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Ground Vehicle Navigation in GNSS-Challenged
Environments using Signals of Opportunity and a
Closed-Loop Map-Matching Approach

Mahdi Maaref and Zaher M. Kassd&&nior Member, |EEE

Abstract—A ground vehicle navigation approach in global used to aid onboard dead-reckoning (DR)-type sensors (e.g.
navigation satellite system (GNSS)-challenged environmes is jnertial navigation system (INS) and lidar) and to provide a
developed, which uses signals of opportunity (SOPs) in a &ed-  5yigation solution in a global frame, which gets matched

loop map-matching fashion. The proposed navigation approgh L L
employs a particle filter that estimates the ground vehicles state to the digital map [5]-{8]. Map-matching is the process of

by fusing pseudoranges drawn from ambient SOP transmitters associating the vehicle’s navigation solution with a syati
with road data stored in commercial maps. The problem con- road map [9], [10]. Map-matching algorithms enhance the

sidered assumes the ground vehicle to have priori knowledge navigation solution by incorporating precise road network
about its initial states as well as the position of SOPs. The data anda priori information of road features [11]. Map

proposed closed-loop approach estimates the vehicle’s tga for . . . .
subsequent time as it navigates without GNSS signals. In thi suppliers have dedicated considerable attention receatly

approach, a particle filter is employed to continuously estnate develop highly accurate digital maps to meet the requirgsnen
the vehicle’s position and velocity along with the clock eror states  of AGVs [12].

of the vehicle-mounted receiver and SOP transmitters. Simlation On-line and off-line map-matching approaches match the
and experimental results with cellular long-term evolution (LTE) vehicle’s position estimate, produced by GNSS receiveds an

SOPs are presented, evaluating the efficacy and accuracy of - L
the proposed framework in different driving environments. The onboard DR sensors, with the digital road map. However, cur-

experimental results demonstrate a position root-mean scared ent navigation systems will not meet the stringent religbi
error (RMSE) of: 1.6 m over a 825 m trajectory in an urban and accuracy demands of AGVs, due to their heavy reliance

environment with 5 cellular LTE SOPs, 3.9 m over a 1.5 km on GNSS signals. These signals get severely attenuated in
trajectory in a suburban environment with 2 cellular LTE SOPs, urban environments and are susceptible to unintentiordl an

and 3.6 m over a 345 m trajectory in a challenging urban . tenti linterf . . . d lici .
environment with 2 cellular LTE SOPs. It is demonstrated tha '"tentional interierence (i-e., jamming) and maliciousjing

incorporating the proposed map-matching algorithm reducel the  [13]-[15]. Without GNSS signals, errors in DR sensors accu-
position RMSE by 74.88%, 58.15%, and 46.18% in these three mulate, compromising the safe and efficient operation of the
environments, respectively, from the RMSE obtained by an LE- AGV.
only navigation solution. Recently, signals of opportunity (SOPs) have been used to
Index Terms—Signals of opportunity, autonomous ground overcome GNSS drawbacks [16]-[19]. Recent research have
vehicle, map-matching, particle filter. demonstrated how to exploit SOPs (e.g., cellular signd@${2
[23], digital television signals [24], [25], and AM/FM sigis
[26], [27]) to produce a navigation solution in a standalone
fashion and in an integrated fashion, aiding INS and lid&8H2
A UTONOMOUS ground vehicles (AGVs), also known a§31]. SOPs are abundant and are free to use. Moreover,aellul
self-driving cars, promise to bring an economic and §0ps;, in particular, inherently possess desirable cleistits
transportation revolution and to improve the quality oklif ¢o, navigation purposes: (i) ubiquity, (ii) high receivedwer,
AGVs are predicted to annually prevent 5M accidents and ZMi) large transmission bandwidth, (iv) wide range of tsan
injuries, conserve 7B liters of fuel, and save 30K lives angission frequencies, and (v) geometric diversity [32].
$190B in healthcare costs associated with accidents in e U This paper considers the following practical scenario. A
[1]. As ground vehicles progress towards fully autonomgyth ground vehicle is equipped with a GNSS receiver and a sep-
will demand an extremely reliable and accurate navigatigfiate receiver capable of producing pseudoranges to ambien
system [2], [3]. Today's car navigation systems fuse multsop transmitters. When the vehicle enters a GNSS-chatienge
modal information from global navigation satellite Sys&meanvironments (e.g., a deep urban canyon or an environment
(GNSS) receivers, vehicle motion and proximity sensorbi-ve ynder a malicious jamming attack on the GNSS frequency
cle kinematic models, and digital maps [4]. GNSS receivees gand), GNSS signals are no longer usable or reliable. In the
. . . , , absence of GNSS measurements, the accumulated errors of
This work was supported in part by the National Science Fationd (NSF)
under Grantl566240 and in part by the Office of Naval Research (ONR)DR'type sensors grow unboundedly' However, SOPs can be
under Grant N0014-16-1-2809. used as an aiding source to bound the navigation errors [28],

M. Maaref and Z. Kassas are with the Department of Electrmadl [31] Exploiting ambient SOPs in the environment allevsate
Computer Engineering, The University of California, Riside. Address: 900

University Ave., 319 Winston Chung Hall, Riverside, Calif@ 92521, USA the need for cogtly, bulky, and computationally int.enSi.eB'S
(email: mmaar ef @icr . edu andzkassas@ eee. or g). sors (e.g., INS, lidar, and camera). Nevertheless, if thecle
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is equipped with such sensors and/or if GNSS signals dieely, evaluating the performance of the proposed frantkwo
available, the proposed framework could seamlessly iategrConcluding remarks and future work are given in Section VII.
the outputs of these sensors to improve the vehicle’s ntawiga
solution.

This paper proposes a framework for producing a groundMap-matching for ground vehicle navigation has been stud-
vehicle navigation via a closed-loop map-matching al¢ponit ied in the literature. In [9], a map-matching framework was
The proposed framework operates in two modes: Modeptoposed that provided integrity provision at the laneslev
triggers when GNSS signals are available and fuses the GNJ&e framework defined the integrity as the capability of the
derived estimates, SOP pseudorange measurements, andsytem to detect performance anomalies and warn the user
digital road map and Mode 2 triggers when GNSS signalhenever the system should not be used. The proposed method
are unavailable or unusable and fuses SOP pseudorafhged measurements from a GNSS receiver, an odometer,
measurements and the digital road map. In Mode 2, thed a gyroscope with road information through a multiple-
proposed framework assumes the vehicle (i) to himital hypothesis particle filter. In [35], three factors of curign
knowledge of its own states (e.g., from its navigation systeused algorithms in floating car data (FCD) were discussed:
just before GNSS signals became unavailable) and (ii) to Hestance, speed-direction, and connectivity. The charestics
equipped with: (i) a receiver capable of producing pseudgea of highway networks were analysed, and a map-matching
measurements to ambient SOPs (e.g., [22], [25], [33], [34pproach was proposed based on the gradual-removal of candi
and (ii) a digital map of the road segments and SOP locatiowste roads. In [36], a ground vehicle navigation framewaalk w

This paper makes two contributions. First, a novel closegroposed that performs map-matching by adaptively chgosin
loop map-matching framework for navigation in both GNSShe appropriate timing and matching method according to the
available and GNSS-challenged environments is developedmplexity of the local network to which the positioning
The framework simultaneously estimates the vehicle'stiprsi point belongs. This method is experimentally shown to be
and velocity states along with the difference between theneficial due to the fact that using fixed time interval can
vehicle-mounted receiver’s dynamic stochastic clock rerreesult in a lack of efficiency and accuracy if the initial poin
states (bias and drift) and the clock error states of each SBmot correctly matched. In [37], a cooperative map-maighi
clock. A computationally efficient particle filter that fuse approach for vehicle positioning was introduced, which es-
digital map data and SOP pseudoranges is adopted. Secdabljshed a vehicle-to-vehicle (V2V) communication apmmio
the accuracy and efficacy of the proposed framework is ain-a vehicular ad hoc network (VANET) to exchange GNSS-
alyzed through four simulation and three experimentalktestlerived information between vehicles. In [38], a method for
The experimental tests used real cellular long-term eimiut accurate and efficient map-matching for challenging envi-
(LTE) SOPs and were conducted on a ground vehicle in diffewnments was presented. This method considered a number
ent environments, including (i) an urban environment wheod heuristics rooted in a set of observations from real-life
multipath severely affected the received LTE signals, dii) usage scenarios (e.g., traffic distribution on differerdds).
suburban environment where LTE SOPs had a poor geomefftee framework used the cellular location information and
diversity and the vehicle had limited line-of-sight (LOS) t was shown to be able to achieve better results compared to
LTE towers, and (iii) a GNSS-challenged urban environmetraditional hidden Markov model (HMM)-based map-matching
with multiple junctions and GNSS cutoff conditions, whildrameworks, in cases where the cellular-derived locabimat
using pseudorange measurements from only 2 LTE SORstor was on the order of kilometers. In [11], a map-matching
The experimental results in these three environment shapproach was proposed that uses an HMM tailored for noisy
respectively a (i) position root-mean squared error (RMSEhd sparse data to generate partial map-matched paths in an
of 1.6 m over a 825 m trajectory in the urban environmewnline manner. In [39], a particle filter was employed to fuse
with 5 LTE SOPs, (ii) position RMSE of 3.9 m over a 1.5 knthe magnetometer data with the digital map to estimate the
trajectory in the suburban environment with 2 LTE SOPs, angthicle’s position and heading. In [40], a framework was
(iii) position RMSE of 3.6 m over a 345 m trajectory in thepresented that used a multiple-hypothesis algorithm fsinfy
challenging urban environment with 2 LTE SOPs. Moreover,he navigation solution of a global positioning system (EPS
is demonstrated that incorporating the proposed map-imgtchINS system with digital maps. The framework included an
algorithm reduced the position RMSE by 74.88% and 58.15&tgorithm to evaluate whether the map-matched resultsdcoul
in urban and suburban environments, respectively, from the used to calibrate the sensors in order to increase the
RMSE obtained by an LTE-only navigation. positioning accuracy. Since the number of hypothesis nodes

The remainder of this paper is organized as follows. Section map-matching algorithms grows exponentially with time,

Il surveys related research on map-matching strategies tbe framework proposed a strategy to reduce the number of
ground vehicle navigation and highlights the difference béypotheses by pruning the branches of the multiple-hysighe
tween existing approaches and the proposed approachosedtiee and eliminating and merging the redundant nodes. [j [41
Il describes the vehicle and SOP dynamic models, the S@&usability of historical information was evaluated alomigh
pseudorange measurement model, and the digital map modphtial-temporal patterns in the arrangement of the piejec
Section IV develops the map-matching framework that fus&NSS points to the road networks. To this end, a machine
the digital map with SOP pseudorange measurements. Sgecti@arning framework was developed that detected and validat
V and VI present simulation and experimental results, respehe spatial-temporal patterns in projection vectors peediby

II. RELATED WORK
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map-matching. The problem of using the digital map data (e.g., from a local or a cloud-hosted database). In praatice
correct the sensor error has been also studied in the literatcould map the SOP transmitter locaticmriori via several
[42]-[44]. Due to the fact that the errors in digital maps iapproaches, such as radio mapping or satellite images and
typically smaller than sensor error, the digital map infation store them in a database, which is continuously maintained.
can be used to correct the accumulated error in DR-typdis has been the subject of prior research (e.g., [25],,[46]
sensors (e.g., INS) [40]. [47]). In this paper, LTE cellular SOPs were used to experi-
In contrast to existing map-matching approaches, to theentally evaluate the performance of the proposed approach
author’s knowledge, this is the first paper that develops p-maas discussed in Section VI. This was due to the availability
matching approach for SOP-derived estimates, while dgaliof an LTE receiver that provided pseudorange measurements.
with the problem of unknown clock error states of the SORowever, the proposed framework is agnostic to the type of
transmitters. Unlike GNSS-based navigation where thekcloSOP and could accommodate other SOP types (e.g., cellular
error states of GNSS satellites are known by decoding the n&@DMA, digital television, AM/FM radio) from which pseudo-
igation message, the complexity with SOPs is that theirkclocange measurements are extracted via appropriate reseiver
error states are unknown and must be estimated. In this papeEach SOP tower is assumed to be spatially stationary. Al-
a closed-loop map-matching approach is developed, where though the SOP locations are assumed to be known, their clock
refined vehicle position estimate obtained from fusing SOdtror states (i.e., clock bias and drift) are unknown, dyigam
pseudoranges and digital road maps is used in a feedbackl stochastic; hence, they must be estimated continuously
to refine estimates of the clock error states. Fig. 1 comparBse dynamics of the clock bias and drift is typically modeled
the existing GNSS-based map-matching approaches with #® a double-integrator driven by a process noise [48]-[51].
proposed closed-loop SOP-based map-matching framewdrkis model is valid over a relatively short periods of time fo
In the GNSS-based approaches (e.g., [10]) the algorithmhbsth the SOP transmitters and the vehicle-mounted receiver
open-loop with inputs being GNSS signals, digital maps, ar8ince the SOP pseudorange measurement is parameterized by
navigation sensors (if any) and the output being the refindie difference between the receiver's and the SOP’s clock
navigation solution. In the proposed method, however, théases [45], one only needs to estimate the difference ickclo
algorithm is closed-loop where the navigation solutiondad f biases and clock drifts, reducing the number of clock error
back to refine estimates of the receiver and SOPs clock erstaites that need to be estimated frdM, + 2 to 2N, . Hence,
states. each SOP will be associated with a state vediar,y s that
consists of the difference between its clock bias and diitfh w
the clock bias and drift of the vehicle-mounted receiver,, i.

Clock error estimates

and s Reciever and Féoad s T

ata 2 5/ SOPclock ™ ata g5 A :

- x = g .0 = =

GNSS signals — Navigation 'gb—: error models Navigtltion — gog Amclk,sn CA(Stna CA5tn y T 1a ceey Nsa
sensors K] 3 sensors = ]

(If available) SOP signals /(¢ ayailable)

where ¢ is the speed of lightAdt, = dt,. — dts, is the

M difference between the receiver’s clock bias and then-th
& . : R B . .
@) ) ,»(J SOP’s clock biagt,  , andAdt,, = dt,.—dts, is the difference
\\:9) Receiver + SOP clock 14 . . . i
Lo A—SOP error estimation  J~ between the receiver's clock drift, and then-th SOP’s clock
signals “‘ Maﬁ_ Na?/ig_ation signals \""',Maﬁ_- \\\ Navliga_tiOH drift (%Sn-
ARG - e mihg @ Accordingly, the discrete-time dynamic model of the clock
— -y 2 ||y error states can be expressed as
(a) Similar map-matching studies (b) Proposed map-matching framework
Fig. 1. Comparison between the proposed framework andirexishap- Amdk(k + 1) - (I)ClkAwdk(k) + wdk(k)’ (1)
matching approaches. (a) Existing map-matching appreacssume the F 0 0
availability of GNSS signals, which are fused with road dterefine the clk T
vehicle’s navigation solution. (b) The proposed approagerates in the N 0 For ... 0 A1 T
absence of GNSS signals. Here, SOPs are fused with road aatfine P = . . . . yFek = 0o 11’
the vehicle’s navigation solution. The navigation solaotis fed back to refine : : . :
the estimates of the receiver's and SOPs’ clock error states 0 0 ... Fux
h _ T T T H
where Azcy = |ATy g, ATy s, | + T IS the sam-
Il. M ODEL DESCRIPTION pling time, andw. is the process noise, which is modeled

This section describes the dynamic model of the vehiclas a discrete-time zero-mean white random sequence with
SOP transmitters [45], [46], and geographical digital mapsovariance
Also, it specifies the pseudorange measurement model made Qo = Fchk,r,sFTa 2

by the vehicle-mounted receiver on SOP transmitters.
where

A. Vehicle and SOP Dynamics Model Ixo —Iox2 0 ... O

S . . I 0 —1I e 0
The navigation environment is assumed to comptiée ra | 2x2
terrestrial SOP transmitters, denotgsl,}* . It is assumed . . . . :
that the vehicle knows the location of the SOP transmitters Ioyo 0 0 . —Ihyo
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and Qcik,r,s £ diag [chk,r, Qeik,sy5- - -5 chk,sNJ- Here, a map with unique link identifiel are defined based oy, ,
Q.ix,s,, is the process noise covariance of théh SOP, which s;,, and;,, wherek;, € N is the lane identifiers;, € R is
is given by the offset from the first map-matched position in lihkand
S T4s. T4 g 1 71, 1S the heading angle. The lirlks assumed to compridey
Qeis, =2 | 7 ten ;g‘t,SnT Vstion 2| map-matched positions, denotglg } ¥, . It can be shown that
' Swg . T Sag T for any link I, there exist two recursive functions; and.\;
where Sy, . and S;.  are the power spectra of thethat_ return th 2-D positTion vector of _theth map-matched
continuous-time process noise, ., and Wy, , , driving the positionp,, = [pm,,pm,] , expressed in the global frante
clock bias and clock drift, respectively [46], [51]. Noteath (S€€ Appendix A), specifically
Q.ik,- has the same form Q. s, , except thatSs;, . and
Say, . arereplaced by the receiver-specific spestg . and Ping, = MiPimg, s Sins Stn 1> Ti1s ki), (4)
Sﬂ?st,w respectively. The spectrf,, . and Smst’Sn can be
related to the power-law coefficient§s, }>.__,, which have
been shown through laboratory experiments to charactérize where p,,,,, € {pmzn}ﬁﬁl and pi, € {Pmy, }EN | represent
power spectral density of the fractional frequency dewrati the 2-D map-matched vehicle position. Fig. 2 shows an ex-
y(t) of an oscillator from nominal frequency, name$;,(f) = ample of a digital map including the links and map-matched
Zi:d hof¢ [48], [51]. It is common to approximate suchpositions, which are superimposed on a Google Map.
relationship by considering only the frequency randomkwal The map used in this study is developed based on an Open
coefficienth_, and the white frequency coefficiehg, which Street Map (OSM) database [53] for Riverside, California.
lead t0.Sy,, , ~ % andSg,, = 272h_4 [49], [50]. OSM is built by a community of mappers that contribute
The vehicle’s state vectae, consists of the vehicle’s two- and maintain roads, trails, and railway stations infororati
dimensional (2-D) positiorp, = [p”,pry]T and velocity A MATLAB-based parser was developed to extract the road
v,, i.e,, z. = [pl,v]]T, expressed in the global fram@ coordinates and lane information and interpolate map-neatc
(Latitude-Longitude coordinates). The vehicle is assutodae  positions between two successive points with a distancaere
moving according to velocity random walk dynamics, whicthan a specified threshold. Fig. 2 shows the interchange

Pmy, = M(pmyn,1 3 Sl s Slp—13 Tl 15 kln))

can be expressed in discrete-time by road junction between interstate highways 215 and 10 in
Riverside, California. This area contains 131 links and42,4

zr(k+1) = Az, (k) +w(k), 3) map-matched positions, which are presented with grees line
Inywo TIzyo and brown circles, respectively. The lane identifier and lin

A= { 02x2  Ioxo ] offset for the 35,146,349-th link of the OSM database and its

. . . . . carresponding map-matched positions are illustrated.
wherew,. is a discrete-time zero-mean white noise sequence

!/

with covarianceQ, given by

® Map-matched points

~ T ~ T2
Az =3 0 Az .
0 . T3 0 e = y : Links
Q. = ) dy~3 dy 5 , : : mm Traversed path

Gy 0 T 0
0 G4 o0 G, T ‘
where ¢, and ¢, are the power spectral densities of thés e
continuous-time process noise., driving the acceleration in
z- and y-directions, respectively. The velocity random wall N
motion model is general enough to account for a wide ran:
of moving objects, while being mathematically tractable.

B. Map Model =1 4 ; y . 5

Digital maps provide geographical data and location ir" = "

formation, which can be used for aligning noisy traces ar#=sgs e b = 4 &
displaying traversed trajectories. Digital maps are esitaty 5 BT84 o ai o
used in modern navigation systems for accurate vehicle- ‘////~
ance and advanced driver-assistance systems (ADAS) fuiy
tions. To this end, geographical information systems (§5IS# /
which represent the roads as series of links, are employlgd )
with map-matching techniques to snap the recorded vehigt% link
trajectory trace (e.g., from a GNSS navigation solutionfhe

digital road map. Each link includes the driving road celiier ~ Some approaches in the literature consider the maps to be
coordinates, the lane information, and the road headingeantaultless (e.g., [54], [55]); however, in the proposed ageh,

[9], [52]. A set of map-matched positions for a sample link ahe map displacement errao,, is modeled as a zero-mean

= bt
Pma 117.296998° :

4 R S, S —

/
/
o N,

£

An example digital map and its corresponding mapehed points
S.
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random vector with covarianc®,, = diag [anI,o—me] [56] and provide a probabilistic framework for fusing dagit
To find the map-matched vehicle’s position at time-step map data and non-linear, non-Gaussian measurementdyfFinal
while accounting for the map displacement error, the pregosparticle filters could track multiple candidate road segtsen
model finds the closest Mahanalobis distance on the map to thigich helps recover from mismatches.

estimated vehicle’s position at time-stép The Mahalanobis

distance provides a powerful method of measuring how similB. Time Update

some set of observations is to an ideal set of observatidiis wi In this subsection, the particle filter time update step for
some known mean and covariance. The estimated positiosth modes is described. Tligh particle vector is defined as

and map-matched position of the vehicle at time-stepre o T T T T
assumed to bg, (k) andp,, (k), respectively. Subsequently X'(k) = [’Pi (k), V. (k), Dz, (k)} ;
P (k) = min ||, (k) = Lnls,. (5) whereP:(k), Vi(k), andDzx!), (k) represent theé-th particle
" position, velocity, and clock error state, respectivetytime-
where stepk. Note that
N N 11 . . . T
16, () ~ Lz, = \/B.(F) — L]T S~ [p, (k) + L] Daly 2 [Daly, . Daiyn, |

Note thatp (k) will be defined later in Subsection IV-C. i i i T
pr( ) Daf'clk,n £ [Dmbias,n’p‘rdrift,n} )

C. Pseudorange Observation Model whereDz},, , and Dz}, , represent thé-th particle of the

. o . L difference between the receiver'c clock bias/drift and sthih
After discretization and mild approximations, the pseudOéOP,S clock bias/drift

ange made by the vehicle-mounted receiver onsthh SOP

is given by [45] The first step is to draw the initial particle¥’(0) for i =

1,..., N from an initial probability densityp[x(0)], where
T
25, (k) = ||pr (k) = pg, ||, + cASta(k) +ws,, () (o) = [pTT(O),vI(OLA:BClkT(O) ie.,

wherep, is the Iocapon of Fhen_—th SOP tower and_usn is X(0) ~plz(0)], i=1,...,N.
the measurement noise, which is modeled as a discrete-time
zero-mean white Gaussian sequence with variarice The The GNSS-derived estimates before GNSS cutoff is used

vector of pseudorange measurements ta\alISOPs is given to initialize the particles. Initially, the particle weitghare
by assumed to be equal, i.e.,

Zo = [Zorse s Zom,] (7) W,z-(o)_i P N

N oo, N,
Note that the primedV’’(.) denotes that the weights are not
yet normalized. The particle filter samples sequentialbnir
the sequence of posterior probability dengity: (k)|zs(k)]. It
can be shown that in order to minimize the variance of the
weights at time-stefk, the prior p[x(k)|xz(k — 1)] must be

This section describes a closed-loop framework to Mapp sen as the importance density functign, namely [57]
match the vehicle’s position estimate using SOP pseudesang
qle(k)] = plz(k)|z(k - 1)].

A. Problem Formulation The particular choice of importance density function isiredl

A vehicle with velocity random walk dynamics (cf. (3)) ist© the process no.ise di.st.ribution. nge, for simplicitynpd_?es
assumed to navigate in an environment compris\igSOP of‘the process noise dr|V|ng.the vehicle’s position and m@o
transmitters. The location of these transmitters are asdum w; and clock errorwy, will be drawn from a Gaussian
be known. In Mode 1, GNSS signals are available and GNS@stribution according to
derived vehicle position-estimates are map-matched toothe wi(k—1)~N[0,Q,], for i=1,...,N,
map. In Mode 2, GNSS signals become unavailable and the wiy (k= 1) ~ N[0, Qo] N
proposed framework: clk » clkly

. uses the last map-matched, GNSS-derived estimates Y§tere Vi, Q] denotes a Gaussian distribution with mgan
and covarianc&). Using (1) and (3), the time update of the

and it is assumed that the measurement néisg, }fj;l are
independent.

IV. CLOSED-LOOP MAP-MATCHING FRAMEWORK FOR
VEHICLE STATE ESTIMATION USING SOPs

for i=1,...,N,

initialization, ) !

. uses SOP pseudoranges to estimate the vehicle’s posifigticles is computed from
and velocity and map-matches the position estimate with [ P (k) Pi(k—1) ik 1
the road network data, and Viik) | =F| Vi(k—1) | + {uj"( k_ 1) } ,

« continuously estimates the clock error states of the Dwzlk(k) 'D-’Bilk(k—l) Wy (k — 1)
vehicle-mounted receiver and SOP transmitters. Where

A particle filter is adapted for data fusion, which simul- Invo  TIoxo O2x2n,

taneously performs both position refinement and clock error F=| 0542 Ioxo  O2xon. | - (8)

estimation. Particle filters are relatively easy to impleme 0on.x2 Oon,x2  Pox
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C. Measurement Update where, for Mode 1

When GNSS signals are available (Mode 1), the mea- |P5(E) = py, ||, + Dtias 1 (K)
surement update stage corrects the propagated partioles fr )
the time update stage with (i) SOPs, (ii) digital map data, Hi(k) = _ : _ 7
and (iii) the estimated vehicle’'s position obtained frone th H’Pﬁ(k:) — Py, || T Dxhias v, (k)
GNSS navigation solutiop;, = [pe,,pc,]’. Hence, the ,i;iz(k)

measurement vectcE (k) takes the form )
3, = diag[o?s,,..., 0%y, , Zanss],
T
Z(k) £ |25, (k). 2oy, (k), BG(R)
) . . and for Mode 2
The error of the estimated position obtained from the GNSS , _
navigation solution is modeled as a zero-mean Gaussian ran- [P7(k) = b, ||, + Dthias 1 (F)
dom vector with a horizontal covarian®gnss. To account ’Hi(k:) _ .
for the effect of multipath in urban environment navigation
Y aNss consists of nominal errors (e.g., uncertainties in satel-
lite clocks and positions, propagation delays in the iohesg
and troposphere, receiver noise, etc.) as well as multipath

”P;(k) - pst H2 + D‘T{)ias,Ns (k)

3, = diag[aQSI, ey O'QSNS].

For added numerical robustness, the largest weight is sub-
Yanss = LaNssnom + LGNSS,mp tracted from each weight before taking the exponent of (10),
which yields

b ~ ol HDOPI, ., _ ) .

GNSS,mp GNSS,mp 2x2 W’”(k) _ IOV ()] —max; (I ()]} (11)
whereXgnss nom IS the horizontal covariance of the estimated . . )
error due to nominal errorsEcnss.mp iS the horizontal The weights are normalized so thgt they sum to umFy to
covariance of the estimated error due to multipdiHOP preserve the fact that the set of particles represent aedéscr
is the horizontal dilution of precision, anefygs IS the approximation of the posterior probability density, i.e.,

contribution of multipath on the GNSS pseudorange measure- ‘ W//i(k)
ment noise variance, which can be obtained from multipath W(k) = =
models [58], [59]. 2img WH(K)

When GNSS signals become unavailable (Mode 2), ti®nally, the state estimate can be computed according to
measurement update stage only uses (i) pseudoranges drawn

. .. N
from SOPs and (ii) digital map data to correct the propagated R N i i
particles. ThereforeZ(k) only includes SOP measurements, P (k) ~ ZW (k)P (k),
ie., N
T N i i
Z2(k) £ [2s,(K), .- 2en, (K)] - (k) = Y W' (k)Vy(k),
i=1
Given the particle weightw’i(k— 1) and the measurement _ N ; ;
vector at time-steg, Z(k), the weights are updated according Aza(k) = Z W (k) Dy (k).
=1

to

i ; ; , The next step is to refine the estimaig(k) with the digital
W (k) = plZ(k)|X (k)W (k= 1), i=1,...,N. map data according to (5). Then, the vehicle’s estimated

osition is updated to be the nearest map-matched point, i.e
In deep urban canyons with limited LOS conditions, thg P P pomn

likelihood p[Z (k)| X' (k)] could possess very small values, pL(k) = p,, (k).
leading to numerical underflow issues. To avoid such proplem

the log-likelihood measurement update is employed acngrdiSubsequently, estimates, (k) and p,, (k) are fed back to
to correct the clock bias error state estimate according to

IV (k)] = In{p[Z(k)| X ()]} + In[Wi(k — 1)].  (9) cAdt,, (k) = cAbty (k) + Acorrn(k), (12)

Recall that the pseudorange measurement noise in (6) V\\//\g]sere
modeled as zero-mean independent Gaussian; therefore, (9hmm(k) = Gplllpp (k) — oy, || — 15, (k) —ps, |1,
can be expressed as 2 2
where the design parametéf, € (0,1) is the proportional
ln[W/i(k)] - _l[z(k)_%i(k)]T(gs)*l[Z(k)_q.ﬁ(k)] term of the control loop and is tuned to account for the effect
20 of the measurement noise. In this paper, §§r = 10 m?,
+ IV (k= 1)), (10) G, was set to 0.85. For higher value of measurement noise,
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G, takes lower value. Finally, the covariance can be obtainetbre than once in the new set, whereas some might disappear

from
P(k) = Y Wi(k)[X' (k) — &(k)][X" (k) — &(k)]",
=1
where
o T
(k) 2 [p" (k). 0,7 (k), Az (k)]
— — T —— ™7
Az (k) = [Amclk,sl 7"'7Amc1k,st ] )
_ N . T
Az, 2 [th;,thn} .
D. Resampling

particle degeneracy and impoverishment are commonly en-
countered issues in particle filters. This is typically gtied !
by including a resampling step before the weights become 1| Generate random samples of the
significantly uneven. In the resampling step, the partialigh !

e ] . ¢ Receiver and clock error dynamics wi(k 1)
negligible weights are replaced by new particles in the prox dynamics ! and wiy (k 1)
imity of the particles with higher weights. Several adaptiv SOP !
I

resampling criteria can be used, including the variancéef t
weights and the relative entropy with respect to the uniform
distribution [57]. Here, a simple yet effective resampling = ===="=="1 L -nmnmm Rt !

1

. . . . I
scheme is adopted. First, an estimate of the effective numbe pseuzg’;’nges i Calculate H'(k), Wi(k), Z(k), and =,| %1
. O . 1 CLI
of particlesN.g is computed as GNSS-derived ! ]\ s
timat S
N _ 1 (ifesa\llranilaa gﬁe) : Yes Particle g :
eff = Nim \ resampling 95):
S V)] | .
. . . . !
If the effective nur_nbe_r of particles is less _than a glvenshre E |Ca|cu|ate b, (k). 0y (k), Awe (k) f:
old Nu.., resampling is performed according to Algorithm 1. S _l_ ____________ A
| I

Road Find most probable road segments

Algorithm 1: Particle Resampling

completely. One problem associated with using map-madchin
in a closed-loop scheme is that if incorrect map-matched
positions are used to correct for the clock error states, the
error will very likely grow even larger. To avoid this, after
each measurement, the position estimate is compared to the
intersection of pseudoranges received from each SOPs. If
the difference is greater than a pre-defined threshold, the
resampling approach is used to reset the particles and re-
estimate the states.

Fig. 3 demonstrates the different parts of the proposed
navigation framework, including: time update, measuremen
update, and digital map update.

Initialization

process noise driving the vehicle's

dynamics

Time update

data and calculate p,, (k)

Input: X" (k), Wi(k), and Ny,
Output: X7, (k) andW;_,, (k)
1 Seti =1
2 CalculateN .z
3 If Neff < Nur,
4 Choose a random numberon [0, 1] uniformly
5 Find o such thaty 2= Wi (k) <n < 3350 Wi(k)

6 Setx! . (k)=Xx(k)
; 1
7 SetWwr.. (k)= N
If i <N,
9 Seti=1i+1
10 GotoSep 4
11 Else,
12 Delete the old set of particles
13 Use the new set of particles with new weights
14 End if
15 Else,
16 Do not resample
17 End if

!

| Calculate &(k) and P (k) |

Digital map update

e—

Fig. 3. Step-by-step summary of the proposed particle Hiltered navigation
solution. The proposed method consists of three partsiclgattme update,
SOP measurement update, and digital map update.

V. SIMULATION RESULTS

This section presents simulation results demonstratiag th
performance of the proposed method described in Section
IV. A simulated vehicle with initial access to GNSS (Mode
1) was assumed to navigate in an environment comprising
multiple SOPs with a known location and unknown clock
states. Pseudoranges from a varying number of SOP towers
were simulated. The SOP towers were assumed to be equipped

This resampling approach essentially selects new partielith oven-controlled crystal oscillators (OCXOs), whilleet
weights such that the discrepancy between the particleghicle-mounted receiver was assumed to be equipped with
weights is reduced. Note that some old particles might appea temperature-compensated crystal oscillator (TCXQ). The
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initial distances between the SOP towers and the vehicle wer

all assumed to be more than 1 km. The simulation settings
are given in Table I. Note that in Table {p, ;(0)}j_, and
{ps, j}j=1 represent the vehicle’s initial position (i.g,(0))

TABLE |
SIMULATION SETTINGS

Parameter

Definition Value

pr,l (0)

and the towers’ positions (i.ep, ) corresponding to thg-

th simulation test, respectively. The simulation envir@mn
layout and the trajectory traversed by the vehicle alondn wit
the position of the SOP towers for different simulation $est

are illustrated in Fig. 4.

Fig. 4. The simulation environment layout, trajectory &esed by the vehicle,
and position of SOP towers for different simulation teséy:Nlode 1: straight

pr,2 (0)
pr,B (0)

p'r‘,4(0)

N
N
T

HDOP

@9 Start point]

o RSEX

Omp

N,
{O'En nil

o2,

z:GNSS,nom

=Ted

- e P
" Start poin ”

dy

N,
{Sifét,sn }nil

Ns
{S’Jlé‘t’ }n:I

sn

segment then turn, (b) Mode 2, scenario 1: urban junctioos,Mode 2,

scenario 2: highway, and (d) Mode 2, scenario 3: complete. sto

The particle filter was initialized withz(k|k — 1)
where Pgi(klk — 1)
diag[Pp , Py, ,Paza,., |, Pp (klk — 1) = (5) - diag]1,

Nz(k),Pg(klk — 1),

r

P, (klk — 1) =
diag[3,0.3] for n = 1,...

(5) : diag[lvl]' PAmclk,En (k|k - 1)
,Ns, and x(k) is obtained

S

Wst,

lé

S
Wst,r

=

Ns
{psn,l}nzl

according to the GNSS-derived estimates in Mode 1.

Navigation in Mode 1 and three different scenarios for nav-
igation in Mode 2 were simulated spanning different driving {Ps,, 2}nss
conditions and access to GNSS signals:

« Mode 1: driving in a straight segment then turning. Here,
the vehicle is assumed to have initial access to GNSS

signals.

Ns
{psn»3}n:1

« Mode 2, scenario 1: driving in an urban environment with
multiple junctions. Here, GNSS signals were unavailable.
« Mode 2, scenario 2: driving on a highway, while perform-
ing lane changing. Here, GNSS signals were unavailable.
« Mode 2, scenario 3: turning at a junction, while requires
a complete stop before turning. Here, GNSS signals wergp L 3Ns,

unavailable.

Table Il summarizes the main features of the different

simulation tests.

Assuming the vehicle to stay centered in its driving lanég,

Vehicle initial position for
Mode 1

Vehicle initial position for
Mode 2, scenario 1

Vehicle initial position for
Mode 2, scenario 2

Vehicle initial position for
Mode 2, scenario 3

Number of particles
Number of SOP towers

[33.9804, -117.3305]
[34.0374, -117.2239]
[33.9917, -117.3581]

[33.9458, -117.4530]

10 to 300 Particles
3 to 6 towers

Sampling time 0.5s
Horizontal dilution of 1
precision
Proportional term of the 0.85
control loop ’
Gauss-Markov process time s
constant
Code phase multipath noise
standard deviation 1.m [60]
Measurement noise variance 10 m?
Map displacement variance 2 m?

GNSS-derived position error 5Tayo m? [61]

covariance
Acceleration noise variance 15 (m/s?)?
Acceleration noise variance 15 (m/s?)?
Clock bias process noise
power spectral density of 4x10=20 s

transmitters

Clock drift process noise
power spectral density of
transmitters

7.89 x 10722 1/s

Clock bias process noise
power spectral density of the
receiver

4.7%x 10720 g

Clock drift process noise
power spectral density of the
receiver

Tower positions for Mode 1:
straight segment then turning
(with initial access to GNSS)

7.5 x 10720 1/s

[33.9801, -117.3467;
33.9981, -117.3355;
33.9726, 117.3168;

33.9688, -117.3337]

[34.0380, -117.2376;
34.0517, -117.2254;
34.0380, -117.2110;

34.0277, -117.2239]

[33.9972, -117.3674;
34.0040, -117.3625;
34.0032, -117.3511;

33.9934, -117.3454;
33.9837, -117.3532;
33.9859, -117.3632]

[33.9459, -117.4439;
33.9391, -117.4551;
33.9527, -117.4547;

33.9469, -117.4645]

Tower positions for Mode 2,
scenario 1: urban junction
(without access to GNSS)

Tower positions for Mode 2,
scenario 2: highway
(without access to GNSS)

Tower positions for Mode 2,
scenario 3: complete stop
(without access to GNSS)

the road centerline was used as the ground truth. Based
on this ground truth, the GNSS navigation solution and the



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

TABLE Il
MODE/SCENARIODESCRIPTION . O Ground truth
GNSS-only solution
Mode! . GNSS Numfber Path Number of ~ |— GNSS + SOP solution
ode/scenario ac- ‘ 0 length (m) particles — Proposed method
cess owers ® Particles

Mode 1: Straight

then turn Yes 4 710 30
Mode 2, scenario 1.\, 4 280 10 to 100
Urban junctions
Mode 2 scenario 2: No 3106 440 30
Highway
Mode 2, scenario 3: No 4 270 30

Complete stop

pseudorange measurements drawn from SOPs were gener
and corrupted with the additive noise tabulated in Tablene T
following subsections present the achieved navigationlt®s
with the proposed framework.

Google My Ma

Fig. 5. Simulation results for Mode 1: straight segment thaning (with
initial access to GNSS).

A. Results for Mode 1: Straight Segment then Turning (with
Initial Access to GNSS)

The following scenario was simulated: a car that has access
to GNSS, started driving in a straight segment heading up tdR@verside, California, USA. The data was sampled at 2 Hz.
turning point. The true vehicle’s position was corruptecdldy The vehicle drove for 280 m including one crossroads and
ditive zero-mean Gaussian noise with a horizotakss nom tWO three ways. For this simulation, the number of particles
covariance. In order to simulate the multipath effect, a-firswas chosen to be 30. Fig. 6 illustrates the achieved results.
order Gauss-Markov process multipath model [59] is usdde white circles represent digital map points (not neaégsa

according to the traversed path) and the circles filled with blue represen
_T the ground truth (the traversed path). It can be seen that the

emp(k + 1) = e ey (k) + winp (k), particles follow the ground truth closely and the behavior

) _oT of the discrepancy of particles is consistent even across th

Wip ~ N [0, e (1 — ¢ Tmp )} , junctions. The RMSE of the vehicle’s position with the SOP-

only navigation solution was found to be 4.24 m, whereas the

wheree,,;, is multipath model" is the sampling timer,, iS RMSE using the proposed map-matching technique was 2.2
Gauss-Markov process time constant,, is the driving noise, m. For a comparative analysis, this simulation was perfarme
and o, is the GNSS code phase multipath noise standauging different particle numbersy = 10, 30, 50, 100. Table

deviation [60]. Note that for a dual-frequenty;, fo) GNSS Il compares the navigation performance due to different
receiver,on,;, is replaced with particle numbers.
\/ £2 2 £2 2
J1 J2
Tmp = Tmp {ff*f?] + [ff*fi} ' TABLE Ill

d\|AVIGATION PERFORMANCE COMPARISON DUE TO DIFFERENT PARTICE

During the period of this simulation, the vehicle-mounte NUMBERS

receiver produced pseudoranges to four SOPs. Fig. 5 aliestr

the traversed path by the vehicle before GNSS become unavail ,\ngitfé?s RMSE  Standard deviation =~ MAX Error
able. It can be seen from Fig. 5 that the estlmate_d pOS.ItIOI‘l 0 Z6m 25 m 2Em
follows closely the ground truth. Moreover, the simulation
: 30 22m 1.4 m 10.5m
results demonstrated that the proposed framework achieved 50 Lom i1im 34 m
a position RMSE of 2.62 m over a trajectory of 800 m while ' ' '
100 19m 09m 31m

the GNSS-only navigation solution achieved a position RMSE
of 4.43 m over a same trajectory. Hence, incorporating the
proposed framework reduced the position RMSE by 40.86%
in Mode 1.

The following may be concluded from this simulation.
. ] . First, the proposed map-matching method reduced the RMSE
B. Results for Mode 2, Scenario 1: Urban Junction (without  py 48119 from the SOP-only navigation solution. Second,
Access to GNSS) using 30 particles for driving in an urban street with muéip
This scenario considered a vehicle driving in an urban strgenctions would be sufficient for precise navigation while
with multiple junctions. The vehicle did not have access tasing fewer particles may result in particle discrepancy in
GNSS signals. The test data was simulated on a streetjunctions and an increase in the RMSE.
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Fig. 6. Simulation results for Mode 2, scenario 1: urban fiamc (without
access to GNSS). Only one-tenth of the particles were pldttemake the

Fig. 7. Simulation results for Mode 2, scenario 2: highwaytlfaut access

navigation solutions visible.

C. Resaults for Mode 2, Scenario 2: Highway (without Access

to GNSS)

to GNSS). Only one-tenth of the particles were plotted ang p@ints only

around the traversed path are displayed to make the nawigablutions
visible.

This scenario considered a vehicle driving on the highway

at 100 km/h. The GNSS signals were not available in this

scenario. The test data was simulated on a street in Riegrsid
California, USA, which is shown in Fig. 7. It can be seen that
the vehicle started moving in the north-east direction.eAft

200 m, it changed its lane (one lane to the right), and after
another 200 m it made a right turn heading north-west. The

TABLE V
IMPACT OF THE NUMBER OFSOPS ON THE NAVIGATION SOLUTION
SOP-Only Proposed approach
Vbel o Rwse M awse M
3 5.93m 15.16 m 1.35m 8.58 m
4 2.42m 6.37 m 0.97 m 442 m
5 1.82m 7.02m 091 m 351m
6 1.76 m 413 m 0.88 m 297 m

number of particles was chosen to Be = 50, and it was

found with several runs that increasing the number of dagic D, Results for Mode 2, Scenario 3: Complete Stop (without
to N > 50 yielded negligible performance improvementaccess to GNSS)
Fig. 7 illustrates the achieved results. It can be seen tiaat t

map-matched estimates followed the ground truth closdlg. T

navigation error is tabulated in Table IV.

TABLE IV

POSITIONESTIMATION ERROR FORDIFFERENTMAP-MATCHING
SCENARIOS INMODE 2

Mode 2 SOP-only Proposed approach Improvement
Scenario: RMSE RMSE P
1: Urban
junctions 424 m 22m 48.1%%
2: Highway 242 m 0.97 m 59.9%
3: Complete
stop 493 m 1.28 m 74.0%%

This scenario considered a vehicle driving at a crossroad.
GNSS signals were unavailable in this scenario. The vehicle
started by moving in the north direction. After 100 m it eetkr
a crossroad and performed a complete stop. After five seconds
it made a right turn to head east. As stated in Subsectio, l11-
receiver and SOP clock biases are dynamic and stochastic.
Therefore, if the vehicle is stationary (e.g., when comiag t
a complete stop at a turning junction) the clocks are dgftin
and the navigation solution will naturally drift as timeryang
clock biases cannot be distinguished from change in the true
range due to the vehicle’s motion. This scenario evaluates
the performance of the proposed approach under this driving
condition.

Fig. 8 illustrates the map-matching results for this scenar

In order to evaluate the impact of the number of SOPEhe RMSE using SOP-only navigation solution was found to
N, on the navigation solution, this test was conducted fére 4.93 m, while the proposed method reduced this error to
Ns; = 3,4,5,6 SOPs. The results are tabulated in Table \1.28 m (See Table 1V).

The following can be concluded from this simulation. First, It is worth noting that the vehicle’s dynamical model was
with Ny = 4, the proposed map-matching approach achievadsumed to evolve according to a velocity random walk model
an RMSE of 0.97 m compared to an RMSE of 2.42 m witfcf. (3)), which does not hold for the vehicle coming at
an SOP-only navigation solution (See Table IV). The acldeva complete stop (unless the process noise is set to zero).
precision is important for lane-changing driving. Secondjespite this model mismatch, the performance of the prapose
as can be seen from Table V, the proposed map-matchagproach achieved a RMSE of 1.28 m, which is a 74 % im-
approach achieved significantly lower estimation errothwitprovement over the SOP-only navigation solution. In order t
fewer towers than the case with SOP-Only navigation salutiomprove the performance even further, an interacting ipleiti
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model (MM)-type filter can be employed for the transitiono obtain the LTE navigation solution and the results were
between stationary and mobile vehicle. In practice, theckeh compared with the ground truth. To obtain a reliable and
would be equipped with a inertial measurement unit (IMU) taccurate ground truth, the vehicle was also equipped with
propagate the vehicle’s position and velocity states betwea Septentrio AsteRx-i V integrated GNSS-IMU [62], which
SOP measurements. includes a dual-antenna, multi-frequency GNSS receivetl za
Vectornav VN-100 micro-electromechanical system (MEMS)

g: -'57stop point IMU. Septentrio’s post-processing software developmént k
© Ground truth G E A (PP-SDK) was used to process the carrier phase observables
= Proposed method ® (8 i i i

SOP-only approach o collected by the AsteRx-i V and by a nearby differential GPS
® Particles o E’ 8 base station to obtain a carrier phase-based navigatioticul
O Map points g B8 Finally, the integrated GNSS-IMU real-time kinematic (RTK
ST é I iz || system was used to produce the ground truth results with
ooy gf /e which the proposed navigation solution was compared. Fig.
000000 6 6000 g6 esbse0elooooo o 9 Showsthe experimental setup and Table VI summarizes the
100000000 g g 0 ‘o scenario description for the three experiments.
0'0°0'0 0 0 gOOOUO 0000000 000000 O
> o
[ 0 o NSS antennas
o - 0 0 Mobil 7
9 o
denas Market o 6 7
? o Integrated
(i 0 GNSS-IMU

Carrier phase
observables

PP-SDK

Fig. 8. Simulation results for Mode 2, scenario 3: compldtp gwithout
access to GNSS). Only one-tenth of the particles were pldttemake the
navigation solutions visible.

septentrio

LTE

Pseudoranges RTK

solution

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithi Proposed
three experiments were performed using ambient cellul é Map | approach ias
LTE SOPs and a ground vehicle navigation in (i) an urbe N -
environment where multipath severely affects the receiveu
LTE signals, (i) a suburban environment where LTE SOPd. 9. Experimental hardware and software setup.
have poor geometric diversity, and (iii) a challenging urba
environment with multiple junctions and GNSS cutoff con-

Navigation
solution Nearby
differential

GPS base

diti hil : d ; v 2 TABLE VI

itions, while using pseudorange measurements from only SCENARIO DESCRIPTION OF EXPERIMENTS

!_TE SOPs. This gect_lon shovx_/s that the proposeq algorithm o Numberof LTE v Nomber of

improves t.he navigation solution in all thes_e environments SOPs length particles

The following subsections present the experimental setap a Urban 5 825 m 30

the results for each environment. Suburban 2 1500 m 30
Challenging 2 345 m 30

A. Experimental Setup and Scenario Description

A ground vehicle was equipped with two consumer-grade , )
800/1900 MHz cellular omnidirectional Laird antennas t& EXperimental Results for Urban Environment
receive LTE signals at two different carrier frequenciese T  The first experiment was conducted in an urban environment
signals were simultaneously down-mixed and synchronougijowntown Riverside, California, USA). It is worth mention
sampled via a National Instruments (NI) dual-channel univang that due to the lower elevation angles of LTE towers
sal software radio peripheral (USRP)—29@Rdriven by a compared to the GNSS satellites, the effect of multipath on
GPS-disciplined oscillator (GSPDO). The clock bias andt driLTE signals is typically significantly higher than GNSS sidm
process noise power spectral densities of the receiver waraurban environments.
set to bel.3 x 10722 s and7.89 x 10-2° 1/s respectively, In this experiment, the integrated GNSS-IMU system was
according to the oven-controlled crystal oscillator (OQXCQused to provide the ground truth along the entire trajectory
used in a USRP—2954R. The measurement noise varianceklowever, the navigation solution obtained from the GNSS-
{agn}ffgl were set to be 10 f The LTE and GNSS signals IMU system is discarded to emulate a GNSS cutoff period.
were stored on a laptop for off-line post-processing. Th& LTOver the course of the experiment, the ground vehicle tra-
signals were processed and pseudoranges were obtaingd uginsed 825 m while listening to 5 LTE SOP towers. All LTE
the Multichannel Adaptive TRansceiver Information eXtoac towers belonged to the U.S. cellular provider AT&T with the
(MATRIX) SDR [32]. The proposed algorithm was usecdtharacterisation summarized in Table VII.
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TABLE VII . . L . o
CHARACTERISTICS OFLTE TOWERS USED IN URBAN ENVIRONMENT  Di@ses are not available, it is impossible to show the esitima
EXPERIMENT errors.
LTE Carrier cell ID Bandwidth
SOP € 6 4
frequency (MHz) (MHz) S S
1 1955 216 20 £ £ ,
2 739 319 10 3 3
3 739 288 10 g 8, -
4 739 151 10 s g | e
5 739 232 10 5. 5= m— -y
g S | e cAdty + 20
O- O -4
. . . 0 20 40 60 80 0 20 40 60 80
Fig. 10 shows the environment layout, LTE SOP position _ Time (s) i Time (s)
true vehicle trajectory, LTE-only navigation solution, dan £ = e
estimated vehicle trajectory using the proposed closegd-lo % %
map-matching algorithm. Table VIII compares the navigatic ¢ e
performance obtained by the proposed algorithm versus tl £ S
of the LTE-only navigation solution. It can be seen the@ or e 2 il
incorporating the proposed map-matching algorithm reduc % jcgz[ﬂ) < :cgzﬂzg
the position RMSE by 74.88% from the RMSE obtained by & » : o) e
LTE-only navigation solution. 0 2 40 60 8 0 20 40 60 80
Time (s) Time (s)

S Ground truth '
& — LTE-only ;
8 — Proposed method

Fig. 11. Estimated difference between the receiver’s cloels and each
LTE SOP clock bias and corresponding variance.

Next, the effect of the clock difference correction (cf. \}L2
on the achievable accuracy was evaluated. To this end, the
stored data of this experiment was processed with and withou
clock difference correction. The results are shown in Table
IX. In this table, the RMSE of the estimated position as
well as the percentage of the points, which were incorrectly
map-matched, are tabulated. As can be seen, the proposed
closed-loop framework (i.e., with clock difference cotien)
significantly improves the open-loop solution accuracg.{i.
without clock difference correction).

TABLE IX
f : ESTIMATION PERFORMANCECV(\)/:;I':E,ZI;J_IIDOV&ITHOUT CLOCK DIFFERENCE
} Rot bl Method RMSE % of incorrectly map-matched
Fig. 10. The environment layout, LTE SOP positions, trueialetrajectory, points
LTE-only navigation solution using the method presented6i8], and esti- Open-loop 3.69 m 7.5%
mated vehicle trajectory using the proposed algorithm.gen@oogle Earth Closed-loop 1.6m 1.9%

TABLE VIII . .
NAVIGATION PERFORMANCECOMPARISON IN AN URBAN EnvironmenT  C. Experimental Results for Suburban Environment
Performance LTE-ort1_Iy Proposed | t The secor_ld experiment was conducted ina suburban envi-
measure o0 U8 O approach ~ 'mpProvemen ronment, using only 2 LTE SOP towers with poor geometry.
Over the course of the experiment, the vehicle-mounted re-
RMSE 6.37 m 1.6m 74.88% . : o
Standard ceiver traversed a total trajectory of 1.5 km while listento
det;inat%rn 2.09 m 0.65 m 68.9% 2 LTE SOPs simultaneously. Characteristics of the LTE SOPs
. are presented in Table X.
Maximum 11.18 m 3.74m 66.55%
error
TABLE X
CHARACTERISTICS OFLTE TOWERS USED IN SUBURBAN ENVIRONMENT
Fig. 11 shows the estimated difference between the re- LTE /. Carrier Cell D Bandwidth
iver : i ing Sop P
ceiver's and each LTE SOP’s clock biases and corresponding frequency (MHz) (MHz)
variances. It can be seen that using the proposed algorithm 1 T-Mobile 2145 21 20
the estimated variances remain stable in the course of the 2 AT&T 1955 300 20

experiment. Since the actual receiver's and eNodeBs’ clock
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This experiment studied the performance as the vehic&PS cutoff point, GPS back in point, and the vehicle’s
turned along the road, crossed junctions, and came tostap point at the cross junction is also demonstrated in this
complete stop. Fig. 12 shows the environment layout, LTigyure. Moreover, the effect of the clock difference correc-
SOP positions, true vehicle trajectory, LTE-only navigati tion (cf. (12)) on the achievable accuracy is shown. Table
solution provided in [64], and estimated vehicle trajegtorXlll compares the navigation performance of the proposed
using the proposed algorithm. Table XI compares the navigaamework versus that of the GPS-only and GPS-LTE navi-
tion performance obtained by the proposed algorithm versgation solutions. The following may be concluded from these
that of the LTE-only navigation solution. It can be seen thaésults. First, when GPS signals were unavailable the GPS-
the proposed approach is robust in areas with poor geometridy navigation solution drifted from the ground truth. $hs
diversity and a limited number of LTE SOPs. The experimentdle to the fact that the aiding corrections from GPS signals
results show that the incorporating the proposed map-rimafchwere not available. As expected, the proposed framework
algorithm reduced the position RMSE by 58.15% from thdid not exhibit this drift as LTE signals were used as an

RMSE obtained by a LTE-only navigation solution. aiding source. Second, it can be seen from these results that
the proposed closed-loop map-matching navigation framewo
TABLE XI outperforms the GPS-LTE solutions. The results demormstrat
NAVIGATION PERFORMANCECOMPARISON IN A SUBURBAN .. .
ENVIRONMENT a position RMSE of 6.69 m using GPS-LTE framework and
LTE-only RMSE of 3.6 m using the proposed close-loop map-matching
Performance navigation F’roposer(:| Improvement method. Hence, incorporating the presented method reduced
measure . approac e
solution PP the position RMSE by 46.18 %.
RMSE 9.32m 39m 58.15%
Standard TABLE XIlI
b anaar 436 m 2.76 m 36.69% NAVIGATION PERFORMANCECOMPARISON IN A GNSS-CHALLENGED
eviation URBAN ENVIRONMENT
Maxi
aximum 33.47m 1491 m 55.45% GPS-only GPS-LTE Improvement
error Performance navigation navigation Proposed over
measure solution solution approach GPS-LTE
. _ ) RMSE 11.26 m 6.69 m 3.6m 46.18%
D. Experimental Results for a Challenging Urban Environ-
Standard
ment deviation 7.68 m 3.87m 3.02m 21.96%
To assess the robustness of the proposed framework, théaximum 18.15 m 15,55 m 11.7 m 27 75%

third experiment was conducted in a challenging envirortmen__€r

in downtown Riverside, California. Here, an urban streghwi

multiple junctions was chosen. The drive test included 9 s VII. CONCLUSION AND FUTURE WORK

of complete stop before the cross junction in @ GNSS cutoff A method for ground vehicle localization in GNSS-

condition. The streets were surrounded by tall buildingsnfr challenged environments using road information from digit

both sides and only 2 LTE towers were available in thgaps and ambient LTE SOPs was proposed. The main contri-

environment. Over the course of the experiment, the vehiggtion of the work was to develop a closed-loop particlerfilte

traveled 345 m while listening to only 2 LTE towers withhased framework that fuses LTE pseudoranges with digital

characteristics summarized in Table XII. maps to estimate the vehicle’s state, simultaneously viéh t

TABLE XII difference between the vehicle-mounted receiver’s and LTE

CHARACTERISTICS OFLTE TOWERS USED IN THE THIRD EXPERIMENT ~ SOPS’ clock bias and drift. The proposed method used a

LTE Operator Carrier Cell D Bandwidth displacement information as a feedback source to continu-
SOP frequency (MHz) (MH2) ously estimate the clock states for all LTE transmitterse Th
1 T-Mobile 2145 79 20 proposed approach operates in two modes: GNSS signals are
2 AT&T 1955 350 20 available (Mode 1) and GNSS signals are unavailable (Mode

2). Simulation and experimental results were presentecbdem
strating the efficacy and accuracy of the proposed framework

The ground truth was produced using GNSS-IMU RTK sysa different driving environments (urban and suburban) and
tem described in Subsection VI-A. The GPS-only navigatiamder different driving conditions (junctions, highway thi
solution was obtained by only using GPS pseudorangeslame change, and complete stop). The experimental results
emulate a low-cost technology. To evaluate the performandemonstrated a position RMSE of (i) 1.6 m over a 825 m
of the proposed framework in the absence of GPS signaigjectory in an urban environment with 5 LTE SOPs, (ii) 3.9
while using signals from only 2 LTE transmitters, the GPSm over a 1.5 km trajectory in a suburban environment with
only navigation solution was discarded over a portion of 99 LTE SOPs, and (iii) 3.6 m over a 345 m trajectory in a
m of the total trajectory. challenging urban environment with 2 LTE SOPs. Moreover,

Fig. 13 demonstrates the environment layout along with tlitewas demonstrated that incorporating the proposed map-
location of the LTE transmitters, true vehicle trajectdBRS- matching algorithm reduced the position RMSE by 74.88%
only navigation solution, GPS-LTE navigation solutiondanand 58.15% in urban and suburban environments, respagtivel
the estimated vehicle trajectory using the proposed fraonew from the RMSE obtained by a LTE-only navigation.
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Ground truth
— LTE-only
~— Proposed method

K
(b)

Fig. 12. Environment layout, LTE SOPs’ positions, true e@hirajectory, LTE-only navigation solution, and estiethtvehicle trajectory using the proposed
algorithm. (a) Complete stop before turning point, (b) LTEFS’ positions, (c) vehicle’s trajectory and environmexytolut, (d) junction point, and (e) turning
point. Image: Google Earth.

£ o o]
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Ground truth S 4 Fig. 14. Calculating the latitude and longitude of theth map-matched
~—GPS-only ' e Closed-loop point in a sample link.

—GPS-LTE i proposed
— Proposed method |§ |8 o soltion

Fig. 13. The environment layout along with the location oBLffansmitters, centerline takes the form

true vehicle trajectory, GPS-only navigation solution, SSETE navigation

solution, and estimated vehicle trajectory using the psepgalgorithm. Image: d=s1, —S1,_,-

Google Earth. " "
Thus,

I . . AD = (s, = s1,_1) co8(7,_, ),
While this paper considered a simple feedback mecha-

nism, more sophisticated feedback algorithms, such as-mult BD = (s1, — s1,_,) sin(m,_, ).

hypothesis, could be investigated in future work in an M. gistancel’ — ak; wherea andk; represent lane width

to impro_ve the rob_us_tness. In addition, Wh_ile this wor_k 80AS 4ng Jane identifier, respectively, for theth map-matched
ered a simple statistical model for the vehicle dynamicsirtu goint. As can be seen from Fig. 14

work could consider using other sensors (e.g., lidar and IN

to obtain the vehicle’s odometry, which reduces the model B+ =90°

mismatch between the assumed vehicle’s dynamics model and T4y =90°
n—1 - N

the vehicle’s true motion.
Thus, the angles equals the heading angle of the previous

APPENDIXA point 7;, ,. Therefore,
DERIVATION OF EQUATION (4) oE b s
Fig. 14 illustrates(n — 1)-th andn-th map-matched points T ok, $in(m, . )
in link [. The distance between two adjacent points in a road BC = aky,, cos(m,_,)-
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The coordinates ofi-th map-matched point can be compute@7]

based on thén — 1)-th point according to
Pma, =Pma, , T AD + CE,
Pmy, = Pmy,_, + BD — BC,

which yields

M =Py, , + (51,

- Slnfl) COS(Tlnfl) + akln Sin(Tlnfl )’

M = Pmy,_, + (Sl — Sln—l) Sin(Tln,l) — Oékln COS(Tlnfl).

n
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