
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Analysis of caching algorithms for distributed file systems

Permalink
https://escholarship.org/uc/item/5282p7ch

Journal
ACM SIGOPS Operating Systems Review, 30(3)

ISSN
0163-5980

Authors
Reed, Benjamin
Long, Darrell DE

Publication Date
1996-07-01

DOI
10.1145/230908.230913

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5282p7ch
https://escholarship.org
http://www.cdlib.org/

i

Analysis of Caching Algorithms for Distributed File Systems
Benjamin Reed and Darrell D. E. Long

Department of Computer Scier~ce
University of California
Santa Cruz, CA 95064

Abstract
When picking a cache replacement policy for file
systems, LRU (Least Recently Used) has always been the
obvious choice, because of the temporal locality found in
programs and data. However, in the case of Sun NFS
servers much of the locality is filtered out by the client
cache. It has been conjectured that this filtering of
locality by the client caches render LRU ineffective as a
server cache replacement policy. This study disproves
the conjecture by simulating a NFS server cache with
real worm traces. Traces were taken of NFS read and
write requests sent to an NFS server. These traces were
then run through a cache simulator using six different
cache replacement policies: Least Recently Used (LRU),
Least Frequently Used (LFU), Frequency Based
Replacement (FBR), First In First Out (FIFO), Random
(RAND), and Optimal (OPT). RAND and OPT were
used to provide lower and upper bounds on performance.
Results show that LRU is an effective NFS server cache
replacement policy and frequency based tend to exhibit
erratic behavior in the presence of temporal locality and
sequentially accessed files.

1 Introduction

Caching has proven to be a very effective way to reduce
the penalty of accessing data on disks. UNIX file access
patterns tend to exhibit temporal locality which makes
LRU an effective cache replacement policy. When the
files reside on an NFS server, the server cache only
receives requests that can't be serviced by the client
cache. It would seem that LRU performance would go
down dramatically if the temporal locality of the
requests get filtered out by the client cache. This study
seeks to determine whether LRU is a good replacement
policy to use in a server.

In order to examine LRU's performance, it is compared
with optimal arid random replacement policies. In addi-
tion, various studies have shown that frequency-based
policies perform well with virtual memory [4]. Two ver-
sions of frequency-based algorithms are used as com-
parison.

The study is limited to studying the caching perfor-
mance of Sun NFS [6] servers, since they are the de-
facto industry standard. The requests being examined
are limited to read and write, since directory information
in NFS is opaque it is impossible to simulate the effect
of a directory lookup using just the information in the
request. One of the most popular directory operations is
the lookup operation which contains the directory i-
node and the name of the file to lookup; however, in
order to simulate properly the offset in the directory of
the file would have to be known. In addition, since
directory information isn't cached very long in the cli-
ent, very little locality filtering is done in the client. The
two servers being studied are a Sun running SunOS
serving files found in /usr/local, which end up being
mostly executable files, and an SGI running IRIX which
serves home directories, mail spools, and research group
directories. The results indicate that LRU is still a good
replacement policy on servers.

2 Related Research
This study was constructed similar to a study done
previously by Bunt et al. [1]. They traced calls to the
getblk system call on a single NFS client using various
workloads, and then ran the trace through a simulator
that simulated various sizes of client and server caches.
Their results show the frequency-based policies
performed significantly better than LRU as the client
cache increases.

12

We decided to redo the experiment, but to avoid
modifying the kernel we traced NFS requests as they
went across the ethernet. By tracing the network instead
of the kernel we were able to trace normal workloads
from multiple NFS clients. We chose to simulate the
same cache replacement policies as the previous study
and to have the cache simulate a Berkeley fast file system
[3].

3 Data Collection

One of the advantages to simulating an NFS server
cache is that traces are easy to get since the requests are
passed over the network. NFS uses the Sun RPC [5]
(Remote Procedure Call) protocol to send requests from
the NFS client to the server. RPC is implemented on top
of UDP [8] (User Datagram Protocol). NFS has reserved
UDP port 2049 for exclusive use. The client sends call
requests to the server and the server replies with data
and/or return codes.

Traces were collected by listening to all the call requests
being sent to the NFS file server. This was done by put-
ting the ethernet interface on the same network as the
server in promiscuous mode. In promiscuous mode, the
ethernet interface will read every packet that goes by on
the network. If the computer is on the same network as
the file server, it will be able to gather information about
all the requests sent to the server. A major advantage of
this approach is that it doesn't interfere with the perfor-
mance of the client or the server, thus eliminating any
anomalies that can arise from the monitoring tool affect-
ing the performance of the system.

In order to cut down the number of packets processed,
the NIT_PF packet filter was used. NIT_PF is a
STREAMS packet filter in SunOS that only lets through
packets that meet a certain criteria. The filter was set up
to let through only those packets destined for UDP port
2049 of the server and only those that are call requests.

The information needed for the simulator is extracted by
parsing the packet headers and body. The information
recorded in the trace is the current time, the source and
destination of the request, the request type, and the
information that corresponds to the request type. For a
write request, a file handle and an offset is recorded. For
a read request, a file handle, offset, and count are
recorded.

Unfortunately, the NFS protocol defines the file handle
as being opaque, or basically without meaning to any-
one but the server. It also doesn't require that there be
only one handle for a file, so in order to use the file han-
dle it must be broken into components. The servers
being traced were a Sun running SunOS and an SGI run-
ning IRIX. Since the NFS source code wasn't available
for either system, the make up of the file handle had to
be determined empirically. After repeated observations,
it was found that the first two long words represent the
device major and minor number, and that bytes 12-15
correspond to the i-node of the file on the server. Given
the i-node of a file and an offset we can uniquely iden-
tify each block of the file.

4 File system cache simulation

In order to simulate a file system cache, the i-nodes and
offsets collected in the data collection phase had to be
translated into disk blocks. To make the translation, the
file system was assumed to be a Berkeley fast file sys-
tem [3]. In the Berkeley fast file system, the i-node con-
tains some pointers to the first few blocks of the file,
followed by a pointer to a block containing the pointers
to the following blocks of the file, and if necessary yet
another pointer in the i-node is a double indirect pointer
the following blocks. In the simulator, the location of
the first 12 blocks are contained in the i-node. The loca-
tions of blocks 12 to n, where n=(block size)/4 +12, will
be located in the indirect block. The location of the indi-
rect block is in the i-node. Blocks greater than n will
involve an additional indirect block to find the location.

Each NFS read/write request will generate a block
request to fetch the i-node, possibly a request for indi-
rect blocks, and finally a request for the block contain-
ing the data to be read. In the simulator a disk block is
represented as a tuple of (i-node, indirection, offset /
block size). If the tuple is not in the cache and the oper-
ation is a read, a miss is recorded. Since writes will be
preceded by the client doing a read if necessary, writes
are not counted as a cache hit or miss. However, blocks
read or written will populate the cache on a miss. The
block that is to be removed from the cache is chosen
based on the replacement policy.

5 Cache replacement policies

The file system cache simulator simulates six different
policies for choosing a block to be replaced. The opti-
mum (OPT) cache replacement policy is used to set an

13

upper bound on performance. The random (RAND) pol-
icy is used has a baseline. A policy is ineffective if it
performs worse than RAND. Least recently used (LRU)
is a popular replacement policy that replaces the block
in the cache that was used least recently. First in first out
(FIFO) is a simple queue-like policy that is easy to
implement and known to have performance anomalies.
Least frequently used (LFU) and frequency based
replacement (FBR) were chosen because they have been
shown to be effective in previous studies.

5.1 OPT

The optimal replacement policy chooses a block to be
replaced based on when it will be used again in the
future. The block that will be used farthest in the future
is the one chosen to be replaced. It has been shown that
no other replacement policy will perform better than this
one [2]. While, OPT can't be implemented in practice
since that would require the ability to look into the
future, it does set an upper bound on performance.

OPT was implemented in the simulator by making two
passes of the data: one pass to build a table of future
accesses, and another pass to actually simulate the cache
using the future access times of the table. This is a very
straightforward way of implementing OPT. It can also
be implemented in one-pass by using look-ahead; how-
ever, for simplicity the two-pass method was chosen.

5.2 RAND

The random replacement policy chooses a block to be
replaced by picking one at random. It is very easy to
implement. Since the decision is purely random, an
effective algorithm should be able to outperform
RAND, thus giving us a lower bound on acceptable per-
formance.

5.3 I.RU

Least recently used replacement exploits the temporal
locality of data. Temporal locality means that if a given
block is accessed, it will probably be accessed again
sometime soon. Thus, if one wants to approximate OPT
assuming temporal locality, the block to be replaced is
the one that was accessed the farthest in the past (or
least recent). LRU is used in a wide variety of caches
and has been shown to be effective in practice.

LRU was implemented in the simulator using a queue.
When a block is to be replaced the block at the head of

the queue is chosen. Whenever a hit is made by a read or
write in the cache, that block is moved to the tail of the
queue. The block at the tail of the queue is always the
last block accessed and the block at the head is the block
that was accessed the farthest in the past.

5.4 FIFO

First in first out replacement is a simple policy that has
less overhead than LRU, but doesn't exploit temporal
locality as much. The block chosen to be replaced in
FIFO is simply the oldest block in the cache. It is imple-
mented in the simulator using a straightforward queue.
When a new block is put into the cache, it is added to the
tail of the queUe. When a block is chosen to be replaced,
the block at the head of the queue is chosen. FIFO has
been shown tO exhibit Belady's anomaly [7] which is
manifest as a decrease in cache performance when
cache memory is increased.

5.5 FrequenCy Based

Frequency based algorithms try to find the popular
blocks and keep them in cache. The basic frequency-
based replacement policy in the simulator is the least
frequently used (LFU). In LFU the block that is chosen
to be replaced is the block that is used the least. The
implementation of the frequency based policies were
implemented as described in the study done by Bunt et

al. [1]. To keep track of the least used block, a count of
accesses is kept for each block in the cache. The count is
incremented only on read hits. Write hits do not incre-
ment the count. When a block is to be replaced, the one
with the lowest access count is chosen. Ties are broken
by choosing the one that was least recently used.

This implementation of LFU is only approximate since
the frequency count is kept only for those blocks in the
cache. To prevent some blocks from building up a large
frequency count and never being replaced, all the counts
are halved when the average frequency count reaches a
certain threshold. The thresholds used in this study were
the same as the ones used in the previous study.

To implement LFU the blocks of the cache were kept in
most-frequentIy-used order. When a block is to be cho-
sen to be replace, the blocks are examined starting at the
most recently used, moving to the least recently used.
The last block found with the lowest count is the one to
be replaced.

14

The other frequency-based policy that is in the simulator
is the FBR policy. This policy tries to filter out the tem-
poral locality in the data by keeping the blocks of the
cache in most-recently-used order and dividing the
cache up into three partitions. The first partition is the
most recently used part of the cache and occupies
F_new% of the cache. The last partition is the least
recently used part of the cache and occupies F_old% of
the cache. The partition in the middle are those blocks
that aren't in either the old or new partitions. The tem-
poral locality is filtered out by not updating the fre-
quency counts of the blocks in the first partition on a hit.
Replacement blocks are chosen from the last partition.
The middle partition allows the blocks time to build up
frequency counts before being replaced.

6 Experiments

Two different file servers were used in the study. One
was a SGI running IRIX. It is a general file server serv-
ing home directories, mail, project areas, etc. The other
was a Sparc running SunOS that served applications in a
/usr/local directory. Both servers are used by the stu-
dents and faculty of the Computer Science and Engi-
neering Department.

Six traces were obtained from the two systems. Each
trace had a duration of two days. The traces were of nor-
mal workloads and no artificial loads were introduced.
Trace sizes ranged from 100,000 to 400,000 read/write
requests.

7 Results

Figure 1, 2, and 3 show the results from three of the
traces. LFU 100 and LFU 20 are the least-frequently-
used policy with frequencies being halved when the
average frequency reaches 100 and 20 respectively. FBR
25:40 is the frequency-based replacement policy with
the most recently used partition size of 25% of the total
cache size and the least recently used partition size of
40% of the total cache size. FBR 25:60 is the same as
FBR 25:40 except that the least recently used partition is
60% of the total cache. The x-axis is the size of the
server cache in kilobytes and the y-axis is the percentage
of read resulting in a miss.

In figure 1, the FBR policy exhibits erratic behavior,
when the cache size was increased from 1000K to
2000K the percentage of misses went up from 55% to
70%. The jump occurred again for other increases. In

contrast LFU seemed to be monotonically decreasing;
however, LFU 100 never was able to perform as well as
RAND.

Figures 2 and 3 show that the performance of the poli-
cies are even more erratic when simulating the SGI file
server cache. All of the frequency-based policies per-
formed much worse than RAND with the exception of
FBR which occasionally performed better. In theory
LFU is a stack algorithm. This means that for a given set
of references the set of blocks in a cache will be a subset
of the blocks in a larger cache, which implies that an
increase in cache size can only result in the number of
hits staying the same or increasing. Figures 2 and 3
show that this is not the case for our implementation of
LFU. The reason for this is that in theory the frequency
count is kept for all the blocks, not just those in the
cache. In these frequency-based implementations, when
a block leaves the cache its frequency is lost and is reset
when it enters the cache.

In all three cases FIFO and LRU perform as expected.
They are both consistently better than RAND and don't
exhibit the erratic behavior that the frequency-based
policies exhibit.

Since frequency-based algorithms generally have trou-
ble with temporal locality, we decided to examine the
temporal locality of the data. The LRU simulator was
modified to record the depth of a cache hit in the cache.
The traces were then run through the LRU simulator
with a cache size of 400 megabytes (which in practical
terms approximates an infinite sized cache.) Figure 8
shows the raw number of hits occurring at a given depth
in the cache. The great majority (over 80%) occur below
depth three.

The fact that the hits occur above depth three suggests
that they are result of the metadata. If a 16 kilobyte file
is read, there will be two requests for 8 kilobyte blocks
of the file, since NFS can request a maximum of 8 kilo-
byte at a time. Both requests will access different data
blocks; however, they must both lookup the i-node of
the file to find the data block. As files are read in
sequentially or in chunks greater than 8 kilobytes the i-
node and indirect blocks will be temporally local.

To investigate the effect metadata (i-nodes and indirect
blocks) has on the performance of the policies only the
data blocks were used in the simulator. Figure 7 shows
that the hits in the cache are more uniformly distributed

15

among the cache depths, nothing like the spike that
occurred at depths below 3 in figure 8.

Figure 4 shows that the performance of the frequency-
based algorithms have smoothed out; however, note that
FBR 25:40 out performs the other policies at a cache
size of 4000 kilobytes, but after 6000 kilobytes ends up
being the worst performer. In contrast FBR 20:60 con-
sistently performs as well as or better than FIFO and
LRU.

Figures 5 and 6 show that even without metadata, the
performance of the frequency-based algorithms still
tend to be erratic. Interestingly, the performance of the
Sun Sparc server seems to indicate that the erratic
behavior stopped when the metadata was removed; how-
ever, the performance of the SGI indicates that the
behavior is still erratic. This is probably due to the dif-
ferent type of files that are being served by the two serv-
ers. The Sun is serving /usr/local which has a large
number of commonly-used executables. The clients
using this server generally do demand paging and use
the executable file to page from instead of copying it to a
local swap device. The frequency-based policies used
have been shown to work well with virtual memory, and
in effect by paging from the NFS server the most of the
traffic will be virtual memory faults.

The SGI is used for home directories, mail spools, and
project directories. These types of files are generally
processed sequentially, which could account for the dif-
ferent behavior of the performance of the frequency-
based algorithms on the Sun and SGI.

8 Limitations

It should be pointed out that this study has a few limita-
tions. The first being that under a high load, the server
may not be able to grab and process packets fast enough.
Care was taken to process packets as fast as possible, but
the possibility for occasionally missing a packet does
exist. Also, because of the indempotent nature of RPC,
it is possible that some 2of the requests were actually a
duplicate of a previous request, thus giving a false view
of the accesses.

A large percentage of NFS requests are requests for
directory information. Since this study concentrates on
read/write requests, effects of the directory information
requests on the server cache are not taken into account.

9 Further WOrk
Temporal locaiity and work loads consisting of
sequentially acdessed files seem to adversely effect the
behavior of the frequency-based policies. It would be
interesting to specify exactly what the conditions are that
make the erratic behavior surface.

It would be interesting to simulate LFU by maintaining a
frequency count for all of the blocks in the system. While
it wouldn't be practical to implement, it would give
insight into the possible performance advantages of
frequency-based algorithms.

10 Conclusions

The results in this study are extremely different from the
results in the previous study [1], which found LRU's
performance to be poor in comparison to the frequency-
based algorithms. Part of the difference is the workloads
and the number clients that were traced. And another
part was the fact that file handles and offsets had to be
mapped to physical disk blocks using metadata that was
stored in the file system. This mapping was completely
ignored in the previous study. This means that an NFS
server cache can't be seen purely as a second level of the
client, since it must contain information that is irrelevant
to the client.

In the two servers examined, LRU proved to be an effec-
tive replacement policy whether or not metadata was
taken into account. The frequency-based policies were
adversely affected by the metadata as well as workloads
consisting of sequentially accessed files. When metadata
is taken into account LRU is able to exploit the temporal
locality of the metadata, and when ignored, empirically
it seems that there is still enough temporal locality to
justify using LRU.

Acknowledgments
This work has been supported by the Office of
Naval Research under grant N00014-92-J- 1807.

References
[1] R. B. Bunt, D. L. Willick, D. L. Eager. Disk

cache replacement policies for network
filservers, in Proceedings of lEEE International
Conference on Distributed Computing Systems-
ICDCS '93, pages 2-11, June 1993.

16

[2] I. L. Traiger, J. Gecsei, D. R. Slutz. Evaluation
techniques for storage hierarchies. IBM Systems
Journal, (2):78-117, 1970.

[3] J. L. Peterson, J. S. Quarterman, A. Silbershatz.
4.2BSD and 4.3BSD as examples of the UNIX
system. ACM Computing Surveys, 17(4):379-
418, December 1985.

[4] M. V. Devarakonda, J. T. Robinson. Data cache
management using frequency-based
replacement. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 134-142,
May 1990.

[5] Sun Microsystems, Inc. RPC: Remote
procedure call protocol specification version 2.
RFC 1057, June 1988.

[6] Sun Microsystems, Inc. NFS: Network file
system protocol specification version 2. RFC
1094, March 1989.

[7] L. A. Belady, R.A. Nelson, G. S. Shedler. An
anomaly in space-time characteristics of certain
programs running in a paging machine.
Communications of the ACM, 12(6):349-353,
June 1969.

[8] J. Postel, User Datagram Protocol, RFC 768,
August 1980.

17

100

90

80

70

50~

40

i i i i i i i i

LFUI~ -o- "4-- ,

' x" i LFU20-a.-
• FBR 25:40 -x-

' ~'i BAND+-.
'~,, OPT-+--

',. ~. ,, ~,

" ~ " , ," ~ i ~"~x
',~ ~, ',. / F - ~ .

~,..~.:--.-..+ ' ~ / --..

.... ~ ~7...+... . . j_ -.

""" t

""",k

30

10 I I I I I I I ,

0 1000 2000 3000 4000 5000 6000 7000 8000
Cache size in Idobvtes

Figure 1: Trace from the/usr/local partition of a Sun Sparc: run through the simulator.

1oo

90

80

!
E
= 70
.E

_=
6o

e

5o
"6

i i i h i i Ii

-B--

~" " ":~"%'~ ,,v-"----~ F~ 25:40 -x-"
" , , \ FBR 25:60 ~'-

,~ "~-.L ,, FIFO-z-.-
i' ~ \ " ' i ~'.: BAND .~..,
i ~ ~ / "", ÷ OP.I '+""

.... / i i , '
"'. i i " ! ",.~

"'..i. ~ " I ", •
t " , , ~ '..).

! i " B i yl~ v.
i t ~ ~

' ' ~ ~ / " ' ~ X . , \ ! ~ / "'"'B x.

.! ' . , !k
" "l ! ~ ~.~

" - . ! j! i x\

[I I l I I i I

1000 2000 3000 4000 5000 6000 7000 8000
Cache size in kilobytes

Figure 2: Trace I from the SGI run through the simulator.

18

100 i i i i i i i

LRU
LFU 100 +-.

~,x~,L, ~ LFU20 -e.-
90 ./i.,~,, FBR25:40 . .~ '

i~ "%, ~25:60
i ~ _ ~ ~ RFO +.-

, i ',. ~ ., " ' " .

',,~ \!, ,!, -+-,
.,'_ '~. /~ ' ---r-+
E ~ i t /

70 i", • ~ , i " ! ~ " B , t ~ !
,E " % i /

! ' " , i /
"B,.. ~ i'

• i / "'~--~ /
/ ,

. I --,-.:. I / ""~
50 ~- ":% i ~ "

+".. ::..

30 + . , .

................. ÷ .

20 I I I I I I I

Figure 3: Trace 2 from the SGI run through the simulator.

!
E

.E

I1

3

100 [' L i i i t * i t

~ - . : ~ ~,.. LFU 100 +-"
• ~ " ~ . . "",..,,, LFU~ .a-.

. ,,,. ~ , ~ , , "'-... FBR 25:40 * - .
'. - ' ~ - , " F'BR 25:60 ~--
~,. ~ . "* FIFO +- '.,. ,--.~: " " ' ~ . . .

",, "::: ~ OPT-:~-".',

""~',,,,,, ,,,.., ~' ~:~\~ "~,:.'-...

"'%,,,.
"%..,.

".,,%
" " , , , . % . ,

I I I I I I

ICO0 ~ 0 3000 4000 5000 6000 7000 8000
size in kikYoytes

Figure 4: Traces from the/usr/local partition of a Sun Sparc run through the simulator with meta-
data ignored.

1 9

100

g5

90

85

80

75

70

65

60

55

50

45

i i i I l I ! i

~ . ~ : : : : : - - , ,. u~u~ U : :

"~.i:,, .,, ' " t ~ - - ° '0 L , , : u~ .~
' ~ ' LJ , " "m-- FBR 125:40 ~ -

• ' ,~. \ A. "~ ' - ' - e -~ . .~ . FBRI25:60 "~-
~,",\ ~ ,' J, ~ ' ~ ' ~ . s . . . F FO -~-'-
\ ' .~ \ /" '., - - " ~ RAND "~'me

\',~ \ / X ""-OPT "+"
~~,.,. ,,,,. ,., - \

" . , . . . '"'",Jl \~
"" ~ " :'..~::::::....,

" " { " -,. ,,. ,,.

I I I I I I , I

1000 2000 3000 4000 5000 6000 " 7000
Cache size in kilobytes

8000

Figure 5: Trace I for the SGI run through the simulator with the meta-data ignored.

100 i I I I I i I i

~,~ LRU -o-
~I, "e ~., IYU I00 +- '
' . . .,.,. IFU 20 .n-.

• . . FBR 25:40
go ,',,, "o FBR 25:60 "="- -

. ~ FIFO +--

! Y@.>~.. ~- / " : ~ : ~ ; - : : : : : : : : ~

, ° i o ' \
'.,. ~ -.-, ,.,~

.,. \ - . . , , ,

"",, ,,, " ' " " \ 70 '; • l'l~

",÷,,.

" " "" "t-

. +

40 I I I I I I i l

1000 2000 3000 4000 5000 6000 7000 8000
Cache size in kilobytes

Figure 6: Trace 2 from the SGI run through the simulator with the meta-data ignored.

2 0

140

120

100

80

60

i

20

0 1800 2000 3000 4000 5000
Cache deplh

Figure 7: Trace I for the SGI run through the infinite LRU simulator counting hits at a given depth
and ignoring meta-data

Figure 8: Trace I for the SGI run through the infinite LRU simulator counting hits at a given depth

t[, I l i i
140 LRU - -

120

100

80

'6

~* 60 i

40

0

0 1000 2000 3000 4000 5000
Cache depth

21

