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Abstract

I develop a number of mathematical and statistical models for the study of genomic
variation within and between species. These variants affect an organism’s susceptibility
to genetic diseases and are also responsible for speciation events. In particular, my work
focuses on the following questions:

1. How does DNA causing genomic variation proliferate through the genome of a
species?

2. For members of the same species, how can we leverage a priori information (i.e,
relatedness and sparsity) to improve predictions of genomic variants?

I address these questions in the the context of using noisy and low-quality data. I
begin with a review of models of DNA proliferation and detecting these genomic
changes in Chapter 1. In Chapter 2, I answer the first question by developing a model
which describes non-actively replicating repetitive elements in an organism’s genome.
Although they comprise a majority of many eukaryotic genomes, these elements are often
ignored by models reviewed in Chapter 1. I answer the second question in Chapter 3 by
developing a general optimization framework to detect genomic rearrangements in related
individuals subject to different sequencing assumptions. In the context of limited and

vii



noisy data, this work is one of the only methods (to my knowledge) that simultaneously
predicts variants in a group of individuals instead of post-processing this information.
Chapter 4 describes some of the convergence properties of the methods introduced in the
previous chapter, and Chapter 5 summarizes this work and future projects.
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Chapter 1

Introduction

1.1 Genomic Variation Biology
The genome of an individual consists in sequences of nucleotides (A,C,G,T) that

ranges in length from millions of letters (for a bacteria) or billions of letters (for a
mammalian genome) [27]. However, the evolutionary processes of mutation, coupled
with more complex heredity in sexually reproducing organisms, ensures variation between
genomes of individuals within a species. Since genomic variation between species far
exceeds variation among individuals from the same species, the common practice has
been to develop a reference genome for each species along with an annotation of common
sites of variation [2, 33]. Genomic variants are classified by their lengths and may either
consist of a single letter (nucleotide), so called single nucleotide variants (SNVs), or
rearrangements of larger regions of DNA, called structural variants (SVs). In both cases,
variation is identified by comparing fragments of DNA sequenced from a test (unknown)
genome to a given reference (see Fig. 1.1) [35, 30]. These genomic variants have often
been associated with genetic diseases, such as cancer, but also have been attributed to
promoting genetic diversity [18]. As such, SVs and variation in general, represents an
important part of understanding the recent evolutionary history of a species [31, 40].

Figure 1.1: Illustration of a deletion in a test genome (unknown) relative to a reference genome
(known). Deletions (and other SVs) are identified by sequencing both ends of fragments (of a
particular length distribution) from the test genome and mapping them to the reference. Fragments
whose mapped distance is significantly larger than expected (left) indicate a potential deletion
while fragments which map to the reference (right) indicate no SV.

1
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In humans, genomic diseases and disorders also accompany this diversity while
heredity passes these traits from one generation to the next [39, 42]. The advent of
next-generation sequencing (NGS) and the decreasing DNA sequencing costs – both
producing more data – make detecting variation more amenable. As a result, many
methods have emerged to detect these inherited changes. Fig. 1.2 illustrates this process
in paired-end sequencing. Although sequencing technology advances, producing longer
DNA reads, some emerging methods suffer from higher error rates [3]. The immediate
solution is to sequence individuals multiple times to resolve ambiguities, but this comes
at a higher financial and computational cost. Moreover, portable sequencing technology
provides the opportunity to sequence many individuals at low coverage relatively quickly
[24, 34]. In order to take advantage of these technologies, changes must be made in
computational and mathematical methods.

Figure 1.2: Illustration of DNA sequencing of an unknown genome. First, the unknown genome
is fragmented. Second, the ends of the fragments are sequenced from both ends (red and green).
Lastly, the sequenced ends are mapped to the reference genome. This process is repeated many
times to resolve the errors in both sequencing and mapping to the reference genome.

In addition to their length, genomic variants are categorized as deletions, insertions,
inversions, and translocations. A major driver of genomic insertions are transposable
elements (TEs): mobile DNA sequences that encode their own self-replication [32, 19].
TEs vary in size, ranging from several hundred to several thousand bases. Originally
discovered by Barbra McClintock in Zea mays [29], these elements comprise the
majority of human and other primate genomes and are abundant in the genomes of
many other organisms [41, 10, 1]. TEs are divided into two classes (I and II) based on
the method they use to duplicate. Class I elements use a “copy-and-paste” mechanism
via an RNA intermediate that results in two copies of the TE while Class II elements
use “cut-and-paste” mechanism, in which the transposon excises itself and interrupts a
target DNA sequence (see Fig. 2.1). TEs have been largely viewed as deleterious since
both classes may cause considerable damage; for example, a TE insertion within a gene
has been linked to Haemophilia A [17]. In addition, actively replicating TEs increase
the size of the genome, and are shown to induce further structural variation such as
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Figure 1.3: Transposable elements are self-replicating DNA sequences that are classified
according to their replication process. Transposition occurs during DNA replication, where
target sites are identified. (Top) The “copy-and-paste” mechanism yields two copies of the TE in
the host genome and is the primary focus of our model. (Bottom) In contrast, the “cut-and-paste”
mechanism is primarily found in plants, such as Zea mays and results in a new location of the
DNA region in the host’s genome.

inversions, duplications or deletions [38, 28, 7, 16]. However, the role of TEs is not
entirely deleterious and there is increasing evidence of their benefit. For example, TEs
may be responsible for genetic regulation as many human promoter regions contain
TE-derived sequences [15]. Over time, both due to their self-duplicating nature and the
gradual accumulation of mutations in the host genome, a copy of a TE may itself be
mutated to the point that the copy loses the ability to replicate. Because of their unique
self-replication nature, modeling TE dynamics has been an active area of research.

The vast complexities of molecular and hereditary factors in genomic variation
provide many modeling and statistical inference opportunities. I outline existing
mathematical literature for both prediction and modeling of genomic variants and then
outline our own research in this context.

1.2 Mathematics of Modeling and Detecting Genomic
Variants

1.2.1 Modeling Transposable Element Proliferation
The increasing availability of TE annotations for complete genomes allows for a

more complete picture of the TE composition in a genome and offers an opportunity
for quantitative assessment of different theories on the fitness impact of TEs. A number
of mathematical models have been developed to study the dynamics of TEs and most
focus on only on full-length replicating copies [5, 22, 21, 23]. Here, I summarize the first
models proposed by [5] and more recent developments in modeling transposable element
proliferation.

Most studies aimed at describing the evolutionary history of transposable elements
have primarily focused on full-length elements, TEs that still encode the ability to
replicate, and their copy number. Models have been of two varieties, depending on
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their assumptions of how TEs impact the host genome. Neutral models assume TEs are
neither detrimental or beneficial to the host, selection models incorporate the fitness of
the population, and species-specific models take into account TE assumptions of the host
species [22].

Neutral Models

The first neutral model proposed by Charlesworth and Charlesworth assumed
TEs self-regulated their transposition according to their copy number, 𝑢𝑛, where 𝑢𝑛
is a decreasing function of 𝑛 (the number of elements in a diploid genome) [5]. For
populations of infinite size, the average change in the mean copy number ̄𝑛 = 2 ∑𝑖 𝑥𝑖,
where 𝑥𝑖 is the frequency of a TE at locus 𝑖 and the summation is over all possible loci.
The change per generation is then given

△ ̄𝑛 = 𝔼[𝑛𝑢𝑛] − ̄𝑛𝑣, (1.1)

where 𝑣 is the probability that a TE is deleted and 𝔼 is the expectation over all individuals.
Expanding the right hand side about ̄𝑛, the authors show that TE copy number will follow
a binomial distribution with mean ̄𝑛 and variance ̄𝑛(1 − ̄𝑛/𝑇), where 𝑇 is the number of
sites TEs can occupy. This yields

△ ̄𝑛 ≈ ̄𝑛(𝑢�̄� − 𝑣), (1.2)
where the only nontrivial equilibrium is reached when 𝑢�̄�∗ = 𝑣 – when self-regulation
equals the deletion rate. In finite populations, they show that the distribution of TE counts
follow a beta or beta-like distribution [5].

Selection Models

Selection models consider the fitness of the population under the assumption that TEs
result in deleterious effects on the genome, and they incorporate a number of selective
forces (e.g., ectopic recombination) [4]. Charlesworth and Charlesworth also presented
models including host fitness under the assumption that TEs are deleterious to the host [5].
As such, in finite populations, the mean copy number changes by

△ ̄𝑛 = ̄𝑛 (1 − ̄𝑛
𝑇) 𝜕 ln 𝑤�̄�

𝜕 ̄𝑛 + ̄𝑛(𝑢 − 𝑣), (1.3)

where 𝑤�̄� represents the average population fitness and holds when 𝑇 is much larger than
the mean copy number. In their work, the authors incorporate fitness functions of the form
𝑤𝑛 = (1 − 𝑠)𝑛 and also include strongly convex functions. An equilibrium exists local if
the fitness function satisfies the constraint

− 1
𝑛∗ < 𝜕2 ln 𝑤𝑛∗

𝜕𝑛∗2 < 0.

and ∣ 𝜕 ln 𝑤�̄�
𝜕�̄� ∣

𝑛=0
∣ + 𝑣 < 𝑢. For finite populations, the authors approximate the mean

copy number as an approximate beta distribution, but note that both early neutral and
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selection models focus on modeling full-length elements and their respective copy
number. Since selective forces affecting TE proliferation vary, assumptions including
deleterious insertion (allowing for varying selection coefficients), ectopic recombination,
and deleterious transposition models have been explored [22].

Species-Specific Models

As more data became available through advances in sequencing technologies, TE
models incorporated a priori information about the species in which the transposable
element had invaded. These models use known features of TEs in specific species to
inform assumptions. One recent model, for example, incorporates ecological frameworks
to describe how certain TEs – primarily in primates – utilize existing replication
machinery (i.e., RNA polymerase) [43]. The stochastic model addresses the competition
between two TEs in a predator-prey setting, but does not include the deterioration of
full-length elements into partial length copies (i.e., TEs are completely destroyed at
a constant rate). The authors conclude that such models can describe oscillations of
at least two populations of transposable elements when one TE hijacks the replicative
mechanisms from another TE.

In bacteria, for example, horizontal transfer events are explicitly modeled, but may
not be representative of TE dynamics in eukaryotes [13]. Indeed, the use of ecological
models and birth-death processes can capture the stochasticity of how full-length elements
evolve in time; however, when considering the non-replicating elements, this system
grows exponentially and these models will be computationally expensive.

1.2.2 Structural Variation Detection
Structural variants (SVs) are typically defined as genomic rearrangements larger

than a certain length (in bp). Although this may be useful in comparing predicted SVs
with experimentally validated variants, their complexity may make this an ambiguous
definition. Instead, in the most general sense, these rearrangements represent a set
of novel adjacencies – two positions adjacent in the unknown genome but not in the
reference. A deletion, for example, results in a single novel adjacency [36, 35]. As
such, the signals associated with detecting SVs are an important component for the
development of SV-detection methods. I summarize the three most common signals
below in Fig. 1.4 with respect to deletions and describe methods utilizing primarily one
signal (see [35] for a discussion on how these signals affect other types of SVs).

Signal-Specific SV Detection Methods

Early methods of structural variation detection focused on using one of these three
signals as indicators for possible structural variants. Shortly after the completion
of human sequencing efforts, many SV-detection tools emerged using paired-read
sequencing signals [6, 37, 11, 33, 20]. Since my research program incorporates the output
of the Geometric Analysis of Structural Variants (GASV) method, I focus on describing
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Figure 1.4: Three types of signals suggesting a possible deletion in the unknown genome. (Left)
Paired-Read (PR) signals occur when DNA reads in the unknown genome map to regions in the
reference and the resulting mapping distance is greater than expected distance. (Center) A drop
in the number of reads mapping to the reference in comparison to unknown genome potentially
signifies a deletion. (Right) Split-Read (SR) signals result when the expected mapping distance
from at least one direction exceeds the expected distance.

this approach and its use of paired-read data [37]. The length of the DNA fragment is
defined as 𝐿𝐶, where 𝐿𝑐 ∈ [𝐿min, 𝐿max] and both 𝐿min and 𝐿max are known. Then, for a true
breakpoint (𝑎, 𝑏), we expect 𝐿𝐶 = (𝑎 − 𝑥𝐶) + (𝑦𝐶 − 𝑏) when 𝑥𝐶 ≤ 𝑎, 𝑏 ≤ 𝑦𝐶 (see Fig. 1.5).
Since we know 𝐿 is bounded above and below, we have

𝐿min ≤ (𝑎 − 𝑥𝐶) + (𝑦𝐶 − 𝑏) ≤ 𝐿max.

Fig. 1.5 illustrates how this method begins to detect a deletions. In this case, one
read corresponds to one trapezoid of feasible breakpoints. Since we expect multiple
reads for a given region – resulting in many trapezoids – the authors introduced a
geometric sweep-line algorithm to narrow the space of admissible breakpoints, and this
yields increased sensitivity rates. Although I focus on deletions, GASV also addresses
complex variants (e.g., inversions). The output of GASV is thus the number of fragments
supporting a potential deletion for a set of genomic coordinates.

Figure 1.5: (Left) (𝑎, 𝑏) represent the true breakpoints (deletion coordinates), while (𝑥𝐶, 𝑦𝐶)
indicate where unknown reads were mapped to the reference. In this case, 𝑥𝐶 ≤ 𝑎, 𝑏 ≤ 𝑦𝐶. (Right)
Plot of genome coordinates (𝑥𝐶, 𝑦𝐶) in comparison to (𝑎, 𝑏). Since 𝐿 ∈ [𝐿min, 𝐿max], the space of
admissible breakpoints are outlined by the grey trapezoid. Note that the true breakpoint (𝑎, 𝑏) is
contained within this set.
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One of the first methods to use read-depth (RD) as a signal for variant detection was
developed by [45]. Methods using this type of signal may rely on non-overlapping or a
sliding window approach. Not surprisingly, as the window length increases, the precision
decreases. Yoon et al. incorporated a non-overlapping window approach on sequencing
data that could be approximated by a normal distribution. Once the entire genome is
searched, then an event-wise testing metric (via converting counts to a 𝑍 score) is defined
and unusual events (those that meet criteria of statistical signficance) are categorized as
deletions (see middle panel of Fig. 1.4).

Pindel, the first method to use split-read (SR) signals for SV detection, incorporated a
pattern growth approach to detect large deletions as well as insertions using paired-end
short reads [44]. This general procedure includes mapping all reads to the reference
genome and assumes that one end (of the read) mapped to the reference. The user
then defines the maximum deletion size and lengths for the minimum and maximum
substrings before beginning the algorithm. If two or more reads support a deletion (i.e.,
thresholding), then the method reports the potential deletion. I summarize the initial
pattern growth formulation in Algorithm 1. For a database 𝑆 and pattern 𝑃 in an alphabet
A, C, G, T, Pindel outputs the minimum and maximum substrings that appear once in 𝑆.
Once these substrings are reported, the method still relies on thresholding the number of
fragments (> 2) to report potential deletions.

Hybrid and Population-level Methods

Current SV-detection methods now tend to rely on multiple signals and consider
multiple samples at a time [9, 8, 25]. Given the three common types of SV signals,
methods incorporating at least two for SV prediction (for a total of four possible
improvements on previous methods) emerge. For example, HYDRA-Multi builds on a
previous method may detect deletions in one individual by including information on 65
other individuals. More specifically, this method first identifies candidate SV clusters
by independently clustering discordant alignments of individuals. These candidate
SVs are then sorted by start position for each individual. Given these sorted candidates,
sample-wide clusters are built (for individuals supporting the same variant) and
subsequently reported [25]. These methods reduce the number of false positives without
adding too much computational cost [9]. Other contemporary methods incorporate a
more Bayesian approach, where SV signals are taken into account in a probabilistic
framework [12]. In SV-Bay, after clustering discordant fragments, Bayes’ rule is applied
to detect the most likely model that explains the observed data of potential breakpoints
(assuming discordant fragments follow a Poisson distribution). However, explicit heredity
information is typically not modeled in these methods.

As sequencing of families has become more tractable, some recent methods have
emerged to detect structural variation or single nucleotide variants (SNVs) in family
lineages. For example, Canvas (Small Pedigree Workflow) SPW and TrioCNV primarily
incorporate multiple SV signals in hidden Markov models to detect copy number variation
in parent-offspring trios [26, 14]. As the cost of DNA sequencing decreases, methods
amenable to handle genomic data of related individuals will be an important part of
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Algorithm 1 Pindel (𝑃{𝑚} returns the first 𝑚 elements in the pattern 𝑃.)
1: procedure Pattern Search
2: S ← database
3: P ← pattern
4: 𝑖 ← leftmost bp (letter) of P
5: 𝑗 ← length(𝑖)
6: top: return {min, max}
7: loop:
8: if 𝑗 ≤ length(𝑃) and |𝑆𝑗| ≥ 1 then
9: if 𝑖 = 1 then

10: Scan 𝑆 for 𝑖.
11: 𝑆𝑗 ← projected 𝑆 with locations of 𝑖.
12: 𝑖 ← 𝑃{𝑖 + 1}.

else
13: Scan 𝑆𝑗 for 𝑖.
14: 𝑗 ← 𝑗 + 1.
15: 𝑆𝑗 ← projected 𝑆 with locations of 𝑖.
16: if |𝑆𝑗| = 1 then min = 𝑖.
17: if |𝑆𝑗| = 0 then max = 𝑃{𝑖 − 1}.
18: goto top.
19: 𝑖 ← 𝑃{𝑖 + 1}.
20: goto loop.
21: close;
22: goto top.

understanding the transmission of genomic variation throughout generations. When
considering limited storage requirements in the case of hundreds or thousands of samples,
SV methods incorporating noisy and low-quality data will be especially useful.

1.3 Motivation and Goals
Genomic rearrangements in all organisms lead to a wide range of observable

phenomena. At times, these changes result in hereditary diseases that can be fatal to the
organism. At other times, they lead to rich genetic diversity and add more complexity to
the tree of life. With the use of statistical and mathematical models, we aim to model and
detect this variation in organisms both between and within the same species.

As reviewed, modeling genomic variation through transposable element proliferation
has been extensively explored. However, most models concerned with describing the
proliferation of transposable elements tend to focus on actively replicating copies. Partial
copies contribute a major source of repetitive DNA in many eukaryotes and some
previous methods become less computationally tractable when considering all partial TEs
in a genome.
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Detecting these DNA rearrangements in organisms concerns itself with other half of
trying to answer the disease and diversity question. As described, many of the original
and some of the recent methods view variant prediction at the individual level. These
methods offer high resolution of potential structural variants; however, we concern
ourselves with concurrent prediction in related individuals where the sequencing data
quality is obfuscated by noisy measurements.

In Chapter 2, I develop a neutral approach focused on describing the distribution of
both transposable elements and non-transposing copies which are unable to proliferate in
the host genome. Particularly, we introduce a discrete and continuous deterministic model
to study the distribution of TEs for a specific TE length. We focus on Class I elements
and their proliferation process. Using moments of the density distributions, we describe
the full system. Solutions to the fragmentations equations are presented and our model is
interpreted in the context of empirical distributions of genome data.

In Chapter 3, I develop an optimization framework for detecting structural variants in
related individuals. This general formulation allows for different relatedness structures
and DNA sequencing assumptions. I discuss my contributions to such methods and their
applicability to genome sequencing data with different heredity constraints.

In Chapter 4, I discuss the convergence of convex methods introduced in Chapter 3
using the method of Lagrangian multipliers. Additionally, I also discuss the guarantee of
local minima for nonconvex methods presented.

Finally, Chapter 5 outlines future work, with a focus on nonconvex optimization
methods for structural variation detection. I also discuss future work on mathematical
and statistical models for endemic diseases.
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Chapter 2

Modeling Genomic Variation Across
Species

This chapter is a submitted journal article (2018), “Sindi, S. S., & Banuelos, M.
Modeling Transposable Element Dynamics with Fragmentation Equations. Mathematical
Biosciences.”, and is currently under review.

2.1 Abstract
Transposable elements (TEs), segments of DNA capable of self-replication, are

abundant in the genomes of most organisms and thus serve as a record of past mutational
events. While some work suggests TEs may serve a regulatory function for the host, most
empirical and theoretical studies have shown that TEs often have deleterious effects
on a host. Because they are not essential, the host genome consists of both full-length
(actively replicating) and partial length (inactive remnant) copies of TEs. We developed
a novel mathematical formulation of TE dynamics by modeling the density of full
and partial length copies resulting from mutations (insertions and deletions) and TE
replication within the host genome. More specifically, we model the time-evolution
of the complete TE length distribution (full and partial elements) in a genome using
fragmentation equations in both a discrete and continuous framework under two models
of TE replication.

In the first case, we assume that full-length TEs replicate at a constant rate regardless
of the number of full-length TEs present in the genome. While this assumption simplifies
the underlying biological processes, it allows us to derive an explicit analytical form of
the time-varying TE density, as well as the steady-state behavior, under both discrete
and continuous formulations. Next, we take into account the potential deleterious
effects of TEs by modeling TE replication with a logistic growth equation. Under this
assumption, the number of actively replicating TEs in a genome is limited by a carrying
capacity. While we are still able to derive to derive analytical forms for the time-varying
TE density, for both discrete and continuous length formulations, these solutions are
implicit. For all four proposed models, we prove existence and uniqueness of these
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solutions describing TE length distributions. We compare both models and note that
the logistic and exponential models initially agree. Since most TEs have not reached
carrying capacity, we use the explicit exponential solution to quantify rates of replication
to mutations. We apply our model to present day annotated collections of TEs from the
genomes of species of fruit-flies, birds, and primates to uncover quantitative relationships
of TE dynamics. With the increasing availability of complete genomes, our method is
likely to uncover relationships of biological drivers of genomic variation in many species.

2.2 Introduction
The genome, the complete DNA sequence of an organism, may also contain numerous

copies of transposable elements (TEs): mobile DNA sequences that encode their own
self-replication [46, 31]. TEs vary in size, ranging from several hundred to several
thousand bases. Originally discovered by Barbara McClintock in Zea mays [44], remnants
of these elements comprise the majority of human and other primate genomes and are
abundant in the genomes of many other organisms [58, 21, 2]. TEs are divided into
two classes (I and II) based on the method they use to duplicate. Class I elements use a
“copy-and-paste” mechanism via an RNA intermediate that results in two copies of the
TE while Class II elements use “cut-and-paste” mechanism, in which the transposon
excises itself and interrupts a target DNA sequence (see Figure 2.1). TEs have been
largely viewed as deleterious since both classes may cause considerable damage; for
example, a TE insertion within a gene has been linked to Haemophilia A [30]. Over time,
both due to their self-duplicating nature and the gradual accumulation of mutations in
the host genome, a copy of a TE may itself be mutated to the point that the copy loses
the ability to replicate. Both empirical and theoretical studies suggest that TE often have
deleterious effects on the host and negatively affect host fitness [46, 52, 12]. In small
asexual populations, for example, deleterious TEs may lead to their extinction [12].

In addition, actively replicating TEs increase the size of the genome, and are shown
to induce further structural variation such as inversions, duplications or deletions [51,
43, 13, 29]. However, the role of TEs is not entirely deleterious and there is increasing
evidence of their benefit in the development of past and recent regulatory functions in
humans [31, 24, 59]. For example, TEs may be responsible for genetic regulation as many
human promoter regions contain TE-derived sequences [24]. The balance between the
counteracting processes of mutations and TE replication rates is thus a growing area of
interest [48]. Recent studies also attempt to reconstruct the phylogeny of TE copies [37,
52, 10] to gain a better insight on how these sequences persists through generations.

The increasing availability of TE annotations for complete genomes allows for a
more complete picture of the TE composition in a genome and offers an opportunity
for quantitative assessment of different theories on the fitness impact of TEs. Although
a number of mathematical models have been developed to study the dynamics of TEs,
most have focused only on full-length replicating copies [9, 36, 34, 37]. However,
because most copies of TEs are partial (i.e., non-replicating) such models do not take
full advantage of all annotated sequences. We take a different approach from prior
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Figure 2.1: Transposable elements are self-replicating DNA sequences that are classified
according to their replication process. Transposition occurs during DNA replication, where
target sites are identified. The “copy-and-paste” mechanism yields two copies of the TE in the host
genome and is the primary focus of our model.

methods and model both the full-length (active) TEs, capable of duplication, and the
partial length (inactive) copies of TEs that are present in the genome. We focus on the
Class I TEs that are capable of their own reproduction through the “copy-and-paste”
mechanism and quantify the long-term length-distribution of all TE sequences. We study
how the length distribution of full and partial TEs changes under both TE replications and
mutations in the genome (insertions and deletions). To our knowledge, our work is the
first mathematical framework to do so. We fit our model to present-day TE annotations
and attempt to quantify TE proliferation and mutation.

More specifically, in this work we explore the dynamics of both partial length and
full elements from different TE families using deterministic fragmentation equations. We
consider both discrete and continuous formulations of the TE length distribution as well
as two different models of TE replication dynamics. In Section 2, we review previous
mathematical models for TE proliferation. In Section 3, we describe our assumptions on
TE replication and the mutational processes of deletion and insertions and how all impact
the length distribution of TEs. In Section 3.1, we derive discrete length models of TE
dynamics under two TE replication conditions (exponential and logistic). In Section 3.2,
we derive the analogous continuous length TE models under both models of TE dynamics.
In both cases, we prove existence and uniqueness of solutions and derive analytical forms
of the time-varying TE length distribution for our particular initial condition. In Section
4, we use the analytical solution of one of our models to estimate the ratio of replication to
mutation rates in TE annotations from species of fruit flies, birds, and primates. By fitting
the model to these present-day representative samples, we quantify relative transposition
rates and provide insights into possible differences of TE mobility in different species.
In Section 5, we conclude with the significance of our results and extendability of our
method. With increasing availability of complete genomes, models such as the one we
have developed seem likely to provide further quantitative insights by comparing to the
genomic fossil-record TEs have left behind.

2.3 Previous Mathematical Models
Most previous studies modeling the evolution of transposable elements have focused

on full-length elements, TEs that still encode the ability to replicate, and their copy
number. These models fall into two categories based on their assumptions on how TEs
impact the host: general or species-specific. General models may include neutral and
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selection processes. Neutral models assume TEs are neither detrimental or beneficial
to the host, selection models incorporate the fitness of the population. Species-specific
models that take into account TE assumptions of the host species [36, 22, 62]. The first
neutral model proposed by Charlesworth and Charlesworth proposed TEs self-regulated
their transposition according to their copy number, 𝑢𝑛 [9]. For populations of infinite size,
the average change in the mean copy number 𝑛 per generation was modeled by

△ ̄𝑛 ≈ ̄𝑛(𝑢�̄� − 𝑣) (2.1)

where 𝑣 is the constant rate of deletion. Equilibrium is reached when self-regulation
equals the deletion rate. In finite populations, they show that elements follow a beta or
beta-like distribution [36]. Selection models consider the fitness of the population under
the assumption that TEs result in deleterious effects on the genome, and they incorporate
a number of selective forces (e.g., ectopic recombination) [7].

Other models use known features of TEs in specific species to inform assumptions.
One recent model, for example, incorporates ecological frameworks to describe how
certain TEs – primarily in primates – utilize existing replication machinery (i.e., RNA
polymerase) [62]. We note that this stochastic model considers the competition between
two TE famlies, but does not include the deterioration of full-length elements into partial
length copies (i.e., TEs are completely destroyed at a constant rate). Still, other models
focus on using TE data and phylogenetic trees to account for TE loads in different species
[56]. In this case, the authors describe how the effect of purifying selection and genetic
drift in nematodes (and not any other processes) govern present-day TE loads. Although
the authors incorporate a less stringent criterion for a transposable element, TEs of length
< 2000 base pairs (bp) are excluded in this study. Thus, we believe that our model serves
to be complementary to this work as we consider shorter partial length copies. A recent
model depicted TE evolution in bacteria and included the mechanism of horizontal gene
transfer [22]. While intriguing, this model may not be representative of TE dynamics
in eukaryotes. The use of ecological models and birth-death processes can capture the
stochasticity of how full-length elements evolve in time; however, to include the dynamics
of non-replicating elements results in an exponential growth in the size of the system and
result in high computational cost to analyze.

A few methods have considered the dynamics of partial length or nonfunctioning TE
copies, but have assumed that a nonfunctioning TE copy still utilize the TE transposition
machinery to propagate throughout the host [36, 35]. In our work, we take an alternate
approach by equating TE replication function with its length. In summary, the majority
of published models focus on modeling TE growth in terms of copy number and rarely
consider the distribution of non-transposing TE remnants. Our approach is novel because
we focus on describing the distribution of non-transposing copies, which are unable to
duplicate in the host genome, along with the actively replicating full-length TEs.
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2.4 Mathematical Derivation and Model

2.4.1 Mathematical Model Assumptions
Present-day transposable element (partial and full-length) distributions in annotated

genomes present a complex picture of organisms’ evolutionary past. We assume that
three evolutionary processes are responsible for the present-day length distributions:
TE replication, insertions and deletions. In this work, we model the length distribution
resulting from a single type of one TE in both a continuous and discrete setting and
consider how the mutational processes (insertions and deletions) impact the number of
full-length TEs and the distribution of partial TE lengths under two different models of
TE replication. As shown in Figure 2.2, only full-length copies of TEs are capable of
replication, creation of another full-length copy of the same TE elsewhere in the genome.
But, other mutational processes, such as the insertion or deletion of a segment of DNA,
may cause the complete loss or partial loss of a TE. We consider a host genome with one
TE of full-length size 𝐿 initially present. Our models consider the time evolution of the
distribution of lengths of all instances of this TE in the genome. We first describe each of
our evolutionary processes (deletions, insertions and replications) and then the resulting
impact these processes have on the existing full and partial length TEs in the genome
(see Figure 2.3). For simplicity, we present these details in the discrete length context.
We then present our mathematical model of full and partial TE lengths in four different
mathematical settings: discrete and continuous formulations of the full and partial TE
length distribution as well as two biological assumptions on replication processes of
full-length TEs.

Figure 2.2: Three types of events impact the length distribution of TEs in host genomes:
replications, deletions, and insertions. (Left) Full-length TEs are capable of self-replicating and
inserting a full-length TE copy to a new location in the genome. (Center) Deletions of any length
may delete all or part of an existing TE. (Right) Insertions of any length may occur, resulting in
two (potentially different length) partial-length TEs.

Deletions. We assume deletions affect the host genome by selecting a starting position
uniformly at random and subsequently deleting one or more positions after it in
accordance with the deletion length. We assume that all deletion lengths are enumerated
in the finite set 𝔻 and that deletions of all lengths occur at a constant deletion rate per
unit length per unit time 𝐷. (For example, if 𝔻 = {1, 3}, deletions of length 1bp and 3bp
are equally likely.) Thus, the instantaneous rate of deletions of all possible sizes is given
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Figure 2.3: TE Dynamics. We assume a transposable element (TE) is introduced in a species’
genome at an initial time. The three processes of TE replication, deletions, and insertions continue
resulting in the complex TE distributions observed in present day genomes. Our model aims to
enable quantitative analysis of present TE annotations (full and partial length TEs) to infer rates
related to their past evolutionary history.

by: 𝑐𝐷𝐺(𝑡) where 𝑐 = |𝔻| is the cardinality of the set 𝔻 and 𝐺(𝑡) is the host genome size.
Our formulation allows for deletions of any length 𝑓 where 1 ≤ 𝑓, thus 𝔻 ⊆ ℤ+. Since most
genomic deletions tend to be less than 5 basepairs (bp) in length, a biologically relevant
choice for 𝔻 would favor deletions of length ≤ 5 [47] 1.

We next consider how deletions impact existing full length and partial length TEs.
We distinguish between the rate at which the deletions cause the loss of existing full
and partial length TEs and the rate at which the deletions increase the number of partial
length TEs by reducing the length of a existing longer full or partial length TE. Consider
an existing TE with length 𝑖 and a deletion with length 𝑓. There are (𝑓 + 𝑖 − 1) starting
positions in the genome for this deletion that would impact this TE, causing the loss of
this length 𝑖 TE. Thus, the probability that a deletion with length 𝑓 causes the loss of an
element of length 𝑖 in a genome of size 𝐺(𝑡) is simply

𝑓 + 𝑖 − 1
𝐺(𝑡) .

Since we allow deletions of any length 𝑓 ∈ 𝔻, the rate that a deletion of any allowable
length causes the loss of an element of length 𝑖 is given by

𝐷𝐺(𝑡)
∑𝑓 ∈𝔻 (𝑓 + 𝑖 − 1)

𝐺(𝑡) = 𝐷 ∑
𝑓 ∈𝔻

(𝑓 + 𝑖 − 1) .

We next consider the rate at which deletions increase the number of TEs of length 𝑖
by impacting a longer TE. For each deletion length 𝑓 and TE with length 𝑗 > 𝑖, there are
two starting positions in the genome for this deletion that would result in the creation of
a length 𝑖 TE. For example, if 𝔻 = {1, 2}, a length 4 TE may be created from a length
5 TE through deletions of each possible length in two ways (see Figure 2.4). Thus, the

1As we discuss in Section 2.6, it is possible to consider different probabilities for different lengths.
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probability of a deletion creating a length 𝑖 TE through the partial deletion of a length 𝑗
TE is

2𝑐
∑𝑓 ∈𝔻(𝑓 + 𝑗 − 1).

Insertions. We assume genomic insertions in the host genome occur by selecting a
random starting position (uniformly) and then inserting DNA at that position. Our
formulation also allows for insertions of any length 𝑘 where 𝑘 ≥ 1, where insertion
lengths are enumerated in the finite set 𝕀. We assume that insertions of all lengths (e.g., a
single nucleotide or other TE replications) occur at the constant rate of insertions per unit
length per unit time 𝐼 [40, 41]. As such, the genomic insertion rate is 𝐼𝐺(𝑡). In this way,
insertions (of all lengths) impacting 𝐺(𝑡) at any starting position results in two regions –
one on either side of the insertion (Figure 2.4). Because the length of the insertion is not
relevant for the TE length problem, we need not specify our insertion length distribution
at this point. In practice, however, insertions, like deletions, favor small sizes [47].

Next, we consider how insertions impact both full and partial length transposable
elements. Similar to deletions, we differentiate between the rate of TE loss and the rate
at which insertions increase the number of partial length TEs. For any insertion length,
consider a full or partial length TE of length 𝑖. There are (𝑖 − 1) starting positions in the
genome for an insertion to impact the loss of this length 𝑖 element. Then, the probability
of an insertion causing the loss of a length 𝑖 element is given by

𝑖 − 1
𝐺(𝑡) ,

and the rate that an insertion results in loss of an existing length 𝑖 TEs is

𝐼𝐺(𝑡) 𝑖 − 1
𝐺(𝑡) = 𝐼(𝑖 − 1).

We next consider the rate insertions impact length 𝑗 > 𝑖 elements, resulting in the
increase in the number of length 𝑖 elements. Consider a specific length 𝑗 element. There
are two starting positions in the genome where an insertion would create a length 𝑖
element from this length 𝑗 element. Regardless of the insertion length, the effect on TE
mutation remains the same (see Figure 2.4). Given an insertion impacts a length 𝑗 TE, the
probability of an insertion creating a length 𝑖 TE from this length 𝑗 TE is given by:

2
𝑗 − 1.

TE Replications. We assume that only TEs that retain their full-length (𝐿) are capable of
replicating within the host genome and that replication occurs through the selection of a
random position in the genome and the insertion of that full-length TE to that location.
We assume that replication occurs at a rate per full-length TE copy per unit time and
consider two models of TE replication. In the first model, we assume the replication
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rate per TE copy per unit time is a fixed constant 𝛼. This formulation will result in the
exponential growth or decay of full-length TEs. In the second formulation, we follow
prior approaches and assume that too many full-length TE copies become detrimental
to host fitness and, as such, the replication rate itself is impacted by the number of
full-length TEs already in the genome. In our model, we assume that TEs will not insert
themselves into a copy from their same family, but this condition may be generalized [14].

Figure 2.4: Illustration of the mutation
mechanisms allowed in our model. In this case,
the TE length 𝐿 = 5. We consider the impact
of deletions of length 1 and 2 and insertions
of any length. Length 1 deletions may impact
full-length elements in 𝐿 = 5 ways, and length
2 deletions may impact them in 𝐿+1 = 6 ways,
for a total of 11 potential deletion events. Thus,
𝔻 = {1, 2}, 𝑐 = |𝔻| = 2, and 𝐹 = ∑𝑓 ∈{1,2} 𝑓 = 3,
and we note the quantity 𝐹+𝑐(𝐿−1) = 3+2(4) =
11 confirms all possible deletion events. Since
insertions of any length create 2 partial-length
elements (right), 𝐼 represents the rate of all
insertions per unit length per unit time.

2.4.2 Discrete Dynamics
We next will develop our discrete length models by combining the mutational

processes we developed above. We track the number of partial length TEs of length 𝑖 as
a function of time 𝑡; 𝑈𝑖(𝑡). Elements of the length 𝑖 will be lost through deletions and
insertions, but will be gained by deletions and insertions impacting elements of length
𝑗 > 𝑖. To account for all possible lengths 𝑗 > 𝑖, we will sum over all elements from 𝑗 = 𝑖 + 1
to 𝐿. Thus, the differential equation for each 𝑈𝑖(𝑡), when 𝑖 < 𝐿, is given as follows:

𝑑𝑈𝑖
𝑑𝑡 = −𝐷 ⎛⎜

⎝
∑
𝑓 ∈𝔻

(𝑓 + 𝑖 − 1)⎞⎟
⎠

𝑈𝑖
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss of 𝑈𝑖 from deletions

− 𝐼(𝑖 − 1)𝑈𝑖⏟⏟⏟⏟⏟
Loss of 𝑈𝑖 from insertions

+
𝐿

∑
𝑗=𝑖+1

𝐷 ⎛⎜
⎝

∑
𝑓 ∈𝔻

(𝑓 + 𝑗 − 1)⎞⎟
⎠

2𝑐
∑𝑓 ∈𝔻(𝑓 + 𝑗 − 1)𝑈𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Gain in 𝑈𝑖 from deletions of length 𝑗 > 𝑖

+
𝐿

∑
𝑗=𝑖+1

𝐼(𝑗 − 1) 2
𝑗 − 1𝑈𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Gain in 𝑈𝑖 from insertions of length 𝑗 > 𝑖

= (−𝐷𝐹 − (𝑐𝐷 + 𝐼)(𝑖 − 1))𝑈𝑖 + 2(𝑐𝐷 + 𝐼)
𝐿

∑
𝑗=𝑖+1

𝑈𝑗,

where 𝑐 = |𝔻|, ∑𝑓 ∈𝔻 𝑓 = 𝐹, and the first term represents loss of elements of length 𝑖
and subsequent terms account for the gain of elements of length 𝑖 created by deletions of
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𝑈𝑗(𝑡); 𝑖 < 𝑗 ≤ 𝐿. Letting 𝛾 = 2𝑐𝐷 + 2𝐼, we write the above more succinctly as

𝑑𝑈𝑖
𝑑𝑡 = (−𝐷𝐹 − 𝛾(𝑖 − 1))𝑈𝑖 + 2𝛾

𝐿−1
∑

𝑗=𝑖+1
𝑈𝑗 + 2𝛾𝑈𝐿(𝑡). (2.2)

Since we are considering different models for 𝑈𝐿(𝑡), we separate 𝑈𝐿(𝑡) in Equation (2.2).
We next describe the proliferation of full-length elements.

Full-length TEs. We now present two different models for the evolution of the number
of full-length TEs, 𝑈𝐿(𝑡): exponential and logistic growth. We first consider the case
where the number of full-length elements 𝑈𝐿(𝑡) replicate at a constant rate producing an
exponentially growing number of full-length TEs. Recalling that 𝑐 = |𝔻| and ∑𝑓 ∈𝔻 𝑓 = 𝐹,
the number of full-length TEs, 𝑈𝐿(𝑡), changes as follows:

𝑑𝑈𝐿
𝑑𝑡 = 𝛼𝑈𝐿⏟

TE replication
− 𝐷 ⎛⎜

⎝
∑
𝑓 ∈𝔻

(𝑓 + 𝐿 − 1)⎞⎟
⎠

𝑈𝐿
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss of 𝑈𝐿 from deletions

− 𝐼 (𝐿 − 1) 𝑈𝐿⏟⏟⏟⏟⏟
Loss of 𝑈𝐿 from insertions

,

= (𝛼 − 𝐷𝐹 − (𝑐𝐷 + 𝐼)(𝐿 − 1)) 𝑈𝐿,

where 𝛼 is the rate per unit time that a transposable element replicates. We simplify this
differential equation as

𝑑𝑈𝐿
𝑑𝑡 = (𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1)) 𝑈𝐿. (2.3)

Since previous studies indicate a potentially deleterious effect of TE proliferation on
the host, we also consider a logistic growth model which limits the number of full-length
TEs in the host at a given time. We accomplish this goal by considering a carrying
capacity 𝐾 and modeling TE proliferation through a logistic equation. Thus, we have

𝑑𝑈𝐿
𝑑𝑡 =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝛼⏟
TE replication

− ⎛⎜
⎝

∑
𝑓 ∈𝔻

(𝑓 + 𝐿 − 1)⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss of 𝑈𝐿 from deletions

− 𝐼 (𝐿 − 1)⏟
Loss of 𝑈𝐿 from insertions

⎞⎟⎟⎟⎟⎟⎟
⎠

(1 − 𝑈𝐿(𝑡)
𝐾 ) 𝑈𝐿(𝑡)

= (𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1)) (1 − 𝑈𝐿(𝑡)
𝐾 ) 𝑈𝐿(𝑡)

which simplifies to
𝑑𝑈𝐿
𝑑𝑡 = 𝑟𝑑 (1 − 𝑈𝐿(𝑡)

𝐾 ) 𝑈𝐿(𝑡), (2.4)

where 𝑟𝑑 = 𝛼−𝐷𝐹 −𝛾(𝐿−1), 𝐾 is the carrying capacity of full-length elements, 𝛼, 𝐷 and
𝐼 remain the same as before. We note as 𝐾 → ∞, the carrying capacity model approaches
the exponential growth model. Partial-length elements are still modeled by Equation (2.2).
We note that

𝑈𝐿(𝑡) = 𝐾𝑈𝐿(0)𝑒𝑟𝑑𝑡

𝐾 + 𝑈𝐿(0)[𝑒𝑟𝑑𝑡 − 1],

where 𝑟𝑑 = 𝛼 − 𝐷𝐹 − 𝛾𝐿(𝐿 − 1), only depends on 𝑡.
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In this general framework, Equation (2.2) and either Equation (2.3) or (2.4), we study
TE dynamics by considering the zeroth and the first moment of the source distribution,
which leads to the following lemma

Lemma 1. For Equations (2.2) and (2.3) (exponential growth), the partial length
distribution of transposable elements, 𝑈(𝑖, 𝑡), can be described completely by the zeroth
and first moments defined as

𝜂(𝑡) =
𝐿−1
∑
𝑖=1

𝑈𝑖(𝑡), 𝜉(𝑡) =
𝐿−1
∑
𝑖=1

𝑖𝑈𝑖(𝑡).

In particular, if full-length elements are governed solely by a time-varying solution 𝑈𝐿(𝑡),
Equation (2.2) has the following moment closure

𝑑𝜂
𝑑𝑡 = (−𝐷𝐹 − 𝛾)𝜂(𝑡) + 𝛾𝜉(𝑡) + 2𝛾(𝐿 − 1)𝑈𝐿(𝑡) (2.5)
𝑑𝜉
𝑑𝑡 = −𝐷𝐹𝜉(𝑡) + 𝛾𝐿(𝐿 − 1)𝑈𝐿(𝑡). (2.6)

When 𝑈𝐿(𝑡) = exp [(𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1)) 𝑡] and for the initial condition 𝑈𝐿(0) = 1 and
𝑈(𝑖, 0) = 0, we present solutions for 𝜂(𝑡) and 𝜉(𝑡) as Equations (2.20) and (2.21). The
solution 𝜂(𝑡) allows us to rewrite our discrete system as

�⃗�′ = 𝐴�⃗� + ⃗𝑔(𝑡),

where 𝐴 ∈ ℝ(𝐿−1)×(𝐿−1) and ⃗𝑔(𝑡) ∈ ℝ(𝐿−1) are defined in Equation (2.24) in 2.7.2. Thus,
the explicit analytic solution �⃗� of Equation (2.2) is given by

�⃗�(𝑡) = 𝑆 ⃗𝑥exp.(𝑡), (2.7)

where the matrix of left eigenvectors 𝑆 ∈ ℝ(𝐿−1)×(𝐿−1) of 𝐴 is defined in Equation (2.26) in
2.7.2 and for 𝑖 = 1, … , 𝐿 − 1,

𝑥𝑖(𝑡) = 𝛾(𝑖2 + 𝑖) [𝐾2(𝑈𝐿(𝑡) − 𝑒𝜆𝑖𝑡) + 𝐶1
(1 + 𝑖)𝛾 (𝑒−𝐷𝐹𝑡 − 𝑒𝜆𝑖𝑡) + 𝐶2

𝑖𝛾 (𝑒(−𝐷𝐹−𝛾)𝑡 − 𝑒𝜆𝑖𝑡)] ,

where 𝜆𝑖 are the eigenvalues of 𝐴 and constants 𝐾2, 𝐶1, and 𝐶2 are defined in 2.7.1.

Moreover, when we consider the discrete logistic model, we derive an implicit analytic
solution to Equation (2.2),

Lemma 2. For Equations (2.2) and (2.4) (logistic growth), when 𝑈𝐿(𝑡) =
𝐾 (1 + exp [(𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1)) 𝑡] (𝐾 − 1))−1 and for the initial condition 𝑈𝐿(0) = 1
and 𝑈(𝑖, 0) = 0, the partial length distribution of transposable elements, 𝑈(𝑖, 𝑡), can be
described completely by the zeroth and first moments defined as

𝜂(𝑡) =
𝐿−1
∑
𝑖=1

𝑈𝑖(𝑡), 𝜉(𝑡) =
𝐿−1
∑
𝑖=1

𝑖𝑈𝑖(𝑡).
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Moreover, Equations (2.5) and (2.6) describe how the zeroth and first moments change in
time. The solution 𝜂(𝑡) allows us to rewrite our discrete system as

�⃗�′ = 𝐴�⃗� + ⃗𝑔(𝑡),

where 𝐴 ∈ ℝ(𝐿−1)×(𝐿−1) and ⃗𝑔(𝑡) ∈ ℝ(𝐿−1) are defined in Equation (2.24) in 2.7.2. Thus,
the explicit analytic solution �⃗� of Equation (2.2) is given by

�⃗�(𝑡) = 𝑆 ⃗𝑥log.(𝑡), (2.8)

where 𝑆 ∈ ℝ(𝐿−1)×(𝐿−1) is defined in Equation (2.26) in 2.7.2 and for 𝑖 = 1, … , 𝐿 − 1,

𝑥𝑖(𝑡) = 𝑖(𝑖+1)
2 ∫

𝑡

0
2𝛾 [𝑒(−𝐷𝐹−𝛾)𝑡 (𝛾 ∫ 𝜉(𝑠)𝑑𝑠 + 2𝛾(𝐿 − 1) ∫ 𝑈𝐿(𝑠)𝑑𝑠) + 𝑈𝐿(𝜏)] 𝑒𝜆𝑖(𝑡−𝜏)𝑑𝜏.

We present solutions 𝜂(𝑡), 𝜉(𝑡) and proofs for the solutions to the exponential and
logistic models (Lemma 1 and Lemma 2) in 2.7.7.

2.4.3 Continuous Dynamics
Next, we consider the continuous analog of the discrete system presented in Section

2.4.2 for partial length elements 𝑢(𝑥, 𝑡) and full-length elements 𝑢𝐿(𝑡). The allowable set
of deletion lengths 𝔻 now may include any real-valued deletion lengths 𝑓. Hence, the rate
of loss for elements of length 𝑥 is given as 𝐷𝐹 + 𝛾𝑥 where 𝐹, 𝑐, and 𝛾 remain the same
as in the discrete model. Next, we differentiate between how the length distributions of
partial and full-length elements evolve in time.

Partial length TEs. For an element of fixed length 𝑦 > 𝑥, the rate at which length 𝑥
elements are created is 2𝛾. To account for all possible lengths 𝑦 > 𝑥, we will integrate
over all elements 𝑦 to 𝐿. We now develop the continuous model of partial length TEs,
𝑢(𝑥, 𝑡). The continuous analog of Equation (2.2) is given by

𝑥 < 𝐿, 𝜕𝑢
𝜕𝑡 = (−𝐷𝐹 − 𝛾𝑥)𝑢(𝑥, 𝑡) + 2𝛾

𝐿
∫
𝑥

𝑢(𝑦, 𝑡) 𝑑𝑦 + 2𝛾𝑢𝐿(𝑡), (2.9)

where 𝑢𝐿(𝑡) represents the number of full-length TEs, 𝑢(𝑥, 𝑡) describes partial length TEs,
𝛾 = 𝑐𝐷 + 𝐼, and all other constants remain the same. We note that the allowable set of
deletions 𝔻 may now include non-integer deletion lengths. Because we are interested in
the distribution of repetitive elements in time for a genome with initially no TEs present,
we have initial conditions 𝑢(𝑥, 0) = 0 and 𝑢𝐿(0) = 1. Again, we consider two models for
TE replication.
Full-length TEs. For the continuous model, we again consider two models of TE
proliferation: exponential and logistic growth. In the exponential model, full-length
elements 𝑢𝐿(𝑡) change as follows

𝑑𝑢𝐿
𝑑𝑡 = (𝛼 − 𝐷𝐹 − 𝛾𝐿)𝑢𝐿, (2.10)
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where 𝛼, 𝐹, and 𝛾 remain the same as in the discrete system. Next, we consider the model
where full-length elements 𝑢𝐿(𝑡) are limited in their proliferation. As such, we have

𝑑𝑢𝐿
𝑑𝑡 = 𝑟𝑐 (1 − 𝑢𝐿(𝑡)

𝐾 ) 𝑢𝐿(𝑡), (2.11)

where 𝑟𝑐 = 𝛼 − 𝐷𝐹 − 𝛾𝐿, and 𝛼, 𝐾 and 𝐷 remain the same. The general solution for
Equation (2.11) is thus

𝑢𝐿(𝑡) = 𝐾𝑢𝐿(0)𝑒𝑟𝑐𝑡

𝐾 + 𝑢𝐿(0)[𝑒𝑟𝑐𝑡 − 1].

As in the discrete case, our model of TE dynamics is governed by the zeroth and first
moment and we arrive at the following lemma

Lemma 3. For Equations (2.9) and (2.10) or Equations (2.9) and (2.11), the partial
length distribution of transposable elements, 𝑢(𝑥, 𝑡), can be described completely by the
zeroth and first moments defined as

𝑢0(𝑡) = ∫
𝐿

0
𝑢(𝑥, 𝑡) 𝑑𝑥, 𝑢1(𝑡) = ∫

𝐿

0
𝑥𝑢(𝑥, 𝑡) 𝑑𝑥.

In particular, if full-length elements are governed solely by a time-varying solution 𝑢𝐿(𝑡),
Equation (2.9) has the following moment closure

𝑢′
0(𝑡) = −𝐷𝐹𝑢0(𝑡) + 𝛾𝑢1(𝑡) + 2𝛾𝐿𝑢𝐿(𝑡) (2.12)

𝑢′
1(𝑡) = −𝐷𝐹𝑢1(𝑡) + 𝛾𝐿2𝑢𝐿(𝑡).

Applying Lemma 3, we determine a solution 𝑢(𝑥, 𝑡) and prove its uniqueness as
follows:

Theorem 1. If 𝑢(𝑥, 0) = 0, 𝑢𝐿(0) = 𝑢𝐿0
= 1 and 𝛼 > 𝛾𝐿, there exists a solution 𝑢(𝑥, 𝑡) to

the continuous TE length distribution model, Equations (2.9) and (2.10), given by

𝑢(𝑥, 𝑡) = ℒ−1{𝑉(𝑥, 𝑠)},
𝑢𝐿(𝑡) = exp[(𝛼 − 𝐷𝐹 − 𝛾𝐿)𝑡],

(2.13)

where ℒ−1 is the inverse Laplace transform and 𝑉(𝑥, 𝑠) = 𝐽(𝑠)(𝐷𝐹 + 𝑠 + 𝛾𝑥)−3 and 𝐽(𝑠)
is defined in Equation (2.32). Moreover, when 𝐹 = 𝐿, the solutions 𝑢(𝑥, 𝑡) and 𝑢𝐿(𝑡) are
given by:

𝑢(𝑥, 𝑡) = −𝛾 (𝑒𝜈 (2𝛼2 + 𝜔4𝑡2 + 4𝛼2𝜔𝑡 − 2𝜔3𝑡(𝛼𝑡 − 1) + 𝛼𝜔2𝑡(𝛼𝑡 − 6)))
(𝛼 − 𝜔)3

+ −2𝛾𝛼2𝑒𝑡(𝛼−𝐿(𝛾+𝐷)

(𝛼 − 𝜔)3

𝑢𝐿(𝑡) = exp[(𝛼 − 𝐷𝐿 − 𝛾𝐿)𝑡],

(2.14)

where 𝛾 = 𝑐𝐷 + 𝐼, 𝜔 = 𝛾(𝐿 − 𝑥) and 𝜈 = −𝑡(𝐷𝐿 + 𝛾𝑥). Moreover, this solution is unique.
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We provide a proof of existence and uniqueness of the solution in 2.7.7. In the
exponential model, we will use the explicit form for 𝑢(𝑥, 𝑡) to make inferences about
the ratio of replication to mutation in real TE data. In the logistic case, we arrive at an
implicit analytic solution defined by Laplace transforms and integrals,

Theorem 2. If 𝑢(𝑥, 0) = 0, there exists a solution 𝑢(𝑥, 𝑡) to the continuous TE length
distribution model, equations (2.9) and (2.11), given by

𝑢(𝑥, 𝑡) = ℒ−1{𝑉(𝑥, 𝑠)},

𝑢𝐿(𝑡) = 𝐾 (1 + exp[−(𝛼 − 𝐷𝐹 − 𝛾𝐿)𝑡](𝐾 − 1))−1 ,
(2.15)

where ℒ−1 is the inverse Laplace transform and 𝑉(𝑥, 𝑠) = 𝐽(𝑠)(𝐷𝐹 + 𝑠 + 𝛾𝑥)−3 and 𝐽(𝑠)
is defined in Equation (2.43). Moreover, this solution is unique.

2.5 Results
We now focus on comparing both discrete models and solutions we developed in

Section 2.4. In particular, we present how each TE replication model leads to different
TE length and probability distributions. We also discuss how the genome length is
affected under these two different TE replication assumptions. Given these solutions
and comparisons, we estimate the replication-to-mutation rate using real data of TEs in
Drosophila, Aves and Primates.

2.5.1 Model Comparisons
We next compare the evolving distribution of TE lengths under our two models of

TE replication. For ease in exposition, we focus on our discrete formulation, but note the
same behavior holds in the continuous case. As might be expected, the initial dynamics of
the TE length distribution under the logistic model is well approximated by a replication
model with the same rate parameter:

𝑟𝑑 = 𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1).

When applying our initial condition 𝑈𝐿(0) = 1, we denote the difference of growth rates
between the models at a fixed time 𝑡 as

𝐽(𝑟𝑑, 𝑡) = 𝑟𝑑 − 𝑟𝑑 (1 − 𝑢𝐿(𝑟𝑑, 𝑡)
𝐾 ) = 𝑒𝑟𝑑𝑡

𝐾 + 𝑒𝑟𝑑𝑡 − 1. (2.16)

Further, we note that the second derivative of this increasing function,

𝜕𝐽
𝜕𝑟𝑑

= (𝑘 + 𝑒𝑟𝑑𝑡 − 1)−3 (𝑘 − 1)𝑡𝑒𝑟𝑑𝑡 [(𝑘 − 1)(𝑟𝑑𝑡 + 2) + 𝑒𝑟𝑑𝑡(2 − 𝑟𝑑𝑡)] ,

has one zero when 𝐾 > 1, namely

𝐾 = 1 + 𝑒𝑟𝑑𝑡(𝑟𝑑𝑡 − 2)
𝑟𝑑𝑡 + 2 . (2.17)
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We find that the exponential model remains a good approximation to the logistic model
until the time at which the difference in their growth rates changes concavity. In practice,
however, this equality will depend on the time 𝑡 and not the set rates 𝑟𝑑 and carrying
capacity 𝐾. Thus, we approximate 𝜕𝐽/𝜕𝑟𝑑 = 0 as the first time the right hand side of
Equation (2.17) exceeds 𝐾. For our subsequent comparisons, we assume 𝑟𝑑 = 0.0017
(𝛼 = 0.0025, 𝐷 = 5−8, 𝐿 = 5000, 𝔻 = {1, 2, 3, 4, 5, 𝐿 − 15}) and we vary 𝐾 from 100 to
1000.

Figure 2.5: Heat maps of L2 difference in time from 𝑡 = 0 to 𝑡 = 30000 and where the carrying
capacity 𝐾 ranges from 100 to 1000 in the logistic model. Red stars indicate the first time the
inflection point Equation (2.17) of Equation (2.16) is exceeded. Moreover, we see an increase
of the rate of divergence in both models after this point time. (Left) L2 difference (CCDFs) of
the exponential steady-state solution and the numerical logistic solution. (Center) L2 difference
(CCDFs) of the numerical exponential solution and numerical logistic solution, Equation (2.19).
(Right) L2 difference (Density) of the numerical exponential solution and numerical logistic
solution, Equation (2.18).

Because the steady state distributions of both are power-law like, we compare the
distributions 𝑈𝑖(𝑡) as well as the complementary cumulative distribution function. We
consider the L2 difference in the number of full and partial length elements,

𝐸den.(𝑡) = (
𝐿

∑
𝑖=1

[𝑈exp.(𝑖, 𝑡) − 𝑈logistic(𝑖, 𝑡)]
2)

1/2

, (2.18)

as well as the differences in complementary cumulative distribution function (CCDF)
between both models. First, we aggregate the counts for each partial and full-length TE
for each model. We then convert this data to a complementary cumulative distribution,
𝐶(𝑖, 𝑡) = 1 − (∑𝑖

𝑗=1 𝑈𝑗(𝑡)) / ∑𝐿
𝑗=1 𝑈𝑗(𝑡), (CCDF = 1 - CDF) and take the L2 difference,

𝐸dist.(𝑡) = (
𝐿

∑
𝑖=1

[𝐶exp.(𝑖, 𝑡) − 𝐶logistic(𝑖, 𝑡)]
2)

1/2

. (2.19)

Doing so accomplishes two goals: (1) We do not expect to see partial TEs of all
possible lengths in real data and the CCDF smooths out this missing information, and
(2) CCDFs provide a unified framework to compare TE families with one another. In our
analysis, we compare the empirical TE CCDFs to the analytical CCDF derived in section
2.7.7.
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We summarize the difference in the models in Figures 2.5, 2.6, and 2.7. We note
that the numerical solutions to both the logistic and exponential model agree in both
density and complementary distributions, but Equation (2.17) (denoted by red stars)
marks the time at which the difference between the two models increases. In Figure 2.7,
we observe similar TE length distributions in the models, but the exponential model
results in continual addition of full and partial length TEs to the host genome. This results
not only in an increasing difference in the number of total TEs, but also their respective
length distributions (see Figure 2.6). Up until this time, both Figures 2.5 and 2.6 support
relatively small 𝐸dist.(𝑡) for a variety of carrying capacity 𝐾. In fact, we observe that as
𝐾 increases, the time for divergence between the exponential and logistic model tends to
grow logistically. We next consider the impact of exponential growth on the size of the
host genome.

Figure 2.6: Comparison of 3 CCDFs (logistic, exponential, and exponential steady-state) at four
distinct time points (from 𝑡= 1000 to 𝑡 = 30000) for 𝐾 =1000. We observe agreement between both
the logistic and exponential model initially, but divergence increases rapidly after Equation (2.17)
(𝑡∗ = 14903). Moreover, the numerical solution for the exponential model and the analytical steady
state remain in agreement after this time.

Figure 2.7: Comparison of two TE length distributions (logistic, exponential), along with the
carrying capacity 𝐾 = 1000, at four distinct time points (from 𝑡 = 1000 to 𝑡 = 30000). We
observe agreement between both the logistic and exponential model initially, but divergence
increases rapidly after Equation (2.17) (𝑡∗ = 14903).

Genome Size Dynamics. For both models, we compare how the length of the genome
changes in time. As previously described, the genome size is affected by replications of
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full-length TEs, insertions, and deletions. Thus, we have

𝑑𝐺
𝑑𝑡 = 𝐿𝑈𝐿(𝑡) (rate of full-length replication) + 𝐼𝐺(𝑡) ∑

𝑘∈𝕀
𝑘 − 𝐷𝐺(𝑡) ∑

𝑓 ∈𝔻
𝑓 ,

where 𝕀 and 𝔻 are the sets of allowable insertions and deletions, respectively. Since
the rate of replication in the exponential model is constant, we may readily observe that
𝐺(𝑡) → ∞ as 𝑡 → ∞ unless the rate of growth and loss are equal. We acknowledge this
is not biologically feasible, but rather shift our focus to the logistic model. In this case,
however, we have

𝑑𝐺
𝑑𝑡 = 𝐿𝑈𝐿(𝑡)𝑟𝑑 (1 − 𝑈𝐿(𝑡)

𝐾 ) + 𝐼𝐺(𝑡)𝔼[insertion size] − 𝐷𝐺(𝑡)𝔼[deletion size].

When 𝑈𝐿(𝑡) reaches the carrying capacity 𝐾, the host genome will only change based on
genomic insertion and deletion rates. Since insertions are less prevalent than deletions,
our general framework with the logistic model results in a bounded genome size in which
TE impact on the genome length will disappear.

2.5.2 Parameter Estimation
Before applying our model to true TE annotations, we first investigated our ability

to correctly recover parameters from simulations of TE evolution (see 2.8). We note
that since the length 𝐿 of a TE is a known property for each family of TE, we take this
quantity as given. First, we attempted to independently estimate the parameters related
to TE duplication and deletion (𝛼, 𝐷, 𝐼) as well as the time 𝑡 the TE entered the genome
(𝑡) using Equation (2.44), but found our least-squares formulation was ill-conditioned. In
the logistic model, we had the added parameter of the carrying capacity 𝐾 to consider
and observed similar limitations. Hence, in this initial study, we focus on applying the
exponential steady-state solution to TE data for three reasons: (1) since the logistic model
is not explicitly solvable, we use the derived exponential solution presented in Theorem
1, (2) the logistic model, when not at carrying capacity, is consistent with the exponential
steady-state, and (3) limited TE data does not support the hypothesis that TEs are close to
reaching the carrying capacity in host genomes.

As such, we modified our parameter fitting approach in two ways: (1) we assume that
the time since the first TE element was introduced is large enough that the logistic model
may be described by the exponential steady-state solution, (2) we nondimensionalize
(2.44) with

𝜃 = 𝛼
𝐷𝐹 + 𝛾𝐿,

which is the ratio of replicative rate to mutation rate. Furthermore, we make the following
simplifying assumption: 𝔻 = {1, 2, 3, 4, 5, 𝐿 − 15}, which reflects the dominance of short
deletion lengths in genomes but also allows for a TE to be almost deleted [47]. Thus,
∑𝑓 ∈𝔻 = 𝐹 = 𝐿 and 𝑢(𝑥, 𝑡) is of the form Equation (2.31). With these assumptions,
𝛾 = 6𝐷 + 𝐼 and we consider the case where 𝐼 ≈ 𝐷 (at most), as insertion-deletion
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(indel) rates are often calculated together [55]. Moreover, there is support (particularly
in Drosophila) that deletions outnumber insertion events [57, 20].

We note, as shown in Figure 2.8, our dimensionless parameter 𝜃 along with the TE
length 𝐿 controls the convergence of the time-varying solution to the steady-state solution.
Because these tend to be longer TEs, such as the LINEs in the human genome, we
therefore fit the data with our continuous model, Equation (2.44). We note this approach
is complementary to traditional models of TE evolution which focus primarily on actively
replicating TEs with many full-length copies in a genome.

Figure 2.8: Log-Log plot of L2 difference between steady-state solution and TE length distribution
Equation (2.31) in time with 𝜃 = 𝛼

𝐷𝐹+𝛾𝐿 = 0.8925 (left) and 𝜃 = 1.0938 (right) for different
TE lengths 𝐿. As described in the main text, we use the steady-state solution for all subsequent
parameter estimation. Thus, we focus on TE distributions at or close to steady-state. We note that
as 𝜃 increases, the number of generations until the difference between solutions approach zero
decreases. Moreover, we observe a similar pattern as 𝐿 decreases.

Before analyzing TE distributions from real genomes, we aggregate the counts
for each partial and full-length TE for each TE family. We then convert this data to a
complementary cumulative distribution (CCDF = 1 - CDF). For each species and each TE
family considered, we determine the parameter 𝜃 by minimizing the sum of the residuals
squared (RSS) between the data and the explicit solution using the Levenberg-Marquardt
algorithm. In order to make comparisons between TE families in closely related species,
we estimate 𝜃 for each species (for each TE) and compare the distribution of predicted
replication/mutation estimates.

2.5.3 Drosophila roo elements
There are TE annotations available for the 12 genomes from the Drosophila (fruit-fly)

clade. Previous studies have quantified the relationship of these twelve species, but
have looked at only the distribution of total transposable elements across species [11].
Instead, we focus our analysis on the roo and rooA elements because of the abundance
of partial-length copies of these elements in Drosophila genomes and since their
evolutionary history has been previously studied [10, 32].
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Of the Drosophila clade, melanogaster is reported to have at least 50 functioning
copies of the transposable element roo. The remaining 11 species each have fewer
than 5 active copies of the TE [10]. We use lengths of roo and rooA and calculate their
empirical complementary cumulative distribution for each of the 12 Drosophila species.
As described in the previous section, we process both the partial and full-length elements
for both the roo and rooA elements for all 12 species. (Counts of full and partial TE
copies are reported in Table 2.1.) We fit 𝜃 independently for each of the 24 cases (see
Figures 2.14 and 2.15 for all fitted distributions) In addition, in Figure 2.9 we plot 𝜃𝑟𝑜𝑜
for the average distributions of the 12 species.

roo roo rooA rooA
Organism full/90% partial >200bp full/90% partial >200bp

D. simulans - 28 - 171
D. sechellia 1/5 76 -/1 176
D. melanogaster 72 171/637 -/2 67
D. yakuba -/1 138 -/5 271
D. erecta 1/1 119 -/18 324
D. ananassae - 342 - 447
D. pseudoobscura - 183 - 44
D. persimilis - 486 - 303
D. willistoni - 646 - 74
D. mojavensis - 89 - 145
D. grimshawi - 51 - 27
D. virilis - 24 - 3

Table 2.1: For each genome in the twelve Drosophila species, we report the number of full and
partial TE copies for roo and rooA elements. Column 2 and 4 report full-length elements (roo -
9092bp, rooA- 7621bp) along with elements that match 90% of the TE. Column 1 and 3 report all
partial TE copies with lengths 200bp or longer, respectively.

Replication/Mutation Analysis. In order to interpret the relationship between
Drosophila TE 𝜃 rates, we independently estimate 𝜃, the replication/mutation parameter
for each species. After doing so, we summarize these estimates in the violin plot shown
in Figure 2.10. For the roo element, we observe an outlier from D. melanogaster affecting
the distribution of 𝜃 estimates. In this case, the D. melanogaster roo element indicates TE
replication is faster than mutation when compared to other members of the Drosophila
clade. This is consistent with previous studies regarding it still being an relatively active
transposon in this species [48, 32]. For rooA, we observe a longer tail as 𝜃 increases. This
corresponds to higher estimates for D. erecta and D. yakuba. Since these two species are
closely related, this phenomenon may suggest a change in replication and/or mutation
dynamics in their recent evolutionary history. Together, this provides further support for
recent transpositional activity of rooA and roo supported by Chaux et al. [10].
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Figure 2.9: We aggregated counts for all 12 Drosophila species and we report the complementary
cumulative distribution (1-CDF) as the data of interest (blue). We compare the empirical
distribution to the exponential steady-state analytical fit (orange) with a 𝑝 value of 2.815 × 10−14

from the Kolmogorov-Smirnov test, as described in 2.7.7. This Log plot reveals the low
probability of observing full-length elements across all species considered, consistent with the
transient assumption of our logistic model.

Figure 2.10: Violin plot comparing the distribution of 𝜃 (replication/mutation) estimates for the
roo and rooA transposable elements for 10 drosophila species (D. grimshawi and D. virilus are
excluded due to lack of data). We note that the outlier for roo corresponds to the high abundance
in D. melanogaster and the tail in the distribution for rooA corresponds to D. yakuba and D. erecta
𝜃 estimates.
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2.5.4 Avian retrotransposons
Retrotransposons, including long interspersed elements (LINEs) and long-terminal

repeat (LTR) retrotransposons, in birds provide a unique perspective into the role of TEs
in genomic evolution as bird genomes are less TE rich than other species. Recent studies
suggest this may be due to the instability of avian genomes in TE-rich regions; as such,
we explore retrotransposon transposition rates for the most common TEs present [18, 6].
We primarily focus on lineages of Chicken repeat 1 (CR1) retrotransposons, which are
the most abundant superfamily in nearly all amniotes and have been used for previous
phylogenic analyses [53]. Due to past transpositional activity and their highly conserved
structure, we compare CR1 subfamily rates with other TEs from different superfamilies
[53]. In particular, we explore the most common TE superfamily, chicken repeat 1 (CR1),
in 23 bird species. Since CR1 TEs came from one common ancestor sequence, we
compare parameter estimates with elements from the same superfamily [27, 28].
Replication/Mutation Analysis. Figure 2.11 illustrates the distribution of 𝜃 estimates
for 13 different TEs (12 CR1 and 1 PSLINE) present in all 23 bird species. In particular,
we note that estimates for CR1-D reveal higher replication to mutation rates than in other
elements. CR1-D is often used as the reference for CR1 [60]. We also notice potentially
two groups in CR1-C4, with birds such as the bald eagle, turkey vulture and Dalmatian
pelican having higher estimates than others such as the bar-tailed trogon, barn owl, and
Downy woodpecker. To further consider the evolutionary history of CR1-C4 in Aves,
gathering more samples for these groups of birds may be worth exploring in future studies.
With the exception of the PSLINE and subsequent TEs in Figure 2.11, the remaining 𝜃
estimates for the majority of the CR1 subfamilies result in similar values across all 23 bird
species.

Figure 2.11: Violin plot comparing the distribution of 𝜃 (replication/mutation) estimates for a
range of Chicken repeat (CR1) transposable elements as well as other LINEs (i.e., PSLINE). We
observe that half of these estimates are approximately the same but note more variation for CR1-D,
CR1-C4, CR1-E. Additionally, 𝜃 estimates for PSLINE and subsequent TEs are less than the
majority of CR1 elements considered.
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2.5.5 Primate LINE Elements
In contrast to birds, a large proportion of TEs comprise the majority of primate

genomes [17, 16]. Since TEs play a role in shaping primate evolution, as evidenced by
the primate-exclusive ALU element, we investigate the role of these mobile elements in a
sample of humans and primates [21]. Most studies focus on actively transposing elements
in these species. In humans, it is estimated that TEs that are currently transposing (L1
elements and ALUs) are doing so one per 100 generations [17]). These elements explain
the large number of repetitive k-mers in genomes and studies using a transposon model,
a master gene model, or a mixture provide insight into how TEs have shaped genomic
statistical properties [49, 23]. However, since our work assumes a transposon model, and
we focus our analysis on the transposition history of inactive primate TEs.

Specifically, we investigate nontransposing long interspersed nuclear elements, LINEs
(e.g. L2 and L3) in these species, since L2 elements have stopped transposing for some
time [50]. Although these elements are no longer replicating in the genomes of these
organisms, studies have revealed that they are a driver of human genome length expansion.
LINEs and other transposons also resulted in tandem repeats throughout genomes, and
we aim to quantify past replicative rates in these replicating elements since they have
evolutionarily impacted the evolution of primates [42, 1]. For non-reference samples, we
run RepeatMasker independently with the -q option.
Replication/Mutation Analysis. Since we only consider 5 species (i.e., Chimp, Gibbon,
Gorilla, Human, and Orangutan) of four LINEs, we plot the point estimates of 𝜃 in
Figure 2.12. We note that these estimates are of the same order as previous estimates
in birds and fruit flies. However, the scale of difference between all five primates’ rates
suggests similar transpositional dynamics and finer biological meaning is difficult to
extract from such similar groups. Nevertheless, we see a separation of 𝜃 estimates for
HAL1 elements in comparison to other LINEs. The HAL1, or “half-L1” elements
may have independently originated from L1 elements several times [4]. Recent L1
transpositional activity thus may explain the higher 𝜃 estimate for HAL1 elements in
comparison to older (non-replicating) LINEs.

2.6 Discussion and Conclusions
This paper presents a novel deterministic mathematical model and solutions for the

evolution of TE dynamics. We consider a total of four models, discrete and continuous,
with different assumptions about full-length TE replication dynamics. In the logistic case,
we derive implicit analytical solutions for both discrete and continuous formulations. For
exponential models, we derive explicit analytical forms of the time-varying TE density
as well as the steady-state behavior. We compare both exponential and logistic model
in the discrete case and observe agreement in number density and distribution until the
difference in instantaneous growth increases. Moreover, we discuss the implications
of each model on the host genome size. The logistic model guarantees a bounded
genome size and provides a generalized model for future exploration of limited TE
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Figure 2.12: Plot of 𝜃 estimates for four LINEs in Chimp, Gibbon, Gorilla, Human, and
Orangutan. We observe little fluctuation in estimates between species. However, we attribute
differences in estimates in HAL1 to its origin from L1 elements as opposed to older LINEs (L2,
L3, L4) in primates.

growth. Rather than focus on actively duplicating elements, our general framework
allows for replication/mutation rate estimation using the full spectrum of available TE
data. In particular, our solution 𝑢(𝑥, 𝑡) derived in 2.7.7 describes the change in number
of non-replicating partial elements. Moreover, our model provides a means to quantify
differences in replication to mutation rates of separate TEs in a variety of species. These
differences provide an orthogonal view of the these evolutionary rates in these species and
our non-species-specific model is extendable to different TEs for a variety of species.

Our fragmentation model has several limitations. We assume both constant replication
and genome deletion rates in the proposed transposon model when transpositional bursts
periods could be considered [19]. Moreover, our model assumes no spatial dependence,
which may be an inaccurate representation if TEs are densely distributed. We intend
to explore time-varying deletion rates as well as more accurate mutational processes in
future work. While our model is capable of capturing time-varying dynamics, we found
we lacked the power to independently estimate the time-varying parameters from data. In
future studies, we will focus on incorporating the logistic model with real TE data as well
as consider competing TEs in which each TE may have a different carrying capacity.

To compare to TE annotations, we require that the TE data must also support a
quasi-steady-state distribution. We utilize RepeatMasker data for our analysis, but we also
acknowledge that this procedure may generate wrongly-fragmented copies resulting in
imperfect TE annotations. Finally, we note the genomic data used, annotated reference
genomes, represent only one realization of TE dynamics for a species. As such, we are
fitting a model to a single stochastic realization. We also note that genomes from different
species are not independent realizations and future studies will incorporate a stochastic
treatment instead of our deterministic framework. Although, our model represents the
expected outcome of a stochastically varying process, because the logistic model is far
from a steady-state distribution we should be able to effectively estimate parameters
from a species reference genome. Nevertheless, organisms harbor a multitude of inactive
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elements consistent with our model.
We use our model to estimate the replication to mutation rate 𝜃 in Drosophila,

Aves, and Primates. In Drosophila, 𝜃 rates estimated for roo and rooA suggest a more
nuanced dependency between these elements in closely related D. yakuba and D. erecta.
Differences in rates across different groups of birds in the CR1 TE subfamily warrants
further investigation of replication and mutation rates for the abundant CR1 transposable
element [54]. Primate LINEs, although the most complex, do not vary substantially, but
the origins of each of the LINE subfamilies may account for minute differences in TE
parameter estimates. Heterogeneity of replication/mutation rates across multiple species
and families may suggest a complex evolutionary history of TE proliferation.

Our deterministic model allows for quick replication/mutation rate comparison to
explore the relationships of shared elements between species. Results indicate agreement
between steady-state distributions and the proposed fragmentation equation framework.
This works demonstrates that TE annotations, consisting of full-length and partial copies,
allow us to quantify TE activity and promote exploratory analyses of less studied TEs in
nonmodel organisms. We hope that further exploration into specific partial length repeat
mutations and divergence from actively replicating elements will reveal a more complete
evolutionary history of these abundant elements.

2.7 Appendix A: Mathematical Model for TE Dynamics
In Appendix A we provide mathematical derivations for lemmas and theorems in

Section 2.4 the main text. In particular, we derive the moment closure for both discrete
and continuous models of TE dynamics, prove existence and uniqueness of the continuous
model of TE dynamics, and explicitly derive the time-varying TE length distribution
for our continuous formulations. Lastly, we determine the form of the complementary
cumulative distribution function (CCDF), which we use in all comparisons to data
(Section 3.3.1).

2.7.1 Solving the Moment Closure System for Exponential Growth
Discrete and Continuous Systems

Discrete System
As described in the text, the moment closure for the discrete model is given by

Equations (2.5) and (2.6):

𝑑𝜂
𝑑𝑡 = (−𝐷𝐹 − 𝛾)𝜂(𝑡) + 𝛾𝜉(𝑡) + 2𝛾(𝐿 − 1)𝑈𝐿(𝑡),
𝑑𝜉
𝑑𝑡 = −𝐷𝐹𝜉(𝑡) + 𝛾𝐿(𝐿 − 1)𝑈𝐿(𝑡),

where 𝑈𝐿(𝑡) is the number of full length TEs in the discrete model and governed by
Equation (2.3). Thus,

𝑈𝐿(𝑡) = 𝑈𝐿(0)𝑒(𝛼−𝐷𝐹−𝛾(𝐿−1))𝑡.
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The first order system for the moments 𝜂 and 𝜉 can be explicitly solved through the use of
integrating factors:

𝜂(𝑡) = 𝐾1𝑈𝐿(𝑡) + 𝐶1𝑒−𝐷𝐹𝑡 + 𝐶2𝑒(−𝐷𝐹−𝛾)𝑡

𝜉(𝑡) = 𝛾(𝐿2 − 𝐿)
𝛼 − 𝛾(𝐿 − 1)𝑈𝐿(𝑡) + 𝐶1𝑒−𝐷𝐹𝑡.

The constants 𝐶1, 𝐶2 and 𝐾1 are determined by the initial conditions. In the case we are
most interested in, we have only full length TEs at time 𝑡 = 0, 𝑈𝐿(0) = 𝑈0 and 𝜂(0) =
𝜉(0) = 0, and as such,

𝜂(𝑡) = 𝐾1𝑈𝐿(𝑡) + 𝐶1𝑒−𝐷𝐹𝑡 + 𝐶2𝑒(−𝐷𝐹−𝛾)𝑡 (2.20)
𝜉(𝑡) = 𝐶1 (𝑈0𝑒−𝐷𝐹𝑡 − 𝑈𝐿(𝑡)) , (2.21)

where 𝐾1 = 𝛾(2𝛼−(𝐿−2)𝛾)(𝐿−1)
(𝛼−𝛾(𝐿−2))(𝛼−𝛾(𝐿−1)) , 𝐶1 = − 𝛾(𝐿2−𝐿)

𝛼−𝛾(𝐿−1) , and 𝐶2 = (−𝐾1𝑈0 − 𝐶1).
Continuous System

For the continuous system, Equations (2.12) and (2.13), we obtain the following
system of two differential equations for the zeroth and first moments

𝑢′
0(𝑡) = −𝐷𝐹𝑢0(𝑡) + 𝛾𝑢1(𝑡) + 2𝛾𝐿𝑢𝐿(𝑡)

𝑢′
1(𝑡) = −𝐷𝐹𝑢1(𝑡) + 𝛾𝐿2𝑢𝐿(𝑡).

By Lemma 3, and because in our formulation 𝑢𝐿(𝑡) is not dependent on 𝑢0 or 𝑢1,
Equations (2.12) and (2.13) describe how the zeroth and first moment change in time. We
obtain the equation for 𝑢0(𝑡) by integrating Equation (2.9) from 0 to 𝐿; the equation for
𝑢1(𝑡) is obtained by multiplying Equation (2.9) by 𝑥 and integrating. Because 𝑢𝐿(𝑡) =
𝑢𝐿(0)𝑒(𝛼−𝐷𝐹−𝛾𝐿)𝑡, using 𝑒𝐷𝐹𝑡 as an integrating factor allows us to solve (2.12) and (2.13):

𝑢0(𝑡) = 𝛾𝐿(2𝛼 − 𝛾𝐿)
(𝛼 − 𝛾𝐿)2 𝑢𝐿(𝑡) + 𝛾𝐶1𝑡𝑒−𝐷𝐹𝑡 + 𝐶2𝑒−𝐷𝐹𝑡 (2.22)

𝑢1(𝑡) = 𝛾𝐿2

𝛼 − 𝛾𝐿𝑢𝐿(𝑡) + 𝐶1𝑒−𝐷𝐹𝑡. (2.23)

As in the discrete case, applying the initial condition of 𝑢(𝑥, 0) = 0, (i.e., 𝑢0(0) = 𝑢1(0) =
0) allows us to determine the constants 𝐶1 and 𝐶2. In particular, we have 𝐶1 = −𝛾𝐿2𝑢𝐿(0)

𝛼−𝛾𝐿

and 𝐶2 = −𝛾𝐿(2𝛼−𝛾𝐿)𝑢𝐿(0)
(𝛼−𝛾𝐿)2 .

2.7.2 Solution to the Exponential Growth Discrete System
Here we prove the existence and uniqueness of the time-varying solution to the

discrete exponential model for TE length distribution. Using the zeroth moment 𝜂(𝑡) in
Equation (2.20), we rewrite Equation (2.2) as

𝑑𝑈𝑖
𝑑𝑡 = (−𝐷𝐹 − 𝛾(𝑖 + 1)) 𝑈𝑖(𝑡) − 2𝛾

𝑖−1
∑
𝑘=1

𝑈𝑘(𝑡) + 2𝛾𝜂(𝑡) + 2𝛾𝑈𝐿(𝑡)
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Thus, we rewrite our discrete system as

⃗𝑈′ = 𝐴�⃗� + ⃗𝑔(𝑡),

for 𝑖 = 1, 2, … , 𝐿 − 1 and where 𝐴 and ⃗𝑔(𝑡) are defined as

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐷𝐹 − 2𝛾
−2𝛾 −𝐷𝐹 − 3𝛾

⋮ −2𝛾 ⋱ 0
⋮ ⋮ ⋱ ⋱
⋮ ⋮ ⋱ ⋱ −𝐷𝐹 − (𝐿 − 1)𝛾

−2𝛾 ⋮ … … −2𝐷 −𝐷𝐹 − 𝛾𝐿

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⃗𝑔(𝑡) = [2𝛾𝜂(𝑡) + 2𝛾𝑈𝐿(𝑡)]1,

(2.24)

where 1 ∈ ℝ(𝐿−1) is a vector of ones. By Duhamel’s principle, the solution �⃗�(𝑡) can be
expressed as

�⃗�(𝑡) = 𝑒𝐴𝑡�⃗�(0) + ∫
𝑡

0
𝑒𝐴(𝑡−𝜏) ⃗𝑔(𝜏) 𝑑𝜏,

and is a unique solution to the inhomogeneous constant-coefficient linear system [39].
Since 𝐴 is a lower triangular matrix, then the diagonal elements are the eigenvalues of
𝐴, namely

𝜆𝑖 = −𝐷𝐹 − (𝑖 + 1)𝛾 for 𝑖 = 1, 2, … , 𝐿 − 1.

Furthermore, 𝐴 is diagonalizable since we have distinct 𝜆𝑖 ≠ 0 and 𝐿 − 1 linearly
independent eigenvectors and further, we apply our initial condition 𝑈(0) = 0. Then,
𝐴 = 𝑆Λ𝑆−1 and our solution �⃗� simplifies to

�⃗� = ∫
𝑡

0
𝑆𝑒Λ𝑡𝑆−1 ⃗𝑔(𝜏) 𝑑𝜏 (2.25)

We explicitly solve for the matrix of eigenvectors 𝑆 ∈ ℝ(𝐿−1)×(𝐿−1) and its inverse 𝑆−1 as

𝑆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

−2 1 0
1 −2 ⋱

1 ⋱ ⋱

0 ⋱ ⋱ 1
1 −2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑆−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2 1 0
3 2 ⋱
⋮ 3 ⋱ ⋱
⋮ ⋮ ⋱ ⋱ 1

𝐿 − 1 𝐿 − 2 … 3 2 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.26)

Let ⃗𝑥exp.(𝑡) = ∫𝑡
0 𝑔(𝜏)𝑒Λ(𝑡−𝜏)𝑆−11 𝑑𝜏. Then, let 𝑥𝑖(𝑡) represent the 𝑖th entry in ⃗𝑥exp.(𝑡).

Thus,

𝑥𝑖(𝑡) =
𝑖

∑
𝑘=1

𝑘 ∫
𝑡

0
𝑔(𝜏)𝑒𝜆𝑖(𝑡−𝜏) 𝑑𝜏 = 𝑖(𝑖 + 1)

2 ∫
𝑡

0
2𝛾[𝜂(𝜏) + 𝑈𝐿(𝜏)]𝑒𝜆𝑖(𝑡−𝜏) 𝑑𝜏.
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Applying the solution to the zeroth moment, Equation (2.20), we have

𝑥𝑖(𝑡) = 𝛾(𝑖2 + 𝑖) [𝐾2(𝑈𝐿(𝑡) − 𝑒𝜆𝑖𝑡) + 𝐶1
(1 + 𝑖)𝛾 (𝑒−𝐷𝐹𝑡 − 𝑒𝜆𝑖𝑡) + 𝐶2

𝑖𝛾 (𝑒(−𝐷𝐹−𝛾)𝑡 − 𝑒𝜆𝑖𝑡)] ,

where 𝐾2 = 𝐾1+1
𝛼−𝛾(𝐿−2−𝑖) , and 𝐶1, 𝐶2 are defined in 2.7.1. Thus, we arrive at the unique

solution to Equation (2.2)
�⃗�(𝑡) = 𝑆 ⃗𝑥exp.(𝑡).

2.7.3 Solution to the Exponential Growth Continuous System
Here we prove the existence and uniqueness of the time-varying solution to

continuous model for TE length distribution. More specifically, we prove the following
lemma and then the establish existence and uniqueness in the subsequent theorem.

Lemma 4. For the continuous TE length distribution model, Equations (2.9) and (2.10),
the non-unique solution to the Laplace transformed Equation (2.9) is given by

𝑉(𝑥, 𝑠) = 𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 , (2.27)

where 𝛾 = 𝑐𝐷 + 𝐼, 𝐹 = ∑𝑓 ∈𝔻, and 𝐽(𝑠) is an undetermined function of 𝑠.

Proof. We begin by taking the Laplace transform of Equation (2.9) to obtain

2𝐷 ∫
𝐿

𝑥
𝑉(𝑦, 𝑠) 𝑑𝑦 − 𝐷(𝐿 + 𝑥)𝑉(𝑥, 𝑠) + 2𝛾𝑢𝐿(0)

𝑠 − 𝛼 + 𝐷𝐹 + 𝛾𝐿 = 𝑠𝑉(𝑥, 𝑠) − 𝑢(𝑥, 0),

where 2𝛾𝑢𝐿(0))
𝑠−𝛼+𝐷𝐹+𝛾𝐿 is the Laplace tranform of the solution to Equation (2.10). We then

apply 𝜕𝑥[⋅] to the transformed equation, with 𝑢(𝑥, 0) = 0, and we have

− 3𝛾𝑉 = (𝑠 + 𝐷𝐹 + 𝛾𝑥) 𝜕𝑉
𝜕𝑥 . (2.28)

The solution to Equation (2.28) follows a power-law, namely,

𝑉gen(𝑥, 𝑠) = 𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 , (2.29)

and is only unique up to the function 𝐽(𝑠). With Lemma 4 proven, we are now able to
prove Theorem 1 from the text. (We also re-state the theorem below.)

Theorem 1. If 𝑢(𝑥, 0) = 0 and 𝛼 > 𝛾𝐿, there exists a solution 𝑢(𝑥, 𝑡) to the continuous TE
length distribution model, Equations (2.9) and (2.10), given by

𝑢(𝑥, 𝑡) = ℒ−1{𝑉(𝑥, 𝑠)},
𝑢𝐿(𝑡) = exp[(𝛼 − 𝐷𝐹 − 𝛾𝐿)𝑡],

(2.30)
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where ℒ−1 is the inverse Laplace transform and 𝑉(𝑥, 𝑠) = 𝐽(𝑠)(𝐷𝐹 + 𝑠 + 𝛾𝑥)−3 and 𝐽(𝑠)
is defined in Equation (2.32). Moreover, when 𝐹 = 𝐿, the solutions 𝑢(𝑥, 𝑡) and 𝑢𝐿(𝑡) are
given by:

𝑢(𝑥, 𝑡) = −𝛾 (𝑒𝜈 (2𝛼2 + 𝜔4𝑡2 + 4𝛼2𝜔𝑡 − 2𝜔3𝑡(𝛼𝑡 − 1) + 𝛼𝜔2𝑡(𝛼𝑡 − 6)))
(𝛼 − 𝜔)3

+ −2𝛾𝛼2𝑒𝑡(𝛼−𝐿(𝛾+𝐷)

(𝛼 − 𝜔)3

𝑢𝐿(𝑡) = exp[(𝛼 − 𝐷𝐿 − 𝛾𝐿)𝑡],

(2.31)

where 𝛾 = 𝑐𝐷 + 𝐼, 𝜔 = 𝛾(𝐿 − 𝑥) and 𝜈 = −𝑡(𝐷𝐿 + 𝛾𝑥). Moreover, this solution is unique.

Proof. By the previous lemma, the zeroth moment of the solution to Equation (2.28) is
given by

𝐿
∫
0

𝑉(𝑥, 𝑠) =
𝐿
∫
0

𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 = 𝐽(𝑠) ( 1

2𝛾(𝐷𝐹 + 𝑠)2 − 1
2𝛾(𝐷𝐹 + 𝑠 + 𝛾𝐿)2 ) . (2.32)

Next, we apply the Laplace transform to the zeroth moment solution of Equation (2.12).
Equating both sides, we determine 𝐽(𝑠) and thus, the unique solution to Equation (2.28)

𝑉(𝑥, 𝑠) = 𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 , (2.33)

where
𝐽(𝑠) = 𝐽1 (−2𝛼 + 𝛾𝐿

𝐷𝐿 + 𝑠 + 𝛾𝐿(𝛾𝐿 − 𝛼)
(𝐷𝐿 + 𝑠)2 + 2𝛼 − 𝛾𝐿

𝐷𝐹 + 𝑠 − 𝛼 + 𝛾𝐿) ,

where
𝐽1 = 2𝛾𝑢𝐿(0)(𝐷𝐹 + 𝑠)2(𝐷𝐹 + 𝑠 + 𝛾𝐿)2

(𝛼 − 𝛾𝐿)2(2𝐷𝐹 + 2𝑠 + 𝛾𝐿) .

We determine Equation (2.30) by taking the inverse Laplace transform. In particular, if
∑𝑓 ∈𝔻 𝑓 = 𝐹 = 𝐿, the inverse Laplace transform is given by Equation (2.31).

We prove uniqueness under a similar framework as in [38] by assuming we have
two solutions to Equation (2.9): 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) where 𝑢(𝑥, 0) = 𝑣(𝑥, 0). We define
𝑔(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡) and will show that 𝑔(𝑥, 𝑡) = 0. First note that 𝑔(𝑥, 𝑡) must satisfy
the following partial differential equation

𝜕𝑔
𝜕𝑡 = (−𝐷𝐹 − 𝛾𝑥)𝑔(𝑥, 𝑡) + 2𝛾

𝐿
∫
𝑥

𝑔(𝑦, 𝑡) 𝑑𝑦. (2.34)

We begin by forming a series of Volterra sequences satisfying the equation above. We will
show that these sequences will ultimately be the solution to Equation (2.34). Let 𝑔0(𝑥, 𝑡)
be any arbitrary continuous function on (0, 𝐿] × [0, 𝑇] and let 𝑀 = max

(0,𝐿]×[0,𝑇]
|𝑔0(𝑥, 𝑡)|. We

then define 𝑔𝑛(𝑥, 𝑡) for 𝑛 ≥ 1 as follows

𝜕𝑔𝑛
𝜕𝑡 = (−𝐷𝐹 − 𝛾𝑥)𝑔𝑛 + 2𝛾 ∫

𝐿

𝑥
𝑔𝑛−1(𝑦, 𝑡) 𝑑𝑦, (2.35)
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where 𝑔𝑛(𝑥, 0) = 0. We can solve for 𝑔1(𝑥, 𝑡) using an integrating factor and note that

𝑔1(𝑥, 𝑡) = 𝑒(−𝐷𝐹−𝛾𝑥)𝑡 [𝐶1(𝑥) + 2𝛾 ∫
𝑡

0
𝑒(−𝐷𝐹−𝛾𝑥)𝜏 ∫

𝐿

𝑥
𝑔0(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏]

= 𝑒(−𝐷𝐹−𝛾𝑥)𝑡 [𝐶1(𝑥) + 2𝛾 ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝑥)𝜏𝑔0(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏] .

Applying our initial condition, 𝑔(𝑥, 0) = 0, and because we know that 𝐶1(𝑥) = 0, we have

𝑔1(𝑥, 𝑡) = 2𝛾𝑒(−𝐷𝐹−𝛾𝑥)𝑡 ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝑥)𝜏𝑔0(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏.

In our bounded domain, 𝑒(−𝐷𝐹−𝛾𝑥)𝜏 ≤ 𝑒(−𝐷𝐹−𝛾𝐿)𝑇 for all 𝑥 ∈ (0, 𝐿] and 𝑡 ∈ [0, 𝑇]. Then

|𝑔1(𝑥, 𝑡)| ≤ 2𝛾 ∣𝑒(−𝐷𝐹−𝛾𝑥)𝑡| ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝐿)𝑇∣ 𝑔0(𝑦, 𝜏)| 𝑑𝑦 𝑑𝜏

≤ 2𝛾 ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝐿)𝑇|𝑔0(𝑦, 𝜏)| 𝑑𝑦 𝑑𝜏

≤ 𝑀(2𝛾𝑒(−𝐷𝐹−𝛾𝐿)𝑇)(𝐿 − 𝑥)𝑡.

(2.36)

We proceed to solve for 𝑔2(𝑥, 𝑡) similarly,
𝜕
𝜕𝑡 (𝑔2(𝑥, 𝑡)𝑒(−𝐷𝐹−𝛾𝑥)𝑡) = 2𝛾𝑒(−𝐷𝐹−𝛾𝑥)𝑡 ∫

𝐿

𝑥
𝑔1(𝑦, 𝜏) 𝑑𝑦

𝑔2(𝑥, 𝑡) = 𝑒(−𝐷𝐹−𝛾𝑥)𝑡 [𝐶2(𝑥) + 2𝛾 ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝑥)𝜏𝑔1(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏] .

Applying the initial condition 𝑔2(𝑥, 0) = 0, we have

𝑔2(𝑥, 𝑡) = 2𝛾𝑒(−𝐷𝐹−𝛾𝑥)𝑡 ∫
𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝑥)𝜏𝑔1(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏.

Then,
|𝑔2(𝑥, 𝑡)| ≤ 2𝛾 ∫

𝑡

0
∫

𝐿

𝑥
𝑒(−𝐷𝐹−𝛾𝐿)𝑇|𝑔1(𝑦, 𝜏)| 𝑑𝑦 𝑑𝜏

≤ 2𝛾𝑒(−𝐷𝐹−𝛾𝐿)𝑇 ∫
𝑡

0
∫

𝐿

𝑥
2𝛾𝑒(−𝐷𝐹−𝛾𝐿)𝑇𝑀(𝐿 − 𝑦)𝜏 𝑑𝑦 𝑑𝜏

= 𝑀 (2𝛾𝑒(−𝐷𝐹−𝛾𝐿)𝑇)2 (((𝐿 − 𝑥)𝑡)2

(2!)2 ) .

By induction, we note that

|𝑔𝑛(𝑥, 𝑡)| ≤ 𝑀 (2𝛾𝑒(−𝐷𝐹−𝛾𝐿)𝑇)𝑛 (((𝐿 − 𝑥)𝑡)𝑛

(𝑛!)2 )

≤ 𝑀(2𝛾𝐿𝑇𝑒(−𝐷𝐹−𝛾𝐿)𝑇)𝑛

(𝑛!)2 .

Thus, 𝑔𝑛(𝑥, 𝑡) will converge to 0 as 𝑛 → ∞ as long as 𝑀 and 2𝛾𝐿𝑇𝑒(−𝐷𝐹−𝛾𝐿)𝑇 are finite.
We now wish to show 𝑔(𝑥, 𝑡) = 0 is the unique solution to 𝜕𝑔

𝜕𝑡 = (−𝐷𝐹 − 𝛾𝑥)𝑔 +
2𝛾 ∫𝐿

𝑥 𝑔(𝑦, 𝑡) 𝑑𝑦, where 𝑔(𝑥, 0) = 0. It is straightforward to verify 𝑔(𝑥, 𝑡) = 0 is a solution
to the IVP. Let 𝜓(𝑥, 𝑡) also be a solution to the IVP and let 𝑔0(𝑥, 𝑡) = 𝜓(𝑥, 𝑡). Then,

𝜕𝑔1
𝜕𝑡 = (−𝐷𝐹 − 𝛾𝑥)𝑔1 + 2𝛾 ∫

𝐿

𝑥
𝜓(𝑦, 𝑡) 𝑑𝑦

𝜕𝑔1
𝜕𝑡 + (𝐷𝐹 + 𝛾𝑥)𝑔1 = 𝜕𝜓

𝜕𝑡 + (𝐷𝐹 + 𝛾𝑥)𝜓.
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Since 𝑔1(𝑥, 0) = 𝜓(𝑥, 0) = 0, we can readily show that the only solution to the initial value
problem 𝜕𝑔

𝜕𝑡 + (𝐷𝐹 + 𝛾𝑥)𝑔 = 0, where 𝑔(𝑥, 0) = 0 is 𝑔(𝑥, 𝑡) = 0. Thus, 𝑔1(𝑥, 𝑡) = 𝜓(𝑥, 𝑡).
Furthermore, we have 𝑔𝑛 = 𝜓 for all 𝑛. Since lim𝑛→∞ 𝑔𝑛(𝑥, 𝑡) = 0 for all 𝑥 ∈ (0, 𝐿] and
𝑡 ∈ [0, 𝑇], we conclude 𝜓 = 0. Thus, since 𝑔 = 0 is the only solution to the homogeneous
balance equation, the zeroth and first moments agree are zero for all time. Furthermore,
we conclude

𝑔(𝑥, 𝑡) = 0 ⇒ 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡),

proving uniqueness for (2.9).

2.7.4 Solving the Moment Closure System for Logistic Growth
Discrete and Continuous Systems

We next consider the moment closure for both discrete and continuous models under
the assumption of logistic growth in the number of full length TEs.
Discrete System

As described in the text, the moment closure for the discrete model is still given by
Equations (2.5) and (2.6), where 𝑈𝐿(𝑡) is the number of full length TEs in the discrete
model and governed by Equation (2.4), with solution

𝑈𝐿(𝑡) = 𝐾𝑈𝐿(0)𝑒𝑟𝑑𝑡

𝐾 + 𝑈𝐿(0)[𝑒𝑟𝑑𝑡 − 1],

where 𝑟𝑑 = 𝛼 − 𝐷𝐹 − 𝛾(𝐿 − 1). We note that 𝜉 may be explicitly solved through the use of
integrating factors:

𝜉(𝑡) = 𝐴1𝑈𝐿(𝑡) 2𝐹1 (1, 1 + 𝐷𝐹
𝑟𝑑

, 2 + 𝐷𝐹
𝑟𝑑

, −(𝐾 − 1)−1 exp[𝑟𝑑𝑡]) + 𝐶1𝑒−𝐷𝐹𝑡, (2.37)

where 𝐴1 = 𝛾𝐾𝐿(𝐿−1)
(𝛼−𝛾[𝐿−1])(𝐾−1) and 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is the hypergeometric function defined as

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞

∑
𝑘=0

(𝑎)𝑘(𝑏)𝑘𝑧𝑘

(𝑐)𝑘𝑘! ; |𝑧| < 1.

The constant 𝐶1 is determined by the initial conditions. In the case we are most interested
in, we have only full length TEs at time 𝑡 = 0, 𝑈𝐿(0) = 𝑈0 and 𝜂(0) = 0, and as such,

𝐶1 = −𝐴1𝑈𝐿(0)2𝐹1 (1, 1 + 𝐷𝐹
𝑟𝑑

, 2 + 𝐷𝐹
𝑟𝑑

, −(𝐾 − 1)−1) .

For the zeroth moment, 𝜂(𝑡), the solution may be represented as the following integral:

𝜂(𝑡) = 𝑒(−𝐷𝐹−𝛾)𝑡 (𝛾 ∫ 𝜉(𝑡) 𝑑𝑡 + 2𝛾(𝐿 − 1) ∫ 𝑈𝐿(𝑡) 𝑑𝑡) , (2.38)

where 𝜉(𝑡) and 𝑈𝐿(𝑡) are defined above.

Continuous System
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For the continuous system, the moment-closed system [𝑢0(𝑡), 𝑢1(𝑡)], is described by
Equations (2.12) and (2.13). We now consider the case where

𝑢𝐿(𝑡) = 𝐾𝑢𝐿(0)𝑒𝑟𝑐𝑡
𝐾 + 𝑢𝐿(0)[𝑒𝑟𝑐𝑡 − 1],

where 𝑟𝑐 = 𝛼−𝐷𝐹 −𝛾𝐿. Similar to the discrete case, we use 𝑒−𝐷𝐹𝑡 as an integrating factor
to obtain

𝑢1(𝑡) = 𝐴1𝑢𝐿(𝑡) 2𝐹1 (1, 1 + 𝐷𝐹
𝑟𝑐

, 2 + 𝐷𝐹
𝑟𝑐

, −(𝐾 − 1)−1 exp[𝑟𝑑𝑡]) + 𝐶1𝑒−𝐷𝐹𝑡, (2.39)

where 𝐴1 = 𝛾𝐾𝐿2

(𝛼−𝛾𝐿)(𝐾−1) and 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) remains the same as before. The constant 𝐶1
is determined by the initial conditions. In the case we are most interested in, we have only
full length TEs at time 𝑡 = 0, 𝑈𝐿(0) = 𝑈0 and 𝜂(0) = 0, and as such,

𝐶1 = −𝐴1𝑈𝐿(0)2𝐹1 (1, 1 + 𝐷𝐹
𝑟𝑐

, 2 + 𝐷𝐹
𝑟𝑐

, −(𝐾 − 1)−1) .

For the zeroth moment, 𝑢0(𝑡), we arrive at the following integral representation

𝑢0(𝑡) = 𝑒−𝐷𝐹𝑡 (𝛾 ∫ 𝑢1(𝑡) 𝑑𝑡 + 2𝛾𝐿 ∫ 𝑢𝐿(𝑡) 𝑑𝑡) . (2.40)

2.7.5 Solution to the Logistic Growth Discrete System
We now determine the time-varying length distributions for the discrete model under

the assumption of logistic growth in the number of full length TEs. In what follows, we
use the explicit solution for these full-length dynamics, and the moment closures we
obtained in the previous section to derive the partial length dynamics.

Here we prove the existence and uniqueness of the time-varying solution to the
discrete logistic model for TE length distribution. Using the implicit solution to the zeroth
moment 𝜂(𝑡) in Equation (2.38), we rewrite Equation (2.2) as

𝑑𝑈𝑖
𝑑𝑡 = (−𝐷𝐹 − 𝛾(𝑖 + 1)) 𝑈𝑖(𝑡) − 2𝛾

𝑖−1
∑
𝑘=1

𝑈𝑘(𝑡) + 2𝛾𝜂(𝑡) + 2𝛾𝑈𝐿(𝑡).

Thus, we rewrite our discrete system as

𝐴�⃗� + ⃗𝑔(𝑡) = ⃗𝑈′,

for 𝑖 = 1, 2, … , 𝐿 − 1 and where 𝐴 and ⃗𝑔(𝑡) are defined as in Equation (2.24). Since ⃗𝑔(𝑡) is
not identically zero, then by Duhamel’s principle, the solution �⃗�(𝑡) can be expressed as

�⃗�(𝑡) = 𝑒𝐴𝑡�⃗�(0) + ∫
𝑡

0
𝑒𝐴(𝑡−𝜏) ⃗𝑔(𝜏) 𝑑𝜏,

and is a unique solution to the inhomogeneous constant-coefficient linear system [39].
Since 𝐴 is a lower triangular matrix, then the diagonal elements are the eigenvalues of
𝐴, namely

𝜆𝑖 = −𝐷𝐹 − (𝑖 + 1)𝛾 for 𝑖 = 1, 2, … , 𝐿 − 1.
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Furthermore, 𝐴 is diagonalizable since we have distinct 𝜆𝑖 ≠ 0 and 𝐿 − 1 linearly
independent eigenvectors and further, we apply our initial condition 𝑈(0) = 0. Then,
𝐴 = 𝑆Λ𝑆−1 and our solution �⃗� simplifies to

�⃗� = ∫
𝑡

0
𝑆𝑒Λ𝑡𝑆−1 ⃗𝑔(𝜏) 𝑑𝜏

Let 𝑆, 𝑆−1 be defined as in Equation (2.26), and ⃗𝑥log.(𝑡) = ∫𝑡
0 𝑔(𝜏)𝑒Λ(𝑡−𝜏)𝑆−11 𝑑𝜏. Then,

let 𝑥𝑖(𝑡) represent the 𝑖th entry in ⃗𝑥log.(𝑡). Thus,

𝑥𝑖(𝑡) =
𝑖

∑
𝑘=1

𝑘 ∫
𝑡

0
𝑔(𝜏)𝑒𝜆𝑖(𝑡−𝜏) 𝑑𝜏 = 𝑖(𝑖 + 1)

2 ∫
𝑡

0
2𝛾[𝜂(𝜏) + 𝑈𝐿(𝜏)]𝑒𝜆𝑖(𝑡−𝜏) 𝑑𝜏.

Applying the solution to the zeroth moment, Equation (2.38), we have

𝑥𝑖(𝑡) = 𝑖(𝑖+1)
2 ∫

𝑡

0
2𝛾 [𝑒(−𝐷𝐹−𝛾)𝑡 (𝛾 ∫ 𝜉(𝑠)𝑑𝑠 + 2𝛾(𝐿 − 1) ∫ 𝑈𝐿(𝑠)𝑑𝑠) + 𝑈𝐿(𝜏)] 𝑒𝜆𝑖(𝑡−𝜏)𝑑𝜏.

Thus, we arrive at the implicit solution to Equation (2.2)

�⃗�(𝑡) = 𝑆 ⃗𝑥log.(𝑡).

2.7.6 Solution to the Logistic Growth Continuous System
We now determine the time-varying length distributions for the continuous model

under the assumption of logistic growth in the number of full length TEs. In what follows,
we use the explicit solution for these full-length dynamics, and the moment closures
we obtained in 2.7.4 to derive the partial length dynamics. We describe the form of the
solution under the logistic growth model in the following theorem.

Theorem 2. If 𝑢(𝑥, 0) = 0, there exists a solution 𝑢(𝑥, 𝑡) to the continuous TE length
distribution model, Equations (2.9) and (2.11), given by

𝑢(𝑥, 𝑡) = ℒ−1{𝑉(𝑥, 𝑠)},
𝑢𝐿(𝑡) = 𝐾 (1 + exp[−(𝛼 − 𝐷𝐹 − 𝛾𝐿)𝑡](𝐾 − 1)) ,

(2.41)

where ℒ−1 is the inverse Laplace transform, 𝑉(𝑥, 𝑠) = 𝐽(𝑠)(𝐷𝐹 + 𝑠 + 𝛾𝑥)−3 and 𝐽(𝑠) is
defined in Equation (2.43). Moreover, this solution is unique.

Proof. From Lemma 4, the zeroth moment of the solution to Equation (2.28) is given by
𝐿
∫
0

𝑉(𝑥, 𝑠) =
𝐿
∫
0

𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 = 𝐽(𝑠) ( 1

2𝛾(𝐷𝐹 + 𝑠)2 − 1
2𝛾(𝐷𝐹 + 𝑠 + 𝛾𝐿)2 ) .

Next, we apply the Laplace transform to the zeroth moment solution of Equation (2.12)
under the logistic model. Equating both sides, we determine 𝐽(𝑠) and thus, the unique
solution to Equation (2.28)

𝑉(𝑥, 𝑠) = 𝐽(𝑠)
(𝐷𝐹 + 𝑠 + 𝛾𝑥)3 , (2.42)
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where
𝐽(𝑠) = ℒ {𝑢1(𝑡)} ( 𝐿(2𝐷𝐹 + 2𝑠 + 𝛾𝐿)

2(𝐷𝐹 + 𝑠)2(𝐷𝐹 + 𝑠 + 𝛾𝐿)2 ) , (2.43)

where ℒ is the Laplace transform. We may determine Equation (2.41) by taking the
inverse Laplace transform. We prove uniqueness under a similar framework as in [38] and
as the previous theorem by assuming we have two solutions to Equation (2.9): 𝑢(𝑥, 𝑡) and
𝑣(𝑥, 𝑡) where 𝑢(𝑥, 0) = 𝑣(𝑥, 0). We define 𝑔(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)−𝑣(𝑥, 𝑡). By the same arguments
as in Theorem 1, we know that 𝑔(𝑥, 𝑡) = 0, thus establishing uniqueness.

2.7.7 Complementary Cumulative Distribution Function
In the main text, when comparing models with one another or with data we use the

complementary cumulative distribution function (CCDF). Give a distribution 𝑢(𝑥, 𝑡) and
solution derived, we define the 𝐶(𝑥, 𝑡), the CCDF, as follows:

𝐶(𝑥, 𝑡) =
⎧{{
⎨{{⎩

1 −
∫𝑥

𝑥min
𝑢(𝑦,𝑡) 𝑑𝑦

∫𝐿
𝑥min

𝑢(𝑥,𝑡) 𝑑𝑥+𝑢𝐿(𝑡)
if 𝑥 < 𝐿

0 if 𝑥 = 𝐿
.

In the case for no insertions (𝐼 = 0), and 𝔻 = {𝐷} in Equations (2.9) and (2.10) , for
𝑥 < 𝐿, 𝐶(𝑥, 𝑡) is given by

𝐶(𝑥, 𝑡) = 𝑄(𝑥, 𝑡)
𝑅(𝑥, 𝑡) ,

where

𝑄(𝑥, 𝑡) = (𝛼 + 𝐷(𝑥min − 𝐿))2𝑒𝐷𝑡(𝑥min−𝑥)

⋅ (𝛼2𝑒𝑡(𝛼+𝐷(𝑥−𝐿)) + 𝐷(𝐿 − 𝑥)(𝐷(𝐿 − 𝑥)(𝐷𝑡(𝐿 − 𝑥) − 𝛼𝑡 + 1) − 2𝛼))
𝑅(𝑥, 𝑡) = (𝛼 + 𝐷(𝑥 − 𝐿))2

⋅ (𝛼2𝑒𝑡(𝛼+𝐷(𝑥min−𝐿)) + 𝐷(𝐿 − 𝑥min)(𝐷(𝐿 − 𝑥min)(𝐷𝑡(𝐿 − 𝑥min) − 𝛼𝑡 + 1) − 2𝛼)) .

If 𝑥min = 0, then the ccdf is given by

𝐶(𝑥, 𝑡) = 1 −
∫𝑥

0 𝑢(𝑦, 𝑡) 𝑑𝑦

∫𝐿
0 𝑢(𝑥, 𝑡) 𝑑𝑥 + 𝑢𝐿(𝑡)

= 1 −
∫𝑥

0 𝑢(𝑦, 𝑡) 𝑑𝑦
𝑢0(𝑡) + 𝑢𝐿(𝑡) if 𝑥 < 𝐿. (2.44)

2.8 Appendix B: Simulations
In this section, we describe the stochastic simulations in the exponential model used

for comparison to the solution of the fragmentation equations (2.2) and (2.3) presented
in Section 2.4.2. Moreover, we detail three specific parameter choices for simulation
runs and present model fits to these empirical distributions. Lastly, we show that the L2
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difference between the analytical steady-state solution (2.44) and the simulations go to
zero as 𝑡 → ∞.

To generate stochastic simulations of TE evolution, we implemented the Gillespie
stochastic simulation algorithm [15] and considered each possible discrete TE length as
a distinct biological species. In our implementation, we focus on the copy number of TEs
in a given genome. That is, for a TE with length 𝐿 we have 𝐿 distinct species: 1 represents
full-length TEs and the remaining (𝐿 − 1) for partial length TEs with length 1 to (𝐿 − 1).
Moreover, we consider a simplified version of the general exponential model, with 𝐼 = 0
and 𝔻 = 𝐿. As such, the number of copies of a partial length element 𝑖 may increase when
a deletion affects a TE with length > 𝑖 or decrease when any length 𝑖 element is impacted
by a deletion, which may happen in 𝑖 different ways. In contrast, full-length elements only
increase by replication rate 𝛼 and, like length 𝑖 elements, are impacted by deletions based
on their length. In total, we have 𝐿(𝐿−1)

2 + 1 first-order reaction equations. We note that
these first order reaction rates conform exactly to the rates associated with our discrete
deterministic model formulation (Section 2.4). Finally, we note that neither our stochastic
simulation, nor deterministic model, considers the spatial representation of TEs (i.e., a
deletion might destroy more than 1 TE). As such, we may fail to faithfully represent TE
dynamics in highly TE dense regions of genomes.

Simulations started with zero initial conditions for each repetitive element less than
size 𝐿. As such, with probability 1, full-length elements are the only TEs we observe
at the initial time. This is consistent with the assumption that initially one TE entered
the genome at a given time (since we begin with the same complementary cumulative
distribution). We terminated the simulation when the relative difference between the
cumulative distributions fell below a set threshold. Letting

𝑟𝛽 = 𝛼 − 2𝐷𝐿,

we explore three different values of 𝛼 and 𝐷 with 500 realizations for each parameter
combination. We first compare our method with the stochastic simulations for constant
𝑟𝛽 = 0.001 values. This rate corresponds to a net growth for full length TEs in expectation.
With fixed 𝑟𝛽 and 𝛼 values, we vary 𝐿 and compare simulations with derived continuous
CCDF (see Table 2.2 below). We use 𝛼 = .0025 in our simulations since experimentally
verified TE rates range from 10−3 to 10−5 and other studies support these specific values
[32, 45].

𝐿 𝛼 𝐷
300 0.0025 2.5 × 10−6

1000 0.0025 7.5 × 10−7

7500 0.0025 1 × 10−7

Table 2.2: Model parameters TE Length, 𝐿,
transposition rate, 𝛼, and deletion rate 𝐷 for
stochastic simulations. For each parameter set
above, we run 500 simulations until the relative
difference between the cumulative distributions
met a threshold. Each simulation follow constant
𝑟𝛽 = 0.001 growth for full-length transposable
elements.
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Using the 500 trials, we plot the L2 difference in time for a single simulation and the
mean distribution of all results from Gillespie SSA for all parameter values in Figure
2.13. Since our model represents the expected value of this stochastic process, we expect
and confirm that the difference between the average distribution of simulations and
our analytical solution is initially small and quickly decays to zero [61]. Additionally,
we note our solution captures the behavior of a single stochastic simulation, which is
representative of real genomic data.
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Figure 2.13: a) Complementary cumulative distribution plots of simulation (blue), steady-state
analytical fit (orange), and true value (black) for one realization using a non-dimensionalized
CCDF with the assumption that the replicative process has reached steady-state. b) Plot of the L2
difference between the derived steady-state CCDF and the empirical CCDF for 𝐿 = 1000 for one
(blue) and 500 simulations (black).

2.9 Appendix C: Data and Parameter Inference
In this Appendix, we list our data sources and processing steps for Drosophila, Aves,

and Primates data as discussed in Section 3.3.1. We present specific parameter estimation
with the steady-state analytical distribution described in 2.7.7 and corresponding fits for
Drosophila roo and rooA elements.

2.9.1 Repeat data and processing
RepeatMasker Data We apply our deterministic model to a variety of RepeatMasker
Data from different species. We note that other methods exists to detect and report repeats
in genomes (see [5] for a review of TE-detection tools) and those may be incorporated
into this framework; however, since RepeatMasker utilizes RepBase for consensus
sequences (i.e. does not focus on de novo TE detection). We acknowledge that these
RepeatMasker annotations may be influenced by improper genome assembly, but since
data are readily available, we incorporate these data into our analytical framework [25,
33]. Of the three case studies we consider, most research focused on TEs in Drosophila
and humans. Researchers posit the nontrivial role of population size in TE distribution
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and transposition rate, and we consider three species with varying effective population
sizes in our analysis [17, 8].
Drosophila. We obtained the current releases of RepeatMasker .out files obtained from
the UCSC Genome Browser (http://genome.ucsc.edu), representing total repeats
from the 12 completely sequenced genomes of Drosophila [ucscGB]. Each genome was
run with -s option in RepeatMasker. Specifically, we focus on the distribution of all roo
and rooA elements in the Drosophila clade. The canonical lengths for roo and rooA are
9092 basepairs (bp) and 7621 bp, respectively [26]. Previous studies suggested that the
rooA element diverged early in the evolution of the Drosophila clade [10]. We report
the number of partial and full copies of both roo and rooA in Table 2.1. We identify
full-length elements as having 99% match to the canonical element. Our reported counts
differ from that of [10] since we incorporate a more stringent criteria to classify an
element as a full copy. We determine lengths of contiguous repeats using Perl scripts from
[3] without the strict option since RepeatMasker classifies the internal part, ROO_I, of the
TE separately from the flanking regions, ROO_LTR. For partial TE copies for all species,
we only consider elements equal to 200bp or longer.
Aves. We gathered Avian RepeatMasker output from the Avian Phylogenomics Project

(http://avian.genomics.cn/en/jsp/database.shtml) as well as RepeatMasker directly,
resulting in repeat information for 23 species of birds. In comparison to other eukaryotes,
TEs do not comprise the majority of bird genomes [27, 28]. We follow a similar
procedure to Drosophila data, but instead we focus on a specific lineage of Chicken repeat
1 (CR1) retrotransposons, which are the most abundant superfamily in nearly all amniotes
and have been used for previous phylogenic analyses [53].
Primates. We obtained Primate RepeatMasker output from RepeatMasker directly,
resulting in repeat information for 5 species of primates. These include gorilla, human,
gibbon, chimp, and orangutan species. We apply our method to non-active elements,
namely, L2 and L3 long interspersed elements (LINEs) with canonical lengths 3082bp
and 4099bp, respectively. These elements influenced the evolution of these species but do
not currently replicate [17, 50]. As in the previous data sets, we consider partial length
TEs those longer than 200bp.

2.9.2 Drosophila roo-rooA parameter inference
The following table and Figures represent the complementary cumulative distribution

fit with the empirical distribution of the two TEs in Drosophila discussed in the text.

http://genome.ucsc.edu
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Table 2.3: Parameter estimation 𝜃 for rooA element in Drosophila.
*12 Dro reflects the averaged estimate of 𝜃 over all 12 fruit flies considered.

Species 𝜃 Estimate Standard Error Confidence Interval
12 Dro∗ 1.1277 0.0013 [1.1251, 1.1303]
D.mel 1.0766 0.0139 [1.0488, 1.1044]
D.moj 0.9933 0.0031 [0.9871, 0.9995]
D.sim 0.9457 0.0022 [0.9413, 0.9501]
D.ere 1.2775 0.0093 [1.2589, 1.2961]
D.per 0.9135 0.0024 [0.9087, 0.9183]
D.yak 1.1445 0.0033 [1.1379, 1.1511]
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Figure 2.14: Complementary cumulative distribution (CCDF) plots of empirical rooA data (blue)
and analytical fits (orange) for the 12 Drosophila species using a non-dimensionalized CCDF
(2.44) with the assumption that the replicative process has reached steady-state. We consider
only partial length TEs longer than 200bp in our parameter estimation. Since most species have
relatively few full-length elements, our steady-state solution captures the qualitative behavior of
these TE distributions. We exclude conclusions for D. virilis in Section 2.5.3 due to lack of TE
data.
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Figure 2.15: Complementary cumulative distribution (CCDF) plots of empirical roo data (blue)
and analytical fits (orange) for the 12 Drosophila species using a non-dimensionalized CCDF
(2.44) with the assumption that the replicative process has reached steady-state. Since most species
have relatively few full-length roo elements, our steady-state solution captures the qualitative
behavior of these TE distributions. For species with remaining actively replicating full-length
copies (e.g., D. melanogaster), this assumption may not hold and results in a fit not reflecting
the true distribution. We consider only partial length TEs longer than 200bp in our parameter
estimation.
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Chapter 3

Detecting Genomic Variation Within
Species

In this chapter, I develop a statistical and optimization framework for detecting
structural variations (SVs) in related individuals of the same species (i.e., humans).
Furthermore, these methods are tested and validated on simulated and real genomic
datasets, respectively. The work described in in this chapter is based on the papers by
Banuelos et. al [10, 9, 6, 8, 5, 7, 3, 4].

3.1 Introduction
Recent advances in high-throughput sequencing technologies have led to the

collection of vast quantities of genomic data. The 1000 Genomes Project [2], which
catalogues human genomic variation in comprehensive detail, and the 3000 Rice
Genomes Project [24, 28], which reports an international resequencing effort of 3,000
rice genomes, are two successful examples of such large-scale sequencing studies. These
massive repositories of data offer the potential to increase our understanding of the
complex evolutionary history of different species, identify genetic basis of important
phenotypes including disease and – for humans – usher in the era of personalized
medicine [33, 47]. A promising class of genetic variant emerging from such studies are
structural variants (SVs) – rearrangements of the genome larger than one letter such as
inversions, insertions, deletions, and duplications (see Fig. 3.1).

SVs are typically predicted by sequencing fragments from an unknown individual
genome and mapping those fragments to a previously identified reference genome [29,
41]. If the starting points of the genomic fragments are chosen uniformly and randomly
from the genome, then the expected number of fragments covering any position in the
genome may be modeled by a Poisson distribution [27]. I consider multiple assumptions
on this sequencing process in Section 3.2. The mean of the sequencing distribution
is referred to as the coverage of the genome. Since, in most large sequencing studies,
many individuals will be sequenced at low coverage, even if an individual carries a
genetic variant, we may not sample a fragment from that particular region of the genome.

56
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(a) No Variant (b) Deletion

(c) Inversion (d) Novel Insertion

Figure 3.1: Example of different structural variations (b) - (d) in an unknown genome in
comparison to the reference genome. When there is no difference between the reference genome
and the unknown genome, then there is no variant present (a).

Similarly, if we observe a single fragment supporting a variant, it may represent an
erroneous mapping rather than a true observation.

There have been many published methods to identify SVs from sequencing data
(see, e.g., [43, 23, 15, 35, 34]). However, these approaches almost universally rely on
high-coverage of a single individual genome and not on the scenario emerging from
many large-scale sequencing efforts where there is low-coverage of many individuals. In
addition, prior approaches when applied to populations typically consider each individual
in isolation when – in fact – common variants would be shared by many individuals.
Finally, most methods utilize a threshold – minimum number of supporting fragments –
to prioritize predicted variants rather than a likelihood based statistic. Indeed, inferring
SV information from sequencing data has proven to be challenging because true SVs are
rare and are prone to low-coverage noise.

In this work, I attempt to mitigate the challenges of low-coverage sequencing by
following a maximum likelihood approach to SV prediction. Specifically, I model
the noise using Poisson and Negative Binomial statistics and constrain the solution
to promote sparsity, i.e., SV instances should be rare. Further, I consider multiple
individuals and use relatedness among individuals as a constraint on the solution space
– to our knowledge, this is the first SV detection algorithm to do so. Specifically, in
our work below I use the assumption that a parent and child are sequenced and require
that any SVs predicted in the child be present in the parent. Numerical analysis of both
simulated and real sequencing data suggest that our approach has the promise to improve
SV detection in studies of many low-coverage individuals.

3.2 General Optimization Framework
To detect genomic variants, we first obtain sequencing data from related individuals.

This data represents the counts for candidate variant positions and does not represent
all loci of an individual’s genome. I proceed with a maximum likelihood approach to
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maximize the probability of observing these counts with the following framework:

maximize 𝑃(data |𝕊)
subject to ℋ

where 𝕊 represents the assumed sequencing model for the distribution of the count
number of DNA fragments supporting a potential SV and ℋ represents the heredity
constraints reflected by different family structures (e.g., one parent and one child). Thus,
𝕊 alters the objective function and ℋ changes the feasible region in the constrained
optimization problem. In the subsequent sections, I describe methods based on two
different sequencing frameworks. First, the Poisson distribution models the process of
DNA sequencing. Under this framework, I consider changing the constraint assumption
to include different family structures, haploid, diploid, and nonconvex formulations.
Second, I consider changing the assumption to model sequencing as a negative binomial
process. This, in turn, results in a nonconvex formulation, and I present my contributions
to address the modified optimization problem for a variety of assumptions on heredity
assumptions ℋ.

3.3 DNA Sequencing as a Poisson Process

3.3.1 Haploid One Parent-One Child Method
The work described in this section is based on the paper by Banuelos et al. [10].

Let ⃗𝑓 ∗
𝑖 ∈ {0, 1}𝑛 be the vector of genomic variants for an individual 𝑖, i.e., ⃗𝑓 ∗

𝑖,𝑗 = 1 if
individual 𝑖 has genomic variant 𝑗 and is 0 otherwise. This classification framework thus
considers the haploid – one copy of a genomic variant per individual – inheritance of
variants from parent to child. Let ⃗𝑦𝑖 ∈ ℤ𝑛

+ be the vector of observations for individual
𝑖. The variables ⃗𝑦𝑖,𝑗 obey a Poisson distribution [44] whose mean, 𝑐𝑖, is equal to the
sequencing coverage of individual 𝑖. In this work, we specifically consider the structural
variants for two individuals who are related, namely a parent and child. Let ⃗𝑓 ∗

𝑝 and ⃗𝑓 ∗
𝑐 be

the true genomic variants for a parent and child, respectively. Then the corresponding
observations, denoted by ⃗𝑦𝑝 and ⃗𝑦𝑐, are given by

⃗𝑦𝑝 ∼ Poisson (𝐴𝑝 ⃗𝑓 ∗
𝑝 )

⃗𝑦𝑐 ∼ Poisson (𝐴𝑐 ⃗𝑓 ∗
𝑐 ) ,

(3.1)

where 𝐴𝑝 = (𝑘𝑝 − 𝜀) 𝕀, 𝐴𝑐 = (𝑘𝑐 − 𝜀) 𝕀 ∈ ℝ𝑛×𝑛 linearly transforms ⃗𝑓 ∗
𝑝 , ⃗𝑓 ∗

𝑐 onto an
𝑛-dimensional set of observations ⃗𝑦𝑝, ⃗𝑦𝑐 ∈ ℤ𝑛

+. The constants 𝑘𝑝 and 𝑘𝑐 represent the
sequencing coverage of the parent and child genome, respectively. It is assumed that 𝜀,
the error term in the measurement of the true signals, is the same for both observations.

We consider a general framework for the recovery of variant detection given
sequencing data from one haploid parent and one haploid child. Our observation ⃗𝑦 will be
considered a stacked signal in the form [ ⃗𝑦𝑇

𝑝 ⃗𝑦𝑇
𝑐 ]𝑇, where ⃗𝑦𝑝 and ⃗𝑦𝑐 represent observations
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of parent and child, respectively. Since the true signal ⃗𝑓 ∗ is also stacked, our observation
model is given by

⃗𝑦 ∼ Poisson ( ̂𝐴 ⃗𝑓 ∗) , (3.2)

where ̂𝐴 ∈ ℝ2𝑛×2𝑛 is a block-diagonal matrix with upper-left block 𝐴𝑝 and lower-left block
𝐴𝑐.

Problem formulation

Under this Poisson model (3.2), the probability of observing ⃗𝑦 is given by

𝑝( ⃗𝑦| ̂𝐴 ⃗𝑓 ∗) =
2𝑛
∏
𝑖=1

( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 ∗) ⃗𝑦𝑖

⃗𝑦𝑖!
exp (− ⃗𝑒𝑇

𝑖 ̂𝐴 ⃗𝑓 ∗) , (3.3)

where ⃗𝑒𝑖 is the 𝑖th canonical basis vector. Under a similar framework in [22] and ignoring
constant terms log( ⃗𝑦𝑖!), we minimize the negative Poisson log-likelihood given by

𝐹( ⃗𝑓 ) = 1𝑇 ̂𝐴 ⃗𝑓 −
2𝑛
∑
𝑖=1

⃗𝑦𝑖 log ( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 + 𝜀) , (3.4)

with gradient

∇𝐹( ⃗𝑓 ) = ̂𝐴𝑇1 −
2𝑛
∑
𝑖=1

𝑦𝑖

⃗𝑒𝑇
𝑖

̂𝐴 ⃗𝑓 + 𝜀
̂𝐴𝑇 ⃗𝑒𝑖, (3.5)

where 1 is a vector of ones. Hence, we focus on solving the following constrained
optimization problem:

minimize
⃗𝑓 ∈ℝ2𝑛

𝜙( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏 pen( ⃗𝑓 )

subject to 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1,
(3.6)

where ⃗𝑓 = [
⃗𝑓𝑝
⃗𝑓𝑐
], 𝜏 > 0 is a regularization parameter, and pen is usually a non-differentiable

penalty functional. Here, we impose the constraint 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1 element-wise to enforce
the continuous variables ⃗𝑓𝑐 and ⃗𝑓𝑝 to lie between 0 and 1 (i.e., SVs are either present or
not), but in addition, to require that a variant in the child genome can be present only
when the parent genome also has that variant.

Sparsity penalty

Our approach to solving (3.6) is based on SPIRAL [22, 20, 21], which is an iterative
method whose iterates are defined from minimizing a sequence of quadratic subproblems.
This approach utilizes the second-order Taylor expansion of the Poisson log-likelihood,
𝐹( ⃗𝑓 ), around the current iterate ⃗𝑓 𝑘 and approximates the second derivative matrix by a
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Figure 3.2: Plot of 𝑎-𝑏 plane, where regions are defined in Table 3.1 and 𝑅(𝑎,𝑏) represents the
feasible region for the solution of the separable subproblem (3.25).

scalar multiple of the identity matrix 𝛼𝑘𝐼, 𝛼𝑘 > 0 [22, 11, 48]. Thus, the next iterate is
given by

⃗𝑓 𝑘+1 = [
⃗𝑓 𝑘+1

𝑝
⃗𝑓 𝑘+1

𝑐
] = arg min

⃗𝑓 ∈ℝ2𝑛
𝐹𝑘( ⃗𝑓 ) + 𝜏 pen( ⃗𝑓 )

subject to 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1,
(3.7)

where
𝐹𝑘( ⃗𝑓 ) = ∇𝐹( ⃗𝑓 𝑘)𝑇( ⃗𝑓 − ⃗𝑓 𝑘) + 𝛼𝑘

2 ‖ ⃗𝑓 − ⃗𝑓 𝑘‖2
2.

Manipulating 𝐹𝑘( ⃗𝑓 ) leads to the following equivalent optimization formulation:

⃗𝑓 𝑘+1 = arg min
⃗𝑓 ∈ℝ2𝑛

1
2‖ ⃗𝑓 − ⃗𝑠𝑘‖2

2 + 𝜏
𝛼𝑘

pen( ⃗𝑓 )

subject to 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1,
(3.8)

where

⃗𝑠𝑘 = [
⃗𝑠𝑘
𝑝

⃗𝑠𝑘
𝑐
] = ⃗𝑓 𝑘 − 1

𝛼𝑘
∇𝐹( ⃗𝑓 𝑘). (3.9)

When pen( ⃗𝑓)= ‖ ⃗𝑓 ‖1 = ∑𝑛
𝑖=1 | ⃗𝑓𝑖|, the objective function in (3.8) decouples in

each variable and can be optimized separately, which results in the following scalar
optimization:

minimize
𝑓𝑝, 𝑓𝑐∈ℝ

1
2(𝑓𝑝 − 𝑠𝑝)2+𝜆|𝑓𝑝|+ 1

2(𝑓𝑐 − 𝑠𝑐)2+𝜆|𝑓𝑐|

subject to 0 ≤ 𝑓𝑐 ≤ 𝑓𝑝 ≤ 1,
(3.10)
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where 𝑓𝑝 and 𝑓𝑐 correspond to each scalar element of ⃗𝑓𝑝 and ⃗𝑓𝑐, respectively. Since both
𝑓𝑝 and 𝑓𝑐 are non-negative, the absolute values in (3.10) can be dropped. Completing the
squares in (3.10) and ignoring constant terms yield

minimize
𝑓𝑝, 𝑓𝑐∈ℝ

𝜓(𝑓𝑝, 𝑓𝑐) = 1
2(𝑓𝑝 − 𝑏)2 + 1

2(𝑓𝑐 − 𝑎)2

subject to 0 ≤ 𝑓𝑐 ≤ 𝑓𝑝 ≤ 1,
(3.11)

where 𝑎 = 𝑠𝑐 − 𝜆, 𝑏 = 𝑠𝑝 − 𝜆. The solution to (3.25) can be obtained by partitioning the
𝑎-𝑏 plane into different regions (see Fig. 3.2). Then the minimizer of (3.25) depends on
the region in which the point (𝑎, 𝑏) lies. For example, if (𝑎, 𝑏) ∈ 𝑅(𝑎,𝑏), i.e., 0 ≤ 𝑎 ≤ 𝑏 ≤ 1,
then the minimizer, (𝑓 ∗

𝑐 , 𝑓 ∗
𝑝 ), of (3.25) is the point (𝑎, 𝑏). The complete set of minimizers

is listed in Table 3.1.

Region Condition 𝑎 Condition 𝑏 (𝑓 ∗
𝑐 , 𝑓 ∗

𝑝 )
𝑅(𝑎,𝑏) 0 < 𝑎 < 𝑏 0 < 𝑏 < 1 (𝑎, 𝑏)
𝑅(0,𝑏) 𝑎 < 0 0 ≤ 𝑏 ≤ 1 (0, 𝑏)
𝑅(𝑎,1) 0 ≤ 𝑎 ≤ 1 𝑏 > 1 (𝑎, 1)
𝑅(0,1) 𝑎 < 0 𝑏 > 1 (0, 1)
𝑅(0,0) 𝑎 ≤ −𝑏 𝑏 < 0 (0, 0)
𝑅(1,1) 𝑎 > 1 𝑏 ≥ −𝑎 + 2 (1, 1)
𝑅(𝑟,𝑠) 𝑎 > |𝑏| 𝑏 < −𝑎 + 2 (𝑟, 𝑠)

Table 3.1: Table representing the solution to (3.25) as a function of 𝑎 and 𝑏. Here, 𝑟 = 𝑠 =
(𝑎 + 𝑏)/2.

Numerical Results

The solution to the problem proposed in the previous section was implemented using
the SPIRAL-ℓ1 algorithm in [22] with the appropriate modifications to accommodate for
the different constraints (see (3.6)). The results obtained are compared to those of the
original SPIRAL-ℓ1 approach in order to evaluate the validity of the proposed approach
on both simulated and real genomic data.

Two simulated test signals, ⃗𝑓𝑝 and ⃗𝑓𝑐, of length 𝑛 = 105 were used to examine the
effectiveness of the proposed approach. We varied the coverage of both between 2 and
10, and the child is chosen to have between 70% to 90% of the variants in the parent. The
true signal for the parent ⃗𝑓𝑝, is set to be 0.5% sparse, so that only 500 variants are present.
Furthermore, consistent with the assumption of similar error term in the measurement
of the true signals, a single value of 𝜀 = 0.01 was selected. On the simulated data, we
are able to select the optimum value for 𝜏 and found on this data the optimal 𝜏 occurred
between 0.5 and 3. Further, we observed limited sensitivity to 𝜏 as the model with and
without family constraints had a similar 𝜏 range.

We first examined the parent signal reconstruction. Fig. 3.3 illustrates a small segment
(𝑛 = 2.5 × 104) of the parent signal with 𝑘𝑝 = 2, 𝑘𝑐 = 2, and 90% similarity of
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Figure 3.3: From top to bottom: A small segment of the parent signal with 𝑘𝑝 = 2, 𝑘𝑐 = 2, and
90% similarity of variants; reconstruction using the sparsity SPIRAL constraints with 𝜏 = 1.779
yielded 152 correctly identified out of 500; and reconstruction using the family and sparsity
constraints with 𝜏 = 1.221 yielded 349 correctly identified out of 500.

variants, the reconstructed signal obtained by the sparsity-only SPIRAL constraints, and
the reconstructed signal obtained by the family+sparsity SPIRAL constraints both at a
threshold value of 0.5308. The improvement in variant predictions is visually clear from
this figure.

We observed that an increase in the coverage of either child or parent helps improve
the quality of the predictions. Moreover, the greater the similarity between parent and
child, the more helpful adding the familial constraints results. Fig. 3.4 further illustrates
how the familiarly constrained model ranks all true predictions above all false predictions.

We apply our method to the previously sequenced genomes of the
father-mother-daughter CEU trio (NA12891, NA12892, NA12878) from the 1000
Genomes Project [2]. These genomes were sequenced to low coverage (≈ 4×) in Pilot
1 of the study and high coverage (≈ 40×) in Pilot 2. Both were aligned to NCBI36.
We compared our reconstructions against the reported validated set of low coverage
Chromosome 1 deletions longer than 250bp. In addition, we filtered the set of validated
deletions by removing cases that overlapped the centromeres or telomeres and removed
cases where a reported deletion was marked LowQual for all three individuals.

We used the GASV [43] method on this dataset as observations to predict the set of
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Figure 3.4: (Left). ROC curves depicting the False Positive Rate vs True Positive Rate for the
reconstruction of the parent signal with 𝑘𝑝 = 2, 𝑘𝑐 = 5, and 70% similarity of variants using both
methods with 𝜏 = 1.553 for sparsity constraints and 𝜏 = 1.474 for family constraints. (Right).
ROC curves depicting the False Positive Rate vs True Positive Rate for the reconstruction of both
CEU parent Chromosome 1 signals using both methods with 𝜏 = 2.65.

possible SVs. We filtered out SVs predicted to lie in the centromere or telomeres. We
took the filtered set of predictions as the observed signals, and the true signals for each
individual were constructed by determining if the validated deletions lie in the region
predicted by GASV.

In the reconstruction of the parent signals, we separately use the child (NA12878)
observed signal to constrain the parent signals. As shown in Figure 3.4, the
reconstructions of both parent signals improve with the added familial constraints
proposed by our method. Since NA12878 shares 90% and 92.5% of deletions with
NA12891 (father) and NA12892 (mother), respectively, we observe higher true positive
rates for false positive rates > 0.1 in the reconstructions with added child data than the
other method.

Conclusions

This work presents a novel approach for inferring structural variants (SVs) from
noise-corrupted data sets. We exploit the rare occurrence of SVs by incorporating
a sparsity-promoting ℓ1 penalty regularization term. Furthermore, we mitigate the
deleterious effects of low-coverage sequences by following a maximum likelihood
approach to SV prediction, and, in particular, using Poisson statistics to model the noise.
Finally, we incorporate the relatedness of individuals as a constraint on the solution space.
Specifically, we use the assumption that a parent and child are sequenced and require that
any SVs predicted in the child be present in the parent. To our knowledge, our proposed
approach is the first SV detection algorithm to do so. We demonstrated the effectiveness
of our approach on both synthetic data and data from the 1000 Genomes Project.
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3.3.2 Haploid Two Parents-One Child Method
The work described in this section is based on the paper by Banuelos et al. [9]. Here

we consider a general framework for detecting structural variants (SVs) given sequencing
data from two parents (𝑝1 and 𝑝2) and one child (𝑐). We assume that there are 𝑛 locations
in the genome that could be a potential SV. For simplicity, we consider each individual
to be haploid (only one copy of each chromosome). As such, the true SV signal for each
individual at each location is either a 0, if they do not have an SV at that location, or 1 if
they do. The observed data are the number of DNA fragments supporting each potential
SV, ⃗𝑦𝑝1

, ⃗𝑦𝑝2
, ⃗𝑦𝑐 ∈ ℝ𝑛 for both parents and the child, and the data are assumed to follow a

Poisson distribution [41], ⃗𝑦𝑖 ∼ Poisson (𝐴𝑖 ⃗𝑓 ∗
𝑖 ) , where 𝑖 ∈ {𝑝1, 𝑝2, 𝑐} and 𝐴𝑖 = (𝑘𝑖 − 𝜖)𝕀 ∈

ℝ𝑛×𝑛 is a linear projection of the true genomic variants ⃗𝑓 ∗
𝑖 ∈ ℝ𝑛 to the observation ⃗𝑦𝑖.

The constants 𝑘𝑝1
, 𝑘𝑝2

, and 𝑘𝑐 are the sequencing coverage for each individual, the mean
of the Poisson distribution. Finally, we assume that the error in measurement 𝜖 > 0 is the
same for all observations. We stack the true variant signals and observations in the form

⃗𝑓 ∗ = [ ⃗𝑓 ∗
𝑐 ; ⃗𝑓 ∗

𝑝1
; ⃗𝑓 ∗

𝑝2
] and ⃗𝑦 = [ ⃗𝑦𝑐; ⃗𝑦𝑝1

; ⃗𝑦𝑝2
], the general observation model is be expressed as

⃗𝑦 ∼ Poisson( ̂𝐴 ⃗𝑓 ∗), (3.12)

where ̂𝐴 ∈ ℝ3𝑛×3𝑛 is a block-diagonal matrix with ̂𝐴 = diag(𝐴𝑐, 𝐴𝑝1
, 𝐴𝑝2

).

Familial constraints. We require the (continuous) elements for each individual lie within
0 and 1, i.e., 0 ≤ ⃗𝑓 ≤ 1. The continuous relaxation of the reconstruction ⃗𝑓 thus allows us
to to apply gradient-based techniques. Further, we impose the element-wise constraints
that if both parents have the SV, then the child must also, i.e., ⃗𝑓𝑝1

+ ⃗𝑓𝑝2
− 1 ≤ ⃗𝑓𝑐 for each

location. Finally, if neither parent has the SV, then the SV cannot be present in the child,
i.e., ⃗𝑓𝑐 ≤ ⃗𝑓𝑝1

+ ⃗𝑓𝑝2
.

Problem Formulation

Under the Poisson process model (3.12), the probability of observing ⃗𝑦 is given by

𝑝( ⃗𝑦 | ̂𝐴 ⃗𝑓 ∗) =
3𝑛
∏
𝑖=1

( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 ∗) ⃗𝑦𝑖

⃗𝑦𝑖!
exp (− ⃗𝑒𝑇

𝑖 ̂𝐴 ⃗𝑓 ∗) , (3.13)

where ⃗𝑒𝑖 is the 𝑖-th column of the 3𝑛 × 3𝑛 identity matrix. The maximum likelihood
principle is used to determine the unknown Poisson parameter ̂𝐴 ⃗𝑓 ∗ such that the
probability of observing the vector of Poisson data ⃗𝑦 in (3.13) is maximized. Thus, the
genomic variants reconstruction problem has the following constrained optimization form:

minimize
⃗𝑓 ∈ℝ3𝑛

𝜙( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏pen( ⃗𝑓 )

subject to ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

,
0 ≤ ⃗𝑓 ≤ 1

(3.14)
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where 𝐹( ⃗𝑓 ) is the negative Poisson log-likelihood function

𝐹( ⃗𝑓 ) = 1𝑇 ̂𝐴 ⃗𝑓 −
3𝑛
∑
𝑖=1

⃗𝑦𝑖 log ( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 + 𝜖) ,

where ⃗𝑓 = [ ⃗𝑓𝑐; ⃗𝑓𝑝1
; ⃗𝑓𝑝2

], 𝜏 > 0 is a regularization parameter, 1 is a vector of ones, and pen
is usually a sparsity enforcing penalty functional.

Since true variants are rare, the penalty functional pen( ⃗𝑓) in (3.14) can thus be
replaced by sparsity-promoting ℓ1-norm of ⃗𝑓, i.e., ‖ ⃗𝑓 ‖1. In the SPIRAL framework [22],
the solution of (3.14) is obtained by minimizing a sequence of quadratic models to the
function 𝐹( ⃗𝑓 ). In these models, the Hessian in the second-order Taylor series expansion
of 𝐹( ⃗𝑓 ) at the current iterate ⃗𝑓 𝑘 is replaced by a scaled identity matrix 𝛼𝑘𝐼 with 𝛼𝑘 > 0
(see [11, 12] for details). This quadratic approximation can be simplified to a subproblem
of the form:

⃗𝑓 𝑘+1 = arg min
⃗𝑓 ∈ℝ3𝑛

1
2‖ ⃗𝑓 − ⃗𝑠 𝑘‖2

2 + 𝜏
𝛼𝑘

‖ ⃗𝑓 ‖1

subject to ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

,
0 ≤ ⃗𝑓𝑐, ⃗𝑓𝑝1

, ⃗𝑓𝑝2
≤ 1,

(3.15)

where ⃗𝑠 𝑘 = [ ⃗𝑠 𝑘
𝑐 ; ⃗𝑠 𝑘

𝑝1
; ⃗𝑠 𝑘

𝑝2
] = ⃗𝑓 𝑘− 1

𝛼𝑘
∇𝐹( ⃗𝑓 𝑘). Then, the subproblem in (3.15) can be separated

into scalar minimization problems (see [22] for details).
Completing the squares and ignoring constant terms, we have

minimize
𝑓𝑐,𝑓𝑝1,𝑓𝑝2∈ℝ

1
2(𝑓𝑐 − 𝑐)2 + 1

2(𝑓𝑝1
− 𝑝1)2 + 1

2(𝑓𝑝2
− 𝑝2)2

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐 ≤ 𝑓𝑝1
+ 𝑓𝑝2

, (3.16)
0 ≤ 𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
≤ 1

where 𝑐 = 𝑠𝑐 − 𝜆, 𝑝1 = 𝑠𝑝1
− 𝜆, and 𝑝2 = 𝑠𝑝2

− 𝜆. The feasible solution to (3.16) is
obtained by orthogonally projecting the solution (𝑐, 𝑝1, 𝑝2) to a three-dimensional feasible
region (see Fig. 3.5).

In particular, there are 27 regions to be considered in the 𝑓𝑐-𝑓𝑝1
-𝑓𝑝2

tri-dimensional
space according to the constraints of (3.16). If (𝑐, 𝑝1, 𝑝2) satisfy the constraints of (3.16),
then the minimizer for the subproblem (3.16) is (𝑐, 𝑝1, 𝑝2). Otherwise, the subproblem
solution corresponds to the minimizers given in Table 3.2 in Appendix 3.5.

3.3.3 Generalized Haploid Formulation
We extend the framework presented in [9] to detect SVs from one trio to a family

lineage involving both parents (𝑝1 and 𝑝2) and 𝑑 children (𝑐1, 𝑐2, … , 𝑐𝑑). In particular,
we let ⃗𝑓 ∗

ℐ ∈ [0, 1]𝑛 be the vector of true genomic variants for individual ℐ ∈
{𝑝1, 𝑝2, 𝑐1, 𝑐2, … , 𝑐𝑑}. The data for each individual ℐ are assumed to follow a Poisson
distribution (cf. [41, 27]), with ⃗𝑦ℐ ∼ Poisson(𝐴ℐ ⃗𝑓 ∗

ℐ), where 𝐴ℐ = (𝑘ℐ − 𝜖)𝕀 ∈ ℝ𝑛×𝑛

is a linear projection matrix that maps the true genomic variants ⃗𝑓 ∗
ℐ to the observation ⃗𝑦ℐ
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Figure 3.5: The three-dimensional feasible region of the minimization problem (3.16) on the
𝑓𝑐−𝑓𝑝1

−𝑓𝑝2
axis. Subproblem minimizers not satisfying the constraints are projected onto the region.

Left : Front view. Right : Side view.

and the constant 𝑘ℐ, the mean of the Poisson distribution, is the sequencing coverage for
individual ℐ.

More compactly, we let ⃗𝑓 ∗ = [ ⃗𝑓 ∗
𝑐1

; ⋯ ; ⃗𝑓 ∗
𝑐𝑑

; ⃗𝑓 ∗
𝑝1

; ⃗𝑓 ∗
𝑝2

], and ⃗𝑦 = [ ⃗𝑦𝑐1
; ⋯ ; ⃗𝑦𝑐𝑑

; ⃗𝑦𝑝1
; ⃗𝑦𝑝2

].
Furthermore, we let ̂𝐴 ∈ ℝ(𝑑+2)𝑛×(𝑑+2)𝑛 be a block-diagonal matrix with ̂𝐴 =
diag(𝐴𝑐1

, ⋯ , 𝐴𝑐𝑑
, 𝐴𝑝1

, 𝐴𝑝2
). Thus, the probability of observing ⃗𝑦 is given by

𝑝( ⃗𝑦| ̂𝐴 ⃗𝑓 ∗) =
(𝑑+2)𝑛

∏
𝑖=1

( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 ∗) ⃗𝑦𝑖

⃗𝑦𝑖!
exp (− ⃗𝑒𝑇

𝑖 ̂𝐴 ⃗𝑓 ∗) , (3.17)

where ⃗𝑒𝑖 is the 𝑖-th column of the (𝑑 + 2)𝑛 × (𝑑 + 2)𝑛 identity matrix. We seek to
maximize the probability of observing ⃗𝑦 in (3.17) using a maximum likelihood approach
in reconstructing ⃗𝑓 ∗.
Continuous relaxation. The true signal ⃗𝑓 ∗ is a binary-valued vector, with discrete values
0 and 1. Since maximizing the probability of observing ⃗𝑦 is a combinatorial problem that
is generally difficult to solve, we allow for solutions to include vectors with continuous
values, i.e., ⃗𝑓 ∈ ℝ(𝑑+2)𝑛. As a result, we can apply gradient-based optimization techniques
in SV detection.
Familial constraints. Since each component of ⃗𝑓 ∗ is a discrete quantity in {0, 1}, our
continuous approximation ⃗𝑓 must satisfy the element-wise constraint 0 ≤ ⃗𝑓 ≤ 1. Moreover,
the constraints must also reflect inheritance of a variant in a population. Specifically, If
both parents possess a variant, then each child ⃗𝑓𝑐𝑖

, 𝑖 ∈ {1, 2, … , 𝑑}, must inherit it as well,
i.e., ⃗𝑓𝑝1

+ ⃗𝑓𝑝2
− 1 ≤ ⃗𝑓𝑐𝑖

. Likewise, if neither parent has the SV, it cannot be present in either
child, i.e., ⃗𝑓𝑐𝑖

≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

.
Gradient-based optimization. Under the maximum likelihood model, we can formulate
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the SV detection problem as the following constrained optimization problem:

minimize
⃗𝑓 ∈ℝ(𝑑+2)𝑛

𝜙( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏pen( ⃗𝑓 )

subject to ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐1
≤ ⃗𝑓𝑝1

+ ⃗𝑓𝑝2
,

⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐2
≤ ⃗𝑓𝑝1

+ ⃗𝑓𝑝2
,

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⃗𝑓𝑝1

+ ⃗𝑓𝑝2
− 1 ≤ ⃗𝑓𝑐𝑑

≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

,
0 ≤ ⃗𝑓 ≤ 1

(3.18)

where 𝐹( ⃗𝑓 ) is the negative Poisson log-likelihood function

𝐹( ⃗𝑓 ) = 1𝑇 ̂𝐴 ⃗𝑓 −
(𝑑+2)𝑛

∑
𝑖=1

⃗𝑦𝑖 log ( ⃗𝑒𝑇
𝑖 ̂𝐴 ⃗𝑓 + 𝜖) ,

and 𝜏 > 0 is a regularization parameter, 1 is a vector of ones, and pen is usually a sparsity
enforcing penalty functional. In our case, we use the widely-used sparsity promoting ℓ1
penalty term.

Our proposed approach for solving the optimization problem (3.18) builds upon
the SPIRAL framework [22] by incorporating a more complex feasible domain. As
in previously defined methods, we use a sequence of quadratic subproblems from
the second-order Taylor series approximations to 𝐹( ⃗𝑓 ) at the current iterate ⃗𝑓 𝑘 and
approximate the Hessian matrix by a scalar multiple of the identity matrix, 𝛼𝑘𝐼. The
resulting quadratic subproblem is separable in each SV location, meaning its minimizer
can be obtained by solving the following optimization problem:

minimize
𝑓𝑐1,…,𝑓𝑐𝑑

,𝑓𝑝1,𝑓𝑝2∈ℝ
1
2

2
∑
𝑖=1

(𝑓𝑐𝑖
− 𝜇𝑐𝑖

)2 + 1
2

𝑑
∑
𝑖=1

(𝑓𝑝𝑖
− 𝜇𝑝𝑖

)2

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐1
≤ 𝑓𝑝1

+ 𝑓𝑝2
, (3.19)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑓𝑝1

+ 𝑓𝑝2
− 1 ≤ 𝑓𝑐𝑑

≤ 𝑓𝑝1
+ 𝑓𝑝2

,
0 ≤ 𝑓𝑐1

, … , 𝑓𝑐𝑑
, 𝑓𝑝1

, 𝑓𝑝2
≤ 1

where (𝜇𝑐1
, … , 𝜇𝑐𝑑

, 𝜇𝑝1
, 𝜇𝑝2

) = (𝑠𝑐1
− 𝜏

𝛼𝑘
, … , 𝑠𝑐𝑑

− 𝜏
𝛼𝑘

, 𝑠𝑝1
− 𝜏

𝛼𝑘
, 𝑠𝑝2

− 𝜏
𝛼𝑘

). If
(𝑓𝑐1

, … , 𝑓𝑐𝑑
, 𝑓𝑝1

, 𝑓𝑝2
) = (𝜇𝑐1

, … , 𝜇𝑐𝑑
, 𝜇𝑝1

, 𝜇𝑝2
) is feasible, then it is the minimizer of (3.19).

Otherwise, we use an alternating iterative method based on block-coordinate descent to
calculate ⃗𝑓 𝑘+1. We now describe the method in more detail for a family quartet.
Alternating minimization. At each iteration 𝑘, we alternate between fixing all but one
child signal 𝑓𝑐𝑖

, 𝑖 ∈ {1, 2, … , 𝑑} and solve the resulting minimization subproblem:
Step 1: Initially, we fix ̂𝑓𝑐2

, … , ̂𝑓𝑐𝑑
. Then, we solve

minimize
𝑓𝑐1,𝑓𝑝1,𝑓𝑝2∈ℝ

1
2(𝑓𝑐1

− 𝜇𝑐1
)2 + 1

2

2
∑
𝑖=1

(𝑓𝑝𝑖
− 𝜇𝑝𝑖

)2

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐1
≤ 𝑓𝑝1

+ 𝑓𝑝2
, (3.20)

0 ≤ 𝑓𝑐1
, 𝑓𝑝1

, 𝑓𝑝2
≤ 1
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which can be solved using orthogonal projections described in Section 3.3.2.
Step 2: Suppose we have obtained ̂𝑓𝑐1

, ̂𝑓𝑝1
, ̂𝑓𝑝2

from Step 1. For 𝑓𝑐𝑖
, 𝑖 ∈ {2, … , 𝑑}, on the 𝑖th

child, we fix all child signals except ̂𝑓𝑖 and solve

minimize
𝑓𝑐𝑖,𝑓𝑝1,𝑓𝑝2∈ℝ

1
2(𝑓𝑐𝑖

− 𝜇𝑐𝑖
)2 + 1

2

2
∑
𝑖=1

(𝑓𝑝𝑖
− ̂𝑓𝑝𝑖

)2

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐𝑖
≤ 𝑓𝑝1

+ 𝑓𝑝2
, (3.21)

0 ≤ 𝑓𝑐𝑖
≤ 1

which can be similarly solved in Step 1 using orthogonal projections. We separate Step
2 from Step 1 since 𝑓𝑝1

and 𝑓𝑝2
satisfy the boundedness constraints. This results in a

reduction of the 27 regions considered in the initial step. Steps 1 and 2 are repeated at
each iterate 𝑘 until the relative difference between subsequent iterates are below a set
threshold. To avoid biases, Step 1 should rotate fixing the initial child signal from 𝑓𝑐1

to
𝑓𝑐𝑑

.

3.3.4 Nonconvex Regularization of Haploid Models
The work described in this section is based on the paper by Banuelos et al.

[7]. For the previous models presented, we have focused on incorporating the ℓ1
sparsity-promoting penalty functional. We now consider nonconvex formulations of the
results presented in [10, 9, 6] for detecting structural variants (SVs) from sequencing
data from one two-parent one-child trio (𝑝1, 𝑝2, 𝑐, respectively). Although we focus
on the trio optimization problem in this section, the results may be extended to the
generalized haploid formulation presented in Section 3.3.3. To reflect the rarity of SVs
in the genome, we incorporate a sparsity-promoting penalty in our problem formulation.
Previous methods [10, 9, 6] use the widely used ℓ1 regularization term [46], which is a
convex relaxation of the ℓ0 counting semi-norm. To promote further sparsity and thus
decrease the false positives classified as true variants, we use a nonconvex 𝑞-norm penalty
functional, ‖ ⃗𝑓 ‖𝑞

𝑞 = ∑3𝑛
𝑖=1 |𝑓𝑖|𝑞, where 0 < 𝑞 < 1 (see e.g., [1]). As 𝑞 → 0, we expect to

identify the true support of ⃗𝑓 ∗ more accurately and, thus, capture reconstructions closer to
the true signal ⃗𝑓 ∗.

Optimization Approach

Our proposed approach for solving the optimization problem (3.14) is based on the
SPIRAL framework [22]. As before, these quadratic subproblems can be simplified to the
following form:

⃗𝑓 𝑘+1 = arg min
⃗𝑓 ∈ℝ3𝑛

1
2‖ ⃗𝑓 − ⃗𝑠 𝑘‖2

2 + 𝜆‖ ⃗𝑓 ‖𝑞
𝑞

subject to ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

,
0 ≤ ⃗𝑓𝑐, ⃗𝑓𝑝1

, ⃗𝑓𝑝2
≤ 1,

(3.22)
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where ⃗𝑠 𝑘 = [ ⃗𝑠 𝑘
𝑐 ; ⃗𝑠 𝑘

𝑝1
; ⃗𝑠 𝑘

𝑝2
] = ⃗𝑓 𝑘 − 1

𝛼𝑘
∇𝐹( ⃗𝑓 𝑘) and 𝜆 = 𝜏

𝛼𝑘
. Note that the objective function

is separable in ⃗𝑓. Since the constraints are component-wise bounds on the variables, (3.22)
decouples into 𝑛 quadratic subproblems of the form:

𝑓 𝑘+1 = arg min
𝑓 ∈ℝ3

𝒬(𝑓 ) = 1
2‖𝑓 − 𝑠 𝑘‖2

2 + 𝜆 ∑
𝑖∈{𝑐,𝑝1,𝑝2}

|𝑓𝑖|𝑞

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐 ≤ 𝑓𝑝1
+ 𝑓𝑝2

,
0 ≤ 𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
≤ 1,

(3.23)

where 𝑓 = [𝑓𝑐; 𝑓𝑝1
; 𝑓𝑝2

] and 𝑠𝑘 correspond to components of ⃗𝑓 and ⃗𝑠𝑘, respectively. Each of
these decoupled subproblems now depends only on the three scalar variables, 𝑓𝑐, 𝑓𝑝1

, and
𝑓𝑝2

. However, even without the constraints, the subproblem (3.23) does not have a closed
form solution. Thus, we make an additional approximation, where we use the first-order
Taylor series expansion of the penalty term:

|𝑓𝑖|𝑞 ≈ 𝑇1(𝑓𝑖) = |𝑓 𝑘
𝑖 |𝑞 + 𝑞|𝑓 𝑘

𝑖 |𝑞−1(𝑓𝑖 − 𝑓 𝑘
𝑖 ), (3.24)

where 𝑖 ∈ {𝑐, 𝑝1, 𝑝2} (see Fig. 3.6). We investigated using a second-order Taylor expansion

𝑇2(𝑓𝑖) = |𝑓 𝑘
𝑖 |𝑞 + 𝑞|𝑓 𝑘

𝑖 |𝑞−1(𝑓𝑖 − 𝑓 𝑘
𝑖 ) + 1

2𝑞(𝑞 − 1)|𝑓 𝑘
𝑖 |𝑞−2(𝑓𝑖 − 𝑓 𝑘

𝑖 )2.

However, this approximation complicated later calculations and did not improve the
performance of our proposed algorithm, and so we used the simpler 𝑇1(𝑓 ) approximation.
At the first iteration, we expand around 1

2 , and for subsequent iterates, this approximation
is centered at the previous iterate 𝑓 𝑘. Substituting (3.24) in (3.22), completing the squares,
and ignoring constant terms, we have

minimize
𝑓𝑐,𝑓𝑝1,𝑓𝑝2∈ℝ

1
2(𝑓𝑐 − 𝜎𝑐)2 + 1

2(𝑓𝑝1
− 𝜎𝑝1

)2 + 1
2(𝑓𝑝2

− 𝜎𝑝2
)2

subject to 𝑓𝑝1
+ 𝑓𝑝2

− 1 ≤ 𝑓𝑐 ≤ 𝑓𝑝1
+ 𝑓𝑝2

, (3.25)
0 ≤ 𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
≤ 1

where
𝜎𝑐 =𝑠𝑘

𝑐−𝜆𝑞𝑟𝑞−1
1 , 𝜎𝑝1

=𝑠𝑘
𝑝1

−𝜆𝑞𝑟𝑞−1
2 , and 𝜎𝑝2

=𝑠𝑘
𝑝2

−𝜆𝑞𝑟𝑞−1
3 ,

and 𝑟1 = 𝑟2 = 𝑟3 = 1
2 initially and [𝑟1; 𝑟2; 𝑟3] = [𝑓 𝑘

𝑐 , 𝑓 𝑘
𝑝1

, 𝑓 𝑘
𝑝2

] at subsequent iterates 𝑘.
The solution to (3.25) can be obtained in the following way. The level sets of the

objective function are isotropic. Thus, to compute the solution, we simply have to
project the unconstrained minimizer (𝑐, 𝑝1, 𝑝2) onto the truncated cube defined by the
constraints in (3.25). The projection can be done by partitioning the three-dimensional
𝑐-𝑝1-𝑝2 space into 27 subregions where if (𝑐, 𝑝1, 𝑝2) satisfies the constraints, it is
the constrained minimizer, and otherwise, it is projected onto a vertex, an edge, or a
face of the three-dimensional feasible region. For further details on how this can be
accomplished, see Section 3.3.2.
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Figure 3.6: Plots of the subproblem objective function 𝒬(𝑓 ) from (3.23) with 𝑞-norm
approximations using first- and second-order Taylor series expansions, 𝑇1(𝑓 ) and 𝑇2(𝑓 ),
respectively, centered around 𝑓 = 0.5.

Related methods for Poisson reconstruction

We note that other methods exist for recovering signals from data corrupted by
Poisson noise, most notably from the medical and astronomy imaging communities. For
example, in [31, 30], Nowak and Kolaczyk describe a multiscale Bayesian approach in
an Expectation-Maximization (EM) framework for Poisson reconstruction. Proximal
functions can also be applied to solve these functions [32, 14] as well as split Bregman
approaches [18, 17, 38]. However, these methods use convex penalty terms such
as the ℓ1 norm or the total variations norm [36]. Furthermore, it is not clear how
non-trivial constraints can be incorporated into these approaches. In contrast, our current
framework allows us to impose constraints on the computed solution without significant
computational overhead costs.

3.3.5 Diploid One Parent-One Child Method
For the proceeding models, we focus on haploid individuals (detecting one copy of

a variant). However, humans are diploid (two copies inherited from parents) organisms
and as such, we shift our focus to detecting the number of structural variants in a group of
related individuals. This work presented in this section is based on the paper by Banuelos
et al. [8]. Specifically, we describe mathematically our computational framework for
predicting the number of copies an individual carries of each SV for one diploid parent
and child.
Problem formulation. First, let 𝑛 be the length of the vector of genetic variants for every
individual. At each location 𝑖 (1 ≤ 𝑖 ≤ 𝑛), we let 𝑧(𝑖)

𝜎 and 𝑦(𝑖)
𝜎 be indicator variables for
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individual 𝜎 such that

𝑧(𝑖)
𝜎 = 1 if individual 𝜎 has two copies of an SV

𝑦(𝑖)
𝜎 = 1 if individual 𝜎 has one copy of an SV.

If the individual has no copies of the SV at location 𝑖, then 𝑧(𝑖)
𝜎 = 𝑦(𝑖)

𝜎 = 0. Thus, the
observation, 𝑠(𝑖)

𝜎 , at the 𝑖th location for SV copies, is modeled as

𝑠(𝑖)
𝜎 ∼ Poisson (𝑧(𝑖)

𝜎 (2𝑘𝜎 − 𝜖) + 𝑦(𝑖)
𝜎 (𝑘𝜎 − 𝜖) + 𝜖) ,

where 𝑘𝜎 is the sequencing coverage for individual 𝜎 and 𝜖 is the measurement error. We
can write this compactly as follows: Let

⃗𝑧𝑝 =
⎡⎢⎢
⎣

𝑧(1)
𝑝
⋮

𝑧(𝑛)
𝑝

⎤⎥⎥
⎦
, ⃗𝑧𝑐 =

⎡⎢⎢
⎣

𝑧(1)
𝑐
⋮

𝑧(𝑛)
𝑐

⎤⎥⎥
⎦
, ⃗𝑦𝑝 =

⎡⎢⎢
⎣

𝑦(1)
𝑝
⋮

𝑦(𝑛)
𝑝

⎤⎥⎥
⎦
, and ⃗𝑦𝑐 =

⎡⎢⎢
⎣

𝑦(1)
𝑐
⋮

𝑦(𝑛)
𝑐

⎤⎥⎥
⎦

.

Let ⃗𝑧 = [ ⃗𝑧𝑝; ⃗𝑧𝑐] ∈ ℜ2𝑛 and ⃗𝑦 = [ ⃗𝑦𝑝; ⃗𝑦𝑐] ∈ ℜ2𝑛. Define ⃗𝑓 = [ ⃗𝑧; ⃗𝑦] ∈ ℜ4𝑛. Now let 𝐴2 =
(2𝑘𝑗 − 𝜖)𝐼2𝑛 and 𝐴1 = (𝑘𝑗 − 𝜖)𝐼2𝑛, where 𝐼2𝑛 is the 2𝑛 × 2𝑛 identity matrix. Define 𝐴 =
[ 𝐴2 𝐴1] ∈ ℜ2𝑛×4𝑛. Thus, the vector of observations is modeled by

⃗𝑠 ∼ Poisson(𝐴 ⃗𝑓 ). (3.26)

where is the linear projection of true heterozygous and homozygous SVs onto our
observed signal ⃗𝑠.
Continuous Relaxation and Constraints For large 𝑛, the solution space for inferring ⃗𝑓
from ⃗𝑠 is exponentially large since 𝑓 ∈ {0, 1}4𝑛. Thus, rather than solving this problem
combinatorially, we relax our problem formulation to continuous variables so that we
can apply calculus of variations approaches. In particular, we apply a gradient-based
maximum likelihood approach to recover the true indicator variables 𝑧𝜎 and 𝑦𝜎 where
𝜎 = 𝑝 if individual 𝜎 is the parent and 𝜎 = 𝑐 if 𝜎 is the child. Since 𝑧𝜎 and 𝑦𝜎 are
either 0 or 1, we allow for solutions in the interval [0, 1], i.e., 0 ≤ 𝑧𝜎, 𝑦𝜎 ≤ 1. Moreover,
since an individual can only have 0, 1, or 2 copies, we enforce the following constraint
0 ≤ 𝑧𝜎 + 𝑦𝜎 ≤ 1. To incorporate relatedness of individuals, we assume a child cannot
have two copies of the SV if one parent does not have at least one copy of the SV (since
de-novo mutations are rare), i.e., 0 ≤ 𝑧𝑐 ≤ 𝑧𝑝 + 𝑦𝑝. Additionally, if the parent has two
copies of the SV (i.e., 𝑧𝑝 = 1), then the child must have at least one copy of the SV, i.e.,
𝑧𝑝 ≤ 𝑧𝑐 + 𝑦𝑐. Thus, we define our feasible set as

ℱ =
⎧{
⎨{⎩

⃗𝑓 = [ ⃗𝑧; ⃗𝑦] ∈ ℜ4𝑛 ∶
0 ≤ ⃗𝑦𝑝, ⃗𝑦𝑐 ≤ 1,
0 ≤ ⃗𝑧𝑐 ≤ ⃗𝑧𝑝 + ⃗𝑦𝑝 ≤ 1,
0 ≤ ⃗𝑧𝑝 ≤ ⃗𝑧𝑐 + ⃗𝑦𝑐 ≤ 1

⎫}
⎬}⎭

,

where 1 is a vector of ones.
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Optimization Formulation and Approach

Under the model (3.26), the probability of observing ⃗𝑠 is

𝑝( ⃗𝑠 |𝐴 ⃗𝑓 ∗) =
4𝑛
∏
𝑖=1

((𝐴 ⃗𝑓 ∗)𝑖) ⃗𝑠𝑖

⃗𝑠𝑖!
exp (−(𝐴 ⃗𝑓 ∗)𝑖) . (3.27)

Following a maximum likelihood approach, reconstructing genomic variants has the
following constrained optimization form:

minimize
⃗𝑓 ∈ℱ

𝜙( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏‖ ⃗𝑓 ‖1, (3.28)

where 𝐹( ⃗𝑓 ) is the negative Poisson log-likelihood function

𝐹( ⃗𝑓 ) =
2𝑛
∑
𝑗=1

(𝐴 ⃗𝑓 )𝑗 −
4𝑛
∑
𝑗=1

⃗𝑠𝑗 log ((𝐴 ⃗𝑓 )𝑗 + 𝜖) ,

𝜏 > 0 is a regularization parameter, ‖ ⃗𝑓 ‖1 = ∑4𝑛
𝑗=1 |𝑓𝑗| added to promote sparsity in the

solution, and 0 < 𝜖 ≪ 1 is a small parameter introduced to avoid the singularity at ⃗𝑓 =
0. As before, we solve a sequence of quadratic approximations to 𝐹( ⃗𝑓 ). Further, these
quadratic subproblems can be simplified to the following form:

⃗𝑓 𝑘+1 = arg min
⃗𝑓 ∈ℱ

1
2‖ ⃗𝑓 − ⃗𝑟 𝑘‖2

2 + 𝜆‖ ⃗𝑓 ‖1, (3.29)

where ⃗𝑟 𝑘 = ⃗𝑓 𝑘 − 1
𝛼𝑘

∇𝐹( ⃗𝑓 𝑘) and 𝜆 = 𝜏
𝛼𝑘

. Then, the subproblem in (3.29) can be separated
into scalar minimization problems (see [22] for details). Note that the objective function
is separable on the variables ⃗𝑓. Thus (3.29) decouples into 𝑛 four-dimensional problems of
the form

𝑓 𝑘+1 = arg min
𝑓 =[𝑧𝑝;𝑧𝑐;𝑦𝑝;𝑦𝑐]∈ℝ4

1
2‖𝑓 − 𝑟𝑘‖2

2 + 𝜆‖𝑓 ‖1

subject to 0 ≤ 𝑦𝑝, 𝑦𝑐 ≤ 1
0 ≤ 𝑧𝑐 ≤ 𝑧𝑝 + 𝑦𝑝 ≤ 1
0 ≤ 𝑧𝑝 ≤ 𝑧𝑐 + 𝑦𝑐 ≤ 1,

(3.30)

where 𝑟𝑘 = [𝑟𝑘
𝑧𝑝

; 𝑟𝑘
𝑧𝑐

; 𝑟𝑘
𝑦𝑝

; 𝑟𝑘
𝑦𝑐

] and 𝑓 = [𝑧𝑝; 𝑧𝑐; 𝑦𝑝; 𝑦𝑐] correspond to components of ⃗𝑟 𝑘 and ⃗𝑓,
respectively.

In this work, we propose solving (3.30) using two methods, both of which are
based on block-coordinate descent approaches, which work as follows. Method I first
fixes the homozygous indicator variables, 𝑧𝜎, and minimizes over the heterozygous
indicator variables, 𝑦𝜎. In the next step, the heterozygous variables are fixed, and
(3.30) is minimized over the homozygous variables. In contrast, Method II fixes all
but one individual and minimizes (3.30) over the indicator variables for that particular
individual. In subsequent steps, the variables corresponding to some other individual are
minimized while fixing the variables for all other individuals. Both methods continue this
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block-coordinate descent approach until the iterates satisfy a pre-determined convergence
criteria. We now describe each method in more detail.

METHOD I: This method solves (3.30) by alternating between homozygous and
heterozygous indicator variables. In particular, it consists of the following steps.
Step 0: Initially, we fix the values for the homozygous indicator variables by setting 𝑧(0)

𝑝 =
𝑧(0)

𝑐 = 0.5 for each candidate SV location. We then proceed to Step 1.
Step 1: Suppose we have obtained ̂𝑧(𝑖−1)

𝑝 and ̂𝑧(𝑖−1)
𝑐 from the previous iteration. Then to

obtain the solution for the current iteration ̂𝑦(𝑖)
𝑝 and ̂𝑦(𝑖)

𝑐 , we solve

( ̂𝑦(𝑖)
𝑝 , ̂𝑦(𝑖)

𝑐 ) = arg min
𝑦𝑝,𝑦𝑐∈ℝ

1
2(𝑦𝑝 − 𝑎2)2 + 1

2(𝑦𝑐 − 𝑏2)2 (3.31)

subject to 0 ≤ 𝑦𝑝, 𝑦𝑐 ≤ 1
̂𝑧(𝑖−1)
𝑐 − ̂𝑧(𝑖−1)

𝑝 ≤ 𝑦𝑝 ≤ 1 − ̂𝑧(𝑖−1)
𝑝

̂𝑧(𝑖−1)
𝑝 − ̂𝑧(𝑖−1)

𝑐 ≤ 𝑦𝑐 ≤ 1 − ̂𝑧(𝑖−1)
𝑐 ,

where 𝑎2 = 𝑟𝑘
𝑦𝑝

− 𝜆 and 𝑏2 = 𝑟𝑘
𝑦𝑐

− 𝜆. Note that the bounds on 𝑦𝑝 and 𝑦𝑐 are simple bounds.
Thus the feasible region is a simple rectangle (see Fig. 3.7).

0 1
0

1

1 − ̂𝑧𝑐

1 − ̂𝑧𝑝

̂𝑧𝑝 − ̂𝑧𝑐

̂𝑧𝑐 − ̂𝑧𝑝
𝑦𝑝

𝑦 𝑐

Feasible Region (𝑧𝑝 = ̂𝑧𝑝, 𝑧𝑐 = ̂𝑧𝑐)

Figure 3.7: Feasible region corresponding to the constraints in (3.31). The blue region represents
the admissible set of solutions when 𝑧𝑝 - 𝑧𝑐 ≥ 0 and the red region represents the feasible region
when 𝑧𝑝 − 𝑧𝑐 < 0.

Step 2: Suppose we have obtained ̂𝑦(𝑖)
𝑝 and ̂𝑦(𝑖)

𝑐 from Step 1. Then to obtain the solution
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for the current iteration ̂𝑧(𝑖)
𝑝 and ̂𝑧(𝑖)

𝑐 , we complete the square and solve

( ̂𝑧(𝑖)
𝑝 , ̂𝑧(𝑖)

𝑐 ) = arg min
𝑧𝑝,𝑧𝑐∈ℝ

1
2(𝑧𝑝 − 𝑎1)2 + 1

2(𝑧𝑐 − 𝑏1)2 (3.32)

subject to 𝑧𝑝 − ̂𝑦(𝑖)
𝑐 ≤ 𝑧𝑐 ≤ 𝑧𝑝 + ̂𝑦(𝑖)

𝑝 ,
0 ≤ 𝑧𝑝 ≤ 1 − ̂𝑦(𝑖)

𝑝 , 0 ≤ 𝑧𝑐 ≤ 1 − ̂𝑦(𝑖)
𝑐 .

The feasible region is shown in Fig. 3.8.
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𝑧𝑝

𝑧 𝑐

Feasible Region (𝑦𝑝 = ̂𝑦𝑝, 𝑦𝑐 = ̂𝑦𝑐)

Figure 3.8: Feasible region obtained from applying the constraints to (3.32), where the shaded grid
region represents the admissible set of solutions when ̂𝑦𝑝 ≤ 1 − ̂𝑦𝑐. If this condition is not satisfied,
then we project onto the rectangular region obtained when ̂𝑦𝑝 = 1 − ̂𝑦𝑐.

Solution. Note that both problems (3.31) and (3.32) have closed form solutions since the
level sets of the objective functions in both problems are isotropic, and thus the minimizer
can be easily obtained by projecting the unconstrained solution to the feasible set. In
particular, the solution to Step 1 is given by

̂𝑦(𝑖)
𝑝 = mid {1 − ̂𝑧(𝑖−1)

𝑝 , 𝑎2, max{0, ̂𝑧(𝑖−1)
𝑐 − ̂𝑧(𝑖−1)

𝑝 }}
̂𝑦(𝑖)
𝑐 = mid {1 − ̂𝑧(𝑖−1)

𝑐 , 𝑏2, max{0, ̂𝑧(𝑖−1)
𝑝 − ̂𝑧(𝑖−1)

𝑐 }},

where the operator mid{𝑎, 𝑏, 𝑐} chooses the middle value of the three arguments. The
solution to Step 2 can be found in Table 3.4, where the projection, (𝑧(𝑖)

𝑝 , 𝑧(𝑖)
𝑐 ), of the

unconstrained solution (𝑎1, 𝑏1) is explicitly computed.
METHOD II: This method solves (3.30) by alternating between individuals. In
particular, it consists of the following steps.
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Step 0: Initially, we fix the values for the parent. Let 𝑓 𝑘 = [𝑧𝑘
𝑝; 𝑧𝑘

𝑐; 𝑦𝑘
𝑝; 𝑦𝑘

𝑐] be the elements
of ⃗𝑓 𝑘 corresponding to the variables 𝑓 = [𝑧𝑝; 𝑧𝑐; 𝑦𝑝; 𝑦𝑐]. To initialize 𝑧𝑝 and 𝑦𝑝, we apply
the following rule:

̂𝑧(0)
𝑝 = mid {0, 𝑟𝑘

𝑧𝑝
− 𝜆, 1},

̂𝑦(0)
𝑝 = mid {0, 𝑟𝑘

𝑦𝑝
− 𝜆, 1}.

Thus, for each candidate SV location, our initialization is consistent with the set of
feasible solutions with the intent of reducing false-positives in our model.
Step 1: Once we have obtained estimates for the parent’s diploid indicator variables, ̂𝑧(𝑖−1)

𝑝
and ̂𝑦(𝑖−1)

𝑝 , from the previous iteration, we obtain the solution for the the child’s diploid
indicator variable, ̂𝑧(𝑖)

𝑐 and ̂𝑦(𝑖)
𝑐 , by solving

( ̂𝑧(𝑖)
𝑐 , ̂𝑦(𝑖)

𝑐 ) = arg min
𝑧𝑐,𝑦𝑐∈ℝ

1
2(𝑧𝑐 − 𝑏1)2 + 1

2(𝑦𝑐 − 𝑏2)2 (3.33)

subject to 0 ≤ 𝑧𝑐, 𝑦𝑐 ≤ 1
𝑧𝑐 ≤ ̂𝑧(𝑖−1)

𝑝 + ̂𝑦(𝑖−1)
𝑝 ≤ 1

̂𝑧(𝑖−1)
𝑝 ≤ 𝑧𝑐 + 𝑦𝑐 ≤ 1,

where 𝑏1 = 𝑟𝑘
𝑧𝑐

− 𝜆 and 𝑏2 = 𝑟𝑘
𝑦𝑐

− 𝜆.
Step 2: Once we have obtained estimates for the child’s diploid indicator variables, ̂𝑧(𝑖)

𝑐
and ̂𝑦(𝑖)

𝑐 from Step 1, we solve

( ̂𝑧(𝑖)
𝑝 , ̂𝑦(𝑖)

𝑝 ) = arg min
𝑧𝑝,𝑦𝑝∈ℝ

1
2(𝑧𝑝 − 𝑎1)2 + 1

2(𝑦𝑝 − 𝑎2)2 (3.34)

subject to 0 ≤ 𝑧𝑝, 𝑦𝑝 ≤ 1
𝑧𝑝 ≤ ̂𝑧(𝑖−1)

𝑐 + ̂𝑦(𝑖−1)
𝑐 ≤ 1

̂𝑧(𝑖−1)
𝑐 ≤ 𝑧𝑝 + 𝑦𝑝 ≤ 1,

to obtain the solution for the parent’s diploid indicator variable, ̂𝑧(𝑖)
𝑝 and ̂𝑦(𝑖)

𝑝 , where 𝑎1 =
𝑟𝑘

𝑧𝑝
− 𝜆 and 𝑎2 = 𝑟𝑘

𝑦𝑝
− 𝜆.

Steps 1 and 2 are repeated alternatingly until some convergence criteria are satisfied.
We note that the constraints Steps 1 and 2 are equivalent. Thus, the feasible region

corresponding to the constraints are the same. For example, the feasible region for Step 1
is shown in Fig. 3.9.
Solution. The objective functions in both subproblems (3.33) and (3.34) are quadratic
functions with the identity matrix as second-derivatives. Thus, the level curves of
the objective functions are concentric circles centered around (𝑏1, 𝑏2) and (𝑎1, 𝑎2),
respectively. This implies that the minimizer of the constrained subproblems are the
orthogonal projections of (𝑏1, 𝑏2) and (𝑎1, 𝑎2) onto the feasible regional. Therefore, each
subproblem has a closed-form solution and can be thus solved efficiently. In particular,
for Step 1, the constrained solution is the projection of the unconstrained solution (𝑏1, 𝑏2)
onto the feasible set and can be found in Table 3.5. The constrained solution to Step 2 is
similarly defined.
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Figure 3.9: Feasible region corresponding to the constraints, where the shaded grid region
represents the admissible set of solutions.

Numerical Results

For the experiments with the simulated data, a child signal was generated from two
parent signals, which shared a percent similarity (e.g. if both parents were homozygous
for a variant, then the child would also be homozygous and so on) ranging from 60% to
100% in 20% increments. However, for the purpose of testing the proposed approach,
only one parent signal was used. Furthermore, we considered 0.02, 0.08, and 0.16 error
term 𝜖 in obtaining measurements from the forward model.

We first examine the parent signal reconstruction. The false positive rate vs. true
positive rate for the reconstruction of the heterozygous parent signal with coverages
𝑘𝑝 = 4, 𝑘𝑐 = 4, 80% similarity of variants between parents, and an error level of
𝜖 = 0.16 is presented in Fig. 3.10. We note that Method II improves SV detection when
compared to Method I (see Fig. 3.10). Based on AUC measurements, we observe that for
the parent signal (both homozygous and heterozygous indicator variables) there was an
improvement in reconstructions with the fix one individual method as we decrease the
error level. Furthermore, we observed a higher accuracy for the homozygous parent signal
reconstructions as we increase the percentage similarity between the parents. However,
this pattern was the opposite for the heterozygous parent signal.

Next, we examined the child signal reconstruction. Fig. 3.10 illustrates the false
positive rate vs. true positive rate for the reconstruction of the homozygous child signal
with coverages 𝑘𝑝 = 4, 𝑘𝑐 = 4, 80% similarity of variants between parents, and an error
level of 𝜖 = 0.08. For false positive rate values > 0.10 and true positive rate values
< 0.90, no significant difference could be discerned. Accordingly, the axes were reduced
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Figure 3.10: (Left) ROC curves illustrating the false positive rate vs true positive rate for the
reconstruction of the heterozygous parent signal in the simulated data with 𝑘𝑝=4, 𝑘𝑐=4, and 80%
similarity of variants between parents using both methods with 𝜖 = 0.16. (Right) ROC curves
illustrating the false positive rate vs true positive rate for the reconstruction of the homozygous
child signal in the simulated data with 𝑘𝑝 = 4, 𝑘𝑐 = 4, and 80% similarity of variants between
parents using both methods with 𝜖 = 0.08.

in order to provide a more detailed view of the comparison between the two methods.
In this case, we notice both methods perform similarly (see Fig. 3.10). Based on AUC
measurements, we observed that the homozygous child signal reconstructions improved as
we increase the percentage similarity between the parents. We did not observe this type of
improvement in signal reconstruction for the child signal when varying the error level.

Next, we apply our proposed methods to 1000 Genomes Project [2]
father-mother-daughter CEU trio data (NA12891, NA12892, NA12878). The genomes
in Pilot 1 were aligned to NCBI36 and sequenced at approximately 4× coverage.
Experimentally validated (reported) deletions longer than 250bp are taken as the true
signal. We use the reported genotype, unless marked with LowQual, to determine whether
the reported deletion was either heterozygous or homozygous. After applying this
filtering, we create the vectors ⃗𝑧, ⃗𝑦, representing the indicator variables for the genotype
at each location.

The number of candidate deletion locations is 𝑛 = 57, 078 for each CEU genome. The
total number of deletions, both heterozygous and homozygous, were 686, 637, and 724 for
the father, mother, and child, respectively. In the 1000 Genomes data and the simulated
data, we observe similar improvement trends in our proposed method for both parent
heterozygous signals and child homozygous signals. Since the experimentally validated
set of deletions may not be complete, we compare the number of predicted heterozygous
novel deletions to validated SVs in Fig. 3.11. Further, if we consider the broader question
of correctly identifying a deletion, regardless of genotype, we achieve similar results to
the original proposed method (see Fig. 3.11). These similar results are achieved at a lower
computational cost in a more general framework. We report the improved computational
cost of our method in comparison to the original method in Fig. 3.12.
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Figure 3.11: (Left) ROC curves depicting novel deletions vs true positives for the reconstruction
of heterozygous CEU NA12891 (father) signal. (Right) ROC curves depicting novel deletions vs
true positives for the reconstruction the combined heterozygous and homozygous CEU NA12891
(father) signal. In both, 𝑘𝑝1

= 4, 𝑘𝑐 = 4, with 𝜏 = 2.34 ×10−10 and 𝜖 = 0.01.
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Figure 3.12: Given the heterozygous and homozygous observations ⃗𝑠, we plot the computational
time (in seconds) in reconstructing the true signal for the CEU dataset (NA12891 and NA12878).
We observe a general reduction of computational cost for Method II for a range of penalty values
𝜏.

Conclusions

We present a generalized approach for detecting both structural variants (SVs) and
their genotype (heterozygous or homozygous) from low coverage DNA sequencing data.
While it is possible that our methods could be adopted to cancer studies, this is outside
the scope of the current study. We enforce sparsity of variants – since de novo mutations
are rare – as well as include relatedness constraints between individuals. Moreover,
this framework can consider lineages of individuals while keeping computational costs
low. We present and compare two methods and applied them to both real and simulated
data to reconstruct heterozygous and homozygous signals and conclude that we achieve
comparable recall rates for total SV detection with Method II for less CPU time.
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3.4 DNA Sequencing as a Negative Binomial Process

3.4.1 Integer-Valued Dispersion
The following work is based on the paper by Banuelos et al. [3]. During the

sequencing process, if genomic fragments are randomly chosen from the genome, then
the Poisson distribution describes the number of reads covering any genomic locus [27].
The Poisson assumption with a mean represented by the coverage also assumes the same
variance. However, sequencing technologies are known to be biased, resulting in large
variation of coverage depth. This is particularly true in low-coverage settings [26, 49, 13].
In this regime, studies suggest that the two parameter negative binomial distribution may
be more accurate in describing the distribution of fragments [37, 40].

Figure 3.13: Illustration of regions in sequenced genome where there is a deletion (left) and no
deletion (right) relative to a reference genome (ground truth). When sequenced fragments of the
unknown genome do not map concordantly to the reference genome, we consider this a signal for
a potential deletion or other structural variants (SVs). Note that for a deletion, the fragment from
the individual maps to a larger than expected region in the reference. Fragments aligning to the
reference in a concordant fashion indicate there is no genomic variation.

We note that many computational methods exist for processing mapped fragments
and predicting SVs [34, 43, 35, 15, 23]; however most are based on only the mapped
fragments and do not utilize other information about SVs if available. For example,
SVs are relatively rare in an individual’s genome, but most methods do not attempt to
rank or prioritize predictions by how likely they are. This results in many false positive
predictions because fragments that have been mapped to incorrect locations in the genome
are likely to be mistaken as an SV [16, 19, 25]. In addition, when analyzing related
individuals, who should share SVs, variant detection methods only use relatedness to filter
calls as a post-processing step [34, 35, 15]. While some computational methods utilize
the probability of arrangements of fragments, allowing them to estimate the probability
a prediction is false or to rank their predictions by likelihood, most methods rely on the
assumption of Poisson coverage [42]. Overall, most computational methods suffer from
high false positive rates, but high-coverage and high quality data tend to resolve many
false calls [41, 39].

In this work, we aim to improve upon past SV prediction methods in primarily three
ways. Whereas previous work assumed mapped reads follow a Poisson distribution, we
incorporate a negative binomial distribution to model the distribution of fragments [37,
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10, 9, 6]. Instead of assuming equal mean and variance, we estimate both from the data
and the negative binomial model captures the large variability in the sequencing coverage.
Fig. 3.14, for example, provides empirical examples of this phenomena from the 1000
Genomes Project [16]. Secondly, we incorporate low-coverage data instead of relying on
high-quality genomic data. Finally, we concurrently consider sequencing data of related
individuals and enforce inheritance of variants through inequality constraints.
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Figure 3.14: Plot of the map quality vs depth of coverage variance (mean per trio reported) for
European (CEU) trio, Yoruba (YRI) trio, and both trios (father-mother-child) genomes from
the 1000 Genomes Project. Varying the minimum map quality of reads, we calculate the depth
of coverage for each genomic locus. The data show a much higher variance than the expected
coverage of ≈ 4X.

Negative Binomial Log-Likelihood Optimization.

We consider the true signal ⃗𝑓 ∗ ∈ {0, 1}𝑛 to be a binary vector indicating the presence
of a genetic variant, with ⃗𝑓 ∗

𝑗 = 1 if a variant is present at location 𝑗 and 0 otherwise [10, 6,
8]. Thus, the corresponding parent ⃗𝑦𝑝 and child ⃗𝑦𝑐 observations are given by

⃗𝑦𝑝 ∼ NegBin(�⃗�𝑝, �⃗�2
𝑝) and ⃗𝑦𝑐 ∼ NegBin(�⃗�𝑐, �⃗�2

𝑐), (3.35)

where mean 𝜇𝑖 and variance 𝜎2
𝑖 , (𝑖 ∈ {𝑝, 𝑐}) of depth of coverage will be determined by

the sequencing data of each respective individual. We consider the stacked child-parent
signal ⃗𝑦 = [ ⃗𝑦 𝑇

𝑝 ⃗𝑦 𝑇
𝑐 ]𝑇 and corresponding mean and variance vectors, �⃗� and �⃗�2. (Here,

the notation �⃗�2 is to be understood component-wise.) In particular, we have the following
expressions for the components of �⃗� and �⃗�2:

(𝜇)𝑗 = (𝐴 ⃗𝑓 ∗)𝑗 and (𝜎)2
𝑗 = (𝐴 ⃗𝑓 ∗)𝑗 + 1

𝑟 (𝐴 ⃗𝑓 ∗)2
𝑗 ,

where 𝐴, representing expected sequencing coverage, linearly projects the true signal
⃗𝑓 ∗ onto the 𝑛-dimensional set of observations, and 𝑟 is the dispersion parameter of the

negative binomial distribution.
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Problem Formulation. When 𝑟 → ∞, we have 𝜎 = 𝜇 and this reduces to the Poisson
case. If we choose to estimate these parameters from the sample, then we must observe a
variance higher than the mean. Under this model, the probability of observing ⃗𝑦 is given
by the following:

𝑝( ⃗𝑦) =
𝑛

∏
𝑗=1

(
𝑦𝑗 +

𝜇2
𝑗

𝜎2
𝑗 −𝜇𝑗

−1
𝑦𝑗

)(
𝜇𝑗

𝜎2
𝑗
)

𝜇2
𝑗

𝜎2
𝑗 −𝜇𝑗(1−

𝜇𝑗

𝜎2
𝑗
)

𝑦𝑗

. (3.36)

Ignoring constant terms, the negative log-likelihood term, 𝐹(𝜇, 𝜎2), becomes

𝐹(𝜇, 𝜎2) ≡
𝑛

∑
𝑗=1

−log
⎛⎜⎜⎜⎜⎜
⎝

[𝑦𝑗 +
𝜇2

𝑗

𝜎2
𝑗 +𝜇𝑗

− 1]!

(𝑦𝑗)! [
𝜇2

𝑗

𝜎2
𝑗 +𝜇𝑗

− 1]!

⎞⎟⎟⎟⎟⎟
⎠

(3.37)

−
𝜇2

𝑗

𝜎2
𝑗 −𝜇𝑗

log ( 1
𝜎2

𝑗
𝜇𝑗) − 𝑦𝑗 log (1 − 1

𝜎2
𝑗
𝜇𝑗) .

Maximizing variance. Without reverting to the use of Gamma functions for 𝑟 ∈ ℝ, we
assume 𝑟 ∈ ℤ+ and we know 𝜎2

𝑗 = 𝜇𝑗 + 1
𝑟 𝜇2

𝑗 , where 𝜎2
𝑗 is maximized when 𝑟 = 1. Thus,

we can rewrite the probability (3.43) of observing ⃗𝑦 as

𝑝( ⃗𝑦) =
𝑛

∏
𝑗=1

( 1
1 + 𝜇𝑗

) (
𝜇𝑗

1 + 𝜇𝑗
)

𝑦𝑗

, (3.38)

with associated negative log-likelihood,

𝐹 ≡
𝑛

∑
𝑗=1

(𝑦𝑗 + 1) log (1 + 𝜇𝑗) − 𝑦𝑗 log (𝜇𝑗) .

However, we know the mean 𝜇𝑗 = 𝑒𝑇
𝑖 𝐴𝑓. Then, adding the small parameter 𝜀 to represent

sequencing or mapping error, we have

𝐹 (𝑓) ≡
𝑛

∑
𝑗=1

(𝑦𝑗 + 1) log (1 + 𝑒𝑇
𝑖 𝐴𝑓 + 𝜀) − 𝑦𝑗 log (𝑒𝑇

𝑖 𝐴𝑓 + 𝜀) , (3.39)

with gradient

∇𝐹(𝑓 ) =
𝑛

∑
𝑗=1

𝑦𝑗 + 1
1 + 𝑒𝑇

𝑖 𝐴𝑓 + 𝜀
𝐴𝑇𝑒𝑖 −

𝑦𝑗

𝑒𝑇
𝑖 𝐴𝑓 + 𝜀

𝐴𝑇𝑒𝑖. (3.40)

Continuous Relaxation. To apply calculus of variations approaches in this classification
problem, we allow for 𝑓 to take on continuous values in [0, 1]. Otherwise, the
combinatorial optimization problem may be intractable with a maximum-likelihood
approach. As such, the negative binomial reconstruction algorithm takes the following
form of the following constrained optimization problem for a one-parent and one-child
(𝑃, 𝐶) model:

minimize
⃗𝑓 ∈ℝ2𝑛

𝜓( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏 ‖ ⃗𝑓 ‖1

subject to 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1,
(3.41)
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where ⃗𝑓 = [ ⃗𝑓 𝑇
𝑝 ⃗𝑓 𝑇

𝑐 ]𝑇, 1 is a vector of ones, and 𝜏 is a regularization parameter. We
assume that a child will have an SV at a certain location only if the parent also has the
SV at the same location. We enforce this through the linear constraint 0 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝 ≤ 1.
Using a gradient-descent approach, the next iterate in our estimation is given by

⃗𝑓 𝑘+1 = [ ⃗𝑓 𝑘 − 𝛼𝑘∇𝐹( ⃗𝑓 𝑘) + 𝜏1]
𝑃,𝐶

, (3.42)

with step size (learning rate) 𝛼𝑘 and the operation [⋅]𝑃,𝐶 is a projection onto the feasible
set defined by the linear constraints in (3.47) (see [10] for further details).
Results. We evaluate the effectiveness of the proposed method on both simulated and
real genomic data and compare our reconstructions with thresholding observations ⃗𝑦
and previous Poisson models. The proposed method is implemented in Python 3.6. We
explored ten logarithmically-spaced regularization parameters 𝜏 from a 10−2 to 102

grid and chose the value yielding the largest average maximum area under curve for
the receiver operating characteristic (ROC) using 5-fold cross-validation. To determine
the number of true and false positives, we threshold the reconstructed signal – thereby
un-relaxing our continuous assumption. For all experiments, we set 𝛼 = 0.01. The
algorithm terminates if the relative difference between consecutive iterates ‖ ⃗𝑓 𝑘+1 −

⃗𝑓 𝑘‖/‖ ⃗𝑓 𝑘‖2 ≤ 10−6 or exceeds the maximum number of iterates.
We simulated two signals ⃗𝑓𝑝 and ⃗𝑓𝑐, representing the parent and child signals

respectively. Each candidate set of SVs were drawn from a negative binomial distribution
with dispersion parameter 𝑟 = 1 and mean 𝜇𝑝 = 𝜇𝑐 = 4. We observe 𝑛 = 105 potential SV
candidates for each individual, with 500 true variants for ⃗𝑓𝑝, and 250 inherited variants for

⃗𝑓𝑐. This reflects a 50% similarity level and we set 𝜀 = 0.01 to represent the mapping and
sequencing error in the forward model.

We first examine the parent signal reconstruction. Fig. 3.15 presents the number of
false positive vs true positives for the reconstruction of the parent and child signals with
mean coverage 𝜇𝑝 = 𝜇𝑐 = 4, 𝑟 = 1, and 𝜀 = 0.01. Although 𝑛 = 105, we focus on a
more detailed view in the ROC curve to discern differences in prediction. Based on AUC
measurements, we immediately observe an improvement in the number of true predictions
over thresholding with our proposed model. For the 1 Parent-1 Child model, we expect
parental reconstructions to be more informed by the child signal [10].

For the reconstructed child signal, we observe a marginal improvement when the
number of false positives is relatively low. We note, however, that both the parent and
child reconstructions incorporate a penalty of 𝜏 = 1. This is an improvement on our
previous methods, which typically resulted in tuning 𝜏 for each individual [5, 7].

We applied our method to both sequenced genomes of the father-mother-daughter
trios from European (CEU) and Yoruba (YRI) populations. All six individuals from the
1000 Genomes Project were sequenced to ≈ 4X in Pilot 1 and aligned to NCBI36 [16].
We consider experimentally validated deletions meeting the following criteria as the true
deletions: longer than 250bp, not LowQual, and non-overlapping with centromere and
telomere regions.

We implemented GASV [43] on this data to obtain the candidate variant set. The
intersection between the candidate SVs and true deletions results in the true signal ⃗𝑓 ∗. We
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Figure 3.15: ROC curves illustrating the number of false positives vs the number of true positives
for both the parent and child signal reconstruction with 𝜇𝑝 = 4, 𝜇𝑐 = 4, 𝜀 = 0.01, and 50%
similarity. In both reconstructions, we set 𝜏 = 1.6681 based on 5-fold cross validation. We observe
more true positives using our proposed method when compared to thresholding the signal. This is
particularly true in the first thousand predictions.

observe high variability in expected coverage in Fig. 3.14 and thus threshold the minimum
map quality at 10 for all individuals.

We note a higher area under the curve in ROCs of the reconstructed signals for
both CEU and YRI populations in Fig. 3.16 and 3.17 in comparison to the previous
Poisson model. Additionally, this Fig. 3.16 depicts the number of novel deletions vs. true
(experimentally validated) deletions since not the true set may be incomplete. Although
not pictured, we observe similar trends for 𝑝2 in CEU and YRI populations. Next, we
consider the reconstruction for the child signals for both CEU and YRI populations. Fig.
3.17 illustrates a small but measurable difference in true predictions for both with the
same 𝜏 across all individuals.

We propose a novel optimization method to detect structural variants from sequencing
data of related individuals. Our method addresses mean and variance assumptions
of previous methods and incorporates both relatedness and sparsity into the signal
reconstruction. In the next section, we will relax the integer assumption on the dispersion
parameter 𝑟 to generalize our method and accommodate higher variances in sequencing
data.

3.4.2 Real-Valued Dispersion
The work described below is based on the submitted work by Banuelos et al. [4].

With 𝑟 ∈ ℝ, the non-integer number of failures reflects an increase in variance (i.e., much
larger than the mean) and the distribution may still be represented by its probability mass
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Figure 3.16: ROC curves illustrating the number of false positives vs the number of true positives
for parent signal reconstruction with 𝜇𝑝 = 𝜇𝑐 = 4, 𝜀 = 0.01, 𝜏 = 0.01 for both CEU and YRI
populations. We observe an improvement in true predictions across both signals of interest.
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Figure 3.17: ROC curves illustrating the number of false positives vs the number of true positives
for child signal reconstructions with 𝜇𝑝 = 𝜇𝑐 = 4, 𝜀 = 0.01, 𝜏 = 0.01 for both CEU and YRI
populations. For a fixed number of novel deletions, we report a higher number of true positives.
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function. Thus, we seek to maximize the probability of observing ⃗𝑦, given by:

𝑝( ⃗𝑦) =
𝑛

∏
𝑖=1

⎛⎜⎜⎜
⎝

Γ(𝑦𝑖 + 𝜇2
𝑖

𝜎2
𝑖 −𝜇𝑖

)

𝑦𝑖! Γ( 𝜇2
𝑖

𝜎2
𝑖 +𝜇𝑖

)

⎞⎟⎟⎟
⎠
( 𝜇𝑖

𝜎2
𝑖
)

𝜇2
𝑖

𝜎2
𝑖 −𝜇𝑖(1 − 𝜇𝑖

𝜎2
𝑖
)

𝑦𝑖

, (3.43)

where Γ(𝑧) is the gamma function given by Γ(𝑧) = ∫∞
0 𝑥𝑧−1𝑒−𝑥d𝑥. Subsequently, the

negative log-likelihood term, 𝐽(𝜇, 𝜎2), becomes

𝐽(𝜇, 𝜎2) ≡

−
𝑛

∑
𝑖=1

log
⎛⎜⎜⎜
⎝

Γ(𝑦𝑖 + 𝜇2
𝑖

𝜎2
𝑖 −𝜇𝑖

)

(𝑦𝑖)! [Γ( 𝜇2
𝑖

𝜎2
𝑖 +𝜇𝑖

)]!

⎞⎟⎟⎟
⎠

(3.44)

−
𝑛

∑
𝑖=1

( 𝜇2
𝑖

𝜎2
𝑖 −𝜇𝑖

log ( 1
𝜎2

𝑖
𝜇𝑖) − 𝑦𝑖 log (1 − 1

𝜎2
𝑖
𝜇𝑖)) .

Estimating Dispersion. Since sequencing data support that 𝜎2 > 𝜇, we take an
orthogonal approach to estimating the dispersion parameter 𝑟 [45]. Instead of calculating
𝑟 for windows along a genome for each individual, we estimate dispersion according to
𝜎𝑖 = 𝜇𝑖 + 1

𝑟 𝑢2
𝑖 . Thus, after estimating 𝑟 and omitting constant terms, we can rewrite the

negative log-likelihood as the following:

𝐽(𝜇) ≡
𝑛

∑
𝑖=1

(𝑦𝑖 + 𝑟) log (𝑟 + 𝜇𝑖) − 𝑦𝑖 log (𝜇𝑖) . (3.45)

Since the mean can be described by the linear transformation by the coverage matrix 𝐴
on the true signal ⃗𝑓 ∗, we know 𝜇𝑖 = 𝑒⊤

𝑖𝐴𝑓. To model errors in both the sequencing and
mapping process, we introduce the small parameter 𝜀 > 0 and the updated likelihood
function becomes

𝐽( ⃗𝑓 ) ≡
𝑛

∑
𝑖=1

(𝑦𝑖 + 𝑟) log (𝑟 + 𝑒⊤
𝑖𝐴 ⃗𝑓 + 𝜀) − 𝑦𝑖 log (𝑒⊤

𝑖𝐴 ⃗𝑓 + 𝜀) . (3.46)

Imposing Parent-Child Constraints. To minimize (3.46) using gradient-based
approaches, we relax the set of feasible ⃗𝑓 from ⃗𝑓 ∈ {0, 1}𝑛 to 0 ≤ ⃗𝑓 ≤ 1. This relaxation
allows us to compute the first derivative of 𝐽( ⃗𝑓 ) and update each iterate accordingly. In
addition, we constrain the space of feasible solutions by making two assumptions. First,
we assume that a child must inherit an SV if both parents have the SV. Mathematically, we
express this constraint as

⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐.

In other words, if both parents have the SV at location 𝑖, then ( ⃗𝑓𝑝1
)𝑖 = 1 and ( ⃗𝑓𝑝2

)𝑖 = 1, and
therefore ( ⃗𝑓𝑐)𝑖 = 1. Second, we assume that the child cannot have a variant if both parents
do not have the SV at that location. We represent this as the following constraint:

⃗𝑓𝑐 ≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

.
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In other words, if both parents do not have the SV at location 𝑖, then ( ⃗𝑓𝑝1
)𝑖 = 0 and ( ⃗𝑓𝑝2

)𝑖 =
0, and therefore ( ⃗𝑓𝑐)𝑖 = 0.

Optimization Formulation. The generalized negative binomial reconstruction algorithm
takes the following form of the following constrained optimization problem in family
lineages:

minimize
⃗𝑓 ∈ℝ3𝑛

𝜓( ⃗𝑓 ) ≡ 𝐽( ⃗𝑓 ) + 𝜏 ‖ ⃗𝑓 ‖1

subject to ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

− 1 ≤ ⃗𝑓𝑐 ≤ ⃗𝑓𝑝1
+ ⃗𝑓𝑝2

,
0 ≤ ⃗𝑓𝑐, ⃗𝑓𝑝1

, ⃗𝑓𝑝2
≤ 1,

(3.47)

where ⃗𝑓 = [ ⃗𝑓 ⊤
𝑝1

⃗𝑓 ⊤
𝑝2

⃗𝑓 ⊤
𝑐 ]⊤, and 𝜏 > 0 is a regularization parameter that balances the

data-fidelity term 𝐽( ⃗𝑓 ) with the sparsity-promoting penalty term ‖ ⃗𝑓 ‖1.
We implement this method iteratively using a gradient descent approach and

inheritance constraints – and corresponding projections – are enforced as in [9].
Specifically, at each iteration, we compute the gradient

∇𝐽( ⃗𝑓 ) =
𝑛

∑
𝑗=1

𝑦𝑗 + 𝑟
𝑟 + 𝑒⊤

𝑖𝐴 ⃗𝑓 + 𝜀
𝐴⊤𝑒𝑖 −

𝑦𝑗

𝑒⊤
𝑖𝐴 ⃗𝑓 + 𝜀

𝐴⊤𝑒𝑖, (3.48)

and use it to compute the next iterate, defined by

⃗𝑓 𝑘+1 = Proj [ ⃗𝑓 𝑘 − 𝛼𝑘∇𝐽( ⃗𝑓 𝑘) + 𝜏1] , (3.49)

where 𝛼𝑘 is the step size (learning rate), 1 is the vector of ones, and the operation Proj[ ⋅ ]
is a projection onto the feasible set defined by the linear constraints in (3.47). Fig. 3.5 is a
three-dimensional representation of this feasible set. For further details on projecting onto
this feasible set, see [10].

3.5 Appendix: Tables of Minimizers and Projections
This appendix summarizes the minimizers for the aforementioned methods with

the respective tables describing the analytical solutions to optimization subproblems
presented in Sections 3.3.2 and 3.3.5.
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Table 3.2: Haploid Two Parents-One Child Minimizers. Solutions to (3.16) given (𝑐, 𝑝1, 𝑝2)
corresponding to the feasible region in Fig. 3.5

REGION 𝑐 𝑝1 𝑝2 Minimizer
Inside
Region

𝑅(𝑐,𝑝1,𝑝2)
0 ≤ 𝑐 ≤ 1, 𝑐 ≤ 𝑝2 +
𝑝1, 𝑐 ≥ 𝑝2 + 𝑝1 − 1 0 ≤ 𝑝1 ≤ 1 0 ≤ 𝑝2 ≤ 1 (𝑐, 𝑝1, 𝑝2)

Vertices
𝑅(0,0,0) 𝑐 ≤ −𝑝2, 𝑐 ≤ −𝑝1 𝑝1 ≤ 0 𝑝2 ≤ 0 (0, 0, 0)
𝑅(0,0,1) 𝑐 ≤ 0, 𝑐 ≤ −𝑝1 𝑝1 ≤ 𝑝2 − 1 𝑝2 ≥ 1 (0, 0, 1)
𝑅(0,1,0) 𝑐 ≤ 0, 𝑐 ≤ −𝑝2 𝑝1 ≥ 1 𝑝2 ≤ 𝑝1 − 1 (0, 1, 0)
𝑅(1,0,1) 𝑐 ≥ 1, 𝑐 ≥ 2 − 𝑝2 𝑝1 ≤ 0 𝑝2 ≥ 𝑝1 + 1 (1, 0, 1)
𝑅(1,1,0) 𝑐 ≥ 1, 𝑐 ≥ −𝑝1 + 2 𝑝1 ≥ 𝑝2 + 1 𝑝2 ≤ 0 (1, 1, 0)

𝑅(1,1,1)
𝑐 ≥ −𝑝1 + 2, 𝑐 ≥
−𝑝2 + 2 𝑝1 ≥ 1 𝑝2 ≥ 1 (1, 1, 1)

Edges
𝑅(0,0,𝑝2) 𝑐 < 0 𝑝1 < 0 0 < 𝑝2 < 1 (0, 0, 𝑝2)
𝑅(0,𝑝1,0) 𝑐 < 0 0 < 𝑝1 < 1 𝑝2 < 0 (0, 𝑝1, 0)

𝑅(0,𝑠1,𝑡1) 𝑐 < − 1
2 𝑝2 − 1

2 𝑝1 + 1
2

𝑝1 < 𝑝2 + 1, 𝑝1 >
𝑝2 − 1 𝑝2 > 1 − 𝑝1 (0, 𝑠1, 𝑡1)

𝑅(𝑐,0,1) 0 < 𝑐 < 1 𝑝1 < 0 𝑝2 > 1 (𝑐, 0, 1)
𝑅(𝑐,1,0) 0 < 𝑐 < 1 𝑝1 > 1 𝑝2 < 0 (𝑐, 1, 0)

𝑅(1,𝑠2,𝑡2) 𝑐 > − 1
2 𝑝2 − 1

2 𝑝1 + 3
2

𝑝1 < 𝑝2 + 1, 𝑝1 >
𝑝2 − 1 𝑝2 < 1 − 𝑝1 (1, 𝑠2, 𝑡2)

𝑅(1,𝑝1,1) 𝑐 > 1 0 < 𝑝1 < 1 𝑝2 > 1 (1, 𝑝1, 1)
𝑅(1,1,𝑝2) 𝑐 > 1 𝑝1 > 1 0 < 𝑝2 < 1 (1, 1, 𝑝2)
𝑅(𝑟3,0,𝑡3) 𝑐 > −𝑝2, 𝑐 > 𝑝2 𝑝1 < 1

2 (𝑝2 − 𝑐) 𝑝2 < 2 − 𝑐 (𝑟3, 0, 𝑡3)
𝑅(𝑟4,𝑠4,0) 𝑐 > −𝑝1, 𝑐 > 𝑝1 𝑝1 < 2 − 𝑐 𝑝2 < 1

2 (𝑝1 − 𝑐) (𝑟4, 𝑠4, 0)
𝑅(𝑟5,𝑠5,1) 𝑐 > −𝑝1, 𝑐 < 𝑝1, 𝑝1 < 2 − 𝑐 𝑝2 > 1

2 (2 + 𝑝1 − 𝑐) (𝑟5, 𝑠5, 1)
𝑅(𝑟6,1,𝑡6) 𝑐 > −𝑝2, 𝑐 < 𝑝2, 𝑝1 > 1

2 (2 + 𝑝2 − 𝑐) 𝑝2 < 2 − 𝑐 (𝑟6, 1, 𝑡6)
Surfaces
𝑅(𝑐,0,𝑝2) 𝑐 ≥ 0, 𝑐 ≤ 𝑝2 𝑝1 ≤ 0 0 ≤ 𝑝2 ≤ 1 (𝑐, 0, 𝑝2)
𝑅(𝑐,𝑝1,0) 𝑐 ≥ 0, 𝑐 ≤ 𝑝1 0 ≤ 𝑝1 ≤ 1 𝑝2 ≤ 0 (𝑐, 𝑝1, 0)
𝑅(1,𝑝1,𝑝2) 𝑐 ≥ 1 𝑝1 ≤ 1, 𝑝1 ≥ 1 − 𝑝2 0 ≤ 𝑝2 ≤ 1 (1, 𝑝1, 𝑝2)
𝑅(0,𝑝1,𝑝2) 𝑐 ≤ 0 𝑝1 ≥ 0, 𝑝1 ≤ 1 − 𝑝2 0 ≤ 𝑝2 ≤ 1 (0, 𝑝1, 𝑝2)
𝑅(𝑐,1,𝑝2) 𝑐 ≤ 1, 𝑐 ≥ 𝑝2 𝑝1 ≥ 1 0 ≤ 𝑝2 ≤ 1 (𝑐, 1, 𝑝2)
𝑅(𝑐,𝑝1,1) 𝑐 ≤ 1, 𝑐 ≥ 𝑝1 0 ≤ 𝑝1 ≤ 1 𝑝2 ≥ 1 (𝑐, 𝑝1, 1)

𝑅(𝑟7,𝑠7,𝑡7)
𝑐 ≥ 𝑝2 + 𝑝1, 𝑐 ≤
− 1

2 𝑝2 − 1
2 𝑝1 + 3

2
𝑝1 ≥ 1

2 (𝑝2 − 𝑐) 𝑝2 ≥ 1
2 (𝑝1 − 𝑐) (𝑟7, 𝑠7, 𝑡7)

𝑅(𝑟8,𝑠8,𝑡8)
𝑐 ≤ 𝑝2 + 𝑝1 − 1, 𝑐 ≥
− 1

2 𝑝2 − 1
2 𝑝1 + 1

2
𝑝1 ≤ 1

2 (𝑝2 − 𝑐 + 2) 𝑝2 ≤ 1
2 (𝑝1 − 𝑐 + 2) (𝑟8, 𝑠8, 𝑡8)
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Table 3.3: Haploid Two Parents-One Child Projections Edge and Surface projections of
(𝑐, 𝑝1, 𝑝2) corresponding to (3.16) and Table 3.2.

REGION 𝑟𝑖 𝑠𝑖 𝑡𝑖 Minimizer
Edges
𝑅(0,𝑠1,𝑡1) 0 𝑠1 = 1

2 (𝑝1 − 𝑝2 + 1) 𝑡1 = 1
2 (𝑝2 − 𝑝1 + 1) (0, 𝑠1, 𝑡1)

𝑅(1,𝑠2,𝑡2) 1 𝑠2 = 1
2 (𝑝1 − 𝑝2 + 1) 𝑡2 = 1

2 (𝑝2 − 𝑝1 + 1) (1, 𝑠2, 𝑡2)
𝑅(𝑟3,0,𝑡3) 𝑟3 = 1

2 (𝑐 + 𝑝2) 0 𝑡3 = 1
2 (𝑐 + 𝑝2) (𝑟3, 0, 𝑡3)

𝑅(𝑟4,𝑠4,0) 𝑟4 = 1
2 (𝑐 + 𝑝1) 𝑠4 = 1

2 (𝑐 + 𝑝1) 0 (𝑟4, 𝑠4, 0)
𝑅(𝑟5,𝑠5,1) 𝑟5 = 1

2 (𝑐 + 𝑝1) 𝑠5 = 1
2 (𝑐 + 𝑝1) 1 (𝑟5, 𝑠5, 1)

𝑅(𝑟6,1,𝑡6) 𝑟6 = 1
2 (𝑐 + 𝑝2) 1 𝑡6 = 1

2 (𝑐 + 𝑝2) (𝑟6, 1, 𝑡6)
Surfaces
𝑅(𝑟7,𝑠7,𝑡7) 𝑟7 = 2

3 𝑐+ 1
3 𝑝1 + 1

3 𝑝2 𝑠7 = 1
3 𝑐+ 2

3 𝑝1 − 1
3 𝑝2 𝑡7 = 1

3 𝑐 − 1
3 𝑝1 + 2

3 𝑝2 (𝑟7, 𝑠7, 𝑡7)

𝑅(𝑟8,𝑠8,𝑡8)
𝑟8 = 2

3 𝑐 + 1
3 𝑝1 +

1
3 𝑝2 − 1

3

𝑠8 = 1
3 𝑐+ 2

3 𝑝1− 1
3 𝑝2+

1
3

𝑡8 = 1
3 𝑐− 1

3 𝑝1+ 2
3 𝑝2+

1
3

(𝑟8, 𝑠8, 𝑡8)

Table 3.4: Diploid One Parent-One Child (Method 1) Minimizers. Solutions to (3.32) given 𝑎1
and 𝑏1 for the region projections in Fig. 3.8 when ̂𝑦𝑝 ≤ 1 − ̂𝑦𝑐. Here 𝑟=𝑎1+𝑏1,
𝑠=−𝑎1+2− ̂𝑦𝑐−2 ̂𝑦𝑝, 𝑡=−𝑎1+2−2 ̂𝑦𝑐− ̂𝑦𝑝.

Region Condition 𝑎1 Condition 𝑏1 (𝑧(𝑖)
𝑝 , 𝑧(𝑖)

𝑐 )
𝑅𝑎1,𝑏1

0 ≤ 𝑎1 ≤1− ̂𝑦𝑝 𝑎1 − ̂𝑦𝑐 ≤ 𝑏1, (𝑎1, 𝑏1)
𝑏1 ≤ 𝑎1 + ̂𝑦𝑐,
𝑏1 ≤ 1 − ̂𝑦𝑐
0 ≤ 𝑏1

𝑅1 𝑎1 ≤ 0 0 ≤ 𝑏1 ≤ ̂𝑦𝑝 (0, 𝑏1)
𝑅2 𝑎1 < 0 𝑏1 < 0 (0, 0)
𝑅3 0 < 𝑎1 ≤ ̂𝑦𝑐 𝑏1 ≤ 0 (𝑎1, 0)
𝑅4 𝑎1 > ̂𝑦𝑐 𝑏1 < 𝑠 ( ̂𝑦𝑐, 0)

𝑅5 𝑎1 ≥ 𝑏1 + ̂𝑦𝑐
−𝑎1 + ̂𝑦𝑐 ≤ 𝑏1 ( 1

2 (𝑟+ ̂𝑦𝑐), 1
2 (𝑟− ̂𝑦𝑐))𝑏1 ≤ 𝑠

𝑅6
𝑎1 > 1 − ̂𝑦𝑝 𝑠 < 𝑏1 (1− ̂𝑦𝑝, 1− ̂𝑦𝑐− ̂𝑦𝑝)𝑏1 <1− ̂𝑦𝑐− ̂𝑦𝑝

𝑅7 𝑎1 ≥ 1 − ̂𝑦𝑝 1− ̂𝑦𝑝− ̂𝑦𝑐 < 𝑏1 (1 − ̂𝑦𝑝, 𝑏1)
𝑏1 < 1 − ̂𝑦𝑐

𝑅8 𝑎1 > 1 − ̂𝑦𝑝 𝑏1 > 1 − ̂𝑦𝑐 (1 − ̂𝑦𝑝, 1 − ̂𝑦𝑐)
𝑅9 1− ̂𝑦𝑐− ̂𝑦𝑝 < 𝑎1 𝑏1 > 1 − ̂𝑦𝑐 (𝑎1, 1 − ̂𝑦𝑐)

𝑎1 < 1 − ̂𝑦𝑝
𝑅10 𝑎1 <1− ̂𝑦𝑐− ̂𝑦𝑝 𝑏1 > 𝑡 (1− ̂𝑦𝑐− ̂𝑦𝑝, 1 − ̂𝑦𝑐)

𝑅11 𝑎1 ≤ 𝑏1 − ̂𝑦𝑝

−𝑎1 + ̂𝑦𝑝 ≤ 𝑏1
( 1

2 (𝑟− ̂𝑦𝑝), 1
2 (𝑟+ ̂𝑦𝑝))𝑏1 ≤ 𝑡

𝑏1 ≤ −𝑎1

𝑅12 𝑎1 < 0 ̂𝑦𝑝 < 𝑏1 (0, ̂𝑦𝑝)𝑏1 <−𝑎1+ ̂𝑦𝑝
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Table 3.5: Diploid One Parent-One Child (Method 2) Minimizers. Solutions to (3.33) given 𝑏1
and 𝑏2 for the nontrivial projection regions. Here ̂𝑞 = ̂𝑧𝑝 + ̂𝑦𝑝. The values (𝑟𝑖, 𝑠𝑖) for 𝑖 = {1, 2} are
given in Table 3.6.

Region Condition 𝑏1 Condition 𝑏2 (𝑧(𝑖)
𝑐 , 𝑦(𝑖)

𝑐 )
𝑅(𝑏1,𝑏2) 0 ≤ 𝑏1 ≤ ̂𝑞 𝑏2 ≤ 1 − 𝑏1

𝑏2 ≥ ̂𝑧𝑝 − 𝑏1 (𝑏1, 𝑏2)
𝑏2 ≥ 0

𝑅1 𝑏1 > 1 − 𝑏2
𝑏2 > 𝑏1 + 1 − 2 ̂𝑞
𝑏2 < 𝑏1 + 1 (𝑟1, 𝑠1)

𝑅2 𝑏1 > ̂𝑞 𝑏2 < 𝑏1+1−2 ̂𝑞 𝑏2 >
1 − ̂𝑞 ( ̂𝑞, 1 − ̂𝑞)

𝑅3 𝑏1 > ̂𝑞 0 < 𝑏2 < 1 − ̂𝑞 ( ̂𝑞, 𝑏2)
𝑅4 𝑏1 > ̂𝑞 𝑏2 < 0 ( ̂𝑞, 0)
𝑅5 ̂𝑧𝑝 < 𝑏1 < ̂𝑞 𝑏2 < 0 (𝑏1, 0)
𝑅6 𝑏1 < ̂𝑧𝑝 𝑏2 < 0

𝑏2 < 𝑏1 − ̂𝑧𝑝 ( ̂𝑧𝑝, 0)
𝑅7 𝑏1 < ̂𝑧𝑝 − 𝑏2 𝑏2 > 𝑏1 − ̂𝑧𝑝

𝑏2 < 𝑏1 + ̂𝑧𝑝 (𝑟2, 𝑠2)
𝑅8 𝑏1 < 0 𝑏2 < ̂𝑧𝑝

𝑏2 > 𝑏1 + ̂𝑧𝑝 (0, ̂𝑧𝑝)
𝑅9 𝑏1 < 0 ̂𝑧𝑝 < 𝑏2 < 1 (0, 𝑏2)
𝑅10 𝑏1 < 𝑏2 − 1 𝑏2 > 1 (0, 1)

Table 3.6: Diploid One Parent-One Child (Method 2) Projections.The values of (𝑟1, 𝑠1) and
(𝑟2, 𝑠2) in Table 3.5.

Region Variable 𝑟𝑖 Variable 𝑠𝑖 (𝑧(𝑖)
𝑐 , 𝑦(𝑖)

𝑐 )
𝑅1

1
2(𝑏1 − 𝑏2 + 1) 1

2(𝑏2 − 𝑏1 + 1) (𝑟1, 𝑠1)
𝑅7

1
2(𝑏1 − 𝑏2 + ̂𝑧𝑝) 1

2(𝑏2 − 𝑏1 + ̂𝑧𝑝) (𝑟2, 𝑠2)
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Chapter 4

Convergence Analysis of Poisson Process
Methods

In this chapter, I prove the convergence of methods discussed in Sections 3.3.1 and
3.3.2 by incorporating the method of Lagrange multipliers.

4.1 Haploid One Parent-One Child Method
Since we are concerned with this binary classification problem, we know both the

minimum and maximum of the signal intensity and our reconstruction takes the form:

̂⃗𝑓 =arg min
⃗𝑓 ∈ℱ

𝜙( ⃗𝑓 ) ≡ 𝐹( ⃗𝑓 ) + 𝜏‖ ⃗𝑓 ‖1,

subject to 0 ≤ ⃗𝑓 ≤ 1,
(4.1)

where 𝐹( ⃗𝑓 ) is the negative Poisson log-likelihood function and ℱ represents the feasible
set of solutions. Following the SPIRAL framework [5] , this decomposes into the
following subproblem:

[ ̂𝑓𝑐, ̂𝑓𝑝] =arg min
𝑓𝑝,𝑓𝑐∈ℝ

1
2(𝑓𝑝 − 𝑏)2 + 1

2(𝑓𝑐 − 𝑎)2

subject to 0 ≤ 𝑓𝑐
0 ≤ 𝑓𝑝 − 𝑓𝑐
0 ≤ 1 − 𝑓𝑝.

(4.2)

Theorem 3. The separable subproblem (4.2) has a unique minimizer [𝑓 ∗
𝑐 , 𝑓 ∗

𝑝 ] for 𝑎, 𝑏 ∈ ℝ.

Proof. The associated Lagrangian for (4.2) is given by

ℒ(𝑓𝑐, 𝑓𝑝, 𝜆1, 𝜆2, 𝜆3) = 1
2(𝑓𝑝 − 𝑏)2 + 1

2(𝑓𝑐 − 𝑎)2

− 𝜆1𝑓𝑐 − 𝜆2(𝑓𝑝 − 𝑓𝑐)
− 𝜆3(1 − 𝑓𝑝),
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where 𝜆1, 𝜆2, 𝜆3 ≥ 0 are the Lagrange multipliers corresponding to the previous
constraints. Since the primal problem is convex and Slater’s condition holds for the primal
problem, the duality gap is zero. Thus, the primal and dual values are equal and since
the level sets of Equation (4.2) are concentric circles, then the orthogonal projection
method proposed in Section 3.3.1 solves both the primal and dual problem [3, 4]. For
completeness, we consider solving the dual problem. To satisfy the complementary
slackness conditions, we consider which constraints are not active, which directly depends
on the value of the unconstrained minimum (𝑎, 𝑏). We proceed by cases, with a specific
example for the interior, edges, and vertices of the feasible region:
Case 1 - Interior Region - (𝑎, 𝑏) satisfy all inequality constraints. In this case, all the
constraints are not active and 𝜆1 = 𝜆2 = 𝜆3 = 0. Thus,

[𝑓 ∗
𝑐 , 𝑓 ∗

𝑝 ] = [𝑎, 𝑏].

Case 2 - Vertices. We consider the unconstrained minimum, where 𝑎 ≥ 1, 𝑏 ≥ −𝑎 + 2.
Since 𝑎 ≥ 1, we know 𝜆1 = 0. Furthermore, we must consider the following subcases
Subcase 𝑎 > 𝑏. The modified Lagrangian becomes

ℒ𝑉1
(𝑓𝑐, 𝑓𝑝, 0, 𝜆2, 𝜆3) = 1

2(𝑓𝑝 − 𝑏)2 + 1
2(𝑓𝑐 − 𝑎)2

− 𝜆2(𝑓𝑝 − 𝑓𝑐) − 𝜆3(1 − 𝑓𝑝).

Differentiating ℒ𝑉1
with respect to 𝑓𝑐 and 𝑓𝑝 and setting the derivatives to zero yields

𝑓𝑐 = 𝑎 − 𝜆2

𝑓𝑝 = 𝑏 + 𝜆2 − 𝜆3.
(4.3)

Then, substituting (4.3) in ℒ𝑉1
, the Lagrangian dual problem becomes

𝒥𝑉1
(𝜆2, 𝜆3) = 𝑎𝜆2 + 𝑏(𝜆3 − 𝜆2) − 𝜆2

2 + 𝜆2𝜆3 −
𝜆2

3
2 − 𝜆3

subject to 𝜆2, 𝜆3 ≥ 0.
(4.4)

Computing the gradient of 𝒥𝑉1
with respect to 𝜆2 and 𝜆3 yields

∇𝜆2
𝒥𝑉1

= 𝜆3 + 𝑎 − 𝑏 − 2𝜆2

∇𝜆3
𝒥𝑉1

= 𝜆3 + 𝑎 − 𝑏 − 2𝜆2.

Solving for 𝜆2 and 𝜆3, we have 𝜆2 = −1 + 𝑎 and 𝜆3 = −2 + 𝑎 + 𝑏. Note that we have

𝑓𝑐 = 𝑎 − 𝜆2 = 𝑎 − (−1 + 𝑎)
= 1,

and
𝑓𝑝 = 𝑏 + 𝜆2 − 𝜆3 = 𝑏 + (−1 + 𝑎) − (−2 + 𝑎 + 𝑏)

= 1.
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Thus, since (4.2) is strictly convex, the global minimum for ℒ𝑉1
(𝑓𝑝, 𝑓𝑐, 0, 𝜆2, 𝜆3) is

(1, 1, 0, −1+𝑎, −2+𝑎+𝑏), which satisfies the KKT conditions and agrees with projections
outlined in [2]. We obtain consistent results for remaining vertices. Subcase 𝑎 ≤ 𝑏. We
have 𝜆2 = 0 and the modified Lagrangian becomes

ℒ𝑉2
(𝑓𝑐, 𝑓𝑝, 0, 0, 𝜆3) = 1

2(𝑓𝑝 − 𝑏)2 + 1
2(𝑓𝑐 − 𝑎)2

− 𝜆3(1 − 𝑓𝑝).

Differentiating ℒ𝑉2
with respect to 𝑓𝑐 and 𝑓𝑝 and setting the derivatives to zero yields

𝑓𝑐 = 𝑎
𝑓𝑝 = 𝑏 − 𝜆3.

(4.5)

Then, for the dual problem, we have

𝒥𝑉2
(𝜆3) = 1

2𝜆3(−𝜆3 − 2 + 2𝑏)

subject to 𝜆3 ≥ 0.
Differentiating 𝒥𝑉2

with respect to 𝜆3, setting it to zero, and solving for 𝜆3, we obtain
𝜆3 = 𝑏 − 1. Note that we have

𝑓𝑝 = 𝑏 − 𝜆3 = 𝑏 − (𝑏 − 1) = 1

and since 𝑎 ≥ 1 and 𝑎 ≤ 𝑏, we have 𝑓𝑐 = 𝑎 = 1. Thus, the global minimum for
ℒ𝑉1

(𝑓𝑝, 𝑓𝑐, 0, 0, 𝜆3) is (1, 1, 0, 0, 𝑏 − 1).
Case 3 - Edges. We consider the unconstrained minimum, where 𝑎 ≥ |𝑏|, 𝑏 < −𝑎+2. Since
𝑎 ≥ 0, we know 𝜆1 = 0. Moreover, we have 𝑏 ≤ 1, which results in the third constraint as
not active and we have 𝜆3 = 0. Then, the modified Lagrangian becomes

ℒ𝐸1
(𝑓𝑐, 𝑓𝑝, 0, 𝜆2, 0) = 1

2(𝑓𝑝 − 𝑏)2 + 1
2(𝑓𝑐 − 𝑎)2

− 𝜆2(𝑓𝑝 − 𝑓𝑐)
Differentiating ℒ𝐸1

with respect to 𝑓𝑐 and 𝑓𝑝 and setting the derivatives to zero yields

𝑓𝑐 = 𝑎 − 𝜆2

𝑓𝑝 = 𝑏 + 𝜆2.
(4.6)

Then, substituting (4.6) in ℒ𝐸1
, the Lagrangian dual problem becomes

𝒥𝐸1
(𝜆2) = 𝑎𝜆2 − 𝑏𝜆2 − 𝜆2

2

subject to 𝜆2 ≥ 0.
(4.7)

Computing the gradient of 𝒥𝐸1
with respect to 𝜆2, setting to zero and solving yields

𝜆2 = 𝑎 − 𝑏
2 ⇒ 𝑓𝑐 = 𝑓𝑝 = 𝑎 + 𝑏

2 .

Thus, the optimal point for ℒ𝐸1
(𝑓𝑝, 𝑓𝑐, 0, 𝜆2, 0) is (𝑎+𝑏

2 , 𝑎+𝑏
2 , 0, 𝑎−𝑏

2 , 0). Using a similar
approach, we uniquely identify the optimal solution for the remaining two edges.
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As a result of the unique minimizer for the subproblem above, we obtain the main
convergence result for the Haploid One Parent-One Child (𝑃1, 𝐶1) method.

Theorem 4. Let {𝑓 (𝑗)
𝑐 , 𝑓 (𝑗)

𝑝 }
𝑗≥0

be the sequence generated by iteratively solving the
separable subproblem (4.2). Then all accumulation points are critical points and hence
the 𝑃1, 𝐶1 method converges to a minimizer of (4.1).

Proof. This proof follows identically as the proof of Theorem 1 in [5] where this problem
satisfies all the conditions outlined (e.g. 𝐹 is proper convex) and no modifications are
required for the constraints within the proof.

4.2 Haploid Two Parent-One Child Method
Following the SPIRAL framework [5], Equation (3.16) decomposes into the following

subproblem:

[ ̂𝑓𝑐, ̂𝑓𝑝1
, ̂𝑓𝑝2

] =arg min
𝑓𝑝,𝑓𝑐∈ℝ

1
2(𝑓𝑐 − 𝑐)2 + 1

2(𝑓𝑝1
− 𝑝1)2 + 1

2(𝑓𝑝2
− 𝑝2)2

subject to 0 ≤ 𝑓𝑐
0 ≤ 𝑓𝑝1

0 ≤ 𝑓𝑝2

0 ≤ 1 − 𝑓𝑐
0 ≤ 1 − 𝑓𝑝1

0 ≤ 1 − 𝑓𝑝2

0 ≤ 𝑓𝑐 − 𝑓𝑝1
− 𝑓𝑝2

+ 1
0 ≤ 𝑓𝑝1

+ 𝑓𝑝2
− 𝑓𝑐.

(4.8)

Theorem 5. The separable subproblem (4.8) has a unique minimizer [𝑓 ∗
𝑐 , 𝑓 ∗

𝑝1
, 𝑓 ∗

𝑝2
] for

𝑐, 𝑝1, 𝑝2 ∈ ℝ.

Proof. The associated Lagrangian for (4.8) is given by

ℒ(𝑓𝑐, 𝑓𝑝1
, 𝑓𝑝2

, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8) = 1
2(𝑓𝑐 − 𝑐)2 + 1

2(𝑓𝑝1
− 𝑝1)2 + 1

2(𝑓𝑝2
− 𝑝2)2

− 𝜆1𝑓𝑐 − 𝜆2𝑓𝑝1
− 𝜆3𝑓𝑝2

− 𝜆4(1 − 𝑓𝑐) − 𝜆5(1 − 𝑓𝑝1
) − 𝜆6(1 − 𝑓𝑝2

)
− 𝜆7(𝑓𝑐 − 𝑓𝑝1

− 𝑓𝑝2
+ 1) − 𝜆8(𝑓𝑝1

+ 𝑓𝑝2
− 𝑓𝑐),

As in the previous section, the primal problem is convex and Slater’s condition holds for
the primal problem. Hence, the duality gap is zero and the primal and dual values are
equal. Since the level sets of Equation (4.8) are concentric circles, then the orthogonal
projection method proposed in Section 3.3.2 solves both the primal and dual problem [3,
4]. As before, we consider the cases for solving the dual problem for completeness.
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Case 1 - Interior Region - (𝑐, 𝑝1, 𝑝2) satisfy all inequality constraints. In this case, all
the constraints are not active and 𝜆𝑖 = 0 for 𝑖 = 1, … , 8. Thus,

[𝑓 ∗
𝑐 , 𝑓 ∗

𝑝1
, 𝑓 ∗

𝑝2
] = [𝑐, 𝑝1, 𝑝2].

Case 2 - Vertices. We consider the unconstrained minimum, where 𝑐 ≥ 1, 𝑐 ≥ −𝑝1 + 2,
𝑝1 ≥ 𝑝2 + 1, and 𝑝2 ≤ 0. At minimum, this results in 𝜆1 = 𝜆6 = 0 for the inactive
constraints. Moreover, we consider the following three subcases:
subcase V1: 0 < 𝑝1 < 1. Since 𝑝1 satisfies the second and fifth constraints, we also have
𝜆2 = 𝜆5 = 0. Consequently, we know that 𝑐 − 𝑝1 − 𝑝2 + 1 ≥ 0 and thus 𝜆7 = 0 as an
inactive constraint. Then, the modified Lagrangian becomes

ℒ𝑉1
(𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
, 0, 0, 𝜆3, 𝜆4, 0, 0, 0, 𝜆8) = 1

2(𝑓𝑐 − 𝑐)2 + 1
2(𝑓𝑝1

− 𝑝1)2 + 1
2(𝑓𝑝2

− 𝑝2)2

− 𝜆3𝑓𝑝2
− 𝜆4(1 − 𝑓𝑐) − 𝜆8(𝑓𝑝1

+ 𝑓𝑝2
− 𝑓𝑐).

Differentiating ℒ𝑉1
with respect to 𝑓𝑐, 𝑓𝑝1

and 𝑓𝑝2
, setting the derivatives to zero yields

𝑓𝑐 = 𝑐 − 𝜆4 − 𝜆8

𝑓𝑝1
= 𝜆8 + 𝑝1

𝑓𝑝2
= 𝜆3 + 𝜆8 + 𝑝2.

(4.9)

Substituting (4.9) into ℒ𝑉1
, the Lagrangian dual problem becomes

𝒥𝑉1
(𝜆3, 𝜆4, 𝜆8) =1

2 (2𝜆4(𝑐 − 𝜆8 − 1) − 𝜆8(−2𝑐 + 3𝜆8 + 2(𝑝1 + 𝑝2))

− 𝜆2
3 − 2𝜆3(𝜆8 + 𝑝2) − 𝜆2

4 )
subject to 𝜆3, 𝜆4, 𝜆8 ≥ 0.

(4.10)

Computing the gradient of 𝒥𝑉1
with respect to 𝜆3, 𝜆4, and 𝜆8, setting the derivatives

equal to zero, we obtain
𝜆3 = 𝑝1 − 𝑝2 − 1
𝜆4 = 𝑐 + 𝑝1 − 2
𝜆8 = 1 − 𝑝1,

(4.11)

which results in [𝑓𝑐, 𝑓𝑝1
, 𝑓𝑝2

] = [1, 1, 0]. Thus, the optimal point for
ℒ𝑉1

(𝑓𝑐, 𝑓𝑝1
, 𝑓𝑝2

, 0, 0, 𝜆3, 𝜆4, 0, 0, 0, 𝜆8 is (1, 1, 0, 0, 0, 𝑝1 − 𝑝2 − 1, 𝑐 + 𝑝1 − 2, 0, 0, 0, 1 − 𝑝1),
as described in [1].
subcase V2: 𝑝1 ≥ 1. In this case, we have 𝜆2 = 0 as the inactive constraint. However,
this only occurs if 𝑝2 = 0. Thus, we conclude 𝜆3 = 0. With 𝑝2 = 0 and having 𝜆4 and
𝜆5 as active constraints ensures that the seventh constraint is met (i.e., 𝜆7 = 0). Thus, the
modified Lagrangian becomes

ℒ𝑉2
(𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
, 0, 0, 0, 𝜆4, 𝜆5, 0, 0, 𝜆8) = 1

2(𝑓𝑐 − 𝑐)2 + 1
2(𝑓𝑝1

− 𝑝1)2 + 1
2(𝑓𝑝2

− 𝑝2)2

− 𝜆4(1 − 𝑓𝑐) − 𝜆5(1 − 𝑓𝑝1
) − 𝜆8(𝑓𝑝1

+ 𝑓𝑝2
− 𝑓𝑐).
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Differentiating ℒ𝑉2
with respect to 𝑓𝑐, 𝑓𝑝1

and 𝑓𝑝2
, setting the derivatives to zero and

recalling 𝑝2 = 0, yields
𝑓𝑐 = 𝑐 − 𝜆4 − 𝜆8

𝑓𝑝1
= −𝜆5 + 𝜆8 + 𝑝1

𝑓𝑝2
= 𝜆8 + 𝑝2 = 𝜆8.

(4.12)

Substituting (4.12) into ℒ𝑉2
, the Lagrangian dual problem becomes

𝒥𝑉2
(𝜆4, 𝜆5, 𝜆8) =1

2 (2𝑐𝜆8 − 3𝜆2
8 − 2𝜆8𝑝1 + 2𝜆5(𝑝1 − 1 + 𝜆8) − 2𝜆8𝑝2 + 𝑝2

2

− 𝜆2
4 + 2𝜆4(𝑐 − 1 − 𝜆8) − 𝜆2

5 )
subject to 𝜆4, 𝜆5, 𝜆8 ≥ 0.

(4.13)

Computing the gradient of 𝒥𝑉2
with respect to 𝜆4, 𝜆5, and 𝜆8, setting the derivatives

equal to zero, we obtain
𝜆4 = 𝑐 − 1 − 𝜆8 = 𝑐 − 1
𝜆5 = 𝜆8 − 1 + 𝑝1 = 𝑝1 − 1
𝜆8 = 0,

(4.14)

which results in [𝑓𝑐, 𝑓𝑝1
, 𝑓𝑝2

] = [1, 1, 0]. Thus, the optimal point for
ℒ𝑉1

(𝑓𝑐, 𝑓𝑝1
, 𝑓𝑝2

, 0, 0, 0, 𝜆4, 𝜆5, 0, 0, 𝜆8) is (1, 1, 0, 0, 0, 0, 𝑐 − 1, 𝑝1 − 1, 0, 0, 0), as described
in [1].
subcase V3: 𝑝1 ≤ 0. In this case, we have 𝜆5 = 0 as an inactive constraint. Consequently,
we have 𝜆7 = 0. Moreover, we know that 𝑝1 ≥ 𝑝2 + 1 in this regime and so having the
active constraint of 𝜆3 ensures 𝑝1 ≥ 0 (i.e., 𝜆2 = 0). Thus, the modified Lagrangian is
given by

ℒ𝑉3
(𝑓𝑐, 𝑓𝑝1

, 𝑓𝑝2
, 0, 0, 𝜆3, 𝜆4, 0, 0, 0, 𝜆8) = 1

2(𝑓𝑐 − 𝑐)2 + 1
2(𝑓𝑝1

− 𝑝1)2 + 1
2(𝑓𝑝2

− 𝑝2)2

− 𝜆3𝑓𝑝2
− 𝜆4(1 − 𝑓𝑐) − 𝜆8(𝑓𝑝1

+ 𝑓𝑝2
− 𝑓𝑐).

However, ℒ𝑉3
= ℒ𝑉1

with the same optimal solution as above. Edges and surfaces
follow similarly as the case for vertices by considering the modified Lagrangian for three
subcases for each region of the truncated cube.

Establishing the unique minimizer for the subproblem above leads to the main
convergence result for the Haploid Two Parent-One Child (𝑃2, 𝐶1) method:

Theorem 6. Let {𝑓 (𝑗)
𝑐 , 𝑓 (𝑗)

𝑝1 , 𝑓 (𝑗)
𝑝2 }

𝑗≥0
be the sequence generated by iteratively solving the

separable subproblem (4.8). Then all accumulation points are critical points and hence
the 𝑃2, 𝐶1 method converges to a minimizer of (4.1).

Proof. This proof follows identically as the proof of Theorem 1 in [5] where this problem
satisfies all the conditions outlined (e.g. 𝐹 is proper convex) and no modifications are
required for the constraints within the proof.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion
Genomic variation, responsible for a variety of evolutionary phenomena, remains a

substantial field for mathematical and statistical models. Once regarded as junk DNA,
understanding how transposable elements proliferate (and proliferated in the past)
may uncover their abundance across many species. Moreover, detecting such genomic
rearrangements has only become feasible with advances in DNA sequencing capabilities.
Detection methods, as a result, will likely uncover potential genomic changes responsible
for inherited traits and diseases.

This dissertation outlined my contributions to the field of modeling and detecting
genomic variation within and between species. In particular, this work was guided and
organized by two fundamental questions: 1) how does DNA causing genomic variation
proliferate through the genome of a species? and 2) how can we leverage a priori
information to improve predictions of genomic variants?

Chapter 2 addressed the first question through the development of a mathematical
model of transposable element length distributions. Both discrete and continuous models
accurately depicts the distribution of TEs in a variety of species. By explicitly modeling
partial length elements, the proposed model incorporated data often ignored by previous
models.

In Chapter 3, I developed a general optimization framework to detect genomic variants
subject to heredity constraints. In this general context, I presented a total of five different
models reflecting a change in family structure and DNA sequencing assumptions. Both
simulated and real data results were presented for a subset of these models. Lastly,
Chapter 4 addressed the convergence of Haploid models with Poisson sequencing
assumptions using the method of Lagrange multipliers.

These statistical models and methods, however, raise even more questions. Next,
I outline some of these emerging questions and how I will create and build upon
mathematical models to begin answering them.
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5.2 Future Work

5.2.1 Nonconvex Methods for Variant Detection
The end of Chapter 3 introduced using the negative binomial distribution to model

DNA sequencing. As a result, this assumption resulted in a nonconvex formulation of the
objective function. Although a local minimum will be obtained using gradient-descent
methods, I am interested in applying methods from nonconvex optimization to structural
variant detection. In particular, machine learning approaches present a tractable way to
address this classification problem.

The methods discussed in Chapter 3 also only focused on traditional family structures,
but these relatedness constraints may be relaxed to include non-parental and non-sibling
constraints. If data were collected from a geographic region, for example, I look forward
to exploring how this changes the proposed models in the context of both noisy and
low-quality genomic data.

5.2.2 Malarial Resistance and Signs of Selection
To characterize the role of genomic variants in humans, I am also interested in

applying statistical and analytical models to endemic diseases, like malaria. I am currently
using sequencing data to obtain an unbiased sample for evidence of pathogenic resistance
(e.g., malaria). Most studies that have been conducted have focused on sequencing
the DNA of individuals with the intent of analyzing specific genes associated with
malaria resistance. However, most large-scale sequencing data repositories have the
broader of goal of categorizing human genetic variation. I intend to analyze both genes
associated with such resistance but also include any regions related to blood regulation
in humans. To accomplish this goal and view high-dimensional data, I plan to use
dimension-reduction techniques, such as principal component analysis (PCA), in a local
genomic setting.

5.2.3 A Mathematical Model of Central Valley Fever
My introduction to fungal genomics at the Joint Genome Institute has led to

questions in modeling Coccidioides, the cause of Valley fever, and applying classification
techniques to Valley fever patient-data to better inform our limited understanding of this
disease.
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