an abbreviation of “document,” “prop,” an abbreviation of “property,” and

“elem” an acronym of “element.”

1- Create the Base class

2- Create inherited classes

Class Base
{
Attributes: /* “Attributes are data stored inside a class or instance and represent the state or
quality of the class or instance.” */

header: “”,
footer: “”,
body: “”,
imageUrl: https://Pics.com/img1.jpeg,

Methods: /* class functions also known as methods*/
Edit(object, element, value); /* Object, element, data are the parameters of these
functions. When you call these functions, you should pass a value to these parameters. The
object represents the thing that you want to manipulate. The element represents the
specific element in that object, such as header, footer, or body that you want to make a
change in it. Value is the new value that you want to give to that element. */
Delete(object, element);
Add(object, element, data);

}

Class Document: Inherit Base
{
}
Class CommonElements: Inherit Base
{
}

https://pics.com/img1.jpeg

 42

3- Create objects (instances) from the class “Document” and class “CommonElements.”

By creating an object, we create an instance of the class, and through this object, we can

have access to the attributes and methods of that class. Therefore, we can store each doc data

into an object. Therefore, we need a data structure for storing a bunch of objects. In doing so,

we create an array of doc classes.

4- Converting the documents into a standard input format that is understandable for the

computer (e.g., pdf, gif, jpeg)

5- Parsing and tagging (extracting data from the standard format input document).

For manipulating the data in a document (editing, removing, adding, and deleting), it is

essential to parse and read (extract) the document and element properties and values by pre-

defined tools and libraries in conventional programming languages.

 Output demonstration

/* In order to be able to use the attributes and methods of a class, first we need to create an
object from that class. We create an object by using “new” as a keyword and assign it to an
object with a custom name, such as “dObject” */
Document dObject = new Document();
CommonElements cObject = new CommonElements();
Array documentObjArray = new Array (Document) /* create an array of objects*/
documentObjArray.add(dObject); /* Add each object into an array*/

/* start the process of getting and organizing data into Object-Oriented Data model which is
created above. */
Input(file);
htmlFormatFile = convertToHtml(file); /*Converting to Html file and assign it to a
“htmlFormatFile” variable*/

/* docElementsProps structure */
Print(docElementsProps);
Output: docElementsProps = {Prop1 = Value1, Prop2 = Value2, …, Prop(n) = Value(n)}
Prop1 == header, Prop2 == footer, Prop3 == body …

docProps = getDocProps(htmlFormatFile); /* extract doc properties and values from the Html
format file*/
docElementsProps = getElementProps(htmlFormatFile); /* extract doc elements properties
and values from Html format file */
addMetaData(docProps, docElementsProps) /* Add Meta data */

 43

6- Defining rules for data storing and manipulation

Here, inventor designs and implements a User Interface (UI), which allows the user to

define the rules by himself to manipulate (e.g., adding, reconciling, deleting) the data

automatically or manually.

 Ruleset [1]: for organizing and storing data

Ruleset [2]: for manipulating data (Edit, delete, add, sort)

/* Initialize common object(s)*/
If (htmlFileFormat is a common document) //e.g. Ruleset [1].rule1 is “htmlFormatFile is a
common document”
{
cObject.header = docElementsProps.Prop1; /*cObject= Common object*/
cObject.footer = docElement.Prop2;
cObject.body = docElement.Prop3;
}

/*Initialize other document objects*/
Else if (htmlFileFormat is not a common document)
/* one-to-many: As you can see, here, by creating an Object-Oriented class
(one) we can organize many documents data (many) into its instances (“dObject” s) */

If (docElementsProps .header != cObject.header) /*!= means is not equal*/
 dObject.header = docElementsProps.header;
Else
 dObject.header = cObject.header;

If (RuleSet [2].rule1 == true)
Edit (dObject, header, value1)

If (RuleSet [2]. rule2 == true)
Delete(dObject, elem)

If (RuleSet [2].rule3 == true)
Add (dObject, footer, value2)

/*Example of other functionalities in the system, the result set should be an array as well
because the result of these functions, search and sort, could be more than one record, so it
should be kept in an array.*/
ResultSet[] = Search(documentObjArray, value) // Search the value in all objects
ResultSet[] = Sort(documentObjArray, elem, Acending) // Sort all objects based on their
specific element or property in acending order

/*Getting rules from the user into RuleSet array*/
 RuleSet[] = getUserRules(); /* Array of RuleSets*/

 44

2.3.1.1 UML Diagram v. Flowchart: Berkheimer case

Diagram Criticism:

In the following, I will mention some of the deficiencies in Berkheimer’s drawings that he

uses for explaining his invention:

1- The number of diagrams is too many (9 diagrams). The diagrams are almost the same; for

example, diagram 2.B is identical to diagram 4.

2- Diagrams are meant to be used for better clarification and explanation of a system, but here

Berkheimer’s use of flowcharts confuses the reader. I propose that instead of using flowcharts for

these kinds of complicated systems, we should instead use UML diagrams that are generally

clearer and more understandable.

3- The patent application diagrams should focus mainly on explaining the important and inventive

parts of the system. Few drawings would be enough to show the relation or interaction of the

inventive parts with each other and the whole system. But here, lots of unnecessary details are

displayed in the diagrams, which make it more ambiguous and complex.

In the following, I will rewrite one of Berkheimer’s drawings (Figure 19 of this paper and

Figure 3 of his original patent application) to compare the clarity of the flowcharts that patentee

discloses to his application with two suggested UML diagrams (Sequence and Activity diagrams)

as an example to show how these diagrams operate and improve the quality of the patent

application.(FIG.20&21)
Figure 19. Original flowchart from Berkheimer patent application

 45

UML diagrams are supposed to demonstrate “how objects interact with each other and the order

those interactions occur.”131 “The processes are represented vertically, and interactions are shown

as arrows.”132As you can see from the above flowchart of Berkheimer’s application, the logical

relation between components is unclear. As a result, understanding the sequence of creating the

objects and performing functions is too difficult. By applying one of the UML diagrams, sequence

diagram (Figure 20), the system and the sequence of events are more perceivable.

Figure 20. Suggested Sequence diagram for Berkheimer case

131 Nishadha, UML Diagram Types Guide: Learn About All Types of UML Diagrams with Examples, Creately blog,
https://creately.com/blog/diagrams/uml-diagram-types-examples/#SequenceDiagram. (last visited Mar. 27,2020).
132 Ibid at https://creately.com/blog/diagrams/the-basics-the-purpose-of-sequence-diagrams-part-1/

Standard
File

Format

Extracted Doc
Props & Values

Rule set 1
(Removing

Redundancy by
creating

CommonEleme
nt class)

Extracted
Data &

Meta Data

Rule set 2

(Data

manipulati

on)

Update

and store

data into

data model

Stored data

Stored
data

Extracted

Elements Props

& Values

Input

Doc

Download/

Upload

https://creately.com/blog/diagrams/uml-diagram-types-examples/#SequenceDiagram

 46

Figure 21. Suggested Activity diagram for Berkheimer

The method used by the invention: Berkheimer’s specific way for implementing his invention

can be summarized as editing the elements once in an archive, and it affects multiple documents

where the element appears by using an Object-Oriented data model. This helps the examiner

understand the concept of Berkheimer’s invention at a quick glance.

 47

2.3.2 Hypothetical Disclosure: McRo Case

2.3.2.1 Hypothetical Pseudocode: McRo Case

In the following, a hypothetical Pseudocode (drafted by the author) of the McRo133 case is

illustrated.

Input: Time Aligned Phonetic Transcription: TAPT and Time Aligned Emotional

Transcription: TAET (optional), and Time Aligned Data File (optional) (The system takes

these files as inputs)

 1- Determining Global variables

2. Read TAPT’s times and phonemes in two arrays: Time[] and Phoneme[]

Example:

 Time[0] = 0.08

 Time[1] = 0.1

 Time[2] =0.16

 ….

 Phoneme[0]= “h”

 Phoneme[1]= “e”

 Phoneme[2]= “l”

3. Generating Binary morph weights based on Secondary rules and default rules (If… then….

else) and save them into MorphWeight[] array. First, the secondary rules will be checked

if they were not applicable for a specific phoneme, then in ELSE part the default rules will

be applied:

133 McRo, Inc. v. Bandai Namco Games America, case number 15-1080, from Appellate - Federal Circuit Court.

string Time[];
string Phoneme[];
string MorphWeight[];
string Prior-Interpolation-MorphWeight[];
string Interpolation-MorphWeight[];
string Morph-Weight-Set-Stream ;

for each tapt-element in TAPT /*TAPT file can be a word or
 Excel or any other file*/

 Time[i] = tapt-element.time;
 Phoneme[i] = tapt-element.phoneme;

 48

4- Post process before interpolation by generating and adding random noise

5- Interpolation

6- post-processing after interpolation: We should add an arbitrary morph weight from auxiliary

(secondary) morph target to each keyframe.

7- Generate morph weight set stream:

8- Graphic part of the program will get the Morph-Weight-Set-Stream as an input to apply on

animation characters.

for each p[i] in Phoneme

 If p[i] == “oh” && Time[i]-Time[i-1] > 1.2 sec then
 MorphWeight[i] = 000010;

 If p[i] == “eh” && p[i+1] == “oh” && p[i-1] == “h” then
 MorphWeight[i] = 000001;

 ….
Else /*Default Rules*/

 If p[i] == “h” then
 MorphWeight[i] = 100000;
 If p[i] == “eh” then
 MorphWeight[i] = 010000;
 …

for each mw[i] in MorphWeight
 Prior-Interpolation-MorphWeight[i] = RandomNoise(mw[i]); /*generating random

 noise is in prior art*/

for each t[i] in Time
 Time[i+2] = Time[i+2] + 0.01 sec
/*By adding the arbitrary morph weight to each key frame , we need to add the
constant value to time except for the first and second time in the array*/
for each imw[i] in Interpolation-MorphWeight

 Morph-Weight-Set-Stream = Time[i] + imw[i] + Time[i+1] + Arbitrary-Morph-Weight

for each pi[i] in Prior-Interpolation-MorphWeight
 Interpolation-MorphWeight[i] = Interpolation(pi[i]); /*Interpolation

 function exists in prior art*/

 49

2-Test case/ Best mode

In the McRo case, both test case and best mode disclosure are available. In his application, the

patentee shows us how each one of these rule categories (default, secondary and post-process rules)

works properly in a system through examples (test cases.) Simultaneously, the system behavior as

a whole is demonstrated through an example (best mode.) This best mode shows how these rules

(different parts of the system) are working together to emerge the final desired result of the system,

which is generating the “morph weight set stream.” In the patent application, the following test

case for each of the rules (default, secondary and post-process rules) is demonstrated.

Test case

“Default Rules:

Criteria: Encounter a "h" as in "house"

Function: Use morph weight set (1,0,0,0,0,0) as transition target.

Criteria: Encounter an "eh" as in "bet"

Function: Use morph weight set (0,1,0,0,0,0) as transition target.

Criteria: Encounter a "1" as in "old"

Function: Use morph weight set (0,0,1,0,0,0) as transition target.

Criteria: Encounter an "oh" as in "old"

Function: Use morph weight set (0,0,0,1,0,0) as transition target.

Criteria: encounter a "silence"

Function: use morph weight set (0,0,0,0,0,0) as transition target.

Secondary Rules

Criteria: Encounter an "oh" with a duration greater than 1.2 seconds.

Function: Use morph weigh set (0,0,0,0,1,0)

Criteria: Encounter an "eh" followed by an "oh" and preceded by an "h".

Function: Use morph weigh set (0,0,0,0,0,1) as transition target.

Criteria: Encounter any phoneme preceded by silence

Function: Transition start time=(the silence's end time)-0.1*(the incoming phoneme's

duration):Transition end time=the incoming phoneme's start time

Criteria: Encounter silence preceded by any phoneme.

Function: Transition start time=the silence's start time +0.1*(the outgoing phoneme's duration)

 50

Post Processing Rules

Criteria: Encounter a phoneme duration under 0.22 seconds.

Function: Scale the transition target determined by the default and secondary rules by 0.8 before

interpolation.”134

Best mode of the invention:

Similarly, in the patent application for the present invention, the best mode is adequately explained.

Note that the following hypothetical pseudocode (drafted by the author) extracted from a detailed

explanation of the best mode resides in the patent application.

Default rule: If (Criteria) _1: Encounter an “oh” as in “old”

Secondary rule: If (Criteria) _2: Encounter an “oh” longer than 1 second long.

Then (Function) _2: Insert transitions between a defined group of

morph weight sets at 0.5 second intervals, with transition duration's of

0.2 seconds until the next “normal” transition start time is

encountered.(0100000)

 Else (Otherwise) _2

Then (Function) _1: Use morph weight set (0,0,0,1,0,0) as transition

target.

Post processing rule: If (Criteria) _3: Auxiliary morph target had the character's

 mouth moved to the left cyclically

 Then (Function) _3: output animation would have the

 character's mouth cycling between

 centers to left as he spoke.

2.3.2.2 UML Diagram v. Flowchart: McRo case

In the following, I will compare the clarity of the flowcharts that patentee in McRo case

discloses to his application (Figure.22) with two suggested UML diagrams (Sequence and Activity

diagrams) (FIG.23 &24) as an example to show how these diagrams operate and improve the

quality of the patent application.

134 McRo, Inc. v. Bandai Namco Games America, Ibid.

 51

Figure 22. Original Application Flowchart from McRo Case

 U.S. Patent Oct. 23, 2001 Sheet 2 0f 4 US 6,307,576 B1

 52

Figure 23. Suggested Sequence Diagram for McRo Case

 53

Figure 24. Suggested Activity Diagram for McRo Case

2.3.2.2 The method used by the invention: McRO case

In the McRO case, the “binary sub-sequence rule-based” method, is a specific way for

automatically animating the lip synchronization and facial expressions of 3D characters and has

an “inventive concept” sufficient to transform the abstract idea into a patent-eligible application.

 54

CHAPTER THREE: AI RELATED INVENTIONS

3.1 AI invention: Deep Embedding Forest Model

The title of an AI patent publication (Publication #20180060728135) is “Deep Embedding

Forest: Forest-based Serving with Deep Embedding Features,” 136and its abstract is as follows:

“A deep embedding forest-based (DEF) model for improving online serving time for classification

learning methods and other tasks such as predicting user search selection results provided in

response to a query or for image, speech or text recognition. Initially, a deep neural network (DNN)

model is trained to determine parameters of an embedding layer, a stacking layer, deep layers, and

a scoring layer thereby reducing high dimensional features. After training the DNN model, the

parameters of the deep layers and the scoring layer of the DNN model are discarded, and the

parameters of the embedding layer and the stacking layer are extracted. The extracted parameters

from the DNN model then initialize parameters of an embedding layer and a stacking layer of the

DEF model such that only a forest layer of the DEF model is then required to be trained. The

output from the DEF model is stored in computer memory.”137

As it appears from the abstract, this new AI invention creates the DEF model by discarding

two layers while extracting two of the four layers of the DNN model with the forest-based model.

The advantage of the DNN model is the ability to “extract high- level embedding vectors from

low-level features.”138 Having a low serving cost is the benefit of the forest-based model.139

This AI invention is used in the prediction models of sponsored search. Sponsored search is one

kind of machine learning application. The goal of the invention is “to show the user the

advertisement that best matches the user’s intent.”140 (When the user searches in a search engine,

based on his or her query, the related ad is displayed.) For doing so, this invention is predicting

the probability of click on a specific ad by the user. This prediction happens by “given input strings

from a query, a keyword, an ad title, and a vector of dense features with several hundred

dimensions.”141

The prior art of the DEF model is a Deep crossing model which has been invented by

almost the same inventors. In the prior art, the Deep Crossing model, we had to train four layers

of the DNN model (embedding layer, stacking layer, deep layer, and the scoring layer), which has

high computation cost (computation of several huge matrixes in multiple layers.) In DEF model

(the new invention), the model extracted the embedding layer and stacking layer of the DNN model

and discarded both the deep layer and the scoring layer of the same model. Then, the extracted

parameters from the DNN model will be fed as initial parameters of an embedding layer and

stacking layer of the DEF model. Consequently, only the forest layer of the DEF model needs to

be trained. By doing so, the accuracy of the result is optimized in faster learning time. This is the

reason that DEF can reduce prediction time significantly.142

135 "U.S. Patent Application No. 15/253,669, Publication No. 20180060728 (published Mar.1, 2009) (Microsoft Technology
Licensing, LLC, applicant)."http://appft1.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20180060728.PG
NR.&OS=DN/20180060728&RS=DN/20180060728 (last visited Mar.10, 2019)
136 Ibid.
137 Ibid.
138 J. Zhu et al., Deep Embedding Forest: Forest-based Serving with Deep Embedding Features (Mar.16, 2017),
https://arxiv.org/pdf/1703.05291.pdf
139 Ibid.
140 Ibid.
141 Ibid.
142 Ibid.

https://arxiv.org/pdf/1703.05291.pdf

 55

As you can see in (FIG. 25)143, the DEF model consists of feature inputs, the embedding layers,

the stacking layer, the forest layer, and the objective function. In (FIG.26)144, “the embedding

layers and the stacking layer of the Deep Crossing model are the same as in the DEF model in

Figure 25. The difference is that the forest layer is replaced by the layers inside the dotted

rectangle.”145

Figure 25:The Deep Embedding Forest Model

Figure 26: The Deep Crossing Model used to initialize the embedding layers of DEF

“Two-Step DEF V. Three-Step DEF

Training the DEF model involves three steps:

1- Initialize embedding layers with Deep Crossing

2- Initialize the forest layer with XGBoost and LightGBM

3- Joint optimization with partial fuzzification

143 All figures in this section (AI related inventions) are extracted from the following article:

 J. Zhu et al., Deep Embedding Forest: Forest-based Serving with Deep Embedding Features (Mar.16, 2017),
https://arxiv.org/pdf/1703.05291.pdf
144 Ibid.
145 Ibid.

https://arxiv.org/pdf/1703.05291.pdf

 56

Two options are applying DEF. The first option, the Two-Step DEF, includes only step 1 and

2 of initialization the second option, the Three-Step DEF, comprises the full three-steps

including partial fuzzification as mentioned above.”146

Describing the functionality of each step is of less interest in this paper.

3.2 Applying Patent Eligibility Test: AI Invention

3.2.1 Routine Building Blocks determination: Deep Embedding Forest Model

As I mentioned before, the specific task in this AI invention is known as “Sponsored

Search,” that is, showing ads related to the intent of a given user. Thus, the routine building blocks

are as follows:

 1- Data Collection: Collecting the logged clicks (both absence and presence) given the user and

the query and some other details such as the landing page, ad title, ad description, etc.

2- Training: Training an accurate Machine Learning model; predicting the click using the

collected data.

3- Inference: Using the trained model, predict the click for an online stream of data.

3.2.2 Determining “Anything more than Routine Building Block”: AI Invention

The following statement is the specific improvement of the system: Improving online

serving time and the accuracy of the result of predicting user search selection by discarding the

deep layer and the scoring layer of the DNN model and replacing it with the forest layer with deep

embedding features (DEF model.) In other words, the main contribution is to maintain the accuracy

in step “Training” while improving the speed in step “Inference.”

In general, in AI inventions, the more layers we have, the longer the serving time, but few

layers hurt the accuracy. This invention reduces the serving time while keeping the accuracy high.

In other words, the main contribution is in lowering the serving time, while not hurting the

accuracy. The following flowchart (FIG.27) is a visual demonstration of my patent eligibility test

as it applies to the AI invention, A deep embedding forest-based (DEF) model:

Figure 27: Application of Proposed Patent Eligibility Test: AI Invention

146 Zhu et al. supra note 138.

 57

3.3 HYPOTETICAL DISCLOSURE: AI RELATED INVENTIONS

In AI (Artificial Intelligence) inventions as other software patent inventions, the

sufficiency of disclosure has a substantial role in validity/invalidity of the patent. The factors that

we have discussed in the previous chapter could apply to another vast majority of software

category, AI inventions as well. These factors are as follows:

1- Pseudocode Algorithm

2- Testing practice (Analytical report)

3- UML diagrams147

4- Method used by the invention

In the following, the factors above are applied to an AI patent publication (Publication

#20180060728148) to examine the sufficiency of its disclosure. This hypothetical disclosure model

can be used by patentees to test the patentability of their product and establish the boundaries of

sufficient disclosure before applying for the patent. It can be used by courts to evaluate the validity

of patent claims, and it may eventually become the basis for national and international standards

in AI patenting.

3.3.1 Pseudocode: AI Invention

Any technical explanation of the software algorithm could be express by pseudocode. This

is perhaps the best way of expressing the mechanism of the algorithms in AI. In a printed

publication149 (and not in a patent application), the patentee attached the following pseudocode

(FIG.28)150, which helps to understand the main functionality of the AI invention.

147 Unified Modeling Language, Tutorialspoint, https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm
 “Dynamic nature of a system is very difficult to capture. UML has provided features to capture the dynamics of a system from
different angles. Sequence diagrams and collaboration diagrams are isomorphic, hence they can be converted from one another
without losing any information. This is also true for Statechart and activity diagram.”,
148 "U.S. Patent Application No. 15/253,669, Publication No. 20180060728 (published Mar.1, 2009) (Microsoft Technology
Licensing, LLC, applicant)."http://appft1.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20180060728.PG
NR.&OS=DN/20180060728&RS=DN/20180060728 (last visited Mar.10, 2019)
149 Zhu et al. supra note 138.
150 Ibid.

https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm

 58

Figure 28: Pseudocode: Three-step Deep Embedding Forest

3.3.2 Testing practice (Best mode) :AI Invention

In software engineering, the “test case” is used by a tester to determine whether an application or

software system is working correctly or not. However, in almost all AI algorithms, there are lots

of randomness and stochasticity. Therefore, using a few data points as test cases to evaluate these

AI algorithms does not work. Instead, performing experiments with thousands or sometimes

millions of data points (data set) is the way to show the validity and performance of these

algorithms. A test case is used for testing of granular data (data points) rather than big data (data

set); this is the reason why I changed the “test case” to “testing practice”151 in this chapter. Using

big data makes us use other mathematical theories such as the probability theory to evaluate the

151 Krunal Patel, Step Ahead In Competition With AI Test Automation, Clarion Technologies,
https://www.clariontech.com/blog/step-ahead-in-competition-with-ai-test-automation (last visited May 26, 2020)

https://www.clariontech.com/blog/author/krunal-patel
https://www.clariontech.com/blog/step-ahead-in-competition-with-ai-test-automation

 59

results. The probability theory has a significant role in evaluating the results of the AI applications

output. It gives us the idea of how to improve our software. Therefore, it makes the AI algorithm

robust and powerful. In the following, some examples of testing practices are illustrated from the

paper published by the patentee.152 Including the following diagram153(FIG.29) and

tables154(FIG.30&32&32) in AI-related patent applications will help to increase the quality of

patent applications and the sufficiency of their disclosure.

Figure 29: Experiment with 3 Million Samples: Log Loss Comparison & Experiment with 3 Million Samples:

Prediction Time Comparison: The comparison of scalability of the prediction runtime per sample on CPU processors

among Deep Crossing, Two-step DEF with XGBoost and Two-step DEF with LightGBM. Note that the axis of

prediction time for DEF is on the left side, while the one for Deep Crossing is on the right side.

Figure 30: Comparison of performance and prediction time per sample between Deep Crossing and DEF. The

models are trained with 3.59 M samples. Performance is measured by a relative log loss using Deep Crossing as the

baseline. The prediction time per sample was measured using CPU processor.

Figure 31: Comparison of performance and prediction time per sample between the Deep Crossing and Two-Step

DEF using LightGBM that are trained with 60M samples. The predictions both were conducted on CPU processor.

Performance is measured by relative log loss using Deep Crossing as the baseline.

152 Zhu et al. supra note 138.
153 Ibid.
154 Ibid.

 60

Figure 32: The same as Figure 21 but for the models trained by 1B samples

3.3.3 UML Diagram v. Flowchart: AI Invention

UML is a language that can be used to analyze, specify, construct and document software

inventions. UML diagrams are the best tools in describing the “Analysis Pattern” 155in AI

inventions as well.

By UML diagrams, we can determine the different parts of the system and their relationships with

each other and with the whole software. The most common tools between the designer and the

programmer to communicate and to understand each other regarding software production are UML

diagrams. Therefore, in software patent applications, AI inventions should use UML diagrams to

help the patentee describe his invention properly and more understandably. For instance, UML

diagrams in Neural Networks156are beneficial to depict the architecture of the networks of neurons

in a diagram.

Depending on the nature of the invention, a patentee should disclose different diagrams as

much as the functionality of the system fully described. For example, in Figure 33 although the

patentee tried to explain his invention with diagrams which are similar to the UML diagrams (a

combination of the Activity diagram and the Communication diagram), yet are far from the

standard of the UML diagrams. The following suggested diagram will show the clarity (Figure 34)

over the patentee’s diagram (Figure 33). In this illustration as an example, by using the UML

diagram (Sequence diagram), I will show how the UML diagrams operate and improve the quality

of the patent application.

155 Galia Shlezinger , Iris Reinhartz-Berger , Dov Dori, Modeling Design Patterns for Semi-Automatic Reuse in System Design,

Journal of Database Management, v.21 n.1, p.29-57, (Jan. 2010)
156 “Neural networks are just one of many tools and approaches used in machine learning algorithms. The neural network itself is
not the algorithm, but a piece used in many different machine learning algorithms to process complex data inputs into a space that
computers can understand.” https://deepai.org/machine-learning-glossary-and-terms/neural-network

https://dl.acm.org/citation.cfm?id=2448019
https://dl.acm.org/citation.cfm?id=2448019
https://deepai.org/machine-learning-glossary-and-terms/machine-learning

 61

Figure 33: The original diagram from the patent application- the Deep Crossing Model, used to initialize the

embedding layers of DEF

 62

Figure 34: Suggested Sequence diagram for the invention

 63

Figure 34: Continued

 64

Figure 34: Continued

 As you can see in the original diagram of the invention, the logical relationship between

components is unclear. As a result, we cannot understand the relationship and the activity between

the layers of the invention and the process of replacing two layers with the forest layer to achieve

the final objective. By applying the UML diagram, sequence diagram (Figure 34), the system and

the sequence of events are easier to comprehend.

3.3.4 Method used by the invention statement: AI Invention

A statement that mentions the specific way or approach that the inventor uses to implement

or improve his AI invention, and further determining the difference between his invention and the

prior art in a sentence or two in the patent application, will be helpful and essential.

For example, in the abstract of this invention, the functionality of the system is explained.

For further clarification, the patentee could disclose the following statement to his application:

Improving online serving time and the accuracy of the result of predicting user search selection by

discarding the deep layer and the scoring layer of the DNN model and replacing it with the forest

layer with deep embedding features (DEF model.)

 65

CONCLUSION

Case name

Is it a real

case?

Patent

upheld?

Anything

more than
routine

building

blocks

added?

Ideal disclosure?

(Pseudocode,
Testing practice

/Test case/ Best

mode, UML,

Method used by the
invention)

Explanation

Berkheimer v. HP Inc

Yes

No

No

None

Berkheimer did
not use any of the

ideal disclosures

proposed in this

study.

Enfish, LLC v.
Microsoft

Corporation, et al

Yes

Yes

Yes

Test case/ semi-best

mode/ Method used

by the invention

Enfish used the

test case, the best
mode and method

used by the

invention among

ideal disclosures.

McRo, Inc. v. Bandai

Namco Games

America

Yes

Yes

Yes

Test case/ best mode

McRo used both
the test case and

the best mode

among ideal
disclosures.

AI invention: Deep

Embedding Forest-

based (DEF) model

No

N/A

Yes

Test case/ best

mode/ semi- UML/

Method used by the
invention

The patent is real
but there is no

record of litigation

on this patent.

The Alice framework as a two-step157 patent eligibility test asks: 1) whether the claimed

invention falls into the § 101 judicial exception of an abstract idea; and if so, 2) is there any

significant limitation in the components of the claimed invention or the invention as a whole to

transform the abstract idea into the patent-eligible application? For the first step in the Alice test,

in determining what an abstract idea is and what it is not, I defined the abstract idea in a practical

way: as routine building blocks. This definition helps me to propose a particular measurement

based on the nature of the underlying type of software to differentiate between the routine building

blocks and non-routine building blocks (anything more). Routine building blocks, as I defined, are

the basic, primary, or minimum steps for accomplishing the primary action of the specific system.

157 Alice Corp. Pty. Ltd. v. CLS Bank Int’ l, supra note 1. See generally Mayo Collaborative Services v. Prometheus
Laboratories, Inc., 566 U.S. 66 (2012).

 66

These Routine Building Blocks are so essential as to be incapable of removal without destroying

the invention’s primary functionality.

Alice’s step two for determining patent eligibility requires measuring and assessing that

“something more” than an abstract idea to pass §101. In other words, step two of the Alice test is

looking for the “meaningful limitation”158 or “inventive step” in the application to pass the §101

threshold. In contrast, my proposal suggests that “anything,” trivial or not, beyond routine building

blocks, makes the software claim pass the §101 threshold. With this approach, Alice’s second step

test is eliminated in my patent eligibility proposal. The reason for passing the §101 threshold is

because there is something in the claim that is more than routine building blocks of the specific

type of software. Then, I propose that the additional elements should be examined under §§ 102,

103, and 112 rather than the existing court method of using §101 as the eligibility test to see if they

qualify for granting a patent.

Additionally, the proposal suggests proper disclosures through examples to improve the

quality of patent applications by specifying some factors that might affect the validity of a software

patent regarding the sufficiency of its disclosure. Lastly, in order to illustrate my approach, three

patent cases were analyzed: Berkheimer v. HP Inc, Enfish, LLC v. Microsoft Corporation et

al., McRo, Inc. v. Bandai Namco Games America and one Artificial Intelligence (AI) pending

patent application, Deep Embedding Forest-based (DEF) model.

This new proposed paradigm for the patent eligibility test (§101) is based on a clear and

practical definition of “abstract idea,” the § 101 judicial exception, and based on the functional

nature of computer software. With this new proposed paradigm, the inconsistency and inefficiency

of the current Alice two-step framework will be resolved, and the certainty of predicting the

outcome of the case will be increased. With a proper guideline for more detailed and efficient

disclosures in software patent applications, this will in turn affect the validity rate of software

innovations. Detailed and efficient disclosures are needed to justify detailed claims, and if a claim

is not supported by sufficient disclosure, it might be invalidated under both §101 and §112. With

the help of this legal paradigm, the unavoidably subjective assessments of computer programs in

determining patent eligibility are formalized.

158 Ibid.

 67

BIBLIOGRAPHY

Books & Journals

1. Cohen et al., Copyright in a Global Information Economy, Wolters Kluwer, United States.

(3nd ed,2010).

2. Cohen, Julie and Lemley, Mark A. , Patent Scope and Innovation in the Software Industry,

(2001) 89 Cal. L. Rev. 1, 4.

3. Crouch, Dennis & Merges, Robert, Operating Efficiently Post-Bilski by Ordering Patent

Doctrine Decision-Making, 25 Berkeley Tech.L.J.1673 (2010).

4. Everett, G.D., R. McLeod, Jr., Software Testing: Testing across the Entire Software

Development Life Cycle, IEEE press, John Wiley & Sons, Inc., Hoboken, New Jersey,

2007.

5. Groves, Peter J, Sourcebook on Intellectual Property Law, p.304(1997) Cavendish

Publishing limited, London.

6. Gupta, Maram Suresh, Sufficiency of Disclosure in Patent Specification, (2009) Vol 14,

Journal of Intellectual Property Rights.

7. Holland. J., Adaption in Natural and Artificial Systems, Ann Arbor, MI: University of

Michigan Press, 1975.

8. Kemeny. M., Computer and non-patentable material: Rejections under Article I of the

constitution, Journal of the Patent and Trademark Office Society, 1992. 74:669-72.

9. Kenneth Nichols, Inventing Software: The Rise of Computer –Related patents, 1998.

10. Lefstin, Jeff and Menell, Peter, & Taylor, David, Final Report of the Berkeley Center

Workshop: Addressing Patent Eligibility Challenges, 33 BERK. TECH. L.J. 551 (2018).

11. Lu, Bingbin, Best Mode Disclosure for Patent Applications: An International and

Comparative Perspective (June 12, 2011). Journal of Intellectual Property Rights, Vol. 16,

pp. 409-417, 2011.

12. Lemley, M.A., Software Patents and the Return of Functional Claiming, Stanford Public

Law Working Paper No. 2117302 (2012).

13. Merges, Robert, Go Ask Alice: What Can You Patent After Alice v. CLS Bank?,

Berkeley Technology Law Journal, SCOTUS blog. (6/2014).

14. Menell, Peter S. and Lemley, Mark A. and Merges, Robert P., Intellectual Property in the

New Technological Age, 2019.

15. Merges Robert. P. & Duffy John Fitzgerald, Patent Law and Policy: Cases and Materials,

7th ed, 2017.

16. Merges, Robert P. & Duffy, John Fitzgerald, Patent Law and Policy: Cases and Materials,

6th ed, 2013.

17. Richman, J.H., Legal Hybrid between the Patent and Copyright Paradigms Colum, L.Rev.

2432. (1994).

18. Samuelson, Pamela, Questioning Copyrights in Standards, Boston College Law Review,

Vol. 48:193, 215 (2007).

19. Samuelson, Pamela, ‘Benson Revisited: The Case against Patent Protection for Algorithms

and Other Computer Program-Related Inventions’, 9 Emory L.J. 1025 (1990).

20. Samuelson Pamela et al., A Manifesto Concerning the Legal Protection of Computer

Programs, Colum. L. Rev. 2308 (1994).

21. Seth, Rosenblatt, Court sides with Oracle over Android in Java patent appeal, CNET. (May

9, 2014).

http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0405940501&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0214967601&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
http://www.westlaw.com/Link/Document/FullText?findType=h&pubNum=176284&cite=0214967601&originatingDoc=I9601177136eb11db8382aef8d8e33c97&refType=RQ&originationContext=document&vr=3.0&rs=cblt1.0&transitionType=DocumentItem&contextData=(sc.Search)
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=https%3A%2F%2Fwww.law.berkeley.edu%2Ffaculty%2Fprofiles%2FfacultyPubsPDF.php%3FfacID%3D346%26pubID%3D169&ei=C_FVU-CHDumCygGD_ICICA&usg=AFQjCNEzH76G2nsuQ23krDxRKoODDitsrA
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/
http://www.cnet.com/news/court-sides-with-oracle-over-android-in-java-patent-appeal/

 68

22. Shlezinger, Galia and Reinhartz-Berger, Iris and Dori, Dov, Modeling Design Patterns for

Semi-Automatic Reuse in System Design, Journal of Database Management, v.21 n.1, p.29-

57, Jan 2010.

23. Strobos, J.S, Talking the elusive patentable software: Are there still Diehr or was it just a

Flook? Harvard Journal of Law and Technology 6 (Spring 1993): 363-419.

24. Taylor, David O., Patent Eligibility and Investment, CARDOZO L. REV.

Case law

1. Accenture Global Services, GmbH v. Guidewire Software, Inc., 728 F.3d 1336 (Fed. Cir.

2013).

2. Alice Corp. Pty. Ltd. v. CLS Bank Int’ l, No. 13-298 (June 19, 2014).

3. Baker v. Selden, 101 U.S. 99 (1879).

4. Berkheimer v. HP Inc., 881F.3d1360 (Fed. Cir. 2018).

5. Computer Associates Int'l, Inc. v. Altai, Inc, 982 F.2d 693 2d Cir. 1992.

6. Enfish, LLC v. Microsoft Corp., 822 F.3d 1327, 2016 U.S. App. LEXIS 8699, 118

U.S.P.Q.2D (BNA) 1684.

7. Interval Licensing, LLC v. AOL, Inc., 896 F.3d 1335, 1343 (Fed. Cir. 2018)

8. Lotus Dev’t Corp. v. Borland Int’l516 U.S. 233 (1996).

9. Molecular Pathology v. Myriad Genetics, Inc., 569 U.S., 133 S. Ct. 2107, 2116, 106

USPQ2d 1972, 1979 (2013).

10. Mayo Collaborative Services v. Prometheus Laboratories, Inc., 566 U.S. 66 (2012).

11. McRO, Inc. v. Bandai Namco Games America Inc. (Fed. Cir. 2016).

Oracle v. Google, 847 F.Supp.2d 1178 (2012).

Reports

1. Reply brief of Petitioner McRO, Inc, McRO, Inc. v. Bandai Namco Games Am.

Inc.(docket number 755) (2016)(Nos. 15-1080, 15-1099). Retrieved from

https://www.law.berkeley.edu/wp-content/uploads/2016/05/McRO-v-Bandai-Namco-appellate-

argument-FJC-Program.pdf.

Websites

1. https://www.bitlaw.com/source/cases/copyright/altai.html

2. http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-v-cls-bank-

international/

3. https://www.uspto.gov/sites/default/files/documents/memo-berkheimer-20180419.PDF

4. Margaret Rouse, database (DB), TechTarget,

https://searchsqlserver.techtarget.com/definition/database

5. Shailendra Chauhan, Difference between Primary Key and Foreign Key, DotNetTricks,

https://www.dotnettricks.com/learn/sqlserver/difference-between-primary-key-and-

foreign-key

https://dl.acm.org/citation.cfm?id=2448019
https://dl.acm.org/citation.cfm?id=2448019
https://dl.acm.org/citation.cfm?id=2448019
https://advance.lexis.com/api/document/collection/cases/id/5JRX-8XY1-F04B-M008-00000-00?cite=822%20F.3d%201327&context=1000516
https://advance.lexis.com/api/document/collection/cases/id/5JRX-8XY1-F04B-M008-00000-00?cite=822%20F.3d%201327&context=1000516
http://en.wikipedia.org/wiki/Case_citation
http://en.wikipedia.org/wiki/Case_citation
https://www.law.berkeley.edu/wp-content/uploads/2016/05/McRO-v-Bandai-Namco-appellate-argument-FJC-Program.pdf
https://www.law.berkeley.edu/wp-content/uploads/2016/05/McRO-v-Bandai-Namco-appellate-argument-FJC-Program.pdf
https://www.bitlaw.com/source/cases/copyright/altai.html
http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-v-cls-bank-international/
http://www.scotusblog.com/case-files/cases/alice-corporation-pty-ltd-v-cls-bank-international/
https://www.uspto.gov/sites/default/files/documents/memo-berkheimer-20180419.PDF
file:///C:/Users/Afshin/Desktop/Dissertation/Dissertation-%20Final/Margaret%20Rouse
https://searchsqlserver.techtarget.com/definition/database
https://www.dotnettricks.com/mentors/shailendra-chauhan
https://www.dotnettricks.com/learn/sqlserver/difference-between-primary-key-and-foreign-key
https://www.dotnettricks.com/learn/sqlserver/difference-between-primary-key-and-foreign-key

 69

6. Figure resource: https://medium.com/analytics-vidhya/programming-with-databases-in-

python-using-sqlite-4cecbef51ab9

7. https://www.datacamp.com/community/tutorials/introduction-indexing-sql.

8. https://www.bitlaw.com/source/cases/patent/MCRO.html

9. Robert Saches, Alice on Software Patents: Preemption and Abstract Ideas, IPWatching,

June. 29, 2014, https://www.ipwatchdog.com/2014/06/29/alice-on-software-patents-

preemption-and-abstract-ideas/id=50210/

10. https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm.

11. Definition of 'Pseudocode'. The Economics Time,

https://economictimes.indiatimes.com/definition/pseudocode

12. What is Pseudocode? Software Engineering, 2/22/12,

https://softwareengineering.stackexchange.com/questions/136292/what-is-

pseudocode/136354

13. How to write a good test case, Apache Open Office, 7/27/2012,

https://wiki.openoffice.org/wiki/QA/Testcase/How_to_write_test_case

14. Bingbin Lu, Best Mode Disclosure for Patent Applications: An International and

Comparative Perspective, Journal of Intellectual Property Rights Vol 16, September

2011, pp 409-417. Available at SSRN: https://ssrn.com/abstract=1938859

15. https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language

16. https://www.sparxsystems.eu/resources/project-development-with-uml-and-

ea/introduction-to-uml/

17. https://stackoverflow.com/questions/29145545/is-uml-for-object-oriented-only

18. https://stackoverflow.com/questions/26212374/are-uml-diagrams-only-for-object-

oriented-approach?noredirect=1&lq=1

19. https://softwareengineering.stackexchange.com/questions/78407/software-design-for-

procedural-programming

20. What is Unified Modeling Language? Lucidchart,

https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language.

21. Nishadha, UML Diagram Types Guide: Learn About All Types of UML Diagrams with

Examples, Creately blog, https://creately.com/blog/diagrams/uml-diagram-types-

examples/#SequenceDiagram.

22. https://creately.com/blog/diagrams/the-basics-the-purpose-of-sequence-diagrams-part-1/

https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9
https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9
https://www.datacamp.com/community/tutorials/introduction-indexing-sql
https://www.bitlaw.com/source/cases/patent/MCRO.html
https://www.ipwatchdog.com/2014/06/29/alice-on-software-patents-preemption-and-abstract-ideas/id=50210/
https://www.ipwatchdog.com/2014/06/29/alice-on-software-patents-preemption-and-abstract-ideas/id=50210/
https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm
https://economictimes.indiatimes.com/definition/pseudocode
https://softwareengineering.stackexchange.com/questions/136292/what-is-pseudocode/136354
https://softwareengineering.stackexchange.com/questions/136292/what-is-pseudocode/136354
https://wiki.openoffice.org/wiki/QA/Testcase/How_to_write_test_case
https://ssrn.com/abstract=1938859
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.sparxsystems.eu/resources/project-development-with-uml-and-ea/introduction-to-uml/
https://www.sparxsystems.eu/resources/project-development-with-uml-and-ea/introduction-to-uml/
https://stackoverflow.com/questions/29145545/is-uml-for-object-oriented-only
https://stackoverflow.com/questions/26212374/are-uml-diagrams-only-for-object-oriented-approach?noredirect=1&lq=1
https://stackoverflow.com/questions/26212374/are-uml-diagrams-only-for-object-oriented-approach?noredirect=1&lq=1
https://softwareengineering.stackexchange.com/questions/78407/software-design-for-procedural-programming
https://softwareengineering.stackexchange.com/questions/78407/software-design-for-procedural-programming
https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://creately.com/blog/diagrams/uml-diagram-types-examples/#SequenceDiagram
https://creately.com/blog/diagrams/uml-diagram-types-examples/#SequenceDiagram
https://creately.com/blog/diagrams/the-basics-the-purpose-of-sequence-diagrams-part-1/

 70

23. "U.S. Patent Application No. 15/253,669, Publication No. 20180060728,

http://appft1.uspto.gov/netacgi/nphParser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1

&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20180060728.PGNR.&OS=DN

/20180060728&RS=DN/20180060728

24. J. Zhu et al., Deep Embedding Forest: Forest-based Serving with Deep Embedding

Features (March 16, 2017), https://arxiv.org/pdf/1703.05291.pdf

25. Unified Modeling Language, Tutorialspoint,

https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm

26. Krunal Patel, Step Ahead In Competition With AI Test Automation, Clarion

Technologies, https://www.clariontech.com/blog/step-ahead-in-competition-with-ai-test-

automation.

27. https://deepai.org/machine-learning-glossary-and-terms/neural-network

28. Margaret Rouse, extrapolation and interpolation, TechTarget,

https://whatis.techtarget.com/definition/extrapolation-and-interpolation.

https://arxiv.org/pdf/1703.05291.pdf
https://www.tutorialspoint.com/uml/uml_standard_diagrams.htm
https://www.clariontech.com/blog/author/krunal-patel
https://www.clariontech.com/blog/step-ahead-in-competition-with-ai-test-automation
https://www.clariontech.com/blog/step-ahead-in-competition-with-ai-test-automation
https://deepai.org/machine-learning-glossary-and-terms/neural-network
file:///C:/Users/Afshin/Desktop/Dissertation/Dissertation-%20Final/Margaret%20Rouse
https://whatis.techtarget.com/definition/extrapolation-and-interpolation

 71

APPENDIX A

UML Diagram Types

These UML diagrams can be divided into two main categories; structural diagrams and behavioral

diagrams.

Structural diagrams: Show the things in a system being modeled. In a more technical term, they

show different objects in a system.

Behavioral diagrams: Shows what should happen in a system. They describe how the objects

interact with each other to create a functioning system.

Figure A-1 UML Diagram Types

Some of the most important of these diagrams are introduced in the following:

Structural diagrams:

1- Class diagram: It is the most used UML diagram type. It shows the classes in a system,

attributes, and operations of each class and the relationship between each class. A class

is a template consisting of the attributes and methods or functions related to that class.

 Figure A-2 Class Diagram

 72

2- Component diagram: A component diagram displays the structural relationship of

components of a software system. These are mostly used when working with complex

systems that have many components.

Figure A-3 Component diagram

 3- Deployment diagram: A deployment diagram shows the hardware of your system and

the software in that hardware. Deployment diagrams are useful when your software solution

is deployed across multiple machines with each having a unique configuration.

Figure A-4 Deployment Diagram

 73

 4- Package diagram: a package diagram shows the dependencies between different packages

in a system.

Figure A-5 Package diagram

Behavioral diagrams

1- Use case diagram: Use case diagrams give a graphic overview of the actors involved in a

system, different functions needed by those actors and how these different functions

interact.

Figure A-6 Use case diagram

 74

2- Activity diagram: Activity diagrams represent workflows in a graphical way. They can

be used to describe business workflow or the operational workflow of any component in a

system.

Figure A-7 Activity diagram

2- Sequence diagram: Sequence diagrams in UML show how objects interact with

each other and the order those interactions occur.

Figure A-8 Sequence diagram

