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Ground Vehicle Navigation in GNSS-Challenged
Environments using Signals of Opportunity and a

Closed-Loop Map-Matching Approach
Mahdi Maaref and Zaher M. Kassas,Senior Member, IEEE

Abstract—A ground vehicle navigation approach in global
navigation satellite system (GNSS)-challenged environments is
developed, which uses signals of opportunity (SOPs) in a closed-
loop map-matching fashion. The proposed navigation approach
employs a particle filter that estimates the ground vehicle’s state
by fusing pseudoranges drawn from ambient SOP transmitters
with road data stored in commercial maps. The problem con-
sidered assumes the ground vehicle to havea priori knowledge
about its initial states as well as the position of SOPs. The
proposed closed-loop approach estimates the vehicle’s states for
subsequent time as it navigates without GNSS signals. In this
approach, a particle filter is employed to continuously estimate
the vehicle’s position and velocity along with the clock error states
of the vehicle-mounted receiver and SOP transmitters. Simulation
and experimental results with cellular long-term evolution (LTE)
SOPs are presented, evaluating the efficacy and accuracy of
the proposed framework in different driving environments. The
experimental results demonstrate a position root-mean squared
error (RMSE) of: 1.6 m over a 825 m trajectory in an urban
environment with 5 cellular LTE SOPs, 3.9 m over a 1.5 km
trajectory in a suburban environment with 2 cellular LTE SOP s,
and 3.6 m over a 345 m trajectory in a challenging urban
environment with 2 cellular LTE SOPs. It is demonstrated that
incorporating the proposed map-matching algorithm reduced the
position RMSE by 74.88%, 58.15%, and 46.18% in these three
environments, respectively, from the RMSE obtained by an LTE-
only navigation solution.

Index Terms—Signals of opportunity, autonomous ground
vehicle, map-matching, particle filter.

I. I NTRODUCTION

A UTONOMOUS ground vehicles (AGVs), also known as
self-driving cars, promise to bring an economic and a

transportation revolution and to improve the quality of life.
AGVs are predicted to annually prevent 5M accidents and 2M
injuries, conserve 7B liters of fuel, and save 30K lives and
$190B in healthcare costs associated with accidents in the U.S.
[1]. As ground vehicles progress towards fully autonomy, they
will demand an extremely reliable and accurate navigation
system [2], [3]. Today’s car navigation systems fuse multi-
modal information from global navigation satellite systems
(GNSS) receivers, vehicle motion and proximity sensors, vehi-
cle kinematic models, and digital maps [4]. GNSS receivers are
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used to aid onboard dead-reckoning (DR)-type sensors (e.g.,
inertial navigation system (INS) and lidar) and to provide a
navigation solution in a global frame, which gets matched
to the digital map [5]–[8]. Map-matching is the process of
associating the vehicle’s navigation solution with a spatial
road map [9], [10]. Map-matching algorithms enhance the
navigation solution by incorporating precise road network
data anda priori information of road features [11]. Map
suppliers have dedicated considerable attention recentlyto
develop highly accurate digital maps to meet the requirements
of AGVs [12].

On-line and off-line map-matching approaches match the
vehicle’s position estimate, produced by GNSS receivers and
onboard DR sensors, with the digital road map. However, cur-
rent navigation systems will not meet the stringent reliability
and accuracy demands of AGVs, due to their heavy reliance
on GNSS signals. These signals get severely attenuated in
urban environments and are susceptible to unintentional and
intentional interference (i.e., jamming) and malicious spoofing
[13]–[15]. Without GNSS signals, errors in DR sensors accu-
mulate, compromising the safe and efficient operation of the
AGV.

Recently, signals of opportunity (SOPs) have been used to
overcome GNSS drawbacks [16]–[19]. Recent research have
demonstrated how to exploit SOPs (e.g., cellular signals [20]–
[23], digital television signals [24], [25], and AM/FM signals
[26], [27]) to produce a navigation solution in a standalone
fashion and in an integrated fashion, aiding INS and lidar [28]–
[31]. SOPs are abundant and are free to use. Moreover, cellular
SOPs, in particular, inherently possess desirable characteristics
for navigation purposes: (i) ubiquity, (ii) high received power,
(iii) large transmission bandwidth, (iv) wide range of trans-
mission frequencies, and (v) geometric diversity [32].

This paper considers the following practical scenario. A
ground vehicle is equipped with a GNSS receiver and a sep-
arate receiver capable of producing pseudoranges to ambient
SOP transmitters. When the vehicle enters a GNSS-challenged
environments (e.g., a deep urban canyon or an environment
under a malicious jamming attack on the GNSS frequency
band), GNSS signals are no longer usable or reliable. In the
absence of GNSS measurements, the accumulated errors of
DR-type sensors grow unboundedly. However, SOPs can be
used as an aiding source to bound the navigation errors [28],
[31]. Exploiting ambient SOPs in the environment alleviates
the need for costly, bulky, and computationally intensive sen-
sors (e.g., INS, lidar, and camera). Nevertheless, if the vehicle
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is equipped with such sensors and/or if GNSS signals are
available, the proposed framework could seamlessly integrate
the outputs of these sensors to improve the vehicle’s navigation
solution.

This paper proposes a framework for producing a ground
vehicle navigation via a closed-loop map-matching algorithm.
The proposed framework operates in two modes: Mode 1
triggers when GNSS signals are available and fuses the GNSS-
derived estimates, SOP pseudorange measurements, and the
digital road map and Mode 2 triggers when GNSS signals
are unavailable or unusable and fuses SOP pseudorange
measurements and the digital road map. In Mode 2, the
proposed framework assumes the vehicle (i) to haveinitial
knowledge of its own states (e.g., from its navigation system
just before GNSS signals became unavailable) and (ii) to be
equipped with: (i) a receiver capable of producing pseudorange
measurements to ambient SOPs (e.g., [22], [25], [33], [34])
and (ii) a digital map of the road segments and SOP locations.

This paper makes two contributions. First, a novel closed-
loop map-matching framework for navigation in both GNSS-
available and GNSS-challenged environments is developed.
The framework simultaneously estimates the vehicle’s position
and velocity states along with the difference between the
vehicle-mounted receiver’s dynamic stochastic clock error
states (bias and drift) and the clock error states of each SOP
clock. A computationally efficient particle filter that fuses
digital map data and SOP pseudoranges is adopted. Second,
the accuracy and efficacy of the proposed framework is an-
alyzed through four simulation and three experimental tests.
The experimental tests used real cellular long-term evolution
(LTE) SOPs and were conducted on a ground vehicle in differ-
ent environments, including (i) an urban environment where
multipath severely affected the received LTE signals, (ii)a
suburban environment where LTE SOPs had a poor geometric
diversity and the vehicle had limited line-of-sight (LOS) to
LTE towers, and (iii) a GNSS-challenged urban environment
with multiple junctions and GNSS cutoff conditions, while
using pseudorange measurements from only 2 LTE SOPs.
The experimental results in these three environment show
respectively a (i) position root-mean squared error (RMSE)
of 1.6 m over a 825 m trajectory in the urban environment
with 5 LTE SOPs, (ii) position RMSE of 3.9 m over a 1.5 km
trajectory in the suburban environment with 2 LTE SOPs, and
(iii) position RMSE of 3.6 m over a 345 m trajectory in the
challenging urban environment with 2 LTE SOPs. Moreover, it
is demonstrated that incorporating the proposed map-matching
algorithm reduced the position RMSE by 74.88% and 58.15%
in urban and suburban environments, respectively, from the
RMSE obtained by an LTE-only navigation.

The remainder of this paper is organized as follows. Section
II surveys related research on map-matching strategies for
ground vehicle navigation and highlights the difference be-
tween existing approaches and the proposed approach. Section
III describes the vehicle and SOP dynamic models, the SOP
pseudorange measurement model, and the digital map model.
Section IV develops the map-matching framework that fuses
the digital map with SOP pseudorange measurements. Sections
V and VI present simulation and experimental results, respec-

tively, evaluating the performance of the proposed framework.
Concluding remarks and future work are given in Section VII.

II. RELATED WORK

Map-matching for ground vehicle navigation has been stud-
ied in the literature. In [9], a map-matching framework was
proposed that provided integrity provision at the lane-level.
The framework defined the integrity as the capability of the
system to detect performance anomalies and warn the user
whenever the system should not be used. The proposed method
fused measurements from a GNSS receiver, an odometer,
and a gyroscope with road information through a multiple-
hypothesis particle filter. In [35], three factors of currently
used algorithms in floating car data (FCD) were discussed:
distance, speed-direction, and connectivity. The characteristics
of highway networks were analysed, and a map-matching
approach was proposed based on the gradual-removal of candi-
date roads. In [36], a ground vehicle navigation framework was
proposed that performs map-matching by adaptively choosing
the appropriate timing and matching method according to the
complexity of the local network to which the positioning
point belongs. This method is experimentally shown to be
beneficial due to the fact that using fixed time interval can
result in a lack of efficiency and accuracy if the initial point
is not correctly matched. In [37], a cooperative map-matching
approach for vehicle positioning was introduced, which es-
tablished a vehicle-to-vehicle (V2V) communication approach
in a vehicular ad hoc network (VANET) to exchange GNSS-
derived information between vehicles. In [38], a method for
accurate and efficient map-matching for challenging envi-
ronments was presented. This method considered a number
of heuristics rooted in a set of observations from real-life
usage scenarios (e.g., traffic distribution on different roads).
The framework used the cellular location information and
was shown to be able to achieve better results compared to
traditional hidden Markov model (HMM)-based map-matching
frameworks, in cases where the cellular-derived localization
error was on the order of kilometers. In [11], a map-matching
approach was proposed that uses an HMM tailored for noisy
and sparse data to generate partial map-matched paths in an
online manner. In [39], a particle filter was employed to fuse
the magnetometer data with the digital map to estimate the
vehicle’s position and heading. In [40], a framework was
presented that used a multiple-hypothesis algorithm for fusing
the navigation solution of a global positioning system (GPS)-
INS system with digital maps. The framework included an
algorithm to evaluate whether the map-matched results could
be used to calibrate the sensors in order to increase the
positioning accuracy. Since the number of hypothesis nodes
in map-matching algorithms grows exponentially with time,
the framework proposed a strategy to reduce the number of
hypotheses by pruning the branches of the multiple-hypothesis
tree and eliminating and merging the redundant nodes. In [41],
reusability of historical information was evaluated alongwith
spatial-temporal patterns in the arrangement of the projected
GNSS points to the road networks. To this end, a machine
learning framework was developed that detected and validated
the spatial-temporal patterns in projection vectors produced by
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map-matching. The problem of using the digital map data to
correct the sensor error has been also studied in the literature
[42]–[44]. Due to the fact that the errors in digital maps is
typically smaller than sensor error, the digital map information
can be used to correct the accumulated error in DR-type
sensors (e.g., INS) [40].

In contrast to existing map-matching approaches, to the
author’s knowledge, this is the first paper that develops a map-
matching approach for SOP-derived estimates, while dealing
with the problem of unknown clock error states of the SOP
transmitters. Unlike GNSS-based navigation where the clock
error states of GNSS satellites are known by decoding the nav-
igation message, the complexity with SOPs is that their clock
error states are unknown and must be estimated. In this paper,
a closed-loop map-matching approach is developed, where the
refined vehicle position estimate obtained from fusing SOP
pseudoranges and digital road maps is used in a feedback
to refine estimates of the clock error states. Fig. 1 compares
the existing GNSS-based map-matching approaches with the
proposed closed-loop SOP-based map-matching framework.
In the GNSS-based approaches (e.g., [10]) the algorithm is
open-loop with inputs being GNSS signals, digital maps, and
navigation sensors (if any) and the output being the refined
navigation solution. In the proposed method, however, the
algorithm is closed-loop where the navigation solution is fed
back to refine estimates of the receiver and SOPs clock error
states.

GNSS
signals

(a) Similar map-matching studies

Map
matching

Navigation
solution

SOP
signals

(b) Proposed map-matching framework

Map-
matching

Navigation
solution

Receiver + SOP clock
error estimation

Clock error estimates
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(If available)
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Fig. 1. Comparison between the proposed framework and existing map-
matching approaches. (a) Existing map-matching approaches assume the
availability of GNSS signals, which are fused with road datato refine the
vehicle’s navigation solution. (b) The proposed approach operates in the
absence of GNSS signals. Here, SOPs are fused with road data to refine
the vehicle’s navigation solution. The navigation solution is fed back to refine
the estimates of the receiver’s and SOPs’ clock error states.

III. M ODEL DESCRIPTION

This section describes the dynamic model of the vehicle,
SOP transmitters [45], [46], and geographical digital maps.
Also, it specifies the pseudorange measurement model made
by the vehicle-mounted receiver on SOP transmitters.

A. Vehicle and SOP Dynamics Model

The navigation environment is assumed to compriseNs

terrestrial SOP transmitters, denoted{Sn}
Ns

n=1. It is assumed
that the vehicle knows the location of the SOP transmitters

(e.g., from a local or a cloud-hosted database). In practice, one
could map the SOP transmitter locationsa priori via several
approaches, such as radio mapping or satellite images and
store them in a database, which is continuously maintained.
This has been the subject of prior research (e.g., [25], [46],
[47]). In this paper, LTE cellular SOPs were used to experi-
mentally evaluate the performance of the proposed approach,
as discussed in Section VI. This was due to the availability
of an LTE receiver that provided pseudorange measurements.
However, the proposed framework is agnostic to the type of
SOP and could accommodate other SOP types (e.g., cellular
CDMA, digital television, AM/FM radio) from which pseudo-
range measurements are extracted via appropriate receivers.

Each SOP tower is assumed to be spatially stationary. Al-
though the SOP locations are assumed to be known, their clock
error states (i.e., clock bias and drift) are unknown, dynamic,
and stochastic; hence, they must be estimated continuously.
The dynamics of the clock bias and drift is typically modeled
as a double-integrator driven by a process noise [48]–[51].
This model is valid over a relatively short periods of time for
both the SOP transmitters and the vehicle-mounted receiver.
Since the SOP pseudorange measurement is parameterized by
the difference between the receiver’s and the SOP’s clock
biases [45], one only needs to estimate the difference in clock
biases and clock drifts, reducing the number of clock error
states that need to be estimated from2Ns+2 to 2Ns . Hence,
each SOP will be associated with a state vector∆xclk,sn that
consists of the difference between its clock bias and drift with
the clock bias and drift of the vehicle-mounted receiver, i.e.,

∆xclk,sn ,

[
c∆δtn, c∆δ̇tn

]T
, n = 1, . . . , Ns,

where c is the speed of light,∆δtn = δtr − δtsn is the
difference between the receiver’s clock biasδtr and then-th
SOP’s clock biasδtsn , and∆δ̇tn = δ̇tr−δ̇tsn is the difference
between the receiver’s clock driftδ̇tr and then-th SOP’s clock
drift δ̇tsn .

Accordingly, the discrete-time dynamic model of the clock
error states can be expressed as

∆xclk(k + 1) = Φclk∆xclk(k) +wclk(k), (1)

Φclk ,




Fclk 0 . . . 0

0 Fclk . . . 0
...

...
. . .

...
0 0 . . . Fclk


 ,Fclk ,

[
1 T

0 1

]
,

where∆xclk =
[
∆xT

clk,s1 , . . . ,∆xT

clk,sNs

]T
, T is the sam-

pling time, andwclk is the process noise, which is modeled
as a discrete-time zero-mean white random sequence with
covariance

Qclk = ΓQclk,r,sΓ
T, (2)

where

Γ ,




I2×2 −I2×2 0 . . . 0

I2×2 0 −I2×2 . . . 0
...

...
...

. . .
...

I2×2 0 0 . . . −I2×2


 ,
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and Qclk,r,s , diag
[
Qclk,r,Qclk,s1 , . . . ,Qclk,sNs

]
. Here,

Qclk,sn is the process noise covariance of then-th SOP, which
is given by

Qclk,sn = c2

[
Sw̃δt,sn

T+Sw̃δ̇t,sn

T 3

3 Sw̃δ̇t,sn

T 2

2

Sw̃δ̇t,sn

T 2

2 Sw̃δ̇t,sn
T

]
,

where Sw̃δt,sn
and Sw̃δ̇t,sn

are the power spectra of the
continuous-time process noisẽwδt,sn and w̃δ̇t,sn

, driving the
clock bias and clock drift, respectively [46], [51]. Note that
Qclk,r has the same form asQclk,sn , except thatSw̃δt,sn

and
Sw̃δ̇t,sn

are replaced by the receiver-specific spectraSw̃δt,r
and

Sw̃δ̇t,r
, respectively. The spectraSw̃δt,r

and Sw̃δ̇t,sn
can be

related to the power-law coefficients,{hα}
2
α=−2, which have

been shown through laboratory experiments to characterizethe
power spectral density of the fractional frequency deviation
y(t) of an oscillator from nominal frequency, namely,Sy(f) =∑2

α=−2 hαf
α [48], [51]. It is common to approximate such

relationship by considering only the frequency random-walk
coefficienth−2 and the white frequency coefficienth0, which
lead toSw̃δt,r

≈
h0

2 andSw̃δ̇t,sn
≈ 2π2h−2 [49], [50].

The vehicle’s state vectorxr consists of the vehicle’s two-
dimensional (2-D) positionpr = [prx, pry]

T and velocity
vr, i.e., xr , [pT

r ,v
T

r ]
T, expressed in the global frameG

(Latitude-Longitude coordinates). The vehicle is assumedto be
moving according to velocity random walk dynamics, which
can be expressed in discrete-time by

xr(k + 1) = Arxr(k) +wr(k), (3)

Ar =

[
I2×2 T I2×2

02×2 I2×2

]
,

wherewr is a discrete-time zero-mean white noise sequence
with covarianceQr given by

Qr =




q̃x
T 3

3 0 q̃x
T 2

2 0

0 q̃y
T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0

0 q̃y
T 2

2 0 q̃yT


,

where q̃x and q̃y are the power spectral densities of the
continuous-time process noisẽwr, driving the acceleration in
x- and y-directions, respectively. The velocity random walk
motion model is general enough to account for a wide range
of moving objects, while being mathematically tractable.

B. Map Model

Digital maps provide geographical data and location in-
formation, which can be used for aligning noisy traces and
displaying traversed trajectories. Digital maps are extensively
used in modern navigation systems for accurate vehicle guid-
ance and advanced driver-assistance systems (ADAS) func-
tions. To this end, geographical information systems (GISs),
which represent the roads as series of links, are employed
with map-matching techniques to snap the recorded vehicle
trajectory trace (e.g., from a GNSS navigation solution) tothe
digital road map. Each link includes the driving road centerline
coordinates, the lane information, and the road heading angle
[9], [52]. A set of map-matched positions for a sample link of

a map with unique link identifierl are defined based onkln ,
sln , andτln , wherekln ∈ N is the lane identifier,sln ∈ R is
the offset from the first map-matched position in linkl, and
τln is the heading angle. The linkl is assumed to compriseLN

map-matched positions, denoted{ln}
LN

n=1. It can be shown that
for any link l, there exist two recursive functionsMl andNl

that return the 2-D position vector of then-th map-matched
positionpm , [pmx, pmy]

T, expressed in the global frameG
(see Appendix A), specifically

pmxn
=Ml(pmxn−1

, sln , sln−1
, τln−1

, kln), (4)

pmyn
= Nl(pmyn−1

, sln , sln−1
, τln−1

, kln),

wherepmx ∈ {pmxn
}LN

n=1 and pmy ∈ {pmyn
}LN

n=1 represent
the 2-D map-matched vehicle position. Fig. 2 shows an ex-
ample of a digital map including the links and map-matched
positions, which are superimposed on a Google Map.

The map used in this study is developed based on an Open
Street Map (OSM) database [53] for Riverside, California.
OSM is built by a community of mappers that contribute
and maintain roads, trails, and railway stations information.
A M ATLAB -based parser was developed to extract the road
coordinates and lane information and interpolate map-matched
positions between two successive points with a distance greater
than a specified threshold. Fig. 2 shows the interchange
road junction between interstate highways 215 and 10 in
Riverside, California. This area contains 131 links and 2,441
map-matched positions, which are presented with green lines
and brown circles, respectively. The lane identifier and link
offset for the 35,146,349-th link of the OSM database and its
corresponding map-matched positions are illustrated.

x(Longitude)

y(Latitude)

= 502m
kl35146349 = 1

pmx = −117:296998◦

pmy = 34:063292◦

Map-matched points

Traversed path
Links

τl35146349 = 45
◦

Fig. 2. An example digital map and its corresponding map-matched points
and links.

Some approaches in the literature consider the maps to be
faultless (e.g., [54], [55]); however, in the proposed approach,
the map displacement errorwm is modeled as a zero-mean
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random vector with covarianceΣm = diag
[
σ2

mx
, σ2

my

]
.

To find the map-matched vehicle’s position at time-stepk,
while accounting for the map displacement error, the proposed
model finds the closest Mahanalobis distance on the map to the
estimated vehicle’s position at time-stepk. The Mahalanobis
distance provides a powerful method of measuring how similar
some set of observations is to an ideal set of observations with
some known mean and covariance. The estimated position
and map-matched position of the vehicle at time-stepk are
assumed to bêpr(k) and p̂m(k), respectively. Subsequently

p̂m(k) = min
ln
‖p̂r(k)− ln‖Σm

, (5)

where

‖p̂r(k)− ln‖Σm
=

√
[p̂r(k)− ln]TΣm

−1[p̂r(k) + ln].

Note thatp̂r(k) will be defined later in Subsection IV-C.

C. Pseudorange Observation Model

After discretization and mild approximations, the pseudor-
ange made by the vehicle-mounted receiver on then-th SOP
is given by [45]

zsn(k) =
∥∥pr(k)− psn

∥∥
2
+ c∆δtn(k) + wsn , (6)

wherepsn
is the location of then-th SOP tower andwsn is

the measurement noise, which is modeled as a discrete-time
zero-mean white Gaussian sequence with varianceσ2

sn
. The

vector of pseudorange measurements to allNs SOPs is given
by

zs =
[
zs1 , . . . , zsNs

]T
, (7)

and it is assumed that the measurement noise{wsn}
Ns

n=1 are
independent.

IV. CLOSED-LOOP MAP-MATCHING FRAMEWORK FOR

VEHICLE STATE ESTIMATION USING SOPS

This section describes a closed-loop framework to map-
match the vehicle’s position estimate using SOP pseudoranges.

A. Problem Formulation

A vehicle with velocity random walk dynamics (cf. (3)) is
assumed to navigate in an environment comprisingNs SOP
transmitters. The location of these transmitters are assumed to
be known. In Mode 1, GNSS signals are available and GNSS-
derived vehicle position-estimates are map-matched to theroad
map. In Mode 2, GNSS signals become unavailable and the
proposed framework:

• uses the last map-matched, GNSS-derived estimates for
initialization,

• uses SOP pseudoranges to estimate the vehicle’s position
and velocity and map-matches the position estimate with
the road network data, and

• continuously estimates the clock error states of the
vehicle-mounted receiver and SOP transmitters.

A particle filter is adapted for data fusion, which simul-
taneously performs both position refinement and clock error
estimation. Particle filters are relatively easy to implement

[56] and provide a probabilistic framework for fusing digital
map data and non-linear, non-Gaussian measurements. Finally,
particle filters could track multiple candidate road segments,
which helps recover from mismatches.

B. Time Update

In this subsection, the particle filter time update step for
both modes is described. Thei-th particle vector is defined as

X
i(k) ,

[
P

i
r

T

(k),Vi
r

T

(k),Dxi
clk

T

(k)
]T

,

wherePi
r(k), V

i
r(k), andDxi

clk(k) represent thei-th particle
position, velocity, and clock error state, respectively, at time-
stepk. Note that

Dxi
clk ,

[
Dxi

clk,1

T

, . . . ,Dxi
clk,Ns

T
]T

,

Dxi
clk,n ,

[
Dxi

bias,n,Dx
i
drift,n

]T
,

whereDxi
bias,n andDxi

drift,n represent thei-th particle of the
difference between the receiver’c clock bias/drift and then-th
SOP’s clock bias/drift.

The first step is to draw the initial particlesX i(0) for i =
1, . . . , N from an initial probability densityp[x(0)], where

x(0) =
[
pr

T(0),vT

r (0),∆xclk
T(0)

]T
, i.e.,

X
i(0) ∼ p[x(0)], i = 1, . . . , N.

The GNSS-derived estimates before GNSS cutoff is used
to initialize the particles. Initially, the particle weights are
assumed to be equal, i.e.,

W ′i(0) =
1

N
, i = 1, . . . , N.

Note that the primedW ′i(.) denotes that the weights are not
yet normalized. The particle filter samples sequentially from
the sequence of posterior probability densityp[x(k)|zs(k)]. It
can be shown that in order to minimize the variance of the
weights at time-stepk, the prior p[x(k)|x(k − 1)] must be
chosen as the importance density functionq(·), namely [57]

q[x(k)] = p[x(k)|x(k − 1)].

The particular choice of importance density function is related
to the process noise distribution. Here, for simplicity, samples
of the process noise driving the vehicle’s position and velocity
wi

r and clock errorwi
clk will be drawn from a Gaussian

distribution according to

wi
r(k − 1) ∼ N [0,Qr], for i = 1, . . . , N,

wi
clk(k − 1) ∼ N [0,Qclk], for i = 1, . . . , N,

whereN [µ,Q] denotes a Gaussian distribution with meanµ

and covarianceQ. Using (1) and (3), the time update of the
particles is computed from




P
i
r(k)

V
i
r(k)

Dxi
clk(k)


 = F




P
i
r(k − 1)

V
i
r(k − 1)

Dxi
clk(k − 1)


+

[
wi

r(k − 1)
wi

clk(k − 1)

]
,

where

F =




I2×2 T I2×2 02×2Ns

02×2 I2×2 02×2Ns

02Ns×2 02Ns×2 Φclk


 . (8)
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C. Measurement Update

When GNSS signals are available (Mode 1), the mea-
surement update stage corrects the propagated particles from
the time update stage with (i) SOPs, (ii) digital map data,
and (iii) the estimated vehicle’s position obtained from the
GNSS navigation solution̂pG , [p̂Gx

, p̂Gy
]T. Hence, the

measurement vectorZ(k) takes the form

Z(k) ,
[
zs1(k), . . . , zsNs

(k), p̂T

G(k)
]T

.

The error of the estimated position obtained from the GNSS
navigation solution is modeled as a zero-mean Gaussian ran-
dom vector with a horizontal covarianceΣGNSS. To account
for the effect of multipath in urban environment navigation,
ΣGNSS consists of nominal errors (e.g., uncertainties in satel-
lite clocks and positions, propagation delays in the ionosphere
and troposphere, receiver noise, etc.) as well as multipath, i.e.,

ΣGNSS = ΣGNSS,nom +ΣGNSS,mp

ΣGNSS,mp ≈ σ2
GNSS,mpHDOPI2×2,

whereΣGNSS,nom is the horizontal covariance of the estimated
error due to nominal errors,ΣGNSS,mp is the horizontal
covariance of the estimated error due to multipath,HDOP
is the horizontal dilution of precision, andσ2

GNSS,mp is the
contribution of multipath on the GNSS pseudorange measure-
ment noise variance, which can be obtained from multipath
models [58], [59].

When GNSS signals become unavailable (Mode 2), the
measurement update stage only uses (i) pseudoranges drawn
from SOPs and (ii) digital map data to correct the propagated
particles. Therefore,Z(k) only includes SOP measurements,
i.e.,

Z(k) ,
[
zs1(k), . . . , zsNs

(k)
]T

.

Given the particle weightsW ′i(k−1) and the measurement
vector at time-stepk, Z(k), the weights are updated according
to

W ′i(k) = p[Z(k)|X i(k)]W i(k − 1), i = 1, . . . , N.

In deep urban canyons with limited LOS conditions, the
likelihood p[Z(k)|X i(k)] could possess very small values,
leading to numerical underflow issues. To avoid such problem,
the log-likelihood measurement update is employed according
to

ln[W ′i(k)] = ln{p[Z(k)|X i(k)]} + ln[W i(k − 1)]. (9)

Recall that the pseudorange measurement noise in (6) was
modeled as zero-mean independent Gaussian; therefore, (9)
can be expressed as

ln[W ′i(k)] =−
1

2
[Z(k)−Hi(k)]T(Σs)

−1[Z(k)−Hi(k)]

+ ln[W i(k − 1)], (10)

where, for Mode 1

H
i(k) =




∥∥P i
r(k)− ps1

∥∥
2
+Dxi

bias,1(k)
...∥∥∥P i

r(k)− psNs

∥∥∥
2

+Dxi
bias,Ns

(k)

P
i
r(k)



,

Σs = diag
[
σ2

s1 , . . . , σ
2
sNs

,ΣGNSS

]
,

and for Mode 2

H
i(k) =




∥∥P i
r(k)− ps1

∥∥
2
+Dxi

bias,1(k)
...∥∥∥P i

r(k)− psNs

∥∥∥
2

+Dxi
bias,Ns

(k)


 ,

Σs = diag
[
σ2

s1 , . . . , σ
2
sNs

]
.

For added numerical robustness, the largest weight is sub-
tracted from each weight before taking the exponent of (10),
which yields

W ′′i(k) = eln[(W
′i(k)]−maxi{ln[W

′i(k)]}. (11)

The weights are normalized so that they sum to unity to
preserve the fact that the set of particles represent a discrete
approximation of the posterior probability density, i.e.,

W i(k) =
W ′′i(k)

∑N

i=1W
′′i(k)

.

Finally, the state estimate can be computed according to

p̂r(k) ≈

N∑

i=1

W i(k)P i
r(k),

v̂r(k) ≈

N∑

i=1

W i(k)V i
r(k),

∆̂xclk(k) ≈

N∑

i=1

W i(k)Dxi
clk(k).

The next step is to refine the estimatep̂r(k) with the digital
map data according to (5). Then, the vehicle’s estimated
position is updated to be the nearest map-matched point, i.e.,

p̂′
r(k) ≡ p̂m(k).

Subsequently, estimateŝpr(k) and p̂m(k) are fed back to
correct the clock bias error state estimate according to

c∆̂δt
′

n(k) = c∆̂δtn(k) +∆corr,n(k), (12)

where

∆corr,n(k) = Gp[‖p̂m(k)− psn
‖

2
− ‖p̂r(k)− psn

‖
2
],

where the design parameterGp ∈ (0, 1) is the proportional
term of the control loop and is tuned to account for the effect
of the measurement noise. In this paper, forσ2

sn
= 10 m2,

Gp was set to 0.85. For higher value of measurement noise,
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Gp takes lower value. Finally, the covariance can be obtained
from

P(k) ≈

N∑

i=1

W i(k)[X i(k)− x̂(k)][X i(k)− x̂(k)]T,

where

x̂(k) , [p̂′
r

T
(k), v̂r

T(k), ∆̂x
′

clk

T

(k)]T,

∆̂x
′

clk(k) =

[
∆̂x

′

clk,s1

T

, . . . , ∆̂x
′

clk,sNs

T
]T

,

∆̂x
′

clk,sn ,

[
c∆̂δt

′

n, c∆̂δ̇tn

]T
.

D. Resampling

particle degeneracy and impoverishment are commonly en-
countered issues in particle filters. This is typically mitigated
by including a resampling step before the weights become
significantly uneven. In the resampling step, the particleswith
negligible weights are replaced by new particles in the prox-
imity of the particles with higher weights. Several adaptive
resampling criteria can be used, including the variance of the
weights and the relative entropy with respect to the uniform
distribution [57]. Here, a simple yet effective resampling
scheme is adopted. First, an estimate of the effective number
of particlesN̂eff is computed as

N̂eff =
1

∑N

i=1[W
i(k)]2

.

If the effective number of particles is less than a given thresh-
old Nthr , resampling is performed according to Algorithm 1.

Algorithm 1: Particle Resampling

Input: X
i(k), W i(k), andNthr

Output: X
i
new (k) andW i

new (k)
1 Set i = 1

2 CalculateN̂eff

3 If N̂eff < Nthr ,
4 Choose a random numberη on [0, 1] uniformly
5 Find α such that

∑α−1
j=1 W

j(k) ≤ η <
∑α

j=1W
j(k)

6 SetX i
new (k) = X

α(k)

7 SetW i
new (k) =

1

N
8 If i < N ,
9 Set i = i+ 1

10 Go to Step 4
11 Else,
12 Delete the old set of particles
13 Use the new set of particles with new weights
14 End if
15 Else,
16 Do not resample
17 End if

This resampling approach essentially selects new particle
weights such that the discrepancy between the particles’
weights is reduced. Note that some old particles might appear

more than once in the new set, whereas some might disappear
completely. One problem associated with using map-matching
in a closed-loop scheme is that if incorrect map-matched
positions are used to correct for the clock error states, the
error will very likely grow even larger. To avoid this, after
each measurement, the position estimate is compared to the
intersection of pseudoranges received from each SOPs. If
the difference is greater than a pre-defined threshold, the
resampling approach is used to reset the particles and re-
estimate the states.

Fig. 3 demonstrates the different parts of the proposed
navigation framework, including: time update, measurement
update, and digital map update.

Generate random samples of the

Initialization

Propagate forward the particles

N̂eff < Nthr

Find most probable road segments
and calculate p̂

m
(k)

Correct clock error estimates

Is GNSS
available?

T
im

e
u
p
d
at
e

Calculate H
i(k), Wi(k), Z(k), and Σs

resampling
ParticleYes

No

D
ig
it
al

m
ap

u
p
d
at
e

Yes

No

pseudoranges

Road
data

SOP
dynamics

Receiver
dynamics

Calculate p̂
r
(k), v̂r(k), d∆xclk(k)

Calculate x̂(k) and P(k)

process noise driving the vehicle's
and clock error dynamics wi

r
(k � 1)

and w
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clk
(k � 1)
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at
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Fig. 3. Step-by-step summary of the proposed particle filter-based navigation
solution. The proposed method consists of three parts: particle time update,
SOP measurement update, and digital map update.

V. SIMULATION RESULTS

This section presents simulation results demonstrating the
performance of the proposed method described in Section
IV. A simulated vehicle with initial access to GNSS (Mode
1) was assumed to navigate in an environment comprising
multiple SOPs with a known location and unknown clock
states. Pseudoranges from a varying number of SOP towers
were simulated. The SOP towers were assumed to be equipped
with oven-controlled crystal oscillators (OCXOs), while the
vehicle-mounted receiver was assumed to be equipped with
a temperature-compensated crystal oscillator (TCXO). The
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initial distances between the SOP towers and the vehicle were
all assumed to be more than 1 km. The simulation settings
are given in Table I. Note that in Table I,{pr,j(0)}

4
j=1 and

{psn,j
}4j=1 represent the vehicle’s initial position (i.e.,pr(0))

and the towers’ positions (i.e.,psn
) corresponding to thej-

th simulation test, respectively. The simulation environment
layout and the trajectory traversed by the vehicle along with
the position of the SOP towers for different simulation tests
are illustrated in Fig. 4.

Start point

Traversed path

SOP tower

(a) (b)

(c) (d)

Start point

Start point

Start point

SOP 2

SOP 1

SOP 3

SOP 4

SOP 1

SOP 1

SOP 1

SOP 2

SOP 2

SOP 2

SOP 3

SOP 3

SOP 3

SOP 4

SOP 4

SOP 4

SOP 5

SOP 6

Fig. 4. The simulation environment layout, trajectory traversed by the vehicle,
and position of SOP towers for different simulation tests: (a) Mode 1: straight
segment then turn, (b) Mode 2, scenario 1: urban junctions, (c) Mode 2,
scenario 2: highway, and (d) Mode 2, scenario 3: complete stop.

The particle filter was initialized withx̂(k|k − 1) ∼
N [x(k),Px(k|k − 1)], where Px(k|k − 1) ≡
diag[Ppr

,Pvr
,P∆xclk,sn

], Ppr
(k|k − 1) ≡ (5) · diag[1, 1],

Pvr
(k|k − 1) ≡ (5) · diag[1, 1], P∆xclk,sn

(k|k − 1) ≡

diag[3, 0.3] for n = 1, . . . , Ns, and ˆx(k) is obtained
according to the GNSS-derived estimates in Mode 1.

Navigation in Mode 1 and three different scenarios for nav-
igation in Mode 2 were simulated spanning different driving
conditions and access to GNSS signals:

• Mode 1: driving in a straight segment then turning. Here,
the vehicle is assumed to have initial access to GNSS
signals.

• Mode 2, scenario 1: driving in an urban environment with
multiple junctions. Here, GNSS signals were unavailable.

• Mode 2, scenario 2: driving on a highway, while perform-
ing lane changing. Here, GNSS signals were unavailable.

• Mode 2, scenario 3: turning at a junction, while requires
a complete stop before turning. Here, GNSS signals were
unavailable.

Table II summarizes the main features of the different
simulation tests.

Assuming the vehicle to stay centered in its driving lane,
the road centerline was used as the ground truth. Based
on this ground truth, the GNSS navigation solution and the

TABLE I
SIMULATION SETTINGS

Parameter Definition Value

pr,1(0)
Vehicle initial position for

Mode 1 [33.9804, -117.3305]

pr,2(0)
Vehicle initial position for

Mode 2, scenario 1 [34.0374, -117.2239]

pr,3(0)
Vehicle initial position for

Mode 2, scenario 2
[33.9917, -117.3581]

pr,4(0)
Vehicle initial position for

Mode 2, scenario 3
[33.9458, -117.4530]

N Number of particles 10 to 300 Particles

Ns Number of SOP towers 3 to 6 towers

T Sampling time 0.5 s

HDOP
Horizontal dilution of

precision 1

Gp
Proportional term of the

control loop 0.85

τmp
Gauss-Markov process time

constant
1 s

σmp
Code phase multipath noise

standard deviation 1 m [60]

{σ2
sn

}Ns
n=1 Measurement noise variance 10 m2

σ2
m Map displacement variance 2 m2

ΣGNSS,nom
GNSS-derived position error

covariance
5I2×2 m2 [61]

q̃x Acceleration noise variance 15 (m/s2)2

q̃y Acceleration noise variance 15 (m/s2)2

{Sw̃δt,sn
}Ns
n=1

Clock bias process noise
power spectral density of

transmitters
4× 10−20 s

{Sw̃
δ̇t,sn

}Ns
n=1

Clock drift process noise
power spectral density of

transmitters
7.89× 10−22 1/s

Sw̃δt,r

Clock bias process noise
power spectral density of the

receiver
4.7× 10−20 s

Sw̃
δ̇t,r

Clock drift process noise
power spectral density of the

receiver
7.5× 10−20 1/s

{psn,1}
Ns
n=1 Tower positions for Mode 1: [33.9801, -117.3467;

straight segment then turning 33.9981, -117.3355;

(with initial access to GNSS) 33.9726, 117.3168;

33.9688, -117.3337]

{psn,2}
Ns
n=1 Tower positions for Mode 2, [34.0380, -117.2376;

scenario 1: urban junction 34.0517, -117.2254;

(without access to GNSS) 34.0380, -117.2110;

34.0277, -117.2239]

{psn,3}
Ns
n=1 Tower positions for Mode 2, [33.9972, -117.3674;

scenario 2: highway 34.0040, -117.3625;

(without access to GNSS) 34.0032, -117.3511;

33.9934, -117.3454;

33.9837, -117.3532;

33.9859, -117.3632]

{psn,4}
Ns
n=1 Tower positions for Mode 2, [33.9459, -117.4439;

scenario 3: complete stop 33.9391, -117.4551;

(without access to GNSS) 33.9527, -117.4547;

33.9469, -117.4645]
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TABLE II
MODE/SCENARIO DESCRIPTION

Mode/scenario
GNSS

ac-
cess

Number
of

towers

Path
length (m)

Number of
particles

Mode 1: Straight
then turn Yes 4 710 30

Mode 2, scenario 1:
Urban junctions

No 4 280 10 to 100

Mode 2, scenario 2:
Highway No 3 to 6 440 30

Mode 2, scenario 3:
Complete stop No 4 270 30

pseudorange measurements drawn from SOPs were generated
and corrupted with the additive noise tabulated in Table I. The
following subsections present the achieved navigation results
with the proposed framework.

A. Results for Mode 1: Straight Segment then Turning (with
Initial Access to GNSS)

The following scenario was simulated: a car that has access
to GNSS, started driving in a straight segment heading up to a
turning point. The true vehicle’s position was corrupted byad-
ditive zero-mean Gaussian noise with a horizontalΣGNSS,nom

covariance. In order to simulate the multipath effect, a first-
order Gauss-Markov process multipath model [59] is used
according to

ǫmp(k + 1) = e
−T
τmp ǫmp(k) + wmp(k),

wmp ∼ N

[
0,

σ2
mpτmp

2

(
1− e

−2T
τmp

)]
,

whereǫmp is multipath model,T is the sampling time,τmp is
Gauss-Markov process time constant,wmp is the driving noise,
and σmp is the GNSS code phase multipath noise standard
deviation [60]. Note that for a dual-frequency(f1, f2) GNSS
receiver,σmp is replaced with

σmp ← σmp

√[
f2
1

f2
1−f2

2

]2
+
[

f2
2

f2
1−f2

2

]2
.

During the period of this simulation, the vehicle-mounted
receiver produced pseudoranges to four SOPs. Fig. 5 illustrates
the traversed path by the vehicle before GNSS become unavail-
able. It can be seen from Fig. 5 that the estimated position
follows closely the ground truth. Moreover, the simulation
results demonstrated that the proposed framework achieved
a position RMSE of 2.62 m over a trajectory of 800 m while
the GNSS-only navigation solution achieved a position RMSE
of 4.43 m over a same trajectory. Hence, incorporating the
proposed framework reduced the position RMSE by 40.86%
in Mode 1.

B. Results for Mode 2, Scenario 1: Urban Junction (without
Access to GNSS)

This scenario considered a vehicle driving in an urban street
with multiple junctions. The vehicle did not have access to
GNSS signals. The test data was simulated on a street in

Ground truth

GNSS-only solution

Proposed method

Particles

GNSS + SOP solution

Fig. 5. Simulation results for Mode 1: straight segment thenturning (with
initial access to GNSS).

Riverside, California, USA. The data was sampled at 2 Hz.
The vehicle drove for 280 m including one crossroads and
two three ways. For this simulation, the number of particles
was chosen to be 30. Fig. 6 illustrates the achieved results.
The white circles represent digital map points (not necessarily
the traversed path) and the circles filled with blue represent
the ground truth (the traversed path). It can be seen that the
particles follow the ground truth closely and the behavior
of the discrepancy of particles is consistent even across the
junctions. The RMSE of the vehicle’s position with the SOP-
only navigation solution was found to be 4.24 m, whereas the
RMSE using the proposed map-matching technique was 2.2
m. For a comparative analysis, this simulation was performed
using different particle numbers:N = 10, 30, 50, 100. Table
III compares the navigation performance due to different
particle numbers.

TABLE III
NAVIGATION PERFORMANCE COMPARISON DUE TO DIFFERENT PARTICLE

NUMBERS

Particle
Numbers RMSE Standard deviation MAX Error

10 5.6 m 2.5 m 12.5 m

30 2.2 m 1.4 m 10.5 m

50 1.9 m 1.1 m 3.4 m

100 1.9 m 0.9 m 3.1 m

The following may be concluded from this simulation.
First, the proposed map-matching method reduced the RMSE
by 48.11% from the SOP-only navigation solution. Second,
using 30 particles for driving in an urban street with multiple
junctions would be sufficient for precise navigation while
using fewer particles may result in particle discrepancy in
junctions and an increase in the RMSE.
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Start point

Stop point

Proposed method

SOP-only approach
Particles

Ground truth

Map points

Fig. 6. Simulation results for Mode 2, scenario 1: urban junction (without
access to GNSS). Only one-tenth of the particles were plotted to make the
navigation solutions visible.

C. Results for Mode 2, Scenario 2: Highway (without Access
to GNSS)

This scenario considered a vehicle driving on the highway
at 100 km/h. The GNSS signals were not available in this
scenario. The test data was simulated on a street in Riverside,
California, USA, which is shown in Fig. 7. It can be seen that
the vehicle started moving in the north-east direction. After
200 m, it changed its lane (one lane to the right), and after
another 200 m it made a right turn heading north-west. The
number of particles was chosen to beN = 50, and it was
found with several runs that increasing the number of particles
to N > 50 yielded negligible performance improvement.
Fig. 7 illustrates the achieved results. It can be seen that the
map-matched estimates followed the ground truth closely. The
navigation error is tabulated in Table IV.

TABLE IV
POSITION ESTIMATION ERROR FORDIFFERENTMAP-MATCHING

SCENARIOS IN MODE 2

Mode 2
Scenario:

SOP-only
RMSE

Proposed approach
RMSE Improvement

1: Urban
junctions

4.24 m 2.2 m 48.11%

2: Highway 2.42 m 0.97 m 59.91%

3: Complete
stop 4.93 m 1.28 m 74.03%

In order to evaluate the impact of the number of SOPs
Ns on the navigation solution, this test was conducted for
Ns = 3, 4, 5, 6 SOPs. The results are tabulated in Table V.
The following can be concluded from this simulation. First,
with Ns = 4, the proposed map-matching approach achieved
an RMSE of 0.97 m compared to an RMSE of 2.42 m with
an SOP-only navigation solution (See Table IV). The achieved
precision is important for lane-changing driving. Second,
as can be seen from Table V, the proposed map-matching
approach achieved significantly lower estimation error with
fewer towers than the case with SOP-Only navigation solution.

Start point

Stop point

Proposed method

SOP-only approach

Particles

Ground truth

Map points

Fig. 7. Simulation results for Mode 2, scenario 2: highway (without access
to GNSS). Only one-tenth of the particles were plotted and map points only
around the traversed path are displayed to make the navigation solutions
visible.

TABLE V
IMPACT OF THE NUMBER OFSOPS ON THE NAVIGATION SOLUTION

SOP-Only Proposed approach

Number of
SOPs RMSE Max.

Error RMSE Max.
Error

3 5.93 m 15.16 m 1.35 m 8.58 m

4 2.42 m 6.37 m 0.97 m 4.42 m

5 1.82 m 7.02 m 0.91 m 3.51 m

6 1.76 m 4.13 m 0.88 m 2.97 m

D. Results for Mode 2, Scenario 3: Complete Stop (without
Access to GNSS)

This scenario considered a vehicle driving at a crossroad.
GNSS signals were unavailable in this scenario. The vehicle
started by moving in the north direction. After 100 m it entered
a crossroad and performed a complete stop. After five seconds,
it made a right turn to head east. As stated in Subsection III-A,
receiver and SOP clock biases are dynamic and stochastic.
Therefore, if the vehicle is stationary (e.g., when coming to
a complete stop at a turning junction) the clocks are drifting
and the navigation solution will naturally drift as time-varying
clock biases cannot be distinguished from change in the true
range due to the vehicle’s motion. This scenario evaluates
the performance of the proposed approach under this driving
condition.

Fig. 8 illustrates the map-matching results for this scenario.
The RMSE using SOP-only navigation solution was found to
be 4.93 m, while the proposed method reduced this error to
1.28 m (See Table IV).

It is worth noting that the vehicle’s dynamical model was
assumed to evolve according to a velocity random walk model
(cf. (3)), which does not hold for the vehicle coming at
a complete stop (unless the process noise is set to zero).
Despite this model mismatch, the performance of the proposed
approach achieved a RMSE of 1.28 m, which is a 74 % im-
provement over the SOP-only navigation solution. In order to
improve the performance even further, an interacting multiple
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model (MM)-type filter can be employed for the transition
between stationary and mobile vehicle. In practice, the vehicle
would be equipped with a inertial measurement unit (IMU) to
propagate the vehicle’s position and velocity states between
SOP measurements.

Start point

Stop point

Proposed method

SOP-only approach

Particles

Ground truth

Map points

Fig. 8. Simulation results for Mode 2, scenario 3: complete stop (without
access to GNSS). Only one-tenth of the particles were plotted to make the
navigation solutions visible.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm,
three experiments were performed using ambient cellular
LTE SOPs and a ground vehicle navigation in (i) an urban
environment where multipath severely affects the received
LTE signals, (ii) a suburban environment where LTE SOPs
have poor geometric diversity, and (iii) a challenging urban
environment with multiple junctions and GNSS cutoff con-
ditions, while using pseudorange measurements from only 2
LTE SOPs. This section shows that the proposed algorithm
improves the navigation solution in all these environments.
The following subsections present the experimental setup and
the results for each environment.

A. Experimental Setup and Scenario Description

A ground vehicle was equipped with two consumer-grade
800/1900 MHz cellular omnidirectional Laird antennas to
receive LTE signals at two different carrier frequencies. The
signals were simultaneously down-mixed and synchronously
sampled via a National Instruments (NI) dual-channel univer-
sal software radio peripheral (USRP)–2954RR©, driven by a
GPS-disciplined oscillator (GSPDO). The clock bias and drift
process noise power spectral densities of the receiver were
set to be1.3 × 10−22 s and7.89 × 10−25 1/s respectively,
according to the oven-controlled crystal oscillator (OCXO)
used in a USRP–2954RR©. The measurement noise variances
{σ2

sn
}Ns

n=1 were set to be 10 m2. The LTE and GNSS signals
were stored on a laptop for off-line post-processing. The LTE
signals were processed and pseudoranges were obtained using
the Multichannel Adaptive TRansceiver Information eXtractor
(MATRIX) SDR [32]. The proposed algorithm was used

to obtain the LTE navigation solution and the results were
compared with the ground truth. To obtain a reliable and
accurate ground truth, the vehicle was also equipped with
a Septentrio AsteRx-i V integrated GNSS-IMU [62], which
includes a dual-antenna, multi-frequency GNSS receiver, and a
Vectornav VN-100 micro-electromechanical system (MEMS)
IMU. Septentrio’s post-processing software development kit
(PP-SDK) was used to process the carrier phase observables
collected by the AsteRx-i V and by a nearby differential GPS
base station to obtain a carrier phase-based navigation solution.
Finally, the integrated GNSS-IMU real-time kinematic (RTK)
system was used to produce the ground truth results with
which the proposed navigation solution was compared. Fig.
9 shows the experimental setup and Table VI summarizes the
scenario description for the three experiments.

solution
Compare

Carrier phase

Position estimation error

LTE
signals

Pseudoranges
Navigation

MATRIX LTE SDR

RTK

Proposed
approach

PP-SDK

differential
GPS base

Nearby

stations

Storage

USRP RIO

Integrated
GNSS-IMU

GNSS antennas Cellular
antennas

2-D map

observables

LTE
solution

Map
data

Fig. 9. Experimental hardware and software setup.

TABLE VI
SCENARIO DESCRIPTION OF EXPERIMENTS

Environment Number of LTE
SOPs

Path
length

Number of
particles

Urban 5 825 m 30

Suburban 2 1500 m 30

Challenging 2 345 m 30

B. Experimental Results for Urban Environment

The first experiment was conducted in an urban environment
(downtown Riverside, California, USA). It is worth mention-
ing that due to the lower elevation angles of LTE towers
compared to the GNSS satellites, the effect of multipath on
LTE signals is typically significantly higher than GNSS signals
in urban environments.

In this experiment, the integrated GNSS-IMU system was
used to provide the ground truth along the entire trajectory.
However, the navigation solution obtained from the GNSS-
IMU system is discarded to emulate a GNSS cutoff period.
Over the course of the experiment, the ground vehicle tra-
versed 825 m while listening to 5 LTE SOP towers. All LTE
towers belonged to the U.S. cellular provider AT&T with the
characterisation summarized in Table VII.
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TABLE VII
CHARACTERISTICS OFLTE TOWERS USED IN URBAN ENVIRONMENT

EXPERIMENT

LTE
SOP

Carrier
frequency (MHz)

Cell ID Bandwidth
(MHz)

1 1955 216 20
2 739 319 10
3 739 288 10
4 739 151 10
5 739 232 10

Fig. 10 shows the environment layout, LTE SOP positions,
true vehicle trajectory, LTE-only navigation solution, and
estimated vehicle trajectory using the proposed closed-loop
map-matching algorithm. Table VIII compares the navigation
performance obtained by the proposed algorithm versus that
of the LTE-only navigation solution. It can be seen that
incorporating the proposed map-matching algorithm reduced
the position RMSE by 74.88% from the RMSE obtained by a
LTE-only navigation solution.

Proposed method
LTE-only
Ground truth

Start pointEnd point

LTE 1

LTE 2
LTE 3

LTE 4

LTE 5

Fig. 10. The environment layout, LTE SOP positions, true vehicle trajectory,
LTE-only navigation solution using the method presented in[63], and esti-
mated vehicle trajectory using the proposed algorithm. Image: Google Earth

TABLE VIII
NAVIGATION PERFORMANCECOMPARISON IN AN URBAN ENVIRONMENT

Performance
measure

LTE-only
navigation

solution

Proposed
approach Improvement

RMSE 6.37 m 1.6 m 74.88%

Standard
deviation

2.09 m 0.65 m 68.9%

Maximum
error 11.18 m 3.74 m 66.55%

Fig. 11 shows the estimated difference between the re-
ceiver’s and each LTE SOP’s clock biases and corresponding
variances. It can be seen that using the proposed algorithm
the estimated variances remain stable in the course of the
experiment. Since the actual receiver’s and eNodeBs’ clock

biases are not available, it is impossible to show the estimation
errors.
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Fig. 11. Estimated difference between the receiver’s clockbias and each
LTE SOP clock bias and corresponding variance.

Next, the effect of the clock difference correction (cf. (12))
on the achievable accuracy was evaluated. To this end, the
stored data of this experiment was processed with and without
clock difference correction. The results are shown in Table
IX. In this table, the RMSE of the estimated position as
well as the percentage of the points, which were incorrectly
map-matched, are tabulated. As can be seen, the proposed
closed-loop framework (i.e., with clock difference correction)
significantly improves the open-loop solution accuracy (i.e.,
without clock difference correction).

TABLE IX
ESTIMATION PERFORMANCE WITH AND WITHOUT CLOCK DIFFERENCE

CORRECTION

Method RMSE % of incorrectly map-matched
points

Open-loop 3.69 m 7.5%

Closed-loop 1.6 m 1.9%

C. Experimental Results for Suburban Environment

The second experiment was conducted in a suburban envi-
ronment, using only 2 LTE SOP towers with poor geometry.
Over the course of the experiment, the vehicle-mounted re-
ceiver traversed a total trajectory of 1.5 km while listening to
2 LTE SOPs simultaneously. Characteristics of the LTE SOPs
are presented in Table X.

TABLE X
CHARACTERISTICS OFLTE TOWERS USED IN SUBURBAN ENVIRONMENT

LTE
SOP Operator Carrier

frequency (MHz)
Cell ID Bandwidth

(MHz)
1 T-Mobile 2145 21 20
2 AT&T 1955 300 20
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This experiment studied the performance as the vehicle
turned along the road, crossed junctions, and came to a
complete stop. Fig. 12 shows the environment layout, LTE
SOP positions, true vehicle trajectory, LTE-only navigation
solution provided in [64], and estimated vehicle trajectory
using the proposed algorithm. Table XI compares the naviga-
tion performance obtained by the proposed algorithm versus
that of the LTE-only navigation solution. It can be seen that
the proposed approach is robust in areas with poor geometric
diversity and a limited number of LTE SOPs. The experimental
results show that the incorporating the proposed map-matching
algorithm reduced the position RMSE by 58.15% from the
RMSE obtained by a LTE-only navigation solution.

TABLE XI
NAVIGATION PERFORMANCECOMPARISON IN A SUBURBAN

ENVIRONMENT

Performance
measure

LTE-only
navigation

solution

Proposed
approach Improvement

RMSE 9.32 m 3.9 m 58.15%

Standard
deviation

4.36 m 2.76 m 36.69%

Maximum
error 33.47 m 14.91 m 55.45%

D. Experimental Results for a Challenging Urban Environ-
ment

To assess the robustness of the proposed framework, the
third experiment was conducted in a challenging environment
in downtown Riverside, California. Here, an urban street with
multiple junctions was chosen. The drive test included 9 s
of complete stop before the cross junction in a GNSS cutoff
condition. The streets were surrounded by tall buildings from
both sides and only 2 LTE towers were available in the
environment. Over the course of the experiment, the vehicle
traveled 345 m while listening to only 2 LTE towers with
characteristics summarized in Table XII.

TABLE XII
CHARACTERISTICS OFLTE TOWERS USED IN THE THIRD EXPERIMENT

LTE
SOP Operator Carrier

frequency (MHz)
Cell ID Bandwidth

(MHz)
1 T-Mobile 2145 79 20
2 AT&T 1955 350 20

The ground truth was produced using GNSS-IMU RTK sys-
tem described in Subsection VI-A. The GPS-only navigation
solution was obtained by only using GPS pseudoranges to
emulate a low-cost technology. To evaluate the performance
of the proposed framework in the absence of GPS signals,
while using signals from only 2 LTE transmitters, the GPS-
only navigation solution was discarded over a portion of 90
m of the total trajectory.

Fig. 13 demonstrates the environment layout along with the
location of the LTE transmitters, true vehicle trajectory,GPS-
only navigation solution, GPS-LTE navigation solution, and
the estimated vehicle trajectory using the proposed framework.

GPS cutoff point, GPS back in point, and the vehicle’s
stop point at the cross junction is also demonstrated in this
figure. Moreover, the effect of the clock difference correc-
tion (cf. (12)) on the achievable accuracy is shown. Table
XIII compares the navigation performance of the proposed
framework versus that of the GPS-only and GPS-LTE navi-
gation solutions. The following may be concluded from these
results. First, when GPS signals were unavailable the GPS-
only navigation solution drifted from the ground truth. This is
due to the fact that the aiding corrections from GPS signals
were not available. As expected, the proposed framework
did not exhibit this drift as LTE signals were used as an
aiding source. Second, it can be seen from these results that
the proposed closed-loop map-matching navigation framework
outperforms the GPS-LTE solutions. The results demonstrated
a position RMSE of 6.69 m using GPS-LTE framework and
RMSE of 3.6 m using the proposed close-loop map-matching
method. Hence, incorporating the presented method reduced
the position RMSE by 46.18 %.

TABLE XIII
NAVIGATION PERFORMANCECOMPARISON IN A GNSS-CHALLENGED

URBAN ENVIRONMENT

Performance
measure

GPS-only
navigation
solution

GPS-LTE
navigation
solution

Proposed
approach

Improvement
over

GPS-LTE

RMSE 11.26 m 6.69 m 3.6 m 46.18%

Standard
deviation 7.68 m 3.87 m 3.02 m 21.96%

Maximum
error 18.15 m 15.55 m 11.7 m 27.75%

VII. C ONCLUSION AND FUTURE WORK

A method for ground vehicle localization in GNSS-
challenged environments using road information from digital
maps and ambient LTE SOPs was proposed. The main contri-
bution of the work was to develop a closed-loop particle filter-
based framework that fuses LTE pseudoranges with digital
maps to estimate the vehicle’s state, simultaneously with the
difference between the vehicle-mounted receiver’s and LTE
SOPs’ clock bias and drift. The proposed method used a
displacement information as a feedback source to continu-
ously estimate the clock states for all LTE transmitters. The
proposed approach operates in two modes: GNSS signals are
available (Mode 1) and GNSS signals are unavailable (Mode
2). Simulation and experimental results were presented demon-
strating the efficacy and accuracy of the proposed framework
in different driving environments (urban and suburban) and
under different driving conditions (junctions, highway with
lane change, and complete stop). The experimental results
demonstrated a position RMSE of (i) 1.6 m over a 825 m
trajectory in an urban environment with 5 LTE SOPs, (ii) 3.9
m over a 1.5 km trajectory in a suburban environment with
2 LTE SOPs, and (iii) 3.6 m over a 345 m trajectory in a
challenging urban environment with 2 LTE SOPs. Moreover,
it was demonstrated that incorporating the proposed map-
matching algorithm reduced the position RMSE by 74.88%
and 58.15% in urban and suburban environments, respectively,
from the RMSE obtained by a LTE-only navigation.
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(a)

(b) (c)

(d)

(e)

Proposed method
LTE-only
Ground truth

Start point

End point

LTE 1

LTE 2

Fig. 12. Environment layout, LTE SOPs’ positions, true vehicle trajectory, LTE-only navigation solution, and estimated vehicle trajectory using the proposed
algorithm. (a) Complete stop before turning point, (b) LTE SOPs’ positions, (c) vehicle’s trajectory and environment layout, (d) junction point, and (e) turning
point. Image: Google Earth.

LTE 2

Start point

End point

LTE 1

Ground truth

Ground truth
GPS-only
GPS-LTE
Proposed method

GPS cutoff

GPS back in Stop point

Open-loop
GPS-LTE
solution

Closed-loop
proposed
solution

(9 seconds stop)

Fig. 13. The environment layout along with the location of LTE transmitters,
true vehicle trajectory, GPS-only navigation solution, GPS-LTE navigation
solution, and estimated vehicle trajectory using the proposed algorithm. Image:
Google Earth.

While this paper considered a simple feedback mecha-
nism, more sophisticated feedback algorithms, such as multi-
hypothesis, could be investigated in future work in an attempt
to improve the robustness. In addition, while this work consid-
ered a simple statistical model for the vehicle dynamics, future
work could consider using other sensors (e.g., lidar and INS)
to obtain the vehicle’s odometry, which reduces the model
mismatch between the assumed vehicle’s dynamics model and
the vehicle’s true motion.

APPENDIX A
DERIVATION OF EQUATION (4)

Fig. 14 illustrates(n− 1)-th andn-th map-matched points
in link l. The distance between two adjacent points in a road

x(Longitude)

y(Latitude)

pmn−1
= [pmxn−1

; pmyn−1
]

pmn = [pmxn

; pmyn

]

d

d0

τln−1

β

A

B

D

C E

γ

Fig. 14. Calculating the latitude and longitude of then-th map-matched
point in a sample linkl.

centerline takes the form

d = sln − sln−1
.

Thus,
AD = (sln − sln−1

) cos(τln−1
),

BD = (sln − sln−1
) sin(τln−1

).

The distanced′ = αkln whereα andkln represent lane width
and lane identifier, respectively, for then-th map-matched
point. As can be seen from Fig. 14

β + γ = 90◦,

τln−1
+ γ = 90◦.

Thus, the angleβ equals the heading angle of the previous
point τln−1

. Therefore,

CE = αkln sin(τln−1
),

BC = αkln cos(τln−1
).
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The coordinates ofn-th map-matched point can be computed
based on the(n− 1)-th point according to

pmxn
= pmxn−1

+ AD + CE,

pmyn
= pmyn−1

+BD −BC,

which yields

Ml = pmxn−1
+ (sln − sln−1

) cos(τln−1
) + αkln sin(τln−1

),

Nl = pmyn−1
+ (sln − sln−1

) sin(τln−1
)− αkln cos(τln−1

).
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