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Analysis of Caching Algorithms for Distributed File Systems 
Benjamin Reed and Darrell D. E. Long 

Department of  Computer  Scier~ce 
University of  California 
Santa Cruz, CA 95064 

Abstract 
When picking a cache replacement policy for file 
systems, LRU (Least Recently Used) has always been the 
obvious choice, because of the temporal locality found in 
programs and data. However, in the case of Sun NFS 
servers much of the locality is filtered out by the client 
cache. It has been conjectured that this filtering of 
locality by the client caches render LRU ineffective as a 
server cache replacement policy. This study disproves 
the conjecture by simulating a NFS server cache with 
real worm traces. Traces were taken of NFS read and 
write requests sent to an NFS server. These traces were 
then run through a cache simulator using six different 
cache replacement policies: Least Recently Used (LRU), 
Least Frequently Used (LFU), Frequency Based 
Replacement (FBR), First In First Out (FIFO), Random 
(RAND), and Optimal (OPT). RAND and OPT were 
used to provide lower and upper bounds on performance. 
Results show that LRU is an effective NFS server cache 
replacement policy and frequency based tend to exhibit 
erratic behavior in the presence of temporal locality and 
sequentially accessed files. 

1 Introduction 

Caching has proven to be a very effective way to reduce 
the penalty of accessing data on disks. UNIX file access 
patterns tend to exhibit temporal locality which makes 
LRU an effective cache replacement policy. When the 
files reside on an NFS server, the server cache only 
receives requests that can't be serviced by the client 
cache. It would seem that LRU performance would go 
down dramatically if the temporal locality of the 
requests get filtered out by the client cache. This study 
seeks to determine whether LRU is a good replacement 
policy to use in a server. 

In order to examine LRU's performance, it is compared 
with optimal arid random replacement policies. In addi- 
tion, various studies have shown that frequency-based 
policies perform well with virtual memory [4]. Two ver- 
sions of frequency-based algorithms are used as com- 
parison. 

The study is limited to studying the caching perfor- 
mance of Sun NFS [6] servers, since they are the de- 
facto industry standard. The requests being examined 
are limited to read and write, since directory information 
in NFS is opaque it is impossible to simulate the effect 
of a directory lookup using just the information in the 
request. One of the most popular directory operations is 
the lookup operation which contains the directory i- 
node and the name of the file to lookup; however, in 
order to simulate properly the offset in the directory of 
the file would have to be known. In addition, since 
directory information isn't cached very long in the cli- 
ent, very little locality filtering is done in the client. The 
two servers being studied are a Sun running SunOS 
serving files found in /usr/local, which end up being 
mostly executable files, and an SGI running IRIX which 
serves home directories, mail spools, and research group 
directories. The results indicate that LRU is still a good 
replacement policy on servers. 

2 Related Research 
This study was constructed similar to a study done 
previously by Bunt et al. [1]. They traced calls to the 
getblk system call on a single NFS client using various 
workloads, and then ran the trace through a simulator 
that simulated various sizes of client and server caches. 
Their results show the frequency-based policies 
performed significantly better than LRU as the client 
cache increases. 
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We decided to redo the experiment, but to avoid 
modifying the kernel we traced NFS requests as they 
went across the ethernet. By tracing the network instead 
of the kernel we were able to trace normal workloads 
from multiple NFS clients. We chose to simulate the 
same cache replacement policies as the previous study 
and to have the cache simulate a Berkeley fast file system 
[3]. 

3 Data Collection 

One of the advantages to simulating an NFS server 
cache is that traces are easy to get since the requests are 
passed over the network. NFS uses the Sun RPC [5] 
(Remote Procedure Call) protocol to send requests from 
the NFS client to the server. RPC is implemented on top 
of UDP [8] (User Datagram Protocol). NFS has reserved 
UDP port 2049 for exclusive use. The client sends call 
requests to the server and the server replies with data 
and/or return codes. 

Traces were collected by listening to all the call requests 
being sent to the NFS file server. This was done by put- 
ting the ethernet interface on the same network as the 
server in promiscuous mode. In promiscuous mode, the 
ethernet interface will read every packet that goes by on 
the network. If the computer is on the same network as 
the file server, it will be able to gather information about 
all the requests sent to the server. A major advantage of 
this approach is that it doesn't interfere with the perfor- 
mance of the client or the server, thus eliminating any 
anomalies that can arise from the monitoring tool affect- 
ing the performance of the system. 

In order to cut down the number of packets processed, 
the NIT_PF packet filter was used. NIT_PF is a 
STREAMS packet filter in SunOS that only lets through 
packets that meet a certain criteria. The filter was set up 
to let through only those packets destined for UDP port 
2049 of the server and only those that are call requests. 

The information needed for the simulator is extracted by 
parsing the packet headers and body. The information 
recorded in the trace is the current time, the source and 
destination of the request, the request type, and the 
information that corresponds to the request type. For a 
write request, a file handle and an offset is recorded. For 
a read request, a file handle, offset, and count are 
recorded. 

Unfortunately, the NFS protocol defines the file handle 
as being opaque, or basically without meaning to any- 
one but the server. It also doesn't require that there be 
only one handle for a file, so in order to use the file han- 
dle it must be broken into components. The servers 
being traced were a Sun running SunOS and an SGI run- 
ning IRIX. Since the NFS source code wasn't available 
for either system, the make up of the file handle had to 
be determined empirically. After repeated observations, 
it was found that the first two long words represent the 
device major and minor number, and that bytes 12-15 
correspond to the i-node of the file on the server. Given 
the i-node of a file and an offset we can uniquely iden- 
tify each block of the file. 

4 File system cache simulation 

In order to simulate a file system cache, the i-nodes and 
offsets collected in the data collection phase had to be 
translated into disk blocks. To make the translation, the 
file system was assumed to be a Berkeley fast file sys- 
tem [3]. In the Berkeley fast file system, the i-node con- 
tains some pointers to the first few blocks of the file, 
followed by a pointer to a block containing the pointers 
to the following blocks of the file, and if necessary yet 
another pointer in the i-node is a double indirect pointer 
the following blocks. In the simulator, the location of 
the first 12 blocks are contained in the i-node. The loca- 
tions of blocks 12 to n, where n=(block size)/4 +12, will 
be located in the indirect block. The location of the indi- 
rect block is in the i-node. Blocks greater than n will 
involve an additional indirect block to find the location. 

Each NFS read/write request will generate a block 
request to fetch the i-node, possibly a request for indi- 
rect blocks, and finally a request for the block contain- 
ing the data to be read. In the simulator a disk block is 
represented as a tuple of (i-node, indirection, offset / 
block size). If the tuple is not in the cache and the oper- 
ation is a read, a miss is recorded. Since writes will be 
preceded by the client doing a read if necessary, writes 
are not counted as a cache hit or miss. However, blocks 
read or written will populate the cache on a miss. The 
block that is to be removed from the cache is chosen 
based on the replacement policy. 

5 Cache replacement policies 

The file system cache simulator simulates six different 
policies for choosing a block to be replaced. The opti- 
mum (OPT) cache replacement policy is used to set an 
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upper bound on performance. The random (RAND) pol- 
icy is used has a baseline. A policy is ineffective if it 
performs worse than RAND. Least recently used (LRU) 
is a popular replacement policy that replaces the block 
in the cache that was used least recently. First in first out 
(FIFO) is a simple queue-like policy that is easy to 
implement and known to have performance anomalies. 
Least frequently used (LFU) and frequency based 
replacement (FBR) were chosen because they have been 
shown to be effective in previous studies. 

5.1 OPT 

The optimal replacement policy chooses a block to be 
replaced based on when it will be used again in the 
future. The block that will be used farthest in the future 
is the one chosen to be replaced. It has been shown that 
no other replacement policy will perform better than this 
one [2]. While, OPT can't  be implemented in practice 
since that would require the ability to look into the 
future, it does set an upper bound on performance. 

OPT was implemented in the simulator by making two 
passes of the data: one pass to build a table of future 
accesses, and another pass to actually simulate the cache 
using the future access times of the table. This is a very 
straightforward way of implementing OPT. It can also 
be implemented in one-pass by using look-ahead; how- 
ever, for simplicity the two-pass method was chosen. 

5.2 RAND 

The random replacement policy chooses a block to be 
replaced by picking one at random. It is very easy to 
implement. Since the decision is purely random, an 
effective algorithm should be able to outperform 
RAND, thus giving us a lower bound on acceptable per- 
formance. 

5.3 I.RU 

Least recently used replacement exploits the temporal 
locality of data. Temporal locality means that if a given 
block is accessed, it will probably be accessed again 
sometime soon. Thus, if one wants to approximate OPT 
assuming temporal locality, the block to be replaced is 
the one that was accessed the farthest in the past (or 
least recent). LRU is used in a wide variety of caches 
and has been shown to be effective in practice. 

LRU was implemented in the simulator using a queue. 
When a block is to be replaced the block at the head of 

the queue is chosen. Whenever a hit is made by a read or 
write in the cache, that block is moved to the tail of the 
queue. The block at the tail of the queue is always the 
last block accessed and the block at the head is the block 
that was accessed the farthest in the past. 

5.4 FIFO 

First in first out replacement is a simple policy that has 
less overhead than LRU, but doesn't exploit temporal 
locality as much. The block chosen to be replaced in 
FIFO is simply the oldest block in the cache. It is imple- 
mented in the simulator using a straightforward queue. 
When a new block is put into the cache, it is added to the 
tail of the queUe. When a block is chosen to be replaced, 
the block at the head of the queue is chosen. FIFO has 
been shown tO exhibit Belady's anomaly [7] which is 
manifest as a decrease in cache performance when 
cache memory is increased. 

5.5 FrequenCy Based 

Frequency based algorithms try to find the popular 
blocks and keep them in cache. The basic frequency- 
based replacement policy in the simulator is the least 
frequently used (LFU). In LFU the block that is chosen 
to be replaced is the block that is used the least. The 
implementation of the frequency based policies were 
implemented as described in the study done by Bunt et 

al. [1]. To keep track of the least used block, a count of 
accesses is kept for each block in the cache. The count is 
incremented only on read hits. Write hits do not incre- 
ment the count. When a block is to be replaced, the one 
with the lowest access count is chosen. Ties are broken 
by choosing the one that was least recently used. 

This implementation of LFU is only approximate since 
the frequency count is kept only for those blocks in the 
cache. To prevent some blocks from building up a large 
frequency count and never being replaced, all the counts 
are halved when the average frequency count reaches a 
certain threshold. The thresholds used in this study were 
the same as the ones used in the previous study. 

To implement LFU the blocks of the cache were kept in 
most-frequentIy-used order. When a block is to be cho- 
sen to be replace, the blocks are examined starting at the 
most recently used, moving to the least recently used. 
The last block found with the lowest count is the one to 
be replaced. 
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The other frequency-based policy that is in the simulator 
is the FBR policy. This policy tries to filter out the tem- 
poral locality in the data by keeping the blocks of the 
cache in most-recently-used order and dividing the 
cache up into three partitions. The first partition is the 
most recently used part of the cache and occupies 
F_new% of the cache. The last partition is the least 
recently used part of the cache and occupies F_old% of 
the cache. The partition in the middle are those blocks 
that aren't in either the old or new partitions. The tem- 
poral locality is filtered out by not updating the fre- 
quency counts of the blocks in the first partition on a hit. 
Replacement blocks are chosen from the last partition. 
The middle partition allows the blocks time to build up 
frequency counts before being replaced. 

6 Experiments 

Two different file servers were used in the study. One 
was a SGI running IRIX. It is a general file server serv- 
ing home directories, mail, project areas, etc. The other 
was a Sparc running SunOS that served applications in a 
/usr/local directory. Both servers are used by the stu- 
dents and faculty of the Computer Science and Engi- 
neering Department. 

Six traces were obtained from the two systems. Each 
trace had a duration of two days. The traces were of nor- 
mal workloads and no artificial loads were introduced. 
Trace sizes ranged from 100,000 to 400,000 read/write 
requests. 

7 Results 

Figure 1, 2, and 3 show the results from three of the 
traces. LFU 100 and LFU 20 are the least-frequently- 
used policy with frequencies being halved when the 
average frequency reaches 100 and 20 respectively. FBR 
25:40 is the frequency-based replacement policy with 
the most recently used partition size of 25% of the total 
cache size and the least recently used partition size of 
40% of the total cache size. FBR 25:60 is the same as 
FBR 25:40 except that the least recently used partition is 
60% of the total cache. The x-axis is the size of the 
server cache in kilobytes and the y-axis is the percentage 
of read resulting in a miss. 

In figure 1, the FBR policy exhibits erratic behavior, 
when the cache size was increased from 1000K to 
2000K the percentage of misses went up from 55% to 
70%. The jump occurred again for other increases. In 

contrast LFU seemed to be monotonically decreasing; 
however, LFU 100 never was able to perform as well as 
RAND. 

Figures 2 and 3 show that the performance of the poli- 
cies are even more erratic when simulating the SGI file 
server cache. All of the frequency-based policies per- 
formed much worse than RAND with the exception of 
FBR which occasionally performed better. In theory 
LFU is a stack algorithm. This means that for a given set 
of references the set of blocks in a cache will be a subset 
of the blocks in a larger cache, which implies that an 
increase in cache size can only result in the number of 
hits staying the same or increasing. Figures 2 and 3 
show that this is not the case for our implementation of 
LFU. The reason for this is that in theory the frequency 
count is kept for all the blocks, not just those in the 
cache. In these frequency-based implementations, when 
a block leaves the cache its frequency is lost and is reset 
when it enters the cache. 

In all three cases FIFO and LRU perform as expected. 
They are both consistently better than RAND and don't 
exhibit the erratic behavior that the frequency-based 
policies exhibit. 

Since frequency-based algorithms generally have trou- 
ble with temporal locality, we decided to examine the 
temporal locality of the data. The LRU simulator was 
modified to record the depth of a cache hit in the cache. 
The traces were then run through the LRU simulator 
with a cache size of 400 megabytes (which in practical 
terms approximates an infinite sized cache.) Figure 8 
shows the raw number of hits occurring at a given depth 
in the cache. The great majority (over 80%) occur below 
depth three. 

The fact that the hits occur above depth three suggests 
that they are result of the metadata. If  a 16 kilobyte file 
is read, there will be two requests for 8 kilobyte blocks 
of the file, since NFS can request a maximum of 8 kilo- 
byte at a time. Both requests will access different data 
blocks; however, they must both lookup the i-node of 
the file to find the data block. As files are read in 
sequentially or in chunks greater than 8 kilobytes the i- 
node and indirect blocks will be temporally local. 

To investigate the effect metadata (i-nodes and indirect 
blocks) has on the performance of the policies only the 
data blocks were used in the simulator. Figure 7 shows 
that the hits in the cache are more uniformly distributed 
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among the cache depths, nothing like the spike that 
occurred at depths below 3 in figure 8. 

Figure 4 shows that the performance of the frequency- 
based algorithms have smoothed out; however, note that 
FBR 25:40 out performs the other policies at a cache 
size of 4000 kilobytes, but after 6000 kilobytes ends up 
being the worst performer. In contrast FBR 20:60 con- 
sistently performs as well as or better than FIFO and 
LRU. 

Figures 5 and 6 show that even without metadata, the 
performance of the frequency-based algorithms still 
tend to be erratic. Interestingly, the performance of the 
Sun Sparc server seems to indicate that the erratic 
behavior stopped when the metadata was removed; how- 
ever, the performance of the SGI indicates that the 
behavior is still erratic. This is probably due to the dif- 
ferent type of files that are being served by the two serv- 
ers. The Sun is serving /usr/local which has a large 
number of commonly-used executables. The clients 
using this server generally do demand paging and use 
the executable file to page from instead of copying it to a 
local swap device. The frequency-based policies used 
have been shown to work well with virtual memory, and 
in effect by paging from the NFS server the most of the 
traffic will be virtual memory faults. 

The SGI is used for home directories, mail spools, and 
project directories. These types of files are generally 
processed sequentially, which could account for the dif- 
ferent behavior of the performance of the frequency- 
based algorithms on the Sun and SGI. 

8 Limitations 

It should be pointed out that this study has a few limita- 
tions. The first being that under a high load, the server 
may not be able to grab and process packets fast enough. 
Care was taken to process packets as fast as possible, but 
the possibility for occasionally missing a packet does 
exist. Also, because of the indempotent nature of RPC, 
it is possible that some 2of the requests were actually a 
duplicate of a previous request, thus giving a false view 
of the accesses. 

A large percentage of NFS requests are requests for 
directory information. Since this study concentrates on 
read/write requests, effects of the directory information 
requests on the server cache are not taken into account. 

9 Further WOrk 
Temporal locaiity and work loads consisting of 
sequentially acdessed files seem to adversely effect the 
behavior of the frequency-based policies. It would be 
interesting to specify exactly what the conditions are that 
make the erratic behavior surface. 

It would be interesting to simulate LFU by maintaining a 
frequency count for all of the blocks in the system. While 
it wouldn't be practical to implement, it would give 
insight into the possible performance advantages of 
frequency-based algorithms. 

10 Conclusions 

The results in this study are extremely different from the 
results in the previous study [1], which found LRU's 
performance to be poor in comparison to the frequency- 
based algorithms. Part of the difference is the workloads 
and the number clients that were traced. And another 
part was the fact that file handles and offsets had to be 
mapped to physical disk blocks using metadata that was 
stored in the file system. This mapping was completely 
ignored in the previous study. This means that an NFS 
server cache can't be seen purely as a second level of the 
client, since it must contain information that is irrelevant 
to the client. 

In the two servers examined, LRU proved to be an effec- 
tive replacement policy whether or not metadata was 
taken into account. The frequency-based policies were 
adversely affected by the metadata as well as workloads 
consisting of sequentially accessed files. When metadata 
is taken into account LRU is able to exploit the temporal 
locality of the metadata, and when ignored, empirically 
it seems that there is still enough temporal locality to 
justify using LRU. 
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Figure 8: Trace I for the SGI run through the infinite LRU simulator counting hits at a given depth 
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